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From the XXZ chain to the integrable Rydberg-blockade
ladder via non-invertible duality defects
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Abstract

Strongly interacting models often possess “dualities” subtler than a one-to-one mapping
of energy levels. The maps can be non-invertible, as apparent in the canonical example
of Kramers and Wannier. We analyse an algebraic structure common to the XXZ spin
chain and three other models: Rydberg-blockade bosons with one particle per square of
a ladder, a three-state antiferromagnet, and two Ising chains coupled in a zigzag fashion.
The structure yields non-invertible maps between the four models while also guarantee-
ing all are integrable. We construct these maps explicitly utilising topological defects
coming from fusion categories and the lattice version of the orbifold construction, and
use them to give explicit conformal-field-theory partition functions describing their crit-
ical regions. The Rydberg and Ising ladders also possess interesting non-invertible sym-
metries, with the spontaneous breaking of one in the former resulting in an unusual
ground-state degeneracy.
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1 Intro

Statistical mechanics is full of “equivalences” and “dualities”. Although both terms often are
used rather loosely, the general idea is that different models are related by a clever rewriting
of the degrees of freedom. One then expects that at minimum the physical properties of the
models are related, and possibly identical. Kramers and Wannier’s 1941 derivation of a “sym-
metry property” of the two-dimensional classical Ising model and its quantum-chain limit [1]
remains a paradigm in the analysis of strongly interacting statistical mechanics. This property,
typically known as “duality”, is an exact linear relation between Ising partition functions at
high and low temperature.

Kramers and Wannier’s result was and remains subtle, as the low-temperature phase has
two ground states (two minima of the free energy in the classical model), while the high-
temperature phase has one. Thus “duality” is something of a misnomer, as becomes apparent
after performing the transformation a second time. The result is not the original partition
function, but rather that of a particular subsector. Kramers-Wannier “duality” therefore is a
non-invertible mapping between the high- and low-temperature Ising models [2–5]. At a self-
dual point where the map does not change the coupling, it is a non-invertible symmetry.

While the Kramers-Wannier mapping has been applied to other models, only recently has it
been appreciated that it is a fundamental example of a large family of non-invertible mappings
and symmetries. Starting with the pioneering construction of “topological symmetry” [6], a
general structure has been developed to construct this family; see [7–9] and references therein.
Fusion categories play a central role in this story, as they allow one to build models with a
variety of nice properties. The Hamiltonian/transfer matrix can be written in terms of a set
of generators obeying an algebra determined by the category. When two different models are
both presentations of the same such algebra, their properties are at minimum related, and very
possibly “equivalent”.

One key property the category builds into the model is a set of topological defects. The
partition function in the presence of such defects remains invariant under the deformation of
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their paths, even if the defect separates regions described by different theories. Topological
defects thus give a precise method for defining non-invertible mappings and symmetries. For
example, the Ising duality defect away from the self-dual point separates a region in the or-
dered phase from a disordered region. Moving the defect around allows space to be filled with
one coupling or the other and so relate the partition functions [5]. As a consequence of the
non-invertibility, these relations are between linear combinations of partition functions with
different boundary conditions and/or symmetry sectors. While much interesting recent work
on such mappings has been devoted to the continuum versions (see [10] for an overview), our
analysis is mainly on the lattice.

One advantage of the categorical approach is that close relations between seemingly differ-
ent models are quickly revealed. The Temperley-Lieb algebra [11] provides a classic example.
Originally used to prove an “equivalence” between the Q-state Potts models and the six-vertex
model/XXZ chain, it goes much deeper. Its graphical presentation in terms of clusters or the
surrounding self-avoiding loops [12, 13] made it central to Jones’s construction of knot and
link invariants [14]. The development of fusion categories was spurred on by this connection
to statistical mechanics [15, 16], along with closely related developments in conformal field
theory [17].

Our starting point is the XXZ chain, but we follow Temperley and Lieb only in spirit. We
write its Hamiltonian in terms of a set of generators satisfying a distinct algebra, given in (1, 2)
below. This algebra has a nice graphical presentation arising from the chromatic algebra [18,
19]. The latter algebra was developed to give a systematic approach to computing identities for
a famed topological invariant, the chromatic polynomial. It is similarly useful here, allowing
us to relate the XXZ chain to a three-state antiferromagnetic chain. It also allows us put the
XXZ chain in a categorical setting distinct from the Temperley-Lieb approach [7, 20]. This
setting leads to our construction of topological defects giving exact non-invertible mappings
from XXZ and the antiferromagnet to two quantum ladders. One ladder describes bosons
obeying a Rydberg blockade, and the other two Ising models coupled in a zigzag fashion.

The purpose of this paper is to define and analyse these four models explicitly and precisely,
including a careful treatment of the non-invertible mappings and symmetries. While many
of the connections between them were explored before using integrability [21–23], anyon
chains [24,25] and categories [7,20], our approach unifies the various threads. For example,
the algebra we describe yields a simple and direct proof that all four models are integrable.
Being explicit clarifies many of the subtle aspects of these mappings, and so we hope this paper
serves as a useful guide to the subject. The models and the mappings between them have a
virtue of being reasonably transparent in their properties, showing that Ising is not the only
basic example.

Moreover, the models are very interesting in their own right. Rydberg-blockade bosons in
particular have been the subject of intense study because of their experimental accessibility
[26], striking theoretical properties such as quantum scars [27], and fascinating proposals
for realising spin-liquid phases [28,29]. The integrable Rydberg-blockade ladder we describe
provides one of the few exact theoretical results for such models outside of the chain. As such,
in our companion paper [30], we use these results to explore the phase diagram away from
the integrable line.

The key underlying algebra and its properties are analysed in section 2. We give several
graphical presentations, including one arising from the chromatic algebra and another from
the fusion category su(2)4. Using guidance from the category, four integrable models satisfy-
ing this algebra are found in section 3. We generally describe them in terms of their quantum
Hamiltonians, but analogous two-dimensional classical models are constructed as well. A fur-
ther payoff of the category approach comes in section 4, where we provide explicit and exact
non-invertible mappings between all four models. We derive a number of simple relations be-
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tween them, enabling us to determine in which sectors a given map is non-trivial. This analysis
is extended to include modified maps acting on “twisted” sectors, enabling the full spectra of
the other models to be related to that of the XXZ chain with appropriately chosen boundary
conditions. In section 5, we go further and show how two models have non-invertible sym-
metries. One striking result is the existence of a gapped line in the Rydberg ladder with a
ground-state degeneracy arising from the spontaneous breaking of a non-invertible symmetry.
In section 6 we use our mappings and symmetries to analyse the critical region, relating the
spectrum of the other three models to that of the XXZ chain. We find exact partition func-
tions for all models in the continuum limit, using the orbifold technique from conformal field
theory [31, 32] and the lattice [33], showing for example how the integrable Rydberg ladder
is an S3 orbifold of the XXZ chain. In appendix A we give the explicit MPO form of one of
the maps, while in appendix B we review the mapping of the XXZ chain to the free-boson
conformal field theory.

2 The algebra and its presentations

The classic result of Temperley and Lieb expresses the XXZ Hamiltonian in terms of the gen-
erators of an algebra bearing their name [11]. The transfer matrices/Hamiltonians of other
seemingly different models have the same expressions when written in terms of these gen-
erators. The models thus are closely related, and it is often said that they are “equivalent”.
However, to make the correspondences precise, one must analyse the symmetry sectors and the
corresponding boundary conditions. In this paper, we utilise a different algebra from Temper-
ley and Lieb to construct distinct models related by non-invertible mappings. In this section,
we give this algebra and show how it has appeared in a number of guises, including several
graphical presentations.

2.1 The algebra

All the Hamiltonians we study are expressed in terms of two sets of generators S j and Pj , with
j = 1, 2, . . . L. The Hamiltonian is local, as

S j Pk = PkS j , S jSk = SkS j , Pj Pk = PkPj , for | j − k| ̸= 1 . (1)

The indices are interpreted cyclically so that e.g. S1 and SL do not commute. The interesting
part of the algebra is

�

S j

�2
= 1− Pj ,
�

Pj)
2 = Pj , S j Pj = 0 , S jS j±1S j = PjS j±1Pj = 0 . (2)

The Hamiltonians depend on a single parameter ∆:

H =
L
∑

j=1

�

S j +∆Pj

�

. (3)

The cyclicity of the indices results in periodic boundary conditions in the models we study.
The XXZ model is the best-known presentation of the algebra (1, 2) [34, 35]. Here the

Hilbert space HXXZ is a chain of L two-state systems, i.e. (C2)⊗L . The operators X j+ 1
2
, Yj+ 1

2

and Z j+ 1
2

act as Pauli matrices on the system labeled by j + 1
2 for integer j, and trivially else-

where, i.e. are of the form 1⊗ 1⊗ · · ·X · · · ⊗ 1. The XXZ Hamiltonian with periodic boundary
conditions is

HXXZ =
1
2

L
∑

j=1

�

X j− 1
2
X j+ 1

2
+ Yj− 1

2
Yj+ 1

2
+∆(1+ Z j− 1

2
Z j+ 1

2
)
�

. (4)
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Antiferromagnetic and ferromagnetic interactions between adjacent spins correspond to set-
ting the coupling ∆ > 0 and ∆ < 0 respectively. Quite obviously, the XXZ Hamiltonian (4) is
of the form (3) with

S j =
1
2

�

X j− 1
2
X j+ 1

2
+ Yj− 1

2
Yj+ 1

2

�

, Pj =
1
2

�

1+ Z j− 1
2
Z j+ 1

2

�

. (5)

Less obvious, but easy to show, is that these definitions yield a presentation of the algebra
(1, 2). One key difference between our and the usual Temperley-Lieb approach to the XXZ
chain is that in the latter, the generators explicitly incorporate the parameter ∆. Here and
everywhere in this paper, ∆ is simply a parameter in the Hamiltonian and is not involved in
the algebra.

The relations (2) immediately imply a host of other relations, the simplest being

PjS j = 0 , Pj Pj+1 = Pj+1Pj , PjS j±1 = S j±1

�

1− Pj

�

. (6)

The first follows from PjS j = S j − (S j)3 = S j Pj = 0. The latter follows from

0= S j

�

S jS j±1S j

�

S j =
�

1− Pj)S j±1

�

1− Pj

�

= S j±1 − S j±1Pj − PjS j±1 . (7)

It follows that in the definition of the algebra, the relation PjS j±1Pj = 0 could be replaced by
the latter of (6). The fact that all Pj commute follows from comparing

Pj Pj+1

�

1− Pj

�

= Pj Pj+1

�

S j

�2
= Pj

�

S j

�

1− Pj+1

��

S j = 0 =⇒ Pj Pj+1Pj = Pj Pj+1 ,
�

1− Pj

�

Pj+1Pj =
�

S j

�2
Pj+1Pj = Pj

��

1− Pj+1

�

S j

�

Pj = 0 =⇒ Pj Pj+1Pj = Pj+1Pj .

2.2 Graphical presentation from the chromatic algebra

In the rest of this section we explain how the algebra (1, 2) used to define H is a very special
case of several known algebras. Here we show how the “chrome-plus” algebra, a particular
chromatic algebra extended with an extra relation, yields (1, 2). In section 2.3, we prove the
converse, showing that (1, 2) define a certain BMW algebra, which in turn is equivalent to the
chrome-plus algebra. In section 2.4 we place these results in the more general setting of fusion
categories.

The chromatic algebra relations are linear identities between distinct graphs that allow
one to “evaluate” any planar graph, i.e. associate a number with each graph depending only
on its topological properties [18, 19]. This topological invariant, the chromatic polynomial,
is invariant under all continuous deformations of the graphs. Before defining the chromatic
polynomial, we discuss these identities. We need consider here only planar trivalent graphs
with no ends (i.e. no 1-valent vertices). Evaluating such graphs requires three identities [18,
19], each of which holds for any subgraph. The simplest are that removing a closed detached
loop gives a factor of Q− 1, and that the evaluation of any graph with a tadpole vanishes:

= (Q− 1) , = 0 . (8)

The third identity arises from the contraction-deletion property of the chromatic polynomial.
In terms of these graphs, it is

+ = + . (9)

Whenever any of the graphs in (8) and (9) appears as a subgraph, we can replace it with the
respective number or linear combination without changing the evaluation.
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Repeatedly applying (9) allows any planar trivalent graph with no ends to be turned into
a sum over collections of loops and tadpoles, which then can be evaluated using (8). For
example, using all three of the identities gives

= + − = (Q− 2) . (10)

This identity for bubble removal then can be used to evaluate for example

= (Q− 2) = (Q− 2)(Q− 1) . (11)

A useful one in our analysis is triangle removal:

= + − = (Q− 3) . (12)

The proof is simple: the first graph in the sum simplifies using (10) (recall all relations hold
under rotations), the second vanishes because of (8), and the third already is in the desired
form.

The evaluation here is called the chromatic polynomial. This toplogical invariant has a
long history, as it gives a way to generalise the notion of Q-colouring to any Q. Namely, treat
the lines in a planar graph as being the boundaries of regions in a map (in the colloquial sense
of the word “map”). A Q-colouring is a way of assigning one of Q colours to each of the regions,
such that any two regions separated by an edge must be coloured differently. The chromatic
polynomial χĜ(Q) is the number of ways of colouring the faces of a planar graph G (we label
by the dual graph Ĝ to conform to the usual convention). The famed four-colour theorem says
that χĜ(4)> 0 for all G.

The correspondence between the chromatic algebra and the chromatic polynomial is sim-
ple and direct: Using rules (8,9) yields χT̂ (Q)/Q for the evaluation of any planar trivalent
graph T [18,19]. Since Q is only a parameter in these rules, this procedure gives a definition
of the chromatic polynomial for all Q. The evaluation in terms of colourings is already appar-
ent in the examples above. Consider the graph L comprised simply of a single loop embedded
in the plane. The two regions must be coloured differently, so the number of ways of colouring
the two regions is χL̂(Q) = Q(Q − 1). Using the first rule in (8) means that the evaluation is
simply Q − 1, indeed equal to χL̂(Q)/Q. Similarly, the three regions in (11) each need to be
coloured differently, so the corresponding chromatic polynomial is Q(Q− 1)(Q− 2), in agree-
ment with the graph evaluation times Q. Likewise, the identity in (12) follows from noting
that all four regions in the picture on the left must be coloured differently.

The operators obeying the algebra (1, 2) can be presented in terms of planar trivalent
graphs obeying the chromatic algebra [18,19], plus one more relation we describe below. The
operators in this graphical presentation are defined to act on a set of L vertical strands by
causing them to branch and join. Specifically, the Pj , S j and a third kind of generator E j are
given by

Pj = , S j = , E j = , (13)

where a generator labelled by j acts on the j and j+1 strands (interpreted as always cyclically).
The contraction-deletion relation (9) of the chromatic algebra gives a linear relation between
these generators, namely

Pj + E j = 1+ S j . (14)
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To see how (13) and the chromatic algebra yield the algebra (1, 2), it is first instructive to
look at the generators E j . From the point of view of the latter algebra, the contraction-deletion
relation provides the definition of the E j . From the point of view of the chromatic algebra, the
subalgebra involving only the generators E j is the Temperley-Lieb algebra [11], in its graphical
presentation [12,13]. Using the chromatic algebra to get rid of the closed loop means that

�

E j

�2
= = (Q− 1) = (Q− 1)E j , E j E j+1E j = = = E j ,

(15)

along with E j Ek = EkE j for | j− k|> 1. The generators E j are related to the S j and Pj via (14),
and so if (2) is to be satisfied, then

E2
j = (S j + 1− Pj)

2 = 2(S j + 1− Pj) = 2E j . (16)

Comparing this relation to the graphical one (15) means that the correspondence between
algebras is possible only when the number of colours is Q= 3.

We now can see how far we can get using just the chromatic algebra. Obviously, operators
with labels j and j′ commute with | j − j′| > 1, yielding (2). The first line of (1) follows from
the above relations in the chromatic algebra. For example,

S j Pj = = 0 ,
�

Pj

�2
= = = Pj , (17)

follow respectively from (12) and (10) with Q=3. Showing (S j)2 = 1− Pj takes a few steps,
but is straightforward using the above chromatic identities. The relation

PjS j+1Pj = = 0 , (18)

follows from (12).
However, the remaining relation in (2) does not follow solely from (8) and (9). Instead,

we must exploit an additional property special to Q= 3. The key observation is that when q
defined by Q = (q

1
2 + q−

1
2 )2 is a root of unity, the evaluations of graphs using the chromatic

algebra obey more linear identities [18]. It then becomes consistent to set one particular
Jones-Wenzl projector [36] to be zero, and so enhance the chromatic algebra accordingly. The
procedure for finding this projector is reviewed in detail in [18], so we simply present the
result here. For Q= 3, we have

= 0 . (19)

This identity is consistent with the fact that the evaluation is the chromatic polynomial. In-
deed, since Q is an integer, we can use colourings. This interpretation shows immediately why
the graph in (12) vanishes at Q= 3, because colouring all four regions requires four distinct
colours. Similarly, the Jones-Wenzl projector in (19) cannot be coloured with three colours:
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one colour is needed for inside the circle, while the other two colours must then alternate
in the regions outside the circle. Since there are an odd number of the latter regions, such a
colouring is impossible and the evaluation must vanish. Extending the Q= 3 chromatic algebra
by (19) immediately yields the remaining relation in (2):

S jS j+1S j = = 0 . (20)

We thus have proved that the algebra (1, 2) follows from the “chrome-plus” algebra at
Q= 3. The latter algebra consists of the chromatic algebra enhanced by the Jones-Wenzl pro-
jector (19). The converse also holds, which we prove next.

2.3 Graphical presentation in terms of the BMW algebra

Pioneering work in the 70s and 80s showed the close connection between algebras, integrable
lattice models and knot and link invariants [11–15]. The example we study is no exception,
and indeed, has quite an elegant description in the knot and link language. We exploit these
results to prove the converse of the result of the previous section. Namely, we show that the
algebra (1, 2) yields a special case of the so(3) BMW algebra [37, 38] enhanced by its Jones-
Wenzl projector [18,36]. Since the latter is equivalent to the chrome-plus algebra [19,39], we
thus have proved that the two are completely equivalent.

As with the chromatic algebra, the BMW algebra has a beautiful graphical presentation.
It includes over- and under-crossings, thus allowing one to compute knot and link invariants
generalising the Jones polynomial. The BMW algebras also provide centralizers of quantum-
group algebras [40], and can be used to construct lattice models invariant under the latter.
For example, the integrable Fateev-Zamolodchikov spin-1 chain [41] is invariant under the
quantum group Uq(so3), and the analogous RSOS height models come from projecting on to
singlets under the symmetry [42]. We will in essence follow this procedure to construct lattice
Hamiltonians below, albeit in the equivalent fusion-category language.

Here we show how to obtain the BMW algebra from (1, 2). The simplest part of the con-
nection is to construct a representation of the braid group. The generators are

B j = qPj + q−1S j , B−1
j = q−1Pj + qS j , (21)

for some parameter q. Using (2) and the ensuing identities such as (6) gives

B jB j+1B j = q3Pj Pj+1 + q−1
�

S jS j+1 + S j+1S j +
�

1− Pj

��

1− Pj+1

�

�

.

Since Pj and Pj+1 commute, this expression is invariant under exchanging j↔ j+1. Therefore
it also equals B j+1B jB j+1, showing that the B j indeed satisfy the braid-group relation

B jB j+1B j = B j+1B jB j+1 . (22)

In the graphical presentation of the braid group, these generators act on a set of L vertical
lines, i.e. on a vector space of all possible connections of L points at the bottom with L points at
the top. Then B j corresponds to an overcrossing of j and j+1th lines (with index interpreted
cyclically as always), and B−1

j an undercrossing. These and the Temperley-Lieb generator E j
are pictured as

B j = , B−1
j = , E j = . (23)
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Multiplication is by stacking, and then one can derive identities by moving the lines around in
three-dimensional space. For example, the second Reidemeister move is simply

B jB
−1
j = = = 1 , (24)

while the braid-group relation (22) is the third Reidemeister move:

B jB j+1B j = = = B j+1B jB j+1 . (25)

The graphical proof of the latter is simply dragging the middle line horizontally.
The BMW algebra enhances the braid-group relations to include the Temperley-Lieb gener-

ator E j . A variety of relations among the generators ensure that topological invariants of knots
and links can be constructed. An explicit list can be found in [37]; we follow the conventions
of [39,43]. We then can prove that (1, 2) implies the BMW algebra and hence the chrome-plus
algebra simply by going through them one-by-one. For each j there is a linear relation among
the three generators, which allows us to fix conventions: comparing (14) and (21) means that

B j − B−1
j =
�

q− q−1
��

1− E j

�

. (26)

In the knot/link context, this relation is often called the Kaufmann skein relation.
The relations involving two generators with the same j also follow easily. We have already

used the fact that E2
j = 2E j follows from (2) to fix Q= 3. The definition (21) then yields

B j E j = (qPj + q−1S j)(1− Pj + S j) = q−1
�

S j + 1− Pj

�

= q−1E j . (27)

These allow us to make contact with the first Reidemeister move in the graphical presentation:

B j E j = = q−1 = q−1E j . (28)

Similarly, B−1
j E j = E jB

−1
j = q−1E j , so that a clockwise twist results in a factor q, and a coun-

terclockwise twist a factor q−1. These extra factors mean this approach does not quite give
the first Reidemeister move. To construct a knot or link invariant, one must keep track of
these twistings to remove the resulting factors of q. This is best done by framing the knot, i.e.
turning each strand into a ribbon, and then computing the resulting “writhe” [14].

The remaining BMW relations involve generators on three strands. We have already
showed that the braid-group relation (22) holds. Another one is

E jB j+1E j =
�

1− Pj + S j

��

qPj+1 + q−1S j+1

��

1− Pj + S j

�

= q
�

1− Pj + S j

�

= qE j , (29)

again following from (2) and (6). The factor of q is needed for the correct twisting:

E jB j+1E j = = q = qE j .
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Of the remaining identities, one is the Temperley-Lieb relation E j E j+1E j = E j described above.
The others are [37,43]

B jB j+1E j = E j+1E j , B j E j+1B j = B−1
j+1E jB

−1
j+1 , B j E j+1E j = B−1

j+1E j , (30)

along with their vertical and horizontal reflections. All have nice interpretations as graphical
identities found by dragging lines around, as with the braid-group relation. It is straightfor-
ward to show that with the relation (21), all are satisfied by using manipulations using the
algebra (2).

We have not yet identified which BMW algebra this is, and have not addressed the Jones-
Wenzl projector. These two issues are connected. Conventionally, so(N) BMW algebras are
labelled by two parameters N and k, with the associated quantum-group parameter defined
as q = eiπ/(k+N−2). The representations are most interesting when N and k are integers, so
that q is a root of unity. To be the centralizer of the quantum-group algebra Uq(so(N)), the
simplest choice for the twist factor is qN−1, with the above conventions [37,43]. We thus may
identify N = 2. The parameter q and the parameter k then are not constrained so far: all the
BMW relations above hold for any q. This identification should not come as a shock, as the
XXZ chain has a SO(2) = U(1) symmetry. However, this identification is not unique, because
these BMW algebras have a level-rank duality exchanging N with k. The point is that because
qN−1 = −q1−k, all the BMW relations hold under the substitution B ↔ −B−1 and N ↔ k.
Thus we equally could have identified the corresponding BMW algebra as having k= 2 and N
as of yet undetermined.

Including the Jones-Wenzl projector does fix the value of q and hence both N and k. The
reason is that only for a specific value of q is imposing this constraint consistent with the other
relations. We already saw this property in connection with the chromatic algebra: only for
Q= 3 is it consistent to impose (19) or equivalently S jS j+1S j = 0. A quick way to identify q
here is by the relation E2

j = d1E j , as the expressions for d1 are known in both the chromatic
and the BMW algebras, giving [19,39]

d1 =Q− 1= 1+
qN−1 − q1−N

q− q−1
. (31)

Setting N = 2 does indeed yield Q= 3 for any q. However if we exploit the level-rank duality
and instead fix k=2, then imposing Q= 3 requires that N = 3, and q = eiπ/3. The BMW alge-
bra relevant here thus can be labelled as so(3)2, and is the centralizer of the quantum-group
algebra Uq(so(3)). This labelling is in harmony with the correspondence between the chro-
matic and BMW algebras, which in general requires N = 3 in the latter. The general relation
between Q of the chromatic algebra and q of the BMW algebra is then Q = (q

1
2 + q−

1
2 )2.

2.4 Fusion categories

We have shown that (1) and (2) is equivalent to the so(3)2 BMW algebra, which in turn is
equivalent to the chrome-plus algebra. This structure goes deeper, as this algebra forms part
of a fusion category. Fusion categories allow one to construct isotopy invariants of labelled
graphs, and are familiar in physics for understanding the topological properties of anyons. As
with the chromatic algebra, a nice feature of the fusion category is that it allows one to compute
isotopy invariants of planar graphs without needing to discuss the specific presentation acting
on vertical strands. Many fine reviews of fusion categories from a variety of perspectives
already exist, such as [17, 44], and in particular all the relevant information for the models
described here can be found in [7]. We thus mainly focus on the case at hand.

A fusion category subsumes the algebras we have discussed, giving a more general struc-
ture. The basic data for a fusion is a list of objects obeying fusion rules describing the tensor
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product of the objects. In an equation,

a⊗ b =
∑

c

N c
abc , (32)

where the N c
ab are non-negative integers. An example of such a set are certain irreducible

representations of quantum-group algebras with q a root of unity (ordinary Lie algebras obey
the same kind of fusion rules, but the number of representations and hence objects is not
finite). The category we study has some simplifying properties: fusion is associative, and all
N c

ab take values of 0 or 1 and remain invariant under permutations of a, b and c.
The chromatic and BMW algebras in general are not automatically embeddable into fusion

categories, as the associated fusion algebras generically involve an infinite number of objects.
However, when q is a root of unity one can impose the Jones-Wenzl projector and make the
number of objects finite. The chrome-plus (i.e. N = 3, k= 2 BMW) algebra analysed here
extends to a category usually known as so(3)2. In this case there are three objects, which are
labelled as 0, 1, and 2 in the standard physics conventions for labelling spins (they correspond
to labels 0, 2 and 4 in [18, 19]). The object labeled by 0 is the identity, so that the fusion
s⊗ 0= s for any s, and lines in a graph labelled by 0 can simply be omitted. The other fusion
rules of so(3)2 are

1⊗ 1= 0⊕ 1⊕ 2 , 2⊗ 1= 1 , 2⊗ 2= 0 . (33)

The 0 in the last relation means the object labelled by 0, not the number; two objects always
fuse to something non-trivial. It is not coincidental that the fusion rule of the object 1 resembles
that of a spin-1 representation of so(3) or su(2): it survives under the truncation resulting from
setting k= 2. Indeed, the fusion category so(3)2 is the subcategory comprised of the integer-
spin objects of su(2)4, which is associated with the quantum group Uq(sl2). The larger category
su(2)4 (and its close relative A5) have objects labelled by spins, 0, 1

2 , 1, 3
2 , and 2. The fusion

rules are
s⊗ 0= s , s⊗ 2= (2− s) , 1⊗ 1= 0⊕ 1⊕ 2 ,

1
2 ⊗ 1 = 3

2 ⊗ 1= 1
2 ⊕

3
2 , 1

2 ⊗
1
2 = 0⊕ 1 , 1

2 ⊗
3
2 = 1⊕ 2 ,

(34)

for any s.
Just as with the chromatic algebra, a fusion category contains a list of rules that allow one

to evaluate a planar trivalent graph, but where each edge is labelled by one of the objects.
When an object c ∈ a ⊗ b (i.e. N c

ab ≥ 1), then the three edges around a trivalent vertex can
be labelled by a, b and c. Because of the simpler nature of our categories, the edges are
unoriented, and the labels can be placed in any order. The simplest rules are in (8): tadpoles
vanish no matter what the labels, while a closed loop labeled by a receives a weight da, its
“quantum dimension”. In addition to the quantum dimensions, the other data provided by
the fusion category are the coefficients under “F moves”. These moves give a linear relation
between the two ways four strands can fuse together in a planar trivalent graph. In so(3)2,
the fusion rule 1⊗ 1= 0⊕ 1⊕ 2 means that for s = 0, 1,2 there exist F moves of the form

s =
∑

r=0,1,2

f (s)r
r = f (s)0 + f (s)1 + f (s)2 , (35)

where an unlabelled solid line corresponds to spin-1 and the dotted to spin-2, and any line
labelled by 0 can be omitted. The coefficients f (s)r are called the F symbols, and they must
satisfy a variety of constraints such as the pentagon equation in order to make the evaluation
unique.
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Using F moves and the other rules allow one to replace two concentric loops with a single
one, as with the fusion rules (32). This in turn puts a constraint on the quantum dimensions:

a b =
∑

c

N c
ab c =⇒ dadb =

∑

c

N c
abdc . (36)

The identity defect must always have d0=1, so in so(3)2 this relation along with fusion (33)
gives d1= 2, d2= 1 (quantum dimensions must always be positive in the unitary categories
we consider). The quantum dimensions of the half-integer-spin objects in su(2)4 are then
d 1

2
= d 3

2
=
p

3.
The extension of the chrome-plus algebra to the so(3)2 fusion category is not immediately

obvious, as the graphs in the latter have labels where those for the former do not. The reason
for the seeming discrepancy is straightforward to understand: one can use the F moves to
remove all occurrences of the label 2, leaving only lines with label 1. Namely, the F moves give
three linear relations among 6 graphs with four external spin-1 legs. They can then be used to
relate the two graphs with spin-2 lines to a sum over those without it. The remaining spin-1
lines are described by the chromatic algebra. A convenient way of making the correspondence
precise is to identify the projectors/idempotents acting on strands. There are three sets of
projectors P(0)j , P(1)j , P(2)j acting on two spin-1 strands, obeying

P(a)j P(b)j = δabP(a)j , P(0)j + P(1)j + P(2)j = 1 , (37)

for all j. Graphically, these projectors take two spin-1 lines and fuse them to a single line, as
on the right-hand side of (35). Then in the chromatic algebra

P(0)j = 1
2 E j =

1
2

, P(1)j = Pj = . (38)

The graph for P(2) then corresponds to having the vertical line labelled by 2 (i.e. the dotted
line in (35)), but by construction we must have P(2)j = 1− P(0)j − P(1)j = 1− 1

2 E j− Pj here. This
relation thus fixes the F symbols in (35) with s = 0. (Our normalisation of the F symbols is
not the conventional one, but rather the one set by the chromatic algebra. The conventional
F symbols for so(3)k can be found in equation (3.18) of [7], and the evaluation rules change
correspondingly by a factor of 21/4 for each trivalent vertex of spin-1 lines.) We then have
S j = P(0)j − P(2)j .

Since all our relations remain true under rotations, the horizontal spin-2 line also can be re-
placed by linear combinations of graphs involving only the spin-1 lines, i.e. the unlabelled ones
in the chromatic algebra. Replacing the spin-2 lines requires using two of the three identities in
(35). The third thus results in an additional constraint: it is precisely the contraction-deletion
relation (9) of the chromatic algebra! Thus the graphical relations in the so(3)2 fusion cate-
gory are those of our chrome-plus algebra. Moreover, this category can be extended to have
braiding, yielding that described in section 2.3.

3 A quartet of Hamiltonians

In the previous section we gave a variety of presentations of the algebra (1, 2), and showed
how these presentations arise in the so(3)2 and su(2)4 fusion categories. Here we exploit these
connections to display different integrable Hamiltonians satisfying this algebra.
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3.1 Integrability

As has long been known, the XXZ chain is integrable and solvable by the Bethe Ansatz [45].
One way of proving its integrability is to show that the Boltzmann weights of its classical 2d
generalisation, the six-vertex model, obey the Yang-Baxter equation (YBE). The XXZ chain is
then obtained by taking a special limit of these Boltzmann weights. The YBE guarantees that
the ensuing Hamiltonian commutes with the transfer matrix of the classical model, yielding a
hierarchy of commuting charges that imply integrability.

One does not need to use the XXZ presentation to prove integrability, however: Boltzmann
weights from the algebra (1, 2) is sufficient to guarantee a solution of the YBE [34, 35]. Any
Hamiltonian of the form (3), including the three other ones described in this section, is thus
integrable. The Yang-Baxter equation in difference form is

R j(u)R j+1(u+ u′)R j(u
′) = R j+1(u

′)R j(u+ u′)R j+1(u) , (39)

where u is called the spectral parameter. The resemblance to the braid-group relation (22) is
not a coincidence, and using a braided tensor category to find a full u-dependent solution to
the YBE is called “Baxterisation” [46].

We parametrise this solution by

R j(u) = 1− Pj +α(u)S j + β(u)Pj . (40)

Demanding R of this form satisfy (39) and using (2) and (6) yields two functional equations
for α(u) and β(u):

β(u+ u′) +α(u)α(u′) = β(u)β(u′) , α(u) + β(u+ u′)α(u′) = β(u)α(u+ u′) . (41)

The relations (41) are solved by α(u) = sin u/ sinµ and β(u) = sin(u+µ)/ sinµ

R j(u) = 1− Pj +
sin u
sinµ

S j +
sin(u+µ)

sinµ
Pj , (42)

satisfies the YBE for any value of the parameter µ. Worth noting is that the operator R j(u) is
invertible for u ̸= ±µ:

R j(u)R j(−u) =
sin(µ+ u) sin(µ− u)

sin2µ
. (43)

The second and third Reidemeister moves follow from (43) and (39) by taking B j ∝ R j(i∞).
A transfer matrix of an integrable classical lattice model then can be constructed by taking

the product of all these operators as

T (u) = RL(u)RL−1(u) . . . R2(u)R1(u) . (44)

The YBE then requires that [T (u), T (u′)] = 0 for any u and u′ [45]. The quantum Hamiltonian
(3) then follows from taking the u→ 0 limit, giving

T (u) = 1+
u

sinµ
H +O(u2) , where ∆= cosµ . (45)

Expanding the commutator in powers of u′ gives
�

H, T (u)
�

= 0 for any∆, since the YBE holds
for any µ. Expanding d ln(T (u))/du in u gives a series of local conserved quantities, so any
H built by this approach is integrable for any ∆. Of course, it has long been known that the
XXZ chain is integrable, but the result is more general, as it requires only the algebra (1, 2).
Indeed, [34,35] used this algebra to show that the “XXC models” are integrable. Similarly, the
integrability of the Rydberg-blockade ladder we describe below is far from obvious without
this method.
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3.2 The XXZ spin chain

The XXZ chain (4) provides the best-known Hamiltonian of the form (3). Our approach to
XXZ is not the usual Temperley-Lieb one: here ∆ is allowed to vary freely even though the
quantum-group parameter q = eiπ/3. The conventional formula ∆ = q + q−1 does not apply
here.

The XXZ Hamiltonian has U(1) and Z2 symmetries, whose generators are

Q =
L
∑

j=1

Z j+ 1
2
= n↑ − n↓ , F =

L
∏

j=1

X j+ 1
2

, (46)

where n↑ and n↓ are respectively the number of up and down spins in each configuration in
the Z-diagonal basis. The eigenvalues of the charge Q are therefore even integers for even L,
and odd integers for odd L. These two symmetry generators anticommute with each other. In
the Heisenberg chains at ∆= ±1, the symmetries are enhanced to a full SU(2).

3.3 The three-state antiferromagnet

In section 2.2, we showed how the algebra (1, 2) can be presented in terms of the chrome-plus
algebra at Q= 3. The chromatic polynomial has long been known to be associated with the
Q-state Potts model (see e.g. [47]), with the lines governed by the chromatic algebra [19]
corresponding to domain walls in the Potts model. The degrees of freedom in the integer-Q
Potts model are “spins” taking Q distinct values, such that a domain wall separates regions
of different spins. In the chromatic interpretation, these values are the Q different allowed
colours. Here we show how to use this picture to find a three-state antiferromagnetic Potts
Hamiltonian of the form (3).

In (13) we have a graphical presentation of the operators Pj and S j . Interpreting the
lines as domain walls defines another presentation in terms of Q= 3 Potts spins, where these
operators act on a Hilbert space comprised of L three-state systems. The spins live on the dual
graph to that made by the lines, so that we can define the operators via

Pj = s j−1 s j+1

s j

s′j
, S j = s j−1 s j+1

s j

s′j
. (47)

A domain wall between two spins means that they they must be different, so we define basis
states by specifying s j = A, B or C for j = 1 . . . L such that s j ̸= s j+1. Each operator Pj or S j in
general depends on three successive spins s j−1, s j and s j+1, and possibly changes the middle
one to a value s′j while leaving the other two invariant. The operators therefore can be written
in the form

Oj|s j−1 s j s j+1〉 =
∑

s′j

s j−1 O

s′j

s j

s j+1 |s j−1 s′j s j+1〉 , (48)

where the matrix elements (pictured as a square) for Pj and S j are determined from (47). The
vertical line in Pj requires s j+1 ̸= s j−1, while the horizontal line in S j requires s j ̸= s′j . Thus

s j−1 P

s′j

s j

s j+1 =
�

�εs js j−1s j+1

�

�δs js
′
j
, s j−1 S

s′j

s j

s j+1 =
�

�εs js j−1s′j

�

�δs j−1s j+1
, (49)
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where
�

�εabc

�

�= 1 for a, b, c ∈ {A, B, C} obeying a ̸= b ̸= c ̸= a and zero otherwise. The operator
Pj is thus diagonal in this basis, while S j is off-diagonal. Any pair of operators Oj and O′j′
satisfying the form (48) automatically commute for | j− j′|> 1, so (1) is automatically satisfied
here and for all the presentations considered in this section. Checking that Pj and S j defined
by (49) do indeed satisfy the algebra (2) as well is straightforward to do.

The antiferromagnetic constraints s j ̸= s j+1 can be displayed pictorially by an adjacency
diagram. Each degree of freedom (i.e. each basis element at a site) corresponds to a node of
the diagram, and nodes are connected by an edge if the corresponding spins are allowed to be
adjacent to each other. Here the adjacency diagram is

A
C

B
(50)

The Hilbert space can be restricted to only states satisfying this constraint for all j, interpreted
periodically in terms of spins. The dimension of this constrained Hilbert space H3 is then
2L +2(−1)L with the 2L arising from the two choices of s j+1 given a particular s j , and the cor-
rection from the periodic boundary conditions. The classical Potts model with the requirement
that nearest-neighbour spins be different is called a zero-temperature antiferromagnet.

The next-nearest-neighbour Hamiltonian H3 acting on H3 follows immediately from (3)
by using the matrix elements in (49). To write it in operator form, we define Z3 analogs of
the Pauli operators, σ j and τ j . They act non-trivially on the three-state system at site j, i.e.
σ j = 1⊗ 1 · · · ⊗σ⊗ . . . 1 and τ j = 1⊗ 1 · · · ⊗τ⊗ . . . 1, where in the ABC basis of H3

σ =





1 0 0
0 ω 0
0 0 ω2



 , τ=





0 0 1
1 0 0
0 1 0



 , ω= e
2πi
3 . (51)

They satisfy σ jτ j =ωτ jσ j and σ3
j = τ

3
j = 1. Then

H3 =
1
9

L
∑

j=1

�

τ j

�

1+ωσ†
j−1σ j +ω

2σ j−1σ
†
j

��

1+ω2σ†
jσ j+1 +ωσ jσ

†
j+1

�

+ 3∆
�

1−σ j−1σ
†
j+1

�

+ h.c.
�

. (52)

It is more illuminating to describe this Hamiltonian in words. The first part of the Hamilto-
nian corresponds to the projector S j of the algebra, and the second part with coefficient 3∆
corresponds to the Pj projector. As apparent from the matrix elements (49), S j toggles the
spin s j whenever s j−1 = s j+1, e.g. sends ABA↔ ACA, whereas Pj gives an energy whenever
s j−1 ̸= s j+1.

This Hamiltonian has an obvious S3 symmetry, corresponding to permutations of the three
states in the ABC basis, the symmetry of the adjacency diagram (50). The Z3 subgroup is
generated by R =

∏

j τ j , which shifts all s j as A → B → C → A. The other elements of S3
exchange two of the states while leaving the third invariant. A less-obvious U(1) symmetry
becomes apparent with the mapping to XXZ: the difference of the two types of domain walls
is conserved. Its generator is

Q3 =
ip
3

L
∑

j=1

�

σ jσ
†
j+1 −σ

†
jσ j+1

�

, (53)

commuting with R but anticommuting with the generators of the Z2 subgroups of the S3.
Antiferromagnetic Potts Hamiltonians like H3 have not been widely studied. The special

case ∆ = −1
2 does arise in the zero-temperature antiferromagnetic three-state classical Potts
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model on the square lattice. This model was mapped onto the classical six-vertex model with
identical Boltzmann weights for all configurations [21,48–50]. This correspondence has been
rederived in the categorical approach in [51], and follows in our setup by utilising the map
M defined in section 4.2 on the classical three-state model. Taking the quantum Hamiltonian
limit of the latter (see e.g. [45]) yields HXXZ with ∆ = −1

2 . Varying ∆ away from this value
as we do corresponds to interactions between classical Potts spins at opposite corners of the
same square in the classical model. While the zero-temperature constraint is required for
the map M to make sense, relaxing the constraint in the quantum Hamiltonian version does
not immediately change the physics [52], even though it does in the classical square-lattice
model [21].

3.4 The integrable Rydberg-blockade ladder

Several other Hamiltonians with generators obeying (2) can be found by exploiting the connec-
tion to fusion categories. As explained in section 2.4, a fusion category enhances the graphical
structure by relating it to a set of objects and their tensor products. Relating fusion categories
to lattice models has a long history both in the study of integrable models (see e.g. [15] for
a review) and the computation of topological invariants via “shadow world” [53–55]. Lattice
models constructed in this fashion satisfy a number of remarkable properties, in particular al-
lowing the construction of topological defects commuting with the Hamiltonian [6,7], results
we exploit in section 4.

The allowed degrees of freedom in a lattice model built from a fusion category are labeled
by the objects in the category. We call these degrees of freedom “heights” h j , and they live on
the sites j = 1 . . . L of our quantum chain, similarly to the Potts spins described above. A lattice
model is then defined by specifying a particular object ρ in the category. The objects labelling

adjacent heights h j+1 and h j then must satisfy the fusion rule h j+1 ∈ h j ⊗ ρ, i.e. N
h j+1

h jρ
̸= 0.

For the su(2)k category with ρ = 1
2 , one obtains the RSOS models of Andrews, Baxter and

Forrester [56]. In our cases, the so(3)2 and su(2)4 categories, we set ρ= 1, the spin-1 object,
giving models introduced in [42]. The ensuing rules for heights are conveniently displayed in
an adjacency diagram like (50). Using ρ= 1 and the su(2)4 fusion rules from (34) gives the
adjacency diagrams

0 1 2
1
2

3
2

(54)

The adjacency diagram for ρ= 1 here splits into two disconnected pieces, as fusion with the
spin-1 object does not mix integer and half-integer spins. The first diagram in (54) is that for
the so(3)2 subcategory of integer-spin objects, the fusion category subsuming the chrome-plus
algebra.

Since the adjacency diagram splits into two disconnected parts, we can define two distinct
height models. We first analyse the model with heights labelled by the integer spins 0, 1, 2 and
adjacency rules displayed in the first diagram in (54) [22–25]. The fusion-category approach
gives a general and explicit method for constructing the projection operators acting on the
heights. The results are easiest to display in terms of the non-vanishing matrix elements. For
P(0)j = E j/2 they are

0 (0)

1

1

0 = 2 (0)

1

1

2 = 1 , 1 (0)

h′j

h j

1 = 1
4

q

dh j
dh′j

, (55)
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for h j , h′j = 0,1, 2, while the quantum dimensions are d0 = d2= 1 and d1= 2. The non-

vanishing matrix elements for P(2)j are

2 (2)

1

1

0 = 0 (2)

1

1

2 = 1 , 1 (2)

h′j

h j

1 = 1
4(−1)h j+h′j
q

dh j
dh′j

. (56)

Using S j = P(0)j − P(2)j and Pj = 1− P(0)j − P(2)j , it is straightforward to work out these matrix
elements and to check that these operators satisfy (2). This presentation of S j and Pj therefore
gives an integrable Hamiltonian (3) for all ∆.

A nice physical application of this chain arises in (experimentally realisable [26]) arrays
of Rydberg-blockade atoms. Each site of such an array is a two-state system, with the states
labelled empty and occupied. The interactions can be tuned to forbid nearby sites from both
being occupied, hence the “blockade”. The case of a chain with forbidden nearest-neighbour
occupancy [57] has been studied intensively recently, both because of the experimental in-
terest as well providing an example of “quantum scars” [27]. The chain studied here can be
interpreted as the integrable Rydberg-blockade ladder (IRL). Namely, consider a ladder with L
rungs indexed by j. We identify the three states for each j as having a particle occupying a
site on the top of the rung (state 0), one occupying the bottom of the rung (state 2), and an
empty rung (state 1). The adjacency diagram in (54) thus forbids particles on adjacent rungs,
no matter whether the top or bottom of the rung is occupied. Thus the IRL allows for just one
particle per square on the ladder. The dimension of the corresponding Hilbert space HIRL is
2L + (−1)L .

We can write the Hamiltonian in explicit operator form by defining the operators t†
j and

b†
j that create a boson on the top and bottom of rung j respectively, subject to rungs j + 1

and j − 1 being empty. Thus by definition, t j = n(e)j−1 t jn
(e)
j+1 and likewise for b j . In the height

language, they take |111〉 → |101〉 and |111〉 → |121〉 respectively. The occupation numbers
are n(t)j = t†

j t j and n(b)j = b†
j b j and n(e)j = 1− n(b)j − n(t)j for the three possibilities on rung j.

Then
S j =

1p
2

�

t†
j + t j + b†

j + b j

�

+
�

n(t)j−1 − n(b)j−1

��

n(t)j+1 − n(b)j+1

�

,

Pj =
1
2

�

t†
j − b†

j

��

t j − b j) +
�

n(e)j−1 − n(e)j+1)
2 .

(57)

The Hamiltonian is then found as always from (3).
It is illuminating to write HIRL in terms of different operators. Because the Rydberg exclu-

sion here is one particle per square, it makes sense to utilise the operators p j = (t j + b j)/
p

2
and m j = (t j − b j)/

p
2. Thus instead of particles on the top and bottom of each rung, one can

consider + and − states annihilated by p and m respectively, both still forbidding particles on
neighbouring rungs. The number operators and the swap operator are

n+j = p†
j p j , n−j = m†

j m j , s j = p†
j m j +m†

j p j . (58)

One convenient feature of the± basis is that the operator Pj is diagonal, giving the Hamiltonian

HIRL =
∑

j

�

p j + p†
j + s j−1s j+1 +∆

�

n−j +
�

n(e)j−1 − n(e)j+1)
2
�

�

. (59)

Another convenience is that only the + particles can be created individually; the only way of
creating/annihilating − particles is as a pair two rungs apart. The Hamiltonian therefore has
two Z2 symmetries when L is even, generated by

eFodd = (−1)
∑

j odd n−j , eFeven = (−1)
∑

j even n−j . (60)
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Although it appears a bit daunting at first glance, we describe in sections 5.3 and 6 how the
physics of the IRL follows from that of XXZ, in particular being critical for |∆| ≤ 1. We discuss
the other phases below and what happens under perturbation in our companion paper [30].

3.5 Ising zigzag ladder

The fourth Hamiltonian studied in this paper comes from the second adjacency diagram drawn
in (54). Each height is either 1

2 or 3
2 , so that each integer-labelled site j is simply a two-state

system, with no further constraints from the adjacency rules: either state can be adjacent to
itself or the other. The Hilbert space Hzig thus is 2L-dimensional. The matrix elements can be
found by utilising the results of section 7.4 of [7] (where this model is called M1). They are

h j−1 (0)

h′j

h j

h j+1 = δh j−1h j+1
, h j−1 (2)

h′j

h j

h j+1 = δh j−1, 2−h j+1
. (61)

The projectors can be written in operator form utilising the Pauli matrices, which to avoid
confusion with XXZ we label as σa

j with a = x , y, z. Then

P(0)j = 1
4(1+σ

z
j−1σ

z
j+1)(1+σ

x
j ) , P(2)j = 1

4(1−σ
z
j−1σ

z
j+1)(1+σ

x
j ) . (62)

It is easy to verify that the ensuing S j = P(0)j − P(2)j and Pj = 1− P(0)j − P(2)j satisfy (1, 2).
The Hamiltonian constructed from (3) using (62),

Hzig =
1
2

L
∑

j=1

�

σz
j−1

�

1+σx
j

�

σz
j+1 +∆(1−σ

x
j )
�

, (63)

is therefore integrable for any ∆. As usual, we take periodic boundary conditions in (63),
and so interpret indices cyclically. One can think of this Hamiltonian as describing two Ising
chains, one on the even sites and the other on the odd, coupled via the zxz terms. The chains
are thus naturally written as a zigzag ladder. If one omits either the zz or the zxz terms the
model is free fermion, and we have shown that when their coefficients are equal the model
is integrable if not free. It is worth noting that the zxz terms arise as a canonical example
of a symmetry-protected topological phase [58], and Hzig has been studied in a variety of
interesting contexts [59–61]. As with the Rydberg ladder, Hzig has a Z2×Z2 symmetry for even
L generated by Fodd =

∏

j oddσ
x
j and Feven =
∏

j evenσ
x
j . An additional symmetry generator

is E, the operator that interchanges the two chains. As EF1 = F2E, the symmetry group is
the dihedral group D4, the symmetry of a square. For odd L only the product Fzig = FoddFeven
commutes.

4 A square of non-invertible mappings

Because all Hamiltonians in the quartet are built from the same algebra, their physics must
be related. In this section we make this notion precise by constructing explicit linear maps
between them. In general, this requires some care, as the maps are non-invertible. We sum-
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Table 1: The symmetries, the non-invertible maps, and their interrelations.

Hamiltonian Symmetry generators Products of non-invertible maps

HXXZ Q (U(1) charge); F (spin flip) K†K = 1+ F ; MM† = 1+ωQ +ω−Q

H3 Q3 (U(1) charge); R, F3 (permute spins) O†O = 1+ F3; M†M= 1+ R+ R2

Hzig Qzig =KQ2K†; Fzig = (−1)L FoddFeven KK†=1+ Fzig; DD†=1+ (1+Fzig) cos 2π
3

Æ

Qzig

HIRL
eQ; eS =ORO†; eF = (−1)L eFoddeFeven OO† = 1+ eF ; D†D = 1+ eS

marise these non-invertible mappings in the diagram

H3

HIRL

HXXZ

Hzig

O

M

D

K

Qzig
eQ, eS

H3: 3-state antiferromagnet,

HIRL: integrable Rydberg-blockade ladder,

HXXZ: XXZ chain,

Hzig: Ising zigzag ladder.

(64)

In this section we define all the maps between models by utilising topological defects, mak-
ing more explicit and extending the analyses of [7, 20]. We derive a variety of interrelations
among these maps and conventional symmetries, in particular showing that the diagram of
maps between models is commutative, i.e. KM = DO. The maps that send HIRL and Hzig
to themselves commute with the corresponding Hamiltonians, and so generate non-invertible
symmetries that we analyse in section 5. We collect all our results for the interrelations be-
tween the symmetries and maps in Table 1.

4.1 XXZ and the Ising zigzag ladder

The non-invertible maps relating our four models are best displayed by using the formalism of
topological defects. These maps are examples of defect-creation operators [7]. We start with the
defect that maps between the XXZ chain and the Ising zigzag ladder, as it in essence implements
the Kramers-Wannier duality [1] of the Ising lattice model. We find a map K : HXXZ → Hzig
that commutes with the Hamiltonians in the sense that

KHXXZ = HzigK , HXXZK† =K†Hzig . (65)

The Ising model has two non-trivial defect-creation operators. One is simply the spin-flip
operator F . The duality-defect creation operator Dσ is much less obvious. In essence, it maps
from domain walls to spins. Its matrix elements can be written as a product of local defect
weights, each depending on s j+ 1

2
=↑,↓ in XXZ and one of the states t j±1 =

1
2 , 3

2 of zigzag Ising,
giving [7]

�

Dσ
�{t}
{s} =

L
∏

j=1

w
�

s j− 1
2
, t j

�

w
�

s j+ 1
2
, t j

�

, w(s, t) = 2−
1
4 (−1)

δs,↓δt, 3
2 . (66)

Using (66) for a pair of adjacent spins in XXZ gives the height in the Ising zigzag ladder in
between:

Dσ :
�

| ↑ ↑〉, | ↓ ↓〉
	

→ 1p
2

�

|12〉+ |
3
2〉
�

≡ |+〉 ,
�

| ↑ ↓〉, | ↓ ↑〉
	

→ 1p
2

�

|12〉 − |
3
2〉
�

≡ |−〉 , (67)

where |±〉 have eigenvalues ±1 under σx
j . Similarly,

D†
σ :
�

|12
1
2〉, |

3
2

3
2〉} →

1p
2

�

|↑〉+ |↓〉
�

,
�

|12
3
2〉, |

3
2

1
2〉
	

→ 1p
2

�

|↑〉 − |↓〉
�

, (68)
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Thus under Kramers-Wannier duality, a domain wall in the z-basis of one model becomes a
down spin in the x-basis of the other, while no domain wall becomes an up spin. The defect-
creation operators therefore satisfy

Dσ Z j− 1
2
Z j+ 1

2
= σx

j Dσ , Dσ X j+ 1
2
= σz

jσ
z
j+1 Dσ . (69)

Acting with Dσ therefore implements Kramers-Wannier duality in the Ising Hamiltonian by
effectively exchanging each transverse-field and interaction term on the integer sites for the
interaction and transverse-field terms respectively on the half-integer sites. These relations
are an example of the defect commutation relations described below in (94).

Since the terms in the Hamiltonians of the XXZ chain (4) and the Ising zigzag ladder (63)
can be built from products of the terms in (69) the maps can be used here as well. Defining

K =
� L
∏

j=1

σz
j

�

Dσ , (70)

the analogs of (67) and (69) are

K :
�

| ↑ ↑〉, | ↓ ↓〉
	

→ |−〉 ,
�

| ↑ ↓〉, | ↓ ↑〉
	

→ |+〉 , (71)

K Z j− 1
2
Z j+ 1

2
= −σx

j K , K X j− 1
2
X j+ 1

2
= σz

j−1σ
z
j+1 K . (72)

Using (72) with the Hamiltonians (4) and (63) yields (65).
As with all the non-invertible maps we study, K and K† are non-trivial only in certain

subsectors. Indeed, since periodic boundary conditions require an even number of domain
walls in XXZ, the image of K from (70) must have an even number of + spins. This sector is
invariant under spin-flip symmetry operator Fzig ≡ (−1)L

∏

j σ
x
j . Indeed, the definitions (66)

and (70) require FzigK =K =KF , so that K acts non-trivially only on the XXZ sector invariant
under F .

A more systematic method of determining the images and the kernels of the maps comes
from the fusion rules of the defect-creation operators. In the fusion-category construction,
these automatically follow from the fusion rules of the objects. In this Ising case they are [5]

DσD†
σ = 1+ (−1)L Fzig , D†

σDσ = 1+ F . (73)

Both rules are easily checked explicitly. The modified map (70) therefore satisfies

KK† = 1+ Fzig , K†K = 1+ F . (74)

The maps are thus indeed non-trivial in the sectors with eigenvalue 1 of Fzig and of F . The
corresponding partition functions therefore are related as

tr
�

e−βHzig(1+ Fzig)
�

= tr
�

e−βHXXZ
�

1+ F
��

. (75)

One advantage of the defect approach is that it is easy to find maps between other sectors.
For example, the fusion rules can be modified by removing σz

L in the products in (70):

K− = σz
L K =⇒ K−K

†
− = 1− Fzig , K†

−K− = 1+ F . (76)

The modified maps acting to and from Hzig are non-vanishing only in the odd sector of Fzig.
Between the two pairs of maps, we have covered all of Hzig. However, the commutation
relations analogous to (72) are

K− Z j− 1
2
Z j+ 1

2
= −(−1)δ j L σx

j K− , K− X j− 1
2
X j+ 1

2
= σz

j−1σ
z
j+1 K− . (77)
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Because of the factor (−1)δ j L here, the modified maps no longer involve HXXZ. Instead,

K−H− = HzigK− , H−K
†
− =K†

−Hzig , (78)

where the XXZ Hamiltonian with a “Z2-twisted” boundary condition is

H− =
1
2

L
∑

j=1

�

X j− 1
2
X j+ 1

2
+ (−1)δ j L Yj− 1

2
Yj+ 1

2
+∆
�

1+ (−1)δ j L Z j− 1
2
Z j+ 1

2

�

�

. (79)

The analogous boundary condition in Ising following from (77) is called “anti-periodic” [62].
The map K− relates partition functions as

tr
�

e−βHzig(1− Fzig)
�

= tr
�

e−βH−
�

1+ F
��

. (80)

Combining this relation with (75) allows the partition function of our zigzag Ising chain to be
written as a sum over partition functions in XXZ:

Zzig = tr
�

e−βHzig
�

= 1
2 tr
�

�

e−βHXXZ + e−βH−
��

1+ F
�

�

. (81)

One can derive similar linear relations between the XXZ and twisted zigzag Ising partition
functions. We emphasise that such identities are exact. If a model has a continuum limit, then
they necessarily hold there as well, as for the conformal field theories described in section 6.

4.2 XXZ and the three-state antiferromagnet

Here we construct the map M : H3→HXXZ that satisfies the “commutation” relation

MH3 = HXXZM , H3M† =M†HXXZ . (82)

This construction generalises the correspondence of [21] to any ∆.
As with Kramers-Wannier duality, M maps domain walls in the three-state antiferromag-

netic chain to spins in the XXZ chain. Because of the restriction that adjacent spins be different
in the ABC basis of H3, there are six different allowed nearest-neighbour pairs (s j , s j+1). We
define two types of domain walls by identifying configurations related by the Z3 symmetry R.
Each type is mapped to one of the two states in the Z-diagonal basis in XXZ, namely

M :
�

|AB〉 , |BC〉 , |CA〉
	

→ | ↑〉 ,
�

|AC〉 , |BA〉 , |CB〉
	

→ | ↓〉 . (83)

The map M is then defined by applying (83) to send each domain wall (s j , s j+1), including
the “round the world” pair with j= L, to obtain the XXZ spin at site j + 1

2 (mod L). It is then
easy to check that the “commutation” relation (82) is satisfied with H3 defined by (52).

The map M is 3→ 1 in these bases, as the three configurations related by R all map to the
same XXZ configuration, i.e.

MR=M =⇒ 1
3M
�

1+ R+ R2
�

=M . (84)

The latter means M is non-vanishing only on the sector invariant under R and so acts non-
trivially on only a third of H3 (its dimension 2L + 2(−1)L is always divisible by three). Since
the dimension of HXXZ is 2L , not all states in HXXZ are in the image of M.

The U(1) symmetries defined by (46) and (53) enable us to understand the image of M.
The explicit form of (83) requires the two are related by MQ3 = QM. The charge Q3 is
diagonal in the ABC basis, and the periodic boundary conditions require the eigenvalues to be
0 mod 3. The eigenvalues of Q in the image of M must obey the same constraint, so

M†M= 1+ R+ R2 , MM† = 1+ωQ +ω−Q , (85)
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as is straightforward to check explicitly using (83). The partition functions of the two models
are then related by projecting onto the appropriate sectors. Defining

Z3[a]≡ tr
�

e−βH3Ra
�

, ZXXZ(ν)≡ tr
�

e−βHXXZωνQ
�

, (86)

and utilising (85) gives

Z3[0] + Z3[1] + Z3[2] = ZXXZ(0) + ZXXZ(1) + ZXXZ(2) . (87)

Extending the maps non-trivially to other sectors requires defining Z3-twisted boundary
conditions for XXZ. The modified map is defined analogously to (76) as

Mω =MσL =⇒ M†
ωMω = 1+ω2R+ωR2, MωM†

ω = 1+ωQ +ω−Q, (88)

where σL is defined in (51). Thus Mω acts non-trivially only on the sector where R has
eigenvalue ω. It “commutes” with the Hamiltonians as MωH3 = HωMω, where the XXZ
Hamiltonian with Z3-twisted boundary conditions is

Hω =
L
∑

j=1

�

ω−δ j L S+
j− 1

2
S−

j+ 1
2
+ωδ j L S−

j− 1
2
S+

j+ 1
2
+ 1

2∆
�

1+ Z j− 1
2
Z j+ 1

2

�

�

, (89)

with S±j = (X j ± iYj)/2 the usual raising and lowering operators. The corresponding partition
functions are then related as

Z3[0] +ω
2Z3[1] +ωZ3[2] = Zω(0) + Zω(1) + Zω(2) , where Zω(ν) = tr

�

ei 2
3πνe−βHω
�

.
(90)

The map Mω2 = Mσ†
L goes from the sector with R = ω2 to the conjugate Z3-twisted

XXZ Hamiltonian Hω2 , with the corresponding partition function identity given by (90) with
ω→ω2. We then have, analogously to (81), the identities

Z3[a] =
1
3

∑

ν=0,1,2

�

ZXXZ(ν) +ω
−aνZω(ν) +ω

aνZω2(ν)
�

. (91)

One can also obtain sectors with different Q charges by modifying the Hilbert space H3 to allow
identical neigbours across one link, with a corresponding modification of the Hamiltonian H3.

4.3 The Rydberg ladder and the three-state antiferromagnet

Constructing the maps to and from the integrable Rydberg-blockade ladder (IRL) displayed in
(64) requires a little more technology. The matrix elements here are written in terms of local
defect weights that depend on two adjacent degrees of freedom in each of the models:

W
h j ,h j+1
s j ,s j+1

=
s j

h j

s j+1

h j+1
, (92)

with the maps then given by the product

O{h}{s} =
L
∏

j=1

W
h j ,h j+1
s j ,s j+1

=
s1

h1

s2

h2

s3

h3
· · ·

sL

hL
. (93)

We have displayed here the map O : H3 → HIRL with degrees of freedom those of the Ry-
dberg ladder (heights h j = 0,1, 2) and the three-state antiferromagnet (spins s j = A, B, C),
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but all the non-invertible maps we discuss can be written in this form. For example, for the
Kramers-Wannier duality map Dσ, this form is utilised in [5], albeit with only two degrees of
freedom per rectangle. To guarantee that the “commutation” relations such as (82) and (65)
are satisfied, it is sufficient to require that the matrix elements satisfy the defect commutation
relations [7]. They are local conditions on the defect weights written in pictorial form as

∑

s′j

s j−1

s j

s j+1 =

h j

s′j
(a)

h j+1h j−1 ∑

h′j

s j−1

s j

s j+1

h j

h′j

(a) h j+1h j−1
, (94)

where the square represents the matrix elements of any of the projectors P(a) in the respective
models. The sums over the internal degrees of freedom s′j and h′j on the two sides is essential;
the equality is not in general between individual matrix elements. Dragging this defect through
toggles between the Hilbert spaces on which the projectors act, as for example in (69).

We find the map O using a lattice version [33] of the orbifold construction of conformal
field theory [31]. The lattice orbifold requires no criticality, but like its continuum analog,
in essence gauges a discrete symmetry. Any degrees of freedom related by the symmetry are
identified, but new degrees of freedom arise as well. In the lattice version, one identifies
distinct states related by the symmetry, but then any states invariant under the symmetry turn
into a multiplet [33,63,64].

We orbifold the three-state antiferromagnet using the Z2 symmetry F3 exchanging state
B↔ C while leaving A invariant. The case at hand has already been described in [33], under
the name of bA5↔ bD5. (The names come from identifying the adjacency diagrams as extended
Dynkin diagrams; one obtains those in [33] from ours in (50, 54) by giving different labels to
the heights on even and odd sites.) In the adjacency diagram (50), F3 corresponds to a vertical
reflection.

The first step is to identify the adjacency diagram of the orbifold model. Under this orbifold,
B and C are identified into a height we label (with foresight) by 1, while A doubles into two
states, say called 0 and 2. The adjacency diagram is no longer a triangle after the orbifold.
The edges A shared with B and with C result in the orbifold in edges between 1 and 2 and
between 1 and 0. The edge connecting B and C turns into an edge connecting 1 to itself. The
orbifold adjacency diagram thus is precisely the Rydberg-ladder adjacency diagram, the first
of (54). The procedure works in reverse: we could have just as well orbifolded the IRL by its
Z2 symmetry eF , which exchanges 0 and 2 and so reflects its adjacency diagram horizontally.
Then 0 and 2 are identified into A, while 1 is doubled into B and C .

The orbifold construction immediately says which of the weights (92) are non-vanishing:
for any j, if s j = A, then h j ∈ 0,2, while if s j = B or C , then h j = 1. To construct their
precise values, there exists a generalisation of the construction of [7] to the orbifold case,
using module categories [51]. However, here it is much simpler to reverse-engineer the defect
weights directly from the orbifold Boltzmann weights derived in [33]. The case here is only
marginally more complicated than Kramers-Wannier duality, with the non-vanishing defect
weights

1

B

1

C
= 1 ,

h

A

1

s
= 2−

1
4 (−1)δsCδh2 , (95)

where h=0 or 2 and s=B or C , and all are invariant under both horizontal and vertical reflec-
tions. If one were to omit the edge connecting B and C and thus that connecting the height 1
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to itself, the first weight here is zero, and the weights reduce to those given for Dσ in (66). The
Z2 lattice orbifold is therefore a very natural generalisation of Kramers-Wannier duality [33].

We gain intuition into the ensuing non-invertible maps O and O† by combining the 0,2
states of the IRL into the combinations |±〉= (|0〉± |2〉)/

p
2 described in (58). This change of

basis is possible because the one-particle-per-square rule requires that states 0 and 2 (a particle
on the top and bottom of a rung respectively) must always be adjacent to 1 (an empty rung).
For clarity here and later on, we label the state 1 by e in this basis. Similarly to Kramers-
Wannier duality, the image of a configuration in the ABC basis of the Hilbert space H3 under
O† is a unique state in the ± basis of HIRL. Namely, the defect weights (95) require that spins
B and C always map to e, while A maps to ± depending on the adjacent spins. Thus knowing
three successive spins (s j−1, s j , s j+1) in the antiferromagnet gives h j in the Rydberg ladder via

O :
�

|B〉, |C〉
	

→ |e〉 ,
�

|BAB〉, |CAC〉
	

→ |+〉 ,
�

|BAC〉, |CAB〉
	

→ |−〉 . (96)

The orbifold construction guarantees that the Hamiltonians are related as with the other maps.
Indeed, using the ± basis here makes it straightforward to verify that both the maps O and O†

satisfy the defect commutation relations (94), and thus satisfy

OH3 = HIRLO , H3O† =O†HIRL . (97)

The definition (96) means that OF3 =O, so that this map is non-trivial only on the sector
invariant under F3. Moreover, imposing periodic boundary conditions requires that its image
lie in the sector where the eigenvalue of eF ≡ (−1)L eFoddeFeven = (−1)

∑

j(1−n−j ) is 1. Then, as is
easy to check explicitly, the fusion rules are

OO† = 1+ eF , O†O = 1+ F3 . (98)

The maps are thus non-invertible as advertised, and the partition functions are related as

tr
�

e−βHIRL
�

1+ eF
��

= tr
�

e−βH3
�

1+ F3

��

. (99)

To obtain an expression for the Rydberg partition function analogous to (81), we define
the F3-twisted boundary condition in the antiferromagnet. With this boundary condition, we
no longer set sL+ j = s j , but instead sL+ j = s j , where A = A, B = C , and C = B. The Hilbert
space becomes H3−, where sL ̸= s1 is not required, but rather sL ̸= s1. The corresponding
Hamiltonian H3− is then built from (49) as before, but using the appropriate bars in the ma-
trix elements with j = L or j= 1. Namely, in S1 and P1 one uses the spins (h0, h1, h2) =
(hL , h1, h2), while in SL and PL one uses (hL−1, hL , h1). The map O− : H3− → HIRL is built
using (96) as before, with the same barred spins when the map wraps around. For example,
O− |ABC〉 = |+ e e〉, O− |BAB〉 = |e+ e〉 and O− |CABC〉 = |e− e e〉. As these examples illus-
trate, O− maps to the sector with eigenvalue −1 of eF as desired. It is then straightforward to
check that

O−H3− = HIRLO− , O−O
†
− = 1− eF , O†

−O− = 1+ F3 ,

tr
�

e−βHIRL
�

1− eF
��

= tr
�

e−βH3−
�

1+ F3

��

.
(100)

The integrable Rydberg-blockade ladder partition function is then given as the sum

ZIRL ≡ tr
�

e−βHIRL
�

= trH3

�

e−βH3(1+ F3)
�

+ trH3−

�

e−βH3−(1+ F3)
�

. (101)
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4.4 The integrable Rydberg-blockade ladder and zigzag Ising

Here we complete the square in (64) by utilising the fusion-category construction of topo-
logical defects [6, 7]. In any lattice model with weights built from the projectors of a fusion
category, there exists a topological defect Da for each object a in the category. As proved
in [7], its weights obey the defect commutation relations (94), and so the defect-creation op-
erators commute with any Hamiltonian comprised of the projectors. These operators Da under
multiplication obey the same fusion rules as the corresponding objects.

As detailed above, both the integrable Rydberg-blockade ladder and the zigzag Ising model
are constructed from the su(2)4 category, and so possess non-trivial defects for a = 1

2 , 1, 3
2 , 2

(D0 is the identity). Moreover, the maps with a half-integer interchange integer and half-
integer heights, and so map between HIRL and Hzig. Since the latter Hilbert space is comprised
entirely of configurations with half-integer heights and the former with integer heights, the
defect-creation operators can be split into block-diagonal form

D 1
2
=

�

0 D
D† 0

�

, D1 =

�

S 0
0 eS

�

, (102)

so that D : HIRL→Hzig. Thus we have

DHIRL = HzigD , D†Hzig = HIRLD† . (103)

The fusion rules of these operators follow immediately from this construction [7] , a valuable
feature as the products are not as simple as those for the other maps. Here we have

�

D 1
2

�2
= 1+D1 =⇒ DD† = 1+S , D†D = 1+ eS . (104)

The maps S and eS take a Hilbert space to itself, and (103) and (104) show that they commute
with the respective Hamiltonians. They therefore generate symmetries, and we show in section
5 that they are not invertible.

The matrix elements of D 1
2

depend on pairs of nearest-neighbour heights, and so can be
displayed pictorially as in (92) and (93). Explicit expressions were derived in section 7.5
of [7], giving

e

1
2

e

1
2
=

e

3
2

e

3
2
= 1p

2
,

e

1
2

e

3
2
= − 1p

2
,

0

1
2

e

1
2
=

0

1
2

e

3
2
=

2

3
2

e

1
2
=

2

3
2

e

3
2
= 2−

1
4 , (105)

where all are invariant under both horizontal and vertical reflections. We continue to use the
convention that the height 1 in the Rydberg ladder is labelled by e (for empty rung). Here we
do not show the “half-dots” as in the pictures of [7], but our weights include the appropriate
factors to make the D 1

2
identical to that defined there.

The defect-creation operator D is nicest to express as a matrix-product operator. Finding
it is straightforward, and the workings are displayed in Appendix A. We find that each state
in the (e,+,−) basis of HIRL maps to a unique one in the ± basis of Hzig. The matrix product
requires three channels, and is

�

D
�{h}
{h̃} = tr
�

fW h1

h̃1

fW h2

h̃2
· · ·fW hL

h̃L

�

, (106)

fW+
e =





1 0 0
0 0 1
0 0 0



 , fW−
e =





0 0 1
1 0 0
0 0 0



 , fW+
+ =fW

−
− =





0 0 0
0 0 0
0 1 0



 , fW+
− =fW

−
+ = 0 .
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It immediately follows that knowing three successive heights (h̃ j−1, h̃ j , h̃ j+1) determines h j:

D : |e± e〉 → |±〉 ,
�

|±e±〉 , |e e e〉
	

→ |+〉 ,
�

|± e e〉 , |e e±〉
	

→ |−〉 . (107)

This map relates the Z2 ×Z2 charges as DeFodd = FoddD and likewise for even.
From (103) and (104), it follows that the partition functions of the zigzag Ising model and

Rydberg-blockade ladder are related as

tr
�

e−βHIRL
�

1+ eS
��

= tr
�

e−βHzig
�

1+S
��

. (108)

However, deriving more relations between partition functions of the two models directly is
rather tricky, as it requires constructing the symmetry sectors non-trivial under D. This non-
invertible map is more intricate than the dualities and orbifold used above; as seen in (104),
acting twice yields a non-invertible symmetry, either S or eS. Moreover, deriving such identities
requires defining boundary conditions twisted by these symmetries. While the general frame-
work of [7] yields explicit expressions for them in the same form as (105), they are rather
unwieldy.

We find an easier path in section 5. Namely, we exploit the fact that the diagram (64) is
commutative, a proof we give next in section 4.5. We then easily can relate the spectra of the
untwisted Ising zigzag ladder and the 3-state antiferromagnet, as we discuss below in section
5.2. One then can relate the former to the integrable Rydberg ladder by going around the
diagram in the other way and so avoid having to use the non-invertible symmetries S and eS.

4.5 Around the square

We prove here that (64) is commutative, i.e. that the maps are related as

KM=DO . (109)

The explicit expressions given in (71, 83, 96, 107) give precise definitions of these maps. Know-
ing three successive spins s j−1, s j , s j+1 of the three-state antiferromagnet in the ABC basis gives
under KM and DO a specific value h j = ± in the σx -diagonal basis of the Ising zigzag ladder.
Applying this map for each j to each basis element of H3 yields the image in Hzig. The proof
of (109) then simply requires checking that both maps yield the same h j for each of the twelve
allowed configurations of these three spins. Those with the spin A in the center map as

|BAB〉

|e+ e〉

|↓ ↑〉

|+〉

O

M

D

K ,

|CAC〉

|e+ e〉

|↑ ↓〉

|+〉

O

M

D

K ,

|BAC〉

|e− e〉

|↓ ↓〉

|−〉

O

M

D

K ,

|CAB〉

|e− e〉

|↑ ↑〉

|−〉

O

M

D

K .

The one subtlety is that if s j±1 = A, we also need to know s j±2 to determine the state at site
j ± 1 in the image of O. However, we do know from (96) that this state will be + or −, not e.
This knowledge is enough to determine the image h j under D, as follows from (107):

|ABC〉

|± e e〉

|↑ ↑〉

|−〉

O

M

D

K ,

|ACB〉

|∓ e e〉

|↓ ↓〉

|−〉

O

M

D

K ,

|BCA〉

|e e±〉

|↑↑〉

|−〉

O

M

D

K ,

|CBA〉

|e e∓〉

|↓↓〉

|−〉

O

M

D

K .
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The remaining relations to be checked are

|ABA〉

|± e±〉

|↑↓〉

|+〉

O

M

D

K ,

|ACA〉

|∓ e∓〉

|↓↑〉

|+〉

O

M

D

K ,

|BCB〉

|e e e〉

|↑ ↓〉

|+〉

O

M

D

K ,

|CBC〉

|e e e〉

|↓ ↑〉

|+〉

O

M

D

K .

We thus have proved (109).

5 Non-invertible symmetries

We have shown how non-invertible mappings relate our four Hamiltonians, giving linear iden-
tities between their partition functions. In this section we go further, and describe the non-
invertible symmetries of the integrable Rydberg and Ising ladders, as displayed in (64). We
derive the remaining identities needed to finish off Table 1.

We first summarise the invertible symmetries and their interrelations. The three-state an-
tiferromagnet has an S3 symmetry generated by F3 and R, where R3= 1 and (F3)2= 1 with
F3R = R2F3. Since MR =M, R does not map to a symmetry generator in XXZ. On the other
hand, the definition (83) results in MF3 = FM, so F3 is related to the spin-flip symmetry in
XXZ. The latter symmetry does not map under K to the Ising zigzag ladder, as KF =K follows
from (71). However, the Z2×Z2 symmetries present at even L in the two ladders are related:
DeFodd = FoddD and likewise for even. The XXZ Hamiltonian (4) has a U(1) symmetry Q with
generator defined in (46). The three-state antiferromagnet does as well, as given in (53). The
two charges are related by MQ3 =QM.

5.1 The U(1) remnants Qzig and eQ

The Rydberg and zigzag Ising ladders have no U(1) symmetries. Indeed, one cannot map the
XXZ U(1) generator to zigzag Ising:

KQK† = 1
2KQ
�

1+ F
�

K† = 1
2K
�

1− F
�

QK† = 0 , (110)

where we used KF = K and FQ = −QF . This failure however suggests how a remnant does
survive: Although Q cannot be mapped, Q2 can. We therefore define

Qzig =
1
2KQ2 K† = 1

2

�

1+ Fzig

�

L
∑

j=1

L−1
∑

k=0

(−1)k+1
k
∏

l=0

σx
j+l , (111)

where as always indices are mod L. The explicit expression is found by using the commutation
relations in (72), and one can check directly that it commutes with Hzig. Although it is a relic of
the U(1) symmetry of XXZ, it is non-vanishing only in half the Hilbert space, as FzigQzig =Qzig.
Although the charge is diagonal in the ± basis, to compute it in practice it is easiest to simply
map the state to XXZ, compute the charge there and then square it.

A similar construction for the Rydberg ladder is needed, as OQ3O† = 0 as well. However,
working out an explicit expression by using eQ=O

�

Q3

�2O† is rather difficult. We instead just
guess an expression by analogy with (111) and check that it is conserved. It is

eQ = 1
2

�

1+ eF
�

L
∑

j=1

L−1
∑

k=0

k
∏

l=0

(−1)1−n−j+l , (112)
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where it is useful to recall that eF = (−1)
∑

j(1−n−j ). This symmetry generator is obviously diago-
nal in the (e, +, −) basis, and it is easy to check that it commutes with each of the four terms
in (59) individually.

The U(1) remnants are not the only non-invertible symmetries: the operators S and eS
defined in (104) commute with the zigzag Ising and integrable Rydberg ladder Hamiltonians
respectively. The latter results in a self-duality that we discuss in section 5.2. Here we show
however that the former does not yield anything new, as it can be expressed in terms of Qzig.

The relation (109) between mappings proves a useful tool, as the maps between zigzag
Ising and Rydberg can be rewritten using (98) as

KMO† =D
�

1+ eF
�

=
�

1+ Fzig

�

D . (113)

Using this expression with S =DD† − 1 gives
�

S + 1
��

1+ Fzig

�

= 1
2KMO†OM†K†

= 1
2KM
�

1+ F3

�

M†K†

= 1
2KMM†K†
�

1+ Fzig

�

= (1+ 2cos
�2

3π
q

Qzig

���

1+ Fzig

�

. (114)

To find a simpler expression for S, we utilise the fact that the defect-creation operators obey
the same fusion rules as the objects in the category [7]. Here the algebra (34) guarantees
there be another symmetry operator D2. When acting on Hzig it obeys

D2S = SD2 = S ,
�

S
�2
= 1+S +D2 . (115)

By explicit computation using the expressions from [7] or from (107), or by consistency with
(114) and (115), one finds that D2 = Fzig. Then (115) requires that SFzig = Fzig, and (114)
simplifies to

S =
�

1+ Fzig

�

cos
�2

3π
q

Qzig

�

. (116)

Thus S does not generate a new symmetry of the Ising zigzag ladder. The expression (116) is
in agreement with (115), as

S2 =
�

1+ Fzig

��

1+ cos
�4

3π
q

Qzig

��

= 1+S + Fzig , (117)

where we used the fact that cos
�

2π
Æ

Qzig

�

= 1.

5.2 The non-invertible self-duality eS

The symmetry generator eS =D†D− 1 for the Rydberg ladder does give us something new. A
useful expression for it can be derived along the same lines as for S. Using (113) gives
�

eS + 1
��

1+ eF
�

= 1
2OM†K†KMO† = 1

2OM†
�

1+ F
�

MO† =OM†MO†

=O
�

1+ R+ R2
�

O† , (118)

where we recall that OF3 = O and M†F = F3M†. The category fusion rules also require
eS eF = eS, so

eS = 1
2O
�

R+ R2
�

O† =ORO† , (119)

where we used F3R2 = RF3 in the last step. Consistency with the fusion rules follows from

�

eS
�2
=OR(1+ F3)RO† = 1+ eF + eS . (120)
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This fusion rule is the analog of the latter of (115) following from the fusion-category con-
struction. It means that eS has three eigenvalues: 2, −1, and 0. We finally can complete Table
1 with

DD† = 1+S = 1+
�

1+ Fzig

�

cos 2π
3

q

Qzig , D†D = 1+ eS = 1+ORO† . (121)

The operator eS generates a non-invertible symmetry of the integrable Rydberg ladder, as
it acts non-trivially only on the sector invariant under eF . (The analogous construction using
O− does not work for the other sector because R does not preserve the modified Hilbert space
H3−.) There exists a matrix-product expression for eS, but in practice it proves to be much easier
to use (119). One maps to the antiferromagnet using O† from (96), acts with Z3 symmetry
operators, and then maps back using O. For example, for L=4,

|e e e e〉 |BCBC〉 + |CBCB〉

|e+ e+〉 + |+ e+ e〉 |CACA〉 + |ACAC〉

O†

eS R

O

(122)

with the extension to all even L obvious. When L is odd, however, eS |. . . e e e . . .〉 = 0, as O†

annihilates it. It is apparent from (122) that eS is not diagonal in the (e,+,−) basis, while eQ
is. The former therefore can not be written in terms of the latter, as opposed to the analogous
case (116) in the Ising zigzag ladder. Another example is

|− e e e e〉 |ABCBC〉 + |ACBCB〉

|e e+ e−〉+ |e− e+ e〉 |BCACA〉 + |BACAC〉

O†

eS R

O

(123)

Neither example is obvious, to say the least.
All states with charge −1 under the global symmetry eF are annihilated by eS = D†D − 1.

These states therefore are not annihilated by D, and must be in the image of D†. All states
with charge 1 under eF are in the image of O, as apparent from (98). Thus all eigenstates of
HIRL are in the image of O or of D†, with those having eigenvalue 2 under eS in both. These
maps thus cover the entire spectrum of HIRL without need of twisted boundary conditions.

We refer to the symmetry generated by eS as a non-invertible “self-duality”, as it mixes the
individual terms in (59) like Kramers-Wannier does. Indeed, using (119) we find

eSp j =
�

p†
j + s j−1s j+1

�

eS , eSp†
j =
�

p j + s j−1s j+1

�

eS , eSs j−1s j+1 =
�

p j + p†
j

�

eS . (124)

Thus the operators comprising the Hamiltonian (59)

Ô1
j = p j + p†

j + s j−1s j+1 , Ô∆j = n−j +
�

ne
j−1 − ne

j+1

�2
, (125)

each commute with eS. Moreover, certain combinations are odd under this duality. Defining

Ôw
j = 2s j−1s j+1 − p j − p†

j , Ôt
j =
�

ne
j−1 − ne

j+1

�2
− 2n−j , (126)

yields eSÔw
j = −Ôw

j
eS and eSÔt

j = −Ôt
j
eS.
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5.3 Spontaneous breaking of the self-duality

Since the XXZ chain in equilibrium is well understood [45], we can use non-invertible maps
to understand the physics of the other three models. All models are critical for |∆| ≤ 1, and
we discuss the corresponding conformal field theories in section 6. At ∆ = −1 the “fermi”
velocity goes to zero and the dispersion relation of the low-lying excitations is E ∝ k2. At
∆= 1, the XXZ chain has an exact SU(2) symmetry and a Kosterlitz-Thouless transition to a
gapped phase we discuss here. In particular, we find a nice application of the non-invertible
symmetries to the integrable Rydberg ladder with ∆> 1.

We first analyse the ground states in all the models in this region. As ∆ →∞, the two
XXZ ground states at even L become simply |↑↓↑↓ . . .〉 and |↓↑↓↑ . . .〉. Since it takes order
L actions of HXXZ to mix these two states, the splitting between the ground states must be
exponentially small in ∆L for ∆ large. This exponentially small splitting and hence these two
ground states persist until the Kosterlitz-Thouless transition to the gapless phase at ∆= 1.
The Z2 spin-flip symmetry generated by F is therefore spontaneously broken. As the Mermin-
Wagner theorem requires, the U(1) symmetry cannot be spontaneously broken, and the ground
states are annihilated by Q.

For each of the models at ∆ → ∞, the ground states are given by any configuration
where Pj = 0. In the three-state antiferromagnetic chain, there are six such states for even
L: |ABABAB . . .〉 and its permutations under the S3. These all indeed map under M to one
of the two XXZ ground states. The S3 symmetry is thus spontaneously broken for all ∆ > 1.
The Ising zigzag ladder, on the other hand, has a unique ground state in this phase, becoming
|++++ . . .〉 as ∆→∞. Thus no symmetries are spontaneously broken here.

The integrable Rydberg ladder is the most interesting case. As∆→∞, it has three ground
states not related by any conventional symmetry:

|e e e e e e . . .〉 , |+ e+ e+ e . . .〉 , |e+ e+ e+ . . .〉 .

Thus one might expect that for finite ∆, the degeneracy is lifted. Remarkably, the non-
invertible self-duality requires that the degeneracy persists. Indeed, from (122) we see that eS
maps between these states while commuting with HIRL. Even though we no longer know the
exact ground states for ∆ finite, eS must still map between them until the gap closes. In XXZ
the gap does not close until ∆= 1, so there are three ground states for all ∆> 1. Thus in this
gapped phase, the non-invertible self-duality is spontaneously broken! In the three-parameter
phase diagram discussed in our companion paper [30], we show how this line describes a first-
order transition between a Z2-ordered phase and a disordered phase, similar to what happens
in the chain [57].

It is worth contrasting this novel behaviour with the better-known behaviour in the gapped
phase ∆ < −1. All the models possess exact ground states throughout the phase. The XXZ
chain has two exact ferromagnetic ground states, |↑↑↑↑ . . .〉 and |↓↓↓↓ . . .〉. Rigorous work gives
a gap of −∆−1 in this region [65]. The corresponding ground state for the Ising zigzag ladder
is unique: |− −−− . . .〉 in the σx -diagonal basis. It indeed is the image of both XXZ ground
states under K for any L. However, the exact ground states of H3 only occur at L a multiple
of 3, where M† does not annihilate the XXZ ground states. Indeed, these six exact ground
states are |ABCABC . . . 〉 and its permutations under the S3 symmetry. The same restriction
applies for HIRL, where the three ground states are |−e e− e e . . .〉 and its two translations.
The non-invertible symmetry eS does mix the ground states and so is spontaneously broken
as with ∆ > 1, but the result is less dramatic here, as translation invariance guarantees the
degeneracies. In all four models, these exact ground states are at the extremal values of the
respective charges Q, Qzig, Q3, and eQ. At the gapless point ∆ = −1, the XXZ chain has an
SU(2) symmetry for even L, and so a 2L+1-dimensional multiplet of ground states. The other
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models also possess more ground states here, with the number depending on L and what of
the SU(2) symmetry survive under the mappings.

6 CFTs in the continuum

All the work we did in constructing the maps between models pays off in this section. We
use these maps and the techniques of conformal field theory to compute the exact spectrum
of each model in the continuum limit of its critical region. We then go on to make a detailed
correspondence between lattice and CFT symmetries.

6.1 CFT partition functions

The XXZ chain with −1<∆≤ 1 has an elegant field-theory description of the continuum limit
in terms of a free massless bosonic field Φ(x , t), where x and t are space and time coordinates
[66,67]. The bosonic field Φ takes values on a circle, so we identify Φ∼ Φ+2πr for a positive
radius r. In this free-boson field theory, the dimensions of all the operators can be computed
exactly. The most convenient way to give the results is in terms of the partition function for
spacetime a torus. It can be computed exactly either directly from the path integral or by using
the powerful tools of conformal field theory (CFT). We give a brief overview of how this works
in Appendix B. Following the conventions of [68], the free-boson CFT partition function on
the torus is

Z(r) =
1
η2

∞
∑

l,m=−∞
q
� l

2r

�2
+(mr)2 , (127)

where the Dedekind eta function is η = q
1
24
∏∞

n=1(1 − qn). We explain shortly how the pa-
rameter q (not to be confused with the quantum-group parameter mentioned above) depends
on physical quantities. The integer m is the U(1) charge of the corresponding configuration,
which is the winding number of the boson. The invariance Z(r) = Z( 1

2r ) can be thought of

as electric-magnetic duality. The scaling dimensions come from expanding q
1

12 Z(r) in a se-
ries in q; the exponent then gives the dimension of the operator creating the corresponding
state [69,70].

The precise identification of the continuum limit of HXXZ with the field theory has long been
known [66, 67]. Comparing the scaling dimensions to the results coming from integrability
[45] gives an exact relation between the boson radius r and the XXZ coupling ∆:

ZXXZ→ Z(r) , where ∆= − cos
�

2πr2
�

, 0< r ≤ 1p
2

. (128)

To match the partition functions precisely, the parameter q in (127) depends on the system
size L, the inverse temperature β , and the XXZ fermi velocity. The ∆-dependence of the latter
is known exactly from integrability, giving

q = e2πvF
β
L , vF =

sin
�

2πr2
�

1− 2r2
= π

p
1−∆2

arccos∆
. (129)

By now (128) and (129) have been thoroughly and convincingly established.
The field-theory limits of the lattice generators Q and F are easy to find. The U(1) charge of

the field theory is Q∝
∫ L

0
d

d xΦ= Φ(L)−Φ(0), and we normalize it so that its eigenvalue is the
winding number m. To relate it to the lattice generator Q, consider ∆=1 and r = 1p

2
, where

the symmetry is enhanced to SU(2). (The corresponding CFT is the SU(2)1 WZW model [71].)
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Here the four states with (l, m) = (±1, 0) and (0,±1) form a triplet and a singlet under the
SU(2) and so the raising and lowering operators have charge 1. However, the lattice SU(2)
raising operator

∑

j S+j changes Q by 2 in our normalisation, as it flips a down spin to an up

one. Thus we find that in the continuum limit Q → 2Q. The lattice spin-flip generator F
anticommutes with Q, so its continuum limit must anticommute with Q. Thus F → F , where
F : Φ→−Φ.

Because the maps we have constructed are exact on the lattice, they remain exact in the
field theory. Any eigenstate of the Hamiltonian in one model maps to an eigenstate of the
other with the same energy. However, because the mappings are non-invertible, the partition
functions are not identical. Instead, as described in section 4, they obey linear relations that
involve inserting symmetry generators and allowing for twisted boundary conditions.

The CFT partition functions we study all can be defined in terms of orbifolds [31] built from
a finite abelian symmetry group G of dimension |G|. Orbifolding means effectively to gauge or
“mod out” by the symmetry. Thus one projects onto a subspace invariant under the symmetry.
However, modding out by the symmetry also allows new states in the theory, corresponding
to those with twisted boundary conditions. The orbifold partition function is

ZG(r) =
1
|G|

∑

g,h∈G

Z g,h(r) , where Z g,h(r) = trHh

�

ge−βHh(r)
�

, (130)

with Hh(r) the field-theory Hamiltonian at radius r with an h-twisted boundary condition,
and Hh the Hilbert space on which it acts. Twisted boundary conditions and orbifolds of a free
bosonic field are well understood; for a complete discussion see [32]. The h-twisted boundary
condition is natural to describe in two-dimensional spacetime: it amounts to placing a defect
wrapping around the Euclidean “time” direction, just as the operator insertion of g corresponds
to a defect across the spatial direction. The same goes on the lattice [7].

The linear relation (130) between the partition functions of a model and its orbifold are
fairly obviously continuum versions of lattice relations such as (90). To make precise contact
between the two, we need to rephrase our results in the language of defect boundary condi-
tions. We already did so for the three-state antiferromagnet at the end of section 4.3. There
we defined the F3-twisted Hamiltonian H3− by using the usual Hamiltonian with the caveat
that for terms in the Hamiltonian involving spins at sites L and 1, we must utilise sL+ j = s j .
Since the bar means to exchange the roles of B and C , we have inserted an F3 defect between
sites L and 1, as the approach of [7]makes precise. Similarly, the twisted XXZ Hamiltonian H−
defined in (79) can be interpreted as arising from an F -twisted boundary condition. Namely,
we define ↑̄ =↓ and ↓̄ =↑, i.e. the bar is the action of F . Using the usual definitions of SL and
PL with the caveat that the spins involved are taken to be |sL− 1

2
s 1

2
〉 (or equivalently |sL− 1

2
s 1

2
〉

) gives precisely the extra signs in (79) as compared to (4). Finally, the other modified XXZ
Hamiltonian Hω defined in (89) can be interpreted as boundary conditions twisted by the Z3
symmetry generated by ωQ. Twisting by it amounts simply to acting on one of the spins in SL
and PL with it, resulting in (89).

The continuum partition functions for all our models follow, as now we can identify the
linear relations between partition functions as various orbifolds. The identity (81) giving Zzig
as a sum of XXZ partition functions is an orbifold by the spin-flip symmetry F . Indeed, both
maps K and K− are non-trivial only in the F -even sector, hence the (1 + F) in (81), which
in the continuum turns into the (1 + F) in (130). Moreover, K− requires utilising the F -
twisted Hamiltonian (79), again just as in (130). Thus the four terms in (81) become in
the continuum limit (130) with G the Z2 generated by F : Φ → −Φ. The resulting partition
function describes states even under F as well twisted ones with Φ(x + L, t) = −Φ(x , t). It has
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been computed [31,32], giving

Zzig → Z F (r) =
1
2

�

Z(r) + 2Z
� 1

2
p

2

�

− Z
� 1p

2

�

�

, (131)

in the continuum limit. Here and everywhere r is related to ∆ via (128). The lattice Kramers-
Wannier duality implemented by K and K− thus amounts to a Z2 orbifold by F . The partition
function (131) also describes the continuum limit of the Ashkin-Teller model [72], which also
can be reached from XXZ by a lattice orbifold [33].

We thus have in (131) an exact expression for all the scaling dimensions in the continuum
limit of the integrable Ising zigzag ladder for −1 < ∆ ≤ 1. The factor of 1

2 in front of Z(r)
results from throwing out states odd under F , while the remaining terms describe the twisted
sectors. The lowest-dimension operators in the latter have dimension 1

8 and 9
8 for all r. The

r-independence arises because identifying Φ with −Φ is possible only with winding number
zero. Even though the Z2 symmetry F is no longer present, a new Z2 symmetry F zig arises,
under which all states in the twisted sector are odd. One then can orbifold by F zig and recover
the original free boson [68]. It is natural then to have the lattice symmetry Fzig→ F zig in the
continuum limit. Thus the map K† implements a lattice orbifold by Fzig.

A nice check on (131) comes at ∆= 1, where the U(1) symmetry of XXZ is enhanced to
SU(2). The orbifold by F breaks this symmetry, but a U(1) subgroup survives: KQ x = QzzK,
where

Q x =
L
∑

j=1

X j+ 1
2

, Qzz =
L
∑

j=1

σz
jσ

z
j+1 =⇒
�

Qzz , Hzig

�

= 0 , for ∆= 1 . (132)

Since the Ising zigzag ladder at∆= 1 has a U(1) symmetry with local generators, its partition
function should be that of a free boson, and indeed from (131) we see that Z F (

1p
2
) = Z( 1

2
p

2
).

The partition functions of the other two models are also related in such a fashion. The
identity (91) with a= 0 gives the partition function for the three-state antiferromagnet. It
arises from the orbifold of XXZ by its Z3 symmetry generated by ωQ: The partition functions
Zω and Zω2 are those for the two kinds of twisted boundary conditions, while the sum over
ν projects onto the sector invariant under ωQ. Since ωQ → ω−Q in the continuum, the CFT
partition function from (130) must be that of the free boson orbifolded with G = Z3. Recalling
that the eigenvalue of Q is the winding number m, projecting on the Z3-invariant subspace
amounts to requiring that m be a multiple of 3, just as required to make M† non-trivial.
As the winding number obeys Φ(L) − Φ(0) = 2πmr, this restriction is equivalent to sending
r → 3r. The twisted sectors correspond to the presence of operators ei m

3r Φ, again consistent
with sending r → 3r. The partition function of the three-state antiferromagnet thus becomes

Z3 → ZZ3
(r) = Z(3r) . (133)

This identification agrees with that already made [48–50] for ∆ = −1
2 , describing the Hamil-

tonian limit of the square-lattice zero-temperature antiferromagnet [21]. The corresponding
radius r = 6−1/2 is the unique value where Z(3r) = Z(r).

The maps O and O− from the three-state antiferromagnet to the integrable Rydberg ladder
were already described in section 4.3 in terms of a lattice orbifold by the symmetry F3. The
resulting sum for ZIRL in (101) is precisely a sum of the form (130) with G=Z2 generated
by F3. Since we know the continuum limit of the Z3 from (133), the Rydberg CFT partition
function follows:

ZIRL → Z F3
(r) = 1

2

�

Z(3r) + 2Z
� 1

2
p

2

�

− Z
� 1p

2

�

�

, (134)

33

https://scipost.org
https://scipost.org/SciPostPhys.16.5.127


SciPost Phys. 16, 127 (2024)

in harmony with the numerics of [25] and the analytics of [23]. This expression has a number
of interesting physical consequences for the Rydberg-blockade ladder at and near its critical
line. We explore them in our companion paper [30], and also match lattice operators to their
CFT counterparts.

The orbifolds described in this section can be summarised as

Zzig
F
←− ZXXZ

ωQ

−−→ Z3
F3−−→ ZIRL , (135)

where the generator of the discrete group G is given. Abelian orbifolds can all be reversed,
because a new discrete symmetry appears to replace the one that has been gauged. For exam-
ple, if one orbifolds the Ising zigzag ladder by its Z2 symmetry generated by Fzig, one recovers
the XXZ chain. Orbifolding the three-state antiferromagnet by R gives XXZ as well. These
symmetries for the reverse orbifolds can be read off from the products of non-invertible maps
in Table 1, giving

Zzig

Fzig
−−→ ZXXZ

R
←− Z3
eF
←− ZIRL . (136)

The generators F and ωQ form a S3 symmetry group of XXZ. Since KF = F3K, (135)
indicates that the integrable Rydberg ladder is an S3 orbifold, where one first orbifolds by the
Z3 and then the Z2. Reversing the order (i.e. going around (64) the other way) seems trickier.
One starts with the Z2 generated by F to get to Zzig. Then one expects that the next step is

to orbifold by Z3 generated by ω
p
Q, as suggested by (121), but it is not clear to what extent

such an orbifold is precisely defined.

6.2 Symmetries in the orbifold CFT

The discrete and U(1) symmetries of the XXZ and antiferromagnetic chains are easy to un-
derstand in the CFT. The lattice and continuum correspondences between discrete and non-
invertible symmetries in the other two models are not so obvious, and we explain them here.

The CFTs for the zigzag Ising and Rydberg ladders are both orbifolds under F : Φ → −Φ
(and θ → −θ). The orbifold has two key effects. One is that only F -invariant combinations
appear in the theory. In zig-zag Ising, using the free-boson operators defined in (B.2) gives
Cl,m =

1
2(Vl.m+ V−l,−m) for all non-negative l, m. For Rydberg, one must define eVl,m of dimen-

sion ex l,m in the free-boson CFT with radius er = 3r to give

eCl,m =
1
2

�

eVl,m + eV−l,−m

�

= cos
�

l
erΦ+ 2mθer
�

, ex l.m =
l2

4er2 +m2
er2 . (137)

The other distinction of orbifold theories is the presence of twisted fields, which arise because
field configurations with Φ(x + L, t) = −Φ(x , t) are now allowed. There turn out to be two
pairs of such fields [31] denoted σ1,2 and τ1,2, of r-independent scaling dimensions x = 1

8
and 9

8 respectively.
Requiring that operators be of the form (137) breaks the U(1) symmetry of the free-boson

CFT. The discrete symmetry of the free-boson orbifold CFT at generic r turns out to be the
dihedral group D4, just as in the zig-zag Ising ladder. The best way to gain intuition is to treat
it as two coupled Ising CFTs. At r = 1

2 , the two decouple, and the orbifold partition function
(131) is the square of the Ising model one [68,72]. Indeed, for L even the Hamiltonian (63)
at the corresponding value∆= 0 decouples into two commuting pieces Hzig = H1+H2, where

H1 =
1
2

∑

j even

�

σz
j−1σ

x
j σ

z
j+1 +σ

z
jσ

z
j+2

�

, H2 =
1
2

∑

j odd

�

σz
j−1σ

x
j σ

z
j+1 +σ

z
jσ

z
j+2

�

. (138)
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The commuting Hamiltonians H1 and H2 individually are equivalent to Ising, a fact easiest to
see by writing the operators in terms of Majorana fermions.1 Including terms −∆σx

j couples
the two models and changes the radius r of the CFT. The individual Ising Z2 flip symmetries
Feven and Fodd are preserved when the two theories are coupled, as is the Z2 symmetry E
exchanging the two copies. The corresponding continuum limits F1, F2 and E generate the
D4 of the CFT.

The decoupling into two Ising models at r = 1
2 allows us to identify the symmetry properties

of the CFT fields directly. The two twist fields σ1, σ2 of the CFT are the continuum limits of
the two Ising spin fields, so that each is odd under the corresponding Ising flip symmetry F1
and F2. The operator C0,1 is the product σ1σ2, indeed of dimension 1

4 at r = 1
2 . It thus is

odd under both the F a, but even under E. Each Ising model has an “energy” operator εa of
dimension 1 found in the operator product expansion σa ·σa ∼ 1 + εa. (We write operator
products in fusion-algebra form, where we omit coefficients and only include primary fields.)
Since C0,1 · C0,1 ∼ 1+ C0,2, we identify C0,2 with ε1 + ε2. It indeed is of dimension 1 at r = 1

2 ,
as is C1,0. The latter therefore must be the difference of the Ising energy fields. Thus C0,2

is invariant under the full D4, while C1,0 is invariant under both F a but odd under E. The
dihedral generators in the CFT therefore act as

F a : σb→ (−1)a+b−1σb , τb→ (−1)a+b−1τb , Cl,m→ (−1)mCl,m ,

E : σb→ σ3−b , τb→ τ3−b , Cl,m→ (−1)l Cl,m .
(139)

Whereas the dimensions of the Cl,m change when r varies, the form of the operator-product
expansion stays the same. The symmetries (139) must therefore apply for all r. Since the CFT
for the integrable Rydberg ladder is obtained by sending r → er = 3r, the operators eCl,m must
have the same discrete symmetry as the corresponding Cl.m in zigzag Ising.

The CFT operators do not in general have a definite charge under the non-invertible sym-
metries eS and eQ. However, we can understand which operators are invariant under them. In
the XXZ chain/free-boson CFT, we have identified the eigenvalue of Q→ 2Q with the winding
number 2m. The Rydberg non-invertible symmetry charge eQ from (112) relates to the map of
(Q3)2, which in turn relates to Q2. Thus a state with Q eigenvalue 2m and even under F maps
to a state with eigenvalue 4m2 under eQ. The operator eCl,m from (137) maps to Cl,m in the
XXZ chain, which changes winding number by ±m there. Thus only the eCl,0 commute with eQ.

We now can understand the D4 symmetry in the Rydberg ladder. The lattice symmetry gen-
erated by eFeven and eFodd must correspond to the Z2×Z2 subgroup generated by F1 and F2. The
lattice version of E is not as obvious. However, the unit cell used to take the continuum limit
here is four sites, so translation by a single site turns into an internal symmetry of the CFT [73].
Moreover, the lattice translation generator obeys T eFeven = eFoddT , akin to E F1 = F2E. We thus
identify F1E as the continuum consequence of lattice translation symmetry, as (F1E)4 = 1.
The CFT symmetries (139) then indicate that the state created by eCl,m in the CFT must have
eigenvalue (−1)l+m under lattice translation, consistent with the numerical results displayed
in [30].

The self-duality eS is related to the Z3 charge R of the antiferromagnet, as derived in (119).
Furthermore, as described in section (4.3), sectors not invariant under R map to twisted bound-
ary conditions in the XXZ chain. The continuum version of this statement is that sectors in the
antiferromagnet with non-trivial electric charges l mod 3 ̸= 0 only map to XXZ with twisted
boundary conditions, as they do not exist in XXZ (recall that the radius er =3r). Therefore
only operators eCl,m from (137) with l mod 3= 0 commute with eS.

1Take ψ2 j = iσx
1σ

x
3 · · ·σ

x
j−1σ

z
j−1σ

z
j for even j and ψ2 j = iσx

2σ
x
4 · · ·σ

x
j−1σ

z
j−1σ

z
j for odd j, along with

ψ2 j+1 = iψ2 jσ
z
j−1σ

z
j+1.
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7 Conclusions

We have explored in detail four quantum Hamiltonians and the non-invertible mappings be-
tween them, as summarised in (64). The mappings obey a rich set of interrelations involving
both conventional and non-invertible symmetries, summarised in Table 1. Our results illustrate
that Kramers-Wannier duality is not the only non-invertible mapping between lattice models
with interesting consequences both formal and physical. The algebraic approach arising from
(2) enabled us to make precise the connections between four one-parameter families of inte-
grable models, and provided a valuable tool in developing the non-invertible maps between
them as well. We are optimistic that further investigation will result in further progress, both
formally and practically.

Since the XXZ chain has been intensively studied for decades, we utilised the non-invertible
mappings and symmetries to relate its physics to the other models. While the gross features
are the same (a gapless phase for |∆| ≤ 1, gapped for |∆| > 1), some of the phenomena
are quite different. One striking example is for ∆ > 1. In XXZ, the phase is the standard
antiferromagnetic one, with spontaneously broken spin-flip symmetry. Similarly, the three-
state antiferromagnet has spontaneously broken S3 symmetry. In the Ising zigzag ladder, no
symmetries are spontaneously broken. The Rydberg-blockade ladder, however, here is char-
acterised by three ground states related only by the non-invertible symmetry eS, which thus is
spontaneously broken.

Fusion categories played an important role in our analysis. Although using them to define
the mappings may seem an elaborate formalism at first glance, we hope our results show that
categories provide a tool fairly straightforward to apply. Our results, in particular the fact
that the diagram (64) commutes, strongly suggest that utilising further the general approach
of [20] will result in even more progress.

The seldom-exploited structure of the venerable XXZ chain we have utilised might have
practical implications for XXZ itself. Its Hamiltonian can be written in terms of generators of an
algebra not involving the coupling ∆, as opposed to the usual Temperley-Lieb and quantum-
group-algebra approaches. So whereas this property misses all the intricacies of representation
theory depending on q being a root of unity, the presentation here in terms of trivalent graphs
is elegant and simple. One interesting issue to address is the conserved quantities. There is
an elegant and explicit expression for them in terms of Temperley-Lieb generators [74], so it
is natural to wonder if one could be built in terms of our generators.

The integrable Rydberg-blockade ladder seems very interesting in its own right. Our work
provides exact results useful for tackling the difficult general problem. We have made a step
in our companion paper [30], where we find a variety of interesting ordered phases once the
couplings are varied away from the integrable line. For example, the ∆ > 1 line, with three
ground states and a spontaneously broken non-invertible symmetry, is a first-order transition
line similar to that of the Rydberg-blockade chain [57]. However, some aspects are very dif-
ferent. For example, while our c= 1 critical line is analogous to the Ising critical line in the
Rydberg-blockade chain, here it separates the disordered region from a phase with sponta-
neously broken D4 dihedral symmetry, not just a Z2. Moreover, since the lattice model pos-
sesses two non-invertible symmetries, the orbifold CFT describing the continuum limit of this
line must as well. While we found the fields invariant under them, we do not understand their
full action. We leave this interesting issue to future work.
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A Matrix-product form of D 1
2

To express the defect-creation operator D 1
2

in terms of matrix products we organise the weights
in (105) into the matrix

W =
1
p

2











0 2
1
4 2

1
4 0

2
1
4 1 −1 2

1
4

2
1
4 −1 1 2

1
4

0 2
1
4 2

1
4 0











, (A.1)

where each row and column are labeled by a pair of heights across the defect, namely
(h̃ j , h j) = (0, 1

2), (e, 1
2), (e, 3

2), (2, 3
2). One should think of W as propagating the defect weights

down the chain. The trick to get the MPO is to characterise each of the four pairs of heights in

terms of a diagonal 4× 4 matrix, namely P
1
2
0 = diag(1,0, 0,0), P

1
2
e = diag(0, 1,0,0), etc. The

matrix elements of the defect operators D and D† then are
�

D 1
2

�{h}
{h̃} = tr
�

Ph1

h̃1
WPh2

h̃2
W · · ·PhL

h̃L
W
�

, (A.2)

where the trace is in the 4× 4 matrix space.
To rewrite these matrix elements in a more transparent form, we utilise the eigenvalues

and eigenvectors of W , which are

λ1 = 2
3
4 , λ2 = −2−

3
4 , λ3 =

p
2 , λ0 = 0 ,

v1 =
1
2







1
1
1
1






, v2 =

1
2







1
−1
−1
1






, v3 =

1
p

2







0
1
−1
0






, v0 =

1
2







1
0
0
−1






.

(A.3)

so that

W =
∑

r=0,1,2,3

λr vr vT
r =
∑

r=1,2,3

λr vr vT
r , (A.4)

P
1
2
0 = diag(1,0, 0,0) = 1

4

�

v1 + v2 +
p

2v0

��

vT
1 + vT

2 +
p

2vT
0

�

,

P
3
2
2 = diag(0,0, 0,1) = 1

4

�

v1 + v2 −
p

2v0

��

vT
1 + vT

2 −
p

2vT
0

�

,

P+e = diag(0, 1p
2
, 1p

2
, 0) = 1p

2

�

1
2

�

v1 − v2

��

vT
1 − vT

2

�

+ v3vT
3

�

= 1p
2

�

v−vT
− + v3vT

3

�

,

P−e = diag(0, 1p
2
,− 1p

2
, 0) = 1

2

�

v3

�

vT
1 − vT

2

�

+
�

v1 − v2

�

vT
3

�

= 1p
2

�

v3vT
− + v−vT

3

�

,

(A.5)

where v± = (v1± v2)/
p

2 so that W v± = λ1v∓, The latter two relations use the ± basis of Hzig,
where states are labelled by the eigenvalues of σx

j . Since λ0 = 0, the eigenvector v0 does not
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contribute to the defect matrix elements and thus we can omit any term with a v0 from the
P in (106). Thus the first two projectors make the same contribution to the matrix element,
so that we can take linear combinations of them and use the ± states for both HIRL and Hzig.
Thus using

P++ = P−− =
1
2

�

v+vT
+

�

, P−+ = P+− = 0 , (A.6)

in (A.2) gives the correct matrix elements in these bases.
Using (A.5) and the replacement (A.6) in (A.2) yields a rather simple matrix-product op-

erator in the ± bases. It is simple to check that all non-vanishing matrix elements are 1. The
result is given in (106), where the three channels correspond to v3, v+ and v−, where we have
omitted the zero-eigenvalue channel because it does not contribute to the matrix elements,
We have also absorbed W into the P , which means the form (106) is left-right asymmetric.
The resulting operator remains symmetric, however, as clear from (107). Indeed, for h̃ j = +
and h̃ j = − in the IRL, acting with D 1

2
automatically yields h j = + and h j = − in zigzag Ising

respectively. The state h̃ j = e can result in either h j = ±, which one being determined by the
values of h̃ j−1 and h̃ j+1 as in (107).

B The XXZ chain and conformal field theory

As explained in classic work [66, 67], the continuum limit of the XXZ chain in the region –
1< ∆ ≤ 1 is described by a free boson. An intuitive way of understanding why is to define
a lattice operator φ j at each site j = 0,1, . . . L such that φ j+1 −φ j = Z j+ 1

2
. One then hopes

that in the continuum limit, a suitably coarse-grained version of φ j renormalizes into a free
real bosonic field Φ(x , t) where x and t are space and time coordinates. The lattice U(1)
symmetry charge is by construction Q = φL − φ0, so the field-theory U(1) charge must be
Q ∝
∫ L

0 ∂xΦ = Φ(L) − Φ(0). Thus even though we have periodic boundary conditions in
the XXZ chain, the operator φ j and the field Φ(x , t) cannot be periodic in the presence of
configurations with non-zero charge. Instead we must “compactify” Φ(x , t) to take values on a
circle, i.e. identify the field values Φ(x)∼ Φ(x)+2πr for some radius r. The periodic boundary
conditions in XXZ then allow for having field configurations where Φ(x + L) = Φ(x) + 2πmr,
where the charge m is an integer called the winding number.

The bosonic field-theory action in Euclidean spacetime describing the XXZ chain is [66,67,
75]

S = −
1

2π

∫ β

0

dτ

∫ L

0

d x
�
�

�

�

∂x + i∂τ
�

Φ(x , iτ)
�

�

2
+ κ cos
�2

rΦ
�

�

. (B.1)

Spacetime is a torus of size L × β , with β the inverse temperature. For κ = 0, this action is
conformally invariant, and so we can avail ourselves of the powerful methods of conformal
field theory. In particular, the bosonic field can be split into chiral and antichiral components
(right and left-moving in real time) Φ= ϕR(x + iτ) +ϕL(x − iτ), and then define a dual field
as θ = ϕR −ϕL . Operators in this conformal field theory of dimension x l,m are then defined
as

Vl,m = ei l
r Φ+2imrθ , x l,m =

l2

4r2 +m2r2 , (B.2)

where the electric charge l and the magnetic charge/winding number m need to be integers
for consistency with Φ ∼ Φ+ 2πr. Standard techniques [68] give the torus partition function
to be that given in (127).

The last term in (B.1) arises because the allowed values of φ j are discrete and equally
spaced. A potential κ cos(aΦ) is indeed minimized when Φ is at discrete equally spaced values.
The subtle part is to determine the factor a. As apparent from (B.2), the lowest-dimension
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operators of this sort present in the free-boson theory are V±1,0, not the V±2,0 in (B.1). There
are (at least) three ways of understanding why the former operators do not appear. A precise
but not very intuitive method is to utilise the exact results coming from the integrability of
the XXZ (and XYZ) chains [45]. Computing the exact dimensions and comparing to those
from (B.2) yields the relation (128) between ∆ and r and the factor of 2 in (B.1) [66, 67]
(We note in passing that while the relationship is not rigorous, it is exact; the two concepts
are orthogonal.) A more intuitive explanation comes from the fact that at ∆= 1, the XXZ
interaction is antiferromagnetic, so the unit cell used for the coarse-graining procedure should
be two sites in order for the Néel state to correspond to Φ= 0 [73]. With a two-site unit cell, the
exact translation symmetry of the lattice model results in an internal symmetry Φ→ Φ+πr of
the free-boson theory. The operators V±1,0 are not invariant under this symmetry and so cannot
be added to the action, making (B.1) the simplest action consistent with all the symmetries. A
third way of understanding the factor of 2 comes from a careful examination of the anomalies,
which result in an “emanant” symmetry of the field theory forbidding V±1,0 from appearing in
the action [76].

Since the final term in (B.1) is irrelevant for 0< r < 1/
p

2, κ renormalizes to zero when
coarse-graining. We thus can ignore it in this region, so the XXZ chain with –1<∆≤1 is
described by the free-boson CFT. The KT transition at ∆ = 1 corresponds to V±2,0 becoming
relevant, and so for ∆ > 1 the CFT no longer applies. The CFT description also breaks down
as ∆ → −1, but for a very different reason. Again the integrability can be used to compute
the Fermi velocity as a function of ∆, yielding (129). As ∆→−1, r → 0, and so vF also goes
to zero. At ∆= −1, the model remains gapless, but the dispersion relation is quadratic.

The CFT has two U(1) symmetries. The lattice U(1) symmetry corresponds to
θ → θ+ const, which indeed has charge ∝

∫

d x ∂tθ =
∫

d x ∂xΦ as explained above. The
second one corresponds to Φ → Φ+ const, and is present only in the critical region where κ
renormalises to zero. It is not present in the lattice model, only in the CFT, and so is emergent.
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