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Abstract

CALOFLOW is a new and promising approach to fast calorimeter simulation based on
normalizing flows. Applying CALOFLOW to the photon and charged pion GEANT4 showers
of Dataset 1 of the Fast Calorimeter Simulation Challenge 2022, we show how it can
produce high-fidelity samples with a sampling time that is several orders of magnitude
faster than GEANT4. We demonstrate the fidelity of the samples using calorimeter shower
images, histograms of high level features, and aggregate metrics such as a classifier
trained to distinguish CALOFLOW from GEANT4 samples.
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1 Introduction

The LHC has just restarted for its third run in the spring of 2022, and the need for accurate fast
simulation at the LHC is ever more urgent. Simulation of calorimeter showers with GEANT4
[1–3] is already a major computational bottleneck at the LHC, and this is expected to further
intensify as the detectors are upgraded and the luminosity is increased [4].

Recently, there have been significant advancements in fast calorimeter simulation
through the application of deep generative models such as Generative Adversarial Networks
(GANs), normalizing flows, Variational Autoencoders (VAEs) and other approaches [5–20] In
CALOFLOW-I [9] and CALOFLOW-II [10], two of us have demonstrated the effectiveness of nor-
malizing flows in emulating GEANT4 events with high-fidelity at generation speeds that are
104 times faster than GEANT4. Also, we found that CALOFLOW is robust against mode collapse
that is a common problem in GAN-based generative models. In fact, CALOFLOW proved to be
the first ever generative model in HEP that could pass the following stringent test: a binary
classifier trained on the raw voxels of (CALOFLOW) generated vs. (GEANT4) reference showers
could not distinguish the two with 100% accuracy. Normalizing Flows showed similar good
performance in other generative tasks in high-energy physics [21–34].

In this paper, we adapt CALOFLOW to Dataset 1 from the Fast Calorimeter Simulation Chal-
lenge 2022 [35] (hereafter referred to as the CaloChallenge). The CaloChallenge is aimed at
encouraging the development of fast and high-fidelity calorimeter shower generation through
the application of deep generative models. It includes three datasets with increasing dimen-
sionality. Dataset 1 [36] has the lowest dimensionality and consists of photon γ (368 voxels)
and charged pion π+ (533 voxels) showers. This dataset is actually the official ATLAS simula-
tion dataset used to develop the FASTCALOGAN model [8] used in a portion of ATLFAST3 [7],
which is currently the official fast calorimeter simulation framework of the ATLAS collabora-
tion. It is more realistic than the GEANT4 dataset [37] used in [5,6,9,10] because it includes
a realistic sampling fraction and calorimeter geometry.

We will demonstrate the robustness of CALOFLOW even when applied to this new dataset.
We will show that CALOFLOW can achieve comparably fast generation times as FASTCALOGAN,
with a significant improvement in generation quality. We will also show that CALOFLOW com-
pares favorably (on Dataset 1), in both generation time and quality, to CALOSCORE [12]. This
is a recent approach that uses score-based diffusion models and is currently the only approach
that has been trained successfully on all three datasets of the CaloChallenge.

The outline of the paper is as follows. In Section 2, we provide a brief description of
CaloChallenge Dataset 1 (for more details, see [35]) and outline the differences compared
to the CALOGAN dataset. In Section 3, we elaborate on the method we used to learn the
distribution of showers from the GEANT4 reference datasets and the modifications we have
made to adapt the previous version of CALOFLOW to CaloChallenge Dataset 1. We include
the main results of the study in Section 4. Here we show detailed comparison between the
CALOFLOW generated samples and the reference GEANT4 samples. Finally, we summarize our
findings in Section 5 and include possibilities for future research.

2 Dataset

As stated in Section 1, there are three datasets in the CaloChallenge and our study focuses only
on Dataset 1 [36], as the original version of CALOFLOW does not scale well to the dimensionali-
ties of datasets 2 and 3. This dataset comprises calorimeter shower events for γ andπ+ particle
types and is a subset of the ATLAS GEANT4 datasets that are published at [38]. The datasets
described here have been used to train the ATLAS GAN-based model FASTCALOGAN [8] used
in ATLFAST3 [7].
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Table 1: Details of γ and π+ shower datasets: Nz is the total number of calorimeter
layers, Nα is the number of α bins in a given layer, and Nr is the number of radial
bins in a given layer. Nα and Nr are listed according to increasing layer numbers (i.e.
the number of α/r bins in layer 0 are leftmost on the list).

Number of voxels Nz Nα Nr

γ 368 5 [1, 10, 10, 1, 1] [8, 16, 19, 5, 5]
π+ 533 7 [1, 10, 10, 1, 10, 10, 1] [8, 10, 10, 5, 15, 16, 10]

Figure 1: Diagram of coordinate system used in the CaloChallenge dataset [35].

The calorimeter setup is based on a voxelized version [7] of the current ATLAS detector
configuration in the η range [0.2, 0.25]. As shown in left diagram in Figure 1, the calorimeter
layers are simulated as concentric cylinders aligned along the z-axis, defined as the direction
of travel of the particle. Working in cylindrical coordinates, ∆φ and ∆η are defined as the
x and y-axes respectively. Based on the voxelization, each calorimeter is further divided into
radial and angular bins as shown in the right diagram in Figure 1. Here r ≡

p

(∆φ)2 + (∆η)2

and α≡ arctan
�

∆η
∆φ

�

. The total number of voxels, and the arrangement of voxels in z, α and r
for the γ/π+ datasets are shown in Table 1. For comparison, the CALOGAN calorimeter setup
consists of 3 calorimeter layers and a total of 504 voxels regardless of the particle type.

The incident energies are discrete and range from 28 MeV to 222 MeV, increasing in pow-
ers of 2. Hence, there are 15 different incident energies in total. (In contrast, the incident
energies in the CALOGAN dataset were uniformly sampled.) The photon and pion datasets
each contain 10000 events for every low incident energy. Fewer events were generated for
each high incident energy due to the longer generation time with GEANT4. Figure 2 shows the
distribution of incident energies in the photon and pion datasets.

In Dataset 1, there are two independent photon datasets with 121000 events each, and two
independent pion datasets with 120800 events each. For both particle types, the first dataset
is used for training the generative models (with a 70/30 train/val split); the second is used
for training the classifier metric (with a 60/20/20 train/val/test split) and for producing all
the evaluation plots. This is ideal, since then any overfitting of the density estimator to the
training set could in principle be diagnosed by the independent dataset used for the classifier
metric and evaluation plots.
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Figure 2: Breakdown of incident energies in CaloChallenge Dataset 1.

3 Method

Our approach follows the algorithm of CALOFLOW [9, 10] to a large extent. Here we briefly
describe the approach, focusing primarily on the differences with [9,10].

3.1 Normalizing flows

Normalizing Flows (NFs) (see [39–41] for reviews on NFs) are a class of machine learning
models for density estimation and generative modeling that aim to learn a bijective transfor-
mation (with tractable Jacobian) between data and a latent space following a simple base
distribution (e.g. the normal distribution). Since the probability of a point of the base distri-
bution, as well as the Jacobian of the transformation is known, NFs can give the probability
density p(x) of each data point x in data space, i.e. NFs are density estimators. When run in
the other direction, starting from samples z in the latent space generated from the base distri-
bution, NFs can be used as generative models. Since by construction, the log-likelihood (LL)
of datapoints under the flow are known, a NF can be trained by minimizing the negative LL.

Following [9,10], the NFs used here are based on the Masked Autoregressive Flow (MAF)
[42] and Inverse Autoregressive Flow (IAF) [43] architectures with rational quadratic spline
(RQS) transformations [44, 45]. The autoregressive parameters of the RQS transformations
are determined using neural networks known as MADE [46] blocks. This maximizes the ex-
pressivity of the NF, but comes at the expense of unbalanced evaluation times in the forward
and inverse direction. MAFs are fast for density estimation but slow for sampling, while IAFs
are fast for sampling but slow for density estimation. As in [9,10], we will refer to the MAF as
the “teacher" model and the IAF as the “student" model, as the MAF was used as an interme-
diate step to obtain the trained IAF model, which is final product of the CALOFLOW method.

MAFs can be trained efficiently with the LL objective described above, but for IAFs this is
usually not possible due to time and memory constraints. Training the IAF efficiently requires
a different approach known as Probability Density Distillation (PDD) [47] or teacher-student
training. Instead of fitting the IAF directly to the data, the approach involves fitting the IAF
to the MAF. In practice, the fitting is implemented based on two training loss terms that we
refer to as z and x-losses. To compute the z-loss, we begin with a sample z which is then
passed through the student IAF to obtain a sample x ′ in data space and the corresponding
likelihood s(x ′). The data sample x ′ is then mapped via the teacher MAF back to the latent
space which obtains the likelihood t(x ′). Similarly, to compute the x-loss, one can start with a
data sample x which maps to latent space z′ via the teacher, and then map back to data space
via the student. In the original PDD study [47] study, the KL divergence of s(x ′) and t(x ′) was
initially used as the training loss. However, the authors noted that it does not converge well.
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Hence, as in [10], we used a training loss function that is based on a mean square error that
compares relevant values1 at each equivalent stage of the teacher and student passes. The total
loss function is then the sum of the x and z-losses. Such a loss function has proven effective
in matching the student model to the teacher model. For more details we refer to [10].

3.2 CALOFLOW

CALOFLOW [9, 10] learns the distribution of calorimeter showers in voxel space conditioned
on the incident energy, p(I⃗|Einc), in a two-step setup. In the first step, a normalizing flow
called flow-I learns the distribution of energy depositions in the layers of the calorimeter Ei
conditioned on the incident energy, p1(Ei|Einc). A second normalizing flow, called flow-II,
learns the normalized showers conditioned on these energies, p2(I⃗|Ei , Einc). Normalized in
this context means that the sum of energy depositions in all voxels per calorimeter layer is 1.

When adapting CALOFLOW to CaloChallenge Dataset 1, we retained most of its key features,
while making several important modifications that are elaborated on below:

1. Preprocessing:

(a) Unit-space definition:
In [9, 10], the energy deposition in the calorimeter layers were recursively trans-
formed to u⃗ ∈ [0, 1]Nz , where u0 (the first element in u⃗) was defined by:

u0 =

∑Nz−1
i=0 Ei

Einc
, (1)

In this study, we had to modify u0 to account for cases where
∑Nz−1

i=0 Ei > Einc:
2

We rescaled u0 by its maximum value taken over all showers in the training set.3

Specifically, we rescaled by max(u0) = 2.42 for γ and max(u0) = 6.93 for π+. This
rescaling of u0 ensures that u0 ∈ [0,1] for the showers of Dataset 1.

(b) Flow-I noise level for π+:
For the flow-I of π+ dataset, we used a smaller range for the uniform random noise
[0, 0.1] keV that is added to the voxel energies prior to summing them to get the
layer energies. We observe that a lower noise level improved the training of π+

flow-I. We kept the original noise range [0, 1] keV when training flow-I on the γ
dataset and flow-II for both particle types as lowering the noise level worsened the
classifier score.

(c) Preprocessing of incident energies:
The incident energy Einc is fed to flow-I and flow-II as a conditional label in the
form:

log10 (Einc/33.3 GeV) ∈ [−2.5, 2.5] (2)

(In [9,10], 10 GeV was used as the normalization point).

1For γ student, these consist of coordinates before and after passing them through the flows and RQS parameters
from individual MADE blocks within the bijectors. For π+ student, we did not enforce agreement with the teacher
at the level of individual MADE blocks, but only at the endpoints of the flows.

2Naively, we might think that Einc ≥
∑Nz−1

i=0 Ei due to the conservation of energy. However, this is not always
true due to rescaling that is done on the true deposited energy to account for the sampling fraction (< 1) of the
calorimeter when creating the training/evaluation datasets.

3There was an exception when training on the γ dataset. We found that the event with the largest ratio of total
deposited energy to incident energy was an outlier (u0 = 3.04) and hence decided to ignore that single event when
training our model.
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(d) Preprocessing of layer energies (Flow-II): The preprocessing of layer energies
used as conditional labels in flow-II is:

log10 ((Ei + 1 keV)/100 GeV)− 1 ∈ [−2,4] , (3)

which is slightly different than that of [9,10].

2. Number of training epochs: See Table 2 for changes in the number of training epochs.

3. Hyperparameters:

(a) Hidden layer/batch sizes:
We experimented with different hidden layer sizes when adapting CALOFLOW to
CaloChallenge Dataset 1. At times, larger hidden layer size leads to lower losses.
However, at other times, it was surprising that the performance went down and
the loss went up during training; this could be a sign of overfitting. Memory size
was also a limitation when deciding on hidden layer size. Finally, we settled with
the following hidden layer sizes: 378 for γ teacher; 736 for γ student; 533 for
π+ teacher; 500 for π+ student. A summary of the MADE [46] block architecture
features for the various models are shown in Table 3.
When training flow-I, we used a batch size of 200 for both particle types. When
training flow-II, we used batch sizes of 500 for π+ teacher and 200 for γ teacher.
For the student models, we used the batch size of 175 as stated in [9, 10]. This
choice of hyperparameters enabled us to achieve better overall classifier scores.

(b) Einc distribution in z-loss:
Previously in [9,10], we used the same uniform Einc distribution as the training data
when feeding the conditional label through the student model to compute the z-
loss. In general, it does not have to be the case. In this study, we have a discrete Einc
distribution in the training data. We found that using this same distribution works
well when computing the z-loss for the γ student model. In contrast, we observed
that using a uniform Einc distribution that has the same range as the training data
works better when computing the z-loss for the π+ student model.

Table 2: Number of training epochs used in CALOFLOW when training on CaloChal-
lenge Dataset 1. The corresponding training times, obtained on our TITAN V GPU,
are included in parentheses. Note that flow-I is only trained once per dataset (γ or
π+), and then used for both the teacher and the student models.

Number of training epochs (Training time)

Teacher Student

γ
flow-I 100 (46 min) -

flow-II 100 (77 min) 100 (360 min)

π+
flow-I 100 (52 min) -

flow-II 100 (98 min) 150 (520 min)
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Table 3: Summary of MADE block architecture of the various teacher and student
models. The number nodes in the input layer, hidden layer and output layer are
shown for each of the 4 models.

input hidden output

γ
Teacher 378 1× 378 8464

Student 736 1× 736 8464

π+
Teacher 533 1× 533 12259

Student 500 1× 500 12259

4. Learning rate (LR) schedule:

Instead of the simple multi-step decreasing LR schedule used in [9,10], here we adopted
a cyclic LR schedule [48] (see Appendix A for details) when training flow-I and flow-II,
as this was found to result in significantly improved performance. The effectiveness of
cyclic LR schedule may be due the use of higher LRs at certain points in the training
which helps the model move out of saddle points or local minima. One key difference in
the implementation of cyclic LR is that the LR is updated after each batch in contrast to
updating after each epoch milestone in [9,10]. As in [49], we observe that the OneCycle
LR policy — a special case of cyclic LR which only relies on a single cycle — generally
allows us to shorten the training time by obtaining a lower loss with a smaller number of
training epochs. This is especially useful when training the student model (IAF) which
generally has a longer training time per epoch compared to training the teacher model
(MAF).

When experimenting with LR schedules, we found that training with OneCycle LR often
achieved better results compared to regular cyclic LR, so we adopted this throughout.
The only exception was for γ teacher where training with regular cyclic LR had a better
outcome.

4 Results

4.1 Average shower images

In Figures 3 and 4, we compare the average shower images between the samples generated by
CALOFLOW and GEANT4 for the γ and π+ datasets respectively. Looking at the average shower
images for both samples, we see that they are virtually indistinguishable by eye. A more
detailed comparison between the CALOFLOW and GEANT4 samples can be seen by looking at
the histograms in Section 4.2.

7

https://scipost.org
https://scipost.org/SciPostPhys.16.5.126


SciPost Phys. 16, 126 (2024)

Figure 3: Shower averages for γ teacher (top), γ student (middle) and GEANT4 γ
reference dataset (bottom) respectively.
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Figure 4: Shower averages forπ+ teacher (top),π+ student (middle) and GEANT4π+

reference dataset (bottom) respectively.

4.2 Histograms

4.2.1 Energy histograms

Figures 5–8 show histograms corresponding to energy distributions produced by CALOFLOW

compared to those from the GEANT4 reference sample. In Figure 5, we see that, despite having
more calorimeter layers than before, flow-I is still able to precisely learn the γ layer energies.
Also, the transformation to unit-space in the preprocessing ensured that Etot/Einc is learned
well and this is clearly reflected in the Etot/Einc histogram at the bottom right of Figure 5.
We are pleasantly surprised at how well flow-I was able to learn the spikes found at higher
energies in the E2 plot. There are some minor discrepancies at higher energies which can be
attributed to there being fewer events with high Einc as shown in Figure 2.

Similarly, we see from Figure 6 that flow-I was able to learn the π+ layer energies very
accurately. Initially, we found that flow-I struggled with learning the bimodal distribution
found in the first 3 layer energy histograms (top row in Figure 6). However, training flow-I
with a lower noise level helped it to better learn complicated distributions in the π+ dataset.
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Figure 5: Energy distributions for γ dataset.
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Table 4: Comparison of χ2/NDF values between CALOFLOW and ATLFAST3 for his-
tograms of Etot/Einc at discrete values of Einc (see Figures 7 and 8).

χ2/NDF

CALOFLOW (this work) ATLFAST3 [7]

γ 526/450 = 1.17 5657/419 = 13.5

π+ 629/480 = 1.31 5503/435 = 12.7

Like for the γ dataset, Etot/Einc is well-learned by flow-I. The slight discrepancy at high energies
can be attributed to there being fewer events with high Einc as shown in Figure 2.

Next, we compare the distributions of Etot/Einc from the CALOFLOW and GEANT4 samples
for various discrete incident energies Einc. The corresponding histograms are shown in Figures
7 and 8. An equivalent comparison can be found for the ATLFAST3 study in Figures 10 and 11 of
[7]. As additional comparison, we included a digitized [50] version of the ATLFAST3 [7] result.
Overall, we find that CALOFLOW is able to properly learn the mean and widths of the Etot/Einc
distributions. CALOFLOW is even able to reproduce most of the distributions corresponding
to higher Einc which have lower statistics. By using lower noise level when training π+ flow-
I, we were able to properly describe the bimodal distribution found in the π+ histograms
corresponding to 256 MeV, 512 MeV, and 1024 MeV. This is a significant improvement from
the results found in the ATLFAST3 study.

In Figures 9 and 10, we include plots that show a detailed comparison between the his-
tograms generated based on CALOFLOW and GEANT4 shown in Figures 7 and 8. Following
FASTCALOGAN [51], we calculated the mean and RMS from the histograms which have ex-
cluded outliers. In Figure 9, we find that there is less than 0.3% discrepancy in the mean
value of each γ histogram in Figure 7. There is a larger discrepancy in the RMS values. Never-
theless, the maximum discrepancy in RMS is still only about 5% and it occurs at high Einc = 2.1
TeV which has lower statistics. Most of the RMS discrepancies for lower Einc are less than 2%.
In Figure 10, we find that all the π+ histogram means in Figure 8 have less than 2% discrep-
ancy. We also see excellent agreement in the RMS with less than 3% discrepancy for most of
the histograms. Comparing with the equivalent results from ATLFAST3 (see Figures 12(a) and
12(c) in [7]), we see that CALOFLOW managed to achieve a greater degree of agreement with
GEANT4.

As an additional comparison with the ATLFAST3 results, we computed the χ2 per degree of
freedom (χ2/NDF) for the histograms in Figures 7 and 8. Although we used a slightly different
binning compared to ATLFAST3, dividing χ2 by NDF should make the calculated values robust
against different binning choices. The results can be found in Table 4. The ATLFAST3 result was
taken from [7] and not from our digitization, as the line extraction is not very accurate. We
find that the χ2/NDF values of the CALOFLOW results in Figures 7 and 8 are O(10) better than
the corresponding results found in ATLFAST3, indicating again that normalizing flows generate
higher quality showers compared to GANs [9,10].
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Figure 6: Energy distributions for π+ dataset.
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Figure 7: Histograms of Etot/Einc for various discrete values of Einc in the γ dataset.
To guide the eye, we digitized [50] Figure 10 of ATLFAST3 [7].
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Figure 8: Histograms of Etot/Einc for various discrete values of Einc in the π+ dataset.
To guide the eye, we digitized [50] Figure 11 of ATLFAST3 [7].
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Figure 9: Comparison of mean and RMS of γ histograms between CALOFLOW and
GEANT4 in Figure 7. Following FASTCALOGAN [51], we calculated the mean and
RMS from the histograms which have excluded outliers. Top: Mean of Etot/Einc vs
Einc. Middle: Ratio of Etot mean between CALOFLOW and GEANT4. Bottom: Ratio
of Etot RMS between CALOFLOW and GEANT4. The low statistical uncertainty in the
data points of the lower two panels resulted in the error bars being smaller than the
size of the markers. See Figure 12(a) in [7] for comparison with ATLFAST3 study.
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Figure 10: Same as Fig. 9 but for π+ showers. See Figure 12(c) in [7] for comparison
with ATLFAST3 study.

4.2.2 Shower shape histograms

Figures 11–16 show histograms corresponding to shower shape distributions produced by
CALOFLOW compared to those from the GEANT4 reference sample. The center of energy in
the η and φ directions are defined based on the location of the voxel centers. The center of
energy in the η(φ) direction is defined via the locations of the voxel centers in mm, H(F), as
shown in eq. (4)

〈ηk〉=

∑�

I⃗k ⊙H
�

Ek
, and 〈φk〉=

∑�

I⃗k ⊙ F
�

Ek
, (4)

where I⃗k contains the voxel energies in the kth layer, ⊙ denotes the Hadamard product, and
∑

denotes sum over all elements.
The corresponding width of the center of energy is defined as shown in eq. (5).

σ
η

k =

√

√

√

√

∑�

I⃗k ⊙H2
�

Ek
−

�∑�

I⃗k ⊙H
�

Ek

�2

, and σ
φ

k =

√

√

√

√

∑�

I⃗k ⊙ F2
�

Ek
−

�∑�

I⃗k ⊙ F
�

Ek

�2

,

(5)
We see in Figures 11–16 that the center of energy in both the η and φ directions modelled

by CALOFLOW closely match the ones found in the GEANT4 reference sample. Furthermore,
teacher and student histograms are mostly overlapped. This implies that the CALOFLOW stu-
dent was very well trained on the CALOFLOW teacher. Due to the close similarity between the
teacher and student histogram results, it will not be necessary for us to distinguish between
the teacher and student results in the rest of Section 4.2. This result is remarkable considering
the fact that there are spikes in the some of the center of energy histograms (e.g. see Fig 14)
that might make them difficult to learn. As for the widths of the center of energy, we find
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two peaks in the distribution for both γ and π+. For γ, the global maximum is found away
from zero, while the global maximum is found at zero for π+. There is some disagreement at
larger widths found in Figures 13-16. Still, we find excellent overall agreement in the bimodal
distribution of the center of energy widths. Even at larger widths, CALOFLOW is able to model
the general shape of the distribution.

Finally, looking at the distribution of voxel energies for all layers in Fig. 17, we see that
they are closely modelled by CALOFLOW over 6 orders of magnitude for both, γ and π+ show-
ers. There is some discrepancy in the low voxel energy region between [10−2, 10−1] MeV
especially for the pion showers. There is a peak around 10−1 MeV corresponding to minimum
ionizing particles (MIPs) in the pion voxel energy distribution. However, CALOFLOW is unable
to properly model this feature.

Fig. 18 includes 3 voxel energy distributions with each corresponding to a different Einc.
Showers with Einc = 512 MeV are taken to be representative of low energy events, while
showers with Einc = 32768 MeV are representative of mid energy events, and showers with
Einc = 2097152 MeV are representative of high energy events. We found that the MIP peak
is present for low and mid Einc events as shown in Fig. 18. The inability to model the MIP
peak might be the reason for the poor fit at low voxel energies for the low and mid Einc plots.
In Section 4.3, we show that a trained binary classifier can be sensitive to the poor fit at low
voxel energies.

Figure 17: Distribution of voxel energies across all layers for γ and π+ datasets.
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Figure 11: Distributions of the center of energy in the η and direction for the γ
dataset. Note that layers 0, 3 and 12 only have a single α bin each. Hence, there is
no positional information to extract for these layers.
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Figure 12: Distributions of the center of energy in the φ and direction for the γ
dataset. Note that layers 0, 3 and 12 only have a single α bin each. Hence, there is
no positional information to extract for these layers.
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Figure 13: Distributions of the center of energy for layers 1 and 2 in the η direction
for the π+ dataset. Note that layers 0, 3 and 14 only have a single α bin each. Hence,
there is no positional information to extract for these layers.
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Figure 14: Distributions of the center of energy for layers 12 and 13 in the η direction
for the π+ dataset. Note that layers 0, 3 and 14 only have a single α bin each. Hence,
there is no positional information to extract for these layers.

21

https://scipost.org
https://scipost.org/SciPostPhys.16.5.126


SciPost Phys. 16, 126 (2024)

Figure 15: Distributions of the center of energy for layers 1 and 2 in the φ direction
for the π+ dataset. Note that layers 0, 3 and 14 only have a single α bin each. Hence,
there is no positional information to extract for these layers.
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Figure 16: Distributions of the center of energy for layers 12 and 13 in theφ direction
for the π+ dataset. Note that layers 0, 3 and 14 only have a single α bin each. Hence,
there is no positional information to extract for these layers.
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Figure 18: Distribution of voxel energies across all layers at Einc = 512 MeV (low
energy), Einc = 32768 MeV (mid energy), and Einc = 2097152 MeV (high energy)
for π+ dataset.

4.3 Classifier scores

After looking at the similarities in 1D histograms between the CALOFLOW and GEANT4 samples
in Section 4.2, it is important to perform a full phase space analysis (including correlations) by
comparing the probability density that CALOFLOW learned to the one induced by GEANT4. As
in [9,10], we train a binary, neural classifier based on a fully-connected, deep neural network
(DNN) to distinguish between generated CALOFLOW samples and GEANT4 samples. This serves
as an approximation to the Neyman-Pearson classifier, which is the ultimate test of whether
pgenerated(x) = pdata(x). According to the Neyman-Pearson lemma, we expect the AUC to be
0.5 if the true and generated probability densities are equal. The AUC is 1 if the classifier is
able to perfectly distinguish between generated and true samples. The second metric, JSD
∈ [0, 1], is the Jensen-Shannon divergence which also measures the similarity between the
two probability distributions. The JSD is 0 if the two distributions are identical and 1 if they
are disjoint.

We detail the classifier architecture and training procedure4 in appendix B. The resulting

4We also trained a classifier with the architecture and preprocessing of [12] and found quantitatively similar
results to tab. 5.
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Table 5: Classifier results, based on 10 independent runs. The first (second) numbers
in every entry are AUCs (JSDs). See text for more detailed explanations.

AUC / JSD
DNN based classifier

GEANT4 vs. GEANT4 vs.
CALOFLOW (teacher) CALOFLOW (student)

γ

low-level (regular) 0.701(3) / 0.092(3) 0.739(3) / 0.131(4)

low-level (logit) 0.678(4)/ 0.075(4) 0.706(3)/ 0.100(3)

high-level 0.551(3) / 0.013(2) 0.556(3) / 0.015(2)

π+

low-level (regular) 0.827(3)/ 0.260(5) 0.866(2)/ 0.341(3)

low-level (logit) 0.911(3)/ 0.457(7) 0.914(2)/0.464(6)

high-level 0.692(2)/ 0.098(2) 0.706(4)/ 0.108(4)

scores are summarized in Table 5. Low-level input refers to incident energies Einc and the
calorimeter samples in the format provided in CaloChallenge datasets. Training the classifier
on low-level input allows us to measure the difference between the generated and reference
datasets based on the voxel energies and their physical location.

Meanwhile, the “high-level" scores in Table 5 correspond to a DNN classifier trained on
a set of physically-relevant high-level features, here chosen to be: incident energy Einc, layer
energies Ei , the center of energies and their corresponding widths in the η and φ directions.
The definitions of the center of energies and corresponding widths were stated in eqs. (4)
and (5).

From the scores in Table 5, we see that CALOFLOW is able to produce generated samples of
sufficiently high fidelity to fool the DNN-based classifier. This is evident from most of the clas-
sifier AUC and JSD scores in Table 5 being significantly lower than unity. Overall, the teacher
models performed better than the student models. Nevertheless, the student models were still
able to achieve impressive classifier scores which quantitatively demonstrates the effectiveness
of normalizing flows in generative modeling tasks. We note that the high-level classifier scores
are even better than the low-level classifier scores for a given model. This is good considering
that these high-level features are probably more directly relevant for subsequent analysis steps
(such as reconstruction).

Recently, the authors of CALOSCORE [12] have produced results for the γ portion of Dataset
1 (as well as Datasets 2 and 3), using a score-based diffusion model. For the classifier test be-
tween CALOSCORE-generated and GEANT4 showers (i.e. low-level features), they found an
AUC of 0.98. Even accounting for the possibility of different classifier architectures and train-
ing hyperparameters, this likely indicates considerably more separability than our CALOFLOW-
generated showers (whose AUC is 0.739 for the low-level classifier trained on γ showers from
the student flow).

The low-level classifiers, with regular preprocessing as in [35], obtained from the 10 inde-
pendent runs (see Table 5) were evaluated onπ+ showers with specific Einc. The corresponding
plot of AUC vs Einc is shown in Fig. 19 (left plot). The plot seems to imply that CALOFLOW is
fitting the voxel energy distribution better at low Einc. However, this does not agree with our
observations from the plots in Fig. 18. We found that preprocessing voxel energy inputs in
the following way allows the classifier to become sensitive to deviations at low voxel energies:
First we normalize the voxel energies by layer energies Ei (such that normalized voxel energies
in each layer sum to one). Then, we transform the normalized voxel energies to logit space
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Figure 19: Plots of AUC vs Einc. The AUCs are obtained using a classifier trained
(10 independent runs) on low-level input from all showers from the CALOFLOW π+

student and GEANT4 samples, and then evaluated on showers of specific Einc. The
left plot is based on voxel energy inputs with the regular proprecessing decribed in
appendix B. The right plot is based on voxel energy inputs with logit preprocessing.
The reference AUC based on showers of all Einc is shown by the horizontal line.

as done during training. The overall classifier scores for this modified logit preprocessing for
both particle types are also shown in Table 5.

The corresponding plot of AUC vs Einc for this modified preprocessing is shown in Fig. 19
(right plot). Here we see that the low Einc showers generally have higher AUC scores compared
to the scores at the same Einc in the left plot. This is more consistent with our observations
from Fig. 18.

4.4 Generation timing

We found that the average time taken to generate a single shower events by CALOFLOW teacher
for a generation batch size of 10000 on our TITAN V GPU is 18.91 ms for γ and 43.91 ms for
π+. For the same batch size, we were able to significantly reduce the generation time for
CALOFLOW student.

In Table 6, we include the average time taken to generate a single shower events by
CALOFLOW student for different generation batch sizes. The timings were separately evalu-
ated on our Intel i9-7900X CPU at 3.30GHz and our TITAN V GPU. We observe that increasing
the batch size reduces the generation time per shower event. However, we could not generate
with large (1000 and 10000) batch sizes on the CPU due to memory constraints. We observed
that the generation time is largely dependent on the sizes of layers in the MADE block (see
Table 3 for MADE block layer sizes). This accounts for the difference (similarity) in generation
timing between γ teacher (student) and π+ teacher (student). With CALOFLOW student, we
are able to achieve impressively low GPU generation times of 0.07 ms per event for γ and 0.09
ms per event for π+.

Figure 20 compares the average CPU generation time per event found using CALOFLOW,
FASTCALOGAN5 and GEANT4. The generation times for 65 GeV and 2 TeV are shown for
FASTCALOGAN and GEANT4 based on timings provided in Section 6.4 of [8]. For CALOFLOW,
we included generation times for these two energies and also two other intermediate energies
(262 GeV and 1 TeV). As we do not know the batch size used when timing FASTCALOGAN,

5Note that the timing of FASTCALOGAN also includes the time it takes to map the voxel energies back to calorime-
ter cells and we do not know how the total time splits between voxel energy generation by the GAN and cell
assignment of the subsequent step.
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Table 6: Average time taken to generate a single shower event by CALOFLOW student
for the two particle types. The timing was computed for different generation batch
sizes on our Intel i9-7900X CPU at 3.30GHz and our TITAN V GPU. We were not able
to generate the shower events on the CPU for batch sizes of 1000 and 10000 due to
memory constraints.

Student generation time per event

Particle type Batch size GPU CPU

γ

1 57.23 ms 115.88 ms

10 5.81 ms 12.68 ms

100 0.62 ms 2.50 ms

1000 0.11 ms -

10000 0.07 ms -

π+

1 74.09 ms 126.05 ms

10 7.46 ms 14.03 ms

100 0.80 ms 2.91 ms

1000 0.15 ms -

10000 0.09 ms -

we timed CALOFLOW separately using batch sizes of 1 (abbreviated as CF(1)) and 100 (ab-
breviated as CF(100)). We see from Figure 20 that CALOFLOW generation times are constant
regardless of Einc. In contrast, GEANT4 generation time increases with Einc. At Einc = 65 GeV,
GEANT4 has a generation time that is O(102) slower compared to CF(1) and O(103) slower
compared to CF(100). At Einc = 2 TeV, GEANT4 has a generation time that is O(103) slower
compared to CF(1) and O(104) slower compared to CF(100). The timings for FASTCALOGAN
are on the same order as those found using CF(1).

We can also compare directly against the results of CALOSCORE for the γ portion of Dataset
1. Table II of [12] reports a time of 4s to generate 100 γ showers using the score-based dif-
fusion model approach, on a GPU with batch size of 100. Meanwhile the CALOFLOW student
accomplishes the same task on similar hardware in 0.062s, which is nearly 2 orders of magni-
tude faster.

5 Conclusions/outlook

We have shown that the CALOFLOW algorithm can be applied successfully to realistic detector
simulations, namely Dataset 1 of the Fast Calorimeter Simulation Challenge 2022. Our re-
sults significantly outperform FASTCALOGAN, a deep generative model that was trained on the
same dataset and is used in a (very limited) portion of ATLFAST3, the current fast-simulation
framework of the ATLAS experiment. Based on the results shown here, we are confident that
state-of-the-art deep generative models (and particularly those based on normalizing flows)
will be able to play a much larger role in future versions of the fast-simulation framework.

From a machine-learning perspective, we have seen some drawbacks in the choice to use
discrete incident energies, in particular concerning the need to interpolate between energies.
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Figure 20: Comparison of CPU generation time per event for CALOFLOW (abbreviated
as CF in legend), FASTCALOGAN (abbreviated as FCGAN in legend) and GEANT4 at
several different Einc. Numbers in parentheses refer to the generation batch sizes
used in CALOFLOW. The CALOFLOW timing was based on our Intel i9-7900X CPU at
3.30GHz. The other timings are based on CPU used by FASTCALOGAN.

We expect CALOFLOW to interpolate well, but with the datasets provided by the ATLAS collab-
oration, there is no way of checking this in detail. We think training a conditional generative
model using continuous, uniformly (or log-uniformly) sampled energies, instead of discrete
energies, could be advantageous and should be considered in the future.

One of the main future directions stemming from this work is figuring out how to extend
the CALOFLOW framework to larger numbers of voxels, e.g. those of Datasets 2 [52] and 3 [53]
of the CaloChallenge. Indeed, the current CALOFLOW algorithm scales badly with the number
of simulated voxels and cannot be applied as-is to Datasets 2 and 3. However, we expect
straightforward modifications of the basic CALOFLOW approach to be strong contenders for
fast-and-accurate simulation of these higher-dimensional datasets. In the future, it will be
interesting to compare flow-based approaches to Datasets 2 and 3 to other approaches, such
as the score-based diffusion models of [12] (which are currently the only generative models
successfully trained on Datasets 2 and 3).

It would also be interesting to consider generalizing the CALOFLOW approach beyond the
incident particles considered here, and beyond the narrow η slice. For example, it should be
very straightforward to train a single conditional flow or pair of flows, conditioned on η as
well as the incident energy. This could potentially simplify the ATLFAST3 framework, where
300 GANs were trained on individual narrow η slices.

28

https://scipost.org
https://scipost.org/SciPostPhys.16.5.126


SciPost Phys. 16, 126 (2024)

Table 7: Base and max LRs used when training γ and π+ teacher/student models.
For γ teacher, the max LR here refers to the max LR in the first cycle.

base LR max LR

γ
Teacher 5× 10−5 2× 10−3

Student 4× 10−5 1× 10−3

π+
Teacher 4× 10−5 1× 10−3

Student 2× 10−5 1× 10−3
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A Cyclic LR

With a cyclic LR schedule (see fig. 21a), the LR begins at a chosen base LR and then increases up
to a maximum LR. The number of batches taken to increase from the base LR to the maximum
LR is defined as the step size. After which, the LR decreases from the maximum LR to the base
LR. This increase and subsequent decrease in LR is defined as a cycle, and this repeats for a
chosen number of cycles. In certain cases, the maximum LR can be made to decrease with
increasing number of batches.

OneCycle LR [49] (see fig. 21b) is a special case of cyclic LR which only relies on a single
cycle followed by an annihilation phase where the base LR is gradually decreased up to a factor
of 10,000.

For most of the models using OneCycle LR, the length of the annihilation phase was chosen
to be 20% of the total number of training epochs shown in Table 2. The only exception was for
π+ teacher where the annihilation phase was chosen to be 10% of the total number of training
epochs. The step size was taken to be half of the remaining number of epochs.

For γ teacher, which used regular cyclic LR, the length of one cycle was chosen to be 10
epochs. After each cycle, the max LR is decreased such that the difference between the max
LR and the base LR is half that of the previous cycle. The step size in our study was fixed to
be 5 epochs (i.e. half of a cycle).

The base and max LRs used when training the various models are shown in Table 7.
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(a) Regular cyclic LR

(b) OneCycle LR

Figure 21: (a) Illustration of regular cyclic LR schedule with decreasing max LR.
The length of one cycle was chosen to be 10 epochs. The step size in our study was
fixed to be half the number of batches in one cycle. After each cycle, the max LR is
decreased such that the difference between the max LR and the base LR is half that of
the previous cycle. (b) Illustration of OneCycle LR schedule with annihilation phase.

B Classifier architecture

The classifier-based performance metric uses the classifier architecture that was provided in the
evaluation script of the CaloChallenge [35]. It is based on the classifiers that were used in [9,
10]. In detail, the classifier is a deep, fully-connected neural network with an input and two
hidden layers with 512 nodes each. The output layer returns a single number which is passed
through a sigmoid activation function. All other activation functions are leaky ReLUs, with
default negative slope of 0.01. We do not use any dropout or batch normalization regulators.

In the classifier of the low-level features, we use as input the incident energy (preprocessed
as log10 Einc) and the energy deposition in each voxel (preprocessed as I/Einc). High-level
features are the incident energy (preprocessed as log10 Einc), the energy deposited in each
layer (preprocessed as log10 (Ei + 10−8)), the center of energy in η (normalized with a factor
100), the center of energy in φ (normalized with a factor 100), the width of the η distribution
(normalized with a factor 100), and the width of the φ distribution (normalized with a factor
100).

We split all the data in train/test/validation sets of the ratio (60:20:20). For the both the
γ and π+ showers, we used the second file that was provided at [36]. From our flow models,
we used a generated sample of the same size and Einc distribution as the GEANT4 data.

The networks are then optimized by training 50 epochs with an ADAM [60] optimizer with
initial learning rate of 2 · 10−4 and a batch size of 1000, minimizing the binary cross entropy.
We use the model state with the highest accuracy on the validation set for the final evaluation
and we subsequently calibrate the classifier using isotonic regression [61] of sklearn [56]
based on the validation dataset before evaluating the test set.
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