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Abstract

We study the many-body dynamics of weakly interacting Bose gases with two-particle
losses. We show that both the two-body interactions and losses in atomic gases may
be tuned by controlling the inelastic scattering process between atoms by an optical
Feshbach resonance. Interestingly, the low-energy behavior of the scattering amplitude
is governed by a single parameter, i.e. the complex s -wave scattering length ac. The
many-body dynamics are thus described by a Lindblad master equation with complex
scattering length. We solve this equation by applying the Bogoliubov approximation in
analogy to the closed systems. Various peculiar dynamical properties are discovered,
some of them may be regarded as the dissipative counterparts of the celebrated results
in closed Bose gases. For example, we show that the next-order correction to the mean-
field particle decay rate is to the order of |na3

c |1/2, which is an analogy of the Lee-Huang-
Yang correction of Bose gases. It is also found that there exists a dynamical symmetry
of symplectic group Sp(4,C) in the quadratic Bogoliubov master equation, which is an
analogy of the SU(1,1) dynamical symmetry of the corresponding closed system. We
further confirmed the validity of the Bogoliubov approximation by comparing its results
with a full numerical calculation in a double-well toy model. Generalizations of other
alternative approaches such as the dissipative version of the Gross-Pitaevskii equation
and hydrodynamic theory are also discussed in the last.
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1 Introduction

Interacting Bose gas is a central topic in the fields of ultracold atoms and condensed mat-
ter physics, for it represents a paradigm of quantum many-body physics. Theoretically, if
one focuses on the low-energy physics, the interactions between bosons can always be sim-
plified by a zero-range one with a real s-wave scattering length as that reproduces the same
low-energy scattering phase shift [1], despite that the actual potentials are usually very com-
plicated. Various many-body effects can then be studied theoretically with the help of the
zero-range model [2, 3]. More importantly, experimental techniques such as Feshbach reso-
nance can adjust a along the real-axis in cold atomic gases [4], which allows us to demonstrate
various many-body effects, from the Lee-Huang-Yang correction [5–9] for positive scattering
length to the Bose nova effect [10–12] for negative scattering length.

Recently, with the development of theoretical and experimental methods [13–29], much
more attention has been paid to behaviors of cold atom systems with dissipation. For bosonic
and fermionic models, single particle and two-body dissipation processes such as particle pump
and loss can be realized [30–36]. To better understand the many-body physics in open sys-
tems, it is then useful to introduce a zero-range model for Bose gases with two-body losses.
In a previous work [37], the authors have shown that with a proper renormalization or reg-
ularization approach, the boson-boson interactions and losses can be effectively described by
a complex contact interaction parameterized by a complex s-wave scattering length ac . The
physics of the dissipative Bose gases can then be regarded as an extension of as from the real
axis to the complex plane.

In this paper, we focus on the dissipative dynamics of weakly interacting Bose gas with
two-body losses. Firstly, we show that complex scattering length ac can be effectively adjusted
in the lower complex plane through optical Feshbach resonances. Then we study the many-
body dynamics in the weakly interacting and dissipating region by introducing the Bogoliubov
approximation [38]. Within the Bogoliubov approximation, the evolution process is governed
by a quadratic time-dependent Lindblad equation. By numerically solving a toy model, we
verify the accuracy of this approximation in open systems. Furthermore, we find within this
approximation, the superoperators in the master equation form a closed algebra, which cor-
responds to a symplectic Sp(4,C) dynamical symmetry group, and helps to derive an exact
solution for the evolution of density matrix. Our analysis also reveals that an n-mode bosonic
system governed by a quadratic Lindbladian always has Sp(2n,C) dynamical symmetry. Fi-
nally, within the framework of the Keldysh path-integral method, we obtain a generalized
non-Hermitian Gross-Pitaevskii equation which reproduces the same excitation spectrum as
the Lindblad equation and leads to a set of dissipative hydrodynamic equations in the long
wavelength limit.

The paper is organized as follows. In Section. 2, we show that the complex scattering
length ac in an atomic gas can be tuned across the lower half complex plane via optical Fesh-
bach resonances. Then in Section. 3 we introduce the single-channel master equation and the
Bogoliubov approximation, which we use to solve the many-body properties of the dissipative
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Bose gases. We verify the validity of the Bogoliubov approximation by numerically solving a
toy model in Section. 4, and discuss the dynamical symmetry of the Bogoliubov Lindbladian
in Section. 5. In Section. 6, we derive the dissipative version of the Gross-Pitaevskii equation
and hydrodynamic theory using the Keldysh path integral formalism for open systems.

2 Tuning complex scattering lengths in experiments

In the scattering theory, it is known that the inelastic collisions between particles will cause
two-body losses and eventually lead to a complex s-wave scattering length, which contains
all the information of the low-energy scattering amplitude [1,39–41]. This suggests that one
might control the two-particle interaction and losses experimentally by tuning the inelastic
scattering process between atoms in a cold atomic gas. Experimentally, this tuning can be
realized through the optical Feshbach resonance technique [42]. As shown in Fig. 1 (a), in the
experiment, an external laser is applied to the atomic gas, and the frequency of the optical field
is tuned close to a transition between two ground state atoms and a highly excited molecular
state (i.e. a two-body bound state consists of a ground state atom and a highly excited atom).
When the excited molecule spontaneously decays and emits a photon, the two atoms will be
kicked out of the system because of the huge recoil momentum, thus causing two-particle
losses in the atomic gas.

Theoretically, this process might be captured by a detailed calculation of the scattering
amplitude for a finite-range multi-channel model, which shows that the complex scattering
length is given by [39–41]

ac(E) = abg

�

1+
Γ (I)

E − ν− Γ (I) + iγ/2

�

. (1)

Here ν is the detuning of the laser field, γ is the decay rate of the excited molecule, abg is
the (real) background s-wave scattering length, E is the scattering energy, and Γ (I) stands for
the width of the resonance and is proportional to the intensity I of the laser field.

In this chapter, we provide a simplified zero-range model to reproduce this formula and
discuss the domains on the complex plane where ac might reach using optical Feshbach res-
onances. To construct the model, we first introduce the bosonic field operator b̂ (d̂) for the
ground state atoms (excited molecules), and the Hamiltonian of the system may be written as
(ħh is set to unity in this paper)

Ĥofr =
∑

k

�

εk b̂†
k b̂k + ξkd̂†

k d̂k

�

+
g

2Ω

∑

k,k′,p

b̂†
k+p b̂†

k′−p b̂k′ b̂k

+
1
p
Ω

∑

k,p

�

αd̂†
p b̂ p

2−k b̂ p
2+k +α

∗d̂p b̂†
p
2−k

b̂†
p
2+k

�

,

where g is the interacting strength between atoms in the open channel, εk=
k2

2m and ξk=
k2

4m+ν,
m is the atom mass, Ω is the volume. The two channels are coupled by laser light with
strength α.

The spontaneous radiation of the bound-state molecule can be characterized by the fol-
lowing Lindblad master equation [43]

∂t ρ̂ = L(ρ̂) = −i[Ĥofr, ρ̂]−
γ

2

∑

k

{d̂†
k d̂k, ρ̂}+ γ

∑

k

d̂kρ̂d̂†
k .

For a two-body process, the dynamics of the corresponding density matrix (in two-particle
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Figure 1: (a)The schematic for the optical Feshbach resonance model. In the open
channel, a pair of atoms b is interacting via strength g. They are coupled to a
molecule state d in the closed channel by laser light at detuning ν. The molecu-
lar state spontaneously radiates at rate γ. (b) The range of a−1

c (0). For fixed Γ (I),
the trajectory of a−1

c (0) forms a circle tangent to the real-axis at a−1
bg with radius Γ (I)γabg

in the upper half complex plane when changing ν within (−∞,+∞). Then the
radius of this circle will increase as we gradually turn on Γ (I).

Fock space) is equivalent to the evolution under a non-hermitian Hamiltonian

Ĥ2-body = Ĥofr − i
γ

2

∑

k

d̂†
k d̂k . (2)

We can obtain the two-body scattering matrix T2 for this Ĥeff at relative kinetic energy E

T2(E) =

�

�

g +
|α|2

E − ν+ iγ/2

�−1

−
1
Ω

∑

k

1
E − k2/m

�−1

.

By matching the derived T-matrix with the usual low-energy expansion formula
4π
m

�

1
ac(E)

+ i
p

mE
�−1

[1], we obtain the renormalize relation for the complex scattering
length ac ,

m
4πac(E)

=

�

g +
|α|2

E − ν+ iγ/2

�−1

+
1
Ω

∑

|k|<Λ

m
k2

, (3)

where Λ is the momentum cut-off and ac(E) can be further written as

ac(E) = abg +
m
4π

|αre|2

E − νre + iγ/2
, (4)

with m
4πabg

= 1
g +

mΛ
2π2 , |αre|2 =

|α|2
(1+mgΛ/(2π2))2 , νre = ν−

mΛ|α|2
2π2+mgΛ .

The above formula is exactly eq. (1) if we take the limit Λ→∞, and write Γ (I) = m|αre|2
4πabg

.1

For a dilute gas at extremely low temperature, the kinetic energy E is negligible and the
many-body effect can be well captured by the zero energy scattering length ac(E = 0). A
general ac(0) can be achieved via changing the detuning ν and density I . To be more clear, as

1This term could be regarded as Γ (I) because the square of the renormalized coupling strength |αre|2 is also
proportional to the laser intensity.
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shown in Fig. 1(b), at fixed Γ (I), the trajectory of a−1
c (E = 0) form a circle tangent to the real-

axis at a−1
bg with radius Γ (I)γabg

in the upper half complex when tuning ν ∈ (−∞,+∞). Therefore,
as we gradually increase Γ (I), this circle can sweep across the entire upper half-plane.

Here we comment on the difference between tuning complex scattering length and real
scattering length. The real scattering length can also be controlled in a magnetic-induced Fes-
hbach resonance by varying the strength of the magnetic field. However, to achieve a general
complex scattering length, we need at least two adjustable parameters. Thus we choose the
optical resonance model rather than the magnetic Feshbach resonance.

3 Dissipative Bose gas

For non-dissipative atomic gases, it is known that the interaction between particles may be de-
scribed by a single-channel contact potential, provided that the Feshbach resonance is “wide”,
i.e. that the occupation in the closed molecular channel is small compared to the open scat-
tering channel [41]. The Hermitian Hamiltonian of a Bose gas may be written as

Ĥ =
∑

k

εkâ†
kâk +

g
2Ω

∑

k,k′,p

â†
k+pâ†

k′−pâk′ âk , (5)

where âk is the annihilation operator for the atoms with momentum k, εk is the kinetic energy,
g is the coupling constant, Ω is the system volume.

The single-channel Hamiltonian greatly simplifies the calculation of the many-body prop-
erties in closed Bose gases. Thus it is desirable to construct a single-channel model to describe
the many-body dynamics of dissipative atomic gases with complex scattering lengths. In the
previous work [37], the authors have studied this problem and constructed a renormalizable
single-channel model for systems across a “wide” optical Feshbach resonance. In this work,
we focus on the many-body dynamics of this model, and the study of systems across “narrow”
optical Feshbach resonances will be pursued in the future. In the single-channel model, the
open system dynamics are governed by the master equation [37,43]

∂t ρ̂ = −i(Ĥeffρ̂ − ρ̂Ĥ†
eff) +J ρ̂ , (6)

with the non-Hermitian effective Hamiltonian

Ĥeff = H −
iγb

2Ω

∑

k,k′,p

â†
k+pâ†

k′−pâk′ âk , (7)

and the recycling term

J ρ̂ =
γb

Ω

∑

k,k′,p

âk′ âkρ̂â†
k′−pâ†

k+p . (8)

This master equation describes the dynamics of Bose atoms, denoted by â, as they interact with
each other through a bare coupling constant gb while decaying to the environment (i.e. no
longer confined by the trapping potential) via a two-body losses process characterized by a bare
coupling constant γb. To regularize the contact interaction, we can use the renormalization
relation [37]

1
gb − iγb

=
1

g − iγ
−

1
Ω

∑

k

1
2εk

, (9)

and define g − iγ≡ 4πac
m as renormalized complex coupling constant.
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Bogoliubov approximation

To solve the spectrum of isolated weakly interacting Bose gas, we can use the Bogoliubov ap-
proximation and diagonalize the quadratic Bogoliubov Hamiltonian. Similarly, we can gener-
alize Bogoliubov’s transformation in the open system. Starting from a condensate initial state
and assuming the condensate part is always much larger than quantum depletion during the
time evolution, we can trace out the condensed part by replacing all the â0, â†

0 with the square
root of the zero-momentum atom number N −

∑

k ̸=0 â†
kâk, then we obtain an approximate

master equation for the reduced density matrix ρ̂′ as ∂t ρ̂
′ ≈ LB(ρ̂′) with

LB(ρ̂
′) = −i[ĤB, ρ̂′]− 2γn

∑

k̸=0

{â†
kâk, ρ̂′}+ 4γn

∑

k̸=0

âkρ̂
′â†

k , (10)

and

ĤB =
gnN

2
+
∑

k̸=0

((εk + gn)â†
kâk +

gn− iγn
2

â†
kâ†
−k + h.c.) ,

where N is the total atom number and n = N
Ω is the density. Here we use renormalized pa-

rameters g,γ to replace the bare parameters gb,γb like in conventional Bogoliubov Hamil-
tonian [38]. Different from the time-independent Bogoliubov Hamiltonian in a closed sys-
tem, Lindbladian after Bogoliubov transformation is time-dependent due to the two-body
losses. The density n is decreasing as a function of time t, at mean-field level, we have
n(t) = n0(1+ 2γn0 t)−1.

The conventional Bogoliubov Hamiltonian is the linear combination of three operators
Â0

k =
1
2(N̂k + N̂−k + 1), Â1

k =
1
2(â

†
kâ†
−k + h.c.) and Â2

k =
1
2i (â

†
kâ†
−k − h.c.), these operators form a

closed SU(1,1) algebra [44–46],
�

Â1
k, Â2

k

�

= −iÂ0
k,
�

Â2
k, Â0

k

�

= iÂ1
k,
�

Â0
k, Â1

k

�

= iÂ2
k . (11)

As a result, for an isolated system, the Hamiltonian has SU(1,1) dynamical symmetry, and the
Heisenberg equations of these three operators are closed. When introducing the two-body
losses, the Heisenberg equations for these three operators are no longer closed. However, the
evolution of their expectation values A= (〈Ak

0〉 , 〈A
k
2〉 , 〈A

k
2〉)

T are still closed, satisfying

Ȧ= −2





2γn γn −gn
γn 2γn εk + gn
−gn −εk − gn 2γn



A+





2γn
0
0



 . (12)

Here, we focused on the short-time dynamics where γnt ≪ 1 such that we may approxi-
mate n as a constant at a fixed time t. We can diagonalize the 3×3 matrix in eq. (12) to obtain
the eigenvalue −2iξk,i , where the quasi-steady state eigenvalue is

ξk,0 = −2iγn , ξk,(1,2) = −2iγn±
Ç

ε2
k + 2g0nεk − γ2

0n2 .

A phase boundary between stable and unstable BEC can be obtained by this quasi-steady state
eigenvalue [37].

Lee-Huang-Yang correction

Furthermore, we will give a detailed derivation for the Lee-Huang-Yang correction [47,48] for
this open system. Consider quasi-steady-state eigenvalue, up to O (γnt), simple solution of
eq. (12) can be obtained

A(t) = As + e−4γnt (B+C cos 2ξk t +D sin2ξk t) , (13)
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constant vectors B,C,D can be determined by the initial value of A, and

AT
s =









1
2 +

(g2+γ2)n2

2ε2
k+4gnεk+6γ2n2

− gnεk+g2n2+2γ2n2

2ε2
k+4gnεk+6γ2n2

− γn(εk−gn)
2ε2

k+4gnεk+6γ2n2









. (14)

We see that A never reaches the steady value As because the asymptotic solution eq. (13) only
works for time interval 0≤ t ≪ ħh/γn. Nevertheless, it is still useful to calculate some physical
properties for this steady state, since this helps to verify the renormalization relation given in
eq. (9).

When A reaches this steady value, we see that nk + n−k = 〈Ak
0〉 −

1
2 also becomes steady.

Thus we get the total particle losses rate dN
d t =

dN0
d t . And we may calculate dN0/d t by

dN0

d t
= ∂t tr

�

ρ̂a†
0a0

�

= tr
�

L(ρ̂)a†
0a0

�

= tr
�

ρ̂L′(a†
0a0)

�

,

with L′ defined by

L′(Ô)≡ i
�

Ĥ, Ô
�

−
γ

2V

∑

k,k′,p

¦

a†
k+pa†

k′−pak′ak, Ô
©

+
γ

2V

∑

k,k′,p

a†
k+pa†

k′−pÔak′ak .

It is then straightforward to show that

L′(a†
0a0)≃ −2γnN − 2

∑

k̸=0

�

γnAk
1 + gnAk

2

�

. (15)

This leads to

dN0

d t
= −2γnN − 2

∑

k ̸=0

�

γn〈Ak
1〉+ gn〈Ak

2〉
�

. (16)

From this equation, we see that the first term corresponds to the mean-field decay which leads
to n≃ n(1+ 2γnt)−1 as mentioned previously. After inserting the steady value, we have

dN0

d t
= −2γnN + 2γn

∑

k

gnεk + γ2n2

ε2
k + 2gnεk + 3γ2n2

. (17)

We immediately find that the summation diverges for large momentum. Similar divergence
occurs in the calculation for ground state energy of Bose gas in a closed system [49, 50].
This divergence arises from the fact that the renormalized interaction is only valid for small
momenta. To cure this divergence, one can introduce an intermediate momentum cutoff and
then consider an effective interaction with second-order processes in the mean-field energy
component. For our case, the second-order effective interaction parameter g̃ and γ̃ is given by

g̃ − iγ̃= (g − iγ)

�

1+
g − iγ

V

∑

k

1
2εk

�

. (18)

We thus obtain

γ̃= γ+
gγ
V

∑

k

1
εk

. (19)
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Replacing γ in the mean-field part of eq. (17) by γ̃, we have

dN
d t
=

dN0

d t

= −2γnN + 2γn
∑

k

�

gnεk + γ2n2

ε2
k + 2gnεk + 3γ2n2

−
gn
εk

�

= −2γnN
�

1+ cθ (n|ac|3)1/2
�

,

(20)

with cθ a constant that only depends on the argument of the complex scattering length ac ,

cθ = 4
p

2π

�

cos 2θ
p

cos(θ −π/3)
+ 2 cosθ

Æ

cos(θ −π/3)
�

.

Here, θ is defined as θ = −arg(ac) = −arg(ar + iai) ∈ [0,π], where ac is expressed as two
real parameters: ac = ar + iai .

We note that the n|ac|3 term in eq. (20) is an analog of the celebrated Lee-Huang-Yang
correction to the ground state energy of a weakly interacting Bose gas [47,48],

E0 =
g0nN

2

�

1+
128

15π1/2
(na3

r )
1/2 +O(n log n)

�

. (21)

With the help of renormalization relation, we can eliminate the divergence eq. (16) and
obtain a physical result of particle loss rate.

It is well known that, for Bose gas without a two-particle loss (ai = 0), the system is dynam-
ically unstable when ar < 0. This instability is reflected in eq. (21), which becomes ill-defined
for a negative real scattering length. Similarly, eq. (20) reflects certain dynamic instability in
open systems. One can check that the coefficient cθ becomes ill-defined for θ ∈ [5π/6,π],
suggesting that our approach is not valid in this regime. This is because the quantum deple-
tion (Bogoliubov modes) grows rapidly in this regime, which invalidates the assumption that
â0 ≈ â†

0 ≈
p

N0 [37].

4 A toy model

Our calculation is based on the assumption that the Bogoliubov approximation is always valid
during the dynamical evolution. It is impossible to verify this approximation numerically in
the thermodynamic limit due to the exponential growth of the Hilbert space dimension in
the quantum many-body system. To numerically compare the dynamics process generated by
the original Lindbladian and the Bogoliubov Lindbladian, we introduce a toy model that can
capture the interacting and dissipation features of the open bosonic system.

Numerical model

As shown in Fig. 2, we consider a double-well model, the annihilation operator for the bosonic
mode in the right (left) well is denoted by b̂r(b̂l). The evolution of this system is governed by
the master equation

∂t ρ̂ = −i[Ĥdw, ρ̂]− γ
∑

i=r,l

�

{Γ̂ †
i Γ̂i ,ρ}+ 2Γ̂iρΓ̂

†
i

�

, (22)

where the Hamiltonian is

Ĥdw = −t
�

b̂†
r b̂l + b̂†

l b̂r

�

+ g
�

b̂†
r b̂†

r b̂r b̂r + b̂†
l b̂†

l b̂l b̂l

�

, (23)
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-2 -1 0 1

1

γn

ϵ

gn

ϵ

unstable

(a) (b)

Figure 2: (a) Schematic of a double-well toy model with interacting and two-body
losses, ε represent the energy detuning. (b) The phase diagram of double-well model

on γn
ε −

gn
ε plane. When gn

ε < −
1+3( γn

ε )
2

2 , quasi-steady state eigenvalue has a positive
imaginary part, which represents the exponential growth of non-condensate particle

number, the system is in the unstable phase. When gn
ε > −

1+3( γn
ε )

2

2 , the number of
the minority particle is always much smaller than the condensate number during the
time evolution, the system is in the stable phase.

with t the hopping strength between the two wells, g the on-site interaction strength. The
Lindblad operators for the onsite two-body losses are Γ̂r = b̂r b̂r , Γ̂l = b̂l b̂l , with γ the decay
rate.

Corresponding to the Bose gas model, we consider the “zero momentum” mode
â0 =

1p
2
(b̂r + b̂l) as majority part while the “non-zero momentum” mode â1 =

1p
2
(b̂r − b̂l) as

small depletion part. We can shift the energy for the mode â0 to zero without loss of generality
and the mode â1 has a detuning ε = 2t from the mode â0. Omitting the interacting or losses
terms only including minority part, such as â†

1â†
1â1â1, the master equation is then given by

∂t ρ̂ = −i
�

Ĥeff
a ρ̂ − ρ̂Ĥeff†

a

�

+J ρ̂ , (24)

where the effective Hamiltonian Ĥeff
a for â0, â1is

Ĥeff
a = εâ†

1â1 +
g − iγ

2

�

â†
0â†

0â0â0 + â†
0â†

0â1â1 + â†
1â†

1â0â0 + 4â†
0â0â†

1â1

�

, (25)

and the recycling term in eq. (24) are similar to Lindbladian of Bose gas with two-body losses,

J ρ̂ = γ
�

â0â0ρ̂â†
0â†

0 + â1â1ρ̂â†
0â†

0 + â0â0ρ̂â†
1â†

1 + 4â0â1ρ̂â†
0â†

1

�

.

In this model, the effective Hamiltonian Ĥeff
a conserves the particle number n̂= â†

0â0+ â†
1â1

while the recycling term always annihilates two particles, thus the master equation can be
decomposed to a series of hierarchy equations for ρ̂i, j [37]

∂t ρ̂i, j = −i
�

Ĥeff
a ρ̂i, j − ρ̂i, j Ĥ

eff†
a

�

+J ρ̂i+2, j+2 , (26)

where ρ̂i, j = P̂iρ̂ P̂j , with P̂i the projection operator for the i-particle Fock space. Then for the
dynamical evolution of eq. (24) with initial density matrix a pure state of particle number N ,
only the projected density matrix ρ̂N ,N , ρ̂N−2,N−2,ρ̂N−4,N−4... is involved and the numerical
simulation is performed by calculating these differential equations.

Now considering the Bogoliubov approximation, we replace the â0 and â†
0 with the square

root of the condensate atoms number n− â†
1â1, then we can obtain the approximated Lindbla-

dian as
L̂B

dwρ̂ = −i
�

ĤB
dw, ρ̂

�

−
γ

2

�

nâ1â1 + nâ†
1â†

1 + 4nâ†
1â1, ρ̂

	

+ γ
�

nâ1â1ρ̂ + nρ̂â†
1â†

1 + 4nâ1ρ̂â†
1

�

,
(27)
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Figure 3: Quench dynamics under time evolution using two methods with total par-
ticle number N = 100 and energy in unit of ε. (solid: exact time evolution governed
by Lindbladian eq. (24); dashed: approximated Lindbladian eq. (27)). The initial
condition is all particles condensate at groundstate, n0 = N . (a),(b)System at sta-
ble phase with coupling strength gN = 0.52ε and dissipation strength γN = 0.20ε.
(c),(d) System at stable phase with gN = −0.52ε and γN = 0.02ε.

where the Hamiltonian ĤB
dw is

ĤB
dw = εâ†

1â1 +
g
2
(n2 + nâ1â1 + nâ†

1â†
1 + 2nâ†

1â1) , (28)

and time-dependent particle number is given by n = N(1 + 2γN t)−1. Similar to
eq. (12) in the Bose gas case, the expectation value of the three SU(1,1) operators
Â1

dw = (â
†
1â1 + â1â†

1)/2, Â2
dw = (â

†
1â†

1 + â1â1)/2 and Â3
dw = (â

†
1â†

1 − â1â1)/2i form a closed
set of differential equations,

Ȧdw = −2





2γn γn −gn
γn 2γn ε+ gn
−gn −ε− gn 2γn



Adw +





γn
0
0



 , (29)

with Adw = (〈Â1
dw〉 , 〈Â

2
dw〉 , 〈Â

3
dw〉)

T. The three eigenvalues−2iξi for the 3×3 matrix in eq. (29)
are

ξ0 = −2iγn , ξ(1,2) = −2iγn±
Æ

ε2 + 2gnε− γ2n2 . (30)

When the imaginary part of ξ1 is larger than zero, the corresponding eigenvalue becomes a
positive number, thus the particle number n̂1 grows exponentially in short time leading to an

unstable dynamic. The phase boundary2 for this stability is given by gn
ε = −

1+3( γn
ε )

2

2 as shown
in Fig. 2(b).

Numerical results

We now check the accuracy of the Bogoliubov approximation by comparing the numerical
simulation result from eq. (24) and eq. (27). The evolution begins with an initial state with
N = 100 particles occupying the mode â0. As shown in Fig. 3, the two evolution results almost
coincide in the stable phase. While in the unstable phase, due to the increase of the quantum
depletion, the particle number n̂1 predicted by the Bogoliubov approximation eq. (27) deviates
from the exact time evolution governed by eq. (24) at long time. This result confirms that
our Bogoliubov approximation for the Lindblad master equation is valid as long as the ratio
between the density of quantum depletion to the total density is much smaller than the unitary.

2In fact, the transition between stable and unstable dynamics is a crossover since the position of the “boundary”
depends on the density which decreases during the evolution.
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5 Dynamical symmetry of Lindbladian

In this section, we discuss the dynamical symmetry of quadratic Lindbladians in detail, which
can greatly simplify the calculation of the master eq. (10). It is worth mentioning that a
time-independent quadratic Lindbladian may be solved explicitly using the third quantization
method [51,52]. However, this cannot be directly applied to our problem because of the time-
dependent n(t) contained in the master eq. (10). Fortunately, in our Bogoliubov Lindbladian,
it can be shown that, besides the obvious U(1) and Z2 symmetry, the algebraic structures of the
superoperators defined on the density matrix space also contain a hidden symplectic Sp(4,C)
dynamical symmetry. This dynamical symmetry provides a relatively simple way [53, 54] to
construct exact solutions to the time-dependent Lindbladian algebraically.

Symmetry

The Lindbladian LB in eq. (10) has two obvious symmetries, i.e. an extended U(1) symmetry
and a Z2 symmetry. To see the U(1) symmetry, one only needs to verify that the Lindbladian
is invariant under transformation âk → âkeiφ , â†

k → â†
ke−iφ . The corresponding conserved

superoperator is thus Q̃ = [N̂ ,◦]. While for the Z2 symmetry, it can be verified by realizing LB
is invariant under âk→−âk or â†

k→−â†
k.

However, these two symmetries alone are not enough to obtain an analytical solution to
the master eq. (10). To solve the quench dynamics governed by this time-dependent master
equation, we need to generalize the concept of dynamical symmetry to open systems, i.e. to
find a closed algebra formed by superoperators that contain the Lindbladian LB itself.

Closed algebra

To find this algebra, we note that LB can be expressed in the superoperator-formalism as

LB(ρ̂
′) =

 

∑

k,kz≥0

L̃k

!

◦ ρ̂′ . (31)

Here L̃k is a superoperator act only on modes k and −k, which is a linear combination of
seven quadratic superoperators. We label these superoperators by h̃k

i , i = 1, 2, . . . 7. They are
defined by

h̃1
k ◦ ρ̂

′ =
�

â†
kâk + â−kâ†

−k

�

ρ̂′ , h̃2
k ◦ ρ̂

′ = 2â†
kâ†
−kρ̂
′ ,

h̃3
k ◦ ρ̂

′ = 2âkâ−kρ̂
′ , h̃4

k ◦ ρ̂
′ = ρ̂′

�

â†
kâk + â−kâ†

−k

�

,

h̃5
k ◦ ρ̂

′ = 2ρ̂′â†
kâ†
−k , h̃6

k ◦ ρ̂
′ = 2ρ̂′âkâk ,

h̃7
k ◦ ρ̂

′ = âkρ̂
′â†

k + â−kρ̂
′â†
−k .

Among these seven superoperators, h̃i
k, i = 1, 2, . . . 6 represent the (anti-)commutators be-

tween the (anti-)Hermitian parts of the effective Hamiltonian and the density matrix ρ̂, and
the last one represents the recycling term of L̃k.

However, only these seven superoperators cannot form a closed algebra, i.e. their commu-
tators are not necessarily linear combinations of themselves. For example, we have

[h̃5
k, h̃7

k] ◦ ρ̂
′ = −2

�

âkρ̂
′â†
−k + â−kρ̂

′â†
k

�

. (32)

which is a superoperator that can not be written in the form of
∑7

i=1αi h̃
i
k.
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Table 1: Commutation relation table of 10 superoperators. The superoperators
h̃1, h̃2, h̃3 or h̃4, h̃5, h̃6 can form two su(1,1) algebra, which is the result of the SU(1,1)
dynamical symmetry of Bogoliubov Hamiltonian in closed system.

h̃1] h̃2] h̃3] h̃4] h̃5] h̃6] h̃7] h̃8] h̃9] h̃10]

[h̃1, 0 2h̃2 −2h̃3 0 0 0 −h̃7 h̃8 −h̃9 h̃10

[h̃2, 0 −4h̃1 0 0 0 −2h̃8 0 −2h̃10 0

[h̃3, 0 0 0 0 0 2h̃7 0 2h̃9

[h̃4, 0 2h̃5 −2h̃6 −h̃7 −h̃8 h̃9 h̃10

[h̃5, 0 −4h̃4 −2h̃9 −2h̃10 0 0

[h̃6, 0 0 0 2h̃7 2h̃8

[h̃7, 0 h̃6 h̃3 h̃1 + h̃4

[h̃8, 0 h̃1 − h̃4 h̃2

[h̃9, 0 h̃5

[h̃10, 0

It is thus necessary to introduce three more superoperators h̃i
k, i = 8, 9,10 to close the

algebra. They are
h̃8

k ◦ ρ̂
′ = â†

−kρ̂
′â†

k + â†
kρ̂
′â†
−k ,

h̃9
k ◦ ρ̂

′ = âkρ̂
′â†
−k + â−kρ̂

′â†
k ,

h̃10
k ◦ ρ̂

′ = â†
kρ̂
′âk + â†

−kρ̂
′âk .

All of the superoperators h̃i
k, i = 1, 2, . . . , 10 now form a closed algebra,3 whose com-

mutation relations are listed in Table. 1. Hence these superoperators are generators of the
dynamical symmetry group of Lindbladian. In the following of this section, because only par-
ticles at momentum k and −k are coupled, we will omit the label k of superoperators. Below
we will prove this algebra can map to the algebra of two coupled harmonic oscillators and the
corresponding group is isomorphic to Sp(4,C). Before that, we will formally write the exact
solution of L̃B.

Exact solution

Based on this closed algebra structure, the dynamical problem of time-dependent Lindbladian
can be solved exactly [53,54]. First of all, formally solve the master equation ρ̂ as ∂t ρ̂ = L̃B◦ρ̂,
we can denote the solution as

ρ̂(t) = Λ̃(t, t0) ◦ ρ̂(t0) . (33)

Λ̃(t, t0) is a dynamical map from time t0 to time t. In general, this mapping is a semi-group
which satisfies Λ̃(t2, t0) = Λ̃(t2, t1)Λ̃(t1, t0) but don’t satisfy the unitary condition under Lind-
blad time evolution. Thanks for the closed algebra, the Lindbladian can be written as a linear
combination of the dynamical symmetry group generators L̃ =

∑7
l=1 ul(t)h̃l hence we can

parametrize the dynamical map by these ten generators,

Λ̃(t, t0) =
10
∏

i=1

egi(t)h̃i
. (34)

3In fact, the structure of the master equation can further restrict these 10 elements into seven: H̃0
k = h̃1

k − h̃4
k,

H̃1
k = h̃2

k − h̃6
k, H̃2

k = h̃3
k − h̃5

k, L̃0
k = h̃1

k + h̃4
k − 2h̃7

k, L̃1
k = h̃2

k + h̃6
k − 2h̃8

k, L̃2
k = h̃3

k + h̃5
k − 2h̃9

k, L̃3
k = h̃1

k + h̃4
k − 2h̃10

k .
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Substitute this equation back to the master equation, we can get

∂t

10
∏

i=1

egi(t)h̃i
=

7
∑

l=1

ul(t)h̃
l

10
∏

j=1

eg j(t)h̃ j
, (35)

where ul(t) are time-dependent parameters defined by Hamiltonian. Solving the dynamics
of the time-evolution operator is equivalent to solving the complex functions gi(t). Right
multiply the inverse of Λ̃(t, t0) at both sides of eq. (35) and write the explicit expression of
time derivative, we can obtain

10
∑

m=1

∂t gm(t)
m
∏

i=1

egi(t)h̃i
h̃me−gi(t)h̃i

=
7
∑

l=1

ul(t)h̃
l . (36)

Using Baker-Campbell-Hausdorf formula [55] and commutation relation in Table. 1, we can
formally write L.H.S of eq. (36) as:

∑

m,n

∂t gm(t)ηmnh̃n =
7
∑

l=1

ul(t)h̃
l , (37)

where the ηmn are analytic functions of g. Considering the linear independent property of ten
generators, we can obtain a set of coupled first-order differential equations. In consequence,
by solving these coupled differential equations for g(t), we will get the exact solution of the
dynamics governed by time-dependent Lindbladian. In practice, obtaining an analytical so-
lution for a general time dependence ul(t) is difficult. However, eq. (37) offers a method to
numerically obtain the time evolution of the density matrix, which is similar to the evolution
of a Gaussian state under a quadratic Hamiltonian [46,56].

In the following, we show that the superoperators h̃i form an algebra of sp(4,C) by map-
ping them to a coupled 2-mode harmonic oscillator. We further generalize this result to an
n-mode quadratic Lindblad bosonic system, in which the superoperators form a closed algebra
of sp(2n,C).

Map to harmonic oscillators

Even though the commutation relations between h̃i
k seem complicated as shown in Table. 1,

it is worth noting that they only consist of quadratic superoperators. A natural question is
then whether there is an isolated system that has the same algebra structure. Indeed, we
find that if we consider two coupled harmonic oscillators with ladder operators a and b, all
the superoperators h̃i can be mapped to linear combinations of quadratic forms of a, a†, b, b†.
In Table. 2, we give the explicit correspondence of this mapping, and it is not difficult to
show that the mapping preserves commutation relations, i.e. it is indeed an isomorphism.
The isomorphism greatly the structure of the algebra. As an example, we will show in the
following that the quadratics of ladder operators â and b̂ form the algebra of symplectic group
Sp(4,C).

Sp(2n,C) dynamical symmetry group

To show this, we prove a general result, i.e. the quadratic forms of ladder operators an in an
n-mode harmonic oscillators (n = 1,2, . . .) have symplectic Sp(2n,C) dynamical symmetry. A
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Table 2: Operators in coupled harmonic oscillator system and superoperators in dis-
sipative Bose gas system after Bogoliubov approximation with momentum k. These
10 operators and superoperators have the same commutation relation in Table. 1 and
they can form the algebra sp(4,C).

Harmonic Oscillator Bogoliubov Lindbladian

h1 (a†a+ aa†)/2 (â†
kâk + â−kâ†

−k)◦
h2 a†a† (2â†

kâ†
−k)◦

h3 aa (2âkâ−k)◦
h4 (b† b+ bb†)/2 ◦(â†

kâk + â−kâ†
−k)

h5 b† b† ◦(2â†
kâ†
−k)

h6 bb ◦(2âkâ−k)
h7 ab âk ◦ â†

k + â−k ◦ â†
−k

h8 a† b â†
−k ◦ â†

k + a†
k ◦ a†

−k

h9 ab† âk ◦ â†
−k + â−k ◦ â†

k

h10 a† b† â†
k ◦ âk + â†

−k ◦ â−k

generic quadratic form is given by is given by

M̂ =
1
2

�

a†
1 , . . . , a†

n, a1 , . . . , an

�

�

B A
AT C

�



















a†
1
...

a†
n

a1
...

an



















.

To make the coefficient matrices unique, we require BT = B and CT = C .
Note that the coefficient matrix may be written as

�

B A
AT C

�

=

�

A −B
C −AT

��

I
−I

�

≡ MΩ , (38)

with M satisfying

ΩM +MTΩ= 0 , (39)

which is the generator for Lie group Sp(2n,C).
We now define new operators

bi =

�

ai , i ∈ {1,2, . . . , n} ,
ai−n , i ∈ {n+ 1, . . . , 2n} , (40)

bi =

�

a†
i , i ∈ {1,2, . . . , n} ,

ai−n , i ∈ {n+ 1, . . . , 2n} , (41)

which are related by bi = Ωi j b
j and bi = Ωi j b j with matrices

Ωi j =

�

δi, j−n , i ∈ {1,2, . . . , n} ,
−δi, j+n , i ∈ {n+ 1, . . . , 2n} , (42)

Ωi j =

�

−δi, j−n , i ∈ {1,2, . . . , n} ,
δi, j+n , i ∈ {n+ 1, . . . , 2n} . (43)
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We thus have the following useful commutation relations
�

bi , b j
�

= δ j
i ,

�

bi , b j

�

= −δi
j , (44)

�

bi , b j
�

= Ωi j ,
�

bi , b j

�

= −Ωi j . (45)

With all these definitions, the generic quadratic form in Eq. (38) can then be expressed as

M̂ =
1
2

bi M j
i b j , (46)

with the upper (lower) index representing the column (row) index. The above formula gives
a one-to-one mapping between the quadratic form and the Lie algebra sp(2n,C). More impor-
tantly, it can be proved (Appendix A)

�

M̂ , N̂
�

=
1
2

bi [M , N] j
i b j , (47)

which implies that the mapping is an isomorphism.
Now we prove n-mode quadratic bosonic Hamiltonian has an Sp(2n,C) dynamical sym-

metry, meanwhile, in the last subsection we proved our Bogoliubov Lindbladian is isomorphic
to coupled 2-mode harmonic oscillator. In consequence, we can conclude that Bogoliubov
Lindbladian has an Sp(4,C) dynamical symmetry.

Furthermore, our results are not only restricted to Bogoliubov Lindbladian. Because
quadratic operators in 2n-mode coupled harmonic oscillator have the same commutation rela-
tion with the superoperators in n-mode quadratic Lindbladian, we can conclude that quadratic
Lindbladian which is constituted by n-mode bosons has Sp(2n,C) dynamical symmetry. This
result will be useful for the further analytical study of open systems.

6 Dissipative Gross-Pitaevskii equation and hydrodynamic theory

In closed systems, weakly interacting Bose gas can also be treated using other theoretical
approaches such as the Gross-Pitaevskii equation and the hydrodynamic theory [49, 50, 57].
In this section, we generalize these two descriptions to open systems with weak two-body
losses. We derive the dissipative versions of the Gross-Pitaevskii equation and hydrodynamic
equations based on the Keldysh path integral formalism.

Keldysh formalism

We start from the master equation ∂t ρ̂ = Lρ̂ of interacting bosons subject to two-body losses
in real space,

Lρ̂ = 1
i
[Ĥ, ρ̂]−

γ

2

∫

r

{ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r), ρ̂}+J ρ̂ , (48)

where ψ̂(r) is the bosonic annihilation operator at position r, and

Ĥ =

∫

r

ψ̂†(r)

�

−
∇2

2m

�

ψ̂†(r) +
g
2

∫

r

ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) , (49)

is Hermitian Hamiltonian of interacting bosons.
The recycling term J ρ̂ is given by

J ρ̂ = γ
∫

r

ψ̂(r)ψ̂(r)ρ̂ψ†(r)ψ̂†(r) . (50)
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Using the keldysh path-integral representation, we introduce fields ψ± and ψ̄± living respec-
tively on the time contour C+ and C−, where time runs from −∞ to +∞ and then back to
−∞ in the closed-contour C+ ∪ C−. Then we can write partition function Z = Tr(ρ(t)) of
eq. (48),

Z =

∫

D[ψ+, ψ̄+,ψ−, ψ̄−]e
iS[ψ] , (51)

where we omit the initial condition and the Lindblad-Keldysh action [58] is

S =

∫

d tdr
∑

η=±
(−1)sη(ψ̄η(r)i∂tψη(r)−H(ψ̄η(r),ψη(r)))

+
i
2
γ

∫

d tdr
∑

η=±
ψ̄η(r)ψ̄η(r)ψη(r)ψη(r)

− iγ

∫

d tdr ψ+(r)ψ+(r)ψ̄−(r)ψ̄−(r) ,

(52)

where time runs from −∞ to +∞, and sη = 0 for η= +, sη = 1 for η= −.

Saddle-point approximation

We consider the case that almost all particles occupy the ground state energy level, which
means N ≈ N0 ≫ 1. In the closed system, we can assume the system is always in a coherent
state, and the condensate wavefunction can be found by the saddle-point equation. Similarly,
here we consider the losses process to be weak and slow so that we can still take the coherent
state assumption. As a result, we can take the saddle-point equation in an open system,

δS

δψ̄±
= 0,

δS
δψ±

= 0 , (53)

then we obtain

i∂tψ+ −
�

−
∇2

2m
ψ+ + gcψ̄+ψ+ψ+

�

= 0 ,

−i∂tψ̄+ −
�

−
∇2

2m
ψ̄+ + gcψ̄+ψ+ψ̄+

�

− 2iγψ+ψ̄−ψ̄− = 0 ,

−i∂tψ− +

�

−
∇2

2m
ψ− + g∗c ψ̄−ψ−ψ−

�

− 2iγψ+ψ+ψ̄− = 0 ,

i∂tψ̄− +

�

−
∇2

2m
ψ̄− + g∗c ψ̄−ψ−ψ̄−

�

= 0 ,

(54)

where the complex interacting strength gc = g − iγ.

Non-Hermitian Gross-Pitaevskii equation

The regularization of Keldysh action requires the relationψ+ =ψ−, ψ̄+ = ψ̄− [59], combining
with the saddle-point equations eq. (54), we will obtain the Gross-Pitaevskii equation under
the two-body losses (ψ+ =ψ),

i∂tψ−
�

−
∇2

2m
ψ+ gc|ψ|2ψ+ Vψ

�

= 0 . (55)
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This equation substitutes the coupling parameter g to the complex version g − iγ in the con-
ventional Gross-Pitaevskii equation. However, due to the particle loss, the solution of this
dissipative Gross-Pitaevskii equation becomes quite different from the conventional solution
for a closed system. For example, when V = 0, it is easy to show that we have a plane-wave-like
solution given by

ψ0(r) =
p

n0e−i gc
2γ log(1+2γn0 t) . (56)

And in finite momentum we can also obtain an exact solution,

ψp(r) =
p

n0ei(p·r−p2 t/2)e−i gc
2γ log(1+2γn0 t) .

Then we can solve the excitation spectrum of this dissipative Gross-Pitaevskii equation by
inserting small perturbation ψ = ψ0 + δψ and its complex conjugate and expanding to the
linear order in δψ:

i∂tδψ= −
1
2
∇2δψ+ 2gc|ψ0|2δψ+ (g − iγ)ψ2

0δψ
∗ ,

i∂tδψ
∗ =

1
2
∇2δψ∗ − 2g∗c |ψ0|2δψ∗ − (g + iγ)ψ∗20 δψ .

To solve this equation, we may apply a unitary transformation δφ = ei g
2γ log(1+2γn0 t)δψ

which leads to a simplified equation in the “rotating wave frame”,

i∂tδφ = −
1
2
∇2δφ + (2gc − g)nδφ + gcnδφ

∗ ,

i∂tδφ
∗ =

1
2
∇2δφ∗ − (2g∗c − g)nδψ∗ − g∗c nδφ ,

with n = n0(1+ 2γn0 t)−1. Now if we consider perturbations with momentum k and naively
treat n(t) as time-invariant, we may find the eigenfrequencies of the above equations are

ωk = −2iγn±
Ç

ε2
k + 2gnεk − γ2n2 , (57)

which coincide with the values we previously obtained using the Bogoliubov approximation.
As a result, we can also get the phase diagram by solving this dissipative Gross-Pitaevskii
equation.

Hydrodynamic equation

In the closed system, fruitful physical consequences can be obtained by solving the hydrody-
namic theory of interacting BEC, such as superfluidity, anisotropic expansion, and low-energy
modes in a harmonic trap [49, 50, 57]. It is then interesting to construct the hydrodynamic
equation with two-body loss. Starting from the time-dependent dissipative Gross-Pitaevskii
equation eq. (55), we can derive the hydrodynamic equations which govern the dynamics of
a dissipative fluid. By decomposing ψ = pρeiθ , the real part and imaginary part give the
hydrodynamic equations:

∂tρ +∇(ρv) + 2γρ2 = 0 ,

m∂tv= −∇
�

1
2m

1
p
ρ
∇2pρ +

1
2

mv2 + V (r) + gρ

�

.
(58)

The first equation is called the continuity equation, which reflects the conservation of particle
numbers. Now two-body losses in interacting BEC bring new term γρ2 in the continuity equa-
tion, which breaks the particle number conservation. And the second equation, the Newton
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equation, is same as the conventional one. For a uniform system with V (r) = 0, the uniform
solution is

ρ(r, t) =
ρ0

1+ 2γtρ0
, (59)

which shows that condensate particles always decay with time and the vacuum is the only true
steady state of this system. With the new dissipation term γρ2, finding the solutions for the
general case is challenging, we will leave this for future research.

7 Conclusion

In summary, we systematically study the many-body dynamics of weakly interacting Bose gases
with two-body losses. It is shown that both the two-body interactions and losses in a cold
atomic gas may be described by a complex scattering length ac , which may be controlled via
tuning an external laser field. We generalize Bogoliubov approximation to open systems and
verify the validity of this approximation by numerical simulating a toy model that has a sim-
ilar structure. Based on this time-dependent Bogoliubov Lindbladian, we study the quench
problem and prove this system has a Sp(4,C) dynamical symmetry, which is crucial for the
exact calculation of quench dynamics. Furthermore, we show a general n-mode quadratic
Lindbladian of the bosonic system has a dynamical symmetry of Sp(2n,C), which is useful
for the analytical understanding of the dissipative open system. On the other hand, we also
generalize the Gross-Pitaevskii equation and hydrodynamic theory to dissipative Bose gases.
Hydrodynamic equations have rich interesting solutions in closed systems, we only discuss the
solution without external potential in this paper, it would be significant to generalize these
solutions to open systems and study the stable property of these results. Finally, from a closed
interacting bosonic model to open system, other types dissipation are admitted such as sin-
gle body loss and pump, particle number form dissipation. It is also interesting to discuss
the different properties of these open systems. We hope our work can be helpful for further
understanding the non-equilibrium dissipative dynamics in cold atom systems.
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A Proof of Eq. (47)

We prove Eq. (47) by direct calculation,

[M̂ , N̂] =
1
4

�

bi M j
i b j , bl N k

l bk

�

=
1
4

M j
i N k

l

�

bi b j , bl bk

�

=
1
4

M j
i N k

l

�

bi
�

b j , bl
�

bk + bi bl
�

b j , bk

�

+
�

bi , bl
�

bk b j + bl
�

bi , bk

�

b j

�

=
1
4

M j
i N k

l

�

δl
j b

i bk −Ω jk bi bl +Ωil bk b j −δi
k bl b j

�
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=
1
4

�

M j
i N k

j bi bk −M j
i N i

l bl b j +M j
i N k

l

�

Ωil bk b j −Ω jk bi bl
�

�

=
1
4

�

bi [M , N] j
i b j +M j

i N k
l

�

Ωil bk b j −Ω jk bi bl
�

�

. (A.1)

Now we are left with the second term on the R.H.S. To keep going, note Eq. (39) is written as

Ωi j M l
j +M i

jΩ
jl = 0 , Ωi j M

j
l +M j

i Ω jl = 0 . (A.2)

We thus have

M j
i N k

l

�

Ωil bk b j −Ω jk bi bl
�

= Ωil M j
i N k

l Ωkq bq b j −Ω jkM j
i N k

l Ω
ls bi bs

= −Ωil M j
i ΩlkN k

q bq b j +Ω jkM j
i Ω

kl N s
l bi bs

= −M j
i N i

q bq b j +M j
i N s

j bi bs

= bi [M , N] j
i b j . (A.3)

Combing Eq. (A.1) and Eq. (A.3), we then proved Eq. (47) in the main text.
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[32] J. Tindall, B. Buča, J. R. Coulthard and D. Jaksch, Heating-induced long-
range η pairing in the Hubbard model, Phys. Rev. Lett. 123, 030603 (2019),
doi:10.1103/PhysRevLett.123.030603.

[33] A. Kantian, M. Dalmonte, S. Diehl, W. Hofstetter, P. Zoller and A. J. Daley,
Atomic color superfluid via three-body loss, Phys. Rev. Lett. 103, 240401 (2009),
doi:10.1103/PhysRevLett.103.240401.

[34] N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garciía-Ripoll, J. I. Cirac,
G. Rempe and S. Duürr, Strong dissipation inhibits losses and induces correlations in cold
molecular gases, Science 320, 1329 (2008), doi:10.1126/science.1155309.

[35] T. Tomita, S. Nakajima, I. Danshita, Y. Takasu and Y. Takahashi, Observation of the Mott
insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system, Sci. Adv. 3,
e1701513 (2017), doi:10.1126/sciadv.1701513.

[36] K. Sponselee et al., Dynamics of ultracold quantum gases in the dissipative Fermi-Hubbard
model, Quantum Sci. Technol. 4, 014002 (2018), doi:10.1088/2058-9565/aadccd.

[37] C. Wang, C. Liu and Z.-Y. Shi, Complex contact interaction for systems with short-range two-
body losses, Phys. Rev. Lett. 129, 203401 (2022), doi:10.1103/PhysRevLett.129.203401.

[38] N. Bogoliubov, On the theory of superfluidity, J. Phys. 11, 23 (1947).

[39] J. L. Bohn and P. S. Julienne, Semianalytic treatment of two-color photoassoci-
ation spectroscopy and control of cold atoms, Phys. Rev. A 54, R4637 (1996),
doi:10.1103/PhysRevA.54.R4637.

21

https://scipost.org
https://scipost.org/SciPostPhys.16.5.116
https://doi.org/10.21468/SciPostPhys.12.1.044
https://doi.org/10.1103/PhysRevLett.126.110404
https://doi.org/10.1103/PhysRevA.104.L031304
https://doi.org/10.1103/PhysRevB.105.205125
https://doi.org/10.1103/PhysRevB.107.045110
https://doi.org/10.1103/PhysRevA.82.013615
https://doi.org/10.1038/s41567-019-0678-2
https://doi.org/10.1103/PhysRevLett.123.030603
https://doi.org/10.1103/PhysRevLett.103.240401
https://doi.org/10.1126/science.1155309
https://doi.org/10.1126/sciadv.1701513
https://doi.org/10.1088/2058-9565/aadccd
https://doi.org/10.1103/PhysRevLett.129.203401
https://doi.org/10.1103/PhysRevA.54.R4637


SciPost Phys. 16, 116 (2024)

[40] J. L. Bohn and P. S. Julienne, Semianalytic theory of laser-assisted resonant cold collisions,
Phys. Rev. A 60, 414 (1999), doi:10.1103/PhysRevA.60.414.

[41] C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Feshbach resonances in ultracold gases,
Rev. Mod. Phys. 82, 1225 (2010), doi:10.1103/RevModPhys.82.1225.

[42] G. Thalhammer, M. Theis, K. Winkler, R. Grimm and J. H. Denschlag, Inducing an opti-
cal Feshbach resonance via stimulated Raman coupling, Phys. Rev. A 71, 033403 (2005),
doi:10.1103/PhysRevA.71.033403.

[43] H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Ox-
ford University Press, Oxford, UK, ISBN 9780199213900 (2002),
doi:10.1093/acprof:oso/9780199213900.001.0001.

[44] Y.-Y. Chen, P. Zhang, W. Zheng, Z. Wu and H. Zhai, Many-body echo, Phys. Rev. A 102,
011301 (2020), doi:10.1103/PhysRevA.102.011301.

[45] Y. Cheng and Z.-Y. Shi, Many-body dynamics with time-dependent interaction, Phys. Rev.
A 104, 023307 (2021), doi:10.1103/PhysRevA.104.023307.

[46] C. Lv, R. Zhang and Q. Zhou, SU(1, 1) echoes for breathers in quantum gases, Phys. Rev.
Lett. 125, 253002 (2020), doi:10.1103/PhysRevLett.125.253002.

[47] T. D. Lee, K. Huang and C. N. Yang, Eigenvalues and eigenfunctions of a Bose sys-
tem of hard spheres and its low-temperature properties, Phys. Rev. 106, 1135 (1957),
doi:10.1103/PhysRev.106.1135.

[48] T. D. Lee and C. N. Yang, Many-body problem in quantum mechanics and quantum statis-
tical mechanics, Phys. Rev. 105, 1119 (1957), doi:10.1103/PhysRev.105.1119.

[49] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases, Cam-
bridge University Press, Cambridge, UK, ISBN 9780521846516 (2008),
doi:10.1017/CBO9780511802850.

[50] H. Zhai, Ultracold atomic physics, Cambridge University Press, Cambridge, UK, ISBN
9781108498685 (2021), doi:10.1017/9781108595216.

[51] T. Prosen, Third quantization: A general method to solve master equations for
quadratic open Fermi systems, New J. Phys. 10, 043026 (2008), doi:10.1088/1367-
2630/10/4/043026.

[52] T. Prosen and T. H. Seligman, Quantization over boson operator spaces, J. Phys. A: Math.
Theor. 43, 392004 (2010), doi:10.1088/1751-8113/43/39/392004.

[53] J. Wei and E. Norman, Lie algebraic solution of linear differential equations, J. Math. Phys.
4, 575 (1963), doi:10.1063/1.1703993.

[54] S. Scopa, G. T. Landi, A. Hammoumi and D. Karevski, Exact solution of time-
dependent Lindblad equations with closed algebras, Phys. Rev. A 99, 022105 (2019),
doi:10.1103/PhysRevA.99.022105.

[55] B. C. Hall, Lie groups, Lie algebras, and representations, in Quantum theory for mathe-
maticians, Springer, New York, USA, ISBN 9781461471158 (2013), doi:10.1007/978-1-
4614-7116-5_16.

22

https://scipost.org
https://scipost.org/SciPostPhys.16.5.116
https://doi.org/10.1103/PhysRevA.60.414
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevA.71.033403
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1103/PhysRevA.102.011301
https://doi.org/10.1103/PhysRevA.104.023307
https://doi.org/10.1103/PhysRevLett.125.253002
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.105.1119
https://doi.org/10.1017/CBO9780511802850
https://doi.org/10.1017/9781108595216
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1751-8113/43/39/392004
https://doi.org/10.1063/1.1703993
https://doi.org/10.1103/PhysRevA.99.022105
https://doi.org/10.1007/978-1-4614-7116-5_16
https://doi.org/10.1007/978-1-4614-7116-5_16


SciPost Phys. 16, 116 (2024)

[56] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro
and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012),
doi:10.1103/RevModPhys.84.621.

[57] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensa-
tion in trapped gases, Rev. Mod. Phys. 71, 463 (1999), doi:10.1103/RevModPhys.71.463.

[58] L. M. Sieberer, M. Buchhold and S. Diehl, Keldysh field theory for driven open quantum
systems, Rep. Prog. Phys. 79, 096001 (2016), doi:10.1088/0034-4885/79/9/096001.

[59] A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cam-
bridge, USA, ISBN 9780750626354 (2011), doi:10.1017/CBO9781139003667.

23

https://scipost.org
https://scipost.org/SciPostPhys.16.5.116
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1017/CBO9781139003667

	Introduction
	Tuning complex scattering lengths in experiments
	Dissipative Bose gas
	A toy model
	Dynamical symmetry of Lindbladian
	Dissipative Gross-Pitaevskii equation and hydrodynamic theory
	Conclusion
	Proof of Eq. (47)
	References

