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Abstract

The difficult problem of relating the static structure of glassy liquids and their dynam-
ics is a good target for Machine Learning, an approach which excels at finding complex
patterns hidden in data. Indeed, this approach is currently a hot topic in the glassy liq-
uids community, where the state of the art consists in Graph Neural Networks (GNNs),
which have great expressive power but are heavy models and lack interpretability. In-
spired by recent advances in the field of Machine Learning group-equivariant representa-
tions, we build a GNN that learns a robust representation of the glass’ static structure by
constraining it to preserve the roto-translation (SE(3)) equivariance. We show that this
constraint significantly improves the predictive power at comparable or reduced number
of parameters but most importantly, improves the ability to generalize to unseen tem-
peratures. While remaining a Deep network, our model has improved interpretability
compared to other GNNs, as the action of our basic convolution layer relates directly to
well-known rotation-invariant expert features. Through transfer-learning experiments
displaying unprecedented performance, we demonstrate that our network learns a ro-
bust representation, which allows us to push forward the idea of a learned structural
order parameter for glasses.
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Introduction

Understanding the nature of the dynamical glass transition is one of the most intriguing open
problems in condensed matter. As a glass-forming liquid is cooled down towards its character-
istic temperature (Tg), its viscosity increases by several orders of magnitude, while its struc-
ture, the spatial arrangement of the particles, does not show any obvious change. Finding the
subtle changes in the structure that explain the huge variations in the dynamics (increased
viscosity) seems like an obvious target for Machine Learning, which is great at finding hidden
patterns in data.

Independently from this, a number of works identify patterns using expert hand-crafted
features that seem quite specific to glasses where these descriptors are shown to directly cor-
relate with the dynamics [1, 2], without any actual use of Machine Learning. Aside from
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Machine Learning, historically and up to the present day, physicists have inspected how some
well-defined physical quantities correlate with glassy dynamics [1–7], in a manner akin to
expert features (but without any learning). There are also direct pattern-recognition tech-
niques [8–12] and a few unsupervised approaches [13–17], but the typical strategy is to learn
a representation using supervised learning, i.e. use ML to map a given local structure to a target
label that represents the local dynamics (i.e. a “local viscosity” measure). See the review [18]
for a comparison or various machine-learned of physical quantities and how they correlate
with dynamics. Since glasses are very heterogeneous when approaching the transition (a phe-
nomenon called Dynamic Heterogeneity [19–22]), a single temperature point already displays
a broad variety of labels’ values, and is generally considered to be enough data to learn a good
representation. We further articulate the relation between the physics of glasses and learning
a representation in section 5.

The quest for this good representation has prompted many works, relying on various tech-
niques. The idea of using ML for glasses was introduced by the pioneering works of Liu
et al. [23–26], where a rather generic set of isotropic features (describing the density around
the target particle) is fed to a binary classifier (a linear Support Vector Machine (SVM)) to
predict the target particle’s mobility. After considering only isotropic features, they marginally
improved accuracy by using angular-aware expert features, measuring bond-angles around the
target particle. This simple yet robust technology alone yielded a number of physics-oriented
works [27–32], which provide physical interpretations of the model’s output value (named
Softness). These and the other shallow learning approaches all rely on features that describe
the neighborhood of a single particle to then predict this single particle’s future: in all cases,
there is no interaction between neighborhoods.

Independently from the glass literature, within other application fields dealing with parti-
cles living in 3D space, Deep Learning frameworks and in particular Graph Neural Networks
(GNNs) were developed, with some success, quite early on (2016). Applications range from
molecular properties predictions [33], to bulk materials properties prediction (MegNet) [34],
or Density Functional Theory approximations [35], and most importantly for us, for glassy
dynamics [36]. Indeed, designing geometrical features to capture the slight variations in the
geometry of a particle’s neighborhood is a daunting task, and the lesson learned from Com-
puter Vision and the advent of Convolutional Neural Networks (CNNs) is that meta design
works better than design, that is, expert features designed by hand are not as informative as
the ones learned by a neural network with a suitable architecture designed by an expert. This
is the point of the Deep approach, and more specifically GNNs, that are designed to build
aggregated representations of the nodes’ neighborhoods. Indeed in 2020 Bapst et al. [36]
substantially redefined the state of the art using a GNN. Although they are very effective, pre-
vious GNN approaches, that do not account for rotation-equivariance, lack interpretability due
to their structure and their high number of learnable parameters.

The coarse-graining effectively performed by GNNs was then mimicked (or distilled) in an
expert-features oriented approach, with the impressive result by Boattini et al. [37] where it
was shown that a simple Ridge Regression with ∼ 1000 rather generic, rotation-invariant fea-
tures, performs equally well as the reference of that time, i.e. GNNs [36]). The features consist
for a part of node-wise rotation-invariant descriptors, and for another, of these elementary fea-
tures but averaged over neighboring nodes, over a small radius (mimicking a GNN aggregation
step). There is currently some debate [15,37–41] over whether Deep Learning is the right way
to do better than such expert features, and part of the community leans on this expert side.

Here, inspired by the fast-growing field of SE(3)-equivariant networks [42–49], we build
a GNN with hidden representations that are translation and rotation-equivariant (SE(3)-
symmetry). Concretely, under rotation of the whole glass, the scalar properties of the particles
(as mobility) remained unchanged, while the vectorial quantities (like relative positions) trans-

3

https://scipost.org
https://scipost.org/SciPostPhys.16.5.136


SciPost Phys. 16, 136 (2024)

Figure 1: Input Graph with its input features. Node features are the one-hot en-
coded particle types (invariant features, l = 0), and edge attributes aij are split: the
direction is embedded in Spherical Harmonics Y (âij) and the norm is retained sep-
arately. Throughout this paper, we depict each rotational order with a given color:
l = 0 (red), l = 1 (green), l = 2 (blue). The relative length of each is a reminder
that each requires 2l + 1 real values to be stored on the machine.

form accordingly. With SE(3)-equivariant networks, the internal representations behave like
such physical vectors: the representation rotates appropriately under rotation of the input.
Invariant features have significantly less expressivity than equivariant ones, since they are just
a subset of those. In other words, we take the best of both worlds: We combine the basic idea
of symmetry-aware features, already used with some success [37], with the combinatorial
and expressive power of Deep Learning. In practice, for the task of predicting the dynamical
propensity of 3D Kob-Anderson mixtures, we significantly surpass the historical state of the
art [36], at comparable or reduced number of parameters (depending on the task) and in-
creased interpretability, while we perform comparably as well or better than other approaches
(the details depends on the timescale considered). Importantly, the representation we learn
generalizes very well across temperatures.

In the next section (sec. 1) we define the task to be solved: input and output data. We
then introduce all the necessary theoretical tools to build the basic SE(3)-GNN layer, explaining
how they apply to our specific case (sec. 2). We explain how to combine these layers into a
network in sec. 3. In section 4, we study the impact of various pre-processing choices on
performance and we compare with other recent works. We open on interpretating the learned
representation as an order parameter and experiment on the robustness of our representation
in section 5. We outline directions for future work in section 6. We summarize the main
outcomes of this work in the conclusion, section 7.

1 Dataset and task

To probe the ability of our model to predict mobility, we adopt the dataset built by Bapst
et al. in [36]. It is obtained from molecular dynamics simulations of an 80:20 Kob-Andersen
mixture of N = 4096 particles in a three-dimensional box with periodic boundary con-
ditions, at number densities of ρ ≃ 1.2. Four state points (temperatures) are analyzed:
T = 0.44,0.47, 0.50,0.56. For each point, 800 independent configurations {xi}i=1...N are avail-
able, i.e. 800 samples (each sample represents N particles’ positions).

The quantity to predict (Ground Truth label) is the individual mobility of each particle,
measured as the dynamical propensity [50, 51]: For each initial configuration, 30 micro-
canonical simulations are run independently, each with initial velocities independently sam-
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pled from the Maxwell-Boltzmann distribution. The propensity of particle i over a timescale
τ is then defined as the average displacement over the 30 runs (iso-configurational ensemble
average). Propensity is available at nt imes = 10 different timescales that span the log scale,
a priori resulting in nt imes different tasks. For some experiments we also use another similar
dataset as provided by Shiba et al. [38], which models the same glass-former yet differs from
that of Bapst et al. on a couple of points, that we detail in Appendix D. Note that the fi-
nite number of independent runs (here, 30) in the iso-configurational ensemble induces some
noise in the estimation of the propensity. This uncertainty in our ground truth induces an
upper bound on the theoretically achievable accuracy of any prediction method. This bound
has been computed in [52]; we do not report it here, as we are far enough from it, in order to
avoid obscuring the figures.

For each sample to be processed through the GNN, the input graph is built by taking par-
ticles as nodes and connecting them when the inter-atomic distance between positions xi and
x j is less than dc = 2 (in atomic potential units). The node features encode the particle type,
here A or B (“Node features” is machine learning vocabulary for “set of values associated to
the node”, and similarly for edge features). We use one-hot encoding, such that node features
consist of nt ype = 2 boolean variables. This generalizes trivially to mixtures with nt ype > 2.
Optionally, we also include the value of the potential energy of particle i as node feature, which
brings their number to 3 (2 boolean and a real). The edges are directed, and edge (i, j) has
for feature ai j = (x j−xi), i.e. it stores the relative position of the particles (nodes) it connects.
We show a sketch of our input graph with its node and edge features in Figure 1.

The task is then the node-wise regression of the particle’s propensity mi ∈ R (node label).
Notably, here we simultaneously regress both particle types, meaning that all nodes contribute
to the computation of the loss function. We also introduce a new task, referred to as multi-
variate regression, in which the nt imes timescales are regressed at once, as opposed to as the
usual uni-variate approach.

2 How to build a graph-convolution equivariant layer?

2.1 Graph neural networks

Consider a graph G = (V ,E), where V = {1, . . . , nv} is the set of vertices or nodes vi and
E ⊆ V × V is the set of edges ei j , respectively endowed with node features hi ∈ Rcv and edge
features ai j ∈ Rce . GNNs operate on such graphs by updating node (and possibly edge) features
through local operations on the neighborhood of each node. These operations are designed to
adapt to different kinds of neighborhoods and respect node-index permutation equivariance,
which are the two key features of GNNs, as opposed to CNNs (for which the learned kernels
must have fixed, grid-like geometry, and for which each neighboring pixel is located at a fixed
relative position). In this work we deal with Graph Convolutional Networks (GCN), a subclass
of GNNs. A GCN layer acts on node features as follows:

h′(xi) =
∑

j∈N (i)
κ(x j − xi)h(x j) , (1)

where N (i) is the neighborhood of node i. Here a position xi ∈ R3 is associated to each node
and κ is a continuous convolution kernel which only depends on relative nodes’ positions. In
this case, as for CNNs, the node update operation is translation-equivariant by construction.
It is however not automatically rotation-equivariant.
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Figure 2: Equivariance to 2D rotations. Simple case in which the input and output
fields have the same dimension, 2. π(r) represents the action of the rotation opera-
tor on the input field, π′(r) on the output one. In general they can be different, here
since input and output are in the same space, they are equal. The mapping K acts
in an equivariant way, indeed it commutes with the rotation. In practice, K corre-
sponds to the action of one of our neural network’s layers. It represents a mapping
from one internal representation, later denoted by h to the updated one h′. Each
representation is a vector field that spans the 3D simulation box and consists of 3D
vectors (one such field per channel). Here we depict a more generic and readable
case.

2.2 Equivariance

A layer of a network is said to be equivariant with respect to a group G if upon group action
on the input, the output is transformed accordingly. One simple example is shown in Figure 2:
it depicts a 2D vector field f(x) and a mapping K that acts on it, K(f) = cos (||f||) · f̂ (where
f̂ = f/||f||), generating the output field f′(x), which happens to live in the same space. K is
equivariant to 2D rotations: it operates only on the norm of the vectors, thus it commutes with
the rotation operator.

As introduced in the previous example, we can represent the point cloud processed by the
GNN as a vector field h(x) =

∑

i∈V δ(x − xi)hi with values in some vector space H, and the
action of a layer as a mapping K from one field hi to the updated one h′i . To require that
K fulfils equivariance, we need to define how the group of interest acts on the vector space
H through representations. Given a group G, a representation ρ is a mapping from group
elements g to square matrices DH(g) : H → H that respect the group structure. Essentially
it tells how G acts on a specific space H. For example, the representation of the group of
three-dimensional rotations SO(3) on the 3-D Cartesian space is the usual rotation matrix
R(rα,β ,γ) = Rx(α)Ry(β)Rz(γ). Then if we consider an element t r ∈ SE(3) which is composed
of a translation t and a rotation r, it will act on a vector field as follows:

h(x)
π(t r)
−−−→ DH(r)h(R−1(r)(x− t)) . (2)

The codomain (output domain) is transformed by the representation of the rotation while
the domain is transformed by the one of the inverse roto-translation. See Figure 2, top left
to bottom left, for an example with 2D rotations. For further explanations and examples,
see [44].

Let us define equivariance. Let there be a mapping K : h(x)→ h′(x) and h ∈ H, h′ ∈ H ′

with H, H ′ two vector spaces. The kernel K is equivariant with respect to G if

∀g ∈ G K ◦π(g) = π′(g) ◦K . (3)
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The input and output codomains H, H ′ do not need to be identical, and this is taken into ac-
count by the group representations DH(g) and DH ′(g). A direct consequence of this definition
is that invariance is a particular case of equivariance where DH ′(g) = I ∀g ∈ G.

When dealing with SE(3), the only invariant quantities are scalars, thus considering only
invariant features would significantly reduce the model’s expressivity.

2.3 Equivariant features

To enforce equivariance of layers, we work with equivariant features (also called steerable
features), following the schema of steerable group convolutions [42,44,53] (for theoretical in-
sight, see Appendix-B of [45]). These features inhabit the space of irreducible representations
of SO(3), which is factorized into sub-spaces: VSO(3) = Vl1 ⊕ Vl2 ⊕ Vl3 ⊕ . . . . Each subspace,
indexed by l ≥ 0, is of size 2l +1 and transforms independently under rotations thanks to the
action of Wigner-D matrices D(l) ∈ R(2l+1)×(2l+1). Coming to implementation, a feature is just
a concatenation of different l-vectors: scalars (l = 0), 3-D vectors (l = 1), 5-D vectors (l = 2)
and so on. Multiple pieces with the same l are also allowed, we address this multiplicity by
referring to channels. For example we can have two l = 0 channels, a single l = 1 channel
and a single l = 2 channel:

h(x) =
�

h(l=0)
c=0 (x), h(l=0)

c=1 (x), h(l=1)
c=0 (x), h(l=2)

c=0 (x)
�

, (4)

where h : R3→ Rk with k =
∑

l n(l)c · (2l +1) = 2 ·1+3+5= 10 with n(l)c number of channels
of type l. Rotation of these features is straightforward:

D(r)h=









D(0)

D(0)

D(1)

D(2)



















h(l=0)
c=0

h(l=0)
c=1

h(l=1)
c=0

h(l=2)
c=0











. (5)

The representation matrix is block-diagonal thanks to SO(3) being decomposed in a direct sum,
and scalars (l = 0) being invariant with respect to rotation (D(0) = 1). The wording steerable
becomes clear: upon rotation of the input coordinates, these features rotate accordingly, as
when one steers the steering wheel, thus turning the wheels.

2.4 Spherical harmonics (SH)

To embed the three dimensional node and edge input data in an equivariant form, we use Real
Spherical Harmonics Y l

m : S2 → R. They can be thought of as the generalization of Fourier
modes (circular harmonics) to the sphere. Spherical Harmonics are indexed by the rotational
order l ≥ 0, which is reminiscent of the 1-D frequency, and by m= −l, . . . , l, which determines
the spatial orientation. They form an orthonormal basis of L2(S2), i.e. any real-valued function
on the sphere f : S2→ R can be Fourier Transformed to this SH basis:

F ( f )(l, m) = f̂ l
m =

∫

S2

f (n)Y l
m(n)dn , (6)

f (n) =
∞
∑

l=0

l
∑

m=−l

f̂ l
mY l

m(n) (inverse transform), (7)

where n = (θ ,φ) ∈ S represents a generic direction or point on the sphere. Here the coeffi-
cients f̂ l are not real values but are (2l + 1)-dimensional vectors (with components f̂ l

m). The
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Figure 3: Overview of the convolution layer, summarizing Eqs. (11,12). For each
neighboring node, the node and edge features are combined (with C-G product) and
multiplied by the learned radial filter ϕ. Before performing this operation, the one-
hot encoded particle type is concatenated to hi by adding 2 l = 0 channels (not
shown, for simplicity). Because multiple triplets come out of the C-G product, we
obtain a much larger representation (left part of inset). This intermediate represen-
tation is narrowed down using a linear layer (one for each lO and each channel).

set of all coefficients ( f̂ l)l=0,... plays the same role as h(x) in Eq.(4), and each coefficient f̂ l

transforms according to a Wigner-D matrix D(l): the SH embedding is thus equivariant.
In particular, the density of neighbor particles at a fixed distance r from the central one,

ρr(n) =
∑

j∈N (i)δ(n−ni j)δ(r− ri j), is a real-valued function (distribution) on the sphere and
can be decomposed into Spherical Harmonics. Furthermore, summing such decompositions
at a number of radii r ∈ [0, dc], one obtains an equivariant representation of the density field
around a target particle in the ball of radius dc (this is what our very first convolution performs,
see below).

Note that to make a fixed-r representation finite-dimensional, we need to choose a high-
frequency cutoff for the rotational order, l = lmax . Analogously to Fourier transforms on the
circle, this way of decomposing and filtering out high-frequencies preserves the input signal
better than most naive schemes (as e.g. a discretization of solid angles).

2.5 Clebsh-Gordan tensor product

As said above, we do not want to restrict ourselves to invariant features, but to equivariant
ones. For this, we need a way to combine feature vectors together other than the dot product
(which produces only invariant scalar features).

Analogously to the outer product for vectors of R3, which is a bilinear operator
⊗ : R3×R3→ R3, the Clebsh-Gordan tensor product⊗lO

l1,l2
: Vl1×Vl2 → VlO is a bilinear operator

that combines two SO(3) steerable features of type l1 and l2 and returns another steerable vec-
tor of type lO. It allows to maintain equivariance when combining equivariant features: con-
sider h1(x) ∈ Vl1 , h2(x) ∈ Vl2 and their C-G tensor product h′(x) = (h1(x)⊗

lO
l1,l2

h2(x)) ∈ VlO ; if

we apply a rotation r, inputs will be transformed by D(l1)(r), D(l2)(r) and the output by D(lO)(r),
i.e. equivariance is fulfilled. Concretely, the tensor product is computed using Clebsh-Gordan
coefficients C (lO ,mO)

(l1,m1),(l2,m2)
as

h′lOmO
=

l1
∑

m1=−l1

l2
∑

m2=−l2

C (lO ,mO)
(l1,m1),(l2,m2)

hl1
1,m1

hl2
2,m2

. (8)
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We have C (lO ,mO)
(l1,m1),(l2,m2)

̸= 0 only for lO ∈ [|l1 − l2|, l1 + l2], thus it is a sparse tensor product. In
a more concise form we write:

h′lO = hl1
1 C lO

l1 l2
hl2

2 , (9)

where each “coefficient” C lO
l1 l2

is actually a (2lO + 1)× (2l1 + 1)× (2l2 + 1) tensor.

2.6 SE(3)-equivariant graph convolution layer

Using all the concepts introduced above, we can now define the explicit form of the convolution
kernel κ of Eq. 1. Denoting the input edge attributes ai j = (x j − xi), the kernel factorizes the
effect from its radial part ||ai j|| and its directional part âi j . Each Input rotational order lI
interacts with the rotational order of the Filter lF to Output various rotational orders lO. We
decide to use, in a similar spirit as in [54]:

κ(ai j) = ϕ(||ai j||)
lO
lI lF ,cY

lF (âi j) . (10)

The radial filters ϕlO
lI lF ,c are implemented as Multi-Layer Perceptrons (MLPs, to be learned)

that share some weights among triplets lO, lI , lF and channels c (details in Appendix A.1).
Expliciting the C-G tensor product, Eq. 1 now reads:

h
′ lO
i,c,lI lF

=
∑

j∈N (i)
ϕ(||ai j||)

lO
lI lF ,cY

lF (âi j)C
lO
lI lF

hlI
j,c . (11)

This operation is depicted in Figure 3 (left part). At this stage, operations are performed
channel-wise, but h′i,c is a concatenation of all possible triplets, and as multiple combinations
of lI , lF can contribute to a given lO, it is larger than the original feature hi,c . For lmax = 3,
there are 34 different triplets (instead of just 4 different values of l).

To go back to a reduced representation, we mix together the triplets that share the same
output lO, with a linear layer. However, to let the various channels interact, we also perform
channel mixing (also called self-interaction) with a linear layer. As linear layers combine lin-
early, this can be expressed as a single linear layer (right part of Figure 3):

hout,lO
i,c =
∑

lI lF ,c′
wlO

lI lF ,cc′h
′ lO
i,c′,lI lF

, (12)

where c′ is the input channel’s index and c is the output one. Note that all operations are
now performed node-wise, and independently for each lO. Note that this operation fulfills
equivariance because only features with the same lO are combined together, with weights
that do not depend on m (all elements inside a vector are multiplied by the same factor). At
this point we are back to our expected node feature shape, and the convolution layer can be
repeated (up to a few technical details like using Batch-Norm and adding the previous layer’s
representation to the newly computed one, see next section, sec. 3). See Appendix A.3 for the
counting of the number of weights of the MLP and of this mixing layer.

2.7 Interpretation

Here we want to insist that the first layer at least has a very clear interpretation. In the first
convolution, for which the input node features consist in two l = 0 channels, namely the one-
hot encoding of the particle type. Since lI = 0, the only non-zero C-G triplets will be the ones
at lO = lF = 0, 1,2, 3. To simplify, let us first imagine that the radial filters ϕlO=lF

lI=0,lF ,c(||aij||) are
not learned anymore but are replaced with a Gaussian Radial Basis B(||aij||)r (r is the basis
index), where each element of the basis (a “soft bin”) is attributed to a given channel. Then,
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Figure 4: Overall Architecture. Top: node and edge features are fed to each convo-
lution layer. Each SE-convolution layer L = 0, . . . , 7 refines the output h(L)i .

the first layer’s (L = 0) action is to convolve the particle density hlI=0,L=0
j,c=A,B with the kernel

B(||aij||)r=cY
lF=0,1,2,3(âi j), i.e. to project the density fields (one for A’s and one for B’s) on the

direct product of the chosen Radial Basis and chosen Spherical Harmonics. This projection
can be seen as an embedding. Taking the norm of this representation, one would qualitatively
obtain the expert descriptors described in [37] (for an exact and more detailed derivation, see
Appendix C).

In our case, the channel mixing step Eq. (12) actually comes in before taking the norm,
and since it does not have to mix any triplet (since lO = lF ), it only mixes channels, i.e. per-
forms a linear combination of the density fields for different particle types. Furthermore, we
actually learn the functions ϕ(||aij||), so that we linearly combine the density fields measured
at different radii early on, before mixing channels or taking the norm of the representation.
To conclude, the features hout,lO ,L=1

i,c computed by our first layer correspond to various linear
combinations (1 per output channel) of the density fields at all radii d < dc and all particle
types. Each SH decomposition hout,L=1

i,c =
�

hout,lO ,L=1
i,c

�

lO=0,...,lmax
corresponds to a function on

the sphere, which is interpreted as the projection on a unit sphere of the densities inside the
ball of radius dc , weighted according to their distance from the center and particle type. In
our network, we build these intermediate features hout,lO

i,c but we do not rush to compute their
norm (the invariant features), instead we remain at the equivariant level to combine them,
keeping the computation of invariants as the last step of our network. This difference signif-
icantly improves our ability to predict mobility: see section 4 for our discussion on the key
elements that increase performance, or directly Appendix B for the full ablation study.

For the next layers, although the interpretation is harder to explicit as much, the spirit
is the same. The representation at any layer L, hout,lO ,L

i,c can be seen as SH decompositions

of functions on the sphere. The next representation hout,lO ,L+1
i,c is then the weighted density

field of these functions. For instance, hout,lO ,L=1
i,c is an aggregate field of the local density fields

hout,lO ,L=0
i,c .

3 Combining equivariant layers

3.1 Network

Our network is composed of embedding blocks for nodes and edges features followed by a
series of SE(3)-equivariant convolutional layers interspersed with batch normalization and
connected in a Res-Net fashion [55], and one output block (decoder), as shown in Figure 4.

Here we provide a few insights on some key parts that are specific to SE(3)-equivariant
networks. Further details about the architecture and the training procedure are available in
Appendix A.
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The code and a trained model are available on Zenodo, along with some pre-processed
data, to increase reproducibility: https://doi.org/10.5281/zenodo.10805522.

3.2 Batch normalization

As often in Neural Networks, we sometimes need to perform Batch Normalization to avoid the
neuron’s activation to take overly large values. However, using a usual batch normalization
layer [56] separately on each entry of the hidden representations h would kill the equivariance
property. Thus a modified version is implemented and applied to node features [44,57]. The
l = 0 features are invariant and can be processed as usual:

h0
BN =

h0 − h̄
σ
β + γ , (13)

where h̄= 〈h0〉 and σ2 = 〈h02〉 − 〈h0〉2 with 〈·〉 batch average computed with 0.5 momentum
(keeping memory of previous batches) and β ,γ are learned parameters. For each piece of
feature with l ≥ 0, only the norm can be modified:

hl
BN = hl ||h

l ||
σl
β l , (14)

where σl =
p

〈||hl ||2〉/
p

2l + 1 and β l are learnable parameters. In Figure 4 we show where
this Batch Norm is used.

3.3 Decoder

After the last convolution layer, the ultimate output block performs two node-wise operations
to decode the last layer’s output into a mobility prediction. First it computes SE(3)-invariant
features from the hidden representation h(Lmax ): For each channel c = 1, . . . , 8, the norm of

each directional (l ≥ 1) feature is computed: ||hl ||2 =
q

∑

m hl
m

2, and all these norms are
concatenated together with the l = 0 features (already invariant). Thus, we obtain an invariant
representation of exactly lmax + 1 (l values) ×8 (channels) = 32 (components), which we
denote |h(Lmax )| for simplicity, despite the fact that the l = 0 components can be negative. The
second operation is to feed this representation into a decoder, which we chose to be a linear
layer, it outputs one real value, which is the predicted mobility for a given timescale and given
particle type. For instance, at the timescale τα and for particles of type A, the model writes:

yA,τα =wA,τα |h
(Lmax )({x})| , (15)

where yA,τα is the mobility label and wA,τα is a set of weights to be regressed (32 real values).
In the multi-variate setup we regress mobilities at all timescales at once, using one linear
decoder (set of weights w) per timescale and per particle type (20 different decoders for the
Bapst dataset).

3.4 Non-linearities

We note that all the layers act linearly on the node features. The only non-linearities of the
network are hidden in the implementation of the radial part of the filters ϕ (MLPs). This
limited scope of non-linearities is unusual, and is needed to preserve equivariance (as pointed
out above when we describe Batch Norm). We have explored other forms of non linearities,
like Gate-activation, without observing significant improvement.
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4 Experiments, results

Here we report on the performance of our architecture, discuss the role of the task, input
choices and architecture choices, and compare with recent works that tackle the same problem.

4.1 Experimental setup

To increase our model’s robustness, we simultaneously predict the mobility both for A and B
particles, instead of focusing only on the A’s. The accuracy turns out to be similar for the two
types. Here we show results only for one type, A, which is the reference most other works are
also using. As in the works we compare with, we use the Pearson correlation coefficient as
performance metric, which is invariant under shift and scale of the test labels distribution. The
network architecture and hyper-parameter choices were optimized for a single task (T = 0.44
and τ= τα for uni-variate and T = 0.44 for multi-variate), using only the train and validation
sets. The resulting choices were applied straightforwardly to other tasks, thus preventing
over-tuning of the hyper-parameters. The number of convolution layers is 8, thus the last
representation is indexed L = Lmax = 7 (representation h(L=0)

i at L = 0 is the input, before any

convolution). At each layer L > 0 the internal or hidden representation h(L)i has a maximum
rotational order lmax = 3 and a number n(l)c = n(0)c = n(1)c = n(2)c = n(3)c of channels, nc = 4 for
uni-variate and nc = 8 for multi-variate. These choices arise from striking a balance between
over- and under-fitting, under our compute-time and memory budget constraints.

Note that we perform a different train-test split with respect to [36], which does not ex-
plicitly use a test set. Here, for each state point, 400 configurations are used for training, 320
for validation and 80 for the final test.

In Appendix A, we provide more details about the training of the model.

4.2 Uni-variate or multi-variate

In Figure 5 we compare the performances of various choices for our model, in particular uni-
variate and multi-variate approach (red triangle and red diamonds). We see that we get almost
the same prediction accuracy by training only one model instead of ten models, provided we
increase the number of parameters for that single model: We double the number of channels
in the multi-variate case, from 4 to 8, thus going from∼ 25000 to∼ 50000 parameters, see ap-
pendix A.2 for the precise counting. In other setups we even see slightly increased performance
when comparing multi-variate multi-particle regression with uni-variate, A particles only re-
gression. In any case, we observe that the multi-variate choice slightly improves the robustness
of our representation: it generalizes better to other temperatures. Beyond performance con-
siderations, it is very advantageous when considering generalization to other temperatures,
since all timescales are encompassed in the same representation |h(Lmax )|. In this sense, our
network is about an order of magnitude less parameter-hungry that other models, where each
of the 10 timescales and each particle type need a dedicated network.

4.3 Role of inherent structures

It has been observed several times that pre-processing the input positions by quenching them
to their corresponding Inherent Structures (IS) helps most Machine Learning models in pre-
dicting long-time mobility measures [26,39,40]. Such a quench is performed using the FIRE
algorithm: temperature is set to 0 (velocities set to 0), and positions adjust gradually so as
to converge to a local minimum of the potential energy, typically close to the original con-
figuration. This can be seen as a mere pre-processing step (for which the knowledge of the
interaction potentials is needed) or as a new task, i.e. predicting the propensities {mi} from
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Figure 5: Multi-variate vs uni-variate and influence of inputs. (top) Correlation ρ
between the true and the predicted propensity for A particles at temperature T = 0.44
as function of timescale. Marker shapes distinguish multi-variate and uni-variate
approaches. Colors picture the input type: red for thermal positions ({xth

i }), blue
for quenched (Inherent Structures, IS) positions ({xIS

i }) and light-blue for combined
({xth

i }+ E IS
pot). Error-bars represent the best and the worst ρ for ten identical models

trained independently with different random seed initialisation, and are comparable
with marker’s sizes. (bottom) Correlation ρ as function of training (and testing)
temperature. Two timescales are shown: τ = τα (full markers) and τ = 0.5τLJ
(empty markers). Color code and marker code identical to that of the top plot. The
multi-variate, thermal positions + Epot(IS) choice is a good compromise to maintain
high performance across timescales.

the quenched positions {xIS
i }. We note that the quench, while intuitively cleaning some noise

related to thermal motion, destroys information too: one cannot recover the thermal positions
from the quenched one (the mapping thermal to quenched is non injective).

We observe that for our network, this new task is harder at short timescales, while it’s eas-
ier at long timescales (in Figure 5, compare the red diamonds and the dark blue downward-
pointing triangles). We interpret this result by noting that the quench destroyed the in-
formation about the relative location of each particle within its cage, thus making it much
harder to predict short-time displacements. Our experiment and its interpretation explain
why some models, based on quenched positions alone, have very low performance at short
timescales [39]. Their low performance should not be attributed to the machine learning
models themselves, but rather to their input data. About mobility at long times, there it is not
much of a surprise that quenched positions reveal an underlying slowly-evolving pattern in the
structure and thus help at prediction (although in principle all the information was contained
in the original thermal positions).

Ideally, one would like to combine both the complete information from thermal positions
and the de-noised information from the quenched positions. For GNNs, this could be done by
building the graph from either the thermal or quenched relative positions, but using as edge
features a concatenation of both. However this would be quite costly in terms of memory
and would increase the number of parameters needlessly. Instead, inspired by the findings
of [39], we compute the local potential energy (in either the thermal or the IS positions) for
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Table 1: Influence of IS at low temperature. For each combination of inputs, a
multi-time model is trained at temperature T = 0.44. We repeat the training 10 times
with variable parameter initialization and report the test set correlation coefficient
(median, best and worst values).

t = 0.5LJ t = 1τα
{xth

i } {xIS
i } {xth

i } {xIS
i }

no Epot 0.676+0.005
−0.006 0.274+0.001

−0.002 0.718+0.007
−0.003 0.815+0.003

−0.003

E th
pot 0.678+0.006

−0.014 0.334+0.002
−0.001 0.728+0.005

−0.003 0.816+0.003
−0.001

E IS
pot 0.677+0.005

−0.013 0.273+0.001
−0.002 0.798+0.005

−0.002 0.822+0.003
−0.001

each particle Epot,i =
∑

j ̸=i VLJ (xi ,x j) and use it as a new scalar (l = 0) input node feature.
This can be seen as a compressed version of the positional information. Note that the first
layer remains very interpretable: this new channel represents the field of potential energies
surrounding a given particle, expressed in the spherical harmonics basis. In Table 1 we com-
pare performances obtained for all combinations of input positions (thermal or quenched),
with all possible Epot inputs (none, thermal or quenched), resulting in 6 combinations, that
we study at two timescales: 0.5τLJ and τα. We summarize the key results from this table:

• Adding the information about E IS
pot to {xIS

i } is irrelevant. Indeed we observed that

we could easily regress E IS
pot from a network with {xIS

i } input with very high precision
(ρ ≈ 0.9).

• Similarly for thermal positions and thermal potential: adding E th
pot to {xth

i } is basically
useless, the increase from ρ = 0.718 to 0.728 is barely statistically significant.

• Adding E th
pot to {xIS

i } helps only at short timescales (from ρ = 0.27 to 0.33) and it’s not
sufficient to fill the gap with thermal positions.

• Adding E IS
pot to {xth

i } helps, but at long timescales only (from ρ = 0.72 to 0.80).

• For predicting short times, thermal positions work much better than quenched ones: 1st
column shows consistently larger performance than the 2nd one, by up to 0.4 more in
correlation.

• For predicting long times, quenched positions work better than thermal ones: 4th col-
umn shows consistently larger performance than the 3rd one, by up to 0.1 more in
correlation.

• A good compromise for maintaining performance at all timescales is to combine E IS
pot

to {xth
i }.

In the table we focus on two timescales for clarity, and in Figure 5 (top) we report results
for 3 out of the 6 combinations but at all times. In Figure 5 (bottom) we study the effect of
addingE IS

pot to the thermal positions (red to blue symbols) as a function of temperature, for

two timescales. We verify that for the long timescale (full symbols) the addition of E IS
pot helps

especially for the lower temperatures, where the potential energy landscape is expected to be
more relevant, while for the short timescale (open symbols) there’s no improvement at all, at
any temperature.

We can compare these observations with the findings of Alkemade et al. [40]. They identify
three physical quantities, each being relevant in a given time range:

14

https://scipost.org
https://scipost.org/SciPostPhys.16.5.136


SciPost Phys. 16, 136 (2024)

10 2 100 102

0.6

0.8

1.0

103 104 t

SE(3) GNN (ours)           NPT, both
LR (Alkemade 2023)      NVT, both
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Figure 6: Comparison with recent works. Correlation ρ between true and pre-
dicted propensity for A particles at temperature T = 0.44, as a function of timescale,
for several recent works. Color indicates dataset choice: dark purple for Bapst’ (NPT
equilibration), orange for simulations using NVT equilibration. Line-styles indicate
input choices: thermal data only (dotted lines), IS data (dashed lines) or a combina-
tion of both (solid line). Markers describe the type of model: upper triangles refer to
GNNs, diamonds for MLPs and squares for Linear Regression. The grey shaded area
locates τα which is slightly different for the two datasets. Note how curves com-
puted for a given dataset barely cross each other, indicating rather consistent ranking
between models.

1. In the ballistic regime, the forces Fi = −∇xi
Epot,i are most relevant.

2. In the early caging time, the distance between the thermal position and the IS one ∆r IS

is most relevant.

3. At later times, the quenched configurations are most relevant.

For the ballistic regime, our results perfectly match theirs: our model is likely to be aware of
information equivalent to the forces, since it’s able to regress the local potential energy with
very high accuracy (ρ ≈ 0.9). This explains our good performances in the very early regime
(see also Figure 6). For the early caging regime, we tried to introduce ∆r IS as a further
l = 0 node feature but were not able to see any significant improvement in the caging regime.
This may be due to improper encoding of this information, or to a deeper shortcoming of our
architecture, or also to the datasets being slightly different (see Appendix D). For the long
times, our performances are indeed high thanks to the use of E IS

pot : they are slightly higher if

we use {xIS
i } (see Table 1 or Figure 5 (top)).

4.4 Comparison with recent works

Often, comparison with previous works can not be done rigorously, for two reasons: use of
different datasets and different input data. As mentioned in the previous section and already
pointed out in [40] the two main datasets [36, 38] differ in many features (see Appendix D
for details), although being built from MD simulations of the same system (3D Kob-Andersen
mixture). A detailed comparison at fixed input dataset is presented in a Roadmap paper [52]
by other authors and some of us. A further difference is introduced by the choice of input data.
For instance we have shown that the introduction of Inherent Structures helps, especially for
low temperatures and long timescales. Thus better performances for works that rely on IS do
not directly imply that the machine learning architecture is better (or vice versa for works that
are limited to thermal inputs).
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Despite these limitations, in Figure 6 we provide a qualitative comparison of methods by
considering each as a whole, regardless of the details of dataset and input choice. Thus we
compare our model trained on thermal positions + Epot(IS) at temperature T = 0.44, with
recent works in the field [36–40].

Boattini et al. [37] and Alkemade et al. [40] apply linear regression techniques on expert
rotation-invariant features: structural descriptors that capture the local density and express
it in terms of spherical harmonics. They also perform coarsening of these descriptors by av-
eraging over the neighborhood of each particle, in a manner reminiscent of the aggregation
step of a GNN. In particular [40] emphasizes the significance of IS inputs for long timescale
predictions and that of using the estimated cage size as input for short timescales.

Jung et al. [39] apply an MLP on coarse-grained structural indicators computed from
quenched positions including local potential energy and estimated dynamical fluctuations and
introduce a carefully designed loss function to capture the spatial correlation of the original
mobility field.

Bapst et al. [36] and Shiba et al. [38] apply Graph Neural Networks (GNN) on raw inputs,
as we do here. The latter study introduces an auxiliary task of edge-regression: to enhance
the accuracy of mobility predictions, they regress the change in particles’ relative positions.

Our proposed approach outperforms all previous methods for timescales approaching the
structural relaxation time (τα), while demonstrating competitive results in other regimes.
Notably, our model achieves comparable performance to other GNN approaches on short
timescales (ballistic motion), despite being the first to regress all timescales simultaneously.
For the early caging regime, we do not perform as well as Alkemade et al. [40] although it
is important to note that they incorporate early-times related information as an input feature.
To be fair, we overperform Shiba et al. [38] only when using the quenched input.

Jiang et al. [41] (not shown) use a GNN that computes angles between nearest-neighbors
(i.e. it provides geometric information, reminiscent of our equivariant approach), and intro-
duce a self-attention mechanism that is designed to capture the spatial heterogeneity of the
dynamics, referred to as smoothness in their work. It is not clear to us whether their network
is partly equivariant or not, and it is rather obviously heavier than ours. At most timescales
we perform a bit better.

Since the first version of this paper (preprint of Nov. 2022), we tried to include these
recent works’ ideas to improve performance. Our use of Epot , inspired by [39], was indeed
successful. However, when we tried to mimick [38] by regressing the edge relative elongation
as an additional (edge) target label, or when we tried to reproduce the results of [40], using as
input node feature the distance to the local cage center (estimated as the quenched position),
or when we introduced equivariant attention schemes (inspired by [41] but technically as
in [58,59] or [60]), our attempts did not yield any significant improvement (nor deteriorated
the performance).

To compare Machine Learning architectures in a fair way, one should work at fixed task
(fixed dataset and input data). We now respect this constraint to obtain two precise results,
that we deem significant.

Firstly, going back to using only the thermal positions as input, we perform an ablation
study on the choice of lmax , to compared fairly with Bapst et al. , and notice that: (i) re-
stricted to lmax = 0, we reach the same accuracy, (ii) increasing lmax notably improves results,
especially up to lmax = 2. We conclude that the equivariant nature of a network can be key
to its performance, compared to previous GNN approaches. Numerical proof is provided in
Appendix B, figure 11.

Secondly, using the same kind of (invariant) inputs as non-GNN methods [37, 39, 40],
i.e. thermal positions combined with Epot(IS), we study the impact of the network’s depth.
We noticed already in Figure 6 that we perform better than those methods, at most timescales.
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Figure 7: Fluctuations of the Self-overlap function. Time evolution of the fluctu-
ations as measured by χ s

4(t). Top: On Bapst’s dataset; Bottom: Shiba’s dataset. MD
is short for Molecular Dynamics and refers to the ground truth. “Separate train-
ing” indicates a new model was trained at each temperature (but dealt with all
timescales at once), while “transfer-learned” refers to sec. 5: We apply a single model
trained at a given temperature to all other temperatures (top: Tt rain = 0.50, bottom:
Tt rain = 0.56).

Here we want to stress that the network’s depth plays a crucial role (more so that the rota-
tional order lmax): Varying the number of convolution layers from Lmax = 1 to Lmax = 7, we
noticed that performance does not even saturate. We conclude that although using invariant
features (and ideally, equivariant ones) is helpful, the combinatorial power of deep learning
architectures is also key to performance. Numerical proof is provided in Appendix B, figures
12 and 13.

A side result of these ablation studies is that the short timescales seem to be the ones that
benefit the most from increased lmax , while they also benefit from increased depth (Lmax).
We conjecture that directional features are key to computing instantaneous forces, itself a key
element for predicting short-time dynamics.

4.5 Spatio-temporal correlations

The particle-wise correlation coefficient between ground truth mobility and predicted one is
not everything, it’s good to also measure whether the statistical properties of our predicted
mobility match those of the true one. Defining ci(t) = tanh (20(mi(t)− 0.44) + 1)/2 a pseudo-
binarized mobility measure, Qs(t) = 1

NA

∑

i∈A ci(t) its sample average (also called self-overlap

function), one defines a four-point correlation function χ s
4(t) = NA

�


Qs(t)2
�

− 〈Qs(t)〉2
�

, the
fluctuations of the Self-overlap function, that we report in Figure 7 (we use the same speci-
fications as in [39]). This measure of the sample-to-sample fluctuations of mobility is often
interpreted as a volume of correlation (as it can be re-written as the integral of a correla-
tion function). Our estimated χ s

4 (“separate training”) is generally smaller than the ground-
truth (MD) but tracks variations over time fairly well and much better so than the initial GNN
of [36]. Furthermore it is comparable to the performance of [39], which however incorporates
information about fluctuations in theirs model’s loss. One may notice that the amplitude of
fluctuations is smaller in the first dataset (Baspt’s): this is due to the peculiar sampling choice,
in which samples at a given “timescale” are actually taken at different times but equal value
of the self-intermediate scattering function Fk(t), a choice which by definition reduces the
variance between samples.

A complementary measure of the statistical quality of the predicted mobility
field is given by the spatial correlation function of the mobility-related quantity
ci(t) : G4(r, t) = V

NA

¬

∑

i, j∈A c̃i(t)c̃ j(t)δ(r− ri(0) + r j(0))
¶

where c̃i(t) = ci(t) − 〈c(t)〉. Our
predictions reproduce it almost perfectly (see Figure 8).
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Figure 8: Spatial dynamical correlations. The function G4 is computed on the true
labels (MD, solid line) or on our predictions. Same color and marker coding as previ-
ous plot. Our models reproduce G4 remarkably well (“separate training”), especially
at low temperatures (blue), while the transfer-learned fields track the trends and or-
ders of magnitude correctly as well.

5 Temperature generalization

Here we want to push forward the idea that one may be able to use deep learning to define
a structural order parameter. We start by developing further the arguments briefly evoked in
the introduction.

Although it is not clear yet whether the glass transition is indeed a thermodynamic phase
transition or a crossover, an avoided transition, there are signs of a dynamical phase transition
[12]. Under cooling through the critical temperature, a sample goes from a fully liquid to an
almost fully solid state (provided the measurement timescale for defining liquid/solid is set
constant) and around the transition temperature, there is a coexistence of mobile (liquid-like)
parts and non mobile (solid-like) parts, reminiscent of phase coexistence. Swap-Monte Carlo
methods have allowed to measure this effect while remaining in equilibrium, which confirms
that this scenario is not an effect of falling out of equilibrium [61]. This simultaneous presence
of active and passive regions is referred to as Dynamic Heterogeneities, which are dynamic
because they relate to the local dynamical state and also because this dynamical state slowly
fluctuates over time. The deep learning program for glasses is then quite clear: define a
machine learning model, i.e. a function fθ ({x}) that solely depends on the structure as input,
and train it to predict the local mobility (such as propensity, which acts as a proxy for the
dynamical order parameter, which has a sharp crossover from active to passive). Thus one
obtains a formally purely structure-based function fθ ({x}) that has a rapid change around Td ,
i.e. is reminiscent of a structural order parameter. A counter-argument to this line of thought
is that by definition such an order parameter is not strictly structure-based, because it uses
mobility as training data and since “neural networks can overfit”, this function fθ ({x}) simply
tracks what it was trained to fit, i.e. mobility: in a sense, regressing mobility would be like
“cheating”. Indeed, it is conceivable that a heavy network with millions of parameters, that
would be specialized to a given temperature and timescale, could associate mobility variations
to tiny peculiarities of the physics of that particular temperature and timescale, and it would
not generalize to other temperatures or timescales. The underlying idea is also that if the
function fθ is so heavy and complicated that it cannot be interpreted, we do not learn anything
about the physics, or at least it is not a satisfying order parameter. In this view, a network that
would reach a correlation of ρ = 1 would be seen as a simple computational shortcut to
compute the iso-configurational displacement faster than Molecular Dynamics (which in itself
would already be quite useful, e.g. for designing effective glass models, as [32]).

However, here we argue that a Deep Learning model fθ should be seen as a microscope
that magnifies the subtle structural variations present in the structure. Training a model to
predict mobility is just a recipe to extract the relevant structural variations, but the details
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Figure 9: Transfer-learning between different temperatures. Each model is fully
trained once at one state point (T) and tested (“transfer test”) or fine-tuned on the
remaining ones (“transfer learn”) . The timescale of mobilities showed in the plot
is τ = τα(T ), but multi-times models were used. (top) Bapst’ dataset, (bottom)
Shiba’s dataset. For each training temperature (color) two different experiments
are performed: transfer test (square markers with dashed lines) and transfer learn
(upper triangle with full line). This results in 8 curves per plot coming from all
the combinations of colors and line-styles. The transfer learned-generalization on
Shiba’s dataset is almost indistinguishable from direct training, indicating excellent
generalization power of our learnt representation.

of this training are irrelevant. To reconcile our view with the previous one, self-supervised
learning is a promising route. We recall that an order parameter f ({x}) must be defined
uniquely for a given system, regardless of temperatures, which translates into applying the
same (trained) model fθ to all temperatures, at least for a given glass-former. Then, a test to
check whether this function does track the relevant structural changes is to measure its ability
to predict mobility and its spatial and temporal correlations, especially at temperatures other
than the training one. If proven, this ability for temperature generalization would contradict
the main point of the argument that “the neural network overfits”. This kind of simple transfer-
test performance measure was already introduced a few years ago [30, 36], while the idea
of applying the trained model to other temperatures dates back from the original works on
Machine Learning applied to glasses [23].

5.1 Transfer-testing

Here we repeat this experiment and observe better temperature-generalization abilities of our
network, as compared with the original work of Bapst [36], as shown in Figure 9 (top part,
label “Transfer test”). We also perform the same experiment using the more recent Shiba’s
dataset [38], showing even better temperature-generalization. This is a strong indication that
our network learns the relevant subtle structural signatures rather than “overfitting” the dy-
namics separately at each temperature. We note that performance at a given temperature
decreases as the training temperature goes further away from the test temperature (reading
markers vertically). This can be attributed either to an increasing dissimilarity in the structures
present, or also to a change in how these structures correlate with the dynamics at different
temperatures. We also note an asymmetry in the performance drop between training at high
temperature, testing at low (red line) or vice versa (blue line): the training at high tempera-
ture generalizes better, comparatively. In works based on SVM, the opposite was observed, and
attributed to the noisy nature of high-temperature data. Here we do not seem to suffer from
this noise, and attribute the increased generalizability to the larger diversity in input structures
observed and the broader range of propensities observed when training on high temperature
data.
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5.2 Transfer-learning

Here we go further, embracing the Deep Learning notion of learning representations, and com-
ment on the properties of our learned representation. Indeed, the convolution layers that we
stack, as described in section 3, effectively build an equivariant feature h(Lmax ) that describes
the local structure around each particle. As explained in sec. 3 (decoder), the norm |h(Lmax )| of
these features is a list of 32 numbers (8 channels times 4 possible l values, l = 0, 1,2,3) that
is decoded into mobility by 20 independent decoders. Thus, for any training temperature the
model has to somehow pack the information about these 20 (non-independent) scalar values
into the 32 components of |h(Lmax )|.

From such a representation, one can consider doing various things. For instance, one can
perform clustering to study the number of different local structures, or perform dimensional
reduction (e.g. PCA) to visualize their distribution. A cluster of points |h(Lmax )

i | in the 32-
dimensional space could then be seen as a Machine-Learned Locally Favored Structure (LFS).
It is then physically informative to track the evolution of the population of each cluster [8,62]
(type of local structure) for instance as a function of temperature or time since a quench.
Although here we use labels (mobility) to learn our representation, it is in principle possible to
adopt a self-supervised learning strategy to learn a representation |h(Lmax )| only from input data
(spatial configurations), using a pretext task as e.g. de-noising particles’ positions. Note that
the original works of Liu et al. were also focusing on a representation rather than a model’s
prediction, when using the continuous output of the SVM as a physical quantity of interest
(named Softness), instead of using its thresholded, binarized version (which is the actual
prediction of an SVM classifier), although in that case it is a one-dimensional representation.

Here we further probe the robustness of our model by testing the generalization ability
of its underlying representation, |h(Lmax )|. If we consider |h(Lmax )| to be a generic structural
descriptor, a sort of multi-dimensional structural order parameter, then it must be relevant at
all temperatures. A simple way to evaluate whether this structural measure captures the glass
transition is to see whether it tracks dynamics correctly, especially in temperatures different
from the training one. Concretely, we train a representation |h(Lmax )| by regressing labels at
a given temperature, and then fine-tune only the decoders at other temperatures. The part
of the network responsible for computing |h(Lmax )| (most of it) is frozen, so the fine-tuning
reduces exactly to linear regressions (we need to learn the weights w of the decoders as in
Eq. 15, i.e. only 32 values per timescale and per particle type). This idea of transfer learning
is central to Machine Learning, and has shown great success e.g. in computer vision. For
instance, a Convolutional Neural Network (CNN) is trained on a first task (e.g. ImageNet data,
with 1000 classes). Then the backbone of the network (all convolution layers) is frozen, and
the last 2 layers that decode this representation into labels are re-trained, but for another
task (e.g. CIFAR10, or any other kind of natural images). This transfer-learning experiment
can show improved performance compared to directly training the network on the final task,
especially when there are less data available there [63]. Most importantly, the fact that transfer
learning can perform well is an indication that the representation learnt by the network is more
generic than one could think: the backbone is good at extracting image’s features, it can be
thought of as an advanced image pre-processing tool. An application of transfer learning is
few-shots learning [64]: having build a good representation from a first large dataset (either
with labels or with self-supervised learning), one then trains a classifier using only a handful
(1 to 5) examples (per class). In our case, |h(Lmax )| is good at extracting structural features, or
more precisely at detecting patterns that correlate with the mobility.

We report the results of our own transfer-learning experiment between temperatures in
Figure 9. As expected, the performance (dashed lines) is improved compared to transfer-
testing (full lines). Since the predictions are computed as a linear combination of the com-
ponents of |h(Lmax )|, the correlation coefficient ρ(yA,τα , yGT

A,τα
) shown here can be seen as an

20

https://scipost.org
https://scipost.org/SciPostPhys.16.5.136


SciPost Phys. 16, 136 (2024)

aggregated measure of the correlations between the ground-truth labels yGT
A,τα

and the indi-

vidual components of |h(Lmax )|. Going further into the direction of considering |h(Lmax )| as a
(multi-dimensional) equivalent of a structural order parameter, one could then study how the
coefficients wA,τα depend on the target temperature, and e.g. attempt to fit them with inter-
pretable functions of the temperature. We note that among the components of wA,τα , most
of them vary monotonously with temperature, and in particular all the l = 0 components do
(those dominate the total). We leave deeper study of these coefficients for future works.

As a further check of our representation’s robustness, we also report the transfer-learned
estimated χ s

4’s in Figure 7, which show larger discrepancies than those trained at each tem-
perature, but still track the trends seen in the data (similarly in Figure 8). Note that this
transfer-learned χ s

4 measures the structural heterogeneity, since our input is purely structural,
using a single set of descriptors (the representation |h(Lmax )|). To our knowledge, this is the
first time a unique set of descriptor is shown to display such large structural fluctuations across
temperatures and times. Here we do not show the transfer-test results for clarity (they are typ-
ically a bit worse).

6 Future directions

Here we performed non-exhaustive but rather thorough architecture search, and found no
performance gain when trying rather obvious improvements for the network, such as increas-
ing lmax , increasing the decoders’ complexity, introducing bottleneck layers (reduced lmax or
channel number), using attention mechanisms as in [47, 58, 59], or attributing channels to
specific bond-types. This list of negative results does not prevent us from formulating further
suggestions for improved performance, which can apply to our model or other’s, and are left
for future work. This includes:

• Regressing not the iso-configurational average displacement, but single trajectories-
specific displacements (in norm). From a computational perspective, using an aver-
age (the propensity) to train, when 30 individual realizations are available, appears as
throwing away some of the training data. With the mean squared error loss, training on
single instances will converge to a model that is good at predicting the average.

• Fully using the equivariant nature of the network to predict the vector of the displace-
ment (3 components in 3D) instead of a scalar (its norm); this needs to be combined to
the first idea.

• Performing a sort of data augmentation by adding noise to the input. In practice, a very
good “noise” would be to sample the positions at short timescales around t = 0, e.g. at
t = 0.5τLJ , 1τLJ , 1.5τLJ , 2τLJ , . . .. For predicting timescales τ≫ τLJ , this is a negligible
perturbation and would allow to teach the network what are similar configurations.

• Decode various timescales with a single decoder that would be timescale-aware, in a
fashion akin to that introduced in FiLM [65] for instance (conditioning the decoder to a
proper embedding of the timescale as in [66], so as to use a single final decoder).

• Training the backbone on several temperatures at once, using separate decoders for
separate temperatures (possibly using the previous idea also for decoding temperatures,
so as to have a single decoder, that would be timescale-aware and temperature-aware).

• In the spirit of [39], use non-local quantities as additional target labels (additional terms
in the loss), such as the global value of correlation functions evaluated at a few lengths
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(label computed for the whole sample, resulting in a graph-wide target), or more simply
the local variance of the mobility (variance of target label for a node’s neighborhood).
This is expected to increase the quality of the prediction in terms of spatio-temporal
correlations, i.e. decrease over-smoothing, a known issue in GNNs.

• Use coarse-grained mobility measures as target labels. Indeed, they have been shown to
be more structure-dependent [50] and thus also display larger correlation coefficients
with simple structural descriptors [67]. Eliminating noise in the labels could help achieve
better precision, possibly reaching the maximum.

• Use more expressive equivariant architectures, such as those recently introduced in [46].

Self-supervised learning is a possible way around the ontological issue that our structural
features are trained using dynamical data (as labels). Here we outline a few possible self-
supervised strategies:

• Contrastive learning: a network could be made to identify when 2 configurations are
almost the same (input configurations differing by a couple of τLJ) as opposed to inde-
pendent configurations.

• Denoising: adding nonphysical noise to thermal (or quenched) positions, ask the net-
work to denoise the input.

• Predict only known quantities such as Epot , or the quenched/thermal positions, from the
input thermal/quenched positions.

A much more ambitious (and debatable) idea would be to use a very heavy backbone
(with attention for instance) and mix tasks between various glass-forming liquids, various
crystalline materials, together with other amorphous material’s input, to require the backbone
to generalize even more strongly. This kind of pre-training strategy has been shown [68–70]
to be effective to improve robustness.

Whatever improvements one could think of, we believe that the SE(3)-GNN framework
is the right one to be developed. Indeed, it seems in line with the recent history of neu-
ral architecture design [71]: While the CNN architecture has been a game-changer thanks
to its enforcement of translation-equivariance by design, the GNNs then enforced the node
permutation-equivariance by construction, and SE(3)-GNNs now additionally enforce the
rotation-equivariance, leveraging all the symmetries at hand.

7 Conclusion

In this paper we first provide a pedagogical introduction to the general theoretical framework
of rotation-equivariant Graph Neural Networks, then present an adaptation of recent rotation-
equivariant architectures such as NequIP [43] to model glassy liquids. In particular, we have
to adapt these recent architectures to be able to handle a large graph (4096 nodes) and tackle
our specific task (multi-variate node regression). We also introduced some specifically glass-
related ideas: in particular, inspired by recent works on Machine Learning for glasses [39,40],
we combine information from thermal positions and their quenched counterpart, using the lo-
cal potential energy of quenched positions as input, thus boosting our network’s performance.
We disentangle the role of thermal and quenched positions: the former are necessary to pre-
dict dynamics at short times, the latter are helpful at long times. The potential energy itself is
useless to us, it can be predicted accurately from positions alone, we only use it as a shortcut
to pass information about the quenched positions.
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As is well known in physics, finding symmetries and enforcing them in a model is key to
reducing the number of degrees of freedom. In the machine learning vocabulary this trans-
lates to building representations that respect the proper symmetries [71]. SE(3)-equivariant
networks achieve this by combining two ingredients. First, the proper embedding by Spherical
Harmonics builds a description of the neighborhood that is both easy-to-rotate and compact
since it is a decomposition in rotational order, akin to frequency decomposition, a much more
efficient representation than directly discretizing angles. Second, layers combine the hidden
representations h(L)i in a way that preserves equivariance up to the last layer, a choice that
guarantees maximum expressivity for the network as opposed to rushing to invariant features.
These two ingredients are key to building a good representation: our overall performance is
above that of other approaches at most timescales and we achieve better generalization across
tasks, while using fewer learnable parameters.

More precisely, we compare well with two families of architectures. On the one hand,
compared to Deep Learning and in particular GNN models i.e. models that are not equivariant,
nor even invariant [36, 38], our SE(3)-equivariant architecture performs better with much
fewer parameters, as soon as we use strictly equivariant features (lmax > 0), i.e. we prove the
usefulness of equivariance. On the other hand, compared to shallow learning techniques [37,
39,40] that use expert features as input (invariant features and the local potential), our deep
network performs better (when enriched with the combined information from thermal and
quenched positions), and the deeper it is the better it performs, i.e. we prove the usefulness
of deep architectures (as embodied by GNNs). For long times in particular, the network depth
is especially relevant, which may indicate that the way in which dynamics is controlled by the
t = 0 structure becomes increasingly non-local.

In terms of interpretability, while we cannot claim our network to be fully interpretable, we
show that our first hidden feature h(L=1)

i corresponds to representing the field of density locally,
around node i, i.e. it relates directly to the Bond Order parameter (BO) variant introduced
in [37]). The next layer is a field of that local density field representation, i.e. much less
intuitive to grasp, yet much easier to describe with explicit formula than the representations
typically built by usual GNNs (which rely on fully connected layers to compute representations,
thus completely entangling the inputs).

Last but not least, in this paper we emphasize the importance of building a robust rep-
resentation: as explained in sec. 5, the pure performance measured by the correlation of our
predictions with the ground truth mobility is a means to an end, not an end in itself. What truly
matters is for our representation of the local structure to allow to deduce physical facts. Our
good correlation ρ, the very good fit of G4 and acceptable trends of predicted χ4’s are all clues
that we built a decent representation: We are able to capture the mobility field locally as well
as its spatial and temporal correlations. But most crucially, the fact that a representation learnt
at a given temperature can readily generalize to other temperatures is what allows one to con-
sider this representation as more than a learned structural descriptor, but something akin to
an acceptable structural order parameter. This generalization power is due mostly to our use
of an equivariant representation, and is reinforced by our idea of regressing all particle types
and all timescales at once: We use a single backbone representation, the various predictions
differing only in the final decoder. Furthermore, inspired by recent success in machine learn-
ing, we introduce a new way to think about the network’s output: rather than focusing on the
scalar prediction, we discuss the role of the representation |h(Lmax )|. We present an example
use of |h(Lmax )|: it can be correlated linearly to the target mobility, performing almost equally
well as a fully retrained network for one dataset, thus showing the generalization power of
this representation. Further physical study of this representation is left for future work.

The present work focuses on building a representation for glassy materials, but we would
like to stress that progress in this area is intimately connected to progress made in other ap-
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plication areas, whenever the input data consists in particles living in 3D space (as in ab initio
or effective potential approximations, crystalline materials or amorphous materials’ properties
prediction), regardless of the precise task or output label. While each of these application tasks
may need fine-tuning of the architecture to perform well, we believe that they are essentially
different facets of the same problem, that is, efficient learning of representations for sets of
particles in space.

The code and a trained model are available on Zenodo, along with some pre-processed
data, to increase reproducibility: https://doi.org/10.5281/zenodo.10805522.
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A Training details, Training curve and time/energy cost

Here we provide more details about our architecture, hyper-parameters and how the model is
trained.

A.1 Radial MLP

As mentioned in the main text, the radial MLPs are the only part of the network with non-
linearities. They implement the radial dependence of convolution filters ϕlO

lI lF ,c(||ai j||), thus
they take as input the norms of relative node positions. Before being fed to the MLP, each
norm ||ai j|| is expanded from a real value to an array through an embedding. Here we use a
Bessel basis embedding:

Bn(r) =

√

√ 2
rc

sin
�

nπ r
rc

�

r
, (A.1)

where n is the number of roots of each basis function: n = 1,2, . . . , Nb and we use Nb = 10,
rc = dc = 2. Other embeddings could be for instance a Gaussian basis (with cutoff), which
would act as a kind of smooth one-hot encoding of the value r. In practice, the Bessel basis
(which is orthogonal) has better generalization properties.

The embedded input is processed through an MLP with layers sizes (Nb, 16, ncomb) and
ReLu non linearities. The output size ncomb is the number of possible triplets (combinations),
times the number of channels. We also use BatchNorm (BN) [56] and Dropout (with rate
p = 0.3) in this MLP to stabilize training and reduce overfitting. In summary, for each combi-
nation of triplets and channels (lO, lI , lF , c), we have a real output

ϕ
lO
lI lF ,c = σ(Wncomb ,16Dropout(BN(σ(W16,Nb

B(||ai j||))))) , (A.2)
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Figure 10: Loss and ρ vs epoch. Training of multi-time model performed at
T = 0.44. The loss curves (full lines) correspond to the total loss of the multi-
variate regression setting: sum over all the timescales of the mean squared error
per timescale. The correlation curves show the Pearson correlation coefficient be-
tween predicted mobility and the ground-truth for a single timescale τ= τα. Vertical
dashed lines locate the epochs at which the learning rate is divided by 2.

where the W ’s are weight matrices and σ(z) = max(0, z). There are also bias parameters,
which are not displayed here. Note that up to the layer of 16 neurons, the MLP is the same
for all triplets and channels, only the last linear layer introduces different weights for each
combination.

A.2 Number of parameters

This counting refers to the version of our network with 8 channels and no Epot in input. In
total, the MLPs of our network (across all layers) account for a number of 35664 learnable
parameters: in each layer L > 0 we have one radial MLP of size (10, 16,284) with 5036
parameters, for the layer L = 0 the MLP is of size (10,16, 3×4)with 412 parameters. The other
main source of learnable parameters in the Network is the part of mixing the channels (right
part of fig. 3), which accounts for 16000 learnable parameters: 2272 for each L > 0 layer and
12×8= 96 for the L = 0 layer. The total number of parameters to build the representation is
thus 35664+16000= 51664. One has to add to this number the parameters of the 20 decoders
(10 timescales for A and B particles). The final number is then: 51664 + 32 × 20 = 52304.
When single variate regression is performed (as in the other GNNs works we compare with),
the number of channels is reduced to 4 and the total number of parameters amounts to 23210.

A.3 Overall architecture

We do not repeat here what is written in the main text, section 3 Note that our Res-Net style
of update is possible when two consecutive layers have the same number of channels and
same lmax . Our architecture choice is found empirically to be the stable at train time. Our
architecture is built and trained in the framework of PyTorch Geometric [72] which handles
all the generic graph operations. All the SE(3)-related operations (SH embedding, C-G tensor
product, equivariant batch-normalization) are integrated in this framework thanks to the e3nn
library [57].

A.4 Training strategy

In Figure 10 we display one learning curve (as function of iterations, epochs). Each epoch is
a sweep over the entire 400 samples dataset (each sample represents N = 4096 atoms).
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For training, we use the Adam optimizer with initial learning rate γ = 10−3, moments
β1 = 0.99,β2 = 0.999 and weight decay λ= 10−7. We also add a learning rate scheduler that
divides γ by 2 at several epochs as shown by the vertical dashed lines in Figure 10. Most of
the results shown in the main text are obtained with a number of epochs nepochs = 100, this
choice results from several tests and strikes the balance between accuracy and training time.
As it can be seen in Figure 10, each training stops before any serious overfit kicks in.

Each training of our model takes approximately 10 hours on a A100 Nvidia GPU. This
represents approximately 2 kWh per training, and in France, an equivalent of 150 gCO2 (we
use a number of 75 gCO2/kWh, after considering quickly EDF’s optimistic figure of 25 g/kWh
or RTE’s more detailed daily numbers, which oscillate mostly between 50 and 100, depending
on the season and time of day). We did not include the footprint of manufacturing the GPU
and other infrastructure, which is generally estimated to be one half of the IT-related CO2
emissions (the other half being running the infrastructure).

B Ablation studies

Here we display the ablation studies, that outline which are the key elements of our model.
We also report the learning curve (ablation on training set size).

B.1 Ablation of lmax

All our results rely on the embedding of the input data into the Spherical Harmonics basis
and on the built-in equivariance of convolution layers. One may expect that a large cutoff
rotational order lmax is needed. Here we show that actually, going from lmax = 0 to lmax = 1
is the most critical step. We build architectures that vary only by their lmax value and measure
the performance ρ in each, as shown in Figure 11 and 12. The biggest gap in performance
is indeed observed between purely isotropic, scalar features (lmax = 0) versus directional
ones (lmax = 1). We notice as well that short timescales require higher rotational order and
the performance indeed has not saturated for them. One possible interpretation is that the
network has to learn interatomic forces to describe the dynamics at short times, and that
directional information is more relevant in that case. Further increasing lmax provides a finer
rotational order resolution, but we observe that the accuracy tends to saturate. We cannot go
above lmax = 3 due to memory constraints: as the rotational order increases, the number of
activations of neurons to keep track of grows exponentially with lmax (while it grows linearly
with the number of edges, with the batch size, and with the size of the hidden layer in the
radial MLP).

B.2 Ablation of Lmax (depth)

In Figure 13 we present the performance of our multi-time model trained at temperature
T = 0.44 for an increasing number Lmax of equivariant convolution layers stacked in the
architecture. While the short timescales seem to be saturated, the longer ones seem not:
indeed, we’d expect increased accuracy if we increased Lmax further. Note that there is a
possibility of encountering over-smoothing effects with an increased number of layers.

B.3 Ablation of Ntrain (learning curve)

In Figure 14, we present learning curves that illustrate the model’s performance (multi-variate
setting) as a function of the number of samples in the training set for different timescales. The
choice of the samples to include in the training set is performed in an incremental way: For
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Figure 11: lmax ablation using thermal positions and no Epot input. A separate
model was trained at T = 0.44, for each value of lmax . The colors correspond to the
nt imes = 10 timescales of mobility, with t id x ranging from 0 to 9. For clarity, only
some of these timescales are displayed here. The GNN of [36] obtains ρ ≈ 0.65 for
the timescale 6, we are in this range when using only invariant features (lmax = 0).
When using higher orders, we outperform it.
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Figure 12: lmax ablation Same setup as previous plot, but here the model is using
thermal positions combined with Epot(IS). Performance is overall higher, the relative
gain from using l > 0 is less pronounced, probably because Epot(IS) already provides
equivalent information.
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Figure 13: Lmax ablation. Color-code is the same as for the other ablation studies,
but here we vary the number of convolution layers applied. Lmax = 1 corresponds
to a very interpretable model, similar to using a Bond Order parameter and linear
regression (hidden in ϕ and in the decoder). Performance does not seem to saturate:
one expects increased performance with more layers.
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Figure 14: Learning curve Color-code is the same as for the other ablation studies,
but here we vary the number of training samples. Performance is already very high
when training on a single sample: our network seems to resist well to overfitting.
Here again, performance does not seem to saturate, more precisely it seems to in-
crease logarithmically with train set size.

each point of the curve new samples are added to the others already present, while the test
set (80 samples) is kept constant. In this version we used early stopping with a validation
set of 320 samples, however using the last epoch’s model yields very similar result. In [52]
we used the last epoch’s model and observe similar behavior. We emphasize that competitive
performances are achieved already by using less than 1/4 of the available training set and
meaningful prediction are obtained also when training the model on a single sample, contrary
to what one would expect for a “deep” model like ours.

C Reproducing expert features (Boattini 2021)

Here we relate the SE(3)-equivariant formalism with the expert features such as those used
in [37]. We start by considering embedded node features hi,c = δt i ,c where t i is the type of
particle i: We have only two channels at l = 0. We extend them from nch = 2→ nch = 2 ∗ Nb
just by replicating them Nb times. We will denote the replicated hi,c as hi,c,r since in spirit,
each copy of the two channels (one-hot of the particle type) will correspond to one radial
basis function. Then the convolution operation reads (remember that for lI = 0, only lO = lF
is allowed):

h
′ lF
i,c,r,lI=0,lF

=
∑

j∈N (i)
ϕ(||ai j||)

lF
lI=0,lF ,c,rY

lF (âi j)h j,c,r . (C.1)

We may choose a Gaussian radial basis function B (instead of Bessel):
ϕ(||ai j||)

lF
lI=0lF ,c,r = B(||aij||)r . Then if we focus on lF = 0, since Y 0(âi j) = 1 we have:

h
′0
i,c,r =
∑

j∈N (i)
e−

(||ai j ||−r)2

2δ δt j ,c , (C.2)

which correspond to G(0)i (r,δ, s) in [37]. Note that we require also no channel mixing at l = 0.
For lF > 0:

h
′ lF
i,c,r =
∑

j∈N (i)
YlF (âi j)e

−
(||ai j ||−r)2

2δ δt j ,c , (C.3)

which, after a channel mixing step that sums over c (mixing different particle types), corre-
spond to q(0)i (l, m, r,δ) in [37]. By computing invariants from these features through their

norm, we recover exactly q(0)i (l, r,δ) from [37].
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Figure 15: Comparison of datasets. The same models trained at temperature
T = 0.44 on each dataset.

By contrast, in our model we do not compute invariants after one layer, we keep equivariant
features and let them interact over multiple layers in order to increase the expressivity.

Although this architecture qualitatively reproduces these expert features, for a quantitative
match one would need to use a much larger cutoff radius dc = 5 for building the graph, and a
maximum rotational order of lmax = 12.

D Shiba vs Bapst dataset comparison

In Bapst’s dataset [36], a timescale actually corresponds to a fixed value of the self-intermediate
scattering function Fk(t), so that different samples are measured at slightly different times.
Equilibration is performed under an NPT thermostat, i.e. at constant pressure and temperature,
i.e. the volume is varying (and thus the density as well).

In Shiba’s dataset [38], equilibration is performed at constant volume and temperature
(NVT) so that the density is exactly ρ = 1.2 in all samples and at all temperatures. Further-
more, sampling of the trajectories is performed at fixed times, not fixed Fk(t).

In Figure 15 we report the performance of our main model (thermal positions + Epot(IS)
inputs) for these two Kob-Anderson 3D datasets. Performances are shifted in time but other-
wise rather comparable (a bit better on Shiba’s dataset).
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groups, graphs, geodesics, and gauges, (arXiv preprint) doi:10.48550/arXiv.2104.13478.

[72] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch geometric, (arXiv
preprint) doi:10.48550/arXiv.1903.02428.

34

https://scipost.org
https://scipost.org/SciPostPhys.16.5.136
https://doi.org/10.1145/3386252
https://doi.org/10.1609/aaai.v32i1.11671
https://doi.org/10.48550/arXiv.2209.15616
https://doi.org/10.3389/fphy.2022.1007861
https://doi.org/10.48550/arXiv.2110.07728
https://doi.org/10.1038/s42256-021-00438-4
https://doi.org/10.48550/arXiv.2203.06125
https://doi.org/10.48550/arXiv.2104.13478
https://doi.org/10.48550/arXiv.1903.02428

	Dataset and task
	How to build a graph-convolution equivariant layer?
	Graph neural networks
	Equivariance
	Equivariant features
	Spherical harmonics (SH)
	Clebsh-Gordan tensor product
	SE(3)-equivariant graph convolution layer
	Interpretation

	Combining equivariant layers
	Network
	Batch normalization
	Decoder
	Non-linearities

	Experiments, results
	Experimental setup
	Uni-variate or multi-variate
	Role of inherent structures
	Comparison with recent works
	Spatio-temporal correlations

	Temperature generalization
	Transfer-testing
	Transfer-learning

	Future directions
	Conclusion
	Training details, Training curve and time/energy cost
	Radial MLP
	Number of parameters
	Overall architecture
	Training strategy

	Ablation studies
	Ablation of lmax
	Ablation of Lmax (depth)
	Ablation of Ntrain (learning curve)

	Reproducing expert features (Boattini 2021)
	Shiba vs Bapst dataset comparison
	References

