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Abstract

It has recently been understood that the complete global symmetry of finite group topo-
logical gauge theories contains the structure of a higher-group. Here we study the higher-
group structure in (3+1)D Z2 gauge theory with an emergent fermion, and point out that
pumping chiral p + ip topological states gives rise to a Z8 0-form symmetry with mixed
gravitational anomaly. This ordinary symmetry mixes with the other higher symmetries
to form a 3-group structure, which we examine in detail. We then show that in the con-
text of stabilizer quantum codes, one can obtain logical CCZ and CS gates by placing the
code on a discretization of T3 (3-torus) and T2

⋊C2
S1 (2-torus bundle over the circle)

respectively, and pumping p + ip states. Our considerations also imply the possibility of
a logical T gate by placing the code on RP3 and pumping a p + ip topological state.
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1 Introduction

A key distinguishing feature of topologically ordered phases of matter is the universal structure
that arises from their topological defects. For example, anyons in (2+1)D topologically ordered
phases of matter [1] can be thought of as codimension-2 topological defects, which exhibit
universal braiding and fusion properties that form the structure of a unitary modular tensor
category (UMTC) [2–5]. Over the last 10-15 years, it has been understood that, in addition
to anyons, (2+1)D topological phases of matter host other classes of codimension-1 and 2
topological defects with non-trivial universal properties [6–18]. These include topologically
distinct classes of gapped codimension-1 defects, and codimension-2 domain walls between
distinct codimension-1 defects. Altogether, the universal properties of these topological defects
of varying codimension is expected to form the structure of a unitary fusion 2-category [19,20].
In higher dimensions, (d + 1)D topologically ordered phases of matter can host topological
defects of varying codimension, which are expected to form a unitary fusion d-category.

In modern language, the topological defects are interpreted as defining a “higher sym-
metry” of the corresponding topological quantum field theory (TQFT) [21–24]. From the per-
spective of quantum many-body systems, the topological defects can be understood as defining
emergent higher symmetries of the ground state subspace of a topological phase of matter. The
higher symmetries arise from sweeping the topological defects through lower dimensional sub-
manifolds of the space on which the system is defined. They are in general emergent symme-
tries because they keep the ground state subspace invariant, but do not necessarily commute
with the microscopic many-body Hamiltonian.
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A special class of topological defects are invertible, which means they possess an “inverse”
defect with which they fuse to the trivial defect. The invertible codimension-k defects are
associated with (k−1)-form higher symmetries [21]. The complete algebraic structure defined
by the invertible defects defines an invertible subcategory of the higher fusion category of
defects [25]. This invertible subcategory forms the mathematical structure of a higher-group.
Such higher-group symmetry has appeared in the study of (2+1)D topological phases [17,26,
27] and in quantum field theories more generally [28–32,32–39].

Recently, it has been observed that finite group gauge theories in (d+1)D generally possess
a d-group symmetry [33,40], which arises by considering gauged invertible topological phases
[41–48] decorated on lower dimensional submanifolds, in addition to the usual electric and
magnetic defects. The interaction between the magnetic defects and the gauged invertible
phases causes the higher form symmetry to mix into a non-trivial higher group.

These topological defects and corresponding emergent higher symmetries have two im-
portant applications. One is in characterizing and classifying symmetry-enriched topological
phases of matter; roughly speaking, topological phases of matter with a symmetry group G
can be characterized by a certain map from G to the higher fusion category that defines the
emergent higher symmetry [17,49].

The second major application, which is the primary focus of this paper, is for fault-tolerant
quantum computation. Topologically ordered phases of matter can in principle provide a phys-
ical substrate for fault-tolerant quantum computation [1, 50–52]. Moreover, most, if not all
quantum error correcting codes can be understood in terms of topologically ordered states
of matter with qubits defined on an appropriate cellulation of some manifold [50, 53–57].
The code subspace corresponds to the topologically degenerate ground state subspace of the
parent Hamiltonian. It is well-known that one way to obtain fault-tolerant logical gates is
through mapping class group operations, e.g. braids and Dehn twists in (2+1)D, which can
be viewed as sweeping geometric defects through the system. The emergent higher symmetry
operations corresponding to sweeping topological defects of varying codimension give rise to
another class of fault-tolerant logical gates on the code subspace [33,58–61]. This insight has
led to new ways of implementing logical gates even in the well-studied Z2 toric codes [40,62].
Remarkably, Ref. [33] showed that the non-trivial algebraic relationships among various logi-
cal gates in (3+1)D Z2 toric codes can be understood as fundamentally arising from the higher
group structure defined by the topological defects: Logical gates that correspond to sweeping
codimension-k defects have group commutators that produce logical gates corresponding to
higher codimension defects. As such, understanding deeply the nature of topological defects
and corresponding emergent higher symmetries is crucial for understanding the possible fault-
tolerant logical gates that a given quantum error correcting code admits.

In this paper, we focus on the case of Z2 gauge theory in (3+1)D where the Z2 electric
charge is a fermion, which we refer to as fermionic Z2 gauge theory. Such a theory can arise
from the fermionic toric code model [63–65]. The theory can also arise as a description of su-
perconductors, where the condensation of Cooper pairs breaks the dynamical electromagnetic
U(1) gauge group to Z2 subgroup [66]. It can also arise in color superconducting phase of
non-Abelian gauge theory [67].

The (3+1)D fermionic Z2 gauge theory hosts a codimension-1 topological defect, which
arises by decorating codimension-1 submanifolds with a p + ip invertible topological phase
prior to gauging Z2 fermion parity.1 As we discuss, this topological defect defines a Z8 emer-
gent 0-form symmetry. In addition to this Z8 0-form symmetry, the theory also has a 2-form

1In this paper, a p+ip superconductor refers to a fermionic invertible phase with Z f
2 symmetry carrying chiral

central charge c− = 1/2, where no spontaneous U(1) symmetry breaking is implied. Also, in this paper a Chern
insulator refers to a fermionic invertible phase with Z f

2 symmetry carrying c− = 1, where U(1) global symmetry is
not implied.
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symmetry generated by the Wilson line, and 1-form symmetries generated by the magnetic
flux and gauged Kitaev chains [33, 68]. We discover that these symmetries form a 3-group,
which corresponds to the fact that the generators of the symmetries obey intricate commuta-
tion relations. By exploiting submanifolds with different topologies that support the symmetry
generators, we discover various logical gates in the fermionic Z2 toric code. This includes a
fault-tolerant logical CCZ gate when the system is defined on a discretization of the 3-torus
T3 [69], and a new fault-tolerant Controlled-S gate when the system is placed on T2⋊S1. Our
considerations also imply the possibility of a T (i.e. π/8) gate when the system is placed on a
discretization of RP3.

This work is organized as follows. In section 2, we investigate the symmetries in Z2 gauge
theory with an emergent fermion in (3+1)D. Using such symmetries, we derive the corre-
sponding logical gates in section 3. From section 4 to section 6, we discuss various examples
of logical gates obtained by taking different topologies of the symmetry generators. In Ap-
pendix A, we derive the logical gate for the 1-form symmetry generated by surface operator
decorated with Kitaev chain. In Appendix B, we derive the logical gate for the symmetry gen-
erated by the domain wall decorated with p+ip topological superconductor. In Appendix C we
summarize the details for pumping a Chern insulator. In Appendix D we review the fermionic
toric code lattice model. In Appendix E we give details for the partial rotation used in pumping
the p+ip phase.

2 3-group symmetry of (3+1)D Z2 gauge theory with emergent
fermion

In this section, we describe the higher symmetries of the (3+1)D fermionic Z2 gauge theory,
their 3-group structure, and the associated ’t Hooft anomaly. In the fermionic Z2 gauge theory,
the Wilson line is a fermion instead of a boson as in ordinary Z2 gauge theory. We can view
the gauge field as a “dynamical spin structure,” where magnetic flux corresponds to defects in
the spin structure.2 The theory can be obtained from the trivial fermionic invertible phase by
gauging the fermion parity symmetry without additional local counterterm. After this gauging
process, the fermion becomes topologically non-trivial, meaning there are no local operators
that create an isolated fermion.

We can also describe the theory in terms of the low energy properties of the fermionic toric
code model in (3+1)D on cubic lattice [63] (see also [70] for similar construction for U(1)
gauge theory with electrons). The vertex term is the same as ordinary toric code, given by the
product of the Pauli X operator on the six edges that meet the vertex. The plaquette term is
modified compared to the ordinary toric code, and it is given by the product of Z on the four
edges surrounding the plaquette, as well as X on the two edges that are perpendicular to the
plaquette at two diagonal corners (the choice depends on the branching structure) and on two
sides of the plaquette (see Appendix D for a review).

2.1 Electric and magnetic symmetries

The theory has the following (emergent) global symmetries, generated by invertible topo-
logical operators of various dimensions. We will organize them according to whether they
carry magnetic flux (magnetic vs. electric operators) and the dimension of the subspace that
supports the operator (a line, a surface or a domain wall). The electric operators supported

2More precisely, magnetic flux defects can be understood as a cutting out a neighborhood of a codimension-2
submanifold and changing the spin structure (fermion boundary conditions) on the linking circle from bounding
(anti-periodic) to non-bounding (periodic).
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on subspace M of dimension n are obtained by gauging the fermion parity of the fermionic
invertible phase in n spacetime dimension. The list of symmetries are as follows:

• Z2 1-form symmetry generated by the codimension-two magnetic surface operator,
around which the Z2 gauge field has nontrivial holonomy.3

• Z2 2-form symmetry generated by the electric Wilson line of the Z2 gauge field. We
can also view the line operator as gauging the fermion parity symmetry in the fermionic
invertible phase in (0+1)D (see e.g. [44]).

• Z2 1-form symmetry generated by the electric surface operator given by gauging the
fermion parity symmetry in the Kitaev chain fermionic invertible phase in (1+1)D [33,
41,44,68].4

• Z8 0-form symmetry generated by the electric domain wall operator given by gauging the
fermion parity symmetry in the chiral p+ip fermionic invertible phase in (2+1)D [71].
This is related to the 16-fold way [72,73] as we will explain below.

To sum up, the theory has Z8 0-form symmetry, Z2 ×Z2 1-form symmetry, and Z2 2-form
symmetry. We will specify how these symmetries interplay with one another in subsequent
sections.

2.1.1 Reduced classification of symmetries: Nontrivial symmetries in Hilbert space

The above symmetry groups generated by the electric operators can differ from the classifi-
cation of fermionic invertible phases. In particular, (2+1)D fermionic invertible phases with
Z f

2 fermion parity symmetry have a Z classification, generated by the p + ip state, but in the
above discussion, this gives rise to a Z8 0-form symmetry of the (3+1)D Z2 gauge theory.

Moreover, since we can consider the subspaces that support the electric operators to be
unorientable, it is appropriate to consider the classification of fermionic invertible phases with
time-reversal or spatial reflection symmetry, which would naively give us a Z8 1-form symme-
try for the Kitaev chain [74]. However, this symmetry is actually reduced to Z2 and, as we
will see, the symmetry generator squares to the electric Wilson line when it has support on a
unorientable surface. This indicates a non-trivial mixing between the Z2 1-form symmetry of
the Kitaev chain defect, the Z2 2-form symmetry of the Wilson line, and space-time orientation
reversing defects.

The larger symmetry groups are extensions of the above minimal symmetries, but the extra
symmetries act trivially on the Hilbert space, i.e. the code space, up to an overall phase, and
so we do not consider them as symmetries any more than multiplication by complex numbers
is a symmetry. In what follows we will explain in more detail the origin of these reductions of
the symmetry. The details are technical and can be safely skipped for readers only interested
in the application to logical gates.

Reduction of the p+ip symmetry As mentioned above, the symmetry generated by the
electric domain wall operator decorated with p+ip is Z8 instead of the classification Z (where
the domain walls are labelled by the half-integer chiral central charge c− = ν/2 for integer ν).

Let us first explain the reduction of the Z symmetry to Z16. The domain wall with ν = 16
differs from ν = 0 by a bosonic E8 phase (i.e. an invertible bosonic phase described by (E8)1

3Since the Wilson line is a fermion, on top of the magnetic defect the fermion does not have a well-defined spin
structure.

4This surface operator is referred to as “electric” since it braids trivially with the Wilson line, in contrary to the
“magnetic” surface operator which braids with the Wilson line by a sign.
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Chern-Simons theory). Thus the difference does not depend on the spin structure, which
means that such defects do not interact with magnetic efects or electric defects, and thus act
trivially on the ground state subspace up to an overall phase.

Furthermore, there is a refinement that reduces the Z16 symmetry to Z8 symmetry: The
effective action for the class ν = 8 does not depend on the spin structure. To see this, we can
start with the description of the class ν= 2 as a U(1) Chern-Simons theory [72]:

1
4π

udu+
π

2π
uda , (1)

where the local fermion is described by the Wilson line ei
∫

u, and a is the spin structure
(da = w2). The equation of motion for u implies that the Wilson line ei

∮

u = eπi
∮

a [75,76].
When we change the spin structure by a Z2 background gauge field B, a→ a+B (we take

a lift to integer 1-cochain), the theory changes to

1
4π

∫

udu+
π

2π

∫

ud(a+ B) =
1

4π

∫

u′du′ +
π

2π

∫

u′da−
π

4

∫

BdB , (2)

where u′ = u+πB. Thus dependence of the theory on spin structure is captured by

(ν= 2) : −
π

4

∫

BdB . (3)

The effective action of the ν = 8 theory is 4 copies of ν = 2, and it is independent of the spin
structure:

4 ·
�

−
π

4

∫

BdB

�

= 2π

∫

B
dB
2
= 0 mod 2π , (4)

where we used dB = 0 mod 2. Thus we conclude that the effective action does not depend on
the spin structure, although it requires a spin structure to be well-defined. This implies that
the codimension-1 defect decorated with ν = 8 does not interact with the magnetic defect at
all, from which we conclude that it acts trivially on the Hilbert space, up to an overall phase.5

This expectation is borne out by our concrete computations in later sections, where we see
that all logical gates induced by sweeping the p+ip defect have order 8.

Reduction of symmetry in terms of mixed gravitational anomaly The higher symmetries
have a mixed gravitational anomaly that can be described by the (4+1)D topological term

2π
16

∫

C̃1 ∪ (p1/3) +π

∫

C3 ∪w2 , (5)

where C3 is the background 3-form gauge field for theZ2 2-form symmetry generated by theZ2
Wilson line of the emergent fermion, C̃1 is a Z16 lift of the background 1-form gauge field C1 for
the Z8 symmetry, and p1 is the first Pontryagin class. The first term describes the gravitational
anomaly of the chiral p+ip state, while the second term describes the fact that the Z2 charge

5One can also see the reduction to Z8 symmetry by the following alternative argument. In general, the depen-
dence of the theory on the spin structure a is encoded in the additional Z2 0-form symmetry with the background
gauge field B, since two different spin structures a, a′ are related by a background Z2 gauge field as a′ = a + B.
With this in mind, the spin structure dependence of the spin invertible phase with a partition function Z(a) can be
captured by the ratio of partition functions Z ′(a, B) := Z(a+B)Z−1(a). The partition function Z ′(a, B) describes a
spin invertible phase with the additional Z2 unitary internal symmetry, such that setting B = 0 leads to the trivial
phase Z ′(a, 0) = 1. The spin invertible phases with partition function Z ′ in D spacetime dimension are classified
by ΩD

Spin(BZ2)/ΩD
Spin(pt) [77]. In particular, setting D = 3 gives Z8, in agreement with the Z8 faithful symmetry

found here.
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particle is a fermion. When the p+ip defect sweeps a closed 3-manifold M3 Poincare dual to
C̃1, we obtain an overall phase obtained by evaluating 2π

16

∫

W 4 p1/3 on a 4-manifold W 4 such
that ∂W 4 = M3.

The reduction of the 0-form symmetry from Z to Z8 requires that the above anomaly action
be invariant under a shift of C̃1→ C̃1 + 8λ1, with λ1 an integer 1-cochain. This is indeed the
case as long as we also shift C3→ C3+w2∪λ1. The effective action is invariant because of the
property p1/3= w2

2 mod 2 on orientable manifolds [78]. Such transformation means that the
Z8 0-form symmetry and the Z2 2-form symmetry combine into a 3-group symmetry [28,31].6

Across a domain wall decorated with 16 copies of the p+ip phase, C1 → C1 + dφ where
φ = 16 on one side of the wall. The anomaly implies that on that side there is an extra term
2π
∫

φ(p1/3), which can be written as the effective action 16CSgrav on the domain wall. This
is the effective action of the bosonic E8 phase, as expected from 16 copies of the p+ip phase.

Similarly, if we perform the transformation with φ = 8 instead of 16, the first term in (5)
produces an extra term π

∫

(p1/3) on the side with φ = 8. However, there is a contribution
from the second term in (5) under the accompanying transformation C3 → C3 + w2 ∪ dφ/8,
which produces an extra term π

∫

w2 ∪ w2 on the side of the domain wall with φ = 8. Using
p1/3 = w2

2 mod 2, we find the side with φ = 8 has total term 2π
∫

p1/3 just as the previous
case. Thus 8 copies of the domain wall also produces a bosonic domain wall.

We remark that the Z16 two-fold extension of the Z8 symmetry is obtained from another
argument in [80, 81], but the faithful Z8 symmetry and the mixed anomaly with gravity are
not discussed there.

Reduction of the Kitaev chain symmetry, and gravitational anomaly The symmetry gen-
erated by the electric surface operator decorated with Kitaev chain is Z2 instead of the classi-
fication Z8 when the surface is unorientable. This can be seen as follows:

(1) The middle class in Z8 is bosonic, and thus the fourth power of the operator on an
unorientable surface does not depend on spin structure and produces a decoupled trivial
operator that does not act on the Hilbert space. There is a mixed gravitational anomaly
corresponding to the (4+1)D topological term (see e.g. [40])

2π
4

∫

C̃2 ∪W3 +π

∫

C3 ∪w2 , (6)

where C̃2 is an integer cochain lift of the 2-form background C2 for the Z2 1-form symme-
try, and W3 = dw̃2/2 is the integral third Stiefel-Whitney class (w̃2 is an integer cochain
lift of the second Stiefel-Whitney class). If we change the lift C̃2→ C̃2+2λ̃2 for some in-

teger cochain lift of Z2 2-cocycle λ2, the first term changes byπ
∫

λ2∪W3 = π
∫ dλ̃2

2 ∪w2.

Thus the change can be compensated by the transformation C3→ C3+
dλ̃2

2 . Such a trans-
formation indicates that the 1-form symmetry and the 2-form symmetry combine into a
3-group.

Under a transformation C̃2→ C̃2+4λ̃where λ̃ is a lift of the Z2 2-cocycle λ, the anomaly
inflow produces a boundary term π

∫

λ ∪ w2 = π
∫

PD(λ)w2 = π
∫

PD(λ)w
2
1, where PD

6Another explanation for such correlated transformation is as follows. The ν = 8 class in the 16-fold way [72]
can be obtained from the ν= 0 class by shifting the background of the symmetry generated by the emergent fermion
[79]. The emergent fermion generates an 1-form symmetry on the wall, and if the background for the 1-form
symmetry is shifted by w2, the particles that transform under such 1-form symmetry will carry “additional projective
representation” described by w2, i.e. the spin of these particles will acquire additional fermion spin, such as
changing from boson to a fermion and vice versa. The shift of the background can be described by C3→ C3+w2∪λ1,
where λ1 is the Poincaré dual for the wall with 8 copies of p+ip phase.
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denotes the Poincaré dual. This is the fourth power of the operator, and the operator
does not depend on the spin structure.

(2) The square of the operator on an unorientable surface reduces to the electric Wilson
line operator on the Poincaré dual of w1 (See Appendix A). Let us show this using the
effective field theory description of Kitaev chain given by the Z2 gauge theory with the
action [36,44,82,83]

2π
8

ABK(Σ, a) , (7)

whereΣ is a closed 2d surface that supports a Kitaev chain (which may be unorientable),
and where a is the induced pin− structure of the surface Σ (and we identify it with the
bulk gauge field). ABK(Σ, a) denotes the Arf-Brown-Kervaire (ABK) invariant of the
pin− surface valued in Z8, which indicates the Z8 classification of the Kitaev chain in the
presence of the time reversal or reflection symmetry. One can express the ABK invariant
in terms of a Z2 gauge theory with support at Σ,

π

2

∫

Σ

qa(b) , (8)

where q is the quadratic function that refines the intersection between Z2-valued 1-
cocycles on the surface, and b is a dynamical ordinaryZ2 gauge field with bosonic Wilson
line, which is defined on the surface Σ (instead of the whole 4D spacetime). Summing
over configurations of the dynamical gauge field b yields the ABK invariant evaluated at
the surface Σ.

Taking two copies of the theory (denote the dynamical gauge fields by b, b′ in the two
copies) gives the total effective action:

π

2

∫

qa(b) +
π

2

∫

qa(b
′) =

π

2

∫

qa(b̃) +π

∫

b̃ ∪ b+π

∫

b ∪ b

=
π

2

∫

qa(b̃) +π

∫

(b̃+w1)∪ b ,

(9)

where b̃ = b+b′, the first equality uses the property q(x+ y) = q(x)+q(y)+2x∪ y mod 4
for any Z2-valued 1-cocycles x , y [36,44,82], and the second equality uses b∪b = w1∪b
on the surface, where w1 denotes the 1st Stiefel-Whitney class on the surface Σ. Inte-
grating out b imposes b̃ = w1(Σ), and thus two copies of the Kitaev chain phase can be
described by the effective action

π

2

∫

Σ

qa(w1(Σ)) . (10)

Let us examine how the effective action depends on a: If we write a = a0 + s for some
fixed reference pin− structure a0, then the effective action reduces to π

∫

w1 ∪ s up
to terms independent of s. In other words, the square of the electric surface operator
decorated with the Kitaev chain phase produces an electric Wilson line of a on the loop
that reverses the orientation of the surface.

2.1.2 Symmetry generator with non-Abelian topological order can be invertible

We note that gauging the fermion parity symmetry in p+ip topological superconductor pro-
duces a non-Abelian topological order [72], but the domain wall decorated with such topologi-
cal order nevertheless generates an invertible symmetry. Let us explain how the two properties
coexist.
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The closed magnetic defects are invertible, but once they end on the p+ip domain wall they
give rise to non-Abelian anyons on the domain wall. The reason is that invertible defects such
as magnetic defects of Z2 gauge theory can become non-invertible once they have a boundary
(such as ending on the gauged SPT defect) which can carry additional degrees of freedom. In
particular, the magnetic defect ending on the p+ip domain wall with additional Majorana zero
mode (see e.g. the lattice model for p+ip phase discussed in [72]).

Such examples are ubiquitous. For instance, the Z2 electromagnetic duality in (2+1)D Z2
gauge theory can end on the boundary to become the non-invertible Kramers-Wannier duality
defect [16,84,85], and similar examples in higher dimensions discussed in e.g. [86,87].

2.2 Z8 p+ip 0-form symmetry defines automorphism of 1-form symmetry

We will show that theZ8 ordinary symmetry generated by the domain wall decorated with p+ip
fermionic invertible phase (we will refer to it as the “p+ip symmetry”) generates an automor-
phism transformation on the Z2 ×Z2 1-form symmetry for the magnetic flux surface operator
V (2) and the electric surface operator U (2) decorated with Kitaev chain fermionic invertible
phase. Conjugating by the p+ip domain wall operator generates the following automorphism
transformation:

U (2)→ U (2) , V (2)→ V (2)U (2) . (11)

The above automorphism can be derived by the charge-flux attachment argument [40].
Consider a magnetic flux defect intersecting the domain wall decorated with p+ip. The inter-
section is a magnetic vortex defect on the p+ip domain wall, and such vortex has Majorana
zero mode [72]. Such Majorana zero mode is the boundary mode of the electric Kitaev chain
surface defect, and thus the magnetic flux surface defect intersecting the domain wall is trans-
formed into the “dyonic” defect with additional electric Kitaev chain surface defect, as in (11).

We remark that the charge-flux attachment also follows from twisted dimensional reduc-
tion of the fermionic invertible phases on a circle with periodic boundary condition, similar to
the reduction of bosonic SPT phases on a circle with nontrivial holonomy as discussed in [40].
The p+ip phase can be described by a single free Majorana fermion field theory in (2+1)D with
a negative mass (where we choose a regulator such that fermion with positive mass belongs to
the trivial phase). Reducing the fermion theory on a circle by demanding the Majorana field to
be independent of the circle direction (which requires the periodic boundary condition on the
circle, as in the presence of magnetic defect) produces the theory of a single Majorana fermion
with a negative mass in (1+1)D, and it is the effective field theory for the Kitaev chain phase.
The argument generalizes to any dimensions. An example of twisted reduction of (1+1)D
Kitaev chain phase to (0+1)D fermionic invertible phase is discussed in [88].

The automorphism is also obtained from another argument in [80].
We can describe such automorphism using the background gauge fields for the correspond-

ing symmetries generated by the defects. The background gauge fields satisfy

dC2 = B2 ∪ C1 , (12)

where C1 is the background gauge field for the Z8 0-form symmetry, and C2, B2 are the back-
ground gauge fields for the Z2 ×Z2 1-form symmetry generated by the electric Kitaev surface
operator and the magnetic flux surface operator.

2.3 Non-invertible operator-valued associator

The electric Wilson line on the p+ip domain wall is the fermionψ. It obeys the following Ising
fusion rule with the magnetic vortex σ: σ×σ = 1+ψ, σ×ψ= σ [72].
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↔

1 + ψ

Magnetic flux

p+ip wall

σ

Figure 1: Two fusion configurations for fusing the p+ip domain wall with (1) a pair
of magnetic flux surface operators indicated by the red lines entering the wall (black
line), and (2) a pair of “dyonic” surface operators indicated by the purple lines that
carry magnetic flux and are decorated with the Kitaev chain phase due to the au-
tomorphism (11). The dotted line in the configuration on the right is the trivial
defect. One of the configurations has additional 1+ψ defect due to the fusion rule
σ×σ = 1+ψ for vortex σ in p+ip phase [72]. We can relate the two configurations
by the “defect-valued associator” whose value is given by the non-invertible defect
1 +ψ. Such a (generalized) associator is similar to the 2-group symmetry, which
can be regarded as an “F symbol” that takes value in abelian anyons for fusing the
domain walls that generate 0-form symmetry [17,31].

The first fusion rule σ × σ = 1 +ψ implies that if there are two magnetic flux surface
defects intersect the p+ip domain wall, and we bring the intersection locus together, there
will be the condensation 1 +ψ left behind at the intersection locus. This also follows from
the fusion of two open Kitaev chain defects. The extra condensation defect can be viewed as
an operator-valued associator for fusing magnetic flux surfaces and the p+ip domain walls as
shown in Figure 1, similar to the 2-group symmetry as operator-valued associator for domain
walls [31].

Similarly, the fusion rule σ×ψ= σ implies that the intersection locus of a single magnetic
flux with the domain wall can absorb an electric Wilson line.

2.4 Z4 ⊂ Z8 0-form symmetry and 3-group

Let us consider the Z4 ⊂ Z8 symmetry, i.e. the even classes in the 16-fold way [72], indexed by
ν = 2 j mod 16 for j integer. The topological order on the domain wall associated with such
symmetries is Abelian. In particular, since the vortex on such domain wall is Abelian (it obeys
the fusion m×m =ψ when ν = 4k+ 2 and m×m = 1 when ν = 4k, for k integer) [72], the
associator for the domain wall and the magnetic flux is also invertible.

In the following we will discuss in detail the 3-group structure that arises from the interplay
between such Z4 0-form symmetry generated by the domain wall with ν= 2 in the 16-fold way
(which we sometimes refer to as the Chern insulator), the Z2×Z2 1-form symmetry generated
by the magnetic flux surface and the surface decorated with the Kitaev chain invertible phase,
and the Z2 2-form symmetry generated by the Wilson line of the Z2 gauge theory. It turns
out that the 3-group structure for the symmetries translates into the commutation relations
obeyed by the corresponding symmetry generators, allowing us to obtain logical Clifford gates
implemented by the Z4 0-form symmetry action.

2.4.1 3-group symmetry structure

The symmetries form a 3-group structure, where three stands for the highest codimension
of the symmetry defects (the Wilson line). The ν = 2 generator of the Z4 0-form symmetry
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does not permute the 1-form symmetry. The higher-group structure arises from the different
junctions of the domain walls and the surfaces that can produce the Wilson line.

The 3-group symmetry structure between the 2-form symmetry and the 1-form symmetries,
i.e. the junctions of surface defects that can produce the Wilson line, is discussed in [33,40,89].
Here we will focus on the three group structure from the junctions that involve the domain
walls (or both the domain walls and the surface defects). There are two junctions that can
produce Wilson line:

Junctions of domain wall and surface defects that produces Wilson line The first junction
consists of intersection of the domain wall with the tri-junction for the magnetic flux surface
defects. We note that such tri-junction can be described by background B2 with nontrivial
dB̃2/2. On the ν= 2 domain wall, the magnetic flux m obey the fusion rule m×m=ψ [72].
Thus then the junction of fusing two magnetic fluxes intersect with the domain wall, there is
additional Wilson line ψ. See Figure 2 for an illustration. Such junction thus contributes to
the 3-group symmetry structure, and was also studied in other examples in [40].

The second junction consists of the intersection of the magnetic flux surface defect with the
tri-junction of domain wall that fuses two ν= 4 domain walls into ν= 8 domain wall. We note
that such tri-junction can be described by the background C1 with nontrivial dC̃1/4. This can
be understood from the fusion of two semion magnetic fluxes on the two ν= 4 domain walls
into a fermion (and the 3 fermions in the ν= 8 phase are all on equal footing) Another way to
understand such property is from the dependence of spin structure for the ν= 4 domain wall,
which can be captured by twice of (3), and it is the effective action of the Levin-Gu phase. The
junction is thus essentially discussed in [32, 40] (see Figure 3), and when the magnetic flux
intersect the junction there is additional electric charge.

3-group symmetry structure as background fields relation We can also describe the 3-
group symmetry structure in terms of equations satisfied for closed (flat) background gauge
field configurations for the higher symmetries. Let us introduce the following background
gauge fields for the symmetries:

• Background 2-form gauge field B2 for theZ2 1-form symmetry generated by the magnetic
flux surface defect.

• Background 2-form gauge field C2 for the Z2 1-form symmetry generated by the electric
surface defect decorated with the Kitaev chain invertible phase.

• Background 3-form gauge field C3 for the Z2 2-form symmetry generated by the electric
Wilson line.

• Background 1-form gauge field C1 for the Z4 subgroup 0-form symmetry generated by
the electric domain wall defect decorated with the Chern insulator (i.e., ν = 2 phase
which carries c− = 1).

The 3-group symmetry structure can be described by the following relation among the
background fields:

dC3 = Sq2(C2) + B2 ∪ C2 +

�

dB̃2

2
+w3

�

∪ C1 + (B2 +w2)∪
dC̃1

4
, (13)

where the first two terms on the right hand side are discussed in [40,89] and describe the fact
that the intersection of the Kitaev string and magnetic string nucleates a fermion.

The last two terms on the right hand side are a new contribution to the 3-group structure
and corresponds to the two junctions discussed above. In the last two terms, B̃2 is a lift of
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the Z2 2-form gauge field to Z4 value, and C̃1 is a lift of Z4 1-form gauge field to Z8 value.
The relation between the background fields does not depend on the choice of lift.7 The three-
cocycle dB̃2/2+ w3 is only nontrivial in the presence of the junction of fusing two magnetic
fluxes, and (dB̃2/2+w3)∪ C1 is nontrivial only when the junction intersects the domain wall
that generates the subgroup 0-form symmetry. This is the junction that produces the electric
Wilson line defect discussed above, and it gives nontrivial background C3.

3-group symmetry in effective field theory We can also derive the above equations for the
closed background gauge fields of the 3-group symmetry explicitly in the following way. We
will focus on the 1-form symmetry generated by the magnetic surface operator and the Z4
subgroup 0-form symmetry. The 0-form symmetry is generated by the domain wall decorated
with the gravitational Chern-Simons term −2CSgrav. Let us examine how the theory depends
on the spin structure a. The gravitational Chern-Simons term 2CSgrav can be expressed in
terms of an emergent U(1) gauge field u as follows: (see e.g. [75,90])

−2CSgrav[a] ←→
1

4π
udu+π

du
2π

a =
1

4π
u′du′ −

π

4
ada , (14)

where the left hand side includes [a] to remind ourselves the theory depends on the spin
structure a; on the right hand side we use the change of variables u′ = u+πa, and we take a
lift of a to be an integer 1-cochain with holonomy 0,1. The equation of motion for u relates
the holonomy ei

∫

u = ±1 with the spin structure. From the last expression, the theory on the
wall depends on the spin structure by

−
∫

π

4
a ∪ da . (15)

In the presence of background C1, the action on the spacetime is modified with the term

−
π

4

∫

a ∪ da ∪ C̃1 , (16)

where C̃1 is a lift of the background C1 to Z8 value.
If we turn on background B2 for the 1-form symmetry generated by the magentic flux sur-

face operator, the quantization of the flux is modified to be da = w2 + B2. The action (16)
needs additional corrections that depend on B2 in order to be invariant under the transforma-
tion a→ a+2λ̃1, where λ̃1 is an integer lift of a Z2 1-cocycle λ1. The transformation changes
the action by

π

∫

λ1 ∪ da ∪ C1 = π

∫

λ1 ∪ (B2 +w2)∪ C1 . (17)

Thus the correction is
π

2

∫

a ∪ (B̃2 + w̃2)∪ C1 , (18)

where B̃2, w̃2 are lifts of B2, w2 from Z2 value to Z4 value.
However, the theory with the correction term by itself is not well-defined: Under a gauge

transformation a→ a+ dφ, the action is not invariant due to both the original action and the
correction term. The original action (16) transforms under a→ a+ dφ by

−
π

4

∫

dφdaC̃1 = π

∫

φda ∪
dC̃1

4
= π

∫

φ(B2 +w2)∪
dC̃1

4
. (19)

7The object dB̃2/2 is the image of B2 under the connecting homomorphism for the long exact sequence in
cohomology from the group extension short exact sequence 1→ Z2 → Z4 → Z2 → 1. Similarly, the object dC̃1/4
is the image of C1 under the connecting homomorphism for the short exact sequence 1→ Z2→ Z8→ Z4→ 1.
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Figure 2: A pair of magnetic vortices (orange dots) are placed at the codimension-1
domain wall defect (gray sheet) that generates subgroup Z4 0-form symmetry carry-
ing the ν= 2 phase. When two magnetic fluxes fuse on the domain wall, it produces
the Wilson line (red dot) from the fusion rules in the class two theory U(1)4 in the
16-fold way [72].

The correction (18) transforms by

π

∫

φ ∪
d
2

�

(B̃2 + w̃2)∪ C̃1

�

. (20)

We can compensate the transformation φ by including nontrivial background field C3 for the
2-form symmetry generated by the Wilson line, which couples to the theory as

π

∫

a ∪ C3 . (21)

The total couplings are invariant under the transformation a → a + dφ provided the back-
ground fields satisfy

dC3 =
d
2

��

B̃2 + w̃2

�

∪ C1

�

+(B2+w2)∪
dC̃1

4
=

�

dB̃2

2
+w3

�

∪C1+(B2+w2)∪
dC̃1

4
mod 2 , (22)

where we used the property that dC1 is a multiple of 8. This reproduces (13) with C2 = 0,
and w3 = dw̃2/2 mod 2 on orientable manifolds.

We note that although C1 is the background for Z4 ⊂ Z8 subgroup 0-form symmetry,
the coupling (16) is not invariant under changing the Z8 value lift C̃1: If we change the lift
C̃1→ C̃1 + 4λ1 with an integer 1-cochain λ1, the coupling changes by

π

∫

a ∪ da ∪λ1 = π

∫

a ∪ (B2 +w2)∪λ1 . (23)

Thus for the coupling to be well-defined, the background C3 must also transform as
C3→ C3 +w2 ∪λ1. This is consistent with the relation (22).

We note that the first term on the right hand side in (22) can also be understood from
the dependence on the spinc structure on the domain wall: If we turn on a spinc connection
A, the domain wall theory (16) becomes − 1

4πudu + 1
2πudA, and the dependence on A is the

same as the insertion of the local fermion particle (i.e. the Wilson line ei
∫

u) at the Poincaré
dual of dA/2π with respect to the domain wall. This is consistent with the transformation
w3→ w3 + dλ2, C3→ C3 +λ2 ∪ C1, where for global transformation λ2 = dA/2π mod 2.

3 Logical gates in (3+1)D Z2 gauge theory with emergent
fermion

In this section, we derive the action of the logical gates of (3+1)D Z2 toric code with an
emergent fermion, which are implemented by the emergent global symmetry of Z2 gauge
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Figure 3: A pair of Z2 0-form symmetry defects carrying the ν= 4 phase fuses into a
trivial symmetry defect carrying the ν= 8 phase. The arrow indicates the orientation
of the defect. The magnetic flux at each of the ν = 4 symmetry defects behaves as
a semion. The two semions fuse into a fermionic particle at the junction, which is
identified as an electric particle. This is one symptom of the 3-group structure of the
symmetry.

theory discussed above. We consider the (3+1)D Z2 gauge theory with an emergent fermion,
and derive the action of the emergent symmetry on the Hilbert space. The 3d space is taken to
be a generic oriented 3-manifold M3. Recall that the (3+1)DZ2 gauge theory has the following
global symmetries, all of which give rise to the logical gates of the (3+1)D toric code with an
emergent fermion.

• Z8 0-form symmetry; the generator is given by decorating the codimension-1 defect with
the (2+1)D p+ip superconductor with c− = 1/2.

• Z2 1-form symmetry generated by the magnetic surface operator of codimension-2.

• Z2 1-form symmetry generated by decorating the codimension-2 defect with the (1+1)D
spin invertible phase given by Kitaev’s Majorana chain.

• Z2 2-form symmetry generated by the electric Wilson line operator of an emergent
fermion.

First of all, when we have |H1(M3,Z2)|= 2N there are N logical qubits. The Pauli X j operator
for the j-th qubit with 1≤ j ≤ N is implemented by the magnetic surface operator on a closed
surface Σ j , where the set of surfaces {Σ j} spans the basis of the 2nd homology H2(M3,Z2).

The Pauli Z j operator is then encoded by an electric Wilson line operator along the curve
γ j , which is dual to Σ j by the intersection pairing satisfying #(γ j ,Σk) = δ jk (mod 2).

3.1 Logical gate from Kitaev chain defect

Let us denote the dynamical Z2 gauge field for the (3+1)D Z2 gauge theory on a 3d space
as a ∈ C1(M3,Z2) satisfying da = w2(M3), which represents a dynamical spin structure of
the 3d space. Each eigenstate of the logical Pauli {Z j} operator can then be represented by a
state |{a}〉, which is the state obtained by equal weight superposition over all gauge equivalent
configurations of theZ2 gauge field a. Each state |{a}〉 corresponds to a choice of spin structure
on M3. The Z j eigenvalue can be read by evaluating the holonomy (−1)

∫

a along the curve γ j .
Let us now derive the action of the 1-form symmetry operator WK(Σ j) corresponding to

the Kitaev chain defect. We take {Σ j}, for j = 1, · · · , dimH2(M2,Z2) to define a representative
basis for the second homology group H2(M3,Z2), where Σ j can be unorientable.

The surface operator WK(Σ j) then evaluates the Arf-Brown-Kervaire (ABK) invariant of a
pin− surface Σ j ,

WK(Σ j) |{a}〉= exp
�

2πi
8

ABK(Σ j , a)
�

|{a}〉 . (24)
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Here, the ABK invariant evaluates the partition function of the Kitaev chain on the (1+1)D pin−

surface [36,44,83]. The pin− structure on Σ j is induced by the spin structure of a 3-manifold
M3, where the spin structure of M3 along γ j is specified by the configuration of the Z2 gauge
field a. The above action of the logical gate can be expressed by the following Clifford unitary
(see Appendix A for derivations):

WK(Σ j) =
∏

k,l
k<l, j ̸=k, j ̸=l

C Z

∫

Σ j
σkσl

k,l ·
∏

k
j ̸=k

C Z

∫

Σ j
σkσk

j,k (S†
k)
∫

Σ j
σkσk · (e

2πi
8 S†

j )
#(Σ j ,Σ j ,Σ j)

=
∏

k,l
k<l, j ̸=k, j ̸=l

C Z
∫

M3 σ jσkσl

k,l ·
∏

k
j ̸=k

C Z
∫

M3 σ jσkσk

j,k (S†
k)
∫

M3 σ jσkσk · (e
2πi
8 S†

j )
∫

M3 σ jσ jσ j , (25)

whereσ j ∈ H1(M3,Z2) is the Poincaré dual of the surfaceΣ j . The triple intersection is defined
to be #(Σ j ,Σ j ,Σ j) =

∫

M3 σ jσ jσ j .

3.2 Logical gate from p+ip defect

Now we want to derive the action of the 0-form symmetry arising from the p+ip superconduc-
tor. For this purpose, it is convenient to first consider the 0-form symmetry of (3+1)D Z2×Z2
gauge theory with two emergent fermions. This theory has a 0-form Z8 symmetry generated
by a decoration of (p+ip)×(p−ip) state on the codimension-1 defect. This state is regarded as
(2+1)D Z2×Z

f
2 SPT phase with the Z8 classification. Our strategy is to first derive the action

of this (p+ip)×(p−ip) defect on the Z2 × Z2 gauge theory in the form of the tensor product
operator Vf⊗Vf′ , where each Vf, Vf′ acts on each Hilbert space of Z2 gauge theory with a single
fermion. The action of the p+ip defect can then be obtained by Vf.

The details of the computation is relegated to Appendix B. The expression of the p+ip
logical gate is given as follows (up to overall phase):

Vp+ip(M
3) =

∏

k,l
j<k<l

(CC Z j,k,l)
∫

M3 σ jσkσl ·
∏

k
j<k

(CS†
j,k)

∫

M3 σ jσkσk ·
∏

j

(T j)
∫

M3 σ jσ jσ j . (26)

This p+ip logical gate indeed gives the order 8 operation, as its 8th power becomes the overall
phase acting trivially on the Hilbert space. This is consistent with our discussions in Sec. 2.1
showing that the 0-form symmetry reduces to Z8.

In the following sections, we will describe several examples of logical gates from the p+ip
defects on different spatial 3-manifolds: for M3 = T3, T2⋊C S1,RP3, where T2⋊C S1 denotes a
mapping torus of T2 twisted by the modular S2 = C transformation. For each choice of a spatial
3-manifold M3, the p+ip logical gate produces CC Z , Controlled-S† and T gate, respectively.

4 Example: Review of fault-tolerant CCZ gate in (3+1)D Z2

fermionic toric code

In this section, we review the microscopic realization for the the p+ip logical gate on a torus
M3 = T3, which has been studied in [69]. We will see that our formula for the p+ip logical
gate Eq. (26) on M3 = T3 reproduces the results in [69].

4.1 Pumping a Chern insulator through a 3d torus

We first recall the construction of a unitary UChern acting on a 3d fermionic system on a cubic
lattice, which is regarded as pumping the Chern insulator through the whole 3d space [69].
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This unitary turns out to be an exact 0-form symmetry of a trivial atomic insulator state, so
generates the 0-form symmetry of the (3+1)D fermionic toric code after gauging the Z f

2 sym-
metry. This 0-form symmetry corresponds to the symmetry defect obtained by a decoration
with the Chern insulator with integer c− studied in Sec. 2.4.

To construct this unitary, recall that the Chern insulator can be realized with a 2d free
fermion Hamiltonian with two energy bands:

HChern(k⃗2d) = cX (k⃗2d)X
fl + cY (k⃗2d)Y

fl + cZ(k⃗2d)Z
fl , (27)

where the Pauli matrices for the flavor index are denoted as X fl, Y fl, Zfl. The real coefficient
{cX , cY , cZ} satisfies (cX )2+(cY )2+(cZ)2 = 1, and it is a map T2→ S2 with non-trivial winding
number 1. An explicit choice of the function {cX , cY , cZ} is made in Appendix C.

The inverse phase of the Chern insulator carrying the winding number −1 can be obtained
by flipping the sign of the second term:

HChern(k⃗2d) = cX (k⃗2d)X
fl − cY (k⃗2d)Y

fl + cZ(k⃗2d)Z
fl . (28)

By stacking the above two theories HChern and HChern we obtain the paired Hamiltonian with
four energy bands

Hpair(k⃗2d) = cX (k⃗2d)X
fl + cY (k⃗2d)Z

layerY fl + cZ(k⃗2d)Z
fl , (29)

where the Pauli matrices for the layer index is denoted as X layer, Y layer, Z layer. A trivial atomic
insulator can be transformed into this paired Hamiltonian Hpair by a unitary Unucl obtained
in [69] (see also Appendix C for an explicit definition of Unucl)

Unucl†HpairU
nucl = Zfl . (30)

In other words, this unitary can nucleate a pair of topological insulators with the Chern number
±1 starting with a pair of trivial atomic insulators.

One can now construct a unitary pumping the Chern insulator through the 3d cubic lattice
on a torus T3 as follows; we take the 3d system to be the 2N layers of 2d square lattices
stacked along the z direction. Starting with the 2N layers of the trivial atomic insulators, we
first nucleate the pair of the Chern insulator and its opposite on two layers (2 j − 1,2 j) by the
unitary Unucl. Next, we annihilate the pair of the nontrivial insulators into the trivial one by
applying the unitary Uannih := X layerUnucl†X layer at the pair of layers (2 j, 2 j+1) (see Figure 4).
The whole process is summarized in the following single unitary

UChern =
∏

k⃗2d

UChern(k⃗2d) , (31)

with
UChern(k⃗2d) =

∏

1≤ j≤N

Uannih
2 j,2 j+1(k⃗2d)

∏

1≤ j≤N

Unucl
2 j−1,2 j(k⃗2d) . (32)

4.2 Pumping a p+ip superconductor through a 3d torus

Since the above unitary is symmetric under the translation by two layers in the z direction, one
can Fourier transform in the z direction, which brings UChern into a 4×4 matrix for the bilayer
UChern(k⃗2d, kz). This operator UChern(k⃗2d, kz) is shown to commute with Z fl, UChern(k⃗2d, kz) is
expressed in the block diagonal form for each eigenspace of Z fl = (−1)α,

UChern(k⃗2d, kz) =

�

Vα=0(k⃗2d, kz) 0
0 Vα=1(k⃗2d, kz)

�

. (33)
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…

Figure 4: Pumping a Chern insulator through 2N layers of atomic insulators.

Focusing on each subspace for α= 0, 1, each 2×2 matrix Vα=0(k⃗2d, kz), Vα=1(k⃗2d, kz) is identi-
fied as pumping a p+ip superconductor [69]. To see this, one can check that the matrix Vα=1
can be homotopically deformed into Vα=0 after performing the particle-hole conjugation acting
on the α = 0 energy band, since both of the unitaries Vα turn out to carry the same winding
number 1 associated with the map Vα : T3 → SU(2) ∼= S3. The unitary can then be regarded
as two copies of the identical unitaries acting on each band α= 0, 1, both together constitute
the pumping of a Chern insulator. This means that each of Vα=0(k⃗2d, kz), Vα=1(k⃗2d, kz) carries
a “half” of the Chern insulator, which is a p+ip superconductor. Therefore, let us explicitly
write the unitary pumping the p+ip superconductor as

Vp+ip =
∏

k⃗2d,kz

Vα=0(k⃗2d, kz) . (34)

4.3 Fault-tolerant CCZ gate

Here we argue that the above unitaries pumping the Chern insulator or p+ip superconductor
can be expressed as a constant-depth circuit of quasi-local unitaries with at most exponentially
decaying tails, following [69]. The unitaries Unucl

2 j−1,2 j(k⃗2d), Uannih
2 j,2 j+1(k⃗2d) can be expressed as

the time-ordered exponential for the Hamiltonian evolution,

Unucl(k⃗2d) = T exp

�

i

∫ t

0

dτKnucl(k⃗2d,τ)

�

, Uannih(k⃗2d) = T exp

�

i

∫ t

0

dτKannih(k⃗2d,τ)

�

, (35)

with Knucl(k⃗2d,τ) = −iUnucl(k⃗2d,τ)−1∂τUnucl(k⃗2d,τ) a Hermitian operator. Here, a unitary
Unucl(k⃗2d,τ) is a function of 0≤τ≤ t that smoothly interpolates between Unucl(k⃗2d,τ= 0)= id
and Unucl(k⃗2d,τ= t) = Unucl(k⃗2d). Such a smooth interpolation is possible, because Unucl(k⃗2d)
is identified as a map T2 → SU(4) which can be homotopically deformed to an identity map
since π1(SU(4)) = π2(SU(4)) = 0. A similar description also works for Kannih(k⃗2d,τ).

Since the Hamiltonians Knucl(k⃗2d,τ), Kannih(k⃗2d,τ) are smooth functions of k⃗2d,τ, this evo-
lution is quasi-local in real space in the sense that they have at most exponentially decaying
tails. This implies that the pumping of the Chern insulator UChern can be implemented by a
finite-time evolution by a quasi-local Hamiltonian with exponentially decaying tails. We ex-
pect that this can be approximated by a constant depth local unitary circuit and it can give a
fault-tolerant logical operation, but this requires further study to understand in detail.

The unitary UChern acts within the Fock space of each flavor α= 0, 1 with Z fl = (−1)α, and
focusing on one flavor index we obtain the operator Vα=0, Vα=1 pumping the p+ip supercon-
ductor. By gauging the Z f

2 symmetry for each flavor distinctly, we obtain two copies of (3+1)D
fermionic toric codes, where the local constant-depth circuit UChern acts as the diagonal fault-
tolerant logical gate Vp+ip ⊗ Vp+ip on the copy.
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The pumping of p+ip superconductor Vp+ip realizes the logical CC Z gate on a torus
T3 [69]. This is understood as a consequence of the permutation of 1-form symmetry gen-
erators by the action of the p+ip symmetry defect discussed in Sec. 2.2, leading to the group
commutation relation between the emergent symmetries introduced in Sec. 3,

Permutation action: [Vp+ip, X yz] =WK,yz , (36)

which corresponds to the permutation action where the magnetic surface operator X yz ex-
tended in y, z direction is attached to the surface operator for the Kitaev chain. As discussed in
Sec. 3.1, the Kitaev chain operator WK,yz on a torus T2

yz implements the C Z gate for the logi-

cal qubits on T3 with Pauli operators {Zy , Xzx}, {Zz , X x y}. The above commutation relation is
realized by Vp+ip = CC Z involving all three logical qubits of the Z2 fermionic toric code on T3.

5 Example: Fault-tolerant controlled-S gate in (3+1)D fermionic
Z2 toric code

Next let us consider the 3d space M3 = T2 ⋊C S1, which is a mapping torus of T2 twisted by
the modular transformation S2 = C. As we will see below, pumping the p+ip superconductor
through this mapping torus can implement a fault-tolerant Controlled-S† gate.

5.1 Warm-up: Controlled-Z gate by pumping Chern insulator and 3-group

Before discussing the properties of the p+ip defect, let us first consider the 2Z subgroup of
the 0-form symmetry generated by the Chern insulator, generated by the unitary V 2

p+ip. As
described in Sec. 2.4, this 0-form symmetry for the Chern insulator forms a non-trivial 3-group
together with the other emergent invertible symmetries. The 3-group structure is characterized
by the relation among the background gauge fields

dC3 = Sq2(C2) + B2 ∪ C2 +

�

dB̃2

2
+w3

�

∪ C1 + (B2 +w2)∪
dC̃1

4
, (37)

where the backgrounds of 0-form symmetry, magnetic 1-form symmetry C1 ∈ Z1(M4,Z),
1-form symmetry for the Kitaev chain, and electric 2-form symmetry are denoted by
C1 ∈ Z1(M4,Z), B2 ∈ Z2(M4,Z2), C2 ∈ Z2(M4,Z2), C3 ∈ C3(M4,Z2). The last term for the

3-group dB̃2
2 ∪ C1 affects on the commutation relation between 0-form symmetry generator

V 2
p+ip and the magnetic surface operator X . To see this effect explicitly, let us consider a 3d

space given by a mapping torus M3 = T2 ⋊C S1. This 3d space can be filled by a cubic lattice
with the boundary condition along z direction twisted by C2 rotation of the square lattice,
which makes up T2

x y ⋊C2
S1

z (see Figure 5 (a)). This topology stores three logical qubits acted
on by three pairs of the Pauli operators {X x y , Zz}, {X yz , Zx}, {Xzx , Zy}.

In this setup, the magnetic surface X yz extended in yz direction is supported on a Klein
bottle. Due to the above non-trivial 3-group structure, the 0-form symmetry for the Chern
insulator acts on the junction of the magnetic defects by attaching an electric charge. Noting
that the junction here corresponds to the orientation-reversing defect of the magnetic surface,
the 3-group structure is reflected in the commutation relation between the generator of 0-form
and 1-form symmetry giving that of the 2-form symmetry,

3-group equation: [V 2
p+ip, X yz] = Zy . (38)

This implies that V 2
p+ip acts by the C Z gate on the two logical qubits with Pauli operators

{X x , Zyz}, {X y , Zxz} encoded in the Z2 gauge theory. This C Z gate comes from the second
term of the expression of Vp+ip in Eq. (26) that involves Controlled-S† between two qubits,
where we get C Z from the square of CS†.
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5.2 Lattice model for pumping Chern insulator through T 2
⋊C2

S1

One can explicitly construct a unitary V 2
p+ip on a cubic lattice defined on T2

x y ⋊C2
S1

z . This can
be done by slightly generalizing a unitary pumping a Chern insulator obtained in [69] to the
case with twisted boundary condition by C2 along the z direction.

In the presence of the C2 twisted boundary condition, we want the pumped Chern insulator
to be symmetric under the C2 rotation. Suppose that the C2 symmetry acts on the complex
fermion { f α, f α†} of the Chern insulator by

f α[k⃗2d]→ (Zfl)αβ · f β[−k⃗2d] , (39)

one can then see that this C2 action makes the Hamiltonian of the Chern insulator HChern
explicitly defined in Appendix C. In the presence of the C2 twisted boundary condition, one
can also define the unitary pumping the Chern insulator in the same fashion as the untwisted
case,

UChern[T
2 ⋊C2

S1] =

 

∏

1≤ j≤N

Uannih
2 j,2 j+1

! 

∏

1≤ j≤N

Unucl
2 j−1,2 j

!

. (40)

To see directly how the C2 twisted boundary condition enables us to realize the Controlled-Z
gate by pumping the Chern insulator, let us evaluate the action of the pumping unitary UChern
on the 3d trivial atomic insulator. This unitary acts by a phase on the atomic insulator given
by

〈trivial|UChern[T
2 ⋊C2

S1] |trivial〉= 〈trivial|

 

∏

1≤ j≤N

Uannih
2 j,2 j+1

!

·

 

∏

1≤ j≤N

Unucl
2 j−1,2 j

!

|trivial〉

= 〈Chern[2N + 1]|Chern[1]〉 ·
∏

2≤ j≤2N

〈Chern[ j]|Chern[ j]〉 ,

(41)

where the state |Chern[ j]〉 is the Chern insulator state created at the j-th layer. Noting that the
C2 twisted boundary condition is introduced by the identification between (2N + 1)-th layer
and the 1st layer by the C2 rotation, we can further rewrite the expression as

〈trivial|UChern[T
2 ⋊C2

S1] |trivial〉= 〈Chern[1]|C2|Chern[1]〉 ·
∏

2≤ j≤2N

〈Chern[ j]|Chern[ j]〉

=
〈Chern[1]|C2 |Chern[1]〉
〈Chern[1]|Chern[1]〉

· 〈trivial|UChern[T
3] |trivial〉 ,

(42)

where the last equation shows that the difference between the unitaries UChern[T2⋊C2
S1] and

UChern[T3] is encoded in the layer on which the C2 twist acts, where we have the C2 expectation
value at the single Chern insulator. We will see that this C2 expectation value gives rise to a
non-trivial logical gate.

For the free fermion Hamiltonian HChern of the Chern insulator, one can explicitly evaluate
the C2 expectation value for each boundary condition of Z f

2 symmetry. For simplicity, let us
assume that the Chern insulator is defined on a periodic square lattice with the length Lx , L y
both even. In that case, the C2 expectation value taken on the Chern insulator with each
boundary condition is given by

〈AP,AP|C2 |AP,AP〉= 〈P, AP|C2 |P,AP〉= 〈AP, P|C2 |AP,P〉= 1 ,

〈P, P|C2 |P,P〉=
∏

k⃗2d=−k⃗2d




k⃗2d

�

�C2

�

�k⃗2d

�

= −1 , (43)
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where {AP,P} denotes the Z f
2 boundary condition of the Chern insulator in x , y direction. The

above relation can be checked as follows. First, note that the C2 acts on the pair of complex
fermions c†

k⃗
c†
−k⃗

with k⃗ ̸= −k⃗ by flipping the sign. When both of Lx , L y are even, there are
always even number of such pairs, so one can discard the contribution of these pairs in the
C2 expectation value. Hence, only the high symmetric momentum under C2 satisfying k⃗ = −k⃗
contributes to the expression. Such high symmetric points exist only for {P, P} boundary con-
dition. By evaluating the Z fl eigenvalue at each high symmetric momentum of HChern, one
can see that 〈P, P|C2 |P, P〉 = −1. This observation that this C2 expectation value becomes −1
when the 2d torus T2 has the periodic boundary condition in both x and y direction, and 1
otherwise, implies that UChern[T2 ⋊C2

S1] in Eq. (42) implements the CZ gate with respect to
the two logical qubits {X x , Zyz}, {X y , Zxz}.

At the level of effective field theory of the Chern insulator, one can also see that the C2
expectation value gives the sign that corresponds to the CZ gate. To see this, we describe
the state of the Chern insulator on T2 in terms of the U(1)4 Chern-Simons theory, which is
the bosonic dual of the Chern insulator under the sixteen fold way. The U(1)4 theory has
four anyons {1, v,ψ, vψ} including the trivial one, so it has four-dimensional Hilbert space on
T2, where each state is labeled by the anyon. The Chern insulator state for each boundary
condition of T2 is then expressed by that of the U(1)4 as

|AP, AP〉= |1〉+ |ψ〉 ,
|AP, P〉= |1〉 − |ψ〉 ,
|P, AP〉= |v〉+ |vψ〉 ,
|P, P〉= |v〉 − |vψ〉 .

(44)

The C2 rotation now acts by the S2 modular transformation on the states of U(1)4 theory,
which turns to be the charge conjugation permuting the anyons as v ↔ vψ. Indeed, S,S2

matrices are expressed in the basis of {|1〉 , |v〉 , |ψ〉 , |vψ〉} as

S = 1
2







1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i






, S2 =







1
1

1
1






. (45)

One can then immediately see that S2 acts on the state |P, P〉 by −1 sign, while acts as identity
on the others. This gives the alternative field theoretical explanation for why the above unitary
UChern[T2 ⋊C2

S1] implements the CZ gate.8

5.3 Controlled-S gate by pumping p+ip superconductor

Let us then study the logical gate implemented by pumping the p+ip superconductor. As we
have seen in Sec. 2.2, the codimension-1 p+ip defect induces the permutation of the generators
of the 1-form symmetry, by attaching the Kitaev chain defect to the magnetic defect. This
permutation action is expressed as the commutation relation between the 0-form and 1-form
symmetry generators on T2 ⋊C2

S1,

Permutation action: [Vp+ip, X yz] =WK,yz . (46)

8In general, the action of the crystalline C2 rotation can differ from the modular C transformation of effective
field theory by an internal Z2 symmetry, as a result of the crystalline equivalence principle [91, 92]. Our setup
corresponds to the case that the internal Z2 symmetry acts trivially on the Hilbert space, where the microscopic
C2 action is identified as the modular transformation. It would be interesting to study how the different action of
crystalline C2 symmetry gives rise to a distinct realization of the logical gates.
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… …

(a) (b)

Figure 5: Boundary conditions of the layered system. (a): Twisted boundary condi-
tion for C2 rotation symmetry acting on the whole 2d torus, which makes the topology
of T2 ⋊C2

S1. (b): Twisted boundary condition for the partial C2 rotation acting on
the disk within the 2d torus, which makes the topology of RP3#T3.

The expression of the Kitaev chain operator WK,yz as a logical gate can be read from Eq. (25),
and given by

WK,yz = C Zy,zC Zx ,yS†
y , (47)

we then have
Vp+ip = CC Zx ,y,zCS†

x ,y , (48)

where the Controlled-S† logical gate CS†
x ,y is enabled by the C2 twisted boundary condition.

To explicitly see how the C2 twist makes the pumping of p+ip superconductor a non-trivial
logical operation, we again consider the 3d system that consists of the 2N layers of the 2d
trivial atomic insulators, and suppose of the process nucleating the pair of p+ip and p−ip
superconductors for the pair of layers (2 j−1, 2 j), then annihilate them for each pair (2 j, 2 j+1).
By repeating the same argument as the previous subsection, the unitary realizing the whole
pumping process Vp+ip acts on the 3d trivial insulator by a phase, which is given by

〈trivial|Vp+ip[T
2 ⋊C2

S1] |trivial〉=
〈p+ip|C2 |p+ip〉1
〈p+ip|p+ip〉1

· 〈trivial|Vp+ip[T
3] |trivial〉 , (49)

where 〈p+ip|C2 |p+ip〉1 is the C2 expectation value of the p+ip superconductor at the first
layer.

We can again understand the origin of the Controlled-S† gate at the level of the effective
field theory of p+ip superconductor. To do this, we describe the state of the p+ip supercon-
ductor on T2 by that of the Ising TQFT with the anyons {1,σ,ψ}, which is the bosonic dual of
p+ip superconductor under the sixteen fold way. The state of p+ip superconductor with each
boundary condition is then expressed as [93]

|AP,AP〉= |1〉+ |ψ〉 ,
|AP,P〉= |1〉 − |ψ〉 ,
|P,AP〉= |σ〉 ,
|P,P〉= |σ;ψ〉 ,

(50)

where |σ;ψ〉 is the state on a punctured torus, where the fermionψ is inserted at the puncture
and terminates at the σ line in the bulk of the solid torus. The modular S matrix of the
punctured torus is computed in [93], and given by SP,P = e7πi/4. The S2 acts on the other
sectors in a trivial way, which is written in the basis of {|1〉 , |ψ〉 , |σ〉} as

S = 1
2





1 1
p

2
1 1 −

p
2p

2 −
p

2 0



 , S2 = id . (51)
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The C2 rotation S2 hence acts by the phase (−i) in the {P,P} sector, while it acts trivially on
the other sector. This means the logical gate involving two logical qubits {X x , Zyz}, {X y , Zxz}
is given by diag(1,1, 1,−i) in the Z basis, which is nothing but the Controlled-S† gate.

5.4 Fault-tolerance of controlled-S gate

Following the argument reviewed in Sec. 4.3, one can immediately see that the pumping uni-
tary UChern[T2⋊C2

S1] for the Chern insulator implements the fault-tolerant logical gate. Again,
both of the unitaries Unucl

2 j−1,2 j(k⃗2d), Uannih
2 j,2 j+1(k⃗2d) can be regarded as a finite-time evolution

by the quasi-local Hamiltonian with at most exponentially decaying tail regardless of the C2
twisted boundary condition. This unitary UChern[T2⋊C2

S1] again acts within the Fock space of
each flavor α = 0,1 with Z fl = (−1)α, and focusing on one flavor index we obtain the opera-
tor Vα=0, Vα=1 pumping the p+ip superconductor, both of which implement the Controlled-S†

gate. By gauging the Z f
2 symmetry for each flavor distinctly, we obtain two copies of (3+1)D

fermionic toric codes, where the local constant-depth circuit UChern[T2⋊C2
S1] then acts as the

diagonal Controlled-S† gate Vp+ip ⊗ Vp+ip on the copy.

6 Example: T gate in (3+1)D fermionic Z2 toric code

Finally we consider M3 = RP3, where pumping p+ip superconductor through M3 is expected
to realize the logical T gate according to Eq. (26). In order to realize the topology of RP3 in
a lattice model, we consider a boundary condition of a 3d layered system twisted by “partial”
C2 rotation [94], as shown in Figure 5 (b). To understand how the partial rotation realizes the
RP3 topology, we recall that RP3 is obtained by carving out a disk D3 from a 3-sphere, and
then identifying the north and south hemisphere of the boundary S2 by the C2 rotation map.
The boundary condition implemented by the partial C2 rotation exactly does the identification
of hemispheres to obtain RP3. In the presence of this boundary condition, the 3d space for
the layered system has the topology of T3#RP3, where the partial rotation adds the RP3 to
the original torus topology T3.

In order to construct an explicit logical T gate in this topology by a local constant-depth
circuit, we would need to obtain a unitary circuit which can nucleate a “bubble” of a p+ip
superconductor enclosing the partial rotation cross-cap. Then, one would be able to sweep
the p+ip superconductor over the whole 3d space, resulting in an emergent symmetry acting
on the code space of fermionic Z2 toric code. While we do not attempt to work out the con-
struction of such a unitary logical gate pumping a (2+1)D invertible phase through the partial
rotation cross-cap, we strongly expect that a constant-depth unitary circuit for this logical gate
exists. Indeed, in (2+1)D one can pump a (1+1)D Kitaev chain through a cross-cap for spatial
reflection by a local constant-depth circuit to obtain the logical gate of the (2+1)D Z2 toric
code on RP2 [62]. A similar construction would work for pumping a (2+1)D invertible phase
through a cross-cap of RP3 as well.

In this section, instead of explicitly constructing a logical T gate using a local unitary
circuit, we comment on our expectation for a certain operator which is unitary in the whole
Hilbert space of the 3d layered system, but does not act within the ground state Hilbert space,
so does not directly define the logical gate. Nevertheless, after projecting onto the code space
of fermionic Z2 toric code, it is expected to become a non-unitary operator proportional to the
logical T gate up to overall amplitude.
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6.1 Warm-up: S gate by pumping Chern insulator and 3-group

Before considering the p+ip case, let us discuss the logical gate implemented by the Chern
insulator defect, which generates the 2Z subgroup of the 0-form symmetry. Due to the 3-
group structure dC3 = dB̃2/2 ∪ C1 discussed in Sec. 2.4, the 0-form symmetry for the Chern
insulator acts on the junction of the magnetic defects by attaching the electric charge. As
discussed in Sec. 5, this implies that the 0-form symmetry acts on the orientation-reversing
defect of the magnetic defect by attaching the Wilson line of the electric charge.

Let us now consider a 3d space RP3, where we can think of the magnetic surface operator
supported atRP2 embedded inRP3. This surface operator implements the logical X gate of the
Z2 gauge theory. The 3-group structure discussed above is then reflected in the commutation
relation between the 0-form and 1-form symmetry generator,

3-group equation: [V 2
p+ip, X ]∝ Z , (52)

where Pauli Z corresponds to the Wilson line of a fermion extended along the orientation-
reversing cycle of RP2, which is a nontrivial cycle of RP3. This commutation relation is indeed
realized by Eq. (26), which says V 2

p+ip = S.

6.2 Realizing RP3 topology via partial rotation, and pumping Chern insulator
through RP3

Here we consider the process of pumping the Chern insulator discussed in previous subsections
on a layered lattice system defined on a 3d space with the topology of RP3. As we mentioned
at the beginning of the section, to encode the topology of RP3 in the 3d space, we employ the
idea of partial rotation, which is the spatial rotation acting within a disk subregion. For the
system of 2N layers of the 2d trivial atomic insulators, we consider the boundary condition that
identifies the (2N +1)-th layer with the first layer by the partial C2 rotation acting on the disk
inside the 2d torus (see Figure 5 (b)). The partial-rotation twist works as a “cross-cap” making
up the RP3 topology, and the resulting 3d layered system corresponds to a discretization of
the 3-manifold T3#RP3.

Let us study the action of the operator pumping the Chern insulator in the presence of the
partial C2 rotation twist. We can just define the pumping unitary in the same form as Eq. (32),

UChern[T
3#RP3] =

 

∏

1≤ j≤N

Uannih
2 j,2 j+1

! 

∏

1≤ j≤N

Unucl
2 j−1,2 j

!

. (53)

In the presence of the partial C2 twist, the state for the trivial atomic insulator is no longer an
eigenstate of the pumping operator UChern, so this operator does not directly give the logical
gate of Z2 gauge theory after gauging Z f

2 symmetry. However, after gauging Z f
2 fermion parity

symmetry, we can see that the projection of UChern onto the ground state subspace for the Z2
gauge theory behaves as the logical S gate on the logical qubit encoded by the RP3 topology.
To check this, let us explicitly compute the expectation value of the unitary UChern on the trivial
atomic insulator,

〈trivial|UChern[T
3#RP3] |trivial〉=

〈Chern|C2[D2] |Chern〉1
〈Chern|Chern〉1

· 〈trivial|UChern[T
3] |trivial〉 , (54)

where C2[D2] is the partial C2 rotation operator acting within the disk of the first layer. One
can also get the expectation value of the operator UChern in the presence of the Z f

2 -twisted

boundary condition for RP3, which corresponds to shifting the spin structure of RP3. This Z f
2 -

twisted boundary condition is achieved by inserting the Z f
2 symmetry defect at the disk where
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we act by the partial rotation. The expectation value of UChern with the Z f
2 -twisted boundary

condition is then given by

〈trivial|UChern[T
3#RP3, twisted] |trivial〉

=
〈Chern|C2(−1)F [D2] |Chern〉1

〈Chern|Chern〉1
· 〈trivial|UChern[T

3] |trivial〉 , (55)

where C2(−1)F [D2] is the partial C2 rotation associated with the partial Z f
2 fermion parity

operator, acting within the disk of the first layer. The expectation value of the partial rotation
operator in the Chern insulator has been computed in [94], and has the form of

〈Chern|C2[D
2] |Chern〉1 = e−

2πi
8 ×χ , 〈Chern|C2(−1)F [D2] |Chern〉1 = e

2πi
8 ×χ , (56)

where χ is a real non-universal value. See Appendix E for the detailed discussions about the
evaluation of the partial rotation. One can hence see that the operator U projected onto the
state for a 3d atomic insulator is proportional to S = diag(1, e

2πi
4 ) up to the overall value

e−2πi/8 ×χ.

6.3 Pumping p+ip superconductor through RP3 and T gate

Let us then study the logical gate implemented by pumping the p+ip superconductor in the
presence of the partial C2 twist. According to Eq. (26), the p+ip symmetry acting on a 3d space
RP3 generates the logical T gate on the Z2 gauge theory. To explicitly see how the partial C2
twist makes the pumping of p+ip superconductor a non-trivial logical operation, we again
consider the process of nucleating the pair of p+ip and p−ip superconductors for the pair of
layers (2 j−1,2 j), then annihilating them for each pair (2 j, 2 j+1), in the system of 2N layers.
This pumping unitary Vp+ip does not act by unitary on the ground state subspace for the Z2
gauge theory, but acts by the logical T gate once projected onto the ground state subspace.

Indeed, by repeating the same argument as the previous subsection, one can evaluate the
expectation value of the pumping unitary on the 3d trivial atomic insulator as

〈trivial|Vp+ip[T
3#RP3] |trivial〉=

〈p+ip|C2[D2] |p+ip〉1
〈p+ip|p+ip〉1

· 〈trivial|Vp+ip[T
3] |trivial〉 , (57)

where C2[D2] is the partial C2 rotation operator acting within the disk of the first layer. Also,
the expectation value with the shifted spin structure on RP3 is given by

〈trivial|Vp+ip[T
3#RP3, twisted] |trivial〉

=
〈p+ip|C2(−1)F [D2] |p+ip〉1

〈p+ip|p+ip〉1
· 〈trivial|Vp+ip[T

3] |trivial〉 . (58)

The computation details of the expectation value of the partial rotation operator in the p+ip
superconductor is found in Appendix E, which largely follows the argument in [94, 95]. The
result has the form of

〈p+ip|C2[D
2] |p+ip〉1 = e−

2πi
16 ×χ , 〈p+ip|C2(−1)F [D2] |p+ip〉1 = e

2πi
16 ×χ , (59)

where χ is a real non-universal value. This demonstrates that the unitary becomes propor-
tional to the logical T gate T = diag(1, e

2πi
8 ) up to the overall value e−2πi/16 ×χ.
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7 Discussion

In this paper we have developed an understanding of the emergent 3-group symmetry of
(3+1)DZ2 gauge theory with a fermionic charge. The 3-group symmetry is mathematically en-
coded by the equations obeyed by flat background gauge field configurations for the 3-group
symmetry. Physically the 3-group symmetry describes the result of space-time intersections
and junctions involving topological defects of varying codimension.

The emergent 3-group symmetry in general can act non-trivially in the code subspace of a
topological code, and gives rise to fault-tolerant logical operations. In this paper we provided
a general formula for the logical gates obtained by sweeping the Kitaev chain defect and the
p+ip superconductor defect. When we consider the code defined on the torus T3, the mapping
torus T2 ⋊ S1, and RP3, our results imply that one can realize CCZ, CS, and T gates.

Our work raises several questions for further study. First, the unitary operators that we can
define are in terms of finite-time evolution of a quasi-local Hamiltonian. It would be of interest
to write down explicit constant depth local unitary circuits that approximate these unitaries
and prove rigorously that they give fault-tolerant logical gates. For the T gate on RP3, our
microscopic realization required applying a partial C2 rotation, which took the system out of
the code subspace and required projecting back to the code subspace. As we discussed, we
expect that there is a unitary operator that leaves the code subspace invariant and implements
the same transformation; it would be of interest to explicitly find this operator.

Our results made use of the application of global and partial rotations to the topological
states that are decorated on the codimension-1 defect. As studied in [94–97], the results
of these operations might be modified by non-trivial topological invariants protected by the
crystalline rotation symmetry of the system, and may depend on the Wyckoff position of the
fixed point of the rotation. It would be interesting to investigate whether and how these
crystalline symmetry protected invariants affect the logical gates that are obtained.

As mentioned in the introduction, a large class of fault-tolerant logical gates can also be
obtained in topological codes using mapping class group operations, which can be viewed as
sweeping geometric defects through the system. The algebraic relationships between logical
gates obtained from mapping class group elements and those obtained from sweeping invert-
ible topological defects presumably give rise to a larger emergent 3-group symmetry that mixes
the one studied here with the diffeomorphism symmetry of the code.

Finally, it would be interesting to place our results in the wider context of schemes for
realizing universal fault-tolerant quantum computation, and whether these results be utilized
to improve the optimal space-time overhead for universal quantum computation.
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A Derivations for logical gate of Kitaev chain defect

Here we derive the expression Eq. (25) of the logical gate implemented by the Kitaev chain
defect. We will present two derivations, one based on property of the ABK invariant, the other
based on commutation relation.

A.1 Derivation from factorization property of invariant

The ABK invariant on the surface Σ j can be described by Z2 gauge field b with the effective
action [36,44,82,83]

π

2

∫

Σ j

qa(b) , (A.1)

where b is a dynamical field that satisfies d b = 0. Let us examine how the theory depends
on the pin− structure a by writing it as a = a0 + B for some fixed reference pin− struc-
ture a0 (the pin− structure on the surface Σ j are the restriction of the spin structure in the
3-manifold M that contains Σ j [44]). Using the property qa0+B(x) = qa0

(x) + 2x ∪ B and
q(x + y) = q(x) + q(y) + 2x ∪ y , we can rewrite the effective action as

π

2

∫

Σ j

qa0
(b′)−

π

2

∫

Σ j

qa0
(B) , (A.2)

where b′ = b+ B. Thus the theory depends on the pin− structure by the effective action

−
π

2

∫

Σ j

qa0
(B) . (A.3)

Consider the operator acting on the state |{a}〉 (where the eigenvalue of (−1)
∮

a = ±1
labels the spin structure of the 3-manifold M , which extends to pin− structure on the surface
Σ j inside the 3-manifold) as follows:

WK(Σ j)|{a}〉= e
− 2πi

4

∫

Σ j
qa0
(a)
|{a}〉 , (A.4)

where a0 is some fixed reference pin− structure related to the choice of embedding of the
surface Σ j in the 3-manifold. For instance, if the spin structure differs from the pin− struc-
ture by w1 of the surface, it is the same as the embedding with opposite orientation, since
π
2

∫

qa0+w1
(x) = π

2 qa0
(x) + π

∫

x ∪ w1 = −
π
2

∫

qa0
(x). It is sufficient to pick a choice of em-

bedding; different choices are related by shifting a, i.e. a basis transformation that conjugates
WK by Pauli X gates. We can set a0 = 0, but in the discussion let us keep general a0.

Let us augment Σ j with additional surfaces such that {Σ j ,Σk} forms a basis of H2(M ,Z2).
We can parameterize a as

a = n jPD(Σ j) +
∑

k ̸= j

nkPD(Σk) , (A.5)

where (−1)n j , (−1)nk = ±1 are the eigenvalues of the Pauli Z gate on the corresponding qubits
(we will take them to be n j , nk ∈ {0, 1}), and PD denotes the Poincaré dual. In the notation of
(25), PD(Σk) = σk.

Let us substitute (A.5) into (A.4) and using the property q(x + y) = q(x) + q(y) + 2x ∪ y
mod 4:

WK(Σ j)|{a}〉=
∏

k<l,k,l ̸= j

CZ

∫

Σ j
σk∪σl

k,l

 

∏

k ̸= j

CZ

∫

Σ j
σ j∪σk

j,k S
−
∫

Σ j
σk∪σk

k

!

S
−
∫

Σ j
σ j∪σ j

j |{a}〉 , (A.6)
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where the CZ gates are from the contributions πnknl

∫

Σ j
σk ∪σl and πn jnk

∫

Σ j
σ j ∪σk, the

S gates are from the contributions nk
π
2

∫

Σ j
q(σk) and n j

π
2

∫

Σ j
q(σ j) where we used n2

j = n j ,

n2
k = nk for n j , nk = 0,1. Using the property
∫

Σ j

σ j ∪σk =

∫

M
σ j ∪σ j ∪σk =

∫

M
Sq1(σ j)∪σk =

∫

M
σ j ∪ Sq1(σk) =

∫

Σ j

σk ∪σk mod 2 ,

(A.7)

we can replace the term CZ

∫

Σ j
σ j∪σk

j,k in (A.6) with CZ

∫

Σ j
σk∪σk

j,k . Then the operator reproduces

the expression (25) up to an overall constant phase e
2πi
8 #(Σ j ,Σ j ,Σ j).

A.2 Derivation from commutation relation

Here we present an alternative derivation for Eq. (25) based on the commutation relations
between the Kitaev chain operator and the logical Pauli operators. First, the commutation
relation between the Kitaev chain operator and the logical Pauli X operator is given by

XkW
†
K(Σ j)XkWK(Σ j) |{a}〉= exp

�

2πi
8
(ABK(Σ j , a)−ABK(Σ j , a+σk))

�

|{a}〉

= exp

 

2πi
4

∫

Σ j

qa(σk)

!

|{a}〉 .
(A.8)

The phase exp
�

2πi
4

∫

Σ j
qa(σk)

�

measures the pin− structure of a surface Σk along a close loop

γ Poincaré dual to σ j ∪ σk. This implies that this phase is proportional to the action of the
Wilson line of the fermion ψ along γ, which can be expressed as a product of logical Pauli Z

operators as
∏

l Z
∫

M3 σ jσkσl

l . Concretely, we have

XkW
†
K(Σ j)XkWK(Σ j) = i

∫

M3 σ jσkσk

∏

l

Z
∫

M3 σ jσkσl

l . (A.9)

The additional phase factor i
∫

M3 σ jσkσk reflects the property that the phase exp
�

2πi
4

∫

Σ j
qa(σk)

�

becomes ±i when γ crosses through the orientation-reversing defect of the surface Σ j odd
times, which happens when

∫

M3 σ jσkσk = 1. Meanwhile, the commutators between the
Kitaev chain operator and the Pauli Z operators become trivial,

ZkW
†
K(Σ j)ZkWK(Σ j) = 1 . (A.10)

The unitary is completely specified by the commutator between Pauli X and Z operators up to
overall phase. In our case, the above commutators fix the form of the Kitaev chain operator
up to phase as

WK(Σ j) =
∏

k,l
k<l, j ̸=k, j ̸=l

C Z
∫

M3 σ jσkσl

k,l ·
∏

k
j ̸=k

C Z
∫

M3 σ jσkσk

j,k (S†
k)
∫

M3 σ jσkσk · (S†
j )
∫

M3 σ jσ jσ j .
(A.11)

One can check this expression as follows.

1. When j ̸= k, the commutation relation can be evaluated by





Xk,

∏

l,m
l<m, j ̸=l, j ̸=m

C Z
∫

M3 σ jσlσm

l,m






=

∏

l
l ̸= j,l ̸=k

Z
∫

M3 σ jσkσl

l , (A.12)
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and





Xk,

∏

l
j ̸=l

C Z
∫

M3 σ jσlσl

j,l (S†
l )
∫

M3 σ jσlσl






= Z

∫

M3 σ jσkσk

j × i
∫

M3 σ jσkσk Z
∫

M3 σ jσkσk

k , (A.13)

where [A, B]:=A−1B−1AB. These two commutation relations together produce Eq. (A.9).

2. When j = k, the nontrivial commutation relation comes from





X j ,
∏

l
j ̸=l

C Z
∫

M3 σ jσlσl

j,l






=
∏

l
j ̸=l

Z
∫

M3 σ jσlσl

l , (A.14)

and
�

X j , (S
†
j )
∫

M3 σ jσ jσ j
�

= i
∫

M3 σ jσ jσ j Z
∫

M3 σ jσ jσ j

j . (A.15)

These two commutation relations together produce Eq. (A.9).

The additional phase factor appears when the surface Σ j satisfies
∫

Σ j
w2

1 = 1, in which

case the ABK invariant exp
�2πi

8 ABK(Σ j , a)
�

becomes the 8th root of unity. This happens when
∫

M3 σ
3
j = 1, where we must introduce a phase factor exp

�

2πi
8

∫

M3 σ
3
j

�

. Otherwise the eigen-
value of the above operator should match the ABK invariant of the surface Σ j , since the ABK
invariant of Σ j with the choice of spin structure such that Zk = 1 for all k is expected to be 1.
So we get the expression (25),

WK(Σ j) =
∏

k,l
k<l, j ̸=k, j ̸=l

C Z
∫

M3 σ jσkσl

k,l ·
∏

k
j ̸=k

C Z
∫

M3 σ jσkσk

j,k (S†
k)
∫

M3 σ jσkσk · (e
2πi
8 S†

j )
∫

M3 σ jσ jσ j .
(A.16)

For example, when the 3d space M3 is taken to be RP3, the fermionic toric code stores a
single logical qubit. The Kitaev chain operator on RP2 embedded in RP3 can then implement
S† logical gate up to overall phase e2πi/8, which originates from the last term in the above
expression. Such a logical S† gate in (2+1)D Z2 toric code and honeycomb Floquet code on
RP2 has been explicitly constructed in [62].9

B Derivations for logical gate of p+ip defect

Let us write the Pauli operators of the Z2 × Z2 gauge theory as {Zf, j , X f, j}, {Zf′, j , X f′, j}, where
Zf, Zf′ denote the Wilson line for fermions ψ,ψ′ respectively. Each Z2 gauge theory has the
Kitaev chain defect, with corresponding operators denoted by WK(Σ j),WK′(Σ j).

To describe the expression of the symmetry operator corresponding to the (p+ip)×(p−ip)
defect, let us first express the Z2×Z2 gauge theory in a different basis, by redefining the Pauli
operators as

Z̃f, j = Zf, j , Z̃b, j = Zf, j Zf′, j , X̃ f, j = X f, jX f′, j , X̃b, j = X f′, j . (B.1)

The Pauli Z̃b, j operator corresponds to the Wilson line for the bosonic particle b := ψψ′, so
the above expression amounts to describing the Z2×Z2 gauge theory as stacking of Z2 gauge

9In [62], this logical gate for the Kitaev chain operator on RP2 is presented as
p

Y
†

gate instead of S† =
p

Z
†
,

since [62] works in the basis where the line operator of the fermion on RP2 is identified as a Y gate instead of Z
gate (up to overall phase).
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theory with a bosonic particle and that with a fermionic particle. In this basis, we can describe
the eigenstate of the Pauli Z operators as |{a, b}〉 with a, b Z2 gauge fields on M3, where the
Wilson line of a corresponds to Zf, and that of b corresponds to Zb. On the eigenstate |{a, b}〉,
the action of the operator V that corresponds to the (p+ip)×(p−ip) defect is given by [98,99]

V |{a, b}〉= exp
�

2πi
8
βa(b)

�

|{a, b}〉 := exp
�

2πi
8

ABK(PD(b), a)
�

|{a, b}〉 , (B.2)

where PD(b) denotes a 2d surface Poincaré dual to the Z2 gauge field b.
This operator V can be expressed in terms of a certain non-Clifford unitary. To see this, we

compute the commutation relation between V and Pauli operators. First, we obviously have
[V, Z̃f, j] = [V, Z̃b, j] = 1 since V is diagonal in the Z basis. Then, the commutator involving
the Pauli X operator can be computed by exploiting the following property of the invariant
βa(b) [98],

exp
�

2πi
8
(βa(b) + βa(b

′)− βa(b+ b′))
�

= exp

�

2πi
4

∫

PD(b)
qa(b

′)

�

, (B.3)

exp
�

2πi
8
(βa+σ(b)− βa(b))

�

= exp

�

−
2πi
4

∫

PD(σ)
qa(b)

�

. (B.4)

Here we introduced the function qa(b) defined on a pin− surfaceΣ. a is pin− structure induced
on the defect Σ, and b is the flat Z2 gauge field for the bosonic electric particle. qa(b) is a
Z4-valued quadratic function with the property

∫

Σ

qa(b) +

∫

Σ

qa(b
′) =

∫

Σ

qa(b+ b′) + 2

∫

Σ

b ∪ b′ mod 4 . (B.5)

The commutator between V and Pauli X operators are then computed by

X̃ f,kV †X̃ f,kV |{a, b}〉= exp
�

−
2πi
8
βa+σk

(b)
�

exp
�

2πi
8
βa(b)

�

|{a, b}〉

= exp

�

2πi
4

∫

Σk

qa(b)

�

|{a, b}〉 , (B.6)

X̃b,kV †X̃b,kV |{a, b}〉= exp
�

−
2πi
8
βa(b+σk)

�

exp
�

2πi
8
βa(b)

�

|{a, b}〉

= exp

�

2πi
4

∫

Σk

qa(b)

�

· exp
�

−
2πi
8

ABK(Σk, a)
�

|{a, b}〉 . (B.7)

We then use the following relation between qa and the ABK invariant

ABK(Σ, a)−ABK(Σ, a+ b) = 2

∫

Σ

qa(b) mod 8 . (B.8)

We then have

X̃ f,kV †X̃ f,kV |{a, b}〉= exp
�

2πi
8

ABK(Σk, a)
�

exp
�

−
2πi
8

ABK(Σk, a+ b)
�

|{a, b}〉

=WK(Σk)W
†
K′(Σk) |{a, b}〉 , (B.9)

X̃b,kV †X̃b,kV |{a, b}〉= exp
�

−
2πi
8

ABK(Σk, a+ b)
�

|{a, b}〉

=W†
K′(Σk) |{a, b}〉 . (B.10)
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One can then obtain the commutation relation between V and Pauli operators in the original
basis X f, X f′ as

X f,kV †X f,kV =WK(Σk) , X f′,kV †X f′,kV =W†
K′(Σk) . (B.11)

By expressing V in the form of Vf⊗ Vf′ , the problem now reduces to finding a unitary Vf acting
within the Z2 gauge theory with a single fermion, satisfying

Zf,kV †
f Zf,kVf = 1 , X f,kV †

f X f,kVf =WK(Σk) , (B.12)

where Vf is regarded as the action of the p+ip defect. This commutation relation
X f,kV †

f X f,kVf =WK(Σk) explicitly shows that the p+ip operator Vf induces the automorphism
of 1-form symmetries X ,WK, as discussed in Sec. 2.2.

Since the unitary is completely specified by the commutator between Pauli X and Z opera-
tors up to overall phase, it suffices to find a single unitary that satisfies the above commutation
relations. We find an expression of such a unitary Vf (up to overall phase) as

Vf(M
3) =

∏

j,k,l
j<k<l

(CC Z j,k,l)
∫

M3 σ jσkσl ·
∏

j,k
j<k

(CS j,k)
∫

M3 σ jσkσk ·
∏

j

(T †
j )
∫

M3 σ jσ jσ j . (B.13)

One can check this expression by the following commutation relations:





Xk,

∏

l,m,n
l<m<n

(CC Zl,m,n)
∫

M3 σlσmσn






=

∏

l,m
k ̸=l,k ̸=m,l<m

(C Zl,m)
∫

M3 σkσlσm , (B.14)






Xk,

∏

l,m
l<m

(CSl,m)
∫

M3 σlσmσm






=
∏

l
k ̸=l

(C Zk,l)
∫

M3 σkσlσl (S†
l )
∫

M3 σkσlσl , (B.15)

�

Xk,
∏

l

(T †
l )
∫

M3 σlσlσl

�

= (e
2πi
8 S†

k)
∫

M3 σkσkσk . (B.16)

These three commutation relations together produce X f,kV †
f X f,kVf =WK(Σk).

C Details of unitary pumping a Chern insulator

Here we describe the details for the lattice model of a Chern insulator and a unitary that pumps
it, following the definitions of [69]. As outlined in the main text, the Hamiltonian of the Chern
insulator has the form of

HChern(k⃗2d) = cX (k⃗2d)X
fl + cY (k⃗2d)Y

fl + cZ(k⃗2d)Z
fl . (C.1)

To describe an explicit example of {cX , cY , cZ} for a Chern insulator, we take two numbers
0 < k1 < k2 ≪ 1 and define a function θ (|k⃗2d|), which satisfies θ (|k⃗2d|) = 0 for |k⃗2d| ≥ k2,
θ (|k⃗2d|) = π for |k⃗2d| ≤ k1, and smoothly interpolates between them for k1 ≤ |k⃗2d| ≤ k2. Then
{cX , cY , cZ} is taken to be

(cX , cY , cZ) =











(0, 0,−1) , for |k⃗2d|< k1 ,
�

kx

|k⃗2d|
sin
�

θ (|k⃗2d|)
�

,
ky

|k⃗2d|
sin
�

θ (|k⃗2d|)
�

, cos
�

θ (|k⃗2d|)
�

�

, for k1 ≤ |k⃗2d| ≤ k2 ,

(0, 0,1) , for |k⃗2d|> k2 ,
(C.2)
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Figure 6: The Hamiltonian terms for fermionic toric code model on cubic lattice.

which realizes a non-trivial winding number 1 associated with a map {cX , cY , cZ} : T2 → S2,
hence defines a Chern insulator.

Next, we describe the details of the unitary that pumps a Chern insulator. Let us define
φ(k⃗2d) = tan−1(ky/kx), and the unitaries for |k⃗2d| ≥ k1,

V+(k⃗2d) = exp
�

iφ(k⃗2d)(1+ Zfl)/2
�

exp
�

iθ (|k⃗2d|)Y fl/2
�

,

V−(k⃗2d) = exp
�

−iφ(k⃗2d)(1+ Zfl)/2
�

exp
�

iθ (|k⃗2d|)Y fl/2
�

.
(C.3)

Then, a unitary Unucl that can nucleate a pair of Chern insulator and its opposite out of a trivial
atomic insulator is given by

Unucl(k⃗2d)

=











�

|k⃗2d|/k1 exp
�

iφ(k⃗2d)Z layer(1+ Zfl)/2
�

+ i
q

1− |k⃗2d|2/k2
1X layer

�

iY fl , for |k⃗2d|< k1 ,

V+(k⃗2d)(1+ Z layer)/2+ V−(k⃗2d)(1− Z layer)/2 , for k1 ≤ |k⃗2d| ≤ k2 ,

r(|k⃗2d|)exp
�

iφ(k⃗2d)Z layer(1+ Zfl)/2
�

+ i
q

1− r(|k⃗2d|)2/k2
1X layer , for |k⃗2d|> k2 ,

(C.4)

where r(|k⃗2d|) is a positive function satisfying r(|k⃗2d|) = 1 for |k⃗2d| ≤ k2, r(|k⃗2d|) = 0 for
|k⃗2d| ≥ 1, and smoothly interpolates between them for k2 ≤ |k⃗2d| ≤ 1. Unucl is a continuous but
not smooth function of k⃗2d, while it is likely that Unucl(k⃗2d) together with the Hamiltonian of
Chern insulator HChern can be slightly deformed homotopically so that Unucl becomes smooth.
In the main text, we assume that Unucl(k⃗2d) can be taken to be a smooth function of k⃗2d.

Similarly, we define the unitary for annihilating a pair of Chern insulators as
Uannih = X layerUnucl†X layer. As outlined in the main text, the unitary pumping a Chern in-
sulator through a layered system in 3d can be expressed as

UChern =
∏

1≤ j≤N

Uannih
2 j,2 j+1

∏

1≤ j≤N

Unucl
2 j−1,2 j , (C.5)

which can also be defined in the presence of C2 twisted boundary condition as discussed in the
main text. In either case, each of Unucl, Uannih does not commute with Zfl due to the presence
of the factor that depends on Y fl, but they cancel out with each other in the expression of
UChern. UChern after all preserves the flavor index, and acts within the Fock space of each flavor
α = 0,1 with Z fl = (−1)α. Each unitary acting within one specific Fock space for a flavor is
written as Vα=0, Vα=1, each of which is identified as pumping a p+ip superconductor.

D Fermionic toric code in (3+1)D

Let us review the fermionic toric code in (3+1)D [63], whose ground states describe Z2 gauge
theory with emergent fermion.

It is more convenient to describe the theory using dual Z2 2-form gauge field instead of
1-form gauge field. In terms of dual Z2 2-form gauge field b, which satisfies d b = 0 mod 2,
the theory for the ground states has the topological term

π

∫

b ∪ b . (D.1)
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To see this is the correct topological term, we can rewrite it as π
∫

b ∪ w2 where w2 is the
second Stiefel-Whitney class for the tangent bundle. We can restore the 1-form gauge field as
a Lagrangian multiplier that enforces d b = 0 by the action π

∫

b∪ da. Then integrating out b
instead enforces da = w2, which implies that the Wilson line of a is a fermion.

Let us construct a lattice model for the action. It can be obtained by gauging Z2 1-form
symmetry in Z2 1-form symmetry protected topological phase with the cocycle φ(b) = b ∪ b,
the latter is discussed in [100]. We introduce qubit on each face, acted on by the Pauli operators
X f , Yf , Z f . The result is the Hamiltonian

H = −
∑

e

∏

f :e∈∂ f

X f · (−1)
∫

b∪ẽ+ẽ∪b −
∑

c

∏

f ∈∂ c

Z f , (D.2)

where e are edges, f are faces and c are cubes, ẽ is the 1-cochain that takes value 1 on an edge
e and 0 otherwise, and Z f = (−1)b( f ), where b( f ) = 0,1 is the value of the 2-form gauge field
on face f .

The above construction works on any lattice with a triangulation. For instance, we can con-
sider the Hamiltonian model on lattice with the topology of RP3 by suitable twisted boundary
condition.

For the special case of cubic lattice, we sketch the Hamiltonian terms in Figure 6 on the
dual lattice, where we dualize the surface variable Ẑ f̂ = (−1)b( f ) into edge variable X e one the
dual lattice. The magnetic flux membrane operator is unmodified compared to the ordinary
toric code, while the Wilson line needs modification with additional X in order to commute
with the plaquette terms, and the modification gives the particle nontrivial statistics.

E Detailed descriptions of the partial rotation

Here we review the properties of the partial CM rotation taken for a disk subregion of a (2+1)D
fermionic invertible phase, following the argument of [94,95].

The partial CM rotation of the (2+1)D fermionic invertible phase within a disk can be an-
alytically computed by using the cut-and-glue approach established in [101], which describes
the entanglement spectrum of the disk subregion in the long wavelength limit by that of the
(1+1)D CFT on its edge. That is, the reduced density matrix for the disk subregion D is ef-
fectively given by ρD = ρCFT, where ρCFT denotes the CFT on the edge of the disk. The edge
of the disk entangled with the complement subsystem is described by a thermal density ma-
trix of a perturbed edge CFT at high temperature [102]. The form of the perturbation in the
entanglement Hamiltonian is not universal. In the following, we assume that the entangle-
ment Hamiltonian is that of the unperturbed CFT: ρCFT = e−βH , where the validity of this
assumption should be checked with numerics.

Due to the crystalline equivalence principle [91,92], the CM rotation symmetry effectively
acts as a translation symmetry combined with an internal ZM symmetry of the edge CFT on
the boundary of D. For simplicity, here we assume that the ZM internal symmetry acts trivially
on the state. See [95] for the discussions about the case with the non-trivial ZM action, where
the partial rotation defines the invariants of the crystalline invertible phases.

The partial rotation then reduces to evaluating the expectation value of the translation
operator within the (1+1)D edge CFT. Let us write the state of a (2+1)D fermionic invertible
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phase as |Ψ〉, with chiral central charge c−. The partial rotation is then expressed as

〈Ψ|CM [D
2] |Ψ〉=

Tr[ei P̃ L
M e−

ξ
v H]

Tr[e−
ξ
v H]

= e−
2πi
24M c−

∑

a=1,ψχa(
iξ
L −

1
M )

∑

a=1,ψχa(
iξ
L )

,

(E.1)

where we introduced the velocity v of the CFT, finite temperature correlation length of the
edge theory ξ := β v, the length of the boundary L = |∂ D|. P̃ is the normalized translation
operator

P̃ :=
1
v
(H − E0) =

2π
L

h

L0 −
c−
24
−
D

L0 −
c−
24

Ei

, (E.2)

so that P̃ |vac〉= 0 on the vacuum state |vac〉 of the CFT.
Also, χa(τ) is the chiral Virasoro character of Spin(2c−)1 WZW model that corresponds to

the partition function on a torus. That is,

χa(τ) = Tra

�

e2πiτ(L0−
c−
24 )
�

, (E.3)

where a labels the chiral primary field, which is valued in {1,ψ,σ} when c− ∈ Z+ 1/2, and
valued in {1,ψ, v, v′} when c− ∈ Z.

Let us evaluate the above CFT characters in the case with even M . We perform the modular
ST M S transformation on the character as

∑

a=1,ψ

χa

�

iξ
L
−

1
M

�

=
∑

a=1,ψ

∑

b

Sabχb

�

−
1

iξ
L −

1
M

�

=
∑

a=1,ψ

∑

b

(ST M )abχb

�

−iM ξ
L

iξ
L +

1
M

�

=
∑

a=1,ψ

∑

b,c

(ST M )abSbcχc

�

i L
M2ξ

+
1
M

�

.

(E.4)

By plugging the modular S, T matrices of Spin(2c−)1 WZW model into the above expression,
we get

∑

a=1,ψ

χa

�

iξ
L
−

1
M

�

= e−
2πiM

24 c−
∑

c

χc

�

i L
M2ξ

+
1
M

�

. (E.5)

At high temperature we have L
ξ ≫ 1, where we can approximate the character in terms of the

highest weight state |hc〉:

χc

�

i L
M2ξ

+
1
M

�

≈ e
2πi
M (hc−

c−
24 )e−

2πL
M2ξ
(hc−

c−
24 ) . (E.6)

Due to the exponentially dropping factor e−
2πL
M2ξ
(hc−

c−
24 ), the lightest state with c = 1 has the

dominant contribution at large system size. We hence get to the leading order

∑

a=1,ψ

χa

�

iξ
L
−

1
M

�

= e−
2πiM

24 c−e−
2πi
M

c−
24 e

2πL
M2ξ

c−
24 . (E.7)

Also, we have
∑

a=1,ψ

χa

�

iξ
L

�

=
∑

a=1,ψ

∑

b

Sabχb

�

i L
ξ

�

, (E.8)
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where the character can again be approximated by the contribution of the highest weight state

χb

�

i L
ξ

�

≈ e−
2πL
ξ (hb−

c−
24 ) . (E.9)

Hence, to the leading order we get

∑

a=1,ψ

χa

�

iξ
L

�

≈ e
2πL
ξ

c−
24 . (E.10)

Combining the above results, we obtain the final expression of the partial rotation

〈Ψ|CM [D
2] |Ψ〉= e−

2πi
24 (M+

2
M )c−e

2πL
M2ξ

c−
24 e−

2πL
ξ

c−
24 . (E.11)

Similarly, the expectation value of the partial rotation followed by the partial Z f
2 fermion

parity symmetry is given by

〈Ψ|CM (−1)F [D2] |Ψ〉=
Tr[ei P̃ L

M (−1)F e−
ξ
v H]

Tr[e−
ξ
v H]

= e−
2πi
24M c−

χ1(
iξ
L −

1
M )−χψ(

iξ
L −

1
M )

∑

a=1,ψχa(
iξ
L )

.

(E.12)

In that case, we have

χ1

�

iξ
L
−

1
M

�

−χψ
�

iξ
L
−

1
M

�

=
∑

b,c

(S1b − Sψb)T
M
b Sbcχc

�

i L
M2ξ

+
1
M

�

. (E.13)

By plugging the modular S, T matrices of Spin(2c−)1 WZW model into the above expression,
we get

χ1

�

iξ
L
−

1
M

�

−χψ
�

iξ
L
−

1
M

�

=

(

e
2πiM

8 c−e−
2πiM

24 c−
∑

c

p
2Sσcχc

�

i L
M2ξ
+ 1

M

�

, if c− ∈ Z+
1
2 ,

e
2πiM

8 c−e−
2πiM

24 c−
∑

b=v,v′
∑

c Sbcχc

�

i L
M2ξ
+ 1

M

�

, if c− ∈ Z .
(E.14)

To the leading order with c = 1, for any c− we get

χ1

�

iξ
L
−

1
M

�

−χψ
�

iξ
L
−

1
M

�

= e
2πiM

8 c−e−
2πiM

24 c−e−
2πi
M

c−
24 e

2πL
M2ξ

c−
24 . (E.15)

We then obtain

〈Ψ|CM (−1)F [D2] |Ψ〉= e
2πiM

8 c−e−
2πi
24 (M+

2
M )c−e

2πL
M2ξ

c−
24 e−

2πL
ξ

c−
24 . (E.16)

Summarizing, the results of the partial rotation are given as follows:

〈Ψ|CM [D
2] |Ψ〉= e−

2πi
24 (M+

2
M )c− ×χ , 〈Ψ|CM (−1)F [D2] |Ψ〉= e

2πiM
8 c−e−

2πi
24 (M+

2
M )c− ×χ ,

(E.17)

where the amplitude χ = e
2πL
M2ξ

c−
24 e−

2πL
ξ

c−
24 is a non-universal positive value. Taking M = 2,

c− = 1,1/2 produce the expressions Eqs. (56), (59) respectively.
At large system size, a number of numerical results suggest that the phase of the partial

rotation converges to the universal value predicted by the CFT computation [94, 95, 103].
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Meanwhile, the amplitude χ is in general sensitive to the microscopic detail of the wave func-

tion and is not expected to be simulated by the CFT result e
2πL
M2ξ

c−
24 e−

2πL
ξ

c−
24 . However, we expect

that the ratio between the partial rotations

〈Ψ|CM [D2] |Ψ〉
〈Ψ|CM (−1)F [D2] |Ψ〉

, (E.18)

has the universal amplitude predicted by the CFT computation. In our case, the above ra-
tio is the pure phase, which implies that the non-universal amplitudes | 〈Ψ|CM [D2] |Ψ〉 | and
| 〈Ψ|CM (−1)F [D2] |Ψ〉 | are expected to converge to the exactly same value at large system size.
This expectation has been verified numerically with the Haldane model for a Chern insulator
on a honeycomb lattice [104], with the rotation angle M = 2, 6.10
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