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Abstract

For a static time slice of AdS; we describe a particular class of minimal surfaces which
form trivalent networks of geodesics. Through geometric arguments we provide evi-
dence that these surfaces describe a measure of multipartite entanglement. By relating
these surfaces to Ryu-Takayanagi surfaces it can be shown that this multipartite contri-
bution is related to the angles of intersection of the bulk geodesics. A proposed bound-
ary dual [1-3], the multi-entropy, generalizes replica trick calculations involving twist
operators by considering monodromies with finite group symmetry beyond the cyclic
group used for the computation of entanglement entropy. We make progress by provid-
ing explicit calculations of Renyi multi-entropy in two dimensional CFTs and geometric
descriptions of the replica surfaces for several cases with low genus. We also explore
aspects of the free fermion and free scalar CFTs. For the free fermion CFT we examine
subtleties in the definition of the twist operators used for the calculation of Renyi multi-
entropy. In particular the standard bosonization procedure used for the calculation of
the usual entanglement entropy fails and a different treatment is required.
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1 Introduction

The AdS/CFT correspondence has been one of our most successful tools for improving our un-
derstanding of quantum gravity [4-6]. A particular hallmark of this duality is the connection
between spacetime geometry and measures of entanglement. More specifically the entangle-
ment entropy, a measure of bipartite entanglement is dual to Ryu-Takayanagi (RT) surfaces:
bulk minimal area surfaces which are homologous to the boundary region [7-9]. This provides
a notion of entanglement between different regions of the boundary theory “building up” the
geometry of the bulk spacetime.

However, by definition the entanglement entropy is only able to diagnosis bipartite corre-
lations and one may wonder if it is possible to generalize and identify measure of multipartite
entanglement between multiple boundary regions which are dual to specific classes of optimal
surfaces in the bulk spacetime.

In this paper we will be focused on one such class of surfaces which are defined by parti-
tioning the entire boundary into g regions we then look for the collection of bulk surfaces with
smallest total area which partition the entire bulk in g regions each of which is homologous to
one of the boundary regions. Notably compared to RT surfaces this allows for the possibility
of bulk intersections of surfaces. For AdS; where constant time slices are the hyperbolic disk
the solution comes in the form of “Steiner trees” which are networks of geodesics which meet
at equiangular trivalent vertices.


https://scipost.org
https://scipost.org/SciPostPhys.16.5.125

Scil SciPost Phys. 16, 125 (2024)

The authors of [1-3] have proposed a dual boundary quantity which has been named
the “multi-entropy”. This is calculated by considering particular g-point functions of twist
operators. For the usual entanglement entropy, which corresponds to ¢ = 2, one considers a
two-point function where the monodromies of the twist operators are chosen from the cyclic
group Z, and act to cyclically permute one through the n copies. Via the Euclidean path
integral this is equivalent to the trace of n copies of the reduced density matrix [10-12]. This
can be viewed as a particular set of “contractions” between the reduced density matrices which
are determined by the monodromies of the twist operators.

The multi-entropy generalizes this procedure by considering twist operators with other
finite group monodromies. Specifically for the g-party multi-entropy one chooses the Abelian
group Z?l_l. The reason for this is two fold: Within this group it is possible to find non-
zero g-point functions of twist operator for which the cycle structure of the mondromies of the
operators is the same. This is in turn guarantees that the conformal dimension of the operators
is the same. While not necessary it is reasonable to expect that if one is interested in a quantity
that is sensitive to g-party entanglement that this would be enhanced by considering a quantity
symmetric with respect to all parties. Secondly, in the n — 1 replica limit the operators have
the right scaling to be identified with tension-less surfaces in the bulk geometry.

Just like the entanglement entropy the path integral on Riemann surfaces can be used
to relate the monodromies of the chosen twist operators to contractions of copies of reduced
density matrices. In turn this defines a information quantity which can in practice be calculated
for any quantum state.

The purpose of this paper is further this proposal by providing additional evidence for the
duality. Specifically we focus on the case of low Renyi which is amenable to direct calculation.
This is accomplished by utilizing the uniformization method in which one constructs a replica
manifold of higher genus by gluing copies of the CFT together according to the monodromies of
the twist operators. Since the replica manifold has no operator insertions one can calculate the
partition function (which is theory dependent) and then use properties of the uniformization
map from the replica surface back to the single copy of the theory to determine the desired
g-point function of twist operators. While the construction of the replica surface can be done
for any choice of operators. In practice this method is difficult to use when the genus of the
replica surface is g > 2. This is because both the partition function and uniformization map
are generally unknown. For the multi-entropy unfortunately the genus of the replica surface
increases with Renyi index so we focus specifically on several case with low Renyi index where
we have the means to fully complete the calculation. Of course one would desire more robust
methods that would allow for the full calculation regardless of the choice twist operators and
the resulting genus of the replica manifold.

Beyond holographic theories it is also interesting to study the multi-entropy for other CFTs.
As a first example we consider the free fermion CFT. In this theory the entanglement entropy
can be directly calculated via bosonization [ 13-15]. Regrettably, we find that this method can
not be extended directly for the twist operators used for the calculation of multi-entropy. Our
calculations of Renyi multi-entropy do however provide an alternative means of generating
the correct twist operators however as we discuss they are unusual in that they break the
symmetry originally present in the original twist operators.

We also explore the multi-entropy for thermal states in the free fermion CFT. The result
have interesting implications for the multi-entropy in holographic CFT thermal setups, partic-
ularly regarding the shape of the corresponding RT surface.

Additionally, we looked into Renyi multi-entropy in the context of a free scalar CFT with
local excitations. The calculation accurately matches the expected results from computations
in discrete systems. This agreement confirms the effectiveness of our uniformization method
in constructing a replica manifold.
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The structure of the rest of the paper is as follows: In section 2 we review the definition
of the multi-entropy and proposed holographic dual. Then in section 3 we proceed with the
explicit calculation of the Renyi multi-entropy for several cases. Next in section 4 we discuss
the free fermion CFT. We start by considering the vacuum state, proceed to thermal setups,
and finally compare the results to the holographic calculation. In section 5 we discuss Renyi
multi-entropy in a free scalar CFT with local excitations. Finally we conclude in section 6. The
appendices A and B contain additional details of the free theory calculations. Specifically the
failure of the bosonization of twist operators and local operator excitation respectively.

2 Review of multi-entropy

2.1 Multi-trace measures

In this paper we will be interested in a particular class of multi-trace measures which can be
defined in terms of partial traces of copies of density matrices with respect to permutations
from a choice of finite group symmetry.

To illustrate this we first consider a particularly well studied example: The entanglement
entropy. Given a pure state p = |y) (3| we partition the system into two regions A and its
purifier O = A°. Tracing out O the entanglement entropy is given by

S =—Trpalog(pa), €Y

and its renyi counterpart
1
S, = T log(Tr o). 2

This can be re-written in terms of a multi-trace as follows: The density matrix on q parties can
be viewed a rank 2q tensor where each bra and ket corresponds to a different index. In this
case we have

Pay = 1A)I0) ® (Al{O], 3

where we have organized the indices so that each column corresponds to a different party and
the kets (bras) are the lower (upper) indices. In this language the reduced density matrix is
given by the contraction of the bra and ket of the same party

pa=Trop = pg'. )

In the case of the Reyni-4 entropy we need to take a trace of four copies of the reduced density
matrix. Considering the cyclic group of order 4

Z,:{ala* =e), (5)

we make a choice for each region a group element and consider its permutation representation.
Here we make the choice

To=¢e, (R)B)4); t,=ad>, (1,4,3,2), (6)

and then perform the contractions of the tensor indices on each party according to the corre-
sponding 7:
i vi Bk
=384 =MTr(p*);, -, = Tr(p}) = pSipLiplipfi. ©)

As another example we can consider a three party state

p2k. =1A)IB)|0)(AlI(BI(OI, 8)

4
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and the direct product of two cyclic groups of order 2

Z3: (a,bla®* =b*=e). C)]
Making the choice
To=e, (1)2)(3)4); 7Ta=a, (1,2)8,4); Tp=b, (1,4)(2,3), (10)
corresponds to the measure

3) _ 4 _ Bvi_abj Suk vl
=28, =MTr(p )z, zp0 = PauiPpgiPyvk Psor - (11
This is the renyi-2 multi-entropy which will discussed in more detail later.
A general multi-trace measure up to normalization for a group G on q parties {A;,- Ay}
is specified by the choice of g Ts:

log(MTr(pn){Ti})3 TAla T 9TAq €G, |G| =n. (12)

In our definition we have chosen to work with identical copies of the density matrix p. More
generally one could consider measures defined as multi-traces of different states potentially
with different numbers of parties. Furthermore we will be interested in those quantities for
which each copy p is treated symmetrically. These restrictions place a few natural constraints
on the choice of 7s:!

* For a measure on n copies of the density matrix the order of the symmetry group must
be n and the 7s should be associated with permutation representations of the regular
action on n points.

* Furthermore, for each copy to be treated the same it is necessary that for a given 7 the
length of all cycles in the permutation representation must be the same. This immedi-
ately implies the relation n = Im where [ is the length of the cycles and m is the number
of cycles.

A few comments (for more details and information see [1,3]):

* For a choice of 7s a new equivalent set of Ts can be constructed by acting by either
left multiplication or conjugation by a group element. Using this freedom it is always
possible to choose one of the 7s to be the identity. This amounts to instead working with
the reduced density matrix on g — 1 parties.

* Besides this freedom different choices of Ts will generally correspond to different multi-
trace measures.

2.2 Multi-entropy in the boundary theory

In this paper we will be interested in the determination of multi-trace measures in 2d CFTs
which can be accomplished through the calculation of correlation functions of twist operators.
We consider n copies of our CFT with fields X;, I € n. Associated to a twist operator is a
monodromy which dictate non-trivial boundary conditions between the different copies. Given

!These constraints have a more clear interpretation in the context of the 2d CFT. Each density matrix is a copy of
the theory which in order to construct the replica manifold is conformally mapped to a polygonal region. Together
these constraints imply that each copy is mapped using the same conformal map; that is to identical polygonal
regions each with the same number and length of sides and measure of angles.
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a twist field o4(x;) at a point x; with monodromy g € G (we assume G is an Abelian group)
we have the relation

X (™ (x — X))o g (x;i) = Xo(1)(x —x;) T (x;). (13)
The correlation function

(Ggl(xl)"'agn(xn)>: 8§ €G, (14)

can be non-zero only if the product g; - - - g, = e where e is the identity element.

There is a direct relationship between the 7s of the previous section and the mondromies
of the twist operators. In the CFT language 7, provide instructions for how copies of the
theory are identified across the region A; by reflection. The action of cycling around the twist
operators is then given by a reflection across one region and the inverse reflection across the
next region. Concretely given two regions A; and A, with 74 , 7,, the monodromy of the twist
operator at their shared boundary at a point p is given by

o(P)z, o1 (15)

As an example we consider again the entanglement entropy (1). Given a pure state
p = ) (3| we partition the boundary into two regions A = [x;, x,] and its purifier O = A°.
Tracing out O the bra and ket of the reduced density matrix can be described using the eu-
clidean path integral as the lower and upper half plane while the partial trace identifies the
two everywhere along the real axis except the interval A. The product of n density matrices
is then given by a cyclic gluing of n copies along the upper and lower boundaries. This deter-
mines monodromies at each of the end points of A. As such this can equally be described by
the insertion of two twist operator at the boundaries. In the literature the resulting two point
function is typically written

(O-n(xl)o-—n('xZ» > (]—6)

where the subscripts n, —n indicate that the two twist operators have inverse mondromies
and implement this cyclic identification. In this work we will find it useful to be slightly more
precise. The monodromies of these operators are associated with group elements a,a” ! € Z"
of the cyclic group with presentation {ala™ = e) where a is the generator of the group and
e the identity element. Representations of these group elements can be written in terms of
permutations which allows us to define the twist operators and their monodromies as

Ua(xl): (1’2,3"””-):

Ogn1(xy): (1,n,n—1,---2), a7
which corresponds to the choice
To=e, Tu=avl, (18)
we thus have 1
Sn = 7 1og((a(x1)Tgr1 (). (19)

The calculation of g-point functions of twist operators is accomplished by utilizing the uni-
formization method [16]. Each bra and ket (one copy of the upper half plane) can be mapped
to a polygonal region with sides determined by the cycle structure of the twist operators. In
particular a cycle of length [ will lead to an angle 7 in the polygonal region.
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For example in the case of three twist operators suppose a copy is present in cycles of length
:L, 1, 7. The correct map from the upper half plane to a triangle with straight lines or circular
arcs for edges and internal angles Aw < v7 < um is given by the Schwarz triangle function

AzFl(a/a blﬁcl;x)

= 20
Z(X) x 2F1(Cl, b,C;X) ’ ( )
where 1 1
a=§(1—7t—v—u), a’:§(1+k—v—u),
1 ;1 (21

b=§(1—A+ v—u), b =§(1+7L+ v—u),
c=1—-2, d=1+2.

The cycles then determine the correct procedure for gluing of the polygonal regions (the bras
and kets) together. The result is a Riemann surface X with no operator insertion. The genus
of X is given by the Riemann-Roch theorem just from the data of the cycle structure

q

:éZZ(z —1)—n+1, (22)

=1i=1

here there are q operators each with c; cycles of lengths [;.

The inverse map or “uniformization map” I' is multivalued and maps from the Riemann
surface back the single copy of the theory on the sphere. This map is meromorphic and the
locations and structure of the singularities contain all of the necessary information about the
original twist operator insertions. In particular the conformal dimensions of each twist oper-

ator are fixed to be .
< ! 1
A= . —— 23

712 - ( li) (23)

Using I' it is possible to relate the partition functions of the original theory and the Riemann
surface. as a result of the conformal transformation there is a conformal anomaly given by the
Liouville action S; :

dzzf[a ¢3,08"" +2Rp|. (24

(O'gl(xl)"'o'gn(xn»:Z:eSLZZ; Sy = 96

The field ¢ is determined explicitly by I" as
¢ =2log(|2,T]). (25)

Typically these calculations are challenging to perform as the Liouville action requires careful
regularization and the exact uniformization map can be difficult to determine especially for
g=2.

Returning to the entanglement entropy each ket and bra is mapped to two-sided “digon”
with angle & (see figure 1). These are arranged with the endpoints at z = 0, oo forming a
sphere. The explicit uniformization map up to mobius transformations is in this case

I'(z)=2", (26)

from which the entanglement entropy can be explicitly calculated
S = Elog(w) ) 27)
3 €

7
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=

Figure 1: L: A single copy of the CFT split into its bra and ket in the gravitational path
integral. The twist operator insertions are shown at the real axis. The twist operators
divide the real axis into two regions. We choose to glue the region O (shown in blue)
such that the gravitation path integral corresponds to the reduced density matrix p,.
Along the two remaining intervals are shown the corresponding copy it will be glued
to to form the replica manifold. These are done in accordance with the monodromies
of the twist operators. R: After a mobius transformation and application of the map

x# each half plane is mapped to an digon with angle ..

The renyi multi-entropy defined in [1,3] is the generalization of this procedure to a pure
state with q intervals where the monodromies of the twist operators are chosen from the group
qu—l) in such a way that the resulting cycle structure of all operators is the same consisting
of n?72 cycles each of length n. In the language of the previous sections this corresponds to a
particular multi-trace measure with appropriately chosen ts. That is we consider the g point

function

q
(0, (x1)0 g, (x2) -0 (x> & €Z Vst [ Jai=e, (28)

1

where the conformal dimension of each operator is

A= cnd—2 (n _ l) (29)
12 n)’
The renyi multi-entropy and multi-entropy are then given by
S@ = LI 1 (( ) ) 30
no 1—nnd—2 0g O-gl(xl)o-gz(XZ) O-gq(xq) )n 5 (30)
and
S(q) = rlllz)l':]l Sr(zq) = —an 10g((0'g1 (xl)o-gz(x2) “ee O-gq (xq)))n) |n:1 . (31)

Example: Constructing the replica manifold

As a concrete example let’s consider the case ¢ = 3 n = 4. Here the monodromies of the twist
operators are chosen from Z, x Z, with group presentation (a, bla* = b* = e). For the two
generators a, b we pick an explicit representation in terms of permutations to be

a: (1,2,3,4)(5,6,7,8)(9,10,11,12)(13, 14,15, 16),

32
b: (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6), (32
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Figure 2: L: A single copy of the CFT split into its bra and ket in the gravitational path
integral. The twist operator insertions are shown at the real axis. The twist operators
divide the real axis into three regions. We choose to glue the region O (shown in blue)
such that the gravitation path integral corresponds to the reduced density matrix p,p.
Along the center between the bra and ket we label for each interval the copy that the it
will be glued to. These identifications are done in accordance with the monodromies
of the twist operators. R: After applying the map (20) each half plane is mapped to
an equiangular hyperbolic triangle with angle %.

from which using the group multiplication we can determine the permutation representation
of all other group elements.

Now we choose the three twist operators to be charged under the group elements a, a®b>, b
which determines the monodromies:

oq(x1): (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16),
oweps(s): (1,6,13,11)(2,7,14,12)(3,8,15,9)(4,5,16,10), (33)
op(x3): (1,10,15,7)(2,11,16,8)(3,12,13,5)(4,9,14,6).

Each twist operator has a cycle structure consisting of four cycles of length four. Equivalently
this corresponds to the choice of s

Tp=e, Tp=a’, Tp=Db. (34)

Using the map (20) each ket can be mapped from the upper half plan to an equilateral
hyperbolic triangle with angles 7 and then reflected to form the fundamental region (see
figure 2). This is equivalent to tracing out the region O such that each fundamental region
corresponds to a copy of p,s. The replica manifold is constructed as the gluing of these 16
regions following the prescribed cycle structure (see figure 3).

2.3 Steiner trees and proposed holographic dual

We start with a static time slice of pure AdS; and partition the boundary into ¢ connected
regions. We label the collection of regions {A;}: A, B, - - - but label the final region O signifying
that it is the purifier and that we have divided the entire boundary such that we have a pure
state. We consider the following minimization problem: find the collection of geodesics of
minimal length that partitions the entire bulk into g regions each of which is homologous to
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Figure 3: The replica manifold associated with the renyi multi-entropy 823). Each
fundamental region consists of two equiangular hyperbolic triangles each with with
internal angles 7. The sixteen fundamental regions are glued according to the ex-
plicit permutation representation for the mondromies of the twist operators. They tile
a subregion of the hyperbolic plane where the final pairs of gluings at the boundary
are indicated by the different colored subregion boundary segments. After perform-
ing these the resulting Riemann surface is genus ¢ = 3. This Riemann surface is
equivalently constructed by the quotient of the hyperbolic disk by the Fuschian tri-
angle group (4,4,4).

a different boundary region. We will call the set of such surfaces which satisfy this homology
constraint to be {X} and the surface of minimal length ©*. We define the holographic multi-
entropy to be the length of this surface

SD({A}) = —— area(T"). (35)
4Gy

The solution to this problem is given by a Steiner tree [17, 18] these are networks of
geodesics which meet at equiangular trivalent vertices .

Of particular interest to us will be the case n = 3 in which case we expect a single bulk
vertex along with geodesics from this point to the boundary. We start by considering the
most symmetric case where the boundary division are equally spaced around the circle at
infinity with angular separation 2?“ By symmetry the minimal configuration consists of radial
geodesics from the boundary to the bulk intersection at the center. These geodesics also meet
at angles of %” (see figure 4).

For the hyperbolic disk it is possible to relate the lengths of sides of a triangle using the
hyperbolic law of cosines. We consider a triangle with points i, j,p. If g; ;, is the geodesic
connecting the points i; and i, and define

iy

ijiy = area(g; ;). (36)
With this in place we have

cosh(ij) = cosh(ip) cosh(jp) — sinh(ip)sinh(jp) cos(¢), 37)

10
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A

Figure 4: An example of a minimal Steiner tree for three boundary regions.

where ¢ is the angle the angle between the geodesics g; , and g; ,. Now taking the points i and
j to be ideal (located on the boundary) this simplifies to the following relation (see figure 5)

ij+2log(csc(§))=ip+jp. (38)

Next, we consider the surface ¥.* which is comprised of three geodesics g, 5, gp 5, €, s Where
the intersection point s is at the center. We also include the geodesics g, , g5, and g, , which
are the RT surfaces of the boundary regions A, B, O and whos areas calculate the holographic
entanglement entropies Sy, Sg, Sag- Each RT surface can be related to two of the geodesics of
»* using (38). Doing this three times, one for each RT surface we are led to the relation

1 X c 2
2aarea(2 )—(SA+SB+SAB)=3§10g(ﬁ) . (39)

Now for g = 3 we have the equivalence
Sa+Sp+Sap = Iag +1a0 + 1o, (40)

where
Ina, =Sa, + 54, —Saa, (41)

is the mutual information between regions A; and A,. Thus

K'—Larea(z*)—l(l +Lo+1 )—Elo (i) (42)
._4GN o5\ T a0 Bo—zgﬁ-

In particular the quantity %I A4, 18 precisely the maximum number of distillable bell pairs
between the regions A; and A,. The result (42) states that if we remove all possible distil-
lible bipartite entanglement the holographic multi-entropy is still positive, so the remaining
contribution must be multipartite. In addition the multipartite contribution is completely char-
acterized by the angles the geodesics make at the bulk intersection point.?

2This is commensurate with claims related to another measure the reflected entropy that such corner terms
should be associated with the presence multipartite entanglement. In this context a similar relation between
the difference of the reflected entropy and one half the mutual information, the “Markov gap”, was related to a
particular information theoretic recovery protocol. It would be interesting to pursue this similarity further [19,20].

11
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Figure 5: Given a geodesic with end points on the boundary (such as an RT surface)
we can pick any point in the bulk and draw geodesics from the two boundary points
to this bulk point. Together the three geodesics form a hyperbolic triangle with an
interior angle of ¢ (the others are zero being ideal points). The length of the two new
geodesics together have the same length as the original plus and additional increase
which depends only on the angle ¢.

For other divisions of the boundary we note that the points a, b, 0 and always be brought
to the symmetric configuration via a mobius transformation. Such transformations do not
preserve the lengths of bulk geodesics, but do preserve angles between them. Thus for any
division of the bulk the geodesics of the minimizing surface will always meet at angles ¢ = %“
Furthermore, the argument leading up to (42) remain unchanged so that « is the same for all
choices of boundary region (see figure 6). Generalizations of these relationships to ¢ > 3 have
already been considered in [21] (see figure 7).

Now comparing with the boundary proposal and specializing to ¢ = 3 we have

1 1
53 = 7= —10g (05, (x1)og, (x2)0g (X)) , (43)
where the three point function can be fixed by conformal symmetry to the form
Cn

c ) (44)
(391 X13X93) 2D

(O-gl(xl)ogz(x2)0-g3(x3)>n =

and we have used that the conformal dimension of all of the twist operators is given by
15—2(112 — 1) since they each have monodromies consiting of n cycles of length n. We thus
find

s = _c 11

1 1
2
n 12 E;(Tl — Dlog(xg1x13x23) + 1-nn log(C,)

c 1 1 1
=— (1 + —)log(x21x13x23) + ——~1log(Cy).
12 n l1—nn

(45)

The scaling of the first term is the same as that of the Renyi entanglement entropy Sr(lz). This
suggests for all n we should consider the quantity
1
kP =53 =~ (5P +5P(B)+5P(0)) . (46)
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Figure 6: The three RT surfaces along with ©* form three hyperbolic triangles. Us-
ing this the surfaces can be related. The increase in area due to the three angles
of ¢ = %” which we call k gives the contribution which is multipartite. For differ-
ent choices of boundary regions the holographic multi-entropy will change, but this
change is entirely encapsulated by the corresponding changes in the three RT sur-
faces; k remains the same.

Now when we take the n — 1 limit
c
S = Zlog(xz1%13%23) = 31 108(Co)ln=1 (47)

where the first term is the same as half the area of the three RT surfaces. In particular the
extra term coming from the intersection of the geodesics is directly related to the three point
coefficient C,. The holographic calculation gives the prediction

? C 2
= =2y log(Cullnes = Slog =) “8)
The confirmation of this equality by direct calculation of C,, in the boundary CFT would provide
strong evidence the duality between the multi-entropy and the area of minimal Steiner trees
in the bulk geometry.

As mentioned previously to our knowledge the only method for the exact computation of
this quantity relies on the uniformization method [16]. In order to complete the calculation
for a specific n two pieces of information are needed: The uniformization map between the
replica surface and the original theory and the partition function of the replica surface. In the
current case of interest the genus of the replica surface increases with n such that beyond n = 3
these quantities are unknown. In what follows we content ourselves with exact calculations of
Kgl?’) for those cases which are tractable. We also discuss some cases with ¢ = 4 and the fusion
of operators in the coincident limit.

3 Renyi multi-entropy

In this section we present explicit calculations of multi-entropy for (n,q) = (2,3),(2,4) and
(8, 3), starting from the standard entanglement entropy i.e. ¢ = 2.

13
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Figure 7: Examples of Steiner trees for four boundary regions. For four or more re-
gions there are phase transitions between different configurations depending on the
relative positions of the boundary vertices. Here the surfaces exhibit a s,t channel-
like transition depending on the orientation of the internal geodesic segment. The
constant k remains important as each trivalent vertex will induce a contribution pro-
portional to k. Configurations with higher valence intersections (i.e. not Steiner
trees) will never be minimal.

3.1 Entanglement entropy from Liouville field method

We take the conformal transformation w = f (2),

af

Z

2
ds?® = dwdw = dzdz. (49)

2
‘é—); . Notice that this Liouville field ¢

is related to the previous Liouville field ¢ in (24) via ¢ = 2¢p. The partition function in the
coordinate w is given by

Here we set the classical Liouville field ¢ as e2¥ =

Z,=Zge" (50)

where I; is the Liouville action

ILZZA%_CJdZZME(péLp +,uez‘p). (51)

As a warm up example, we briefly explain the calculation of entanglement entropy (i.e.
w—a

q = 2) via the the replica trick using the Liouville field theory. We take the map as z" = | =
and calculate the n-th Renyi entropy on w-plane. Then the Liouville field is

e2¥ — n2|b —a|2 |Z|2(n_1) 5
= |Zn — 1|4 1)
and the Liouville action Ii”) is
=S| gg? |Q—n)— (1 +n)"? N n?|b — a|?|z|21D )
n 24 |zn —12|z|2 1

14
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I ,f diverges at z = 0, oo because of the UV divergence. We set the UV cut-off in the w-plane to
be e.

€ 1/1‘[
>

_Cl 1/n (54)

The integral near z — 0 is evaluated as

1—n)? 1-n)*  |b—
It~ ¢ ( n) ~ i( n) log a , (55)
"o24m ). o 12]? 12 n €
and z — o0 is
1+ n)? 1+ n)? b—
L S dtny  cd+n) log 2. (56)
no24n | oo Iz]? 12 n €
Tr,[(p4)"] is obtained by introducing the normalization factor nI%, where
c ((1-1)% (1+1)? b—a c —
IL — + 1 =—.4.] _— 57
1712 ( 1 1 )% e [T 7
Tra[(pa)"]1s,
Tra[(pp)"] = el
b—al® (1—nn)2 +13 (1+nn) —n- 13-4
_ ‘ :
b— —¢(n—3
—|2=¢ (58)
€

This result reproduces the well-known result of n—th Renyi entropy and the (von-Neumann)
entanglement entropy [10,11]:

1
S = ———1og Tral(p,)"]
—n
+1 —
_ c(n )log‘xl Xy ’ (59)
6n €
§@ = lim s
n—1
= Slog| 22| (60)

3.2 Analysis of n =2 and g = 3 in the coincident limit

Let us move onto the first non-tirivial example, namely three-partite entropy g = 3. Here we
choose the subsystem A, B and C are all intervals which are situated next to each other in this
order. For simplicity, we choose n =2 i.e. SS’), so that the whole geometry of path-integral is
mapped into a genus zero surface.

The essential part of this entropy calculation is the evaluation of three point function of
Zy X Z twist operators 01 = 0y, 09 = Oy1p-1 and L3 = oz at w =wq,w, and wy. Then=2
replicated partition function is given by

(o1(w1)oa(wy)os(ws)) . (61)

Since we assume that the two dimensional CFT is on an infinite line, the subsystem A becomes
infinitely in both directions Re[w] — +o00o. Thus the end points of the intervals B and C are
(wq,wy) and (w,, w3), respectively.

15


https://scipost.org
https://scipost.org/SciPostPhys.16.5.125

Scil SciPost Phys. 16, 125 (2024)

. ..0 2| [w | [y 2
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Figure 8: The conformal map w — z given by (63). This is decomposed into two

w=wy 2 _ YtYo . _ b—a
wimw and z° = ==2, where we defined y, = 4/ =5-

transformations y? =

3.2.1 Conformal anomaly analysis

One way to evaluate this three point function is to insert an energy stress tensor as in [11] and
consider its expectation value

(T(w)o1(wy)oa(wy)os(ws))

T(w)) = (62)
( ) (o1(wi)oa(wy)os(ws))
To evaluate this, we first note that the conformal transformation defined by
(ws—wp)w—wy) _(22=1Y’
= ) (63)
(wy —w)(wy —w) 22+1

maps the 4-sheeted w plane, which describes the n = 2 replicated manifold for multi-entropy,
into a complex plane C, whose coordinate is called z. Note that w = w;,w = w, and w = w4
corresponds to 2 = +1, 2 = 0, 00 and z = %i. This map is explained in Fig.8.

We can calculate (T (w)) by the conformal transformation of energy stress tensor:

dz

dw)_z (@) - w:z], (64)

ro) =

o,w

3 2.\ 2
where {w : 2} = aazww - % (az W) is the Schwarz derivative. By noting (T(z)) = 0 on the flat
plane, we obtain

c P(w)
O = 52 G —wo R —wy ) ©
where P(w) is defined by
P(w) = (W3 + W) + w3 —wiwy —wiws —wyws ) w’
— (w%wz + wlwﬁ + wfwg + wlwg + w%wg + wzwé — 6W1W2W3) w
+ (w?w% + w%wg + W%W% - W%W2W3 - W1W3W3 - Wlwzwg) . (66)

However note that this T(w) is the energy stress tensor on one of the four sheets. To obtain
the total contribution for the replicated CFT with the central charge 4c on a plane instead of
the individual CFT with the central charge c, we need to multiply the factor 4:

<. Plw)
8 (w—wq)2(w—wy)2(w—ws)? .

(Tior(w)) = 67)
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On the other hand, if we defined the conformal dimension of the twist operators o; to be
h; (i =1,2,3) the Ward identifty tells us

3

h
(Teor(W)oy(wy)oa(wy)os(ws)) = [Z : + ! d ] (o1(wy)oa(wy)os(ws)).

(w—w;)2 w—w; dw;

i=1 68)
If we set c c
—ho—h. == _"(n2_
hi=hy=hs = < (= (0~ 1)), (69)
then the (T,,,) computed from
(T,ye (W) = (Tror(W)o1(wr)oa(wy)os(ws)) ’ (70)

(o1(w1)oy(wy)os(ws))

by plugging the right hand side of (68) precisely agree with (67). This confirms that o;

(i = 1,2,3) are primary fields with the conformal dimension h; = §. Thus, the replicated

partition function is given by

(o1(wy)oa(wy)os(ws)) = Cés) (wy —wy)(wy —w3)(ws — W1)|_‘£‘ . (71)

This gives the expected multi-entropy (see (43) for its definition)

Elog |(wy —wo)(wy —w3)(wz —wy)| 1

3 _ L 3)
S, =3 p 2logC2 s (72)

though we cannot fix the constant Cég) using this method.

3.2.2 Liouville field analysis

We can obtain the same result from the Liouville field theory analysis as follows. The conformal
map can be written as
_ wy(wy— w,)(z% — 1) + wy(wy —w)(z2 +1)°

Y T W)@ — 1P+ (W)@ 12 73

The Liouville action becomes

2
A dzz( 4w,22(3 + 2 —wy (32— 1)2(1 + 82% + 32%) + wy (22 + 1)*(1 — 822 + 32%)
=L
24

z(z4 — 1)((W2 —wp)(z2—1)2 + (wg —wy)(22 + 1)2)

+ ,uez‘”) . 74)

I; diverges at z = 0,+£1,%i, 00 because of the UV divergence. We set the UV cut-off in the
w-plane to be €.

_ 1/2
z2=0, w=wy: |z] > (ws —ws)e s
(wy —wy)(ws —w,)
(wy—wy)e |2
g==x1,w=wy: |g]|> s
(wy —wy)(ws —wy) 5
1 (s —w1)e 1/2 (75)
g==%i, w=wg: |[g]> 2 ! s
(wg —wy)(ws —wy) 12
=00, w=w,: |z|< (wy —wq)(ws —w,)
- > - W2 -
(wg—w)e
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Figure 9: The conformal map to a torus for the replica method calculation for the
second Renyi entropy with the disconnected subsystem.

I; is evaluated as

c |b—al’|c—b|
I} ~—log———mM8MM 76
™12 8 lc—al3e” (76)

(01(a)oy(b)os(c)) is obtained by introducing the normalization factor ZZI?), where we set

Iil) as similar to (57),

P _ ¢ 10g{@|+10g|@|
I"=—-4
12 2
4
C €
=l : 77
128 | (s — w2 (wy —wy 2 77
The result agrees with the previous calculation
(o1(wq)oy(wy)os(ws)) o< oli—41;"
i (Wz — Wl)(Wg — W2)(W3 — Wl) -3
B &3 (78)

3.3 Analysis of ¢ = 3 and n = 2 in the disconnected case

Now we consider a generalization of the previous result to the case where the subsystem A and
B are disconnected and their complement C consists of two disconnected intervals. We note
that the Riemann surface for this n = 2 three-partite entropy is obtained by making double
the length of the Riemann surface (see Fig.9) for the n = 2 replica method of Renyi entropy,
as depicted in Fig.10.

In the 2nd Renyi entropy we know that the twist operator four point function is expressed
in terms of the torus partition function [16,22]

(0(0)0 () (L)a(00)) = [28n(1 =] T - Ziorus(7), 79)

where 7 is the moduli of (rectangilar) torus and is related to the cross ratio of the twist operator
insertions via
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Figure 10: The conformal map to a torus for the replica method calculation for the
n = 2 multi entropy with the separated subsystems.

where 60,, 65 and 6, are standard elliptic theta functions (see e.g. the textbook [23]).

Now, in our replica method for the n = 2 multi entropy, we have four sheets instead of two
ones. Thus we can obtain the four point function by doubling the kinematical factor from the
Weyl anomaly. Also the torus moduli is doubled as T = 27. Thus we obtain

(01(0)02(M)o3(1)o4(00)) = [289(1 = 1) ] 7® - Zeorus(2), (81)
such that 6,(%/2) . 6.(2/2) .
_ o\ T = 4T
= [93(%/2)] ’ [03(%/2)] ' (82)

Note that for our ¢ = 3 multi entropy calculation, we can choose 0, = & and 04 = &3.
It is also straight forward to generalize this to the general four points xq, x5, X3, X4 with

the cross ratio
_ X12X34 (83)
X13X24

We can use the standard formula (see e.g. [23] or appendix A of [24]):
(01(x1)02(x2)03(x3)04(x4))
-3 4 4
= [x12x13x14x23x24x34] 0 (1—n)" - (0,(0)05(n)05(1)04(0)),  (84)

where we assumed the chiral conformal dimensions of O; (i = 1,2,3,4) are all given by h.
By applying this formula to (81), we eventually find the final formula

_4 - N
(01(x1)o3(x2)03(x3)04(x4)) =273¢- [X12X13X14X23X24X34] ® Ziorus(T)- (85)

We can evaluate the multi-entropy SS’) by setting n = 2 in the original definition

1
S8 = iy 10801 o (1200 (xs)V (xa)), (86)
as follows
@__1
Sy = 5 log{o1(x1)02(x2)a3(x3)T4(x4))
2¢ c 1 .
=3 log2 + 12 log [ x12X13X14X23X24%34 ] — 5 108 Z s (). (87)

Below we will study its behavior in various limits.
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3.3.1 The limit x5 — x3

If we take the limit x, — x5, which is equivalent to

T—0, n—1, (88)
we obtain ) . .
(01(x1)05(x2)03(x3)04(54)) 2 273 - x50 - (X12X24%14) (89)
where we employed
n21—24e_27m, Ztorus(%)zeg_cfi ~25(1—m) 12, (90)

Thus, in the limit, the multi-entropy is computed as follows:

Sg?’)z%10g2+§10g%+%10g[%], 91)
where we insert the cut off € dependence as usual.

Even though we are not expecting to have a simple gravity dual because we are working
with the Renyi quantity (n = 2), it is still instructive to give a holographic interpretation of
Sgg) qualitatively, just ignoring the back-reaction issue. As depicted in the left of Fig.11, we
can interpret (91) as a sum of the contribution from the geodesic which connects x, and x5
and the one from geodesics with three-way intersection as computed in (72), plus a certain

constant.

3.3.2 The limit x; — x5

On the other hand, in the opposite limit x; — x,, we find

Tl ~

n= 24e%i% -0, Ztorus(%) ~e o= 2%677_% . (92)
This leads to the multi-entropy
3) € X12 € X34
Sg)zzlog?l+zrlog?. (93)

This may be easily understood by taking OPE between ¢, and 0, = &, and focusing on the
identity sector as the intermediate states. The qualitative holographic interpretation for this
is depicted in the right of Fig.11.

3.3.3 Phase transition in holographic CFT

In holographic CFTs with large c limit, the torus partition function experiences the phase tran-
sition [6,25] as follows

Ziorus(T) =Min[e 5%, eF] 94)
where the phase transition occurs at T = i, which is equivalent to

0,(i/2)
= (eg(i/z)

4
) ~ 0.9705. ©95)

Thus for n > n,, we find

(3) 2 C Tic
S = —1og2+ —log| x19X13X14X93X9aX34 | — — . 96
2 3 g 12 g[ 12X13X14X23X24 34] 127 (96)
On the other hand, for 1) < 7),., we obtain
3y  2C c TicT
S; ) = ? 10g2 + E log [X12X13X14X23X24X34:| + T . (97)
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VA
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(3)

Figure 11: The holographic interpretation of the two phases of the multi-entropy S, ™.

The left is in the phase 1 > n,.. The right is in the phase 1 > 1,.

3.3.4 Reduction to coincident limit

When we reduce the Renyi entropy 51(12) for the disconnected intervals AB to a single interval
by taking the limit x, — x5, we can simply set

Ax=¢€, (98)

where Ax is the length of interval which we would like to eliminate. In the limit x5 — x5, the
2nd Renyi entropy computed from (79) is evaluated as

x5 — x3]

c |x;—x4] ¢
ng)zzlog#+zlog (99)

If we set x5 — x5 = Ax, then indeed we can recover the single interval 2nd Renyi entropy
result ng) = ;log @ [11], as expected. In this way, we find that to eliminate an interval
we can set its length to (98) as depicted in the upper panel of Fig.12.

Let us find an analogous rule which allows us to reduce the multi entropy in the discon-
nected case to that in the coincident case, and the further to a single interval Renyi entropy.
For our ¢ = 3 multi entropy Sypc, we argue that the correct rule is to set the length of interval
to the following value:

~ €
Ax==, 100
2 (100)

as sketched in the lower panel of Fig.12. Even though this rule is different from (98), this
is not surprising because in this case we need to eliminate a vertex which joins three legs, in
addition.

If we apply this to (91), by substituting x,3 = Ax(= €/4), then we get

Sgg) o zlogZ + glog[%} . (101)
This suggests Kgi), which is defined by
k® =50 % (8D +s@B) +5P(0)), (102)
and characterizes the tripartite entanglement, is given by
k) = %r log2. (103)
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Figure 12: Eliminating a simple interval (up) and an interval with a vertex (down).

As a consistency check, let us further reduce (101) by setting x1, = Ax(= €/4). This leads to

c X12 (2)
| [—] —s@ 104
4 %% ¢ 2 (104)

which agrees with the single interval Renyi entropy as expected.

34 n=2,q=4

We now consider the case of four twist operator insertions for n = 2 with finite group symmetry
Zg. with group presentation (a, b, cla? = b? = ¢ = e). For the three generators a, b, c we pick
an explicit representation in terms of permutations to be

a: (12)(34)(56)(78),
b: (13)(24)(57)(68), (105)
c: (17)(28)(35)(46).

Now we choose the three twist operators to be charged under the group elements a, ab, c, bc
which determines the monodromies:

oq(xy) s (12)(34)(56)(78),
oap(x2) s (14)(23)(58)(67),
oc(x3): (17)(28)(35)(46),
Ope(xs): (15)(26)(37)(48).

(106)

It can be verified that replicated geometry is a torus. The explicit construction is shown in
figure 13. Because the resulting replica manifold is again a rectangular torus we can use the
result

wlo

(01(0)0,(n)05(1)0,4(00)) =[28n(1 —n) |

and making a mobuis transformation we find

: Ztorus(T); (107)

(0q(x1)0 b (x2)0(x3)0 b (x4))
= [X12X13x14X23x24x34]_% . ’f)%h(l — n)gh - {01(0)0,(1)05(1)04(00))
Ziorus(T) - (108)

wlo

8 -
=273 [ X15X13%14%X23X24X34]
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Figure 13: Replicated geometry for ¢ =4 and n = 2.

Because of the cycle structure of the twist operators we now have h = 7. Even though we
have more copies the ratio of the sides of the torus remains unchanged thus the moduli 7 is
identical to the one in (80). The Renyi multi-entropy is given by

4 2c c 1
Sg ) = 3 log2 + 12 log[ X12X13X14X23 %2434 ] — p 108 Z;orus(7) - (109)

Here since the modular parameter is 7 there will be a phase transition at 1, = % For

holographic theories we find that for n <7/,

8(4)—%10 2+ilo [x X13X14X93X94X ]Jrm
2—3g 128121314232434 2%
3 3 1 1
X2 X2 X14X0ax 2 x2
~%10g2+1—10g 12734 12623 137241 (110)
Where we have used
n-~ 24ei7m s Ziorus ™ 2%77_% P (111)
1 C C X12X34
——log(Z ~——log(2)+ — 1o . 112
4 g( torus) 6 g( ) 24 g(X13X24 ( )
On the other hand, for n > 7/, we obtain
5(4)—2—610 2+ilo [x X13X14X93X94X ]—E
2 T3 g 12 [ X12X13X14X23X24X34 241
$.3.3 .3
X19X34 X2 X2, X2 X
%%10g2+1c—210g 12754 12623 e (113)
with
N~1-2%F,  Zigus ~25(1—n)75, (114)
1 C c X14X23
——log(Z ~——1log(2)+ —log| —=|. 115
y 8(Ztorus) 5 g(2) 24 g(x13x24 (115)
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Figure 14: The holographic interpretation of the two phases of the (n,q) = (2,4)

)

multi-entropy S, z.c.p-

N> Ny

The left is in the phase 1 > 71,. The right is in the phase

3.4.1 Coincident limit

In the limit x5 — x; or n — 0 the twist operators o, and o,; fuse and we have

op(xg): (13)(24)(57)(68),

oc(x3): (17)(28)(35)(46), (116)
Tpe(x4) s (15)(26)(37)(48).
The resulting replicated manifold has genus g = —1 which is consistent with two disjoint

sphere. This makes sense as the cycles factorize into those between copies 1,3,5,7 and
2,4,6,8. In fact the resulting disconnected manifold is the same as two copies of what was
found for g =3,n = 2.

The limit x, — x5 or 1 — 1 has an identical structure with the factorization now between
copies 1,2,5,6 and 3,4, 7, 8.

Now we examine the resulting renyi multi-entropy in these limits. To do so we use the
expansion of the renyi multi entropy for small(large) 1 and then take x, to the appropriate
coincident limit. We find

c c, Xx C.  Xqy3Xq4X
nN—0, XxXy9—Xx;: —log2+—log£+—lo St s
2 8 € 8

e’
. ¢ c Xo3 , € X13X14X34 (17
n—1, Xxy—Xx3: Elog2+§log?+§logT,

which is the expected answer of (??). A qualitative interpretation in terms of gravity dual is
presented in Fig.14.

It is also straightforward to confirm that by setting x1, = Ax (or x,3 = Ax) in the limit
1n — 0 (or n — 1), we can recover a half of the (n,q) = (2, 3) limit result (101), as expected.

35 n=3,q=3

We now consider the case of three twist operator insertions for n = 3 with finite group sym-
metry Z% with group presentation (a, bla® = b® = e). For the two generators a, b we pick an
explicit representation in terms of permutations to be

a: (123)(456)(789),

b: (159)(267)(348). (118)
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Figure 15: L: A single copy of the CFT split into its bra and ket in the gravitational
path integral. The twist operator insertions are shown at the real axis. The twist
operators divide the real axis into three regions. We choose to glue the region O
(shown in blue) such that the gravitation path integral corresponds to the reduced
density matrix p,g. Along the four remaining intervals are shown the corresponding
copy it will be glued to to form the replica manifold. These are done in accordance
with the monodromies of the twist operators. R: After applying the map (20) each
half plane is mapped to an equiangular flat triangle with angle %.

Now we choose the three twist operators to be charged under the group elements a,ab, ab?
which determines the monodromies:

o.(xy): (123)(456)(789),
Oap(xy): (168)(249)(357), (119)
Oap2(x3) s (174)(285)(396).

For each copy we can use the map (20) which takes each half plane to a flat equilateral triangle
with angles 3 (see figure 15). The resulting replica manifold is given by a torus tiled by

equilateral triangles (see figure 16). This fixes the modular parameter to T = es.

In order to carry out the calculation we will use the full machinery of the uniformization
method. In particular we found [16, 20,26] useful for the details presented here.

Up to modular transformations there is unique uniformization map I' : 3 — CP from the
the torus back to the sphere with the correct properties. We take the images of the original
twist operator insertions on the sphere to be located on the torus at

1 = 2 27
=0 m=3ty mE gty

On the torus there are three such points of each type separated by periods of the lattice spacing.
Each of these should be mapped respectively to the points x7, x5, x5 so that I'(z;) = x;. We
further demand that the series expansion take the form

(120)

I(z)=x;+a(z—z)%+---, (121)

where the cycle structure of the twist operators fixes w; = 3. From these considerations we
have the solution [27, 28]

_ Ap'(z|t)+B AT(z) = 6(AD —BC)p(z|7)?

Fe)= Cp'(z|t)+D’ "~ (Cp'(zlt) +D)?

, (122)
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Figure 16: The replica manifold associated with the renyi multi-entropy Sgs)_ Each
fundamental region consists of two equiangular euclidean triangles each with with
internal angles <. The nine fundamental regions are glued according to the explicit
permutation representation for the mondromies of the twist operators. They tile a

torus with modular parameter T = e3. In the figure opposite sides are identified.

which is the inverse of the map (20) with all angles Z. Here p is the Weierstrass elliptic
function which has the properties

p(22|7) = p(23]7) =0, o' (z2]7) =14/83, o'(z3]7) =—i4/g3, (123)

with the elliptic parameters given by g, =0, g3 = (27‘5)_61“(%)18. o and g’ are also related by
the relation

9’ (217)? = 4p(2(7)° — g20(2|7) — g5 . (124)
The parameters A, B, C, D which control the additional mobius transformation are chosen such
that I'(z;) = x; is true:
A=(i/g3) ' x1(x3—x3),  B=x1Xy+X1x3—2X5X3,
C=(i/g3) "(x2—x3), D =2x1—x3—X3, (125)

2
AD—BC= i@(xl —xg)(x1 — x3)(x2 — x3).

By expanding around each z; one can confirm that the first and second order terms are zero
and that the qg;s are given by:

a =i\/g_3(X1_X2)(x1_x3), a2=i\/g_3(xl_x2)(x2_x?’)

(xg —x3) (x1 —x3)

a3 = l.\/g(xl —x3)(x3 — x3) _

(x1—x3)

J

(126)

From here it is necessary to determine the contributions of the map to the Liouville action
(24). To do so we make some simplifying choices: On the sphere we choose the flat metric. In
order for the manifold to have the correct curvature it is necessary to introduce a singularity
which we take at a radius |x| = %. On the torus we also take the flat metric.
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Figure 17: L: The sphere with twist operators insertions is regularized by introducing
cut-offs. At each location we excise a region of radius €. We also impose a cut off at
radius % this allows us to use the flat metric on the sphere. R: The nine regular points
and nine images of infinity on the torus which contribute to the Liouville action. At
each we show the image of the cut-off. Note that because sides are identified some
points are represented multiple times along the boundary. We have only marked each
point once. As in the main text we assume here that D = 0 which fixes the images
of infinity to the half periods of the torus. For other values they will move to other
locations.

There will be two different contributions to the Liouville action: The first are the “regular
points” which are the images of the twist operators on the torus. As a result of the cycle struc-
ture and the period structure of the torus there will be three images of each twist operator.
To regularize these are taken with a cut-off radius of € around each point on the sphere. The
second type “points of infinity” are the images of x = oo on the torus. These locations corre-
spond to the solutions {z,} of Cp’(2,|7) + D = 0 and result because of the needed curvature
on the sphere. They are regularized with radius |z —z,| = [T (%) |.

Integrating (24) by parts and using that the metric is flat the Liouville potential may be
written in the form

S,=——i| ¢dpds, (127)
961 |,
where 0% are the boundaries created by introducing the cut-offs €, % on the sphere. In addition
there is a convention that external contours are always taken with opposite orientation.

The contribution of each regular point depends only on the parameters a;, w;. Using the

expansion (121) we find the potential to be

AT~ wiaz—2)" ! = ¢~ 210g(wl~|ai||z—zi|“’i_1) . (128)

€
la;]

2 w1
| 4i(w;—1)log wilail(i) “de, (129)
9% ), |a;]

so that the Liouville action term for the regular point is given by

L
Parameterizing the path |z —z;| = ( )”" e'?, 6 €[0,2m] the total contribution to the action

1S

Wi

. C 1
Sl :—E(O)l_l)(_logklll+10g(w1)+
w.

L __1 log(e)) : (130)

1 L

On the torus we have nine total regular points corresponding to the images of each of the three
twist operators. Each image is mapped to the same point x; by the map T following directly
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from the periodic properties of p’. Accounting for this multiplicity the total contribution is

c 3c
5} = ¢ log(lay|lasllas|) — - log(3) —clog(e), (131)

where the superscript r indicates these are the contributions from the regular points. We thus
find
- c c 3c
S = s log(x13Xx13x23) — p log(gs) — Y log(3) —clog(e). (132)

Next we consider the contributions coming from points of infinity. To simplify the calcula-
tion we can use properties of the uniformization map without knowledge of the location {z,}.
To do so we note that dzd,¢p = dxJ, ¢ and work on the sphere to determine the contribution
at |x| = %. We consider the ansatz

2
0, = a[(x—x1)(x —x5)(x —x3)]3, (133)
making use of (122) and (124) we find |a| to be
5
38
|af = ° <. (134)
(1 = xaflxy —xgflxg — x3])3
Thus, we find the potential around |x| = % on the sphere to be
oI~ ax? = ¢ ~ 2log(|al|x|?). (135)

Parameterizing the path x = %eie, 6 € [0,2mr] the contribution to the potential becomes

27 | |
so that 3
S° = Eclog(|a|5_2)
c C 3c (137)
=73 log(x12X13%23) + p log(gs) + o log(3) —3clog(5).

Note that there is a factor of 9 accounting for the contributions of each copy and an extra minus
to account for the orientation of the contour since it is external on the sphere. The correctness
can be validated by verifying that the cut-off 6 vanishes at the end of the calculation.

Alternatively we can work on the torus. The difficulty here is in determining the locations
{z.} as well as the expansion around these points. To aid us we will temporarily fix the locations
of the twist operators in order to force {z,} to a convenient points. We note if we take D = 0
then we only need to solve the equation p’ = 0. These points are well known to be the
half periods of the lattice given explicitly here by %{1, 7} as well as other points related by the
lattice periods. On figure 17 these are located at the half-way point on the segment connecting
for each copy I and I. In particular there are nine of them each of which gives an equal
contribution to the Liouville action.

At these points to leading order we have expansions [29]

1 2
§ §
o(z, |r)——2 0'(z,]t)=6 i( —2,), (138)
23 23
so that 1
X
r@)~pE—z2)", p=-""5. (139)
2§g§
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Thus, we find the potential around |z —z,| = |36 to be®

o,T ~—PB(z—2,)2 = ¢ ~2log(|p|lz]2). (144)

Parameterizing the path |z —z,| = |B|5e!®, 0 € [0, 2] the total contribution to the action to
be

2m
c
—1 1 2 . 1
967‘[1_[) 8i og(|/3|5 )d@ (145)

Accounting for the nine points we find the total contribution
o 3C c 3c
S = -5 log(xy3) + 2 log(gs) + - log(3) + clog(2) —3clog(d), (146)

which is the same as (137) under the substitution D = 0 — 2x; = X, + x5 as required.*
Now combining the contributions from all points we find the total Liouville action to be

2c
S, = —?10g(x12x13x23)—clog(e)—Bc log(5). (147)
The three point function can now be evaluated. Under the uniformization map we can relate

the torus partition function to that of the sphere by taking into account the conformal anomaly.
Accounting for the nine copies of the original theory we have

VA c
(0(x1)0(x2)0(x3)) 5 = e“%, Z5=Q573, (148)
1))

Here Zs is there sphere partition function with curvature located at the radius |x| = % and Q
is a scale related to the size of the sphere which drops out of the final calculation.

3As another option, || for arbitrary x;, x,, x; can be determined in the following manner. We introduce the
inverse of x =T'(z) asw (w=1/x = 1/I"), and the corresponding cutoff in the z-coodinate as &,.

1 1
— = — | =56. 140
) ' MG +5.) (140
We can rewrite 6 in the integral form as following:
& 2,+6,
EZJ dWZJ d—wdz. (141)
0 . dz
Here, by using (133), we obtain
dw_, 1 _ aM@ _ [(1 _ L) (1 _ X_) (1 _ ﬁ)]“
dz I'(z) I'(z)? I'(z) I'(z) I'(z)
=—a[(1—x;w) (1 —x,w) (1 —x;w)]*> . (142)

When z is in between z, and z, + §,, w is O(5). Thus, the integral above becomes
2,+6,
f (—a)[1+0(6)]dz =—ab, +0(5). (143)

As a result, we find 6 = |T1¢\5Z' This leads to || =1/|a|.

“As long as none of the twist operators are placed at a radius larger than the cut off % (This case can also be
a handled with the same final result but requires more care in determining the contributions see [26] for some
examples.) the structure of the singularities will remain the same regardless of the choice of locations of the twist
operators. The effect of the mobius transformation which moves the twist operators will be to also move the points
of infinity to other locations on the torus.
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To normalize the twist operator we note that the two point function of any twist operator
and its inverse factorizes to three independent two points functions. These are spheres with
two twist operators insertions and cyclic monodromy with cycle length 3. That is explicitly

_4 3¢
(07 (1) 0 () )5 = (7, 37 FQ2) (149)
Using this we can define the normalized twist operators to be
€ % Q3C
33

og(x)= ag(x). (150)

Together this gives

2 3
log ((0(x1)a0 (x2)ap0 (x3)ar2)) = =5 10g(x12%1%2) — 5 108(3) +108 (Zigrus) -~ (151

Note that all length scale and all cut-offs have dropped out of the final result as required. Now
finally the Renyi multi-entropy is given by

1
5:(33) =— log(o(x1)q0(x2)ap0(x3)ap2)

. c 1 (152)
= 6 10g(X12X13XZ3) + Z IOg(B) - g log(ztorus) .

For holographic theories we can evaluate the torus partition function by taking the leading
semiclassical approximation [30,31]

itc fat+b at+b
Smin(T) = (

min — - Z = ¢ Smin(7) 153
a,b,c,deZ,lad—bczl |: 12 \ ¢t +d cT+d )i| ’ torus(T) ¢ ( )

In particular evaluating for T = e3 we have

ix nc/3[ ad—bc
S . [ez)=— s 154
min (e ) a,b,c,der%,aa)gi—bczl 12 |:C2 +d?+cd ] ( )
so that
ﬂC\@
Ziorus € 12 . (155)
After restoring the uv-cutoff we find the Renyi multi-entropy to be
X19X13X 3
Sgg) _ glog( 12X13 23)+ Elog(S)—gm/_
9 €3 4 6 12 (156)
A £log(M) +.199c.
9 €3

4 Renyi multi-entropy in free fermion CFT and relation to BTZ
background

In this section we would like to analyze the multi-entropy of the massless free Dirac fermion
CFT in two dimensions as an explicit and solvable example.

First, we review the ordinary bosonization trick in free fermion to calculate Renyi and
entanglement entropy i.e. ¢ = 2 (Renyi) multi-entropy. After, we construct the twist operators
to calculate the (n, q) = (2, 3) Renyi multi-entropy on the plane, we apply the result to thermal
setup. Finally, we briefly discuss the relation to ¢ = 3 multi-entropy in high-temperature
holographic CFT i.e. RT surface in BTZ background.
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4.1 Review: calculation of entanglement entropy via bosonization

First we would like to briefly review an analytical calculation of entanglement entropy in the
massless Dirac Fermion CFT [13-15], using the bosonization method.

We start with n-replica of ¢ = 1 Dirac fermion CFT. Here we have n massless Dirac fermions
v labeled by k = 0,---,n — 1. The space is divided into two intervals, A = [xq,X]
and A = [x,,00) U (—00,x;]. The fermion fields transform by turning around the point
2 =X1,2 = Xq aS

{z =x;: UO(x; +e2my)=wED(x; +y), (157)

z=xy: WO(x, +e2my) =0k+D(x, +y).

This twist-boundary condition can be diagonalized by performing the discrete fourier trans-

formation
n—1

1 2mikl ¢ (1)
— ) e , 158
2 o

here we should note that the range of [ is —"T_l, cee ”%1, because we need to respect the

(anti-)periodic boundary condition®

w(l) —

e(n—l)ﬂfiqj(k'i'n) — ‘-I/(k) . (160)

This transformation (158) leads to the following twist-boundary condition:

: -1
{z =x1: P00 +e?y) = ey Olx, +y), a6

z=xy1 YO0y +ey) = 2 iyp Oy +y).

By using the bosonization technique we can construct twist-operators that mimic the twist-
boundary condition. We set

PpO(z) = €11 (2), (162)
(2110 (zy) ~ —5,, 1, log(z; — 2,), (163)
_ o
POz PO (zy) ~ —12 (164)
Zl _2'2

The anti-chiral part is defined in the same manner and we set ¢ (z,2) = qbg)(z) + qbg )(i).
The twist-operators can be constructed as

] 1’ (165)

>This boundary condition comes from the local conformal transformation (w —wy)" = (z — z,):

U(w) = (j—fv)i W0 (2) = v/n(z — z,) T vO(2). (159)

In the w-plane ¥(w) do not have monodromyi.e. ¥(w,+e2" €)= ¥(w,+¢). However, in the z-plane language (the

right-hand side of the above equation), we have ¥®(z, + e2'™y) = k) (z, + y) and (ez"“"y)nT_n1 = e(”_l)mynT_nl.
These lead to (160).
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X1 A X2 X3 B X4

(disconnected subsystem)

x. A x~x B «x

1 2 73 4

(coincident limit)

Figure 18: The setup of subsystem in this section. Firstly we take it disjoint, and after
that we consider coincident limit.

These operators have the same conformal dimension h = h = 2i4 (n — %) As we can verify in
the explicit calculation, we get Trs[(p4)"] as

Tra [(pa)"] = (o (x1)5(x2))

= |x; —x,[ 75077 (166)

This result reproduces the well-known result of the usual n-th Renyi entropy and entanglement
entropy (here we introduced the UV cut-off €)

1
Sp= 1 log Tra[(04)"]
—n
1 —
_ n-+ log‘xl X9 , (167)
6n €
S=I1limS§,
n—1
1 —_
= S log| 22| (168)

4.2 Multi-entropy forn =2,q =3

As explained in Appendix A, naive application of the bosonization trick reviewed in the pre-
vious subsection does not work, and this is the case with (n,q) = (2,3) as well. Instead, we
consider the disconnected subsystem setup as done in section 3.3 to make use of the general
formula (81). We estimate the twist operators in the bosonized form.

After we obtain the putative form of twists in the disconnected (n,q) = (2, 3) case, we take
the coincidence limit x, — x5 and construct the correct form for connected (n,q) = (2, 3). See
figure 18.

4.2.1 Twist operators in disconnected subsystem setup

Here we consider the disconnected subsystem case in free fermion, in parallel with section 3.3.
To make use of the general formula (81), we first recall that the torus partition function of a
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single-copy of the free fermion depends on the spin structure:

04(t)* 4 1, _u ) . 5
NS _ —pH _ | Y3 o4 _1 _1 _1 5
Ztorus_TrNSe BH — (%) _23-5(77 3(1—m) 2 +7 3(1_71)12)’
2

NS(—=1)F - 04(7) 4 1 1
Ztorl(ls ) =TrNS(_1)F€ FH — m =23.173(1—n)s,

_ O 4 1, 2 IR s
Zh = Trne 1 = |25 =28 2 (= —nHa-mE). (69)

These lead to the following four point function in each spin structure:

1 1 1 1 1 1 1 1 1 1 1 1
(01(x1)02(x2)03(x3)04(x4))ns = %(Xl_zzngxl_fxz_slezsxi +x1_27x3_47x1_3‘_‘x2_4‘_‘x1‘_‘4x2‘_‘3),
(170)

11

(o1(x1)o3(x2)03(x3)04(X4))Ns(-1)F = X153 X34 5 (171)

1/ -1 _1 _1 _1 1 1 _1 _1 _1 _1 1 1
{1(x1)02(x2)03(x3)04(x4))r = E(xlzz Xag4 X14 Xy X{3X54 = X15 x342x134x244xf4x2“3).
(172)

Let us interpret these results in terms of explicit constructions of twist operators. First We
expect that the natural choice of twisting boundary conditions at x = x, x5, X3, X4 are given

by

opatx =xy: (Y1, Y2, P3,94) = ((Ya, 191,194, 113),

oyatx =x3: (Y1, Y2,9¥3,94) = (i, —ip1, —iY4, —iv)3),

ozatx =x3: (P1,Y2,YP3,94) = ((Y3,194,1¢1,113),

ogatx =x4: (P1,YP2,P3,94) = (—irhs, =iy, —i1,—iP3).
This Z,x Z, twist action above can be simultaneously diagonalized by taking the following
linear combination of fermions which are bosonized in terms of the four scalar fields ¢ (->34:

(173)

a1
e'? =§(¢1+¢2+¢3+¢4),
ei¢(z) _ 1

= (Y1 =Y+ Y3 =),
» : (174)
e’ = E(TlJl —Yr—YP3+y),
@1
el = §(¢1 Y2 —YP3—,).
This leads to the following identification of twist operators:
oy = e%(¢(l)_¢(2)_¢(3)+¢(4)) ’
o, = e_%(¢(1)_¢(2)_¢(3)+¢(4)) ’
(175)

Loy (g (3)_p(4)
oy = ed @D @)

Ll @ ()_g@
04 = e HEDHPO—9O—p)

then we find the four point function is given by (0,0,030,4) = x1_21 / 2x3_ 41 /2 and thus coincides

with (01 (x1)02(x2)03(x3)04(x4))Ns(-1)7 -
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On the other hand, if we choose o3, 0, as the following unusual form

D Lt S I O (176)

1

1 l 1

3

then the correlation function of twists yields (070,5354) = X7 X5, x1 4 Xo3 x13x2 4» Which

coincides with (0,04,0304)ns + (0105,0304)r- In a similar way, if we take another choice of
twist operators as

(M 1d@ 4 p3)_g® _ipMyp@ 4B _p@

e L e L A 177)

, 21101 1

- 7 3,4 .7 __

we find (010,0507%) = x12 x34 X135 Xog4 X{4X55 = (01020304)ns — (01020304)R.
In summary, we find the following relations:

1/2_—1/2
(010,0304) _x12/ X34/ = (OUUU>NS(—1)F>

1 1 1 1 1 1

(01096364) = X15 X3,/ X4 Xoq X[3X5, = (0000)yg + (000O)R, (178)
1 1 1 1 1 1

(01020507) = x,7 X7 x15 X, ' x [, x5, = (000 0)ys — (0000)R.

torus torus torus torus

nected subsystem is

Recall that Z©°@! = (Z NS ZNSC-I)'  gR ) (n,q) = (2, 3) Renyi multi-entropy for discon-

1
3
5; ) — -3 log(c o0 0 ) otal

1 1
=—3 log 5 ((GUUU)NS +{ocoo0o)Ns—1)r + (UUGG)R)

1 1 .
=—3 log 5 ((01020304) + (0'1020304)) , (179

where each twist operators are

T 1 e e B S )
0'3 = e+%(¢(1)+¢(2)_¢(3)_¢(4)) B 0'4 = e_%(¢(l)+¢(2)_¢(3)_¢(4)) 5 (180)
5_3 — e_%(¢(1)+¢(2)+¢(3)_¢(4)) ’ 6'4 _ e+%(¢(l)+¢(2)+¢(3)_¢(4)) )

Also, it is explicitly written as

101
3 1 1 € € Xy3Xy,
Sg ) — —log2—=log — Yt (181)
2 2 3,2 3,2 7,3

2
X12X34  XqpX34X14X 03

4.2.2 Twist operators in connected subsystem setup

Here we take the coincident limit x5 — X3, X553 — €/4 as done in (100). One can find that the
relevant contribution in (181) is

1 1 €-xixd
Sgg) = —E IOg E %3%24% 5 (182)
2 2
X19X34X 14X 03
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and this comes from (0,0,536,). In this limit, the set of twist operators 0,55 becomes a
single operator v/20 4 as®

(M@ @ .

op=¢€ #(00)-0—¢0441) (=o04),
_igm

op=e2%",

op = €+‘%(¢(1)+¢(2)+¢(3)_¢(4)) (= 5'4), (185)
and the overall factor becomes 1/+/2. This construction precisely reproduces (101):

s 1. 1
sy = —3 logE<O-AO'ABO'B>

1 1 X19X94X14
=—log2+ -1 [—} .
7 og 3 og

o (186)

4.3 Thermal states and BTZ black hole

Here we calculate the second Renyi multi-entropy for a thermal state in the free fermion theory
by evaluating the correlation function of twists on torus with modulus 7. We use the set of
twist operators (185) constructed in previous section. The partition function is

2 2

9 2
22 L[|E@f ,|B@F 8@} 87
2\ | n(7) n(t) n(7)
Additionally, we introduce the following new function Z(z|7):
26y = L[ G 8GO |6 F |8ED[T) e
2 n(7) n(7) n(7) n(7)
Then, the correlation function of twist operators, %(a a(21)045(22)05(23)), is
1| 26m) [ 86 "] s6i(x) |
V2 | 01(212]7) 61 (2231 7) 01(z1317)
X ;Z (lz — 1z + 1z |T) (Z(lz — 1z IT))S (189)
Z(0) 271 5%t % 2717 2% .
We set the zs to be real, z; < 2, < 23 < z; + 1. In the limit of T — ico, we find
#Z (lz — 1z + 1z |T) (Z (lz — 1z |7))3 -1 (190)
Z(0)) i B R 2517 4% .

®Merging o, and &, is carried in the following way. Firstly we consider the OPE of them:

05(5,)5(25) =: e*%(¢‘“*¢(2)7¢(3)+¢(4))(x2) . 37%(¢(1)+¢(2)+¢(3)7¢(4))(Xg) .

— LM 2)_(3) (4 LM 4243 _p(4)
P AR G S AT E 8 PRt LGt S AR P (183)
Substituting x,; = €/4 we find
y V2 i
0axs +€/A53(xs) = 7 (:e72%%(xy) : +0(e)) . (184)

In the text we ignore the subleading terms and drop e~/# factor.
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Figure 19: Geodesic approximation in high-temperature limit. The straight lines
correspond to the log-divergent contribution and the curved line is 27lz;;/0.

On the other hand, in the limit of T — i6 where 0 < § < 1, we find

(Lot k) (2 (e Lok )
O AV RS 47 47
L e E(natin)’ (e—%zl—%@f)g

= exp|— = (@1 =22 + (=P + =2 )?) (asn)

and if we impose § < |z| < 1, we obtain

36:(7)

21 T (2
01(zl7) 5 exp[5 (z |z|)] . (192)

We find the ¢ = 3,n = 2 Renyi multi-entropy for thermal state as’

5@ _ }‘log2 + élog[ sin gzm sin T” sin T“ ] (low-temperature limit), (193)
2 }‘ log2— % log %" + g5 (221 + 233 +237) (high-temperature limit).
4.3.1 Comparison to holographic setup: BTZ background
Here we consider the Euclidean BTZ geometry:
o=, I? 2 2712
ds®* = ————dt*+ ———=dr°+r°d¢~. (194)
12 2.2
+

This coordinates correspond to the coordinates z and Z in the boundary holographic CFT as
21z = ¢ +it/l. In the high-temperature limit T = i6 (0 < § < 1), all the geodesics in the BTZ
geometry approaches the horizon and its length is approximated as follows (see figure 19):

2
(length) ~ (log-divergent part) + ilzi

2. (195)

"Because of the periodicity of torus z ~ z + 1, we can relabel zs, as for example 2" = 239, z0°V = 299,

1
Z3 = z‘l’ld + 1. Although it changes the result of high-temperature limit, we shall not go into further detail here.
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0

Figure 20: RT surface for ¢ = 3 multi-entropy in the BTZ background.

Once we assume that the corresponding RT surface for ¢ = 3 multi-entropy in the BTZ
background is pictorially given by figure 20, the multi-entropy can be estimated as

S®) ~ (log-divergent part) + (221 + 232 +231)

_m
5 ‘ 4GN
= (log-divergent part) + % (297 + 230 +2371) - (196)

Although both results (193) and (196) are for the different Renyi-index n and the non-
universal contribution is highly dependent on the details of the CFT, in the high-temperature
limit they have a very similar contribution of % times the sum of z;;. This may be one evidence
for that the choice of RT surface (figure 20) is correct.

5 Locally excited states

In this section, as an example of multi-entropy for excited states, we would like to compute
the (g,n) = (3,2) multi-entropy in a two dimensional massless free scalar CFT for a locally
excite state. We consider the following time evolution of locally excited state:

[B(1)) o< e e 0(x)[0) (197)

where the local operator O(x,) inserted at x = x and t = 0. The infinitesimally small param-
eter € is a UV regulator.

We introduce the complex coordinate (w,w) to describe the Euclidean plane by setting
w = x +it, where we analytically continue the Euclidean time 7 to the Lorentzian time t via
T =1t.

In terms of the free real scalar field ¢ (w,w) = ¢;(w) + ¢pgr(Ww), which has the OPEs
¢ (w,w)¢(0,0) ~ —log |w|?, we choose the local operator O(x;) to be

1 i _ ; _
O(xy) = E (e§¢(Wo,Wo) + e—j¢(W0aW0)) , (198)

where we take wg = xy — i€ + t to describe the time evolution of (197). We choose the
subsystem A and B to be the interval x; < x < x5 and x5 < x < x5 along the x-axisi.e. T =0,
respectively and the subsystem C is the complement of AB on 7 = 0.

As in the case of the entanglement entropy (i.e. q = 2) [32-34], we can compute the
multi-entropy for the above locally excited state via the replica method by inserting the local
operators in the Euclidean path-integral over the replicated space. This is obtained by gluing
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Figure 21: The replica manifold in the w coordinate which computes the multi-
entropy (q,n) = (3,2) in the presence of local operator excitation. There are eight
insertions of the local operator O(w,w) at w =wy 4 ;.

four complex planes along A and B an by inserting eight local operators at w = wy 4 4 as
depicted in Fig.21.

In terms of the twist operators, inserted at x = x;, x5 and x5 on the x axis, we can write
the partition function on the replicated space as follows:

MTr [ [W) (2S5 ]

= < l_[ l_[ l_[ O(W'rh,nz,rh)Wnl,nz,n3)Ul(xl)o-Z(XZ)o-?)(x:;)>
m=*ny=En3==+ w
ho
dz
) (dw ) < l_[ l_[ l_[ O(zm N2,M3° T11,712 T13)> :
W=Wa1m2.03 Wnn2.m3

nl:[i nlz_—[i nlz_—[i ( m=tny=Ens=
(199)
In the final expression we map the eight-point function on the replicated manifold into that
on the z plane via the map (63).
For our explicit calculation, we set x, = —1, x; = 0, x5 = 1 and x5 = 2 for simplic-
ity, though the extension to generic points is straightforward. Then the eight points for the
operator insertions on the w sheets are given as follows:

W(:I:,:t,:i:) =—1+4+tx ie,
V_V(:I:,:I:,:l:) - _1 —t F ie N (200)

where the last sign corresponds to the sign of ie, and the other signs to the choice of replica
sheets, as in Fig.(21). We take € > 0 to be an infinitesimally small.
5.1 Results of multi-entropy

The evaluation of the eight-point function can be done via the standard Wick contraction in
the field scalar field theory. The non-trivial point is to carefully take the limit e —» 0 of 2, ;
and z, , , as explained in the appendix B.
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The 8-point function turns out to be

q 1/8 iz 1/8
4 z -
l_[ ( d_W ) ( d_ﬂ/ ) < l_[ O (Z(.’.’.),Z(.,.’.))>
(:i:,:l:,:t) Z=2(4 4 +) 2:2(:&’:&,:&) (:l:,:t,:l:) 2
ﬁ (0<t<1),

o (1<t<2),

a(26)2
=1 29 (201)
e (2<t<3),

@ (3<1).

The normalization factor 1/(O0O)? removes @ above, where
(OO)W = <O (W(.’.’_,_), W(.’.d.)) @) (W(.’.’_), W(.’.’_)»W
1

= —. 202
Wor (202)

Finally we can calculate the difference between the multi-entropy for the locally excited state
and that for the CFT vacuum as follows:

A 553) = 553)(excited state) — 553)(ground state)

0 (0<t<1),
log2 (1<t<?2),
log2 (2<t<3),
0 (3<1t).

(203)

5.2 Quasi-particle Interpretation

Now, let us interpret this result (203) in terms of a simple quantum system, which consists of
four qubits, each of them denoted by A,B,C; and Cg. These model the subsystems in the CFT on
an infinite line, where C; and Cy belong to the subsystem C. We can regard the local operator
excitation (198) as an Bell pair which entangles C; qubit and Cy qubit. This is because by
decomposing the scalar field in terms of the left and right moving part, the excited state can
be expressed as

1 i 1 i i 1 1
O]0) = —=e2%1e2%R|0) + ——e7291729R|0) = —|+); [+)g + —=|—) 1| )& - (204)
l)ﬁ |>ﬁ |>ﬁ|>L|>R ﬁ|>L|>R
In this way we expect that the locally excited state created by inserting O at x = —1 is described
by
B 1 1
[ (o)) =10)4l0)g EH‘)CLH')CR + E|_>CL 1=)e, |- (205)

Under the time evolution of one part of the entangled pair propagates in the right direction
and the other does in the left direction. For the time period 0 < ty < 1, the state is still given
by (205) because each of the pair is inside the subsystem C. It is straightforward to confirm
that the multi-entropy using the multi-trace is trivial 553) = 0. This is because pyp is given by

Pap = 10){(0], ®[0)(0]5, (206)

which leads to MTr[I\IJ)(\IIIfgC] =1.
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However, at t = 1, one of the pair reaches at one end point of subsystem A. Thus, for the
time period 1 < t; < 2, the state looks like

19(61)) = = H410)s 416, 100G, + Z==1l00s1-)c, 0)c, (207)

V2 V2

In this case the reduced density matrix now becomes the mixed state

pas = 5[+ (1], 8 10) (0] (208)

This leads to

MTr [ |[0) (W[5 ] = % (209)
and thus we find
s =1log2. (210)
For 2 < t, < 3, it is in the subsystem B and we have
1 1
[ (ty)) = E|O>A|+>B|+>CL|O>CR + ElO)A|_)B|_>CL|O>CR . (211)

The reduced density matrix takes the same result as (208), which leads to the same value of
multi-entropy (210).

On the other hand, for the later time t; > 3, the entangled pair are both in the subsystem
C again. Thus the state looks like (205) and the multi-entropy becomes vanishing.

Indeed, the above evolution of multi-entropy perfectly reproduces the result (203) in the
free scalar CFT. This confirms the validity of our replica method calculations of multi-entropy.

6 Conclusion

In this paper we have furthered the program initiated by [1-3]. Our contributions are two-fold:

* For several tractable examples in two dimensional CFTs, we have explicitly calculated
the Renyi multi-entropy. This was accomplished by construction of the relevant replica
manifold and application of the uniformization method. Since our results do not cover
the von-Neumann like (n = 1) limit, we cannot compare our results with the holographic
proposal of multi-entropy. However we have observed from CFT calculations that our
results for holographic CFTs at n = 2 show phase transition phenomena which qualita-
tively agree with gravity dual expectations.

* For the free Dirac fermion CFT in two dimensions, we identified an outstanding prob-
lem with the explicit construction of the twist operators used for the calculation of Renyi
multi-entropy. We also computed the multi-entropy at finite temperature in this CFT us-
ing the twist operators we found and confirmed a qualitative agreement with its gravity
dual. As another solvable example, we also analyzed a free scalar CFT in two dimen-
sions and calculated the multi-entropy in the presence of a local operator excitation.
The result perfectly reproduces what we expect from a quasi-particle interpretation of
qubits.
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There are a number of interesting future directions one could consider:

* As a check of the proposed duality one would like to be able to calculate « in the bound-
ary theory. As mentioned in the main text this is a significant challenge as the replica
surfaces associated with the Renyi multi-entropy grow in genus. The current techniques
available for exact calculation of the three-point coefficient are limited to the uniformiza-
tion method. As such direct calculation is untenable because both the partition function
(especially for large c holographic CFTs) and unformization map are unknown. One
would prefer alternate methods which would allow for more direct computations of the
three-point coefficients which would allow for the exact computation of «.

* The multi-entropy generalizes the entanglement entropy by changing the finite group
symmetry of the monodromies of the twist operators. In [2] this was further extended
to all Abelian groups which can always be expressed a direct product of cyclic groups
(now including the possibility of different orders). The proposed bulk dual consists of
weighted Steiner trees where geodesics meet in trivalent intersections, but with angles
dependent on the relative weights. It would be worthwhile to repeat the analysis per-
formed in the paper to these quantities.

In addition it would also be interesting to consider information measures defined from
twist operator with non-Abelian mondromies. This gives another possible rich set of
examples to further investigate the connection between the geometry of holographic
spacetimes and information measures of boundary states.

* As we saw for the free fermion CFT it is currently unknown how to explicitly construct
the twist operators used for the calculation of multi-entropy. In particular the bosoniza-
tion method used for entanglement entropy implicitly relies on the correlation function
of twist operators being a two-point function. This is because it forces the resulting two-
point functions of vertex operators after bonsonization to be charge conserving. As soon
as one considers higher-point functions this is no longer true and this naive calculation
will fail to reproduce the correct conformal dimensions of the twist operators. Though
we were able to supply a definition for the specific example of n = 2 which we con-
sidered, one would desire a more general and robust method for their definition in a
systematical way.

Furthermore, our method of deriving the bosonized twist operator, which we did in
section 4, is in some sense incomplete. The resulting twist operators are not symmetric
under the permutations, and their relation to the representation of bosonized fermion
is not so clear. Elucidating this detail is one possible next step.
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A Failure of naive bosonization for free fermion multi-entropy

Here we demonstrate that the bosonization method used for the definition of twist operators
in the 2d free fermion CFT fails when applied to the Renyi multi-entropy. To do so we focus
on the case n = 3,q = 3 in which case we have nine fermion fields 1y;. We consider the three
point function

(0a(x1)0ap(x2)0 ap2(x3)) , (A1)

where the monodromies of the twist operators are given by

oa(xy): (123)(456)(789),
oap(xz) 1 (168)(249)(357), (A.2)
Oap2(x3): (174)(285)(396).

Each of these permutations can be represented as a matrix T, with entry ij 1 only if i — j
is in the cycle structure of g and all other entries zero. In particular this implies analogous
transformation properties of the fermion fields around each of the twist operators

O-a(xl) : (1/)1, '1.02: ’l/)?n ’L/J4: ¢4: 1/)6> 11b7: 1P8> 111)9) I (¢2: 'l/)3> 'l)bla 1/)5; 111)6: 1/)4, "1[)8: ,l/)9) '907),
Oap(x3) 1 (Y1, Y2, Y3, V4 V4,65 V7, Y55 Yo) — (Yo, Y4, Y5, W9, Y7, P55 Y3, Y1, Y2)

Oap2(x3) : (P 1, Y2, Y3, Y 4, V4 Y6, V7, P8 Yo) — (7,8, Vo, Y1, Y2, 3, Y4, Y5, P6) -
(A.3)

To proceed we diagonlize the mondromies. This can be done by defining new fermion fields 1/31-:

(1) T T AVA
Y g5 &3 1 1 & &5 & 1 &5 2
Y3 38 1 1 & & & 1 & || vys
Yy 1 308 1 & & 1 & & 1 ||y,
1/35 =3 €3 % 1 & % 1 &5 % 1 Ys |, (A.4)
Ye &3 1 f% 1 % &3 5% &3 1 Ve
YPg 3 63 &3 &3 ¢3 ¢3 1 1 1 8
\1/39) \ 1) \1/J9}

83 & &5 &3 &3 & 1 1

where &, = e’ are the nth roots of unity.® This is the basis for which all three matrices T,
are simultaneously diagonalized.

Next we bosonize the fermions by introducing boson fields ¢; and taking 1ﬁi = ei®. The
twist operators are then determined by demanding the correct monodromies with the fermion

8The exponents are always taken mod 27 such that | arg(& i )| < 7. This ensures that the resulting twist operators
will be of lowest conformal weight.

42


https://scipost.org
https://scipost.org/SciPostPhys.16.5.125

Scil SciPost Phys. 16, 125 (2024)

fields. This accomplished by taking a product of vertex operators where the charges are directly
determined by the eigenvalues of the corresponding permutation matrix Tg.9 Let

Top; = Agiy, (A.5)
then
n ) 1
o= l_[elqg"m Qg =5 log A, . (A.6)

1=1
Since the boson fields are commuting the calculation of the three point function of twist op-
erators factorizes into a number of separate three-point functions of vertex operators [23]

Vq(X) = eiq¢(x), <V1(X1)Vk(xk)> = 5i+j+...k’ol_[|xi—xj'|ij. (A.7)
i<j
Defining
Vabe = (Va(x1)Vp (x2)Ve(x3)) (A.8)
we find
(0a(x1)0ap(x2)0 p2(x3)) = VOOOV%%%V—%_%_% l_[ V()%_% 5 (A.9)

S3
where the final product is over the six possible permutations of the indices. In particular n-
point functions of vertex operators are non-zero only if they are charge conserving Thus the

trand Vi 11
3-point function is zero wh1ch is incorrect.

Supposing that these non-charge conserving terms can be regulated or removed we can
proceed to calculate

_2
Vooo | [Vor_1 = (s = xallxcy = x3lles =117, (A.10)
S3

which predicts the twist operators to be of conformal dimension %. This should be compared
with the actual value of

C, 9 1
=—(n?-1)==. A1l
h 24(n ) 3 (A.11)

As such the standard procedure of defining the twist operators via bosonization fails.

B Details of multi-entropy calculations with local operator excita-
tion
Below we show details of replica computations of multi-entropy with local excitation whose

results were presented in section (5). We again set x; = —1, x; =0, x5 = 1 and x3 = 2 for
simplicity.

°For Abelian groups of odd order this procedure generalizes. In particular because the group is Abelian the ma-
trices T, can be simultaneously diagonalized. The correct diagonal basis is found by taking a discrete group-valued
Fourier transformation [35] of the fermion field which generalizes the transformation (158). The eigenvalues of
T, are the characters of the group element g. As such the group elements of the twist operators completely fix the
charges of the resulting vertex operators in terms of the characters. More care need to be taken when considering
even n as there are additional subtleties in the definitions of the mondromies of the fermion fields (see e.g. the

main text (173)). Even still similar issues of charge conservation can generically arise especially in the case of
odd q.
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In the z-coordinate, the eight points (200) on the w-sheet are given by

—1++/1—(—2+t+ie)? —1+/B=t)(t—1)—2ie(=2+1)
Z(j::l:+)::|:\ ; Zi\ ; )
o —2+t+ie —2+t+ie
) —1+4/1—(—2—t—ie)? —1+/B+t)(—t—1)+2ie(—2—1)
z(:l::t+)::|:\ ; == ; )
>t _2_t_l€ —2_t_l€ (B 1)
N —1+4/1—(—2+t—ie)? —1:|:\/(3—t)(t—1)+216( 2+t)
Z o = =
} —1++/1—(—2—t+ie)? —1++/B+t)(—t—1)—2ie(—2—1t)
Bt )=* ; =+ ; .
T —2—t+ie —2—t+ie

To be precise, for example,

—1—4/1—(—2+t+ie)?

Z(+’_’+) = + J

—24+t+ie

_ +J —1—+4/(B—1t)(t—1)—2ie(—2+1)

—2+t+ie

In the t — O limit 24 . 1) is exactly the complex conjugate of z, . 1). When taking t to be
large, we need to choose the appropriate branch such that z(4 s+ +)s change continuously. The

differentiation of g is

s _
dw
dz

dw

It is straightforward to calculate the eight-point function

1|

(£,£,%)

Careful analysis of € — 0 limit
Anti-holomorphic part

By taking € — 0 limit, we get

1/8
ZZZ(.,.;) dw

(4,4 =

\/—1—1 JBroE+ D[ 1-

H4—) =

V2+t

\/—1+1 (3+t)(t+1 1+

5(+,+,—):m\/_1+l (3+t)(t+1)(1 2(2+1t) (3+t)(t+1))

(z*+1)?
4z(z4—1)°
(z*+1)?
1/8
) < l_[ O(Z( ),Z( )> . (BB)
2:2‘(4,.,.) (£,+,1)
2(2+ t)\/(3 +e)(t+1)
(B.4)
2(2+ t)\/(3 +e)(t+1)

Z(4—m) =

v2+t

\/—1—1\/(3+t)(t+1)(1+

202+ t) (3+t)(t+1))'

Here, z_. s are just —1 times Z, ..y. These results are obtained by picking up the correct
branch of square root by smoothly following the time evolution from t = 0. The pair of two
points whose distance is of the order of € is as follows:

(+> +, +) — (_; ) _) >
(+> ) +) — (_, +, _) >

(+J +, _) — (_J e +) >

(B.5)
(+> ) _) > (_, +, +) .
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Holomorphic part: 0 < t < 1 case

The holomorphic part has several case divisions depending on the value of t. In the case of
0 <t <1, we have

B4 44) = 1+im(1_ 2(2—t)\/m)

) = 1_im(1_ 2(2—t)\/m) (B.6)
Zehm) = 1_im( 2(2—t)m)
Z(+,—,—)=‘/;;_t 1+im(”2(2—om)'

Here, z_ . s are just —1 times z, ... These results are obtained by picking up the correct
branch of square root by smoothly following the time evolution from ¢t = 0. The pair of two
points whose distance is of the order of € is the same as anti-holomorphic case, as

(+7 +’ +) > (_) _) _) > (+7 +’ _) > (_7 _7 +))
(=0 o (42, (h = =) o (=4 4. ®7)
Holomorphic part: 1 <t < 2 case
In the case of 1 < t < 2, we have
2oy = \/1— G-0(t—1) (1 )
Y 2(2—t)\/(3—t)(1—t)
) T B-ote=1) (1 Yo t),/(a— 01— t)) ©8
Z(4,—4) = (B—t)(t—l (14‘ 2(2_t) (3 _—t)(t_l))

_ ie
Bpmm) = ﬁ\/l +4/(3— f)(f—l)(l_ 22— VG- 1)(t 1)) )

Here, z_..)s are just —1 times z(, . .y as before. These results are obtained by picking up the
correct branch of square root by smoothly following the time evolution from t = 0. The pair
of two points whose distance is of the order of € as follows:

(4, +) = (++,-), (=) = (+—-),

(_> +) +) A (_; +> _), (_J ) +) A (_; ) _) (Bg)
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Holomorphic part: 2 < t < 3 case

In the case of 2 < t < 3, we have

B(44,4) = (B_t)(t_l)(l * 2(t—2) (S—t)(t—l))
(44 =T (B_t)(t_l)(l 2(t—2) (3—t)(t—1))
B4 mt) = (B-0)e=1) (1 2t —2)m)

By = _1/% Vi+VB-0(-1) (1 3 (36_ = 1)) : (B.10)

Here, z_ . .)s are just —1 times z(, ..y as before. These results are obtained by picking up the
branch of square root as continuous to the 1 < t < 2 case. Here, z(. _ s have the overall sign
opposite to the (—m, ) branch. The pair of two points whose distance is of the order of € as
follows:

(+,+,+) = (—+,-), (+,+, )= (—++),
(=) o (om0, (=) o (o — 4. @10
Holomorphic part: 3 < t case
In the case of 3 < t, we have
2 1—iy/(t=3)(t—1) (1 c )
(o) = «/— 2t—2)v/(t =3 -1/
€
Z(+,+,_) = 1+1 (t—S)(t—l)(l 2(t_2) (t_g)(t_]_)) 5
€
24y =— (t—3)(t—1 (1+2(t_2) (t_3)(t_1))
€
Ly == 1—iy/(t=3)(t—1)|1 . B.12
o) «/t—z i3 )( "= (t—3)(t—1)) ®12

Here, z_..)s are just —1 times z(, . .y as before. These results are obtained by picking up the
branch of square root as continuous to the 2 < t < 3 case. Here, z(. _ s have the overall sign
opposite to the (—7, 1) branch. The pair of two points whose distance is of the order of e the
same as anti-holomorphic case, as

(+: +, +) A (_; ) _): (+: +, _) — (_; ) +):

(+,—,+) — (=, +,—), (4= =) o (= +,4) . (B.13)

Finally the evaluation of eight-point function (199) is straightforward with the above result of
the location of operators in the € — 0 limit, employing the standard Wick contractions in free
scalar field theory. This leads to the final result in subsection (5.1).
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