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Abstract

We propose a practical implementation of a universal quantum computer that uses local
fermionic modes (LFM) rather than qubits. The device consists of quantum dots tunnel-
coupled by a hybrid superconducting island and a tunable capacitive coupling between
the dots. We show that coherent control of Cooper pair splitting, elastic cotunneling, and
Coulomb interactions implements the universal set of quantum gates defined by Bravyi
and Kitaev [1]. Due to the similarity with charge qubits, we expect charge noise to be
the main source of decoherence. For this reason, we also consider an alternative design
where the quantum dots have tunable coupling to the superconductor. In this second
device design, we show that there is a sweet spot for which the local fermionic modes
are charge neutral, making the device insensitive to charge noise effects. Finally, we
compare both designs and their experimental limitations and suggest future efforts to
overcome them.
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1 Introduction

Over the years, qubits emerged as the de facto basis for quantum computation with a plethora
of host platforms: superconducting circuits [2, 3], trapped ions [4, 5] and quantum dots [6],
to name a few. Recent works used qubit-based quantum computers to simulate fermionic
systems [7–9]. However, the mapping from qubits to local fermionic modes (LFMs) is ineffi-
cient because it introduces additional overhead to the calculations [10, 11]. For example, a
map from n qubits to fermions requires O(n) additional operations through the Jordan-Wigner
transformation [12] and O(log n) through the Bravyi-Kitaev transformation [1].

An alternative to avoid the overhead in the qubit to LFM map is to use a quantum com-
puter that already operates with local fermionic modes [1]. Moreover, the advantage of local
fermionic modes is not limited to fermionic systems simulations. A set of 2n local fermionic
modes maps directly to n parity-preserving qubits or n − 1 qubits. Therefore, the map from
local fermionic modes to qubits only requires a constant number of operations regardless of
the system size, being more efficient than the inverse [1]. Recently, Refs. [13, 14] showed
that local fermionic modes offer advantages in quantum optimization problems of finding the
ground state energy of fermionic Hamiltonians.

There exist several proposed platforms to implement fermionic quantum computation. Ref-
erence [15] encodes LFMs into noise-protected Majorana modes and implements gate oper-
ations through a combination of braiding and rotations. However, Majorana modes are still
elusive, and braiding operations remain an experimental challenge. Recently, Ref. [16] pro-
posed neutral atoms confined by and manipulated through optical tweezers as another LFM
platform. The neutral atoms platform offers high-fidelity gates and coherence times above the
millisecond range but suffers from scalability issues and slow gate operations with character-
istic times of 1–100µs [4, 17]. We propose an alternative solid-state platform for fermionic
quantum computation. Our proposal is inspired by recently reported advances in Cooper pair
splitters [18–27]. The design includes an additional tunable capacitance to control interdot in-
teractions. We show that the device implements the necessary universal set of gates proposed
by Bravyi and Kitaev [1]. We also discuss the limitations of the device.
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Figure 1: Minimal device implementation for universal fermionic quantum computa-
tion. The unit cell of a fermionic processor—a fermion and a coupler—is indicated by
the dashed grey box. For operations, two singly-occupied spin-(anti)polarized quan-
tum dots host the local fermionic modes L and R. Two tunnel barriers enable normal
t and spin-dependent tSO tunnelings between the two dots. A middle superconduct-
ing island mediates superconducting correlations between the two local fermionic
modes. An external mutual capacitor Cm allows Coulomb interactions between the
sites.

2 Design

Bravyi and Kitaev [1] showed that fermionic quantum computation is equivalent to parity-
preserving qubit operations. As a consequence, given a set of fermionic creation (c†

i ) and
annihilation operators (ci), it follows that







U1(α) = exp
�

iαc†
i ci

�

, U2(β) = exp
�

iβ
�

c†
i c j + c†

j ci

��

,

U3(γ) = exp
�

iγ
�

c†
i c†

j + c jci

��

, U4(δ) = exp
�

iδc†
i cic

†
j c j

�

,







(1)

with α = β = γ = π/4, and δ = π, is a universal set of gate operators. The case of two
LFMs is similar to two uncoupled qubits: each operation within a given fermion parity sector
is a rotation within SU(2). In the odd fermion parity sector, the operations U1(α) and U2(β)
are rotations around perpendicular axes in the Bloch sphere. Likewise U3(γ) and U4(δ) are
perpendicular rotations within the even fermion parity sector. The U4 operation acts as a
CZ two-fermion gate. In the presence of extra LFMs, required to create superpositions of joint
fermion parity of LFMs i and j, applying U4 generates states with multi-fermion entanglement.

We thus propose a device where excitations occupy single-orbital sites, numbered by the
subindex i and j. A possible platform for such a proposal is an array of spin-polarized quantum
dots, as the scheme shown in Fig. 1. Within this platform, the unitary operations in Eq. 1 are
a time-evolution of the following processes:

1. c†
i ci onsite energy shift of the fermionic state at site i;

2. c†
i c j hopping of a fermion between sites i and j;

3. c†
i c†

j superconducting pairing between fermions at sites i and j;

4. c†
i cic

†
j c j Coulomb interaction between fermions at sites i and j.

We control the onsite energies µi with plunger gates. Similarly, a tunnel gate between
neighboring pairs of quantum dots controls hopping strength t between them. Manipulation
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with plunger and tunnel gates is a well-established technique in charge [28, 29] and spin [6]
qubits.

To implement the superconducting coupling between the spin-polarized dots, we utilize
the design of a triplet Copper pair splitter [19–23, 27]. We include an auxiliary quantum dot
in proximity to an s-wave superconductor mediating crossed Andreev reflection (CAR) and
elastic cotunelling (ECT) between the two quantum dots that encode the LFMs. Thus, the
ECT rate Γ sets the hopping strength between the two dots, whereas the CAR rate Λ sets the
effective superconducting pairing. Because the dots are spin-polarised, the superconducting
pairing must be of spin-triplet type, enabled by spin-orbit hopping in the hosting material. We
quantify the spin-orbit coupling in the hosting material by the spin precession angle between
the dots θi = 2πd/lso, where d is the interdot distance and lso is the spin-orbit length. The spin-
orbit coupling in InSb wires leads to a spin-precession length lso ≥ 100 nm [30–32] resulting
in non-negligible θi within the order of the dot-to-dot distance.

Finally, we achieve Coulomb interaction between a pair of dots through capacitive coupling
Cm. Our design requires a variable capacitive coupling to implement the U4 gate. Several
recent works demonstrate variable capacitive coupling in various platforms: superconducting
islands with variable Josephson energy [33], external double quantum dots [34], gate-tunable
two-dimensional electron gas [35] and varactor diodes [36].

We show a minimal design of a fermionic quantum computer with two LFMs in Fig. 1.
The device consists of three tunnel-coupled quantum dots in a material with large spin-orbit
coupling. The middle dot is proximitized by an s-wave superconductor with an induced gap
∆ that mediates CAR and ECT between the outer dots. The spin-polarised outer dots (L, R)
encode the LFMs, whereas the middle one is an auxiliary component. Finally, a tunable ca-
pacitor couples the outer dots. We generalize the device to an arbitrary number of LFMs by
repeating the unit cell indicated by the grey dashed box in Fig. 1 in a chain. To read out the
fermionic state, we propose to measure the occupation in each quantum dot through charge
sensing [37].

3 Effective Hamiltonian

3.1 Single fermion processes

In the absence of capacitive and tunnel coupling, the approximate Hamiltonian for the two
spin-polarised dots is

Hd =
∑

i=L,R

µic
†
iσi

ciσi
, (2)

where ciσ is the electron anihilation operator at site i and spin σ while µi is the corresponding
chemical potential. The Hamiltonian in Eq. (2) is valid under two conditions: (i) the Zeeman
splitting is sufficiently large to ensure the spin polarisation; (ii) because µi is a tunable pa-
rameter and the singlet state has no Zeeman splitting contribution, the charging energy must
be sufficiently large to ensure that doubly-occupied states are well-separated from the com-
putational states. Recent experiments on similar devices measure charging energy of 2 meV
and Zeeman splitting of 400 µeV at 200 mT [19, 20, 22, 23]. Both charging energy and Zee-
man splitting are larger than the usual induced superconducting gap inside the quantum dot
∆∼ 100µeV [23,38–41], justifying the approximation in Eq. (2).

The proximity of the middle dot to the superconductor suppresses its g-factor [42]. Thus,
differently from the outer dots, we consider a finite Zeeman energy B. The Hamiltonian of the
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middle dot is

HABS =
∑

σ,σ′
[µM (σ0)σσ′ + B(σz)σσ′] c

†
MσcMσ′ +∆c†

M↑c
†
M↓ + h.c. , (3)

where c†
Mσ is the creation operator of electron on the middle dot with spin σ,∆ is the induced

superconducting gap, and σl are the Pauli matrices (l = {0, x , y, z}) acting on the spin sub-
space. Both spin-polarised, at most singly occupied, dots in Eq. (2) connect to the middle dot
by symmetric tunnel barriers with strength t. The barrier t controls both normal and spin-orbit
tunneling processes:

Ht = t
∑

i=L,R

cosθic
†
iσi

cMσ + i t
∑

i=L,R

∑

σ′

(σy)σiσ′
sinθic

†
iσi

cMσ′ + h.c. , (4)

where θi is the spin precession angle from dot i to the middle island. Thus, the total Hamilto-
nian is

H = Hd +HABS +Ht . (5)

We obtain the effective low-energy Hamiltonian in the weak-coupling limit, t ≪ ∆,
through a Schrieffer–Wolff transformation (the derivation is in Appendix A) [43,44]:

H̃ =
∑

i

ε
σiσ j

i c†
iσi

ciσi
+
∑

i, j

Γσiσ j
c†

iσi
c jσ j
+Λσiσ j

c†
iσi

c†
jσ j
+ h.c. , (6)

where ε
σiσ j

i is the renormalised onsite energy of dot i, Γσiσ j
is the ECT rate and Λσiσ j

is the
CAR rate. While t ̸= 0, we do not vary the chemical potential of the outer dots, µL = µR = 0.
For simplicity, we also assume no Zeeman splitting within the middle dot B = 0 and that the
spin precession angles are symmetric θL = θR = θ (see Appendix A for more general form).
In such case, the effective parameters for the anti-parallel spin configuration are:

Λ↑↓ = κ∆ cos(2θ ) , Γ↑↓ = −iκµM sin (2θ ) , (7)

and for the parallel channel:

Λ↑↑ = −iκ∆ sin (2θ ) , Γ↑↑ = −κµM cos (2θ ) , (8)

where
κ= t2/(∆2 +µ2

M − B2) . (9)

Both onsite corrections terms are equal:

ε
σiσ j

L = ε
σiσ j

R = κµM . (10)

We observe that the magnitude of Λσiσ j
is maximum at µM = 0 and drops with increasing

chemical potential µM . On the other hand, Γσiσ j
has maxima at finite µM . The magnitude

of both processes depends on the spin-precession angle θ and spin configuration of the outer
dots as shown in Fig. 2 (a) and (b). To ensure that operation times for U2 and U3 are similar,
the convenient regime is where max Γσiσ j

∼maxΛσiσ j
.

3.2 Capacitive coupling

The electrostatic energy between the two dots is [45]:

HC =
∑

i=L,R

υic
†
iσi

ciσi
+ Umc†

LσL
cLσL

c†
RσR

cRσR
, (11)
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Figure 2: Absolute value of Λ (blue) and Γ (orange) as a function of µM for different
values of B for the anti-parallel configuration (a) and the parallel configuration (b).
System parameters are t = 0.15, θL = 0.7 and θR = 0.3 where θL ̸= θR for generality.

where Um = Cme2/C̃ is the mutual interaction between the two dots,

υL/R =
CR/L(2ng,L/R + 1) + Cmng,R/L

2C̃
, (12)

is the renormalization to the onsite energy, C̃ = CLCR− C2
m, CL and CR are the capacitances of

the left and right dots, Cm is the mutual capacitance, and ng,i is the charge offset in the site
i. Notice that we consider single-occupation of the dots in (11). This approximation is valid
when Um ≪ ∆≪ e2CL/R/C̃ because the charging energy renormalization due to the mutual
capacitance is negligible in this regime. The last term in (11) gives the Coulomb interaction
between the dots required to implement U4.

4 Fermionic quantum gates

4.1 Unitary gate operations

To achieve the fermionic quantum operations defined in Eq. (1), we require specific time-
dependent profiles that vary tunable system parameters. In this case, we control the following
system parameters through Eqs. (11) and (6): left and right plunger gates (µL ,µR), middle
plunger gate (µM ), tunnel gates (t, we treat the two tunnel gates together), and mutual ca-
pacitance (Cm). For simplicity, we only consider square pulses in time

H(τ) = HP(S)[Θ(τ)−Θ(τ−τP)] , (13)

where Θ(τ) is the Heaviside step function, τ is time and τP is the duration of the pulse. We
define the pulse Hamiltonian HP(S) as a constant total Hamiltonian where S = {t,µM , ...}
are non-zero system parameters in the pulse. For example, HP({t}) is a constant Hamiltonian
with all system parameters zero except the tunnel coupling t. We set the idle (reference)
Hamiltonian to one where all gates are zero, t = µL = µR = µM = Um = 0. Thus, the time-
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evolution operator simplifies to

U(τ2,τ1) = exp

�

−
i
ħh

∫ τ2

τ1

dτ′ H(τ′)

�

= exp
�

−
i
ħh

HP(S)τP

�

, (14)

where τ2,τ1 are the initial and final times, and τP is the duration of the pulse. In practice, the
transition between the idle Hamiltonian and HP in Eq. (13) is not instantaneous but ramps up
smoothly over a time τR to minimize non-adiabatic transitions.

We engineer the unitary operations as an ordered sequence of pulses defined in Eq. (14).
For simplicity, we assume no Zeeman splitting in the middle dot, B = 0, and leave the discus-
sion of the more general case to section 4.2. In this case, the minimal pulse sequence scheme
which implements the gates in Eq. (1) is:

1. Onsite operation:

U1 = exp
�

−
i
ħh

HP ({µL ,µR})τP

�

, (15)

2. hopping operation:

U2 = exp
�

−
i
ħh

HP ({µL = µ,µR = µ})τ
(4)
P

�

× exp
�

−
i
ħh

HP ({t})τ
(3)
P

�

× exp
�

−
i
ħh

HP ({µL = µ,µR = µ})τ
(2)
P

�

× exp
�

−
i
ħh

HP ({t,µM})τ
(1)
P

�

, (16)

3. superconducting pairing operation:

U3 = exp
�

−
i
ħh

HP ({t})τP

�

, (17)

4. Coulomb interaction operation:

U4 = exp
�

−
i
ħh

HP ({µL ,µR})τ
(2)
P

�

× exp
�

−
i
ħh

HP ({Um})τ
(1)
P

�

, (18)

where we indicate as τ(i)P the duration of the i-th pulse.
In the above scheme, the operations U1 and U3 require a single pulse. The gate U1 requires

a single pulse because the dots are uncoupled from one another and the plunger gates affect
the onsite energies without inducing any sort of coupling between the dots. Similarly, U3
is also a single operation because the CAR rate is maximum at µM = 0 whereas both ECT
rate and onsite corrections are zero according to Eqs. (7— 10). We show the time-dependent
simulation of the U3 gate in Fig. 3.

On the other hand, the first pulse of Eq. (16) introduces finite onsite corrections to the
outer dots and CAR according to Eqs. (7— 10). Since the onsite corrections are equal, only a
global phase factor is accumulated within the odd fermion parity sector. On the other hand,
both onsite corrections and CAR result in undesired rotations within the even fermion parity
subspace. We undo these operations with an Euler rotation using two orthogonal operations,
resulting in the three subsequent pulses in Eq. (16). We show the time-dependent simulation
of the U2 gate in Fig. 5 (Appendix C). Similarly, the Coulomb operation in Eq. (18) also requires
a correction pulse with the plunger gates because the mutual capacitance Cm renormalizes the
onsite energies in the outer dots, as shown in Eq. (11).
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Figure 3: Time-dependent simulation of pairing gate U3 acting on an initial vacuum
state with different pulse rise time τR profiles. The vacuum population is |ψ00|

2

whereas the double occupation population (with middle dot unoccupied) is |ψ11|
2.

Longer pulses (a) result in a smoother transient population profile (b) and less leak-
age into the middle ABS state (c). The configuration is the spin-antiparallel with
finite Zeeman field within the middle dot B/∆ = 0.2 and symmetric spin-orbit pre-
cession θL = θR = π/8.

4.2 Finite Zeeman splitting in the middle dot

The presence of Zeeman splitting in the middle dot B introduces an asymmetric onsite renor-
malisation ε

σiσ j

L ̸= εσiσ j

R and a shift in the minima of Γσiσ j
shifts away from µM = 0 (see

Appendix A), as shown in Fig. 2. These changes affect the prescriptions for U2 and U3 since
these operations require finite t.

The asymmetric onsite corrections break the orthogonality between U1 and the unitary op-
eration prescribed in Eq. (16). It is still possible to implement the U2 with two non-orthogonal
rotation axes in the odd fermion parity sector with additional operations to compensate for
the non-orthogonality [46].

The operation in Eq. (17) also introduces finite Γσiσ j
in the odd parity sector. We show in

Appendix B that anti-parallel spin configuration with symmetric spin-orbit precession θL = θR
removes the shifting Λ minima away from µM = 0 and restores the orthogonality of the oper-
ations within the even parity sector.

4.3 Gate performance

Switching on the pulse in Eq. (13) happens over a finite rise time τR. Short rise times τR induce
transitions from the LFM dots into the middle ABS at energy∼∆which limits the performance
of the gates. To avoid such transitions, the pulse times need to be τR ≫ ħh/∆. In Fig. 3 we
show the time-dependent simulation of the gate U3 with different rise times. We find that rise
times τR > 2ħh/∆ ensures negligible transitions into the ABS. In a system of ∆= 100µeV that
corresponds to rise times of τR > 13ps.
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Current tunable capacitors [35, 36] vary over a limited range. The upper limit for the
ratio between the maximum and minimum capacitance r = Coff/Con is r ≈ 40 [35,36]. Thus,
there is a non-negligible residual capacitance between the dots when the U4 gate is off. This
residual capacitance acts as an unwanted source of phase and limits the performance of the
device. Because such error is coherent, we argue it is possible to offset it after each or a few
operations with a compensating U4 pulse. However, since [U3,U4] ̸= 0, the U3 operation would
require similar compensation pulses to Eq. (16) to offset the effect of the residual capacitor.

5 Charge neutral local fermionic modes

Although the device in Fig. 1 we proposed has the ingredients to implement universal fermionic
gates, further work is required to mitigate the main sources of errors. Because of its similar-
ities to a quantum dot charge qubit, we expect the limiting decoherence mechanism to be
the same—charge noise [47]. Typical coherence times are of the order of a few nanosec-
onds [28, 47–49]. In comparison, Dvir et al. [23] report CAR/ECT strengths that set a lower
bound for gate pulse durations of ħh/ΓCAR/ECT ≈ 50 ps. This minimal device therefore requires
gate pulses with sub-nanosecond duration to operate the device within the charge coherence
time, posing a significant requirement on control electronics. As an improved alternative, we
consider the device shown in Fig. 2 in which all quantum dots are proximitized by a super-
conductor, so that the local fermionic modes become Andreev quasiparticles. Because Andreev
states are linear combinations of electron and hole-like excitations, it is then possible to design
a device that operates with charge-neutral fermions. As a consequence, the device becomes
quadratically protected against charge noise. A similar idea to avoid charge noise in fermion-
parity qubits was recently proposed [50]. Furthermore, a recent work estimated that proximi-
tizing a quantum dot increases the dephasing time to 200 ns [51]. Furthermore, mitigation of
the charge noise allows implementation of error-correction codes for fermionic systems [52].

To illustrate the idea, we consider a spinful isolated quantum dot i with Zeeman splitting
Bi and onsite charging energy Ui . In presence of a superconducting gap ∆i , the dot hosts
Andreev quasiparticles with a Hamiltonian:

Hi,N = (εi + Bi)γ
†
i,↑γi,↑ + (εi − Bi)γ

†
i,↓γi,↓ + Uiγ

†
i,↑γi,↑γ

†
i,↓γi,↓ , (19)

where

εi =
q

∆2 +δµ2
i − Ui/2 , (20)

µi = δµi − Ui/2 , (21)

and γi,σ are the annihillation operators of Andreev quasiparticles. When the chemical potential
detuning is small δµ/∆i ≪ 1, the Andreev quasiparticles are equal weight superpositions of
electrons and holes:

γ†
i,↑ = uc†

i,↑ + vci,↓ , γ†
i,↓ = uc†

i,↓ − vci,↑ , (22)

with the components

u=
1
p

2

�

1+
δµi

2∆i

�

+O(δµi
2) , v =

1
p

2

�

1−
δµi

2∆i

�

+O(δµi
2) . (23)

The charge operator corresponds to the Hamiltonian derivative with respect to the chemical
potential, and its expectation value for the singly-occupied Andreev quasiparticle states is:

�

γi,σ

�

�

�

�

dHi

dδµi

�

�

�

�

γi,σ

�

=
δµi

∆i
, (24)
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Figure 4: Alternative layout for a device with charge-neutral local fermionic modes.
Differently from the device depicted in Fig. 1, we consider tunneling between the
quantum dots and the superconductor, t∆,i . Controlling these additional barriers
allows tuning the induced superconducting gap.

which vanishes when δµi = 0. Such a chargeless state reduces its coupling to charged sources
of noise, however, it is also insensitive to the charge-sensing read-out procedure proposed in
Sec. 2. Therefore, during read-out, we propose to first detune the chemical potential µi from
the charge-neutral sweetspot to manifest charge. Another way to control the charge of an
ABS is via flux-tuning [53–58], but we do not consider it here because it requires additional
superconductors and introduces sensitivity to flux noise.

In order to use the charge-neutral fermions as local fermionic modes, we require the vac-
uum state and a single Andreev quasiparticle state to be the lowest energy states, with all the
rest of the states removed away far in energy. We achieve this for dot i that stores LFM by ful-
filling the inequality |Ui/2+Bi−∆i| ≪ Bi . This condition is satisfied when the charging energy
is sufficiently small, and the superconducting gap is comparable to the Zeeman splitting. We
suggest the device depicted in Fig. 4 to control these parameters. Differently from the device
in Fig. 1, we add a tunable gate-controlled coupling t∆,i between the dots and the supercon-
ductor that controls the proximity gap ∆i , the g-factor renormalization, and the screening of
the Coulomb potential Ui . We refer to the dots L and R that store LFMs in Fig. 1 as the outer
dots whereas the middle dot M mediates interaction between them.

5.1 Gates

Unlike the charged fermions, which implement the onsite gate using a plunger gate pulse (15),
the charge-neutral fermions require fixing the plunger gates at the sweet spot. Instead, we
utilize the tunnel barrier t∆i connecting the outer dot to the superconducting island. In the
weak and moderate coupling regime, tunnel barrier controls the induced superconducting gap
∆i ∼ t2

∆i/∆, and the energy of the Andreev quasiparticles in Eq. (19). This, therefore yields
the desired onsite operation in the neutral fermion device:

U1 = exp
�

−
i
ħh

HP

�

{t∆L
, t∆R
}
�

τP

�

. (25)

Similarly to the charged fermion case, we couple two neutral fermions through a middle
dot strongly coupled to a superconductor, as shown in Fig. 4. We choose a symmetric set of
parameters for the outer neutral fermions: ∆L = ∆R = ∆N , θL = θR = θ and BL = BR = BN .
Furthermore, we neglect Zeeman splitting in the middle dot because leading-order effects
are ∼ t2B2/∆4. Again, we assume a weak-coupling limit, t ≪ ∆,∆N , BN , and perform a
Schrieffer–Wolff transformation to obtain an effective low-energy model [43]. From the effec-
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tive model, we obtain the coupling strengths between neutral fermions:

ΛN = iκµM sin (2θ ) , ΓN = κ (∆+∆N − BN ) cos (2θ ) , (26)

where
κ= t2/
�

∆2 +µ2
M − (∆N − BN )

2� , (27)

and a renormalized onsite energy:

ε̃N = (∆N − BN ) + κ (∆+ BN −∆N ) . (28)

Compared to the charged fermion case in Eq. (8), we observe that the terms that implement
U2 and U3 in Eq. (26) behave in a qualitatively opposite way: ΛN = 0 and ΓN is maximal at
µM = 0.

Because of the swapped nature of U2 and U3, the hopping operation in the neutral fermion
basis requires fewer steps:

U2 = exp
�

−
i
ħh

HP

�

{t∆L
= t∆N

, t∆R
= t∆N

}
�

τ
(2)
P

�

× exp
�

−
i
ħh

HP ({t})τ
(1)
P

�

. (29)

Likewise, by tuning∆N ≈ BN such that there is no onsite energy in Eq. (28), pairing operation
is simple in the even parity subspace and only requires a single U2 correction pulse in the odd
parity subspace:

U3 = exp
�

−
i
ħh

HP

�

{t∆L
= t∆N

, t∆R
= t∆N

}
�

τ
(3)
P

�

× exp
�

−
i
ħh

HP ({t})τ
(2)
P

�

× exp
�

−
i
ħh

HP ({t,µM})τ
(1)
P

�

. (30)

To confirm the validity of pairing and hopping operations, we perform their time-dependent
simulation in Fig. 7 (Appendix C) where we consider the effect of a constant full model
Hamiltonian in Eq. (19). In a system with the middle strongly-coupled dot proximitized to
∆= 100µeV, we predict the gate operation duration down to 1ns.

We neglect other spin channels and doubly occupied states in the charged fermions regime
because Bi , Ui ≫∆ is a reasonable approximation. With neutral fermions, this approximation
is not valid, so we systematically eliminate the remaining states in the outer dots using a
Schrieffer–Wolff perturbative expansion in Um/∆N [43]:

HC =
∑

i=L,R

3U2
m

∆N
γ†

i↓γi↓ −
U2

m

∆N
γ†

L↓γL↓γ
†
R↓γR↓ . (31)

Thus, we can still implement U4 through the mutual capacitance Cm between the outer dots
even in the charge-neutral regime:

U4 = exp
�

−
i
ħh

HP

�

{t∆L
= t∆N

, t∆R
= t∆N

}
�

τ
(2)
P

�

× exp
�

−
i
ħh

HP ({Um})τ
(1)
P

�

. (32)

Finally, because now the effective interaction is quadratic in U2
m, the device becomes less sen-

sitive to the decoherence effects of residual capacitance discussed in Sec. 4.3.

5.2 Comparison with charged fermions

Opposite to charged fermions, neutral fermions are quadratically protected against plunger
gates’ charge noise. In an isolated (t = 0) neutral fermion mode, we identify the noise in
superconductor tunnel gates t∆i as another source of decoherence, because it modulates the
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induced superconducting gap∆i . However, the tunnelling rate is usually less sensitive than the
chemical potential to variations of gate voltage, ∂ µi/∂ V ≫ ∂ t/∂ V [59] and thus the tunnel
gate noise contributes less to the overall decoherence. As a result, we expect the neutral
fermion devices to have longer coherence times than charged fermion devices.

An exception to the insensitivity to charge noise is the pairing operation. The parameter
ΛN in Eq. (26) is linear in µM and, therefore, susceptible to first-order charge noise. However,
the coupling prefactor t2/∆2 is much smaller than the main sources of charge noise in the
charged fermion regime.

In order to work only with the lowest energy states, we require the charging energy Ui to be
much smaller than both Zeeman Bi and the superconducting gap ∆i . In addition, because the
outer dots are weakly-coupled, the induced superconducting gap in the outer dots is smaller
than the one in the middle ∆i <∆, which reduces the energy gap of the computation states.

6 Future directions

Our proposed device consists of a chain of single-orbital fermionic sites. The device layout is
a limiting factor, as it only allows nearest-neighbor in hoppings, superconducting pairing, and
electrostatic interactions. The layout limitations are detrimental to effective scalability. Thus,
future works could, for example, generalize the model to two-dimensional lattices.

We showed that the proposed device is a minimal example of a fermionic quantum com-
puter. However, we must also emphasize that the high control of the system parameters allows
using the same device as a quantum simulator. For example, a chain-like device with the unit
cell shown in Fig. 1 at finite Γσi ,σ j

and Um can be directly mapped to the Heisenberg model.
Thus, with the superconducting correlations, these devices would be an extension of other
quantum dot platforms [60].

We mentioned in Sec. 4 that all tunable capacitors proposed present a residual mutual ca-
pacitance Coff. The external capacitor is necessary because charge screening in the supercon-
ducting island suppresses interdot interactions. On the other hand, a floating superconducting
island offers a direct interdot capacitance [61]. In a device with a switch between a floating
and grounded superconductor, there would be direct control of the mutual capacitance [62].
Moreover, the charge screening due to the grounded superconducting island sets Coff →∞,
removing the need to fix offset phases due to the residual capacitance. The complexity of
this setup requires further experimental investigation. Thus, we referred to the alternative
methods despite their limitations.

7 Summary

We showed that Copper pair-splitting devices with tunable capacitors allow a minimal imple-
mentation of a fermionic quantum computer. We derived the low-energy Hamiltonian and
showed how to implement a universal set of gate operations by tuning experimentally con-
trollable parameters. Moreover, we show how to suppress decoherence due to charge noise
with an alternative device layout where all quantum dots have independent tunable couplings
to the superconducting reservoir. We achieve the insensitivity to charge noise operating in a
regime where the local fermionic modes are charge-neutral. Based on the low-energy theory,
we also studied optimal regimes for the operation of both devices. By repeating the unit cell,
it is possible to use the system as a static simulator of one-dimensional fermionic chains.
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A Schrieffer–Wolff transformation

We perform a Schrieffer–Wolff transformation to obtain the effective Hamiltonian from Eq. (6).
We, first, diagonalize the Hamiltonian of the middle dot in Eq. (3):

HABS = (εABS + B)γ†
↑γ↑ + (εABS − B)γ†

↓γ↓ , (A.1)

where εABS =
q

∆2 +µ2
M , γσ are the annihillation operators of Andreev quasiparticles

γ†
↑ = uc†

M↑ + vcM↓ , γ†
↓ = uc†

M↓ − vcM↑ , (A.2)

and u and v are the coherence factors.
We now define the occupation basis for the many-body states as |nL , nM , nR〉, where ni

corresponds to the occupation number at the site i. Notice that for the middle dot, we define
the number operator as n̂Mσ = γ

†
MσγMσ, whereas in the outer dots n̂iσi

= c†
iσi

ciσi
. Because

we consider µL/R, B≪∆, in the absence of hopping between the dots,

〈nL , 0, nR|H|nL , 0, nR〉 ≪ 〈nL , nM , nR|H|nL , nM , nR〉 , (A.3)

for nL/R ∈ {0,1}, and nM > 0. Thus, the states with zero occupation in the middle dot form
our low-energy manifold.

An energy ∼∆ separates the occupied states in the middle dot from the low-energy man-
ifold. In the weak coupling limit t ≪ ∆, the high-energy subspace only contributes to the
low-energy dynamics through virtual processes. Therefore, we use a Schrieffer–Wolff trans-
formation to obtain the effective Hamiltonian in the low-energy subspace in Eq. (6). Whenever
µL = µR = 0, the terms in Eq. (6) for the anti-parallel spin configuration are:

ε↑↓R = κ
�

−2B sin2 (θR) + B +µM

�

, ε↑↓L = κ
�

−2B cos2 (θL) + B +µM

�

, (A.4)

Λ↑↓ = κ∆ cos(θL + θR) , Γ↑↓ = −iκ [µM cos (θL + θR)− B sin (θL − θR)] , (A.5)
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and for the parallel configuration:

ε↑↑R = κ
�

−2B cos2 (θR) + B +µM

�

, ε↑↑L = κ
�

−2B cos2 (θL) + B +µM

�

, (A.6)

Λ↑↑ = −iκ∆ sin (θL + θR) , Γ↑↑ = −κ [µM cos (θL + θR)− B cos (θL − θR)] , (A.7)

where
κ= t2/(∆2 +µ2

M − B2) . (A.8)

At finite B, the chemical potential µM at which Γσiσ j
= 0 shifts to:

µ↑↓shift =
B sin (θL − θR)
sin (θL + θR)

, µ↑↑shift =
B cos (θL − θR)
cos (θL + θR)

, (A.9)

for anti-parallel and parallel spin configurations.

B Convenience of the anti-parallel spin configuration

B.1 Orthogonality with symmetric spin precession

In Eq. (A.4), for the anti-parallel spin configuration, we notice that when the spin precession
angles are equal θL = θR = θ , the double occupation onsite energy εL+εR = 0 is zero atµM = 0
and the ETC minima shifts disappear as shown in Eq. (A.9). That restores the orthogonality
of operations within the even parity sector, and thus we express U3(γ) operation as:

U3(γ) = exp
�

−
i
ħh

HP

�

{µL/R}
�

τ
(2)
P

�

× exp
�

−
i
ħh

HP ({t})τ
(1)
P

�

, (B.1)

where we compensate a finite εL − εR with an onsite pulse. On the other hand, the hopping
operation requires additional operations to compensate for non-orthogonality [46]:

U2(β) = exp
�

−
i
ħh

HP ({µL = µ,µR = µ})τ
(N+4)
P

�

× exp
�

−
i
ħh

HP ({t})τ
(N+3)
P

�

× exp
�

−
i
ħh

HP ({µL = µ,µR = µ})τ
(N+2)
P

�

× exp
�

−
i
ħh

HP

�

{µL/R}
�

τ
(N+1)
P

�

×
N/2
∏

j=1

exp
�

−
i
ħh

HP ({t,µM})τ
(2 j)
P

�

× exp
�

−
i
ħh

HP

�

{µL/R}
�

τ
(2 j−1)
P

�

,

(B.2)

where N is the number of pulses required to correct for the non-orthogonality within the odd
parity sector.

B.2 Stability and number of operations

To quantify the degree of linear dependence of the operations, we define the following metric

Lo =

√

√

√ (εL − εR)
2

(εL − εR)
2 + Γ 2

, (B.3)

Le =

√

√

√ (εL + εR)
2

(εL + εR)
2 +Λ2

, (B.4)

14

https://scipost.org
https://scipost.org/SciPostPhys.16.5.135


SciPost Phys. 16, 135 (2024)

for Le even Lo and odd fermion parity sectors. If Le/o = 0, the operations are orthogonal, and
the scheme outlined in Section 4 is valid. On the other hand, if Le/o = 1, it is impossible to
generate a universal set of operations. To understand how robust the scheme in Eq. (B.1) is,
we consider small deviations from the perfect spin precession case: θL = θ and θR = θ + δ.
In this case, the metric Le/o reads:

Lo =
�

1+
�µM

B
tan2θ
�2�−1/2

+O(δ) , (B.5)

Le = δ
�

B
∆

�

tan2θ +O
�

δ2
�

. (B.6)

Depending on the linear dependence Le/o of the hopping and pairing operations, we can esti-
mate the maximal number of pulses required to implement an arbitrary operation [46] within
a given fermion parity subspace:

N (Le/o) =

�

π

arccos (Le/o)

�

+ 1 . (B.7)

C Time-dependent gate operations
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Figure 5: Time-dependent simulation of hopping gate U2 acting on an initial left
singly-occupied state with different pulse rise time τR profiles. The left state popu-
lation is |ψ10|

2 whereas the right state population is |ψ01|
2. Longer pulses (a) result

in a smoother transient population profile (b) and less leakage into the middle ABS
state (c). The configuration is the spin-antiparallel with finite Zeeman field within
the middle dot B/∆= 0.2 and symmetric spin-orbit precession θL = θR = π/8.
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Figure 6: The time-dependent evolution due to a constant charged fermion Hamil-
tonian showing (a) U3 pairing and (b) U2 hopping operations. The parameters are
t/∆= 0.15,α= π/8 with µM/∆= 0 for (a) and µM/∆= 0.45 for (b).
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Figure 7: The time-dependent evolution due to a constant neutral fermion Hamil-
tonian showing (a) U3 pairing and (b) U2 hopping operations. The parameters are
t/∆ = 0.15, BN/∆ = 0.3,∆N/∆ = 0.297,α = π/3.2 with µM/∆ = 2.5 for (a) and
µM/∆= 0 for (b).
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