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Abstract

The Neyman–Pearson strategy for hypothesis testing can be employed for goodness of fit
if the alternative hypothesis is selected from data by exploring a rich parametrised family
of models, while controlling the impact of statistical fluctuations. The New Physics Learn-
ing Machine (NPLM) methodology has been developed as a concrete implementation of
this idea, to target the detection of new physical effects in the context of high energy
physics collider experiments. In this paper we conduct a comparison of this approach
to goodness of fit with others, in particular with classifier-based strategies that share
strong similarities with NPLM. From our comparison, NPLM emerges as the more sensi-
tive test to small departures of the data from the expected distribution and not biased
towards detecting specific types of anomalies. These features make it suited for agnostic
searches for new physics at collider experiments. Its deployment in other scientific and
industrial scenarios should be investigated.
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1 Introduction

Testing the consistency between a set D = {x i}
ND
i=1 of realizations of a random variable x , and

one hypothesis of Reference (R) for its expected distribution, is a problem known in statistics as
goodness of fit (GoF). This task is ubiquitous and GoF methods find application in innumerable
areas of science and technology.

A primary task in high energy physics is to assess whether experimental measurements are
distributed according to the prediction of the Standard Model (SM) of particle physics. An
anomalous data behaviour would signal the existence of new fundamental physical laws—the
so-called New Physics—supplementing or replacing the SM laws. In high energy physics as
well as in many other domains, GoF emerges as a necessity in order to assess and compare
computer codes that provide the theoretical predictions for data distributions. Evaluating the
quality of generative models, in the context of computer science, can also be formulated as
a GoF problem. The task of monitoring complex apparatuses, such as particle detectors, can
be addressed in this framework as well. An overview of the vast GoF literature goes beyond
the scope of the present article. See [1, 2] for references and a concise overview from a high
energy physics perspective.

Classifier-based goodness of fit A problem that is conceptually different but practically
related to GoF is the one of two-sample testing (2ST). In 2ST, one is given a second set of data
that we denote as R = {x i}

NR
i=1 , and aims at assessing whether or not the D and the R data

sets are drawn from the same (unknown) statistical distribution. The connection with GoF
stems from the fact that in many applications of practical relevance the data distribution in
the reference hypothesis is not known in closed form. The only available representation of the
R hypothesis is provided by a set of instances of the variable x that are known to follow the R
distribution, i.e. by a reference data set R. Depending on the specific application, R can be
obtained through simulations, by collecting a set of control measurements, or combinations
thereof. The GoF comparison between the data D and the distribution in the R hypothesis
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is carried out in practice as a 2ST between D and the reference data set R. The GoF test is
thus effectively a type of 2ST where the two data sets D and R play an asymmetric role. In
principle, and in many practical applications, there is no obstruction to increase the size of
the R set—for instance by synthesizing more artificial data—in order to offer a more faithful
representation of the R distribution. When the R data set size NR significantly exceeds the D
size ND, its statistical fluctuations are subdominant to those of the data set D. The probabilistic
outcome of the 2ST is thus nearly independent of the specific instance of R that is employed
and it depends only on the level of agreement with the R distribution of the specific D set that
is being tested, as appropriate for GoF.

Interpreting GoF as a 2ST with unbalanced samples, NR > ND, opens the door to the
deployment of 2ST methods for GoF. Particularly relevant in our context are the classifier-
based 2ST and GoF methods first proposed by Friedman in Ref. [3]. The basic idea is to train
a classifier to distinguish D from R. If the two data sets are drawn from the same distribution,
the trained classifier will be unable to discriminate. It will however posses some discrimination
power if the distributions are different. The performance of the trained classifier, as quantified
by any standard classification metric, can thus be used as a metric to assess the difference
between the two data sets. This procedure defines a 2ST and in turn a GoF test. More general
metrics could be employed to define the GoF test, not necessarily related with classification
performances. One option mentioned in Ref. [3] is to use standard univariate GoF methods,
such as the Kolmogorov–Smirnov test, on the output of the trained classifier evaluated on D
and on R. In this case, the classifier is basically employed for dimensionality reduction and
the actual GoF test is performed with a traditional univariate method.

Classifier-based GoF (C-GoF) methods have been investigated only sporadically in the high
energy physics literature. See Ref. [4–6] and more recently Ref. [7]. In computer science,
the simplest C-GoF implementation based on the classification accuracy metric [8] has been
studied and employed quite extensively to assess the quality of generative models.

Neyman–Pearson testing Hypothesis testing as formulated by Neyman and Pearson poses
a third distinct statistical problem. This is connected with the GoF problem, which is in fact a
type of hypothesis testing. The null hypothesis under examination is the reference hypothesis,
H0 = R. All the GoF methods proceed, like hypothesis tests do, by assigning some probabilistic
measure to the data D—such as a p-value p[D]—that is indicative of the level of agreement of
the data with their expected distribution in the R hypothesis. However, the Neyman–Pearson
theory of hypothesis testing [9] also requires a second hypothesis, the alternative hypothesis
H1, which is however absent in the formulation of GoF problems. The alternative hypothesis
plays an essential role for the design of the hypothesis test that is adequate for each specific
problem. In particular, it controls the selection of the test statistic, which in turn defines the
p-value. The optimal choice is the one that, at fixed type-I error rates, minimises type-II errors
defined with respect to the alternative H1. In essence, Neyman–Pearson testing enables a
relative assessment of the H0 = R hypothesis with the data in comparison with the agreement
of the alternative H1 with the same data. GoF is different as it aims instead at assessing the
agreement of R with the data in absolute terms.

Using Neyman–Pearson testing for GoF is straightforward, but dangerous. On one hand, a
very natural pragmatic approach to assess the R distribution agreement is indeed to try and see
if other distributions provide a much better fit to the data. This can be achieved by considering
a deformation of the R distribution that depends on free parameters w. This defines a family
of hypotheses, i.e. a composite hypothesis Hw, to be identified with the Neyman–Pearson
alternative H1 = Hw. The hypothesis within the family that best fits the data, H

Òw, can be
compared with R as a description of the observed data. In the classical Neyman–Pearson
theory, this comparison employs the likelihood ratio of the two hypotheses. On the other
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Figure 1: One-dimensional toy problem picturing the strengths and limitations
of Neyman–Pearson testing for GoF. (a): two datasets, D1 (top row) and D2 (bot-
tom row) are tested to assess their compatibility with the Reference hypothesis (R),
represented by the black dashed line in the left side panels. For each dataset, three
Neyman–Pearson GoF tests are performed using three different alternative families:
Ha

w, Hb
w, and Hc

w. The maximum likelihood fit is showed in solid line in the left,
middle and right columns respectively. The p value of each test is reported on the
top right of each panel. (b): illustration of the hierarchical structure of the family of
hypotheses considered in the example. Larger classes of models are characterised by
a higher number of Gaussian distributions in the mixture.

hand, the choice of the alternative distributions one compares against can bias the outcome of
the test dramatically. As a general rule, the test will be sensitive to data departures from the
R distribution only if the true data distribution is part of the Hw set, or if it is approximated
reasonably well by some element of the set. The test will be instead weakly sensitive or blind
to true data distributions that are outside the set.

Fig. 1a provides a practical illustration of this behaviour for one-dimensional data. Under
the reference hypothesis R, data points are distributed according to a Gaussian distribution
with zero mean and unit variance. We then consider three parametrised families of alternative
hypotheses: Ha

w, Hb
w and Hc

w. Each of them defines a different Neyman–Pearson test, and in
turn a different GoF method to assess the compatibility of the data with R. The upper and lower
plots in the figure correspond to two different data sets D1,2 being tested, each consisting of
50 data points. The first data set D1 is drawn from a Gaussian with a mean of 0 and a variance
of 1.2. D2 is sampled from a balanced mixture of two Gaussians, with means 0 and 0.83, and
variances 1.2 and 0.5. The data are visualised as histograms in the plots.1

The first alternative Ha
w is the set of all Gaussian distributions. The best fit in this family,

displayed with a solid line in the top left plot, is quite better than the standard Gaussian
(dashed line) as a description of the first data set. Correspondingly, the GoF p-value that we
obtain in this case is low, pa[D1] = 0.06, signalling a poor agreement of the standard Gaussian
hypothesis with the data. However, the best fit in Ha

w is very similar to the standard Gaussian
in the case of the second data set and the corresponding p-value is high, pa[D2] = 0.68. The
GoF test designed as a Neyman–Pearson test with alternative H1 = Ha

w has failed to identify
the evident discrepancy between D2 and the reference distribution.

1The interested reader can find on https://github.com/GaiaGrosso/NPLM-GOF the straightforward implemen-
tation of the Neyman-Pearson [9] strategy we used to obtain these results.
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The second alternative, Hb
w, is an extension of Ha

w where two Gaussian distributions are
present, with arbitrary mean and variance and arbitrary relative normalisation. The best-fit in
Hb

w to theD2 data (middle-bottom plot) is very different from the standard Gaussian, and offers
a much better description of the data. Consequently, pa[D2] = 0.05 and the discrepancy of D2
with the R hypothesis is clearly identified if employing Hb

w, rather than Ha
w, for the Neyman–

Pearson test. The general lesson is that the alternative Hw should be as general as possible and
capable to adapt itself—namely to provide a good fit—to whatever the true data distribution
is. Otherwise, the test is exposed to dramatic failures as we have seen.

The capability of Hw to fit the data accurately is not the only factor that controls the sensi-
tivity. It is evidently easier for a more complex distribution with many free parameters to offer
a better fit to the data. This fact is taken into account in the Neyman–Pearson test strategy
when associating a p-value to the relative fit quality (i.e., the likelihood ratio) in the R and
in the H
Òw hypotheses. The extreme situation is when the Hw distribution contains enough

parameters to fit all the statistical fluctuations in the data set, or even to accommodate each
individual point. In this case, the best-fit H

Òw will offer a “perfect” (but overfitted) descrip-
tion of the data set, much better than the one provided by the R distribution, producing a
very large value for the likelihood ratio. Since statistical fluctuations are always present, this
will occur for any data set and regardless of whether the true data distribution is or is not R.
The Neyman–Pearson p-value is defined by comparing the observed likelihood ratio with the
typical values assumed by the ratio for R-distributed data. Since both are equally large, the
p-value will loose sensitivity to anomalous data sets. This behaviour is illustrated by the third
alternative considered in the last column of Fig. 1a, Hc

w. The Hc
w distribution, defined as the

linear combination of 15 Gaussians, is too complex relative to the size ND = 50 of the data
sets. The test based on Hc

w thus fails both on the D1 and on the D2 data sets. A successful GoF
strategy based on Neyman–Pearson testing should thus balance the flexibility of Hw against
the need of avoiding overfitting.

The connection between Neyman–Pearson testing and GoF was emphasised by Baker and
Cousins in 1983 [10], based on literature from the 1920s. Their simple starting point was
the observation that if we use the data to construct a histogram with non-overlapping bins,
the counts in each bin are independent Poisson variables.2 Independent Poisson distributions
with arbitrary expected values in each bin is thus the most general possible alternative hy-
pothesis Hw. We can use this alternative for a Neyman–Pearson test assessing the agreement
with the observed counts of the predictions for the expected numbers in the R hypothesis.
Starting from this observation, Ref. [10] derived the χ2 approach to the GoF of binned data
as a Neyman–Pearson test. The χ2 GoF with binned data is widely employed. In particular
it is often used in high energy physics to assess the SM agreement with data [11]. However,
binning is impractical for multi-dimensional data. Furthermore, the choice of the binning is
problematic and subject to the same type of possible failures described above: too narrow bins
can cause overfitting while too wide bins can be unable to accommodate important features
of the data entailing sensitivity loss.

The new phyisics learning machine (NPLM) The authors of Ref. [12] proposed a systematic
approach to the design of GoF methodologies as Neyman–Pearson tests, in which the deforma-
tion of the R distribution that defines the alternative Hw is provided by a generic parametrised
family of functions F = { fw(x), ∀w}. In particular the functions fw are conveniently taken to
parametrise the log ratio between the Hw and R densities—see later Eq. (1). The functional
set F could consist of neural networks [12–14], or be obtained with kernel methods [15,16],
and other options could be considered as well. Suitable regularisation strategies to avoid over-

2This holds provided the number of data points ND is a Poisson-distributed random variable, as for natural
particle physics data. The distribution would be multinomial if ND was a fixed number.
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fitting have been developed in each case [13, 15]. This Neyman–Pearson-based approach to
GoF was developed for searches of New Physics in high energy collider data and it employs
machine learning techniques, hence the NPLM acronym.

The performance of the NPLM method has been investigated on a number of GoF prob-
lems including toy as well as realistic new physics searches at colliders [12–15] and data
quality monitoring [16]. Importantly enough, the NPLM extension to include imperfections
in the knowledge of the reference hypothesis—which is straightforward in the framework of
Neyman–Pearson testing—was developed and demonstrated in Ref. [14]. However, no system-
atic comparison has yet been performed with the many other GoF methods that exist, mainly
outside the high energy physics literature. Such a comparison is the goal of the present article.

Overview of the paper Like any other practical GoF, the NPLM method operates as a 2ST
by comparing the data D with a reference data set R, as previously described. Furthermore, it
entails optimising the model parameters in order to single out the best-fit to the data, f

Òw(x),
by a supervised training on the D and R data sets. The whole procedure is thus very similar
to the one of classifier-based approaches to GoF, as we will outline in Section 2. A comparison
with C-GoF methods, with which it shares many features, is thus the natural first step for a
comparative assessment of the NPLM performances. The simplest C-GoF method [8] is studied
in Section 2. NPLM generally outperforms the other methods in all the benchmark problems
considered in this work, and it does not show any critical failure.

The comparison is extended in Section 3 to a more general class of C-GoF tests that we
design following suggestions from the literature based on the following logic. Two important
features separate NPLM from existing C-GoF methods. First, the entire data set is employed for
both training and evaluation. In contrast, a train-test split is more natural for a classifier-based
approach. Second, the NPLM evaluation metric is provided by the log likelihood-ratio between
the H
Òw and the R hypotheses, as in Neyman–Pearson testing. This quantity has no immediate

interpretation as a classification metric. In Section 3, we investigate variants of the NPLM
method that eliminate these peculiarities, opting for a train-test split rather than in-sample
evaluation, or for standard classification metrics rather than the likelihood ratio. Following
Friedman’s suggestion [3], the usage of univariate GoF metrics (listed in Appendix B) is also
investigated. The study of these C-GoF inspired NPLM variants reveals that both these two
peculiarities of the NPLM method are beneficial for the sensitivity.

To enrich our study, we compare NPLM with traditional GoF methods on univariate data.
This eliminates one of the main advantages in using machine learning models, namely their
intrinsic ability to perform nonlinear dimensional reduction. The results are presented in Ap-
pendix C.

In Section 4 we summarise our findings and discuss the qualities of NPLM within the land-
scape of GoF methods. This is not straightforward, because the outcome of GoF comparative
studies may strongly depend on the specific benchmark problems that are considered for the
comparison. This risk is mitigated by employing the largest possible set of benchmarks, in-
cluding those considered in previous NPLM studies [12–16] and a few new ones. While un-
avoidably partial and mostly inspired by high energy physics problems, our benchmarks are
selected to probe the sensitivity to qualitatively different types of anomalous data. For in-
stance, anomalies that emerge as sharp features in weakly-populated regions of the reference
distribution, as opposed to departures in the bulk of the distribution. As in previous works,
we ensure that anomalous data of different types are comparable by monitoring their “ideal”
Z-score, Zid. Zid is defined as the sensitivity of a hypothesis test that is fully optimised to the
specific anomaly under examination. We define a “good” GoF method to be one that responds
uniformly, i.e. with comparable Z-score, to anomalies of different type but with comparable
Zid. Qualitatively, NPLM exhibits a more uniform response than the other GoF methods consid-
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ered in this paper. The notion of ideal Z-score, and the list of benchmark problems employed
for the comparison is reviewed in Appendix A.

2 NPLM vs C-GoF

We start this section with a concise overview of the NPLM method [12–16], outlining its con-
nection with C-GoF approaches [3,8]. Next, we consider the simplest C-GoF method that we
introduce as a straightforward adaptation of the Classifier-based Two-Sample Test (C2ST) [8]
to the case of unbalanced samples NR > ND. Finally, we present comparative studies of the
NPLM and C2ST performances.

2.1 NPLM as a classifier-based GoF

The NPLM method works as follows. The alternative distribution in the Hw hypothesis of the
Neyman–Pearson test—see the Introduction for an overview and Fig. 1 for an illustration—is
defined as

n(x |Hw) = e fw(x)n(x |R) , (1)

in terms of a generic set of functions F = { fw(x), ∀w}, to be specified. The symbol n denotes
a number density distribution, namely the probability density—whose integral over x is equal
to 1— times the total number of points that are expected to be found in the data set D. In
particular, n(x |R) denotes the distribution of the variable x in the reference hypothesis R and
n(x |Hw) denotes the distribution under the alternative Hw.

We are considering here the setup, typical of high energy physics, where the number of
points in D, ND, is itself a random variable, and follows the Poisson distribution. The mean of
this Poisson distribution in the R hypothesis, denoted as N(R), is the integral of n(x |R). The ex-
pectation in the Hw hypothesis, N(Hw), is the integral of n(x |Hw) as defined by Eq. (1). Hence,
N(Hw) depends on the function fw and thus on the alternative hypothesis parameters w.

While introduced in the setup with variable Poisson-distributed ND, the NPLM method is
perfectly suited, and will be employed in some of the studies that follow, to deal with the cases
in which the number of measured data points ND is not a random variable. In these cases, one
simply replaces N(R) with ND in all the equations that follow.

The model fw(x) needs to be trained in order to identify the specific distribution, n(x |H
Òw),

that best fits the observed data. Training is performed on the observed data set D, labelled
as y = 1, and on the reference data R labelled as y = 0. Training exploits a classical re-
sult of statistical learning: a continuous-output classifier trained to tell apart two sets of data
approximates—possibly up to a given monotonic transformation—the log ratio of their pop-
ulation distributions. A suitable loss function, for which this property is proven explicitly in,
e.g., Ref. [12,15], is the weighted logistic loss

ℓ(y, fw(x)) = (1− y)
N(R)
NR

log
�

1+ e fw(x)
�

+ y log
�

1+ e− fw(x)
�

. (2)

An alternative loss with the same property is the maximum-likelihood loss [12,14]

ℓ(y, fw(x)) = (1− y)
N(R)
NR

�

e fw(x) − 1
�

− y fw(x) . (3)

The maximum-likelihood loss is a more natural choice in the context of Neyman–Pearson
testing, because its minimisation is equivalent to the maximisation of the likelihood in the
NR → ∞ limit [12, 15]. In this way, the best-fit n(x |H

Òw) obtained with this loss coincides
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with the maximum-likelihood best-fit that is employed in the classical Neyman–Pearson the-
ory [9].

After training, NPLM proceeds as a Neyman–Pearson test by evaluating a test statistic that
is twice the logarithm of the likelihood ratio in the H

Òw and in the R hypotheses. The relevant
likelihood for our problem is the extended likelihood

L(H|D) = e−N(H)

ND!

∏

x∈D
n(x |H) , (4)

for a generic hypothesis H. Therefore, using Eq. (1)

−2 log
L(R|D)
L(H
Òw|D)

= −2

�

N(H
Òw)−N(R)−
∑

x∈D
f
Òw(x)

�

. (5)

Recalling that N(Hw) is the integral of n(x |Hw) in Eq. (1), and approximating the integral with
a Monte Carlo sum over the reference sample R, we finally obtain the Likelihood Ratio (LR)
test statistic that is employed in NPLM

tLR = −2

�

N(R)
NR

∑

x∈R
(e f
Òw(x) − 1)−
∑

x∈D
f
Òw(x)

�

. (6)

Large values of tLR signal that H
Òw offers a better description of the data than R, as the likelihood

is larger. In turn, this disfavours R being the true distribution of the data.
Like for any hypothesis test, or two-sample test, the value of the test statistic is not an

indicator of the data agreement with the R hypothesis under examination in absolute terms,
but only in comparison with the typical values it assumes when the data are truly distributed
according to R. A proper probabilistic indicator of the compatibility of the data with R is the
p-value

p[t] =

∫ ∞

t
d t ′ p(t ′|R) , (7)

which accounts for the probability distribution of the test statistic in the R hypothesis, p(t|R).
In some cases, p(t|R) can be estimated analytically. This is not the case in NPLM, and p(t|R)
is computed empirically by employing artificial sets of data—called toy data—that follow the
R distribution by construction. The toy data sets are built out of R-distributed data points,
different from those employed to form the reference sample R.

It is worth noting that the test statistic (6) features both an explicit dependence on the
data D—in the second summation—and an implicit dependence from the fact that the best-fit
model f
Òw(x) does depend on the data set D, which is used for training. In order to compute

p(t|R) we thus need to first train the model, and next evaluate tLR, on each toy data set. Also
notice that tLR depends, both explicitly and implicitly, also on the reference data set R. We
explained in the Introduction that it is expected—and can be verified—that the dependence
on the R set is weak in the unbalanced limit NR ≫ ND, as the R set provides in this limit
a nearly perfect representation of the R hypothesis distribution. Nevertheless, the statistical
fluctuations of the R set are taken into account in our evaluation of p(t|R) by employing toy
data sets also for the reference sample.

There are currently two implementations of NPLM, where the model fw(x) is respectively
a neural network (NPLM-NN [12–14]), or it is built with kernel methods (NPLM-KM [15,16]).
Each implementation comes with a dedicated prescription for the selection of the model, train-
ing and regularisation hyper-parameters. These prescriptions form an integral part of the
NPLM method as they ensure the required balance between the models’ flexibility and the
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need of avoiding overfitting. The selected hyper-parameters depend in general on the ex-
pected data size N(R), on the reference size NR, on the dimensionality of the variable x and
ultimately on its distribution in the R hypothesis. Therefore, the hyper-parameters need to
be selected for the NPLM application to each given GoF setup. On the other hand, the hyper-
parameters selection does not depend on and it is not optimised for the detection of any specific
type of data departure from the reference hypothesis, as appropriate for a GoF method. After
the hyper-parameters are selected for a given reference hypothesis, the GoF algorithm must
run identically on all the data sets that are employed for testing its sensitivity to anomalous
data and no a posteriori re-optimisation is allowed.

The comparisons performed so far—in particular in Ref. [15]—did not reveal a major dif-
ference in performance between the NPLM-NN and the NPLM-KM implementations, suggesting
that the specific model employed for fw(x) is not the key factor controlling the sensitivity. Fur-
thermore, since NPLM-NN employs the maximum-likelihood loss (3) while NPLM-KM uses the
weighted logistic loss (2), the choice of the loss function is also expected to play a minor role.
Several of the benchmark problems of the present paper have been studied both with NPLM-NN

and with NPLM-KM, obtaining similar performances.
The NPLM method can be interpreted as a classifier-based method, if we follow the general

notion of C-GoF given by Friedman in Ref. [3]. In fact, a general C-GoF is any algorithm that
performs the three following operations. First, training a classifier between D and R. The
NPLM model fw(x) is in fact a continuous-output classifier that we train betweenD andR. The
correspondence can be made more explicit by defining a classification function cw(x) ∈ [0,1]
out of fw(x) ∈ R by the monotonic transformation

cw(x) =
1

1+ e− fw(x)
. (8)

Notice that the weighted logistic loss (2) reduces to the weighted binary cross-entropy after
this transformation. Second, evaluating the trained classifier on D and R. This is what NPLM
does on the right hand side of Eq. (6). The third step is to define and compute, on the evalu-
ated classifier, some test statistic that is sensitive to the discriminating power of the classifier
between the two sets. The tLR test statistics (6) is definitely not a standard metric of clas-
sification. But nevertheless it is preferentially large it the f

Òw function is large and positive
(i.e., c
Òw → 1) on the D set and large and negative (i.e., c

Òw → 0) on the R set. Therefore, it
is indicative of the f

Òw ability to tell D from R and as such it can be used as a classification
metric.

In spite of this formal correspondence with C-GoF, NPLM is a very different approach.
Its peculiarities including the choice of the test statistics stem from its origin as a Neyman–
Pearson test and are unrelated with the theory of classification. This is effectively illustrated by
comparing NPLM with the simplest C-GoF method that we review in the following section. We
will come back in Section 3 to the discussion of the characteristics of NPLM in the landscape
of C-GoF tests.

2.2 C2ST with unbalanced samples

C2ST [8] was originally formulated as a 2ST with balanced data sets, NR = ND. We first dis-
cuss it in this configuration before introducing its straightforward adaptation to the unbalanced
case NR > ND. The number of observations ND (and NR) is a pre-specified fixed number. We
will consider the case in which it fluctuates as a Poisson variable in the next section.

The first step is to split the D and R sets in two equal parts, obtaining two pairs of samples
(Dt r ,Rt r) and (Dte,Rte) to be used for training and for testing, respectively. Each of the four
sets contains ND/2 points. This training-test splitting is very natural in the classifier-based
context. The aim there is to probe the dissimilarity of D to R by assessing the performances
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Figure 2: C2ST. Left panel: tACC distributions in two different hypotheses for the
underlying data distributions. Central panel: Type-II error at 95% confidence level
varying ND, with ν set at 3. Right panel: Type-II error at 95% confidence level
varying ν with ND = 2000.

that a classifier can attain in distinguishing them. Test data that are independent from the
training data are evidently needed for this assessment.

Again very naturally from the viewpoint of classification, the binary accuracy of the trained
classifier, with a threshold of 1/2, is used as test statistics

tACC =
1

ND





∑

x∈Rte

I[c
Òw(x)< 1/2] +

∑

x∈Dte

I[c
Òw(x)> 1/2]



 , (9)

where I denotes the indicator function.
We implemented the C2ST method in the simplest setup considered in Ref. [8], where the

variable x is one-dimensional and the R hypothesis for its distribution is the standard Gaussian.
The number of data points is fixed to ND = NR = 2000 if not specified otherwise. Smaller
data size setups have been also considered with 100, 200, 500, or 1000 data points. As in [8],
we employ a neural network with architecture 1-20-1, Adam optimizer, binary cross-entropy
loss function and 100 training epochs. As compared with the other models studied in [8],
this is among those that offer the best performances on the one-dimensional problem under
examination.

We generate, according to the standard Gaussian hypothesis R, 100 toy instances of the
D and of the R data sets. For each instance, training is performed on half of the data and
the tACC test statistics (9) is evaluated on the remaining data. The resulting p(tACC|R) dis-
tribution is displayed on the left panel of Fig. 2 (light blue histogram). As noticed in [8],
p(tACC|R) is well-approximated by a Gaussian with a mean of 0.5 and a standard deviation of
1/(2
p

ND) = 0.011. Using this distribution we can associate a p-value to the observed value
of tACC by means of Eq. (7).

As in [8], we evaluate the method performances to detect anomalous data sets D that fol-
low a Student-t distribution rather than the standard Gaussian. The Student-t is characterised
by the number of degrees of freedom, ν, and for larger ν it approaches the standard Gaussian
making it increasingly difficult to detect the anomaly. The tACC distribution on 100 D sets
drawn from the Student-t with ν = 3—while the R sets are, of course, still drawn from the
standard Gaussian—is displayed on the left panel of Fig. 2 (light green histogram). As the
distribution is quite different from the one observed in the R hypothesis, the test possesses
good discriminating power. The median p-value is found to be below what can be quantified
empirically with 100 R-distributed toys, so below around 0.01.

In light of some confusion that occasionally emerges in the literature (see e.g. [17,18]) on
the usage of classifier-based tests, it is worth to emphasize that the classification accuracy—or
its complement, the misclassification error—should not be confused with the p-value or any
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Figure 3: C2ST vs. NPLM. Same as Fig. 2, comparing the C2ST method with bal-
anced samples (BACC), the one with unbalanced samples (ACC) with NR/ND = 5,
and the NPLM method in its default implementation based on maximum-likelihood-
ratio.

other probabilistic indicator of the data agreement with the R hypothesis. The accuracy will be
typically poor, and close to the random classifier accuracy of 0.5. The discrimination power of
the test emerges from relatively small departures of tACC from 0.5, which are however highly
unlikely to occur for R-distributed data. The left panel of Fig. 2 displays this typical behaviour.

The central and right panels of Fig. 2 display the performances of our implementation of
C2ST and their agreement with the original results in [8]. The plots show the type-II error
of the test at 95% confidence level. Namely, we set a threshold p = 0.05 on the p-value,
below which we label the R hypothesis as excluded. Next we compute the probability of
not excluding R when the data are in fact not distributed according to R, but to one of the
alternatives.3 As expected, the probability of type-II error decreases with ND (central panel)
as larger data sets possess more discriminating power. It increases with ν (right panel) as the
Student-t distribution approaches the standard Gaussian.

The C2ST method is easily extended to the case of unbalanced samples NR > ND. Train-
ing/test splitting is performed in equal portions as before. The loss function is the weighted
cross-entropy—specifically, the later Eq. (11) with N(R) replaced by ND. The test statistic is
the balanced classification accuracy

tBACC =
1

NR

∑

x∈Rte

I[c
Òw(x)< 1/2] +

1
ND

∑

x∈Dte

I[c
Òw(x)> 1/2] . (10)

We tested this version of the C2ST strategy in the same setup above, but raising NR to
5 times ND. We employ the same neural network model, but we notice that more training
epochs are needed for convergence owing to the larger training set. We employ 500 epochs
apart from the setup with ND = 100, where 100 epochs are used. The number of epochs
has been selected by running training on a few R-distributed toy data sets, and monitoring
the evolution of the balanced accuracy during training. We selected the number of epochs at
which the accuracy on a validation sample stopped improving.

The results are displayed in Fig. 3. As expected, C2ST with unbalanced samples is more
effective than the balanced one because it exploits the larger statistics that is available in the
R sample. Notice that performances do not improve indefinitely increasing NR at fixed ND.
As soon as NR exceeds ND by a factor of few, it offers a description of the R distribution that
is “perfect”, in comparison with the description of the true distribution that is offered by the

3The results are presented in this form for a direct comparison with Ref. [8]. No hard exclusion threshold on
the p-value will be employed in the rest of the paper.
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data D. Therefore the performances quickly saturate and no significant gain will be observed
if raising NR/ND above 5. The figure also displays that an even more significant performance
gain is attained with the NPLM method, in the same setup with NR/ND = 5. This is discussed
in the following section.

2.3 Performance comparison

For a first comparative assessment of the performance, we applied NPLM to the Gaussian
vs Student-t discrimination problem. Specifically, we employed the NPLM-NN implementa-
tion based on neural networks. The hyper-parameters are selected on the basis of the χ2-
compatibility criterion of Refs. [13, 14], focusing on a simple neural network model (1,3, 1).
With the Gaussian reference distribution, NR/ND = 5, and for ND = 100, 200, 500, 1000 and
2000, this criterion results in weight clipping regularisation parameters of 6, 5.2, 5, 4.7 and
4.2, respectively. 100000 training epochs ensure convergence in all configurations. After this
choice of the hyper-parameters is performed, based exclusively on χ2-compatibility in the R
hypothesis and with no reference to any alternative distribution to be later employed to test the
performances, the method is applied to the anomalous data sets generated with the Student-t
distribution.

The NPLM results, reported in Fig. 3, are significantly better than the ones of C2ST. The
possible origin of the improved NPLM performances, on these and other benchmarks consid-
ered below, is discussed briefly at the end of this section. In Section 3 we analyse in detail
the main methodological differences between C2ST and NPLM and assess their impact on the
performances.

We now turn to the benchmark GoF problems defined in Appendix A. These are mostly
inspired by and representative of use cases that are encountered in high energy collider physics,
hence the total number of points in theD data set, ND, is a Poisson-distributed random variable
as explained in Section 2.1. However, the C2ST method is not ideally suited to deal with this
setup. Before comparing it with NPLM, we thus need to introduce one last improvement of
the C2ST methodology.

If ND is a random variable and not a pre-specified number, its observed value carries infor-
mation on the viability of the R hypothesis. The expected value of ND in the R hypothesis is
N(R). Hence in particular if ND departs from N(R) more than typically expected from Poisson
fluctuations, this very fact signals that the data are in tension with R even if their probability
distribution was identical to the one predicted by the R hypothesis. The plain C2ST method is
not suited to exploit ND as a discriminating variable, because of two issues.

The first issue is that the regular weighted binary cross-entropy loss function is specifically
designed to be insensitive to the size of the two training samples, hence in particular to ND. The
trained classifier resulting from the optimisation of the loss will depend only on the probability
distribution of the two classes. In particular in the extreme case where the data probability
distribution is identical to the reference one, the trained classifier function will be close to the
non-decision boundary of 1/2 and retain no information on the possible departure of ND from
N(R). This is easily remedied by weighting the loss function with N(R) in place of ND, namely
using

ℓ(y, cw(x)) = −(1− y)
N(R)
NR

log [1− cw(x)]− y log [cw(x)] . (11)

Notice that this loss function is identical to Eq. (2) after trading fw for cw by Eq. (8).
Unlike the regular weighted cross-entropy, which employs ND in place of N(R), the min-

imisation of Eq. (11) is sensitive to ND. In particular, large ND will boost the importance of
the second term of the loss function, which will be evaluated on a larger D set. The trained
classifier function c

Òw will be thus pushed towards 1 if ND is large. It will be conversely pushed
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towards 0 if ND is small.4

The second issue is that the C2ST test statistics (10) does not respond well to c
Òw(x) clas-

sifiers that are systematically larger or smaller than the threshold of 1/2. If the c
Òw(x) is either

always smaller or always larger than 1/2, tBACC is equal to the random classifier accuracy of
0.5. A test based on the tBACC test statistics is thus insensitive to departures of ND from N(R),
because their effect on the trained classifier is precisely to push it above or below 1/2 uniformly
in the x space. We thus consider a modified version of the balanced accuracy

t ′BACC =
2

N(R) +ND





N(R)
NR

∑

x∈Rte

I[c
Òw(x)< 1/2] +

∑

x∈Dte

I[c
Òw(x)> 1/2]



 . (12)

In the limiting case ND ≫ N(R), such that c
Òw is pushed above 1/2 everywhere, the modi-

fied accuracy equals t ′BACC = ND/(ND + N(R)) > 0.5, while if ND ≪ N(R) and c
Òw < 1/2,

t ′BACC = N(R)/(ND +N(R)) > 0.5. In both cases the test statistics will thus assume an anoma-
lously large value, above the indecisive classifier threshold of 0.5, offering sensitivity to the
anomalous observed value of ND.

The modified C2ST method based on t ′BACC, and employing the loss function in Eq. (11), has
been found to perform better than the regular C2ST on the benchmark problems we studied,
and in particular as expected on those data sets where ND departures from N(R) are statistically
significant. The modified C2ST results are thus used for a fair comparison with the NPLM
performances.

Among the benchmark GoF problems of Appendix A, we consider those with 1D exponen-
tial reference distribution (Expo) and the 5D ones with di-muon final states with invariant
mass cuts at 60 and at 100 GeV (µµ-60 and µµ-100). For C2ST we employ a 1-20-1 network
and a 5-20-1 network for the 1D and 5D setups, respectively. We use the Adam optimiser, 500
training epochs in 1D and 3000 epochs in the 5D setup. The number of epochs is selected with
the criterion explained at the end of Section 2.2.

The NPLM performances on the benchmark problems are illustrated by the NPLM imple-
mentation based on neural networks. The hyper-parameter selection is performed with the
standard NPLM-NN strategy and the selected hyper-parameters are reported in Appendix A.
Most of the benchmark problems we consider here have been investigated already in previous
works and the performances of NPLM-NN compared and found similar to those of the NPLM-
KM implementation that employs kernel methods [15]. This is confirmed by the NPLM-KM

results on the same benchmarks reported in the following. See for instance Fig.s 11 and 12.
The results are presented—in Fig.s 4 and 5—by plotting the test power as a function of its

significance (or size) Zα. These power curves are obtained as follows. The p-value returned
by the GoF test on each data sample is converted into a significance Z-score by the definition

p[Z] =

∫ ∞

Z
dZ ′g(Z ′) = 1− G[Z] ⇒ Z[p] = G−1[1− p] , (13)

where g is the standard Gaussian pdf and G−1 the inverse of its cumulative. With this defini-
tion, a significance of Z = 2 (or, of 2σ) corresponds to a p-value of around 2.3%. The power
curve is the probability of obtaining on data a Z-score that is larger than a given threshold Zα,
i.e., a p-value that is smaller than the corresponding p[Zα]. This probability, p(Z > Zα|HT),
can be evaluated under different hypotheses HT for the true data distribution in order to test
the ability of the GoF test to spot out data departures from the R hypothesis. Notice that if the

4This does not happen with the regular weighted cross-entropy because the increase (for large ND) of the
second term is accompanied by the increase of the first one due to its prefactor, which is proportional to ND in the
regular cross-entropy and not set to the fixed value of N(R).
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true hypothesis is R, p(Z > Zα|R) = p[Zα] by definition. This curve is the contour of the grey
region in the plots. It represents the power curve of the test under the R hypothesis. A GoF
method can be claimed to be sensitive to a certain alternative HT ̸= R only if the corresponding
power curve is well above the grey region, with higher curves indicating better performances.

The NPLM power curves are always above those obtained with C2ST, signalling univer-
sally better performances. Particularly striking are the results obtained in those configura-
tions where the anomalous data behaviour is due to the presence of a few signal events that
emerge in a weakly-populated region of the reference distribution. For instance, in the H1
benchmark—see Appendix A and in particular Fig. 8—the signal consists of an average of
S = 10 events on top of B = 2000 background events that follow the reference distribution.
This small S/B ratio can be sufficient to spot out the anomalous nature of the data, because
the signal events are untypical (specifically, x is large) in the R hypothesis distribution. In
fact, the NPLM method displays good sensitivity. C2ST is instead completely blind to the 1D
H1 signal, with a power curve that is right on top of the reference hypothesis curve. The same
behaviour is observed in those 5D problems that similarly display a small S/B.
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The C2ST insensitivity to this type of configurations can be understood as follows. The
trained classifier has a chance to feature a good discriminating power between the two samples
only in those regions of x where there is a discrepancy between the true and the reference data
distribution. However, in the non-discrepant regions the trained classifier function oscillates
around 1/2 and classifies D and R data points randomly. The number of accurately classified
points in the latter region will be around a half of the number of points in that region, with
fluctuations of the order of the square root of the number of points. If this number is overly
large in comparison with the number of points that fall instead in the discrepant region, the
good classification performances in that region are overwhelmed by the statistical fluctuation
in the non-discrepant region. The classification accuracy does not display an anomalously
large value and the anomalous nature of the data set cannot be detected.

The situation is radically different in NPLM because the NPLM test statistics tLR in Eq. (6)
weights individual points in the D set by the value assumed by the f

Òw(x) function on that
point, unlike the accuracy used by C2ST that weights all the well-classified points the same.
Recalling Eq. (8), we see that f

Òw is close to zero when c
Òw ≃ 1/2, corresponding to an indecisive

classifier. On the contrary, f
Òw is large in absolute value for confident classification c

Òw ≃ 0 or
c
Òw ≃ 1. This mitigates the contribution from the non-discrepant regions and enhances the

one from the discrepant regions, where f
Òw is large. This inherent virtue of the usage of the

likelihood ratio test statistic in NPLM was emphasised already in Ref. [12].
The C2ST method displays some sensitivity to those anomalies that emerge from a distor-

tion of the reference distribution that is less localised in the x space, but still its performances
are way inferior to the ones of NPLM. Often, C2ST is even less sensitive than a basic GoF
strategy that is merely based on counting of the total number of observed events. The power
curve of the counting test is displayed as dashed lines in the plots. The test is based on the test
statistic ∆N/
p

N(R), where ∆N = |ND −N(R)|, and thus it is only sensitive to departures of
ND from the expected value N(R). Therefore it is completely insensitive to those setups where
the expected value of ND in the alternative hypothesis is identical to N(R), and very weakly
sensitive to small S/B setups. The fact that C2ST is often less effective than the counting test
shows that for C2ST it is still difficult to exploit the discriminating power of ND even in its
improved version.

3 Classifier-inspired NPLM variants

The NPLM advantages observed in the direct comparison with C2ST must be due to some
aspects of the NPLM method which depart strongly from the classifier-based approach that
underlies the C2ST method design. In this section we identify these peculiarities and assess
their impact by studying the performances of some variants of the NPLM strategy.

We emphasised in Section 2.1 that, while NPLM formally belongs to the general family of
classifier-based methods as defined by Friedman in Ref. [3], it displays a number of peculiari-
ties that stem from its origin as a Neyman–Pearson test. One of these peculiarities is definitely
the usage of the maximum-likelihood loss in Eq. (3). However, we argued that this can not
be responsible for the good NPLM performances because the NPLM implementation based on
kernel methods employs the more standard logistic loss function in Eq. (2) and it is as effective
as the implementation with neural networks that uses maximum-likelihood. Unpublished tests
performed with neural networks and logistic loss, mentioned in Ref. [12], further support the
claim that the maximum-likelihood loss is not essential for the NPLM performances.

The models used in the two NPLM implementations (neural networks and kernels) are
routinely employed as classifiers and therefore their choice is not a peculiarity of the NPLM
method. What is instead peculiar is the NPLM selection of the model hyper-parameters in-
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Figure 6: Power curves in the train-test split configuration (first row of plots) and
in the default NPLM configurations but using only half of the data statistics (second
row). The baseline NPLM results are shown for comparison.

cluding regularisation, and this aspect could in principle play an important role. On the other
hand, the NPLM hyper-parameters selection protocol in essence just aims at preventing over-
fitting to occur on R-distributed toy data, a criterion that would be reasonable also from a
classifier-based perspective. Therefore, studying the impact of the hyper-parameters on the
performances is not directly relevant for the NPLM comparison with classifier-based methods.

In what follows, we will then focus on two remaining unique aspects of NPLM: the in-
sample evaluation of the classifier without train-test splitting and the usage of the likelihood
ratio as test statistics. The impact on the performances of these two choices are discussed in
the next two sections in turn.

3.1 Train-test splitting

Estimating the performances of a classifier requires test data that are independent from the
data used for training. The splitting of theD andR data sets into training and test is thus a very
natural design choice in the classifier-based approach as previously emphasised in Section 2.2.
Equally naturally, no such splitting should be performed from the viewpoint of a Neyman–
Pearson test. The aim there is to assess how well the data are described by the distribution that
best fits them within a certain family. Therefore, the fit (i.e., the training) must be performed
with the very same data used to test. In NPLM, the test statistics—specifically, the likelihood
ratio test statistics in Eq. (6)—is thus evaluated on the entire sets of available D and R data
that are also employed for training.

In order to assess the impact of this in-sample evaluation on the NPLM performances, we
consider a variant of NPLM in which the D set is first split into two equal parts, obtaining a
set Dt r that is employed for training and an independent set, Dte, on which the test statistics
is evaluated. The same R is used for training and testing.5 Other than that, we proceed like
in baseline NPLM using the likelihood ratio test statistic and selecting the model, training and

5We could have decided to split R as well, but it is expected to result in a comparable performance because for
NR > ND the R set can be regarded as a nearly perfect description of the R distribution. The result of training
and the value of tLR are thus independent of the specific instance of the R set that is employed.
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Figure 7: Test statistics distributions in the reference hypothesis and in one of the
alternatives for the baseline NPLM method employing the full data statistics (left),
the one employing only half of the data (center) and the NLPM variant with train-test
splitting (right).

regularisation hyper-parameters to avoid overfitting on R-distributed data sets. Notice that
the selected parameters are different (see Appendix A) than the ones of regular NPLM method
applied on the same setup but without the train-test splitting, because training is performed
in the latter case with the total D statistics while only half of the statistics is employed here
due to the splitting.

The results are displayed in Fig. 6 in terms of the power curves defined and computed as ex-
plained previously in Section 2.3. The benchmarks used for the assessment of the performance
are those in the 5D di-muon setup with mµµ > 100 GeV (µµ-100). The same benchmark is
also employed in Fig. 5 (bottom) for the comparison with the C2ST method. In the first row
of Fig. 6, the baseline NPLM performance is compared with that of the NPLM variant that
employs test-training splitting. We see that test-training splitting is detrimental for the sen-
sitivity in all cases. The in-sample evaluation of the test statistics is thus found to play a key
role for the sensitivity of the NPLM method. This finding explains the NPLM advantages in
comparison with C2ST, but only partially. Indeed, the comparison with Fig. 5 reveals that the
performances of the NPLM variant with test-train splitting are still superior to those attained
by the C2ST method.

In the second row of Fig. 6 we display results (labelled as NPLM-half) obtained as follows:
after training on the (Dt r ,R) data sets we evaluate the test statistics on the same (Dt r ,R)
and we ignore the test data Dte. This is of course equivalent to running the baseline NPLM
method in a setup where only half of the data statistics is available, entailing sensitivity loss.
The sensitivities obtained in this configuration are comparable to those of the NPLM method
variant with test-train splitting. Splitting the data in equal portion for train and test is thus as
ineffective as ignoring half of the available data points.

Inspecting the distribution of the test statistics in the different configurations, displayed in
the three panels of Fig. 7, helps gaining an intuitive understanding of this result. The NPLM
model learns from the training data and thus it is exposed to the statistical fluctuations that
are present in the specific instance of the sample D used for training. When the data are R-
distributed (light histograms), statistical fluctuations are in fact all there is to be learned, since
D is distributed like the reference by construction. This produces a positive value for the test
statistics evaluated on the same samples used for training (left and middle panels). When the
data follow instead a different distribution than R, their statistical fluctuations are accompa-
nied by a systematic discrepancy from the reference data. The test statistics (dark histogram)
thus emerges as the sum of a contribution from statistical fluctuations that is typically as large
in size as it was for R-distributed data, plus the systematic contribution. This latter contribu-
tion is responsible for the shift of the test statistics distribution, and in turn for the sensitivity
of the method to the alternative data distribution. The amount of shift is controlled by the
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data statistics and it is obviously larger when the full data statistics is employed (left panel)
than if only half of the data (middle panel) are used. The continuous line is a χ2 distribution
with a number of degrees of freedom given by the number of trainable parameters (weights
and biases) of this particular neural network, a fully connected network with with five input
nodes, three hidden layers with five nodes each and one output node (3× 5× 6+ 6= 96).

When evaluated on test samples that are different from those used for training, the tLR

distribution behaves instead as on the third panel of Fig. 7. The statistical fluctuations learned
on the training data are different from the ones that are present in the test data. The trained
model thus offers a poor description of the test data and tLR is typically negative, and especially
so for R-distributed data because statistical fluctuations are all what the model learns. The
systematic shift is still present in tLR when the data are distributed according to the alternative,
because the systematic component of the data departures from the reference is present both
in the training and in the test data. The size of this shift is again controlled by the statistics of
the data, and of course the relevant data are only those used for evaluating the test statistics.
These are half of the total in the test-train splitting setup, like in the configuration where only
half of the available data are used. Since the shift controls the sensitivity, it is reasonable
to expect, as we find, that the performances of the two configurations are comparable, and
inferior to those of the baseline NPLM because of the effective loss of data.

3.2 Alternative test statistic

The ratio between the likelihoods is a standard measure of the relative fit quality of two hy-
potheses. Hence, the NPLM choice of the likelihood ratio test statistics tLR in Eq. (6) is very
natural or even obliged from the perspective of a Neyman–Pearson test. From the viewpoint
of classification instead, this choice is highly unnatural as emphasised in Section 2.1. We
evaluate its impact on the performance by studying a number of NPLM variants that employ
different test statistics to be evaluated on the trained classifier. We will consider variables
that are either standard metrics for classification performance, or standard test statistics for
one-dimensional GoF methods as in Friedman’s proposal [3]. These variables and their per-
formance are discussed in the next two sections in turn. In all cases, we proceed like in the
baseline NPLM method with in-sample evaluation of the test statistics and the default selection
of hyper-parameters for a direct assessment of the effect of the choice of the test statistics on
the performance.

3.2.1 Standard classification metrics

The most standard classification metric is probably the classification accuracy. The detailed
definition of this quantity must take into account that in our framework the D and R data sets
are unbalanced and that the D size ND is a discriminating variable. As in Sections 2.2 and 2.3,
this leads to the definition

ACCt =
1

N(R) +ND

�

N(R)
NR

∑

x∈R
I[c
Òw(x)< t] +
∑

x∈D
I[c
Òw(x)> t]

�

, (14)

where c
Òw(x) is related to the trained NPLM model f

Òw(x) by Eq. (8). We consider two versions
of the accuracy test statistics

t1/2
ACC = ACC1/2 , tmax

ACC = max
t∈[0,1]

[ACCt] . (15)

The first one, with the threshold t = 1/2, is effectively equal to the C2ST test statistic in
Eq. (12). The different normalisation accounts for the fact that the accuracy is evaluated on
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the full data sets. The second tests statistics, tmax
ACC , employs a variable threshold optimised on

the data under consideration.
Another widely employed metric for classification is the Area Under the ROC Curve (AUC).

This the integral of the Receiver Operating Characteristic (ROC) curve, built by varying the
classification threshold in the plane formed by the probability of false and of true positive. A
straightforward adaptation of the standard AUC to our setup, where the samples are unbal-
anced and ND is discriminant, is readily obtained as follows.

The false positive probability can be estimated as usual by the false positive rate

FPt =
1

NR

∑

x∈R
I[c
Òw(x)> t] . (16)

The true positive probability is instead most conveniently expressed, for our purposes, in terms
of the classification accuracy

TPt = 2ACCt + FPt − 1 . (17)

The above equation relies on the regular definition of the accuracy as the average between the
true positive and the true negative probabilities.

Eq. (14) provides a definition of the accuracy that accounts for the unbalance in the samples
and retains the discriminating power of ND. We exploit the same definition in the calculation
of the AUC as the integral of Eq. (17), obtaining the AUC test statistics

tAUC =

∫

dt

�

�

�

�

dFPt

dt

�

�

�

�

TPt = 2

∫

dt

�

�

�

�

dFRt

dt

�

�

�

�

ACCt −
1
2

. (18)

Fig.s 11 and 12 displays the performances of the t1/2
ACC, tmax

ACC and tAUC test statistics on the
benchmarks defined in Appendix A. The baseline NPLM performances are superior in general,
and the classification metrics are exposed to dramatic failures in certain configurations. In
particular, the classification metrics fail when the anomaly in the data emerges from a small
fraction of signal events. We find here the same behaviour we observed in Section 2.3 for
the C2ST method. We attributed this failure to the fact that individual data points weight the
same in the classification accuracy metrics while points that are recognised as highly anoma-
lous weight more in the likelihood ratio test statistics employed in the baseline NPLM method.
The only exception to this trend is observed in the bottom panel of Fig. 11, showing the perfor-
mances over the DQM benchmark. In this case, the performances of the classification metrics
exceed those of the likelihood ratio test. We don’t have a complete understanding of this re-
sult; a possible reason could be the significantly lower size of the data sample, which prevents
an accurate approximation of the likelihood ratio shape. Further studies will be needed to
understand this result.

3.2.2 One dimensional GoF variables

We now turn to a series of test statistics that are commonly employed for GoF on univariate
data. Some of these variables need a slight adaptation to our setup, in which the GoF is
addressed as a two-sample test—i.e., the reference distribution is not known in closed form
but only a reference sample is available—and the total number of events in one of the two
classes is a discriminating variable. These straightforward adjustments, and the definition of
the test statistics, are reported in Appendix B. The univariate data sets D and R employed in
the test statistics evaluation consist of the trained classifier c

Òw(x) evaluated on D and R as in
Friedman’s proposal [3].

The results are reported in Fig.s 13, 14 and 15, and described below.
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χ2 tests Histogramming the data D and comparing the numbers of points in each bin with
the reference hypothesis predictions is the most common GoF method. If the reference distri-
bution is not known in closed form, the predictions can be readily obtained from the histogram
of the R data. The χ2 (see Eq. (B.1)) is the appropriate test statistic to perform this compari-
son. The method is subject to strong ambiguities in the choice of the binning strategy and in
the number of bins nbins. The standard binning strategy we employ is to adapt the width of
each bin in order to make it contain exactly N(R)/nbins expected events in the R hypothesis.
Different choices are considered for nbins.

The results, presented in Fig. 13, display a considerable dependence of the sensitivity on
the number of bins. The most effective choice of nbins depends on the source of the anomaly
in the data, and therefore it can not be optimised because the essence of the GoF problem is
to identify anomalous data sets without prior bias on the source of the anomaly. The observed
sensitivity pattern follows the basic intuition: signals that are more localised require narrow
binning to be seen, while distortions of the reference distribution that are spread on a wider
range benefit from broader bins. The baseline NPLM results are always better or comparable
to the χ2 test with the highest power curve in each benchmark problem.

EDF tests Several univariate GoF methods are based on the Empirical cumulative Distribu-
tion Function (EDF). The most known example is the Kolmogorov–Smirnov (KS) test, others
are the Cramer–von-Mises (CvM) and the Anderson–Darling (AD) tests. The performances of
the corresponding test statistics (see eqs. (B.4,B.5)) are reported in Fig. 14.

EDF test statistics perform in general slightly better than χ2. In some cases they even
display comparable performances to baseline NPLM, however none of the tests in this family
is universally better than the others in all benchmarks. The different weights that the different
tests give to the tails of the data distribution makes them more or less sensitive to different
types of anomalies.

Spacing statistics We finally consider the Moran (M) and the Recursive Product of Spac-
ing (RPS) tests (eqs. (B.8,B.11)), as representative of and approach to GoF that exploits the
distance between data points. We see in Fig. 15 that the performances are generically poor.

The survey performed in the present section enables us to reach a sharp conclusion on the
crucial role played by the choice of the likelihood ratio test statistics (6) for the NPLM method
performances. This choice, as well as the in-sample evaluation of the test statistics studied in
the previous section, stems from the origin of NPLM as a Neyman–Pearson test rather than a
classifier-based GoF method. Our results thus point to the superiority of Neyman–Pearson test
approach.

4 Conclusions

We presented an initial assessment of the performances of the NPLM method for GoF, which
is based on Neyman–Pearson testing, in comparison with the performances of classifier-based
methods. The study has been carried out in two ways. First, through a direct comparison with
the C2ST method, taken as representative of the classifier-based approach in its most direct and
simple form. Second, by evaluating the impact of the most peculiar methodological choices
of NPLM, which directly stem from its origin as a Neyman–Pearson test, on its performance.
In particular, we analysed the effect of the in-sample evaluation of the test statistic and the
usage of the likelihood ratio test statistics. Both, as foreseen in baseline NPLM, have been
found to bring strong advantages. The NPLM method has been also compared, in Appendix C,
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with several standard GoF methods that exist for one-dimensional variables. Overall better
performances are obtained.

These results indicate that performing a Neyman–Pearson test of the reference hypothe-
sis against a suitably designed set of alternative hypotheses, like NPLM does, is a powerful
approach to GoF that deserves further studies.

It is not straightforward to extrapolate our findings beyond the specific framework we em-
ployed for the comparison and to turn them into general statements on the NPLM advantages
in comparison with other approaches to GoF. An inherent feature of the GoF problem is the
difficulty of identifying a sharp figure of merit to rank the effectiveness of different methods.
The sensitivity to anomalous data drawn according to some specific alternative to the refer-
ence hypothesis is a clear figure of merit for hypothesis tests, because the goal of a hypothesis
test is precisely to tell the reference hypothesis from one specific and pre-specified alternative.
A GoF test aims instead at identifying data that are anomalous with respect to the reference
hypothesis, regardless (if possible) of the specific alternative distribution according to which
the data are truly distributed. The sensitivity to anomalous data is still the figure of merit.
However, a wide set of different alternative hypotheses for their true distribution must be con-
sidered for a meaningful assessment. Still, the assessment will never be fully conclusive as the
result does depend in general on the alternatives that have been considered. NPLM has been
found generally better than the other methods over all the benchmark problems we studied.
Furthermore, none of the other methods performs comparably well as NPLM on all the bench-
marks. Nevertheless, these results could in principle change if the comparison was extended
to include other benchmarks.

One bias that certainly affects our selection of the benchmarks is the origin of NPLM as
a method to search for new physics in high energy collider data. Many of our benchmarks
have thus been selected, in the previous NPLM literature, to be representative of this type of
problems. However, we also considered the DQM benchmarks, which are unrelated with new
physics at colliders and are based on natural data collected at a muon detector. Furthermore,
our benchmark problems do not seem to display any strong peculiarity, apart from being ar-
guably difficult GoF problems: the reference and the alternative distributions are on the same
support and the discrepancies emerge either from a small localised excess (or deficit) of events
or from a distributed distortion of the reference distribution. There is no reason to expect that
our findings would be radically different on different problems as our benchmarks are not
peculiar and are reasonably varied. However, it should be noted that we only deal with data
of limited dimensionality. NPLM has been applied to data with up to 100 dimensions so far,
and a comparison with other GoF methods suited to deal with this dimensionality could be
considered in the future. Modifications to the NPLM methodology to handle extremely high
dimensional problems, such as the validation of image generation models, will be considered
in future works.

Previous works [12–16] remarked a certain degree of uniformity of the NPLM response to
qualitatively different types of anomalies injected on top of the same reference distribution.
This uniformity is defined—see Appendix A for a review—as a correlation between the median
sensitivity of NPLM and the median sensitivity, Zid, of the fully optimal hypothesis test designed
to detect the specific source of anomaly under consideration. We do not observe this uniformity
for C2ST nor for any of the other GoF methods we studied in this paper as NPLM variants.6

The complete loss of sensitivity of certain methods to specific type of anomalies, accompanied
with a more moderate degradation of their sensitivity in comparison with baseline NPLM,
exemplifies this lack of uniformity. We currently lack the theoretical understanding needed to

6The train-test split configuration studied in Section 3.1 is an exception. This is because the train-test split
configuration performances are understandably comparable with those of NPLM with half statistics, which are
inferior to baseline NPLM but still universal.
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accompany the empirical evidence gathered in this work about this phenomenon with a more
quantitative study. The proper quantification of Zid is often in itself a technical challenge.
Advances in this speculative direction are potentially very interesting and should be pursued.
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A Benchmarks

The only way to assess the performances of GoF methods is to study their ability to identify
anomalous data drawn from a distribution that is different from the reference one. Benchmark
problems and the corresponding benchmark data sets for GoF performance studies are thus
defined by one given R hypothesis for the reference distribution, plus one given alternative
hypothesis.

The selection of the benchmarks is unavoidably arbitrary. Therefore, it must be reasonably
justified considering that the purpose of GoF is to spot out generic data departures from the
R hypothesis regardless of the specific alternative that underlies their distribution. We thus
organise our benchmark problems as specific alternatives that could be possibly encountered in
a number of GoF setups. One setup is defined by one chosen reference probability distribution
and number of expected events N(R). Additionally, since the GoF methods we investigate are
in fact two-sample tests, the size of the available R sample—or the ratio NR/N(R)—is also
specified in the definition of the setup.

The GoF setups and benchmarks employed in this paper are described in the following
sections. It should be noted that the vast majority of these benchmarks were defined and
studied in previous NPLM works [12–16], and they have not been designed specifically for the
comparative studies of the present article.

Within each setup, we would like our GoF method to be sensitive to data generated ac-
cording to any possible alternative distribution. Clearly in practice we can only study the sen-
sitivity to a limited number of different alternatives, to be selected with care trying to cover
qualitatively different types of data anomalies. For instance, anomalies emerging from small
discrepancies of the distribution over a wide region of the x variable are different from sharply
localised signals emerging in the tail of the x distribution, or in the bulk. A GoF test can be more
or less sensitive to anomalies in one class than in the other. This is confirmed by the results
of the present article: the sensitivity degradation of the many methods we studied—relative
to the baseline NPLM sensitivity—is more or less pronounced for the different alternatives we
considered in each setup. This result also confirms, a posteriori, the validity of our benchmark
problems selection as probing different sources of anomalies in the data that can be easier or
harder to see for a generic GoF method.

A different question is which level of sensitivity is legitimate to expect from a “good” GoF
method for each of the different alternatives that we might consider in one given setup. One
should keep in mind that deviations from the reference distribution can be arbitrarily small
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and not detectable from finite samples. Therefore, some sensitivity can be expected for alter-
natives that are easy enough to be detected, according to some notion of “easiness”. Such a
notion can be naturally introduced for comparing alternative distributions of a specific type,
based on the value of their adjustable parameters. For instance, sharp peaks are characterised
by the area below the peak region, and higher peaks are obviously easier to see. On the other
hand, a different and more abstract notion is needed in order to compare alternative hypothe-
ses in different classes, which are controlled by different and not commensurable adjustable
parameters.

In previous works on NPLM [12–16] we introduced and employed the notion of ideal
sensitivity or ideal median Z-score, Zid. The definition of this quantity emerges from the
powerful result known as the Neyman–Pearson lemma [9], identifying the hypothesis test
strategy that is the most sensitive, defined as the most powerful at any given test size. The
sensitivity of such optimal test, Zid, serves two purposes. On the one hand, it can be used for
an objective evaluation since it is an upper bound to any GoF method. However, it also allows
to compare different alternative hypotheses by establishing how hard it is to detect them.
Therefore, a “good” GoF method should respond uniformly—i.e., with comparable values of
Z—to all the alternatives with comparable Zid. This uniform response is qualitatively observed
for the NPLM method within each of the GoF setups we studied (but not across different
setups). This is reviewed in the next sections.

A.1 Expo

This is a simple univariate setup that represents an energy or transverse-momentum spectrum
that falls exponentially. Such types of distributions are fairly common in collider physics ex-
periments. Studying GoF techniques in this setup is thus illustrative of some of the challenges
associated with the search for new physics at these experiments. NPLM performances in the
Expo setup were studied in Refs. [12, 14]. A minor extension of these studies has been per-
formed for this paper as described below.

The reference distribution is
n(x |R) = N(R)e−x , (A.1)

where the expected number of collected events in the reference hypothesis, N(R), is set at
2000. The R sample is composed of NR = 100 N(R) events. We consider (see Fig. 8) a total
of five alternative hypotheses for the true data distribution, mimicking qualitatively different
ways in which the data can depart from the reference hypothesis expectation. We refer to
these deviations as signals and they are modelled as follows:

H1: a peak in the tail. This is modelled by adding to the exponential reference distri-
bution a Gaussian distribution with mean 6.4, standard deviation 0.16 and N(S) = 10
expected number of events. The total number of expected events in the H1 hypothesis
is N(H1) = N(R) +N(S) = 2010.

H2: a quadratically growing excess in the tail, modelled as an additive contribution to
the reference distribution that is proportional to x2e−x and normalised to N(S) = 90
signal events. The total number of events is N(H2) = N(R) +N(S) = 2090.

H′2: similar to H2 but with only shape effects. This is engineered by lowering the area of
the exponential component of the distribution to N(R)′ = 1890 and adding N(S) = 110
events with the x2e−x distribution. In this way, N(H′2) = N(R) and the total number of
events is not a discriminating variable. Notice that, unlike H1 and H2, the H′2 distribution
is not an additive modification of the reference distribution.
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Figure 8: The five alternative distributions that are considered in the Expo setup.
The reference distribution is shown dashed in all plots.

H3: a peak in the bulk of the reference distribution, modelled as a Gaussian with mean
1.6 and standard deviation 0.16. The expected number of signal events is N(S) = 90.

H4: a defect in the tail of the distribution obtained by cutting the reference exponen-
tial distribution above the threshold x > 5.07. The total number of expected events is
reduced, relative to N(R), to N(H4) = 1987.

The specific tuning of the parameters—such as the number of expected signal events, or the
value of the threshold in the case of H4—that define these alternative hypothesis is such that
the median ideal Z-score of all the alternatives is around 5σ. The ideal Z-score Zid is obtained
as a direct application of the Neyman–Pearson lemma, exploiting the analytic knowledge of
the reference and of the alternative distributions. Namely, we perform a hypothesis test using
the test statistic [9]

tH = 2 log

�

e−N(H)

e−N(R)

∏

x∈D

n(x |H)
n(x |R)

�

. (A.2)

For each H= H1,...,4, we compute empirically the distribution of the corresponding variable tH
under the R hypothesis by toy experiments. We then compute the median p-value on data that
follow the alternative distribution, and eventually the median Z-score defined as in Eq. (13).
The results are reported in the second column of Table 1.

The second column of the table displays the median Z-scores of the NPLM tests when
the data are distributed according to the alternative hypotheses. These results correspond
to the point on the Zα axis where the power curves cross 1/2. They are obtained with a
(1, 4,1) network and weight clipping regularisation parameter of 8. The hyperparameters
selection has been performed with the standard NPLM criterion of χ2-compatibility [13, 14].
No preprocessing of the variables given as input to the network is performed since the data
naturally have unit mean and unit variance. Data are instead shifted and scaled to have zero
mean and unit variance—for R-distributed data—in the other NPLM applications considered
in this paper.

We also employ the kernel-based NPLM implementation in the Expo setup. This is charac-
terised by three main hyper-parameters that are set to the values (M ,σ,λ)=(5000, 2.3,10−10),
which we obtain following the general hyper-parameters selection prescription detailed in
Refs. [15,16].7

7The exact values are not the ones from the original study in Ref. [15], due to the different range of the input
variable.
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Table 1: Z-scores for the Expo setup.

Expo

Alternative Zid Z Z/Zid

H1 4.7 2.5 0.5
H2 4.4 2.5 0.6
H′2 4.4 3.0 0.7
H3 5.2 3.9 0.8
H4 4.5 2.6 0.6

A.2 µµ

This is a more complex setup inspired by the realistic problem of a model-agnostic search for
physics Beyond the Standard Model (BSM) with LHC data. In particular, the setup targets LHC
final states with two muons of opposite charge. The goal is to assess whether the distribution of
the kinematical variables that characterise the muons are well described by the corresponding
Standard Model (SM) predictions. This use case was proposed in [13] and further investigated
in Refs. [14,15].

The data sets are available on Zenodo [19] and consists of collections of the five variables
describing the kinematics of two muons produced in the final states of proton-proton collisions
at the LHC: the transverse momenta of the two muons (pT,1, pT,2), their pseudorapidities (η1,
η2) and their relative azimuthal angle ∆φ1,2.

The reference hypothesis is the adequacy of the SM as a description of the process. There-
fore the reference-distributed data are obtained by Monte Carlo simulations that are based on
the SM theory. The main SM process that contributes to this final state is the Drell–Yan process
where the muons emerge from the decay of a virtual photon or Z-boson particle generated in
the annihilation of a quark-antiquark pair in the colliding protons. The SM theory also predicts
the total number of events with two muons that are expected to be observed after a certain
number of protons have been collided. More precisely, the number of expected events is pro-
portional to the integrated luminosity of the LHC collider that is employed in the analysis. By
varying the data luminosity that we decide to employ, we can thus control the total number of
expected events N(R) of our GoF case study.

Additionally, we can decide to restrict our analysis to the subset of the events that satisfy
certain cuts on the kinematics of the muons.8 Two choices are considered, defining two distinct
GoF setups denoted as µµ-60 and µµ-100. In the first case, only events corresponding to
an invariant mass of the two muons larger than 60 GeV are kept. This selection rule was
already considered in [13], and it corresponds to the threshold below which muons are hard
to identify experimentally and the SM predictions for their distribution become more difficult
to obtain. This cut does not exclude the mass of the Z-boson particle at approximately 90 GeV,
which can thus be produced resonantly and dominate the composition of the µµ-60 reference
distribution. In the second case, we only retain events with an invariant mass of the two
muons above 100 GeV. This cut was introduced in [14] and excludes the resonant Z-boson
production entailing a strong change in the reference distribution compared to the other case.
In order to maintain a comparable number of expected events in the two setups, the integrated
luminosities have been chosen to be 0.35 fb−1 for the µµ-60 and 3.5 fb−1 for the µµ-100 setup.
This choice corresponds to N(R) = 18740 and N(R) = 84530 in the two setups.

The alternative hypotheses we would like to be sensitive include phenomena not predicted
by the SM, but by an arbitrary extension of the latter (a BSM model). Simple BSM benchmark

8Acceptance cuts pT > 20 GeV and |η|< 2.4 are always applied.
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points are thus employed to generate anomalous data sets. Namely, we consider a so-called
Z ′ model where a new massive spin-one particle is present with the same couplings of the
SM Z-boson. A Z ′ particle with 200 GeV or 300 GeV mass is considered in order to probe its
effect in different regions of the reference SM distribution. We also consider a non-resonant
deformation of the SM distribution due to a new EFT interaction operator of dimension-6.
Specifically, we consider an operator cW/Λ

2J a
LµJµLa where JµLa is the SU(2)L SM current. The

energy scale Λ is fixed at 1 TeV and the Wilson coefficient cW determines the strength of the
effect. In the µµ-60 and µµ-100 setups, the following benchmarks are considered:

µµ-60:

Z′-2-a:
a Z ′ with 200 GeV mass and a cross-section such as to produce N(S) = 80 expected
signal events in addition to the N(R) = 18740 events from the SM background.

Z′-2-b:
a Z ′ with 200 GeV mass and N(S) = 160.

Z′-3:
a Z ′ with 300 GeV mass and N(S) = 40.

EFT-a:
the EFT operator with Wilson coefficient cW = 1.2. The total number of expected events
in the presence of the new operator is 18747.

EFT-b:
the EFT operator with Wilson coefficient cW = 1.5. The total number of expected events
becomes 18783.

µµ-100:

Z′-2-a:
a Z ′ with 200 GeV mass and N(S) = 120 expected signal events. In the µµ-100 setup,
the number of expected SM background events is N(R) = 84530.

Z′-2-b:
a Z ′ with 200 GeV mass and N(S) = 240.

Z′-3-a:
a Z ′ with 300 GeV mass and N(S) = 60.

Z′-3-b:
a Z ′ with 300 GeV mass and N(S) = 120.

EFT:
the EFT operator with Wilson coefficient cW = 1.5. The total number of expected events
becomes 87290.

All benchmarks considered in µµ-60, except for Z′-2-b, were previously studied in [13], while
the benchmarks in µµ-100 have been defined so that the ideal reaches are comparable to the
µµ-60 ones.

As in the Expo setup, we need to quantify the ideal Z-score of our benchmarks. However,
this is more difficult to achieve in this case because the distributions of the reference and of the
alternative hypotheses are not available in closed form. We thus have to rely on approximations
of the ideal Z-scores, obtained as follows. For the Z ′ case, we assume based on experience
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Figure 9: Correlation between the median ideal sensitivity and the median NPLM-NN

sensitivity in the µµ-60, µµ-100 and µµ-100-half setups.

that the invariant mass of the muons is the most effective variable to identify the presence
of the Z ′ in the data, and that a simple cut-and-count strategy in an invariant-mass window
around the Z ′ mass offers nearly optimal sensitivity. The width of the window is optimised
for each benchmark signal. The sensitivity we obtain by counting events in the window and
comparing with the reference model prediction for the expected values is reported in Fig. 9.
Notice that very high Zid sensitivities can be estimated with the cut-and-count strategy thanks
to the analytic knowledge of the (Poisson) distribution of the number of events in the window.

The situation is different for the EFT benchmarks. Also in this case, it could be reasonable—
though more questionable—to assume that the invariant mass is the only discriminant variable,
but a simple cut-and-count strategy would not produce nearly optimal sensitivity. We need to
bin the invariant mass and compare the counts in each bin with the reference predictions. The
number of bins and the binning strategy can be optimised. However, the distribution of the test
statistic to be employed for the comparison is not known in closed form. The sensitivity must
therefore be estimated empirically by running toy experiments to determine the distribution
of the test statistic in the R hypothesis. This prevents in practice to estimate the sensitivity if
it is approximately above 5σ. When this occurs—specifically, for the EFT benchmark in the
µµ-100 setups— we report in Fig. 9 a very rough estimate of the sensitivity based on fitting
the empirical distribution of the test statistic with a Gaussian distribution. With this approach,
we can go beyond what is allowed by the empirical estimate (EFT data points for µµ-100 and
µµ-100-half on the right half of the Figure). In these cases, the lower bound on the sensitivity
that is obtained empirically is indicated by the lower edge of the error bars. Overall, our Zid
estimates are not accurate enough to draw robust conclusion on the uniformity of the NPLM
sensitivity in this setup. Nevertheless, the correlation between Zid and the median NPLM
sensitivity is reported in Fig. 9.

The NPLM-NN hyper-parameters selection for this setup was discussed in [13] (see also
[14]): we use a fully connected feedforward neural network with three layers of five nodes
each and weight clipping is set to 2.15.

The µµ goodness of fit setups are employed extensively in the main text to illustrate the
NPLM sensitivity. In Section 3.1 (see in particular the bottom plots in Fig. 6) we also use NPLM
to address the µµ-100 GoF problem using only half of the data statistics. This is effectively
a different setup, denoted as µµ-100-half, where N(R) and the number of expected events in
all the alternative hypotheses is reduced by a factor 2. In the µµ-100-half setup, the weight
clipping regularisation parameter resulting from χ2-compatibility is equal to 2.4.

The hyper-parameters of the kernel-based implementation NPLM-KM in all the three µµ
setups are set to (M ,σ,λ) = (2× 104, 3, 10−6) like in Ref. [15].
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A.3 DQM

Goodness of fit methods can be used to monitor the quality of the data produced by a complex
apparatus such as a particle detector, i.e. for Data Quality Monitoring (DQM). The R hypothesis
is that the detector is operating in normal design conditions, therefore the R-distributed sam-
plings of the detector readout x are obtained from the normal apparatus operations. Anomalies
in the x distribution can emerge from many different sources of technical failures.

The DQM GoF setup was introduced in Ref. [16] to exemplify this use case. It is based on
natural data, available on Zenodo [20], from cosmic-ray muons at a drift tube chamber. The
five variables collected by the apparatus are four drift times associated with the muon track
and the angle formed by the muon track with the vertical axis. The data set consists of 3×105

data points collected under reference working conditions, and smaller (order 104 points) data
sets where some of the detector parameters are artificially altered. In this work we consider
two types of anomalous working conditions: the cathod (Ca) anomaly where the voltage of
the cathodic strips is reduce to 75% of their nominal value and the threshold (Thr) anomaly
where the frontend threshold (is lowered to 75% of its nominal value. More anomalies have
been studied in Ref. [16].

Using these data, the DQM setup for GoF is defined as follows. The data set size is fixed to
ND = 250, corresponding to one possible choice of the size of the data batches to be monitored.
Unlike in previous setups, ND is fixed and is not a random variable. The size of the R data set
is set to NR = 2000. A total of four benchmark anomalous data distributions are considered:

Ca-50: a mixture of 50% of Ca anomalous data and 50% of R-distributed data.

Ca-70: a mixture of 70% of Ca anomalous data and 30% of R-distributed data.

Thr-50: a mixture of 50% of Thr anomalous data and 50% of R-distributed data.

Thr-70: a mixture of 70% of Thr anomalous data and 30% of R-distributed data.

We exclusively employ the NPLM implementation based on kernel method to address the
DQM GoF problem. As in [16], the hyper-parameters are set to (M ,σ,λ) = (2000, 4.5,10−6).

B One dimensional GoF methods

The literature on goodness of fit tests for a one-dimensional variable x is vast. Studying all the
existing tests would be impossible and not particularly useful. We instead select a number of
tests that are representative of different approaches that have been considered by statisticians
throughout the years. These are described in turn in the rest of this appendix.

It should be kept in mind that ours is not strictly a GoF problem, because the data dis-
tribution in the reference hypothesis is not known in closed form. It is rather a two-sample
test—though with unbalanced samples—between two sets D and R of univariate data of size
ND and NR, respectively. For the studies in Section 3.2.2, these data are obtained by apply-
ing the trained classifier to the D and R sets. For those in Appendix C, the data are directly
provided by the D and R sets in univariate GoF problem.

Furthermore, in our setup ND is a Poisson-distributed variable with expected N(R) in the
reference hypothesis, and not a pre-specified fixed number. Some of the classical GoF strategies
we consider require minor adjustments in order to deal with this peculiarity, and in order to
be used for two-sample tests instead of GoF tests.
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χ2 tests Histogramming the data D and comparing the numbers of points in each bin with
the reference hypothesis predictions is probably the most common GoF method in high-energy
physics. The corresponding test statistics is the Pearson’s χ2

tχ2 =
nbins
∑

i=1

(oi − ei(R))
2

ei(R)
, (B.1)

where the oi is the number of points in the D set that fall in the i-th bin and ei(R) is the
expected number in the R hypothesis. If the reference distribution is not known in closed
form, the predictions for the expected numbers ei(R) are readily obtained from the histogram
of the R data. The tχ2 test statistics is thus automatically suited to be employed for a 2ST.
Furthermore, it is automatically sensitive to the total number of observed events ND and to its
possible departures from the expected total number in the R hypothesis, N(R).

The χ2 method is subject to strong ambiguities in the choice of the binning strategy and
in the number of bins nbins. We construct non-overlapping bins that cover the entire support
of the variable x in such a way that each of them contains exactly ei(R) = N(R)/nbins expected
events in the R hypothesis. Namely, we compute the i/nbins percentiles of the R data set,
for i = 1, . . . , nbins − 1 and we use them as the upper extreme of the i-th bin and as the lower
extreme of the i−1-th bin. The first and the last bin extend up to the lower and upper boundary
of the support of x . The number of bins nbins is left as a free parameter of the test.

Under certain conditions, the tχ2 distribution in the R hypothesis can be accurately esti-
mated by asymptotic formulas. We do not employ these formulas and opt for a fully empirical
determination of the distribution by toy experiments.

EDF test Several GoF tests, including Kolmogorov–Smirnov (KS), are based on the Empirical
cumulative Distribution Function (EDF) of the data D. The EDF function is defined by counting
the number of instances of x in D that fall below a threshold y . Specifically, we define

EDFD(y) =
1

N(R)

∑

x∈D
I(x < y) , (B.2)

where I is the indicator function. Notice that this is different from the regular definition
because of the 1/N(R) normalisation factor, which would normally read 1/ND.

The reason for this unconventional definition is that the regular normalisation washes out
the sensitivity to the number of observed data points, which we instead want to retain. Stated
differently, in our case we are not interested in the regular cumulative distribution function
defined as the integral of the probability distribution function, but rather the integral of the
number density distribution. Eq. (B.2) is in fact an approximation of the latter integral, times
the fixed constant 1/N(R).

The regular EDF-based GoF tests are based on the comparison of the EDF function (B.2)
with the cumulative distribution function of the variable x in the R hypothesis. This is not
known in closed form in our case, but it can be estimated using the R sample:

CDFR(y)≈ EDFR(y) =
1

NR

∑

x∈R
I(x < y) . (B.3)

By employing the EDFR function in place of CDFR, all the regular test statistics for EDF tests
can be employed. We consider the following options:

Kolmogorov–Smirnov (KS): the test statistics is

tKS =max
x
|EDFD(x)− EDFR(x)| . (B.4)
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Cramer-von-Mises (CvM) and Anderson-Darling (AD): the test statistic takes the fol-
lowing generic form

t = ND

∫

w(x) [EDFD(x)− EDFR(x)]
2 dEDFR

d x
d x . (B.5)

The weight function w(x) is equal to 1 in CvM, and equal to

wAD(x) =
1

EDFR(x) (1− EDFR(x))
, (B.6)

in the case of the AD test.

Spacing statistics The last family of tests we consider is based on spacing statistics. Here,
the degree of agreement of the data sample D with the reference distribution is quantified
based on the distance between the events in the data sample. These tests are constructed
by first mapping the data points into a space where they are uniformly distributed under the
reference hypothesis. Departures from uniformity in the new space signals disagreement with
the reference distribution. The map is defined by the cumulative in the R hypothesis, CDFR(x).
When this is not available, as in our case, one can obtain an approximate empirical map using
the R sample, namely

x → u= EDFR(x) . (B.7)

Operating with the transformation on the D data set, and sorting the result such that
ui < ui+1, we define a sample of spacings (i.e., distances) S = {si}

ND+1
i=1 with

s1 = u1, sND+1 = 1−uND
, and si = ui+1−ui . Notice that the sum of all elements in S is equal to

one by definition. The elements of the sample S are employed to define the test statistic. In the
simplest version, the Moran (M) test, the test statistics is the negative sum of the logarithms
of each spacing

tM = −
∑

s∈S

log(s) . (B.8)

A more complex version is the recursive product of spacing (RPS) test, which was re-
cently proposed in Ref. [21]. The RPS proposal is to include spacings of higher order—i.e.,
distance between non-consecutive points—in the test statistics, in a recursive manner. The
recursion defines a total of ND +1 samples of distances, S(k), where S(0) = S. The S(k) sample
contain ND + 1− k points

S(k) =
¦

s(k)i

©ND+1−k

i=1
, (B.9)

defined by the recursion relation

s(k+1)
i =
�

s(k)i + s(k)i+1

�

/

ND−k
∑

j=1

�

s(k)j + s(k)j+1

�

. (B.10)

The normalisation ensures that the sum of all the elements of each S(k) set is equal to one.
The RPS test statistics is given by sum of the Moran statistics for each set

tRPS = −
ND
∑

k=0

∑

s∈S(k)
log(s) . (B.11)
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Figure 10: Power curves for the traditional GoF tests on the five signal benchmarks
of the Expo setup, compared with NPLM. The tests are performed on the features
given as inputs to NPLM (IN).

C Comparison with 1D GoF tests

When the data are one-dimensional, GoF is sometimes regarded as a solved problem. On one
hand, it is arguably true that a careful inspection of a one-dimensional set of data would always
allow the analyser to identify departures from the reference hypothesis expectations. Visual-
ising histograms with different binnings, looking for outliers or anomalous concentrations of
data points are common analysis strategies that do not even necessarily require a rigorously
defined GoF test. On the other hand, human inspection of the data could be unfeasible in some
cases and the process of anomalous data detection might need to be automated. Furthermore,
a standardised quantification of the anomaly could be required, which human analysers can
hardly provide. It is thus important to study and develop GoF methods also in the simpler
setup of univariate data. This appendix is devoted to the study of the Expo setup defined in
Section A.1. We already discussed the NPLM sensitivity in this setup, and the sensitivity of
a number of NPLM variants inspired by the classifier-based approach. We discuss here how
the Expo GoF problem is addressed by regular GoF methods—defined in Appendix B—directly
applied to the data and without employing classifiers.

The results are reported in Fig. 10, and compared with the NPLM-NN results. We see that
the NPLM power curves are always well above those of the spacing statistics tests. The χ2 tests
can give comparable performances to NPLM for suitable (but selected a posteriori) nbins, but
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they are exposed to dramatic failures in particular in the H1 and H4 benchmarks. EDF-based
tests perform better. In particular, the AD test is equivalent to NPLM for H1 and H4, slightly
better than NPLM in the case of H2 and H′2, but it fails rather strongly on the H3 benchmark.
Overall, the results confirm the general pattern observed in the rest of the paper: the NPLM
method performs well and it is much less exposed than other methods to strong sensitivity
failures for specific types of anomalous data. It thus qualifies as a “good” approach to GoF.
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Figure 11: Classification metrics: Power curves for the NPLM variants that employ
standard classification metrics computed over the output of the model (OUT) as test
statistics, compared with baseline NPLM.
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Figure 12: Classification metrics: Power curves for the NPLM variants that employ
standard classification metrics as test statistics, compared with baseline NPLM.
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Figure 13: χ2 metrics: Power curves for the NPLM variants that employ the χ2

test statistics computed on the output of the model (OUT), compared with baseline
NPLM.
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Figure 14: EDF metrics: Power curves for the NPLM variants that employ EDF-based
test statistics, compared with baseline NPLM.
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Figure 15: Spacing test metrics: Power curves for the NPLM variants that employ
the spacing test statistics, compared with baseline NPLM.
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