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Abstract

We study how the global structure of rank-one 4d N = 2 supersymmetric field theories
is encoded into global aspects of the Seiberg-Witten elliptic fibration. Starting with the
prototypical example of the su(2) gauge theory, we distinguish between relative and ab-
solute Seiberg-Witten curves. For instance, we discuss in detail the three distinct absolute
curves for the SU(2) and SO(3)± 4d N = 2 gauge theories. We propose that the 1-form
symmetry of an absolute theory is isomorphic to a torsion subgroup of the Mordell-Weil
group of sections of the absolute curve, while the full defect group of the theory is en-
coded in the torsion sections of a so-called relative curve. We explicitly show that the
relative and absolute curves are related by isogenies (that is, homomorphisms of ellip-
tic curves) generated by torsion sections – hence, gauging a one-form symmetry corre-
sponds to composing isogenies between Seiberg-Witten curves. We apply this approach
to Kaluza-Klein (KK) 4d N = 2 theories that arise from toroidal compactifications of
5d and 6d SCFTs to four dimensions, uncovering an intricate pattern of 4d global struc-
tures obtained by gauging discrete 0-form and/or 1-form symmetries. Incidentally, we
propose a 6d BPS quiver for the 6d M-string theory on R4 × T2.
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1 Introduction

Local quantum field theories often contain extended operators or defects. There can exist sev-
eral consistent quantum field theories with the same local dynamics, which are distinguished
by choosing different consistent sets of extended operators. Moreover, extended operators can
be charged under generalised symmetries [1]. For instance, any four-dimensional su(2) gauge
theory with matter fields in odd-dimensional irreducible representations of the gauge algebra
admits a set of mutually-local Wilson and/or ’t Hooft lines. Choosing a consistent maximal
set of lines is famously equivalent to choosing the gauge group and discrete θ -angle, SU(2) or
SO(3)± [2,3].

A given quantum field theory without a choice of consistent extended operators is some-
times called a relative theory, while any consistent choice of extended operators upgrades the
relative theory to an absolute theory, assuming that a such a choice is possible. Given a relative
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theory, the choice of an absolute theory is usually called the global structure of the quantum
field theory. In the gauge-theory example just mentioned, the relative theory is already de-
termined by the Lie algebra su(2), while the global structure is essentially the choice of a Lie
group with this Lie algebra. The absolute theory then possesses a 1-form symmetry – the
electric Z[1]2 center symmetry for SU(2), or its magnetic version for the SO(3) gauge theory.

Let us consider 4d N = 2 supersymmetric quantum field theories (SQFT), whose low-
energy dynamics on the Coulomb branch (CB) is famously described by the Seiberg-Witten
(SW) geometry [4,5]. We are interested in the global structure of rank-one 4d N = 2 SQFTs,
including Kaluza-Klein (KK) field theories obtained by compactifying certain 5d superconfor-
mal field theories (SCFTs) on a circle, as well as from the 6d N = (2, 0) A1 theory (also known
as the M-string theory) compactified on a torus. We will also clarify aspects of the global struc-
ture of the prototypical 4d N = 2 gauge theory, the pure SU(2) gauge theory first solved by
Seiberg and Witten.

In this paper, we limit our investigation to rank-one theories. Then, the SW geometry is a
rational elliptic surface (RES), namely a one-parameter family of elliptic curves – simply known
as the Seiberg-Witten curve. The singularity structure of the elliptic fibration over the Coulomb
branch encodes the low-energy dynamics, including the presence of massless states that can
appear in the non-perturbative regime. It is natural to ask whether this low-energy description
also encodes the global structure of the theory – e.g. how does it distinguish between the pure
SU(2) and SO(3) gauge theories, whose local dynamics are identical? A simple argument
tells us that the SU(2) and SO(3) curves should be related by a particular rescaling of their
periods [6]. Surprisingly, however, the pure SO(3)± SW curves have not appeared explicitly
in the literature. In this paper, we carefully distinguish between the various SW curves for the
relative and absolute versions of all rank-one N = 2 SQFTs with non-trivial 1-form symmetries.
In the case of the su(2) gauge theories, we have four distinct SW geometries:

SU(2)
(I∗4; 2I1) , Γ 0(4)
Φ(S) = Z2

su(2)
(I∗2; 2I2) , Γ (2)
Φ(S) = Z2 ⊕Z2

SO(3)±
(I∗1; I1, I4) , Γ0(4) .

Φ(S) = Z4

2-iso 2-iso
(1)

Here, the second line denotes the singularity structure on the Coulomb branch, with the no-
tation (F∞; Fv) for the fiber at infinity and Fv the bulk singularity fibers, and we also give
the modular group Γ ⊂ PSL(2,Z) associated to these Coulomb branches (that is, the CB is a
genus-0 modular curve for that modular group) – see appendix A for a brief review, and [7,8]
for a detailed introduction to the RES formalism. It is important to note that the Fv = Ik sin-
gularities in (1) are all undeformable in the sense of [9]. The third line in (1) displays the
Mordell-Weil (MW) group of rational sections of the SW geometry S, denoted by Φ(S). As
proposed in [7], the MW group encodes the 1-form symmetry of the theory; see also [10] for
an earlier, closely related discussion. The main purpose of this paper is to further elucidate
this relationship by understanding how to gauge a 1-form symmetry at the level of the SW
geometry.

The Seiberg-Witten curve first derived in [4] was the Γ (2) curve, while the Γ 0(4) curve
was proposed in [5] as the N f = 0 curve in the series of SW curves that describe SU(2) SQCD
with N f flavours. It was already pointed out in [5] that the two curves are related by an
isogeny. Recall that an N -isogeny is an N -to-1 homomorphism of elliptic curves – that is, a
N -to-1 rational map that preserves the zero-section, and hence the abelian group structure
on the curve. In the past literature, it was sometimes assumed, more or less explicitly, that
curves related by isogenies were physically equivalent. In this work, instead, we insist on the
fact that only the Γ 0(4) curve in (1) corresponds to the pure SU(2) gauge theory. The Γ (2)
curve still plays an important role, however. We identify it as the relative curve for the su(2)
gauge theory viewed as a relative theory, before any choice of global form. The hallmark of a
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relative curve is that the torsion part of its Mordell-Weil group encodes the defect group D of
the theory. Then, one can obtain all possible absolute curves – the SW curves for the distinct
absolute theories – by performing isogenies along Lagrangian subgroups of D. In particular,
for the su(2) theory, we obtain in this way the SW curves with modular group Γ0(4) that
correspond to the SO(3)± theories. The isogenies are performed ‘along torsion sections’, as
we will explain. Given a rational section of order N in Φtor(S), for either a relative or an
absolute curve, one can define the isogenous SW geometry as a quotient of the elliptic fiber.
By exploring these N -to-1 relations in much detail, we will show that gauging Z[1]N 1-form
symmetries corresponds to a composition to two N -isogenies, as in the su(2) example (1). We
will thus learn how to ‘read between the rational sections’ of the Seiberg-Witten geometry,
in close parallel with how one can ‘read between the defect lines’ of 4d gauge theories more
generally [3]. Our approach builds on many previous works on this and other closely related
subjects [2,10–15] – in particular, a proposed relation between global structures and isogenies
already appeared (somewhat obliquely) in [2]. We will further comment on the wider picture,
and on perspectives for future work, in the final section.

We analyse all the rank-1 4d N = 2 supersymmetric field theories with non-trivial 1-form
symmetries, since there are very few of them. If we restrict ourselves to theories with a four-
dimensional UV completion, these are only the pure su(2) gauge theory, which is asymptot-
ically free, and the 4d N = 2∗ su(2) theory, which is UV completed by the 4d N = 4 SCFT.
There also exists very important theories with a 5d or 6d UV completion, namely the E1 and
E0 5d SCFTs, and the 6d M-string theory. All these theories (except for E0) are related through
various limit, with the 6d M-string theory being the “grandparent” theory. We will also see that
the 5d (and 6d) theories have a richer structure of global structures in 4d due to the presence
of both 1-form and 0-form symmetries that descend from the (electric) 1-form symmetry in
5d. We map out all these global structures. Along the way, we also briefly comment on the
5d BPS quivers for these theories [8,16], and in particular we identify the 6d BPS quiver that
describes the 4d N = 2 BPS states of the M-string theory compactified on T2.

This paper is organised as follows. In section 2, we study the pure su(2) gauge theory
and we abstract general lessons on how to properly ‘read between the rational sections’ by
formulating three physics conjectures. In section 3, we study the N = 2∗ theory, which enjoys
a non-trivial S-duality group acting on the UV gauge coupling. We study the SW geometries
for the 5d theories E1 and E0 in sections 4 and 5, respectively. We discuss the 6d M-string
theory in section 6. Finally, we present some conclusions and challenges for future work in
section 7. Various useful background materials are collected in two appendices.

2 Global aspects of rank-one Seiberg-Witten geometries

The low-energy effective field theory on the Coulomb branch of any rank-one 4d N = 2 SQFT
is written in terms of the low-energy ‘photon’ a (i.e. the scalar in the low-energy U(1) vector
multiplet) at any given point on the Coulomb branch, u ∈ B. The SW solution gives us the
exact expression a(u) as a ‘physical period’ of the SW curve E fibered over the Coulomb branch,

E −→ S −→ B . (2)

It is defined as the electric period of the Seiberg-Witten differential λ:

a ≡
∮

γA

λ , aD ≡
∮

γB

λ . (3)

More precisely, we have a non-trivial rank-2 SL(2,Z) vector bundle of physical periods of E
with sections (aD, a). The periods determine the exact prepotential F(a) and the low-energy
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effective gauge coupling, τ(u), of the 4d N = 2 theory:

aD =
∂F
∂ a

, τ=
∂ aD

∂ a
. (4)

The SW geometry (2) is a one-parameter family of elliptic curves with a section, such that
the total space S is a rational elliptic surface (RES). It is best presented in Weierstrass normal
form:

y2 = 4x3 − g2(u) x − g3(u) , (5)

where g2 and g3 are functions u as well as of various masses and marginal gauge couplings
that may occur in a given theory. We review some standard facts about elliptic curves in
appendix A. Note that the point at infinity (u→∞) on the Coulomb branch B ∼= P1 is singled
out physically as the UV cusp – for 4d N = 2 asymptotically-free gauge theories, it is a weak-
coupling cusp. We refer to [7] for a more thorough introduction to the RES formalism and
to appendix A.1 for a brief review of the types of singularities that can appear on the CB of
rank-one theories.

2.1 The pure su(2) theories

Let us start by reviewing the Seiberg-Witten geometry for the 4d N = 2 pure SU(2) gauge
theory. We then introduce the Seiberg-Witten geometries from the pure SO(3)± theories and
discuss how they differ from the SU(2) curve. The SU(2) and SO(3)± gauge theories are
related to each other by gauging one-form symmetries. In subsection 2.2, we will explain how
this gauging can be performed directly at the level of the Seiberg-Witten curves.

2.1.1 The SU(2) curve

The SW geometry for the pure SU(2) theory is given by [4]:

y2 = x3 + ux2 +
1
4
Λ4 x , λ=

1
4π

yd x
x2

, (6)

where Λ is the dynamically-generated scale of the SU(2) gauge theory, and λ is the SW differ-
ential. The parameter u is the Coulomb branch VEV, which is related to the low-energy photon
a by:

u≡



TrΦ2
�

≈ −a2 , Φ= −
i
p

2

�

a 0
0 −a

�

, (7)

in our conventions.1 The approximation u ≈ −a2 is only valid in the semi-classical limit
|u| →∞.

The Seiberg-Witten curve. By a simple change of coordinate x → x− u
3 , y → 1

2 y , the SU(2)
curve (6) can be brought to the Weierstrass normal form (5) with:

gSU(2)
2 =

4u2

3
−Λ4 , gSU(2)

3 = −
8u3

27
+

uΛ4

3
, (8)

with the discriminant:
∆SU(2) = Λ8(u−Λ2)(u+Λ2) , (9)

and the SW differential:2

λ=
1

8π
yd x

(x − u
3)2

,
dλ
du
=

1
2π

d x
y

. (10)

1Our parameter u corresponds to −u in [4,5].
2Note that λ is defined only up to a differential on the curve, i.e. up to a shift λ→ λ+ dh.
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The exact geometric periods,

ωa =

∮

γA

d x
y

, ωD =

∮

γB

d x
y

, (11)

are thus related to the physical periods a and aD according to:

ωa = 2π
da
du

, ωD = 2π
daD

du
. (12)

At large u, the periods have a leading divergence:

a(u)≈ −i
p

u , aD(u)≈ −
2
p

u
π

log
Λ2

u
, (13)

which gives us the following I∗4 monodromy at infinity:

�

aD
a

�

→M∞

�

aD
a

�

, as
1
u
→ e2πi 1

u
, M∞ = −T4 =

�

−1 −4
0 −1

�

, (14)

as expected from the one-loop prepotential [4,5]. In the interior of the Coulomb branch, the
exact periods determine the mass of the BPS particles. At a generic point u ∈ B, there may exist
massive half-BPS one-particle excitations with magnetic-electric charges γ ≡ (m, q) ∈ Γ ∼= Z2

under the low-energy U(1). The central charge of such a dyon reads:

Zγ(u) = m aD(u) + q a(u) . (15)

Given two dyons γ1 = (m1, q1) and γ2 = (m2, q2), their Dirac pairing is given by:

〈γ1,γ2〉= m1q2 − q1m2 = [γ1] · [γ2] . (16)

Here, the charge γ= (m, q) can be identified with a homology 1-cycle on the SW curve:

[γ] = mγB + qγA , Γ ∼= H1(E,Z) , (17)

and the Dirac pairing is identified with the intersection pairing [γ1] · [γ2]. In other words, this
SW geometry is given by a family of principally-polarised elliptic curves.3

Coulomb branch singularities. The SW singularities at strong coupling correspond to the
two Kodaira singularities of type I1 that are apparent from (8)-(9). At u= ±Λ, the monopole
γM = (1, 0) and the dyon γD = (−1, 2) become massless, respectively, which gives us the
non-trivial monodromies [5] (following (A.5)):

M(1,0) = STS−1 =

�

1 0
−1 1

�

, M(−1,2) = (T
2S)T (T2S)−1 =

�

−1 4
−1 3

�

. (18)

The pure SU(2) theory has a classical U(1)R R-symmetry which is reduced to a Z(R)8 symmetry
in the quantum theory (due to the gauge-U(1)R ABJ anomaly). This discrete R-symmetry is
spontaneously broken to Z4 on the Coulomb branch, wherein Z2 ⊂ Z

(R)
8 acts on the Coulomb

branch as a sign flip, u→−u. In particular, this Z2 action exchanges the two SW singularities,
which are therefore physically equivalent.

3For our purpose, we could take the fact that the Dirac pairing and homology pairing agree as the definition of
what it means to have a principal polarisation of E. We refer to [13] for a recent discussion of polarisations of SW
geometries that generalises to higher rank.
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(a) Γ 0(4) fundamental domain. (b) SU(2) lattice.

Figure 1: LEFT: Fundamental domain for Γ 0(4) on the upper-half-plane H ∼= {τ}.
The width-1 cusps at τ= 0 and τ= 2 correspond to the monopole and dyon points,
respectively. The width-4 cusp at τ = i∞ is the weak-coupling point. RIGHT: The
charge lattice Γ of the SU(2) theory (small dots), with the allowed dynamical particle
charges γ ∈ bΓSU(2) denoted by larger dots, and with the weak-coupling BPS spectrum
coloured in red.

The SU(2) Coulomb branch is also a modular curve for the modular group Γ 0(4) – that is,
B ∼= H/Γ 0(4), where the upper-half-plane H is spanned by the effective holomorphic gauge
coupling τ (see appendix A.5 for a review). The Γ 0(4)modular function is given by [7,17,18]:

u(τ)
Λ2
=
ϑ2(τ)4 + ϑ3(τ)4

2ϑ2(τ)2ϑ3(τ)2
= 1+

1
8

�

η(τ4 )

η(τ)

�8

. (19)

The SW singularities are then mapped to width-1 cusps of Γ 0(4) as shown in figure 1. (See
also [18,19] for more details on how such maps are explicitly realised.)

BPS states and BPS lines. Given any SW geometry, we can also, in principle, compute the
spectrum of BPS particles at a given point u ∈ B – that is, the set of charges γ that correspond
to stable BPS states. In the present case, the BPS spectrum is given by [4,20]:

SS : (1,0) , (−1, 2) , SW : (0,2) , (1,2n) , n ∈ Z , (20)

at strong and weak coupling, respectively, together with the antiparticles of opposite charge.
This is depicted in figure 1b. In particular, the state γW = (0,2) is the W -boson. All BPS
particles can be viewed as bound states of the simple states γM = (1,0) and γD = (−1, 2) that
become light at the SW singularities, as encoded by the BPS quiver [21]:

γM γD . (21)

The only allowed BPS states in this theory, anywhere on the Coulomb branch, are of the form
(m, 2n) for m, n ∈ Z. The set of allowed BPS states form a sublattice bΓSU(2) of the lattice Γ ∼= Z2

of possible magnetic-electric charges of the theory.
We may also consider all the possible BPS lines allowed in this theory, which are best

viewed as the worldlines of background (non-dynamical) dyons with charges γL such that:

〈γL ,γ〉 ∈ Z , ∀ γ ∈ bΓSU(2) . (22)

In general, given a lattice of allowed charges, there might exist several distinct consistent sets
of genuine line operators [2, 3] (see appendix B for a review). Our claim is that, given a
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principally-polarised SW geometry, we have already chosen this global structure implicitly. In
the present case, the only genuine lines that are allowed are such that:

γL ∈ Γ , (23)

since any other choice of lines would not be compatible with the homology lattice for this
SW curve. (For instance, the magnetic line

�1
2 , 0
�

satisfies (22) but not (23).) In the Type-IIB
geometric engineering picture, this corresponds to D3-branes wrapping the one-cycle γ ⊂ E
at u ∈ B and stretching all the way to infinity. Most of those lines can be screened by the
dynamical particles, except for the ones valued in:

Γ/bΓSU(2)
∼= Z2 , (24)

namely the lines γL = (0, 0) and (0,1), which are charged under the electric one-form sym-
metry group:

Γ [1] ≡ Hom
�

Γ/bΓSU(2), U(1)
�

= Z[1]2 . (25)

Recall that, given the BPS spectrum (20), the one-form symmetry Γ [1] can be computed as the
subgroup of the accidental U(1)[1]m ×U(1)[1]e one-form symmetry acting on the infrared photon

that preserves the BPS states [14]. Its generators gΓ
[1]
= (km, kq) act on a BPS state |γ〉 with

charges γ= (m, q) by a phase:

gΓ
[1]

: |γ〉 → e2πi(kmm+kqq)|γ〉 . (26)

Here, we have, we have gZ
[1]
2 =
�

0, 1
2

�

so that, indeed, Γ [1] = Z[1]2 as a subgroup of the electric
one-form symmetry U(1)[1]e [7].

Torsion section and one-form symmetry. A very important property of the Seiberg-Witten
geometry (8) is that it has a non-trivial Mordell-Weil (MW) group:

Φ(S) = Φtor(S) = Z2 , PZ2
=
�u

3
,0
�

, (27)

which is generated by the non-trivial rational torsion section, as indicated. (That is, we have
2PZ2

= 0. See [7] for an introduction to the MW group in the present context.) In the present
case, we identify the MW group with the 1-form symmetry, Φtor(S)∼= Γ [1] [7].

2.1.2 The SO(3)± curves

The SO(3) N = 2 gauge theory differs from the SU(2) N = 2 theory in subtle but interesting
ways. These differences can be used to determine the correct SO(3) Seiberg-Witten curve, as
we now explain. In subsection 2.2, we will see how this can be better understood in terms of
gauging the Z[1]2 one-form symmetry of the SU(2) theory, which can be done directly at the
level of the SW curve.

The SO(3) normalisation. The simplest and most important difference between the SU(2)
and the SO(3) theories is that the semi-classical Higgs mechanism gives us two distinct normal-
isations of the low-energy ‘electric’ U(1), accounting for the fact that the spin-1

2 representation
of SU(2) does not exists in the SO(3) theory. Conversely, there are ‘twice as many’ magnetic
fluxes allowed in the SO(3) theory than in the SU(2) theory; in particular, SO(3) bundles on
S2 (e.g. a sphere linking the monopole worldline) can have non-trivial Stiefel–Whitney class.
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Relatedly, the θ -angle of the SO(3) theory is now valued in [0,4π), instead of [0, 2π)
for the SU(2) θ -angle. As such, there actually exists two distinct SO(3) theories, denoted by
SO(3)±, which are related by a shift of the θ -angle by 2π [3]:

SO(3)θ− = SO(3)θ+2π
+ . (28)

Then, when comparing magnetic and electric charges between the two theories, we expect:

(m+ , q+) =
�

2m ,
q
2

�

,

(m− , q−) =
�

2m ,
q
2
−m
�

=
�

m+ , q+ −
m+
2

�

,
(29)

where (m±, q±) and (m, q) denote the magnetic-electric charges under the low-energy U(1) for
SO(3)± and SU(2), respectively. The shift of the electric charge in the SO(3)− theory is due
to the Witten effect [22]. The low-energy photons are related by the inverse transformation,
namely:

aSO(3)+
D =

1
2

aSU(2)
D , aSO(3)+ = 2aSU(2) ,

aSO(3)−
D =

1
2

aSU(2)
D + aSU(2) , aSO(3)− = 2aSU(2) ,

(30)

since the local dynamics is unaffected by the choice of global form of the gauge group – in
particular, the central charge (15) is insensitive to this choice. It also follows from (30) that
the effective gauge couplings of the distinct theories are related as:

τSO(3)+ =
1
4
τSU(2) , τSO(3)− = τSO(3)+ +

1
2

. (31)

The Seiberg-Witten curve. The SO(3) curve must be related to the SU(2) curve in such a
way that its periods are rescaled as in (30) – to the best of our knowledge, this was first pointed
out in [6]. Another important property follows from considering the R-symmetry of the SO(3)
theory. In the UV description, the classical U(1)R symmetry is broken to Z(R)4 by the gauge-R

anomaly (instead of Z(R)8 for the SU(2) theory), and this Z(R)4 acts trivially on the Coulomb

branch. Since the SO(3) theory can be obtained by gauging the Z[1]2 one-form symmetry of

the SU(2) theory, this betrays a mixed ’t Hooft anomaly between Z[1]2 and Z2 ⊂ Z
(R)
8 [23].

Therefore, unlike the SU(2) case, the two strong-coupling singularities on the SO(3)
Coulomb branch are not related by a spontaneously-broken R-symmetry. This is also appar-
ent from the perspective of the 4d N = 1 supersymmetric gauge theories with g = su(2)
gauge algebra [3], which can be obtained from the N = 2 theories by explicit supersymmetry
breaking from N = 2 to N = 1 [4]. In the N = 1 SU(2) gauge theory, the classical U(1)R
symmetry is broken to Z(R)4 by the ABJ anomaly, and one has two confining vacua related by
the R-symmetry (equivalently, by a shift θ → θ + 2π). In the N = 2 theory softly broken to
N = 1, the two vacua arise from condensation of either the magnetic monopole or the dyon
at the SW points [5]. As a result, the Wilson line in the fundamental representation of SU(2)
has an area law (i.e. it is confined) in both vacua [3].

By contrast, in the N = 1 SO(3) theory, the ABJ anomaly breaks the U(1)R symmetry
to Z(R)2 (corresponding to a shift θ → θ + 4π) and the two vacua are no longer physically
equivalent. In particular, allowed line operators will have either an area law or a perimeter
law, depending on which of the two vacua is chosen; in the SO(3)+ theory, the monopole point
gives us a deconfined N = 1 vacuum with a Z2 gauge theory in the IR [3]. Thus, the N = 2
SO(3) theory should also have inequivalent CB singularities. Note also that these singularities
should be exchanged as we go between SO(3)+ and SO(3)− as in (28).
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Based on the above reasoning, the correct curve for the SO(3) gauge theory is uniquely
determined. We are looking for an extremal rational elliptic surface with three singular fibers,
one of them being I∗1 (the fiber at infinity, which is fixed by the β-function of the SO(3)N = 2
gauge theory). As the remaining two singularities must be distinct, this leaves us with only one
possibility [24], namely the RES (I∗1; I4, I1), which is also the configuration for the massless
SU(2) N f = 3 theory [5]. In this case, we have the monodromies:

SO(3)+ : M+I4
= ST4S−1 , M+I1

= (ST−2S)T (ST−2S)−1 ,

SO(3)− : M−I1
=M+I1

, M−I4
= (TS)T4(TS)−1 ,

(32)

as well as M∞ = −T , with M−1
∞ = M+I4

MI1
, for the SO(3)+ curve and M−1

∞ = MI1
M−I4

for
the SO(3)− curve. These monodromies and the corresponding fundamental domains can be
obtained as follows. Starting with the Γ 0(4) domain of the SU(2) curve in figure 1, the map
(31) between τSU(2) and τSO(3)+ is realised by the action of the matrix:

M0 =

�

1 0
0 4

�

. (33)

Conjugating the generators of Γ 0(4) by M0 leads to the SO(3)+ generators listed above. This
argument can be repeated for the SO(3)− curve. Note, in particular, that in this latter case
the width-1 cusp of the SO(3)+ curve is exchanged with the width-4 cusp after conjugation.
The corresponding fundamental domains are shown in figure 2a. Note also that the coset
representative TST2S for the width-one cusp at τ= 1

2 of SO(3)− leads to the same monodromy
matrix as the aboveMI1

.
In Weierstrass form, the SO(3)± Seiberg-Witten curves are given by:

gSO(3)±
2 =

u2

12
±

5Λ2u
2
+

11Λ4

4
,

gSO(3)±
3 = −

u3

216
±

7u2Λ2

24
+

29uΛ4

24
±

7Λ6

8
,

(34)

with the discriminant:

∆SO(3)± =
1
8
Λ2
�

u±Λ2
� �

u∓Λ2
�4

. (35)

Given the explicit map between curves to be explained below, the SW differential of the SO(3)
theory is related to the one for the SU(2) theory as:

λSO(3)± = 2λSU(2) . (36)

We will derive these expressions (including the normalisation) in section 2.2. One can check
that the leading term in the large-u expansion of the physical periods reads:

a(u)≈ −2i
p

u , aD(u)≈ −
p

u
π

log
Λ2

u
, (37)

thus reproducing the I∗1 monodromy as expected. From (34) and (35), we see that the SO(3)
u-plane has two strong-coupling singularities of type I1 and I4 at u = ∓Λ2 and u = ±Λ2,
respectively. These two singularities are exchanged as we shift θ → θ + 2π (i.e. Λ2 →−Λ2).
Note that the I4 singularity is an undeformable singularity in the sense of [9]. This is also
expected because, in the SO(3) normalisation of the charges, one of the two SW singularities
corresponds to having a massless hypermultiplet of charge 2 coupled to the low-energy photon
(in the appropriate duality frame).4

4Recall that an undeformable In singularity corresponds to a massless hypermultiplet of charge
p

n.
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TF

TSF

TSTF TST−1F

TST 2F

TST 2SF

F

SF

STF ST−1F

ST−2F

ST−2SF

SO(3)+ SO(3)−

0 0.5 1

(a) Γ0(4) domains for SO(3)±. (b) SO(3) lattice.

Figure 2: LEFT: Fundamental domains for Γ0(4) on the upper-half-plane H ∼= {τ}, for
SO(3)+ (left) and SO(3)− (right), related by τSO(3)− = τSO(3)++

1
2 . Note that this ex-

changes the bulk width-1 cusp with the width-4 cusp. RIGHT: The charge lattice Γ of
the SO(3) theory (small dots), with the allowed dynamical particle charges γ ∈ bΓSO(3)
shown in black (large dots) and with the weak-coupling BPS spectrum coloured in
red. We are using the charge normalisation (m±, q±) for SO(3)±.

We also note that the SO(3) Coulomb branch is a modular curve for the modular group
Γ0(4), with the fundamental domain shown in figure 2a. Thus, u = u(τ) becomes a modular
function for this congruence subgroup [8,18], with the SO(3)+ expression given by

u(τ)
Λ2
= 1+

8ϑ3(τ)2ϑ4(τ)2
�

ϑ3(τ)2 − ϑ4(τ)2
�2 = 1+

1
8

�

η(τ)
η(4τ)

�8

, (38)

which can be also found from (19) by performing the transformation τ → 1
4τ. The SO(3)−

expression is found by sending Λ2→−Λ2. Alternatively, one can use the relative su(2) curve,
to be introduced in the next subsection.

BPS states and BPS lines for SO(3)+. The global structure of the gauge group should not
affect the BPS spectrum, and indeed the BPS quiver remains the same. This is because the
change of normalisation (29) leaves the Dirac pairing invariant. In particular,

〈γM ,γD〉= 2 , (39)

in all cases. For the SO(3)+ theory, the light states at the SW singularities are now:

γM = (2,0) , γD = (−2, 1) . (40)

Here, the monopole corresponds to a light hypermultiplet of charge 2 in the S-dual description
of the I4 singularity, as anticipated, while the dyon that becomes light at the I1 singularity still
corresponds to a charge-1 hypermultiplet in the appropriate duality frame.

As before, the set of allowed BPS states form a sublattice bΓSO(3)+ of the magnetic-electric
lattice Γ ∼= Z2, and the allowed BPS lines have charges γL such that:

〈γL ,γ〉 ∈ Z , ∀ γ ∈ bΓSO(3)+ , and γL ∈ Γ . (41)

We then find that the lines (0, 0) and (1,0) cannot be screened. Correspondingly, we have a
magnetic one-form symmetry:

Γ [1] ≡ Hom
�

Γ/bΓSO(3)+ , U(1)
�

= Z[1]2 , (42)

which is generated by the element gZ
[1]
2 =
�1

2 , 0
�

, similarly to (26).
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BPS states and BPS lines for SO(3)−. Similar comments hold in the case of the SO(3)−
gauge theory. The SW singularities now correspond to the light states:

γM = (2,−1) , γD = (−2,2) . (43)

Here, we see that the ‘monopole’ is actually a dyon and corresponds to the I1 singularity,
while the light dyon (−2, 2) gives rise to the I4 singularity. In the SO(3)− normalisation of
the charges, γ = (m−, q−) ∈ Γ , we again have that all the allowed lines are simply γL ∈ Γ ,
and that the line (1, 0) cannot be screened. Importantly, this exactly corresponds to the line
(λm,λe) = (1, 1) in the notation of [3], as explained in appendix B.

Torsion section and one-form symmetry. The SO(3)± curve has torsion MW group:

Φ(S) = Φtor(S) = Z4 , P±Z2
=

�

−
u
6
∓
Λ2

2
, 0

�

, (44)

with the additional Z4 sections:

PZ4
= P1 =

�

u
12
−

3Λ2

4
,

iuΛ
p

2
−

iΛ3

p
2

�

, P3 = −P1 , 2PZ4
= P+Z2

, (45)

for SO(3)+, and similarly for the SO(3)− curve. The Z2 ⊂ Z4 subgroup corresponds to the
one-form symmetry under which the magnetic line γL = (m±, q±) = (1, 0) is charged. We will
give a physical interpretation of PZ4

in section 2.3.

2.1.3 The relative su(2) curve

Historically speaking, the very first Seiberg-Witten curve for the su(2) gauge theory, as pre-
sented in [4], was neither the SU(2) nor the SO(3) curve discussed above, but rather a third
curve given by:

y2 = (x −Λ2)(x +Λ2)(x + u) , (46)

so that the Coulomb branch is a modular curve for Γ (2), with [7,8,18]:

u(τ)
Λ2
=

2ϑ3(τ)4 − ϑ2(τ)4

ϑ2(τ)4
= 1+

1
8

�

η
�

τ
2

�

η(2τ)

�8

. (47)

Note, in particular, that τsu(2) =
1
2τSU(2) = 2τSO(3)+ = 2τSO(3)− − 1.5 This corresponds to yet

another normalisation of the charges, with:

bγ= (Òm,bq) =
�

m,
1
2

q
�

=
�

1
2
λm,

1
2
λe

�

, (48)

where (m, q) are the SU(2) charges, and (λm,λq) denotes the weight basis of [3] reviewed
in appendix B. In particular, the W-boson now has charge bγW = (0, 1). Additional care is
needed to interpret this charge normalisation correctly. The basic issue is that the charges
bγ corresponds exactly to the ‘allowed charge lattice’ bΓ , and as such it does not allow for a
maximal consistent set of BPS lines.

5Note that to obtain the SO(3)− version of (38), one can first do a T-transformation on the relative curve (47),
and then rescale τ by a factor of 2, as indicated.
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The Seiberg-Witten curve. By a simple change of coordinates,

x → 2x −
u
3

, y →
p

2y , (49)

we bring (46) to the Weierstrass normal form. We have:

gsu(2)
2 =

u2

3
+Λ4 , gsu(2)

3 = −
u3

27
+

uΛ4

3
, (50)

with the discriminant:
∆su(2) = Λ4
�

u2 −Λ4
�2

. (51)

We shall call this particular SW curve the relative su(2) curve. Note that we chose a particular
rescaling of the (x , y) coordinates in (49), for reasons that will become clear momentarily.

The relative su(2) curve has an I∗2 singularity at infinity, which is the expected monodromy
given the charge normalisation (48). The strong coupling singularities are now two unde-
formable I2 singularities. This means that the low-energy description at each SW singularity
should be in terms of a light hypermultiplet coupled to the low-energy photon with an elec-
tric charge

p
2. In the normalisation (48), we have the monopole bγM = (1, 0) and the dyon

bγM = (−1, 1) becoming massless at the SW singularities, which seems to be a contradiction.
In fact, bΓ should be identified with the homology lattice of the elliptic curve, with the allowed
states corresponding to homology 1-cycles [bγ] = ÒmγB + bqγA, but the correct Dirac pairing is
related to the homology pairing by a factor of 2. We then have:

〈bγ1,bγ2〉= 2 (Òm1bq2 − bq1Òm2) = 2[bγ1] · [bγ2] , (52)

to be compared to (16). The Dirac pairing is a physical choice of polarisation of the elliptic
curve [13, 14]. Here, the polarisation is fixed once we require that we should have the same
BPS quiver (and thus the same BPS spectrum) as for the SU(2) curve. Therefore, the relative
su(2) curve is not principally polarised (unlike the SU(2) and SO(3) SW curves, which are
principally polarised). Finally, let us define the physical charge:

eγ≡
p

2bγ=
1
p

2
(2m, q) . (53)

In this normalisation, we indeed find the monopole and dyons:

eγM =
p

2 (1,0) , eγD =
p

2 (−1,1) , (54)

with the ‘correct’ Dirac pairing 〈eγM ,eγD〉 = 2, and as expected from the presence of I2 singu-
larities.

Torsion section and defect group. The relative su(2) curve (50) takes the simple form:

y2 = 4(x − x1)(x − x3)(x − x3) , (55)

with the rational roots:

x1 = −
u
3

, x2 =
u
6
+
Λ2

2
, x3 =

u
6
−
Λ2

2
, (56)

which satisfy x1 + x2 + x3 = 0. It follows that we have three torsion sections of order 2:

Pi = (x i , 0) , i = 1,2, 3 , (57)
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which satisfy:

Pi + Pj =

¨

O , if i = j ,

Pk , if i ̸= j , i ̸= k ̸= j ,
(58)

with O the zero-section. We also use the notation P+ = P2, P− = P3 (and x+ = x2, x− = x3).
These sections generate the Mordell-Weil group:

Φ(S) = Z2 ⊕Z2 . (59)

While we identified (part of) the Mordell-Weil group of the ‘absolute’ curves (for SU(2) and
SO(3)±) with the corresponding Z[1]2 one-form symmetries, we shall identify the MW group
of the relative su(2) curve with the defect group of the su(2) gauge theory. We will give more
evidence for this identification in the following.

The four sections P ∈ Z2 ⊕ Z2 (including the zero-section) correspond to the four points
z = 0, 1

2 , τ2 , τ+1
2 on the elliptic fiber, as we will discuss in more detail below. It is interesting

to note that the modular group Γ (2) of the relative su(2) curve is the kernel of the homomor-
phism SL(2,Z) → SL(2,Z2) ∼= S3, where S3 exchanges the three points Pi ̸= O [25]. This
interpretation of Γ (2) will be particularly relevant when discussing the relative N = 2∗ curve
in section 3.

2.2 Gauging one-form symmetries along torsion sections

We just discussed how different choices of the SW curve for the pure su(2) gauge theory de-
termine the normalisation of the BPS spectrum, and hence determine the set of allowed line
operators. Let us now give a concrete prescription to explicitly gauge any one-form symmetry
at the level of the SW curve. We will do this in the form of three conjectures that are inspired by
elementary properties of isogenies (see appendix A.2 for further mathematical background).
These conjectures allow us, in particular, to derive the SO(3)± curves from the SU(2) curve,
and vice versa.

2.2.1 Isogenies, torsion sections and gauging: General conjectures

The torsion rational sections in the Mordell-Weil group Φ = MW(S) conjecturally determine
the one-form symmetry of the underlying rank-one 4d N = 2 theory [7]. In that previous
work, we only studied Coulomb branches with maximally-deformable singularities; in that
case, the fully mass-deformed SW curve only had I1 singularities. In the present work, we must
allow for more general deformation patterns – the physically-allowed deformation patterns
were classified in [9]. Then, the generic mass deformation of the curve contains a number
of undeformable singularities (such as the I4 singularity of the SO(3) curve given above), but
heuristic arguments suggests that, in all cases, the one-form symmetry is encoded in the torsion
sections that do not ‘interact’ with the flavour symmetry.6 In a general rank-1 theory, we have
a distinct rational elliptic surfaces at any fixed value of the relevant and/or marginal couplings
of the theory. Let Smass denote the fully mass-deformed SW geometry, at generic values of the
masses (and/or marginal couplings). We then propose the following conjectures:

Conjecture I. (Defect group.) The Seiberg-Witten curve of any relative rank-one theory Trel is
given by a non-principally-polarised elliptic curve. In this case, the defect line group of the theory
is isomorphic to the torsion part of the MW group of the mass-deformed curve:

D∼= Φtor(Smass) . (60)

6At the massless point, the flavour symmetry is encoded in the (deformable) singularities on the Coulomb
branch. At generic masses, the flavour group is broken down to a maximal torus U(1) f , and the corresponding
U(1) background vector multiplets arise from the free generators of the Mordell-Weil group, Φfree

∼= Z f [7,11].
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In all cases, this corresponds to D∼= ZN ⊕ZN for N = 2 or N = 3.

Conjecture II. (One-form symmetry.) The Seiberg-Witten curve of any absolute rank-one the-
ory T must be a principally-polarised elliptic curve. Then, the one-form symmetry Γ [1] of T is
isomorphic to a subgroup of the torsion part of the Mordell-Weil group of the mass-deformed curve:

Γ [1] ⊆ Φtor(Smass) . (61)

This subgroup can be identified by relating the absolute curve to the relative curve, as we will
explain momentarily.

Let us consider an absolute theory T with a one-form symmetry Γ [1] = Z[1]N . Then, by
Conjecture II, its SW curve E admits a rational section PZN

of order N . Any such torsion
section defines an automorphism tPZN

of the RES S, corresponding to translation by PZN
along

every smooth fiber. Then, the quotient S/〈tP〉 defines an N -to-1 homomorphism on the smooth
fibers, which extends in a well-understood fashion to the singular fibers. (See appendix A.2
for further details.) This N -isogeny along the torsion section of the curve E therefore gives us
the new Seiberg-Witten curve:

Erel = E/〈tPZN
〉 . (62)

We claim that this ‘relative curve’ is the SW curve for the relative version of the theory T . In
particular, we expect that, for generic masses, the torsion sections of this relative curve span
the group:

Φtor(Smass)∼= ZN ⊕ZN , (63)

so that Conjecture I holds true. Now, consider any torsion section P ′ of the relative curve that
generates a ZN subgroup of (63). By performing a further N -isogeny along this section, we
obtain a new principally-polarised SW curve:

E′ = Erel/〈tP ′〉 . (64)

For a particular choice of ‘inverse’ isogeny, we obtain the curve of the theory T we started with,
while more generally we obtain a new, distinct, curve for a different absolute theory with the
same local dynamics. The relation (64) identified the subgroup (61) as the one generated by
the torsion section in E = E′ that generates the dual isogeny.

Preserving the Dirac pairing: Absolute and relative curves. The isogeny defined by a
quotient along a torsion section P,

ψ : E 7→ E/〈tP〉 , (65)

preserves the holomorphic one-form d x
y . At the same time, it rescales one particular linear

combination of the geometric periods ωa, ωD defined in (11) by a factor of 1/N . It follows
that the Dirac pairing defined as in (16) is rescaled by a factor of N . On the other hand, we
always have the freedom of rescaling the curve E by an overall factor of α ∈ C∗ – that is,
we may rescale the two periods as (ωD,ωa)→ (αωD,αωa), which amounts to the rescaling
(g2, g3)→ (α−4 g2,α−6 g3), in which case the new Dirac pairing after the N -isogeny becomes:

〈γ1,γ2〉 →
N
α2
〈γ1,γ2〉 . (66)

We can therefore preserve the Dirac pairing if and only if we set α =
p

N . This is what we
will do in the following: The isogenies (62) and (64) will henceforth be understood as a
composition of the quotient isogeny (65) with the rescaling by α =

p
N . Note that, given
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0 ω′a =ωa

ωD

ω′D =
1
2ωD

(a)

1
2ωa0 ωa

ωD

ω′D =
1
2ωD

(b)

Figure 3: 2-isogenies of complex tori. (a) 2-Isogeny ψ : C/Lτ→ C/L′τ′ , with τ′ = τ
2

realized as a cyclic quotient map on Lτ lattice, on the τ direction. (b) The dual
isogeny ψ̂ : C/L′τ′ → C/Lτ is realised as a cyclic quotient map along the real axis,
leading to a new lattice isomorphic to Lτ upon expansion to standard basis.

a principally polarised SW curve for an absolute theory, the rescaling then implies that the
relative curve is not principally polarised.7

Given this discussion, we can state our conjecture about how the gauging of a one-form
symmetry affects the SW geometry:

Conjecture III. (Gauging Γ [1].) At the level of the rank-one SW geometry, the gauging of a one-
form symmetry Γ [1] = Z[1]N is the composition of two N-isogenies generated by torsion sections of
order N:

E(T ) Erel E
�

T /Γ [1]
�

.
N -isogeny N -isogeny

(67)

In general, there can be several consistent ‘gaugings’ of E(T /Γ [1]), as in the case of the SO(3)±
theories, which is reflected in the choice of a torsion section in the relative curve. As we just
explained, these N -isogenies include a rescaling by α =

p
N in order to preserve the Dirac

pairing.

2.2.2 Gauging along 2-isogenies: Relations amongst the su(2) gauge theories

Let us now focus on the case Γ [1] = Z2, which is the one relevant for the pure su(2) gauge
theories. In Weierstrass normal form, any Z2 torsion section takes the form P = (x0, 0), where
x0 is a rational root of the polynomial f (x) ≡ 4x3 − g2 x − g3. Hence, if we have any such
rational sections, we have either one such section or three of them. The 2-isogeny along P is
given explicitly by the Vélu formula (reviewed in appendix A.2), which tells us that the new
curve E/〈tP〉 is given by:

g ′2 = −g2 + 15x2
0 , g ′3 =

1
8

�

g3 − 7g2 x0 + 84x3
0

�

. (68)

Here, we included the rescaling by α =
p

2, as discussed above. Using this formula, it is
straightforward to check that the SU(2), SO(3)± and su(2) curves are all related by such 2-
isogenies. In the rest of this section, we discuss these relations in some more detail.

7Any elliptic curve admits a principal polarisation. What we are saying is that the principal polarisation of the
‘relative curve’, which would correspond to α = 1, does not give us the physical Dirac pairing. This agrees with
the general discussion in [13].
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0 ωa

SU(2) : ωD

su(2) : 1
2ωD

SO(3)+ : 1
4ωD

(a)

0 ωa

ωD

ω
su(2)
D +ωa

SO(3)− : 1
2

�

ω
su(2)
D +ωa

�

(b)

Figure 4: Isogenies of complex tori associated to the SU(2), su(2) and SO(3)± curves.
The fundamental domain of the Lsu(2) lattice is depicted in red, while those of the
LSO(3)± lattices correspond to the dashed regions in (a) and (b), respectively.

The SU(2) curve. Let us start with the Γ 0(4) curve for the 4d pure SU(2) theory, with the
Weierstrass form (8). The rational elliptic surface has a Z2 torsion section (27), corresponding
to the rational root x0 =

u
3 of f (x). Note that there are 2 more distinct roots:

x± =
1
6

�

−u± 3
p

u2 −Λ4
�

. (69)

On general grounds, these three roots must correspond to the values of the Weierstrass ℘ func-
tion at the half-periods of the associated lattice L = Zωa+ZωD spanned by the geometric pe-
riods. (See appendix A.3 for a review of relevant facts about elliptic curve, and equation (A.29)
in particular.) Recalling that τ = ωD

ωa
by definition, we can check that PZ2

= (x0, 0) maps to

the half-period 1
2ωD on the complex plane:

℘
�ωD

2

�

=
u
3

. (70)

It is then particularly easy to visualise the 2-isogeny along PZ2
on the torus C/L, since it simply

corresponds to a further quotienting by that half-period, as shown in figure 3. Note that, under
this 2-isogeny, the effective gauge coupling of the SU(2) theory maps to:

τSU(2) 7→ τsu(2) =
τSU(2)

2
, (71)

irrespective of the choice of rescaling parameter α.

The su(2) curve. One easily checks that the 2-isogeny along the Z2 torsion section of the
SU(2) curve (8) gives us precisely the relative su(2) curve (50). Keeping the rescaling param-
eter α arbitrary, we obtain the quotient curve:

g2(u) = 4α−4 gsu(2)
2 (u) , g3(u) = 8α−6 gsu(2)

3 (u) . (72)

Here, we have the new periods α
�ωD

2 , ωa

�

, which means that the magnetic-electric charges
(m, q) of the SU(2) theory are mapped to 1

α(2m, q), and we then recover (53) by setting
α=
p

2. Let Lsu(2) denote the period lattice of the relative curve. The Z2⊕Z2 torsion sections
(57) correspond to the three half-periods. In this case, we have:

℘

�

ωsu(2)
a

2

�

= x1 , ℘

�

ω
su(2)
D

2

�

= x2 , ℘

�

ωsu(2)
a +ωsu(2)

D

2

�

= x3 , (73)
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I∗2

I2 I2

I∗4 I∗1

I4

I∗1

I4

2-iso 2-iso

2-iso 4-iso
Λ2→−Λ2

Z2

SU(2)

su(2)

Z2 ⊕Z2

Z4

SO(3)+

Z4

SO(3)−

Figure 5: Summary of the relations between the relative su(2) curve (in the middle)
and the three absolute curves. Here each circle represents the Coulomb branch with
its singularity structure (unlabelled crosses are I1 singularities). The torsion MW
group Φtor(S) is indicated under each CB. The direct relation between SO(3)+ and
SO(3)− is either through a 4-isogeny or through the explicit substitution Λ2→−Λ2.
The two operations can be combined as discussed in subsection 2.3.

with x i given in (56). Performing a quotient of the generic fiber along any of the three Z2
section is again straightforward. For instance, the quotient along P1 gives us back the SU(2)
curve, since it now corresponds to a quotient along the half-period ωa

2 , as shown in figure 3.
Let us also note that the section P1 intersects both I2 singular fibers of the SW geometry

non-trivially, while P2, P3 each intersect a distinct I2 fibre. According to general results on
isogenies (see appendix A.2), this implies that the quotient along P1 gives us back the two I1
singularities, as expected, while the quotient along P2 or P3 gives us an I1 and an I4 singularity.
This of course corresponds to the SO(3) curves discussed above. The relations between the
different curves are shown in figure 5.

The SO(3)± curves. The isogeny along the P+ = P2 section gives us a quotient along the
half-period 1

2ω
su(2)
D . This leads to a period lattice LSO(3)+ with τSO(3) = 1

2τ
su(2) = 1

4τSU(2),
as depicted in figure 4. Using the explicit 2-isogeny (68), we exactly recover the principally-
polarised SO(3)+ curve (34). Note that this indeed leads to the SO(3)+ periods given in (30).

Next, let us consider the isogeny along P− = P3, which is a further quotient of the relative
curve C/Lsu(2) quotient along the ‘diagonal’ half-period 1

2ω
su(2)
3 , with ωsu(2)

3 ≡ωsu(2)
a +ωsu(2)

D .
To perform this quotient, it is most convenient to first perform a T transformation on the Lsu(2)
lattice, to obtain a shifted lattice eLsu(2) with:

τsu(2) 7→ τ̃su(2) = τsu(2) + 1=
ω

su(2)
D +ωsu(2)

a

ω
su(2)
a

=
ω

su(2)
3

ω
su(2)
a

. (74)
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0 ω
SO(3)+
a

ω
SO(3)+
D

Figure 6: Explicit depiction of the 4-isogeny on the generic fiber of the SO(3)+ curve,
with the Z4 translation generated by the blue dots, and PZ2

= 2PZ4
generated by the

red dot. The result of the 4-isogeny is shown in dark grey. After a rescaling by α= 2,
this gives us the SO(3)− curve.

The quotient by 1
2ω

su(2)
3 is then straightforward, as shown in figure 4. We can also check that

the explicit 2-isogeny (68) leads precisely to the SO(3)− curve given in (34). Note that the
shift (74) also matches with (31).

Note that the charge lattice Λ ∼= Z2 spanned by λ ≡ (λm,λe) is not realised by any of the
homology lattices of these curves. Instead, the homology lattice of the relative su(2) curve only
allows for the states (λm,λe) ∈ 2Z⊕ 2Z, according to (48). In other words, we see that the
lattice Λ corresponds to the lattice of ‘half-periods’ of the relative curve Erel. As we perform
any 2-isogeny along a Z2 torsion section P, some half-period becomes a period in the new
curve E = Erel/〈tP〉. In this sense, once we accept Conjecture I above, the mathematics of
isogenies completely parallels the standard discussion of allowed defect lines [3] – for rank-1
SW geometry, reading between the lines is equivalent to reading between the rational sections.

2.3 Z4 torsion and non-invertible symmetry in the SO(3) gauge theory

Let us further investigate the Z4 torsion sections of the SO(3) curves. It turns out that a
4-isogeny (including a rescaling α =

p
4) along the torsion section (45) exchanges the two

SO(3)± curves:

ψZ4
: E(SO(3)+) 7→

p
4 ◦ E(SO(3)+)/〈tPZ4

〉= E(SO(3)−) , (75)

as shown in figure 5. This is depicted in figure 6. We have also seen that a shift of the θ -angle
by 2π (corresponding to Λ2→−Λ2) exchanges the two SO(3) curves. In particular:

θ → θ + 2π : E(SO(3)−) 7→ E(SO(3)+) . (76)

Hence, the composition of (76) with (75) is a symmetry of the SO(3)+ curve, which we denote
by:

N̂ ≡ (θ → θ + 2π) ◦ψZ4
. (77)

We should therefore interpret this action in terms of the physics of the SO(3)+ gauge theory.
As mentioned above, the SU(2) N = 2 gauge theory has a mixed anomaly between the

Z[1]2 one-form symmetry and a Z[0]2 subgroup of the Z8 R-symmetry. The corresponding 5d
anomaly theory takes the form [23]:

iπ
2

∫

M5

z∪P(B) , (78)

where z is a Z8 background gauge field, while B is the Z[1]2 background gauge field and P(B) is

its Pontryagin square. When gauging Z[1]2 to obtain the SO(3)+ theory, we loose the action of
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the spontaneously-broken Z[0]2 in the infrared description (indeed, the SO(3) Coulomb branch
geometry is not symmetric under u → −u). Interestingly, due to the particular form the of
the mixed anomaly (78), the Z[0]2 symmetry of the SU(2) theory implies the existence of a
non-invertible symmetry of the SO(3)+ N = 2 gauge theory [26], denoted by N . We propose
that the action N̂ defined in (77) is precisely the imprint of this non-invertible symmetry N
into the Mordell-Weil group of the SO(3)+ curve (and similarly for the SO(3)− theory).

3 The 4d N = 2∗ su(2) curves

Another interesting example of a 4d N = 2 gauge theory with a Z2 one-form symmetry is the
N = 2∗ theory, namely the su(2) vector multiplet coupled to one massive adjoint hypermul-
tiplet. In the massless limit, this gives us the 4d N = 4 SYM theory with gauge group su(2),
which is superconformal. The massless curve has the singularity structure (I∗0; I∗0).

In the classification programme of 4d N = 2 SCFTs of [9, 27–29], there are three SW
geometries with this massless limit. The first one has a fully-deformable I∗0 in the bulk (with
the deformation pattern being I∗0 → 6I1). It corresponds to the SU(2) N f = 4 gauge theory [5];
see [30] for a recent detailed analysis of that SW geometry. The other two deformation patterns
correspond to the N = 2∗ theory, having only three singularities in the maximally-deformed
phase; two of those correspond to the monopole and dyon points of the pure N = 2 SYM
theory, with the additional one being due to the adjoint hypermultiplet becoming light. The
two distinct SW geometries have deformation patterns I∗0 → 2I1, I4 and I∗0 → 3I2, respectively.
Crucially, they are related to one another by 2-isogenies. This gives us another instance of
the general discussion of section 2.2: The (I∗0; 3I2) SW geometry corresponds to the relative
su(2) N = 2∗ curve, while the (I∗0, 2I1, I4) corresponds to the absolute N = 2∗ curve. This
interpretation was first discussed in [13]. Here, we further elaborate on this crucial distinction.
In particular, we explain the explicit relation between the curves and we expound on the action
of S-duality in the presence of the mass deformation.

3.1 The relative su(2) N = 2∗ curve

The (I∗0; 3I2) N = 2∗ geometry was originally discussed in [4], where it was written as:

y2 =
3
∏

i=1

�

x + ei(τuv)eu−
1
4

e2
j (τuv)m

2
�

, eu= u+
1
8

e1(τuv)m
2 . (79)

Here, the CB parameter u is defined as in (7) for the pure SU(2)N = 2 theory, and ei ≡ ei(τuv)
are modular forms of the marginal UV coupling, τuv, with the property that

∑3
i=1 ei = 0.

Various useful identities for these modular forms are collected in appendix A.4. The shifted
Coulomb branch parameter eu is invariant under the SL(2,Z) action of S-duality on the UV
gauge coupling, τuv, of the N = 4 theory.

By a simple change of coordinates, we can bring this curve to Weierstrass normal form.
Here, it is important to rescale the curve by a factor of α =

p
2, similarly to the discussion in

section 2.1.3. We then have found our relative su(2) N = 2∗ curve:

y2 = 4
3
∏

i=1

�

x − bfi

�

, bfi ≡ −
1
2

eieu+
1
8

m2

�

e2
i −

1
3

3
∑

k=1

e2
k

�

, (80)

where the roots bfi obviously satisfy
∑3

i=1
bfi = 0. This can be written in terms of Eisenstein
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series Ek in quv = e2πiτuv , as follows:

g2(eu) =
1
27

�

9E4eu
2 −

3
2

E6m2
eu+

1
16

E2
4 m4
�

,

g3(eu) = −
1

729

�

27E6eu
3 −

27
4

E2
4 m2
eu2 +

9
16

E4E6m4
eu−

1
64
(2E2

6 − E3
4)m

6
�

.
(81)

The discriminant reads:

∆su(2) N=2∗ =∆0(τuv)
3
∏

i=1

�

eu+
1
4

ei m2
�2

, ∆0(τuv)≡
1
27

�

E3
4 − E2

6

�

, (82)

therefore the three I2 singular fibers, I (i)2 , are located at eui ≡ −
1
4 eim

2. The Z2 ⊕ Z2 torsion
sections are given by:

Pi =
�

1
24
(e2

i + 2e jek)m
2 −

1
2

eieu, 0
�

, j, k ̸= i , j ̸= k , (83)

satisfying 2Pi =O, and Pi + Pj = Pk for i ̸= j and k ̸= i, j. One can check that Pi intersects the

node of the I ( j)2 singular fibres if j ̸= i. This implies that the 2-isogeny along the section Pi will
give us a new curve with bulk singularities (2I1, I4).

3.1.1 BPS states and charge normalisation

Analogously to the case of the pure su(2) relative theory, the light BPS states for this theory
have physical charges:

γ1 ≡ γA =
p

2(0,−1) , γ2 ≡ γM =
p

2(1, 0) , γ3 ≡ γD =
p

2(−1, 1) , (84)

corresponding to the adjoint hypermultiplet and the SU(2) monopole and dyon, respectively.
The BPS state γi becomes massless at the point eui . The charge normalisation is the same as in
(53). We then have the well-known BPS quiver for the N = 2∗ theory:

γM γD

γA

. (85)

This matches the recent discussion in [8], where the BPS quiver was derived from the Γ (2)
fundamental domain of the theory [30]. This domain is shown in figure 7a, where we also
indicate a slightly different basis of light BPS states. Note, however, that a mutation on the
dyon node γD of the BPS quiver leads us back to (84).

3.1.2 The S-duality action

The 4dN = 4 SYM theory enjoys an exact S-duality, which is realised explicitly as an invariance
of the relative SW curve under SL(2,Z) transformations of τuv, the UV gauge coupling. Let us
denote by S and T the standard generators of this S-duality group. Let us recall that, in the
case of the absolute theories SU(2) and SO(3)±, we have the relations [3]:

SU(2) SO(3)+ SO(3)−
S T

T S . (86)
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p
2(−2, 1)
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p

4(−1, 1) (1,-2)

(b)

Figure 7: Fundamental domains for the (a) relative (Γ (2)) and (b) absolute SU(2)
(Γ 0(4)) SW curves of the 4d N = 2∗ theory.

We also note that S and T act on the modular forms ei as:

S : (e1 , e2 , e3) 7→
�

τ2
uve2 , τ2

uve1 ,τ2
uve3

�

, T : (e1 , e2 , e3) 7→ (e1 , e3 , e2) , (87)

and on the mass parameter as:

S : m 7→
m
τuv

, T : m 7→ m . (88)

Recall that this S-duality is best understood from the point of view of the 6d N = (2, 0)
realisation of the theory, wherein the compactification torus has modular parameter τuv and
the mass m arises as a background flat connection. The curve (80) is manifestly invariant
under the full SL(2,Z) S-duality action. The CB parameter eu is now a function of both τ
and τuv. Its explicit form was found in [30, 31] and can be written in terms of the modular
λ-function, which is the Hauptmodul of Γ (2) – see appendix A.4. A possible solution for
eu= eu(τ,τuv) is given below, which is chosen to be consistent with the pure su(2) limit, as we
discuss momentarily:

eu(τ,τuv) =
1
12

m2ϑ3(τuv)
4
λ(τuv)2 + 2
�

λ(τ)− 1
�

λ(τuv)−λ(τ)
λ(τuv)−λ(τ)

, λ=
ϑ4

2

ϑ4
3

. (89)

An important difference compared to SQCD with N f = 4, however, is that the mass param-
eter transforms non-trivially under SL(2,Z) transformations, as mentioned above. As such,
eu(τ,τuv) becomes a bimodular form under Γ (2)τ× Γ (2)τuv

, of weights (0,0). Importantly, it is
only the action of γ ∈ SL(2,Z) on both τ and τuv simultaneously that leaves eu(τ,τuv) invari-
ant. Thus, eu(τ,τuv) is a bimodular form for the triple (Γ (2), Γ (2); SL(2,Z)), in the notation
of [30].

The expression (89) emphasizes another important aspect. In the massless limit, we have
the singularity structure (I∗0; I∗0), as can be readily seen from (81). In this case, the effective
gauge coupling is constant over the whole Coulomb branch. From (89), it is clear that this can
only happen for:

τ(u)|m=0 = τuv . (90)

This point will be important when discussing the absolute curves.
The light states (84) are given in the SU(2) frame, and S-duality acts on the charges as:

S : γ= (m, q) 7→ (−q, m) , T : γ= (m, q) 7→ (m, q−m) . (91)
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This means that, going from the SU(2) to the SO(3)+ description, we exchange the monopole
state γM with the adjoint hypermultiplet state γA and leave the dyon unaffected, while go-
ing from SO(3)+ to SO(3)− we exchange the dyon and the monopole and leave the adjoint
hypermultiplet unaffected.

3.1.3 Weak coupling limit and flavour decoupling

Let us consider the limit to the pure su(2) N = 2 gauge theory. This limit was discussed in [4,
31, 32]. While the three I2 singularities are exchanged by S-duality, the flavour decoupling
limit m→∞ must obviously break this symmetry, sending one I2 singularity to infinity:

�

I∗0; 3I2

�

→
�

I∗2; 2I2

�

, (92)

in order to obtain the relative su(2) curve. In our conventions above, the pure SU(2) Coulomb
branch parameter is:

u= eu−
1
8

e1(τuv)m
2 , (93)

where we fix an S-duality frame in which τuv is interpreted as the SU(2) gauge coupling. At
small quv, the modular forms ei have an expansion:

e1 =
2
3
+ 16quv + 16q2

uv + · · · , e2 = −
1
3
− 8q1/2

uv − 8quv + · · · , e3 = −
1
3
+ 8q1/2

uv − 8quv + · · · .

The flavour decoupling limit is given by:

τuv→ i∞ , m→∞ , Λ2 ≡ 2m2pquv fixed, (94)

where quv and the dynamical scale Λ of the pure gauge theory are matched at the scale set by
the adjoint mass. One easily checks that the relative N = 2∗ curve (81) reduces to the pure
su(2) relative curve (50) in this limit. One finds:

g2 ≈ gsu(2)
2 +

32uΛ4

3m2
, g3 ≈ gsu(2)

3 +
4Λ4(5u2 + 3Λ4)

9m2
, (95)

up to higher-order terms in 1/m. Let us note that the solution (89) is chosen such that u(τ,τuv)
is consistent with the u(τ) parameter of the su(2) curve in (47).

Moreover, in this limit, the I (i)2 singularities are located at:

u(1) = −
m2

4
−

3Λ4

2m2
, u(2) = Λ2 +

Λ6

m4
, u(3) = −Λ2 −

Λ6

m4
, (96)

in agreement with the identification of BPS states given in (84). In particular, u(1) is the
location of the hypermultiplet states, which in the weak-coupling limit becomes massless at
4u≈ −m2, namely at 2a±m= 0. Defining u as in (93), we took the weak-coupling limit in the
‘SU(2) frame’, but since the three singularities are SL(2,Z)-covariant, the other S-dual frames
give us the same exact result, once we define u appropriately. Thus, the N = 2∗ relative curve
gives us the relative su(2) curve, as expected from (92). Next, we will consider the absolute
N = 2∗ curve. In that case, the weak coupling limit will depend on the duality frame, giving
rise to the SU(2) and SO(3)± absolute curves in the appropriate limits.
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(F)

(SF)

(TF)

τS
uv ≡ −

1
τuv

τS
uv + 1

τuv

Figure 8: Fundamental domain for Γ 0(2), the S-duality group for the N = 4 SYM
theory with gauge algebra su(2). Here a point on the upper-half-plane is identified
with τS

uv ≡ −
1
τuv

, where τuv is the SU(2) gauge coupling and τS
uv is the SO(3)+ gauge

coupling in the S-dual frame.

3.2 The absolute N = 2∗ curve

The N = 2∗ Seiberg-Witten curve with deformation pattern I∗0 → I4, 2I1 first appeared in [33].
It was further studied in [27], where it was written as:

g2(v) =
1
3

�

(1+ 3Θ)v2 + 8µ2
1Θv + 4µ4 Θ2
�

,

g3(v) =
1

27

�

(9Θ− 1)v3 + 3µ2Θ(5+ 3Θ)v2 + 24µ4Θ2v + 8µ6Θ3
�

.
(97)

Here, v is a Coulomb branch parameter, µ is a mass and Θ a marginal coupling, with the
conformal point recovered at µ= 0.8 The discriminant reads:

∆(v) = Θ(1−Θ)2v4(v2 + 2µ2v +µ4Θ) . (98)

This curve has Φtor = Z2, with the 2-torsion section given by:

P =
�

−
2
3
(v +µ2Θ), 0
�

. (99)

This curve can be obtained from the relative curve Erel in (81) using the explicit 2-isogeny
along any of the sections Pi in (83). In this way, we obtain the absolute theories:

E[SU(2)] = Erel/〈tP1
〉 , E[SO(3)+] = Erel/〈tP2

〉 , E[SO(3)−] = Erel/〈tP3
〉 , (100)

where we include the rescaling by α=
p

2 as usual. Indeed, the absolute curves are principally
polarised while the relative curve was not. Focussing on the SU(2) duality frame with the CB
parameter (93), we find the relations:

v = −
3
2

e1

�

u+
3
8

e1m2
�

, µ=
3
4

e1m , (101)

with the marginal parameter Θ given in terms of the UV gauge coupling by:

Θ(τuv) =
8
9
+

4
9

e2e3

e2
1

=
4ϑ4

4

�

ϑ4
2 + ϑ

4
4

�

�

ϑ4
3 + ϑ

4
4

�2 , (102)

8In [27], the parameters v, Θ and µ are denoted by u, α2, and m, respectively. We also rescaled the curve by a
factor α=

p
2.
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Figure 9: Coulomb branch geometries for the N = 2∗ curves. From the relative curve
with Z2⊕Z2 torsion, whose CB geometry is shown in the middle, we obtain the three
absolute curves as indicated. The absolute curves are also related to each other by
the action of the S-duality group Γ 0(2) acting on the UV gauge coupling.

written here in terms of the Jacobi functions ϑ(τuv) reviewed in appendix A.4, which satisfy
the relation ϑ4

3 = ϑ
4
2 + ϑ

4
4. Note that Θ(τuv) is invariant under T -transformations, as well as

under ST2S-transformations. Thus, this is a modular function for Γ0(2), an index-3 congruence
subgroup of PSL(2,Z), which is indeed the S-duality group of the SU(2)N = 4 SYM theory [3].
To see how this becomes manifest, consider again the massless limit of the curve µ→ 0. Then,
τ(u)|µ=0 = 2τuv throughout the whole Coulomb branch, and, upon some rescaling of the SW
curve, the only dependence on τuv will be through the Θ function.

The map (101)-(102) was already worked out in [27, 33], and the correct interpretation
of the two distinct SW curves in terms of the relative and absolute theories was first given
in [13]. In S-duality frames for τuv that correspond to SO(3)±, the map between parameters
can be obtained from (101)-(102) by following the transformations (86). In particular, one
finds:

ΘS =
8
9
+

4
9

e1e3

e2
2

=
4ϑ4

2ϑ
4
3
�

ϑ4
2 + ϑ

4
3

�2 , ΘTS =
8
9
+

4
9

e1e2

e2
3

= −
4ϑ4

2ϑ
4
4
�

ϑ4
2 − ϑ

4
4

�2 , (103)

where ΘS is obtained from Θ by a S-transformation, and similarly for ΘTS . Here, ΘS is a
modular function for Γ 0(2), and it is written in terms of the τS

uv parameter that spans the
upper-half-plane shown in figure 8.
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3.2.1 The absolute SU(2) N = 2∗ curve

Following the 2-isogeny from the relative curve in the SU(2) frame, we find the absolute curve:

gSU(2)N=2∗

2 =
1

768

�

64u2
�

ϑ8
2 + 16ϑ4

4ϑ
4
2 + 16ϑ8

4

�

+ 16m2u
�

ϑ4
2 + 2ϑ4

4

�

ϑ8
2

+m4
�

ϑ8
2 − 12ϑ4

4ϑ
4
2 − 12ϑ8

4

�

ϑ8
2

�

,

gSU(2)N=2∗

3 =
1

110592

�

512u3
�

ϑ4
2 + 2ϑ4

4

� �

ϑ8
2 − 32ϑ4

4ϑ
4
2 − 32ϑ8

4

�

+ 192m2u2
�

ϑ8
2 − 8ϑ4

4ϑ
4
2 − 8ϑ8

4

�

ϑ8
2

+ 24m4u
�

ϑ12
2 + 14ϑ4

4ϑ
8
2 + 36ϑ8

4ϑ
4
2 + 24ϑ12

4

�

ϑ8
2

+m6
�

ϑ8
2 + 36ϑ4

4ϑ
4
2 + 36ϑ8

4

�

ϑ16
2

�

,

(104)

with the discriminant:

∆SU(2)N=2∗ =
ϑ16

2 ϑ
4
3ϑ

4
4

16

�

u+
m2

8
(ϑ4

3 + ϑ
4
4)

�4�

u2 −
m4

64
ϑ8

2

�

. (105)

Here, all Jacobi theta functions depend on the τuv parameter of the relative curve. That is,
the isogeny implemented as a quotient by the Z2 torsion subgroup generated by P1 will only
act on τ. However, this creates a ‘mismatch’ between the IR and UV couplings, as we will see
momentarily.

It is straightforward to take the weak-coupling and large-mass limit (94) on this curve, and
one reproduces exactly the absolute SU(2) curve (8):

gSU(2)N=2∗

2 ≈ gSU(2)
2 +

8uΛ4

3m2
, gSU(2)N=2∗

3 ≈ gSU(2)
3 −

4Λ4(2u2 − 3Λ4)
9m2

. (106)

In that limit, the three singularities located at:

u(1) = −
m2

8

�

ϑ4
3 + ϑ

4
4

�

, u(2) =
m2

8
ϑ4

2 , u(3) = −
m2

8
ϑ4

2 , (107)

have the same weak-coupling limit as in (96). This identifies the I4 singularity as the
adjoint hypermultiplet singularity, so that the m → ∞ limit realises the geometric limit
(I∗0; I4, 2I2)→ (I∗4; 2I1).

To see how the S-duality group manifests itself on the curve, we first look at the function
u= u
�

τSU(2),τuv

�

. For this, we introduce the Hauptmodul of Γ 0(4), as in (19):

f (τ) =
ϑ2(τ)4 + ϑ3(τ)4

2ϑ2(τ)2ϑ3(τ)2
. (108)

Then, we find that a solution consistent with the decoupling limit to (19) and (89) is given by:

u
�

τSU(2),τuv

�

=
1
8

m2ϑ2(τuv)
4

�

f (τSU(2)) + 1
�

λ(τuv)− 2 f (τSU(2))
�

f (τSU(2)) + 1
�

λ(τuv)− 2
, (109)

with the modular λ function as defined in (89) and appendix A.4. This is now a bimodular
form under Γ 0(4)τ × Γ (2)τuv

. This, in fact, was to be expected from the u(τ,τuv) expression
(89) of the relative curve, which was a bimodular form under Γ (2)× Γ (2), since the 2-isogeny
acts by:

τsu(2) 7→ τSU(2) = 2τsu(2) . (110)
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However, the isogeny does not affect the UV parameter τuv. As a result, in the massless limit
we have the ‘mismatch’ in couplings: τSU(2)(u) = 2τuv, throughout the entire Coulomb branch.
For this reason, we can introduce a renormalized parameter τuv

SU(2) = 2τuv. We should stress,
however, that the S-duality of the N = 4 theory acts on the τuv parameter of the relative
curve, rather than on τuv

SU(2). As such, we would expect the SU(2) curve to be invariant under

simultaneous T2-transformations on τSU(2) and τuv
SU(2), which correspond to T-transformations

on the parameters of the relative curve.
To see this invariance in the new normalization, we first notice that λ

�

τ
2

�

= 2
1+ f (τ) , which

leads to:

u (τ,τuv) =
1
2

m2ϑ2 (τuv)
2 ϑ3 (τuv)

2 f (τuv) f (τ)− 1
f (τuv)− f (τ)

, (111)

where τ and τuv correspond to τSU(2) and τuv
SU(2), respectively. Thus, u(τ,τuv)

m2 becomes now a

bimodular form under the triple
�

Γ 0(4), Γ 0(4); Γ 0(2)
�

[30]. Moreover, uSU(2) is, in particular,
invariant under a simultaneous T2-transformation as expected. Hence, this explains the T-
invariance of the SU(2) global form in (86). As we will see momentarily, the S-transformation
will lead to the SO(3)+ global form.

Let us also mention that, in the new normalization for the UV coupling, the curve (104)
can be expressed as:

gSU(2)N=2∗

2 =
1
3
ϑ4

2ϑ
4
3

�

4u2(−3+ 4 f 2) + 4m2ϑ2
2ϑ

2
3uf +m4ϑ4

2ϑ
4
3(4− 3 f 2)
�

,

gSU(2)N=2∗

3 =
1
27
ϑ6

2ϑ
6
3

�

2 f u+m2ϑ2
2ϑ

2
3

��

4u2
�

8 f 2 − 9
�

− 4m2ϑ2
2ϑ

2
3uf +m4ϑ4

2ϑ
4
3

�

8− 9 f 2
�

�

,

(112)
which makes the Γ 0(4) dependence on τuv

SU(2) manifest.

A fundamental domain for the absolute N = 2∗ SU(2) curve is, in fact, the Γ 0(4) domain
of the pure SU(2) theory shown in figure 1a, with the distinction that the width-4 cusp at
infinity will now correspond to the adjoint hypermultiplet. Thus, the light BPS states for this
theory are:

γ1 ≡ γA = (0,−2) , γ2 ≡ γM = (1, 0) , γ3 ≡ γD = (−1,2) , (113)

reproducing the N = 2∗ quiver (85). This is, of course, in agreement with the fundamental
domain shown in 7b, with the two bases being related by a mutation on the γD node of the
quiver.

3.2.2 The absolute SO(3)± N = 2∗ curves

The action of the S-duality group permutes the global structure of the su(2) gauge group as
in (86), with the UV gauge coupling transforming as shown in figure 8. Note that, here, we
are referring to the UV coupling in the normalization of the relative theory τuv

su(2). We can thus
easily work out the absolute SW curves in the SO(3)± duality frames. The simplest way to
derive the SO(3)+ curve is to follow the isogeny along the P2 section of the relative curve. The
relations between relative and absolute curves is summarised in figure 9. We can equivalently
obtain the SO(3)+ curve through an S-duality transformation of the absolute curve written
above in the SU(2) frame. The only subtlety is that the duality-invariant Coulomb-branch
parameter is eu and not u, so that under S we have the non-trivial transformation of u as:

S : uSU(2) 7→ uSO(3)+ +
1
8
(e1 − e2)m

2 = uSO(3)+ +
1
8
ϑ4

3m2 . (114)

Note that the S transformations acts simultaneously on the (τ,τuv) couplings, which, here,
are the couplings of the relative curve.
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As for the absolute SU(2) curve, we can bring the curve in an SO(3)+ normalization, where:

τSO(3)+ =
1
2
τsu(2) =

1
4
τSU(2) . (115)

Doing this for both the UV and IR couplings, we have:

gSO(3)+N=2∗

2 =
1

3072

�

256u2(ϑ8
3 − ϑ

4
3ϑ

4
4 + ϑ

8
4)− 32m2ϑ4

3ϑ
4
4(ϑ

4
3 + ϑ

4
4)u

+m4ϑ4
3ϑ

4
4(−3ϑ8

3 + 10ϑ4
3ϑ

4
4 − 3ϑ8

4)
�

,

gSO(3)+N=2∗

3 =
1

442368

�

4(ϑ4
3 + ϑ

4
4)u−m2ϑ4

3ϑ
4
4

��

m4ϑ4
3ϑ

4
4(−9ϑ8

3 + 14ϑ4
3ϑ

4
4 − 9ϑ8

4)

+ 256u2(2ϑ8
3 − 5ϑ4

3ϑ
4
4 + 2ϑ8

4) + 32m2ϑ4
3ϑ

4
4(ϑ

4
3 + ϑ

4
4)u
�

,

(116)

with the discriminant:

∆SO(3)+N=2∗ =
ϑ8

2ϑ
8
3ϑ

8
4

256

�

u2 −
1

64
m4ϑ4

3ϑ
4
4

� �

u−
1

16
m2(ϑ4

3 + ϑ
4
4)
�4

. (117)

Next, we introduce the Γ0(4) modular function:

f̃ (τ) = 1+
8ϑ3(τ)2ϑ4(τ)2
�

ϑ3(τ)2 − ϑ4(τ)2
�2 . (118)

Note that λ(2τ) = 2
�

1+ ef (τ)
�−1

. We then find that, in the SO(3)+ normalization, the CB
parameter can be expressed as:

uSO(3)+(τ,τuv) = −
1
8

m2ϑ3(τuv)
2ϑ4(τuv)

2 2+ ef (τuv) + ef (τ)
ef (τ)− ef (τuv)

. (119)

As such, u(τ,τuv) is a bimodular form under the triple (Γ0(4), Γ0(4); Γ0(2)), meaning that it is
invariant under Γ0(2) under simultaneous transformations on (τ,τuv), as also shown in [30].

The expression (119) can be obtained directly from (116). Alternatively, as already alluded
to, we can perform an S-transformation on the SU(2) form (111). We mentioned before that
S-duality acts on the τsu(2) couplings of the relative curve. As such, under an S transformation,
we still have:

τSU(2) =
1
2
τsu(2) 7→

1
2

�

−
1

τsu(2)

�

= −
1

τSO(3)+
, (120)

for the both the UV and IR coupling. Thus, using the identity f
�

− 1
τ

�

= 3+ef (τ)
−1+ef (τ)

, one finds that

the SO(3)+ CB parameter (119) is precisely the S transformation of the SU(2) form (111).9

We can similarly write down the SO(3)− N = 2∗ curve, which is obtained from the relative
curve by an isogeny along P3. It is also simply obtained by a T transformation on the SO(3)+
N = 2∗ curve, which, in the SO(3) normalization, acts as:

τSO(3)− = τSO(3)+ +
1
2

. (121)

Moreover, since the eu parameter is the one invariant under SL(2,Z), we have uSO(3)−=eu−
1
8 e3 m2,

from which we find:

uSO(3)−(τ,τuv) = −
m2

32

�

ϑ2
3(τuv) + ϑ

2
4(τuv)
�2 −2+ ef (τuv) + ef (τ)
ef (τ)− ef (τuv)

. (122)

9Note that the overall rescaling comes from the transformation of the mass term in (88), which involves the
coupling of the relative curve.
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Finally, the weak-coupling and large-mass limit on the SO(3)± N = 2∗ curves sends one I1
singularity to infinity, thus reproducing the absolute pure SO(3)± curves (34):

gSO(3)±N=2∗

2 ≈ gSO(3)±
2 ±

2Λ2
�

5u± 3Λ2
� �

3u± 5Λ2
�

3m2
,

gSO(3)±N=2∗

3 ≈ gSO(3)±
3 ±

Λ2
�

21u3 ± 173Λ2u2 + 231Λ4u± 87Λ6
�

18m2
.

(123)

Indeed, labelling the singular points u(i) SO(3)+ curve, at which the discriminant (117) van-
ishes, as in (107), the weak coupling limit in the SO(3)+ duality frame reproduces (96). Sim-
ilar considerations hold for the SO(3)− curve by simply exchanging u(2) and u(3).

We have already mentioned the fundamental domains for the su(2) and SU(2) curves,
which are shown in figure 7. We can also work out the domains for SO(3)+ and SO(3)−
from the transformation of τ, as discussed around (33). For completeness, we list below the
positions of the cusps on the upper half-plane, which can be used to reproduce the expected
light BPS states:

G cusp positions cusp widths τ

SU(2) (0, 1,2) (1,4, 1) τSU(2) = 2τsu(2)

su(2)
�

0, 1
2 , 1
�

(2,2, 2) τsu(2)

SO(3)+
�

0, 1
4 , 1

2

�

(4,1, 1) τSO(3)+ =
1
2τsu(2)

SO(3)−
�1

2 , 3
4 , 1
�

(1,1, 4) τSO(3)− = τSO(3)+ +
1
2

(124)

4 Five-dimensional E1[su(2)] theories on S1

In the rest of this paper, we will generalise the previous discussion to SW geometries for higher-
dimensional supersymmetric field theories compactified to 4d. Let us first consider any rank-
one 5d SCFT T5d on a circle S1 of finite radius β , giving us a 4d N = 2 KK theory TKK ≡ DS1T5d
with a one-dimensional Coulomb branch. In this case, the Coulomb-branch order parameter
is the dimensionless expectation value of a half-BPS line, W , wrapping the circle. It is denoted
by:

U = 〈W 〉 . (125)

Let us further assume that the 5d theory has a one-form symmetry Γ [1]5d = Zn. Upon circle
compactification, we obtain both a 1-form and a 0-form symmetry in the 4d KK theory, which
we denote by:

Γ
[1]
5d = Zn → Γ [1] = Z[1]n , Γ [0] = Z[0]n . (126)

If Γ [1]5d is non-anomalous, we can gauge either or both of the symmetries Γ [1] and Γ [0], leading
to a rich structure of 4d N = 2 KK theories. In particular, we have the following commutative
diagram of absolute theories:

T [1,0]
KK

T [1,2]
B .T [1,0]

A

T [1,2]
KK

/Γ [0]
/Γ
[1]

/Γ
[1]/Γ [0]

(127)
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Here, TA and TB denote the theory obtained by gauging either the 1-form or the 0-form sym-
metry of the original theory, TA ≡ TKK/Γ

[1] and TB ≡ TKK/Γ
[0], and the superscript denotes the

discrete symmetries of the theory. In particular, we have T [1,2]
KK with a 1-form and a 2-form

symmetry, which corresponds to the circle reduction of the 5d SCFT T5d/Γ
[1]
5d , which indeed has

a 2-form symmetry.10 At the level of the SW geometry, the gauging of the one-form symmetry
is performed through isogenies along torsion sections, as explained in the previous section.
(In particular, there can be several consistent gaugings of Γ [1].) The gauging of the 0-form
symmetry, on the other hand, is easily understood as a ‘folding’ of the U-plane, following the
careful analysis of [34]. The 0-form symmetry acts on the U-plane by a phase dictated by the
charge of the 5d line W under Γ [1]5d . We thus interpret Γ (0) as an accidental R-symmetry of the
4d N = 2 KK theory.11

4.1 The su(2) curves for the 5d E1 theory: Absolute and relative

We start with considering the E1 SCFT [35]. In five-dimensions, it admits a deformation to a
5d N = 1 gauge theory with su(2) gauge group. This theory has a global form with a one-form
symmetry Γ [1]5d = Z2, and that absolute 5d SCFT admits a real-mass deformation to a SU(2)0
5d gauge theory. Here, we will denote its circle compactification by DS1 E1 ≡ E1[SU(2)][1,0].
We then expect the following commutative diagram of 4d N = 2 theories:

E1[SU(2)][1,0]

E1[SU(2)][1,2] ,E1[SO(3)±][1,0]

E1[SO(3)±][1,2]

/Z [0]
2/Z

[1]
2

/Z
[1]
2

/Z [0]
2

(128)

giving us a concrete realisation of (127). Let us also introduce the shorthand notation:

(E1)
[p,q]
0 ≡ E1[SU(2)][p,q] , (E1)

[p,q]
± ≡ E1[SO(3)±]

[p,q] . (129)

The E1 SW geometry was first proposed by Nekrasov [36] and further studied in [37]. More
recently, the U-plane has been studied from closely related perspectives in [7, 38–40]. The
E1[SU(2)][1,0] curve is given by:

g
(E1)

[1,0]
0

2 =
1
12

�

U4 − 8(1+λ)U2 + 16
�

1−λ+λ2
��

,

g
(E1)

[1,0]
0

3 = −
1

216

�

U6 − 12(1+λ)U4 + 24
�

2+λ+ 2λ2
�

U2 − 32
�

2− 3λ− 3λ2 + 2λ3
��

,

(130)
and with discriminant ∆ = λ2

�

U4 − 8(1+ λ)U2 + 16(1− λ)2
�

, in the notation of [7]. Here,
the dimensionless parameter λ is the exponentiated inverse 5d gauge coupling, and λ→ 1 is
the 5d strong-coupling limit (giving us the curve for the undeformed E1 SCFT on a circle).

At λ ̸= 0, we have the singularities (I8; 4I1): The I8 fiber at infinity, corresponding to
the 5d beta function [7], and four I1 singularities on the Coulomb branch where a single
BPS particle becomes massless. This corresponds to two copies of the 4d SU(2) SW points,

10Recall that gauging a p-form symmetry in d dimensions results in a dual (d − p− 2)-form symmetry.
11It would be a subgroup of the classical U(1)r in 4d N = 2 Lagrangian theories. Recall that the 5d N = 1

theory only has an SU(2)R symmetry, since the 5d Coulomb branch is real.
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viewed as holomomy saddles in the small circle limit [40]. These two copies are related by the
spontaneously-broken symmetry Z[0]2 inherited from the 5d one-form symmetry, which acts on
the CB parameter as:

Z[0]2 : U →−U . (131)

At λ= 1, two of the I1 singularities merge into an I2 singularity, from which a non-trivial Higgs
branch MH = C2/Z2 emerges. This reproduces the quantum Higgs branch of the 5d SCFT.
The Coulomb branch for this (I8; I2, 2I1) massless SW curve is a modular curve for Γ 0(8). The
light BPS states at these singularities have magnetic-electric charges:

γ1 = (1,0) , γ2 = γ3 = (−1, 2) , γ4 = (1,−4) , (132)

where the charges γ = (m, q) are given in the same SU(2) normalisation as section 2.1, with
the Dirac pairing given by the homology lattice as in (17). We can then read off the well-known
5d BPS quiver [7,8,16]:

γ1 γ2

γ3 γ4

. (133)

The Z[1]2 one-form symmetry of the E1[SU(2)][1,0] theory is the ‘electric’ one-form symmetry
that preserves the BPS states (132). It acts by a sign on a ‘Wilson line’ with charge γL = (0,1).
This line descends from the fundamental ‘Wilson line’ W of the 5d SCFT transverse to the
compactification circle.12

Let us recall that, at λ ̸= 1, we have a non-trivial Mordell-Weil group Φ = Z ⊕ Z2, with
Φtor = Z2 identified with the one-form symmetry. The non-trivial torsion section reads:

PZ2
=
�

1
12

�

U2 − 4λ− 4
�

, 0
�

. (134)

At λ= 1, the torsion MW group enhances to Z4, with the generator:

PZ4
=
�

1
12
(U2 + 4) , −U
�

, (135)

with the above Z2 as the subgroup generated by PZ2
|λ=1 = 2PZ4

. The Z2 that arises as the
cokernel of the inclusion of the ‘generic’ Z2 (generated by (134)) inside Z4 is related to the
global form of the flavour symmetry group SO(3)F that acts on the quantum Higgs branch [7,
41,42].

The relative theory E1[RA]. We would like to gauge the electricZ[1]2 symmetry by successive
isogenies, as in the 4d SU(2) case. We first obtain the relative SW curve E1[RA] by quotienting
the E1[SU(2)][1,0] curve along the section (134). This gives us:

gRA
2 =

1
48

�

U4 − 8U2(1+λ) + 16
�

1+ 14λ+λ2
��

,

gRA
3 = −

1
1728

�

U6 − 12U4(1+λ) + 48U2
�

1− 10λ+λ2
�

− 64
�

1− 33λ− 33λ2 +λ3
��

,

(136)

12In the 5d SU(2)0 massive phase, the line W , which must exist as a 5d line at the SCFT point, flows to the
ordinary supersymmetric Wilson line.
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with a discriminant ∆RA = 1
64λ
�

U4 + 16(−1+λ)2 − 8U2(1+λ)
�2

. At λ ̸= 1, this relative
curve has the CB singularities (I4; 4I2), while at λ = 1 we have (I4; 2I2, I4) – two I2 singular-
ities merge to give the I4. Here, the I2 singularities are undeformable, corresponding to the
normalised charges:

eγ1 =
p

2(1,0) , γ3 = γ4 =
p

2(−1, 1) , γ4 =
p

2(1,−2) , (137)

exactly as in (53). Note also that the massless curve is modular, with monodromy group
Γ 0(4)∩ Γ (2), which is conjugate to Γ 0(8) in PSL(2,R) [8]. For λ ̸= 1, we have Φtor = Z2 ⊕Z2,
which we again identify with the defect group of the 4d N = 2 KK theory. For λ = 1, this
enhances to Φtor = Z4 ⊕Z2. The Z2 ⊕Z2 sections of the relative curve RA are given by:

P1 =
�

−
1
12

�

U2 − 4λ− 4
�

, 0
�

, P± =
�

1
24

�

U2 − 4λ− 4± 24
p

λ
�

, 0
�

, (138)

with P2 ≡ P+, P3 ≡ P−.

The E1[SO(3)±][1,0] curves. Given the relative curve RA, we can obtain three principally
polarised SW geometries by performing the 2-isogenies:

E1[SU(2)][1,0] ∼=RA/P1 , E1[SO(3)±]
[1,0] ∼=RA/P± . (139)

Thus, in addition to the E1[SU(2)][1,0] curve discussed above, we find the E1[SO(3)±][1,0]

curves:

g
(E1)

[1,0]
±

2 =
1

192

�

U4 − 8U2
�

1∓ 30λ
1
2 +λ
�

+ 16
�

1∓ 60λ
1
2 + 134λ− 60λ

3
2 +λ2
��

,

g
(E1)

[1,0]
±

3 =
1

13824

�

− U6 + 12U4
�

1± 42λ
1
2 +λ
�

− 48U2
�

1± 84λ
1
2 − 346λ± 84λ

3
2 +λ2
�

+ 64
�

1± 126λ
1
2 − 1041λ± 1764λ

3
2 − 1041λ2 ± 126λ

5
2 +λ3
�

�

.

(140)
The discriminant reads:

∆(E1)
[1,0]
± = ±

p
λ

4096

�

U − 2∓ 2
p

λ
�4 �

U + 2∓ 2
p

λ
��

U − 2± 2
p

λ
��

U + 2± 2
p

λ
�4

. (141)

The singularity structure is (I2; 2I1, 2I4). The I1 and I4 singularities are exchanged when going
between the SO(3)+ and SO(3)− theory, which corresponds to a sign flip

p
λ→−

p
λ. In the

massless limit λ→ 1, we have:

∆(E1)
[1,0]
+
�

�

λ=1 =
(U − 4)4U2(U + 4)4

4096
, ∆(E1)

[1,0]
−
�

�

λ=1 = −
(U − 4)U8(U + 4)

4096
, (142)

so that we obtain either an I2 or an I8 singularity at the origin. The low energy dynamics of
this singularity is in terms of a U(1) vector multiplet coupled to two hypermultiplets of charge
1 or 2, respectively. Indeed, using the SO(3)± normalisation (29), we see that (132) becomes:

γ1+ = (2,0) , γ2+ = γ3+ = (−2, 1) , γ4+ = (2,−2) ,

γ1− = (2,−1) , γ2− = γ3− = (−2, 2) , γ4− = (2,−3) ,
(143)

for E1[SO(3)+][1,0], and E1[SO(3)−][1,0], respectively, so that the mutually-local particles γ2
and γ3 give us either the I2 or the I8 singularity at the origin, where they become massless.
In either case, the low energy description at U = 0 reproduces the expected 5d Higgs branch
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C2/Z2. Moreover, in the E1[SO(3)−][1,0] theory, we have a residual Z2 gauge symmetry that
survives everywhere on the Higgs branch. The structure of the U-plane in each case is sum-
marised in figure 10.

Finally, note that the massless curves are still modular; for SO(3)+, the monodromy group
is Γ0(4)∩ Γ (2), which is again conjugate to Γ 0(8) in PSL(2,R) [8]. Similarly, the monodromy
group for SO(3)− is also conjugate to Γ 0(8). The positions of the cusps and their widths are
given below, and can be found from the transformation of τ, as discussed around (33):

T cusp positions cusp widths τ

E1[SU(2)][1,0] (∞; 0, 2, 4) (8; 1,2, 1) τSU(2) = 2τsu(2)

RA (∞; 0, 1, 2) (4; 2,4, 2) τsu(2)

E1[SO(3)+][1,0]
�

∞; 0, 1
2 , 1
�

(2; 4,2, 4) τSO(3)+ =
1
2τsu(2)

E1[SO(3)−][1,0]
�

∞; 1
2 , 1, 3

2

�

(2; 1,8, 1) τSO(3)− = τSO(3)+ +
1
2

(144)

These reproduce the BPS states in (143), as expected.

Limit to 4d N = 2 pure su(2). Let us also discuss the 4d limit of the E1 curves discussed
so far. It is obtained by restoring the dependence on the radius β of the fifth direction, and by
taking the small-radius limit:

β → 0 , U = 2+ (2πβ)2u ,
p

λ= 2π2β2Λ2 , (145)

with u and Λ finite. We should also rescale the curve with the factor α = 2πβ before taking
the limit. Then, the relative curve RA in (136) reproduces the pure su(2) curve (50), and
similarly for the absolute curves.

4.2 Discrete gaugings and E1 N = 2 KK theories

Let us now discuss the theories at the bottom right of (128), which are also shown in figure 10.
They are all obtained by gauging a discrete 0-form symmetry, Γ [0] = Z[0]2 . This is true also for
the relative theories. We have:

(E1)
[1,2]
• = (E1)

[1,0]
• /Z[0]2 , RB =RA/Z

[0]
2 , (146)

with • ∈ {0,+,−}. Discrete gaugings of Seiberg-Witten geometries were discussed in detail
in [34], to which we refer for more details. Here, we would like to gauge the accidental R-
symmetry (131). At the level of the SW curves in Weierstrass normal form, this corresponds
to a so-called base change. This amounts to the simple replacement:

g2(U)→ V 2 g2

�p
V
�

, g3(U)→ V 3 g2

�p
V
�

, (147)

where V = U2 is the new Coulomb branch parameter, and we included a quadratic twist
(g2, g3) → (V 2 g2, V 3 g3). At λ ̸= 0, the discrete gauging introduces an undeformable I∗0 sin-
gularity at the origin, whose low energy dynamics is indeed the U(1)/Z2 theory [34]. Dis-
crete gaugings as base changes were also discussed in [11], in the case of theories with a
four-dimensional UV completion. See [43] for a mathematical classification of possible base
changes.
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RA

E1[SU(2)][1,2]
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Figure 10: Summary of the relations between the six absolute E1 4d N = 2 KK the-
ories through gauging. Next to each theory, we give a sketch of the Coulomb branch
with its various singularities. We also have the relation RB = RA/Z

[0]
2 between the

relative curves, as explained in the main text. For the SO(3)± theories, it is under-
stood that exchanging SO(3)+ with SO(3)− interchanges the I1 and I4 singularities,
which then gives us distinct massless limits (for λ→ 1) as indicated. The MW torsion
is indicated for every rational elliptic surface. The circled singularities are the ones
from which a Higgs branch emanates.
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The E1[SU(2)][1,2] curve. Let us first consider the Z[0]2 gauging of the E1[SU(2)][1,0] the-
ory. The discretely-gauged theory, E1[SU(2)][1,2], retains an electric 1-form symmetry and
gains a 2-form symmetry Γ [2] = Z[2]2 acting on surface operators. By performing the base
change (147), we obtain the Seiberg-Witten curve:

g
(E1)

[1,2]
0

2 =
1
12

V 2
�

V 2 − 8V (1+λ) + 16
�

1−λ+λ2
��

,

g
(E1)

[1,2]
0

2 =
1

216
V 3
�

−V 3 + 12V 2(1+λ)− 24V
�

2+λ+ 2λ2
�

+ 32
�

2− 3λ− 3λ2 + 2λ3
��

,

(148)
as a one-parameter family on the V -plane (for a fixed value of λ), with the discriminant:

∆(E1)
[1,2]
0 = V 6λ2
�

16− 8V + V 2 − 32λ− 8Vλ+ 16λ2
�

. (149)

The singularity structure is (I2; I∗0, 2I1). In the limit λ → 1, one I1 singularity merges with
the I∗0 singularity at V = 0, giving us the (I2; I∗1, I1) curve. This curve has a unique Z2 torsion
section:

PZ2
=
�

1
12

V (V − 4λ− 4) , 0
�

, (150)

which is simply inherited from (134). The torsion part of the Mordell-Weil group enhances to
Φ= Z4 at λ= 1. This is generated by the section:

PZ4
=
�

1
12

V (V + 4) , −V 2
�

, (151)

which descends from (135).

The relative theory E1[RB]. By performing a 2-isogeny on the E1[SU(2)][1,2] curve along
the section (150), we obtain the relative curve RB:

gRA
2 =

V 2

48

�

V 2 − 8V (1+λ) + 16
�

1+ 14λ+λ2
��

,

gRA
3 = −

V 3

1728

�

V 3 − 12V 2(1+λ) + 48V
�

1− 10λ+λ2
�

− 64
�

1− 33λ− 33λ2 +λ3
��

,

(152)

with a discriminant ∆RA = 1
64λV 6
�

V 2 − 8V + 16− 32λ− 8Vλ+ 16λ2
�2

. This can also be

obtained by gauging the Z[0]2 symmetry of the relative theory RA, as one can readily check at
the level of the curves:

RB =RA/Z
[0]
2 = E1[SU(2)][1,2]/Z[1]2 . (153)

The singularity structure of this curve is (I2; I∗0, 2I2), with the further degeneration to (I2; I∗2, I2)
at λ= 1. For λ ̸= 1, we have Φtor = Z2 ⊕Z2 generated by:

P1 =
�

−
V
12
(V − 4λ− 4) , 0

�

, P± =
�

V
24

�

V − 4λ− 4± 24
p

λ
�

, 0
�

. (154)

The E1[SO(3)±][1,2] curves. Given the relative curve RB, we obtain the three absolute
curves through isogenies along (154), namely:

E1[SU(2)][1,2] ∼=RB/P1 , E1[SO(3)±]
[1,2] ∼=RB/P± . (155)
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Equivalently, these curves can be obtained by gauging the Z[0]2 symmetry of the theories
(E1)[1,0]

• in (139), as summarised in figure 10. The E1[SO(3)±][1,2] curves read:

g
(E1)

[1,2]
±

2 =
V 2

192

�

V 2 − 8V
�

1∓ 30λ
1
2 +λ
�

+ 16
�

1∓ 60λ
1
2 + 134λ− 60λ

3
2 +λ2
��

,

g
(E1)

[1,2]
±

3 =
V 3

13824

�

− V 3 + 12V 2
�

1± 42λ
1
2 +λ
�

− 48V
�

1± 84λ
1
2 − 346λ± 84λ

3
2 +λ2
�

+ 64
�

1± 126λ
1
2 − 1041λ± 1764λ

3
2 − 1041λ2 ± 126λ

5
2 +λ3
�

�

.

(156)
At λ ̸= 1, we have the singularity structure (I1; I∗0, I1, I4) in either case, with the I1 and I4

singularity exchanged between the (E1)
[1,2]
+ and the (E1)

[1,2]
− curves. At λ = 1, we have a

singularity I∗1 at the origin for SO(3)+ theory, while we have a singularity I∗4 for the SO(3)−
theory. These singularities simply describe the Z[0]2 gauging of the I2 and I8 singularities of the

massless (E1)
[1,0]
+ curves. Indeed, given a I2n singularity with a I2n→ 2In deformation pattern,

which describes a U(1) theory with two massless hypermultiplets of charge
p

n, gauging a Z2
R-symmetry (together with an appropriate S-duality to preserve supersymmetry) gives us an
I∗n singularity [34].

In summary, we have shown that there exist six distinct absolute 4d N = 2 KK theories
that correspond to the rank-one 5d SCFT E1 on a circle, and we have provided the Seiberg-
Witten geometry for each of them. Moreover, there exists two distinct relative theories, RA
and RB, which are related by a discrete gauging. Of the six absolute theories, only two have a
straightforward 5d uplift. Indeed, E1[SU(2)][1,0] is the direct dimensional reduction of the E1

SCFT with the electric 1-form symmetry Γ [1]5d , while E1[SO(3)+][1,2] is the direct dimensional

of the E1 SCFT with the magnetic 2-form symmetry Γ [2]5d :

E1[SU(2)][1,0] ≡ DS1 E[1]1 , E1[SO(3)+]
[1,2] ≡ DS1 E[2]1 . (157)

In the M-theory geometric engineering of these theories, the electric lines charged under Γ [1]5d
arise from M2-branes wrapping relative 2-cycles, and the magnetic surface operators charged
under Γ [2]5d arise from M5-branes wrapping relative 4-cycles [44,45].

5 Global structures of the E0 theory

In addition to the E1 theory, there is only one more rank-one 5d SCFT with a non-trivial one-
form symmetry. This is the E0 theory, which is geometrically engineered in M-theory at the
complex cone over P2 [46] and possesses a 1-form symmetry Γ [1]5d = Z3 [44,45]. This 5d SCFT
has no continuous flavour symmetry, hence it does not admit any relevant deformation [47].

The Seiberg-Witten curve for the E0 theory on a circle is often discussed in the context of
topological string theory on the local P2 geometry, since it gives its mirror Type-IIB descrip-
tion [48,49] – see e.g. [50–54] for various related approaches and results. Interestingly, there
are two physically-distinct presentation of the one-dimensional moduli space of local P2.13

One can parameterise it by the E0 Coulomb-branch parameter U , which results in a moduli
space with three conifold singularities that are rotated by a Z3 0-form symmetry [7], or one
can gauge this Z[0]3 symmetry to obtain a moduli space described by a parameter V = U3. On

13Here we mean the complexified Kähler moduli space in IIA, quantum-corrected by worldsheet instantons. By
mirror symmetry, this is equivalent to the complex-structure moduli space of the SW curve.
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the V -plane, we have one conifold and one Z3 orbifold singularity (this is in the string-theory
terminology – the conifold point is an I1 singularity in the mirror curve). This latter description
is most often encountered in the topological-string literature. Both descriptions are physical
and correspond to different global forms of the 4d N = 2 KK theory DS1 E0, as we now explain.

As it regards to the possible 4d global structures, the most important physical difference be-
tween the E1 and the E0 theory is that the 5d 1-form symmetry of the latter is anomalous [55].
There is a cubic anomaly for Γ [1]5d = Z3 (corresponding to a 6d term of the schematic form B3

for the background gauge field B), which gives us a mixed anomaly between Z[0]3 and Z[1]3 in

the 4d KK theory.14 Hence, we can still gauge Z[1]3 or Z[0]3 in 4d, but not both at the same
time. This mixed anomaly should be reflected in the allowed global structure as seen by the
SW curves. Starting from the KK theory for the ‘electric’ form of the E0 theory in 5d, denoted
by (E0)[1,0]

e , the diagram (127) truncates, and we expect:

(E0)[1,0]
e

(E0)[1]m (E0)[2] .

/Z
[1]

3
/Z [0]

3 (158)

Indeed, we will show that there exists three distinct ‘magnetic’ KK theories,
(E0)[1]m = (E0)[1,0]

e /Z[1]3 , with a magnetic 1-form symmetry and no 0-form symmetry, and that

there exists a unique discreetly gauged theory, (E0)[2] = (E0)[1,0]
e /Z[0]3 , which has no “gauge-

able” 1-form symmetry and whose CB is the V -plane mentioned in the previous paragraph.

5.1 Absolute and relative E0 curves

Absolute electric curve. Let us start our discussion with the 5d E0 ‘electric’ theory on a circle,
whose Coulomb branch we already studied in [7] – it was first studied in [37]. The theory
does not admit any gauge-theory deformation, nor any relevant deformations at all. It has a
SW geometry given by:

g
(E0)[1,0]

e
2 =

3
4

U
�

9U3 − 8
�

, g
(E0)[1,0]

e
3 = −

1
8

�

27U6 − 36U3 + 8
�

, (159)

with discriminant ∆(E0)[1,0]
e = 27(U3 − 1). We thus have the singularity structure (I9; 3I1).

The KK theory has a Z[1]3 1-form symmetry encoded in the MW group of the SW geometry,

Φ(S) = Z3. It also has a Z[0]3 0-form symmetry that is spontaneously broken on the Coulomb
branch, arising as an accidental R-symmetry that rotates the three I1 singularities. Note also
that this curve is modular, with monodromy group Γ 0(9) [7,8], and that we have:

U(τ) = 1+
1
3

�

η
�

τ
9

�

η(τ)

�3

. (160)

Given a natural choice of fundamental domain of Γ 0(9), one finds a possible basis of light BPS
states:

γ1 = (1,0) , γ2 = (−1,3) , γ3 = (1,−6) . (161)

14The 5d anomaly theory has the schematic form
∫

B2
2 B1, where B2 and B1 are background gauge fields for Z[1]2

and Z[0]2 , respectively.
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The corresponding BPS quiver reads:

γ1 γ3

γ2

. (162)

The Z3 torsion sections of the SW curve are given by:

P1 =
�

3
4

U2, 1
�

, P2 =
�

3
4

U2,−1
�

, (163)

which satisfy Pi + Pj = Pi+ j mod3, with P0 =O the zero-section.

Gauging Z[1]3 along 3-isogenies. Given any RES with a 3-torsion section P1, which generates
a Z3 ⊂ Φtor with:

P1 = (x0, y0) , P2 = (x0,−y0) , (164)

we can then construct a 3-isogeny along these sections. The explicit form of the new curve is
again given by the Vélu formula, as reviewed in appendix A.2. This reads:

g ′2 = −g2 +
40x2

0

3
, g ′3 =

1
27

�

g3 − 14g2 x0 + 28
�

6x3
0 + y2

0

��

, (165)

where we included the rescaling by α=
p

3 in order to preserve the Dirac pairing.

Relative E0 curve. Starting with the absolute (E0)[1,0]
e curve (159) and quotienting along

the sections (163), we obtain the relative curve for the E0 theory:

g(E0)rel

2 =
3
4

U
�

U3 + 8
�

, g(E0)rel

3 = −
1
8

�

U6 − 20U3 − 8
�

. (166)

Its discriminant is:
∆(E0)rel

= 27
�

U3 − 1
�3

. (167)

Hence the U-plane of the relative theory has the singularity structure (I3; 3I3), with three
undeformable I3 singularities at U3 = 1. This is again modular, with modular group Γ (3)
which is conjugate to Γ 0(9) in PSL(2,R). We immediately find the modular function from
(160), upon using the fact that τrel =

τ
3 :

U(τ) = 1+
1
3

�

η
�

τ
3

�

η(3τ)

�3

. (168)

Moreover, a basis of BPS states preserving the Dirac pairing now reads:

γ1 =
p

3(1,0) , γ2 =
p

3(−1, 1) , γ3 =
p

3(1,−2) , (169)

which can be also determined from the standard fundamental domain of Γ (3) [8]. Note, in
particular, that under this 3-isogeny the periods are mapped as (arel

D , arel) =
�

1p
3
aD,
p

3a
�

.
The relative curve (166) has the MW group Φ(Srel) = Z3 ⊕Z3. This generated by the torsion
sections:

P1 =
�

−
3
4

U2, i(U3 − 1)
�

, P2 =
�

−
3
4

U2, −i(U3 − 1)
�

, (170)

38

https://scipost.org
https://scipost.org/SciPostPhys.16.5.137


SciPost Phys. 16, 137 (2024)

I3

I3

I3

I3

I9

I9

I9

I9

/P
1 /Q

1

/P 1
+Q

2
/P

1 +Q
1

(E0)[1,0]
e (E0)[1]m

(E0)
[1]
m+(E0)

[1]
m−
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Figure 11: Structure of the U-plane and gauging of the one-form symmetry for the
DS1 E0 theory. The central configuration is the U-plane of the relative curve, with
Z3⊕Z3 torsion, from which the four absolute curves can be obtained by a 3-isogeny.
Note that all absolute curves have Z3 torsion.

and:

Q1 =
�

1
4
(U + 2)2,

p
3(U2 + U + 1)
�

, Q2 =
�

1
4
(U + 2)2,−

p
3(U2 + U + 1)
�

, (171)

which each span a Z3 subgroup of Φ(Srel). There are two other Z3 subgroups of Φ(Srel), given
by {P1 +Q1, P2 +Q2}, and {P1 +Q2, P2 +Q1}, respectively. We can then consider 3-isogenies
generated by these torsion sections. First, a 3-isogeny of the relative curve along {P1, P2}
in (170) returns us back to the E0 curve (159). For the other three cases, we find a new
‘magnetic’ curve. This is depicted in figure 11.

The ‘magnetic’ curve (E0)
[1,0]
e /Z[1]3 ≡ (E0)

[1]
m . Let us now perform a 3-isogeny of the relative

curve along {Q1,Q2} in (171). (The other two possibilities lead to similar results.) This gives
us the new curve:

g
(E0)[1]m
2 =

1
12

�

U4 + 80U3 + 240U2 + 248U + 160
�

,

g
(E0)[1]m
3 =

1
216

�

−U6 + 168U5 + 1848U4 + 4556U3 + 6384U2 + 4704U + 2024
�

,
(172)

which has a discriminant:

∆(E0)[1]m =
1
3
(U − 1)9
�

U2 + U + 1
�

. (173)

The singularity structure on this U-plane is (I1; I9, 2I1), with the I9 at U = 1 and the I1 singu-
larities at U = e±

2πi
3 . In particular, we see that we have lost the Z[0]3 accidental R-symmetry, as

expected from our general discussion above. Instead, the would-be Z[0]3 symmetry acting on
U would give us the other two magnetic curves, as shown in figure 11. (This is similar to the
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case of the pure SO(3)± gauge theory, in which case we had a mixed anomaly between the
0-form and 1-form Z2 symmetries of the SU(2) gauge theory.)

This particular 3-isogeny leads to τm =
τrel
3 , from which we can immediately find an ex-

pression for U = U(τ), as before. The new monodromy group is Γ0(9), which is conjugate to
Γ 0(9) (by S in PSL(2,Z)). Thus, a basis of BPS states preserving the Dirac pairing reads:

γ1 = (3,0) , γ2 = (−3, 1) , γ3 = (3,−2) . (174)

Note that the magnetic-electric charges and periods in the ‘electric’ and ‘magnetic’ theories,
(E0)[1,0]

e and (E0)[1]m , are related by:

(mD,m , qm) =
�

3mD,e ,
qe

3

�

, (aD,m , am) =
�aD,e

3
, 3ae

�

. (175)

The charge normalisation for the other two magnetic theories shown in figure 11 can also be
understood in terms of the Witten effect, and one finds:

(mD,m± , qm±) =
�

3mD,e ,
qm

3
∓mD,e

�

, (aD,m , am) =
�aD,e

3
± ae , 3ae

�

. (176)

In each of the three magnetic normalisation, the magnetic line (1, 0) is unscreened, and it is
thus charged under the magnetic one-form symmetry Z[1]3 . The latter is responsible for the
SW curve (172) having Z3 torsion. Indeed, its SW geometry corresponds to the same rational
elliptic surface as the one for (E0)[1,0]

e , but with a different fiber at infinity. The torsion sections
read:

P1 =
�

−
1
4
(U + 2)2,

i

3
p

3
(U − 1)3
�

, P2 =
�

−
1
4
(U + 2)2, −

i

3
p

3
(U − 1)3
�

. (177)

One can check that the 3-isogeny along {P1, P2} leads us back to the relative curve (166).

5.2 Gauging Z[0]3 : The Z3 orbifold point on the V-plane

As we have already seen, the SW curve for the (E0)[1,0]
e theory has a Z3 0-form symmetry,

which acts on the CB by exchanging the three I1 cusps. This symmetry is inherited from the
5d one-form symmetry, and can be gauged by performing a base change, as in (147):

g2(U)→ V
8
3 g2

�

V
1
3

�

, g3(U)→ V 4 g2

�

V
1
3

�

, (178)

where V = U3 and we again introduced a quadratic twist to maintain the fiber at infinity as
F∞ = I3.

g(E0)[2]

2 =
3
4

V 3(9V − 8) , g(E0)[2]

3 = −
1
8

V 4
�

27V 2 − 36V + 8
�

, (179)

with discriminant ∆(E0)[2] = 27(V − 1)V 8. The resulting CB geometry on the V -plane has
singular fibers (I3; IV ∗, I1). This is the same configuration as the massless E6 curve [7,37], but
the interpretation of the IV ∗ here is very different. The IV ∗ is undeformable, and corresponds
simply to a Z[0]3 discrete gauging of the free U(1) gauge theory at U = 0 [34]. This IV ∗

singularity is the standard C3/Z3 orbifold point on the Kähler moduli space of the local P2

geometry in Type IIA string theory.
Given our discussion above, a slightly puzzling feature of the (E0)[2] curve is that it still

has a non-trivial MW group, Φ(S) = Z3, generated by the sections:

P1 =
�

3
4

V 2, V 2
�

, P2 =
�

3
4

V 2, −V 2
�

. (180)
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Figure 12: Structure of the U-plane versus V -plane, and gauging of the zero-form
symmetry for the DS1 E0 theory.

Interestingly, a 3-isogeny along {P1, P2} leads to the same rational elliptic surface with a distinct
fiber at infinity, namely the (I1; IV ∗, I3) configuration. It reads:

g
(E0)

[2]
rel

2 =
3
4

V 3(V + 8) , g
(E0)

[2]
rel

3 = −
1
8

V 4
�

V 2 − 20V − 8
�

, (181)

with discriminant ∆(E0)
[2]
rel = 27(V − 1)3V 8. This is still interpreted as a ‘relative curve’, in

the sense that it can also be obtained as the Z3 folding (178) of the U-plane for the relative
curve (166) – see figure 12. Unlike the proper relative curve, however, the torsion group of
(E0)

[2]
rel is still Z3 (not Z3⊕Z3). We tentatively interpret this situation as follows. The ‘electric’

theory (E0)[1,0]
e has a mixed anomaly B2

2B1, so that the anomalous variation of the theory un-

der the p-form symmetries Z[p]3 , denoted schematically by δ(p)S, takes the form δ(0)S ∼ λ0B2
2

and δ(1)S ∼ λ1B2B1. Hence, if we gauge Z[1]3 (making B2 dynamical), the Z[0]3 symmetry dis-

appears entirely, but if we gauge Z[0]3 (making B1 dynamical) there still exists a Z[1]3 symmetry

if we set B2 = 0. We call this situation a “non-gaugeable” Z[1]3 symmetry. It would be desirable
to understand this rather subtle point much better.

6 Six-dimensional M-string theory on T2

In section 4, we studied the global forms of the E1 theory, which is the UV completion of the 5d
N = 1 SU(2) gauge theory. The next natural step is to consider coupling the 5d gauge theory
to an adjoint hypermultiplet, which preserves the five-dimensional one-form symmetry. This
enhances the supersymmetry to 5d N = 2 for a massless adjoint; the theory with a massive
adjoint is called the 5d N = 1∗ theory. It is well-known, however, that the UV completion of
the 5d N = 2 theory is the six-dimensional N = (2, 0) A1 SCFT [56], also known as the (rank-
one) M-string theory – see e.g. [57–59]. The Seiberg-Witten curve for the M-string theory has
been discussed in the context of integrable systems – see e.g [36,60,61].

The 6d N = (2, 0) theory on a torus will be denoted by:

M[G][p,q] ≡ DT2[6d M-string SCFT] , (182)
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with the same notation as in section 4.1. This is now a 4d N = 2 theory with two distinct
KK charges. The effective theory also depends explicitly on the modular parameter, τuv, of
the compactification torus. The 6d N = (2,0) theory is intrinsically a relative theory. It has
a 2-form symmetry which is ‘self-dual’ so that, upon circle compactification to 5d, we must
choose either the 5d N = 1∗ theory with the 1-form symmetry (the SU(2) theory) or the one
with the 2-form symmetry (the SO(3) theory) – see e.g. [62,63] for recent discussions. Hence,
the allowed global structures of the 4d N = 2 KK theory for the M-string theory are the same
as for the E1 theory, and we can draw the same diagram relating the allowed global forms of
the 4d KK theory:

M[SU(2)][1,0]

M[SU(2)][1,2] .M[SO(3)±][1,0]

M[SO(3)±][1,2]

/Z [0]
2/Z

[1]
2

/Z
[1]
2

/Z [0]
2

(183)

There is an important difference, however, in that the three theories with fixed 4d [p, q] sym-
metry are actually one and the same theory in different S-duality frames, just like for the
4d N = 2∗ theory discussed in section 3. In the rest of this section, we briefly explore this
structure. We should also note that all other su(2) SW curves discussed in this paper can
be obtained from the M-string SW curve by taking appropriate limits. This is summarised in
figure 13 below.

6.1 Relative curve RM
A for the M-string

We start by presenting the relative curve for the M-string theory in Weierstrass normal form.
It is most compactly written as:

g
RM

A
2 =

1
27

�

9E4

�

eU2 − 1
�2 − 6E6M
�

eU2 − 1
�

+ E2
4 M
�

,

g
RM

A
3 = −

1
729

�

27E6

�

eU2 − 1
�3 − 27E2

4 M
�

eU2 − 1
�2
+ 9E4E6M2
�

eU2 − 1
�

−
�

2E2
6 − E3

4

�

M3
�

.

(184)
Here, eU is a dimensionless Coulomb branch parameter, and the mass parameter M is related
to the actual mass, m, as:

M(iβm;τuv) =
1

℘(iβm;τuv)
, (185)

in terms of the Weierstrass ℘ function for the compactification torus. Since m arises as a
background flat connection on T2, we have the periodicities:

iβm∼ iβm+ 1∼ iβm+τuv . (186)

We shall still call τuv the UV gauge coupling. Note also that M(0;τuv) = 0. The discriminant
of the relative curve (184) reads:

∆RM
A =∆0(τuv)

3
∏

i=1

�

eU2 − 1+ ei M
�2

, ∆0(τuv)≡
1
27

�

E3
4 − E2

6

�

, (187)

with ∆0(τuv) defined as in (82). Hence, the eU-plane has the singularity structure (I0; 6I2),
which specialises to (I0; 2I∗0) in the massless limit. The fact that we have a I0 fiber (i.e. a
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smooth elliptic fiber) at infinity is because of the 6d UV completion [37]. The bulk singularity
structure is also expected from the point of view of the holonomy saddles of the 5d N = 1∗

gauge theory, since it corresponds to two ‘copies’ of the 4d N = 2∗ theory [40]. For generic
mass parameter, we thus have six I2 singularities.15 A very interesting limit arises at M → 1/ei ,
namely for the mass parameter m hitting the half-periods of the compactification torus:

iβm ∈
§

1
2

,
τuv

2
,
τuv + 1

2

ª

. (188)

In such a limit, two I2 singularities from the two distinct ‘holonomy saddles’ merge into a single
I4, giving us the singularity structure (I0; I4, 4I2).

S-duality invariance. The M-string theory relative curve is invariant under the full SL(2,Z)
group acting on the UV gauge coupling, exactly as was the case for the N = 2∗ relative curve.
Under S, we have:

S : iβm 7→
iβm
τuv

, (189)

while eU is S-duality invariant. Then, M transforms as a modular form of weight −2:

S : M(iβm;τuv)→ τ−2
uv M(iβm;τuv) , (190)

so that g
RM

A
2 and g

RM
A

3 transform as modular forms of weight 4 and 6, respectively.

6.1.1 Massive limit and 4d limits

The E1 limit. The M-string theory should have a 5d limit corresponding to integrating out
the adjoint (in the 5d N = 1∗ description). This limit is well-understood from the point of
view of integrable systems. The M-string theory SW geometry corresponds to the Ruijsenaars-
Schneider (a.k.a. relativistic Calogero-Moser) integrable system, the E1 SW geometry corre-
sponds to the relativistic Toda system, and one can obtain the latter from the former [36].
Introducing the parameter ym ≡ e−2πβm, we take the limit:

quv→ 0 , y →∞ ,
p

λ≡ q
1
2
uv y fixed. (191)

Then, a direct computation (using equation (A.43) in appendix) shows that:

M →−3+
36(1+λ)
p
λ

q
1
2 +O(q) , (192)

in this limit. Let us also rescale the parameter eU and the SW curve itself as:

eU =
p

3
�quv

λ

�
1
4

U , (g2, g3)→
�

α−4 g2,α−6 g3

�

, α= 2
p

3
�quv

λ

�
1
4

, (193)

keeping U finite. It is straightforward to check that, in this large-mass limit, the relative
curve (184) reduces to the relative curve RA for the E1 theory (as given in (136) with λ
the 5d gauge coupling parameter). This limit realises the transition:

RM
A →RA : (I0; 6I2)→ (I4; 4I2) , (194)

by sending the two I2 singularities that sit at eU2 = 1 − e1M , which correspond to the two
holonomy-saddle copies of the 5d adjoint hypermultiplet, to infinity.

15It is useful to note that the curve (184) can be obtained from the 4d N = 2∗ relative curve (81) by the
substitution eu → eU2 − 1 and m2 → 4M . This is related to the fact that, from the point of view of the associated
integrable systems, the 5d curves are ‘relativistic uplifts’ of the 4d curves [36].
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M[G][p,q]

4d N = 2∗ G

E1[G][p,q]

4d N = 2 G

β
→

0

β
→

0

quv→ 0, m→∞

λ≡ quv y2

quv→ 0, m→∞

Λ4 ≡ 4m2quv

Figure 13: Relations between the various su(2) theories in 4d, 5d and 6d.

The 4d N = 2∗ limit. Another important limit is the β → 0 limit that reduces the M-string
theory to the 4d N = 2∗ theory. (This corresponds to the Calogero-Moser integrable system.)
At the level of the curve, this corresponds to the deformation (I0; 6I2)→ (I∗0; 3I2). Indeed, the
relative 4d N = 2 curve (82) can be obtained from (184) in the limit:

β → 0 , eU ≈ 1− 2β2
eu , M ≈ −β2m2 , α= 2iβ , (195)

with α a rescaling of the curve. This limit splits each pair of singularities at eU2 = 1 − ei M ,
sending the singularities eU = −

p

1− ei M to infinity.

The quv = 0 limit. Given that the I2 singularities of the relative RM
A curve lie at eU2 = 1−ei M ,

we can ‘collide’ more singularities together by considering some slightly ad hoc limits. Consider,
for instance, the limit where e2(τuv) = e3(τuv), which happens for quv = e2πiτuv = 0. More
precisely, we have e1 =

2
3 and e2 = e3 = −

1
3 , as can be seen from the series expansion (94).

Similar limits exist for τ= 0 or other points in the SL(2,Z) orbit of τ= i∞.
To understand this limit, it is useful to consider the M-theory picture that engineers this 6d

theory. That is, the M-string theory is the theory living on the worldvolume of two parallel M5-
branes, with the ‘M-string’ being the M2-brane excitation stretched between the M5-branes.
By M-theory/IIB duality, this can be also viewed as M-theory compactified on a threefold that
is locally of the type T2 × C2/Z2 [57]. Let β ≡ β5 and eβ ≡ β6 be the radii of circles in T2.
Then, we have [57]:

τuv = i
eβ

β
. (196)

As a result, the τuv → i∞ limit is equivalent to eβ → ∞, where the size of the 6d circle
blows up. We can further combine this limit with M = 1/e2, leading to the configuration of
singular fibers (I0; I∗2, 2I2). This configuration can likely help explain the sp(2) ∼= C2 flavour
root system associated to the SW geometry at generic values of the mass. We refer to [11]
for the definition of the flavour root system of the SW geometry and to [15] for the specific
example at hand. While the sp(2) flavour symmetry cannot be explained by the ‘massless’
configuration (I0; 2I∗0), which only has a A1 ⊕ A1 flavour symmetry manifest (essentially from
the two holomoy saddles), the limit we just considered has an I∗2 singularity whose 4d infrared
interpretation is that of an IR-free theory with an su(2) vector multiplet coupled to two adjoint
hypermultiplets, thus enjoying an sp(2) flavour symmetry. It would be desirable to better
understand this subtle point.16

16One potential worry is that, in this limit, the ∆0(τuv) factor in the discriminant (187) vanishes; nonetheless,
the ‘physical discriminant’ [64] obtained by factoring out this piece remains well-defined.
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6.1.2 BPS states and 6d BPS quiver

While the CB geometry (I0; 6I2) is not modular, we can still use the general structure of the CB
singularities to derive a BPS quiver for the 4d N = 2 KK theory – this gives us a “6d BPS quiver”
for the M-string theory, in the same sense that the BPS quivers for 5d SCFTs on a circle are called
5d BPS quivers [16]. To assign magnetic-electric charges to the I2 singularities, we consider
the limit in which the six singularities are grouped into two holonomy saddles [40]. From the
point of view of an observer that sits away from both sets of singularities on the eU-plane, we
then have two copies of the 4d N = 2∗ charges (84), with the two saddles distinguished by a
sign flip:

γA,1 =
p

2(0,−1) , γM ,1 =
p

2(1, 0) , γD,1 =
p

2(−1, 1) ,

γA,2 =
p

2(0,1) , γM ,2 =
p

2(−1,0) , γD,2 =
p

2(1,−1) .
(197)

This gives us the 6d BPS quiver:

γA,1

γM ,1

γD,2

γD,1

γA,2

γM ,2

. (198)

Note that this quiver contains the BPS quiver for the E1 theory, which is obtained by deleting
the nodes γA,1 and γA,2.17 This 6d BPS quiver passes a number of consistency checks; for
instance, one can easily check that the cokernel of the incidence matrix encodes the Z2 ⊕ Z2
defect group, as expected on general grounds [14]. We hope to further study this quiver in
future work.

6.2 Absolute curves for the M-string theory

5d su(2) gauge theories with adjoint matter should preserve the Z[1]2 1-form center symmetry.
Thus, as before, the KK theory corresponding to 5d N = 1∗ will have both a 0 and a 1-form
symmetry. In fact, the 6d N = (2,0) theory of type A1 has a Z[2]2 2-form symmetry, which
reduces to the aforementioned 0 and 1-form symmetries upon T2 compactifications [62].

Let us note, however, that the reduction of the 2-form symmetry from six to five dimensions
is subtle – in particular, a 5d theory obtained from the untwisted S1 compactification of a 6d
theory cannot simultaneously have both the 1-form and 2-form symmetries originating from
2-form symmetry of the 6d theory. One must choose which of the two is preserved in the 5d
theory, as the 2-form symmetry in 6d is self-dual [62].18 Such issues do not arise when further
compactifying 5d theories on a circle. Thus, starting with the 6d N = (2,0) A1 theory and
compactifying on S1 × S1 we have the following possibilities for higher form symmetries:

Z[0]2 ⊕Z
[1]
2 , Z[1]2 ⊕Z

[2]
2 , (199)

17This E1 quiver can be similarly obtained by a double-copy of the Kronecker quiver for the pure SU(2) 4d N = 2
gauge theory [40].

18It might be more precise to say that, in 6d, we do not have a 2-form symmetry but only a defect group [65].
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Figure 14: Global forms for the M -string theory on T2. The MW torsion is indicated
for each Coulomb branch. The blue (curved) arrows show which forms are in the
same SL(2,Z) duality orbit.

as already anticipated in (183). We thus denote by M[G][p,q] the absolute theories which
descend to the E1[G][p,q] theories.

The M[G][1,0] theories. Let us first consider the models with 0 and 1-form symmetries,
obtained from the relative theory RM

A . Following the prescription of section 2.2, we are looking
at 2-isogenies generated by the torsion sections of RM

A . Note that since this relative M-string
curve is identical to the 4d N = 2∗ curve, upon substituting eu→ eU2 − 1, and m2→ 4M , as in
footnote 15, the arguments presented in section 3 have a straightforward generalisation to the
M-string theory. Namely, due to the Z2 ⊕ Z2 torsion of the relative curve, we will have three
distinct global forms, which we denote by M[SU(2)][1,0] and M[SO(3)±][1,0], respectively.

For instance, given an isogeny along P1, the curve RM
A /〈P1〉 will be associated to the

M[SU(2)][1,0] global form. Then, the SW curve for RM
A /〈P2〉 is obtained from RM

A /〈P1〉 by
an S transformation on τuv, while RM

A /〈P3〉 follows from a further T transformation. These
three curves are then invariant under Γ 0(2) transformations, which is the duality group of the
4d N = 4 theory on spin manifolds.

The generic mass-deformed curves for these three global forms are isomorphic, with sin-
gularity structure (I0; 2I4, 4I1), consisting again of two distinct copies of the corresponding 4d
N = 2∗ theory. As for the relative curve, the ‘massless’ limit M = 0 leads to the (I0; 2I∗0) curve
in all cases.

The M[G][1,2] theories. The M[G][1,2] theories are obtained by gauging the Z2 zero-form
symmetry of the M[G][1,0] theories. This gauging is performed similarly as in the DS1 E1 and
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DS1 E0 geometries, by performing a base change. That is, one replaces eU →
p

V , which is also
accompanied by a quadratic twist such that the gauged theory will contain a I∗0 fiber at the
origin of the V -plane.

From this construction, it is clear that the curves of the M[G][1,2] theories are identical to
the 4d N = 2∗ curves for the gauge group G, up to a quadratic twist which exchanges the I∗0
fiber at infinity with the smooth fiber at the origin of the u-plane of the 4d theory. Thus, the
gauging of the remaining 1-form symmetry follows from the 4d discussion. The global forms
of the M-string theory on T2 are shown in figure 14. Finally, let us note that, due to presence
of the undeformable I∗0 singularity, the BPS states of the M[G][1,2] theories no longer admit a
standard BPS quiver description.

7 Conclusions and outlook

In this work, we explored the network of different Seiberg-Witten curves that describe the
Coulomb branch of rank-one 4d N = 2 supersymmetric field theories with 1-form symmetries.
We uncovered a self-consistent picture, wherein different global forms of the same local field
theory are related by successions of isogenies between the Seiberg-Witten curves. In each
case, it is important to correctly identify the relative curve, from which all the SW geometries
for the absolute theories can be derived by performing isogenies along torsion sections. The
1-form symmetry of the absolute theories can then be read off from the torsion sections of the
absolute curves. In the case of 5d N = 1 theories on a circle, we also found that there are more
possibilities of global structures obtained by discrete gauging of the four-dimensional 0-form
symmetry inherited from the ‘electric’ 1-form symmetry in 5d.19

This analysis hopefully clears some potential confusions (at least, the authors’) concerning
the interpretation of various Seiberg-Witten geometries that appeared in the literature. Re-
cently, Xie proposed a classification of rank-1 5d and 6d SCFTs with 8 supercharges [15] based
on their SW geometry, using the known classification of rational elliptic surfaces [66,67] and
building on previous work in 4d by Caorsi and Cecotti [11] to study the flavour symmetry. In
fact, the present paper establishes that many of the seemingly new models listed in [15] are
actually different 4d N = 2 absolute curves for the same higher-dimensional SCFT. (There
remains a couple of potentially ‘new’ theories in the lists worked out in [15]. We hope to come
back to this point in future work.)

Our discussion left open a number of questions. Most fundamentally, we did not give a
first-principle derivation of the relationship between certain N -torsion sections and Z[1]N -form
symmetries. It is important to note that not all torsion sections of the absolute curves are
directly related to the 1-form symmetries – in the case of the various 4d and 5d ‘su(2) theories’
we considered, there can also be Z4 factors in the Mordell-Weil group. In some cases, these
extra sections are related to the global form of the flavour symmetry group [7]. Nonetheless, it
seems that the true meaning of these Z4 rational sections, and of the corresponding isogenies,
remains to be discovered. So far, we only observed that 4-isogenies relate different absolute
curves amongst each other.

To answer these questions, we should probably better connect our RES approach to the
geometric-engineering approach in string theory. The SW geometry can be embedded inside a
local threefold in Type IIB, and this background is itself the mirror geometry for the ‘standard’
Type IIA geometric engineering [68, 69] – see [7] for a pedagogical review. One would then
expect that the various global structures can be understood in terms of the Symmetry TFT [70]

19One could quibble about the use of the term ‘global structure’ here: gauging a discrete 0-form symmetry does
change the algebra of local operators, albeit in a somewhat ‘mild’ manner. These 4d ‘global structures’ are directly
related to proper 5d global structures, however.
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captured by ten-dimensional topological terms in string theory – see e.g. [44,45,55,62,71–74].
This seems particularly interesting in the case of the local threefolds that engineer the 5d
theories in Type IIA. To capture the structure of the 0- and 2-form symmetries in 4d, we would
have to deal with defects realised by fundamental strings and NS5-branes wrapping relative
cycles, in addition to the better-understood non-compact D2- and D4-branes.

Of course, a geometric-engineering approach would also more readily generalise to higher-
rank theories – see e.g. [33,60,75–77] for early references and [78] for a review. At rank-1, we
could afford ourselves of beautiful mathematical results about families of elliptic curves, which
have no direct analogues for families of curves of higher genera. Recently, Argyres, Martone
and Ray [13] clarified the general identification of what we call an “absolute curve” (which
encodes all the lines operators of a given absolute theory) with a principally polarised abelian
variety (giving us the periods of the SW geometry). They also pointed out that, for many 4d
N = 2 theories, only what we called the “relative curve” is known, and they then proceeded to
discuss the additional data of a “line lattice” as a structure to supplement “by hand” if needed.
It could be the case that, in general, there does not exist distinct higher-rank SW geometries
for all possible global structures. We instead believe, more optimistically, that the “absolute
curves” of, say, the pure su(N) gauge theory, have not yet been discovered. Indeed, even the
simple SO(3)± curves that we discussed in section 2 were not written down explicitly in the
literature before, to the best of our knowledge. Very recently, the “relative and absolute” SW
geometries for higher-rank 4d N = 3 and N = 4 SCFTs have been obtained in [79]. It would
be very instructive to study the mass-deformations of these geometries.

Another interesting avenue for future research concerns the compactification of our setup
to three dimensions. The resulting 3d N = 4 Coulomb branch is essentially the Seiberg-Witten
geometry itself [80], and it would be very interesting to see how the global structures studied
here are reinterpreted in 3d. The translations along the elliptic fibers of the SW geometry gen-
erated by the torsion sections should become actual discrete actions on the 3d N = 4 Coulomb
branch, corresponding to a spontaneously-broken discrete 0-form symmetry inherited from the
4d 1-form symmetry. Relatedly, it would be instructive to translate our discussion to the class-S
language [81] (in particular, see [82] for a related discussion), and to study more explicitly
the “isogenous Hitchin moduli spaces” mentioned in [2].

Last but not least, some of the theories we discussed also admit more general, categori-
cal symmetries – see e.g. [83–87] for recent reviews of this rich subject. It remains an open
question to precisely understand how such categorical symmetries can be imprinted into the
Seiberg-Witten description of the low-energy Coulomb-branch physics. In section 2.3, we
proposed that the Z4 torsion sections of the pure SO(3)± curve is likely a symptom of the
non-invertible symmetry that exists in the pure SO(3) gauge theory.20 This is a potentially
important relation which should be understood better.
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A Elliptic curves, isogenies and modular forms

In this appendix, we collect a variety of useful mathematical facts about rational elliptic sur-
faces and about modular forms, which we use extensively throughout the paper.

A.1 Elliptic curves and Kodaira singularities

Let us first review some basic aspects of (families of) elliptic curves. As recalled in section 2,
the SW geometry of rank-one 4d N = 2 theories is a rational elliptic surface, which we may
describe by the Weierstrass model (5), namely:

y2 = 4x3 − g2(u) x − g3(u) , (A.1)

with the CB singularities located at the loci where the discriminant

∆(u) = g2(u)
3 − 27g3(u)

2 , (A.2)

vanishes. It is also customary to define the J -invariant as:

J(u) =
g2(u)3

∆(u)
, (A.3)

which is a modular function when written in terms of the complex structure parameter τ of
the elliptic fiber. This quantity is thus rather crucial for determining u = u(τ) – see e.g. [7, 8,
18,19,30] for more details. The possible singularities of the SW geometry are captured by the
Kodaira classification of singular fibers, in terms of the order of vanishing of g2, g3 and of the
discriminant:

g2 ∼ (u− u∗)
ord(g2) , g3 ∼ (u− u∗)

ord(g3) , ∆∼ (u− u∗)
ord(∆) . (A.4)

The different types of fibers are listed in table 1, which is reproduced from [7] for the reader’s
convenience. There, we also list the monodromy induced by these singularities on the peri-
ods, the associated flavour symmetry if the singularity is fully deformable and the low-energy
description in that case, with ‘MN’ standing for Minahan-Nemeschansky SCFTs [88, 89] and
‘AD’ for Argyres-Douglas SCFTs [90,91]. Note also that most singularities require a fixed value
for the complex structure parameter τ at the singular point, apart from I∗0.

We should also recall that the monodromies can be understood in terms of light BPS states
on the CB. For instance, the I1 singularity occurs when a single charged particle of electro-
magnetic charge (m, q) becomes massless – in the appropriate duality frame, the low-energy
physics at that point is governed by a U(1) gauge field coupled to a single massless hypermul-
tiplet of charge 1. This induces a monodromy:

M(m,q)
∗ =

�

1+mq q2

−m2 1−mq

�

. (A.5)

Similarly, if the low-energy description of the singularity is given by SQED with k massless
electrons or, more generally, with massless hypermultiplets of charges q j such that

∑

j q2
j = k,

then the monodromy is conjugate to T k [4, 5], leading to an Ik singularity. The low-energy
physics description of all the Kodaira singularities, with any allowed deformation pattern, has
been discussed in detail in [9,27,34].

49

https://scipost.org
https://scipost.org/SciPostPhys.16.5.137


SciPost Phys. 16, 137 (2024)

Table 1: Kodaira classification of singular fibers and associated 4d low-energy
physics.

fiber τ ord(g2) ord(g3) ord(∆) M∗ 4d physics g flavour

Ik i∞ 0 0 k T k SQED su(k)

I∗k i∞ 2 3 k+ 6 PT k SU(2), N f = 4+ k > 4 so(2k+ 8)

I∗0 τ0 ≥ 2 ≥ 3 6 P SU(2), N f = 4 so(8)

I I e
2πi
3 ≥ 1 1 2 (ST )−1 AD[A1, A2] = H0 -

I I∗ e
2πi
3 ≥ 4 5 10 ST MN E8 e8

I I I i 1 ≥ 2 3 S−1 AD[A1, A3] = H1 su(2)

I I I∗ i 3 ≥ 5 9 S MN E7 e7

IV e
2πi
3 ≥ 2 2 4 (ST )−2 AD[A1, D4] = H2 su(3)

IV ∗ e
2πi
3 ≥ 3 4 8 (ST )2 MN E6 e6

A.2 Isogenies between rational elliptic surfaces

Let L, L′ be two lattices in C, defined by their periods (ωa,ωD) and (ω′a,ω′D), respectively, as
L = Zωa+ZωD, and similarly for L′. We say that the lattices are equivalent L = L′ if and only
if their periods are related by (see e.g. lemma 1.3.1 in [92]):

�

ω′D
ω′a

�

= γ

�

ωD
ωa

�

, γ ∈ SL(2,Z) . (A.6)

We can also consider the case where the lattices αL and L′ are equivalent, for some α ∈ C∗,
in which case the lattices are said to be homothetic. This, in particular, can be used to show
that the lattice L is homothetic to the lattice Lτ ≡

1
ωa

L = Z + Zτ, for τ = ωD
ωa

, which is the
more natural lattice description when discussing complex tori. Note that homothetic lattices
give rise to the same elliptic curve, up to isomorphism (see e.g. theorem 5.35 in [93]).

More generally, we can consider an isogeny between complex tori, which is a non-zero
holomorphic homomorphismψα : C/L→ C/L′. For such homomorphisms, there existsα ∈ C∗

with αL ⊂ L′, such that:
ψα(z + L) = αz + L′ , (A.7)

or, equivalently, ψα(0) = 0. The kernel of an isogeny ψα is finite, and is given by
ker(ψα) = L′/αL. The degree of the isogeny is the index of αL in L′, being thus also the
dimension of the kernel. For isogenous lattices, the periods are related by [92]:

�

αωD
αωa

�

= γ̃

�

ω′D
ω′a

�

, γ̃ ∈ M(2,Z) , (A.8)

where now γ̃ is not necessarily an element of SL(2,Z), as it was in the case of isomorphic
lattices in (A.6), but any matrix with integer coefficients and positive determinant.21 Note
that the complex structure transforms as:

τ=
ωD

ωa
= γ̃

�

ω′D
ω′a

�

= γ̃(τ′) , (A.9)

where γ̃ acts as a fractional linear transformation on τ′. Note also that the degree of the
isogeny is |ker(ψα)| = det(γ̃). It will often be useful to consider a change of basis such that

21This follows from Im(τ)∝ det(γ̃) Im(τ′), with the proportionality factor being a positive number.
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γ̃ in (A.8) is diagonal. Since αL ⊂ L′, there exist positive integers n1, n2 ∈ N∗, such that
{n1ω

′
a, n2ω

′
D} is a basis for αL. Thus, a basis for L is given by

� n1
α ω

′
a, n2
α ω

′
D

	

. In this scenario,
we have ker(ψα) = Zn1

⊕ Zn2
, giving the degree of the isogeny as n1n2. Meanwhile, the

complex structure parameter transforms as: τ= n2
n1
τ′.

Rational sections of elliptic surfaces. The concept of isogenies between elliptic curves can
be uplifted to isogenies between rational elliptic surfaces. Under this map, the smooth fibers
are mapped to isogenous elliptic curves, while the singular fibers change in a non-trivial way.

Isogenies of elliptic surfaces are generated by torsion sections [94]. Each such section
P ∈ MW(S) defines an automorphism tP of the elliptic surface S by translation by P along
every smooth fiber. If the torsion section has order N , then the quotient S/〈tP〉 defines an
N -to-1 homomorphism on the smooth fibers, which is also the degree of the isogeny. The
action of tP on the multiplicative singular fibers (i.e. of type In) differs depending on how the
torsion section intersects the singular fiber. In particular, if the section intersects the ‘trivial’
component Θ0 of the In fiber, meaning that it does not intersect the ‘node’ of the singular curve
in the Weierstrass model, then addition by P leaves invariant the n points at the intersections
of the components of the In fiber [94,95]. Thus, under the quotient S/〈tP〉, the singular fiber
changes to:

In 7→ In×N . (A.10)

Alternatively, P can intersect non-trivially the singular fiber, in which case the automorphism
rotates the components of the singular fibre by a 2π

N angle. As a result, the quotient by 〈tP〉
identifies N of the components of the singular fiber, leading to:

In 7→ In/N , (A.11)

as long as N is prime, which will be our main point of interest.

The Vélu formula. For an elliptic curve given in Weierstrass normal form, the explicit form
of the isogeny can be determined using Vélu’s formula (see e.g. [96]). Let P = (x0, y0) be a
torsion section, with y0 = 0 for the case of 2-torsion. We define:

t(P) =

¨

3x2
0 −

1
4 g2 , for 2-torsion,

6x2
0 −

1
2 g2 , for N -torsion,

w(P) = y2
0 + t(P)x0 , (A.12)

where N ≥ 3. We would like to consider an isogeny generated by some torsion subgroup G.
For this, we split the torsion sections into 2-torsion sections G2, while the remaining sections
are partitioned into two equal sized sets G+ and G−, with the torsion sections of G− being the
inverses of those in G+. Then, the isogeny ψ : E→ E′ is given explicitly by:

ψ(x , y) =
�

r(x), r ′(x)y
�

, r(x)≡ x +
∑

P∈G2∪G+

�

t(P)
x − x0

+
y2

0

(x − x0)2

�

. (A.13)

We also define:
t(G) =
∑

P∈G2∪G+

t(P) , w(G) =
∑

P∈G2∪G+

w(P) , (A.14)

such that the new curve E′ reads:

g ′2 = g2 + 20t(G) , g ′3 = g3 + 28w(G) . (A.15)

More generally, we can also allow a rescaling by a non-zero factor α ∈ C∗, of the type:

(x , y, g2, g3) 7→
�

α−2 x , α−3 y, α−4 g2, α−6 g3

�

. (A.16)
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Including such rescalings in the 2-isogeny, the holomorphic one-form transforms according to:

d x
y
→

d x ′

y ′
= α

d x
y

. (A.17)

Recall that the periods of the complex torus are computed as the integrals of this holomorphic
1-form over the 1-cycles of the torus. Thus, such rescalings correspond to rescalings of the
underlying lattice by α, as in (A.7). In section 2.2, we show that it is often important to
include such rescalings in the isogeny, in order to preserve the Dirac pairing between BPS
states. To do so, we choose the rescaling α in (A.8) such that:

α2 = deteγ , (A.18)

which implies that the periods of the two isogenous curves are related by an SL(2,R) matrix.
In such a case, if we start with a principally-polarised curves, the isogeny ψα gives us a curve
which is no longer principally polarised.

A.3 The Weierstrass elliptic function

In this section, we review some well known facts about the Weierstrass elliptic function. Given
a lattice L = Zωa +ZωD, the Weierstrass elliptic function is a map from C/L to C:

℘(z,ωa,ωD)≡ ℘(z, L)≡
1
z2
+
∑

λ∈L\{0}

�

1
(z −λ)2

−
1
λ2

�

. (A.19)

Oftentimes, we will simply use ℘(z) and leave the lattice dependence implicit. Under a rescal-
ing of the lattice by α, we have

℘(z,αωa,αωD) = α
−2℘(αz,ωa,ωD) . (A.20)

Using the definition Lτ ∼= Z+Zτ, we have:

℘(z,τ)≡ ℘(z, 1,τ) =ω2
a℘

�

z
ωa

,ωa,ωD

�

. (A.21)

The Weierstrass ℘ function is a meromorphic function in C, having double poles at each lat-
tice point λ ∈ L. Moreover, from the definition it follows that ℘ is an even function, that is
℘(−z) = ℘(z), and, moreover, we see that ℘(z +λ) = ℘(z), for any lattice point λ and z ∈ C.
The Weierstrass ℘ function also has a Laurent series expansion around z = 0, given by:

℘(z) =
1
z2
+
∞
∑

k=1

(2k+ 1)G2k+2z2k , Gk(L) =
∑

λ∈L\{0}

λ−k , (A.22)

where Gk are sometimes referred to as Eisenstein series. The Weierstrass function satisfies the
differential equation:

℘′2(z) = 4℘3(z)− g2℘(z)− g3 , (A.23)

where g2 and g3 are the lattice-dependent functions:

g2 = 60G4 , g3 = 140G6 . (A.24)

Let us also note that the derivative℘′(z) is an odd function (since℘ is even), so℘′(−z)=−℘′(z).
The functions g2, g3 are homogeneous functions of degree −4 and −6, meaning that

g2(αωa,αωD) = α
−4 g2(ωa,ωD) , g3(αωa,αωD) = α

−6 g3(ωa,ωD) , (A.25)
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for a constant factor α ̸= 0. For the upper-half-plane definition of the lattice, Lτ, assuming
that Im(τ) = Im

�

ωD
ωa

�

> 0, we have the upper-half-plane functions

g2(τ)≡ g2(1,τ) =ω4
a g2(ωa,ωD) , g3(τ)≡ g3(1,τ) =ω6

a g3(ωa,ωD) , (A.26)

which become modular forms with Fourier series

g2(τ) =
4π4

3

�

1+ 240
∞
∑

k=1

σ3(k)q
k

�

, g3(τ) =
8π6

27

�

1− 504
∞
∑

k=1

σ5(k)q
k

�

, (A.27)

where σa(k) =
∑

d|k da is the divisor function and q = e2πiτ.
The differential equation (A.23) is used to map the lattice L ⊂ C to the elliptic curve

E = {(x , y) | y2 = 4x3 − g2 x − g3}, through the map:

z 7→ (x , y) =
�

℘(z),℘′(z)
�

, (A.28)

which is a group isomorphism between the complex torus C/L and E(C), under addition mod-
ulo L. The roots of the cubic on the RHS of (A.23) are pairwise distinct and only depend on
the lattice L, being the values of the Weierstrass function at the half-periods:22

e1 = ℘
�ωa

2

�

, e2 = ℘
�ωD

2

�

, e3 = ℘
�ω3

2

�

= ℘
�ωa +ωD

2

�

, (A.29)

with the property e1 + e2 + e3 = 0. Note that in this case (A.23) becomes:

℘′2(z) = 4 (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) . (A.30)

Note, thus, that the derivative of the Weierstrass elliptic function vanishes for the values of z
corresponding to the half-periods.

A.4 Modular forms

The ring of modular forms for the SL(2,Z) group is generated by the holomorphic Eisenstein
series of weights 4 and 6, defined as:

E4(τ) = 1+ 240
∞
∑

n=1

n3qn

1− qn
, E6(τ) = 1− 504

∞
∑

n=1

n5qn

1− qn
. (A.31)

Their T and S transformations are:

Ek(τ+ 1) = Ek(τ) , Ek

�

−
1
τ

�

= τkEk(τ) , (A.32)

with their zeroes at e
2πi
3 (or e

iπ
3 ) and i, respectively. We introduce the Jacobi theta functions:

θ1(z;τ) = −i
∑

n∈Z+ 1
2

(−1)n−
1
2 q

n2
2 e2πizn , θ2(z;τ) =

∑

n∈Z+ 1
2

q
n2
2 e2πizn ,

θ3(z;τ) =
∑

n∈Z
q

n2
2 e2πizn , θ3(z;τ) =

∑

n∈Z
(−1)nq

n2
2 e2πizn ,

(A.33)

22This is a slight abuse of notation. With ℘(z;τ) defined as above, the half periods are at z = 1
2 , τ2 , τ+1

2 .
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which also have the useful product expressions:

θ1(z;τ) = −iq
1
8 y

1
2

∞
∏

k=1

�

1− qk
� �

1− yqk
� �

1− y−1qk−1
�

,

θ2 (z;τ) = q
1
8 y

1
2

∞
∏

k=1

�

1− qk
� �

1+ yqk
� �

1+ y−1qk−1
�

,

θ3 (z;τ) =
∞
∏

k=1

�

1− qk
�

�

1+ yqk− 1
2

��

1+ y−1qk− 1
2

�

,

θ4 (z;τ) =
∞
∏

k=1

�

1− qk
�

�

1− yqk− 1
2

��

1− y−1qk− 1
2

�

,

(A.34)

with y ≡ e2πiz . We then define the Jacobi forms as ϑ(τ)≡ θ (0;τ), namely:

ϑ2(τ) =
∑

n∈Z+ 1
2

q
n2
2 , ϑ3(τ) =

∑

n∈Z
q

n2
2 , ϑ4(τ) =

∑

n∈Z
(−1)nq

n2
2 . (A.35)

(Note that θ1(0;τ) = 0.) Their transformations under SL(2,Z) are as follows:

T : ϑ2→ e
iπ
4 ϑ2 , ϑ3→ ϑ4 , ϑ4→ ϑ3 ,

S : ϑ2→
p

−iτϑ4 , ϑ3→
p

−iτϑ3 , ϑ4→
p

−iτϑ2 .
(A.36)

Note that the zeros of these functions lie along the real axis. Moreover, they satisfy the follow-
ing identity:

ϑ2(τ)
4 + ϑ4(τ)

4 = ϑ3(τ)
4 . (A.37)

It is sometimes useful to rewrite the theta functions in terms of Dedekind-η quotients, as
follows:

ϑ2(τ) =
2η(2τ)2

η(τ)
, ϑ3(τ) =

η(τ)5

η
�

τ
2

�2
η(2τ)2

, ϑ4(τ) =
η
�

τ
2

�2

η(τ)
, (A.38)

where we introduced:

η(τ) = q
1
24

∞
∏

j=1

(1− q j) . (A.39)

From here, one finds:
ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2η(τ)3 . (A.40)

Let us point out that the Eisenstein series can be also expressed in terms of the theta functions,
with:

E4 =
1
2

�

ϑ8
2 + ϑ

8
3 + ϑ

8
4

�

, E6 =
1
2

�

ϑ4
3 − 2ϑ4

4

� �

ϑ4
4 − 2ϑ4

3

� �

ϑ4
3 + ϑ

4
4

�

. (A.41)

Thus, we also have:

j = 1728J = 1728
E3

4

E3
4 − E2

6

= 256
(ϑ8

3 − ϑ
4
3ϑ

4
4 + ϑ

8
4)

3

ϑ8
2ϑ

8
3ϑ

8
4

. (A.42)

The Weierstrass ℘ function can be expressed in terms of Jacobi θ -functions as:

℘(z) =
�

ϑ2ϑ3
θ4(z)
θ1(z)

�2

−
1
3

�

ϑ4
2 + ϑ

4
3

�

. (A.43)
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Then, the half-periods defined in the previous subsection read:

e1(τ) =
ϑ4

3(τ) + ϑ
4
4(τ)

3
, e2(τ) = −

ϑ4
2(τ) + ϑ

4
3(τ)

3
, e3(τ) =

ϑ4
2(τ)− ϑ

4
4(τ)

3
. (A.44)

Under SL(2,Z) transformations, we have:

T : e1→ e1 , e2→ e3 , e3→ e2 ,

S : e1→ τ2e2 , e2→ τ2e1 , e3→ τ2e3 .
(A.45)

Additionally, these satisfy [31,32]:

3
∑

j=1

e2
j =

2
3

E4 ,
3
∑

j=1

e3
j =

2
9

E6 ,
3
∏

j=1

e j =
2
27

E6 . (A.46)

In the context of 2-isogenies, of particular interest will also be the identities:

ϑ2(2τ)
4 =
(ϑ2

3 − ϑ
2
4)

2

4
, ϑ3(2τ)

4 =
(ϑ2

3 + ϑ
2
4)

2

4
, ϑ4(2τ)

4 = ϑ2
3ϑ

2
4 ,

ϑ2

�τ

2

�4
= 4ϑ2

2ϑ
2
3 , ϑ3

�τ

2

�4
= (ϑ2

2 + ϑ
2
3)

2 , ϑ4

�τ

2

�4
= (ϑ2

2 − ϑ
2
3)

2 ,

(A.47)

where the argument of the theta functions is τ, unless otherwise specified. Finally, let us also
define the modular λ-function as:

λ(τ) =
ϑ2(τ)4

ϑ3(τ)4
, j(τ) = 256

(1−λ+λ2)3

(1−λ)2λ2
, (A.48)

which is a modular function for the congruence subgroup Γ (2), to be defined in the next
subsection.

A.5 Congruence subgroups of PSL(2,Z)

Throughout the main text we make use of certain well-known aspects about congruence sub-
groups. This appendix summarises relevant information about such groups, based on similar
appendices from related works [7,8]. We also refer to [97], for example, for a more detailed
exposition of these concepts.

The congruence subgroups of PSL(2,Z) are matrix subgroups defined by congruence con-
ditions on their entries. First, the principal congruence subgroups of level N of PSL(2,Z) can
be summarised as follows:

Γ (N) =

��

a b
c d

�

∈ PSL(2,Z) :

�

a b
c d

�

=

�

1 0
0 1

�

mod N

�

. (A.49)

Other common congruence subgroups are:

Γ0(N) =

��

a b
c d

�

∈ PSL(2,Z) : c = 0 mod N

�

,

Γ 0(N) =

��

a b
c d

�

∈ PSL(2,Z) : b = 0 mod N

�

.

(A.50)

The Γ0(N) and Γ 0(N) subgroups are related by conjugation by S ∈ PSL(2,Z).
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The elements of the modular group act on the upper half-plane H as:

τ 7→
aτ+ b
cτ+ d

, ∀ τ ∈H . (A.51)

We also define a weight k modular form for a subgroup Γ ⊂ PSL(2,Z) as the holomorphic
function from the upper half-plane to the complex plane satisfying [97]:

f
�

aτ+ b
cτ+ d

�

= (cτ+ d)k f (τ) . (A.52)

Here, evidently, the transformation matrix is an element of Γ . We have already introduced the
modular λ-function, which is a weight 0 modular form for Γ (2). Note that ϑ4

2,ϑ4
3 and ϑ4

4 are
all weight 2 modular forms for Γ (2).

A fundamental domain for Γ ⊂ PSL(2,Z) is an open subset FΓ ⊂ H such that no two
distinct points are equivalent under the action of Γ , unless they are on the boundary of FΓ .
Additionally, any point of the upper half-plane is mapped to the closure of this set FΓ . Given a
list of coset representatives {αi}, the fundamental domain FΓ can be obtained as the disjoint
union [7,8]:

FΓ =
nΓ
⊔

i=1

αiF0 . (A.53)

Here, F0 is the fundamental domain of the modular group, while nΓ is the index of Γ in
PSL(2,Z), defined as the number of right-cosets of Γ in the modular group. The coset repre-
sentatives αi are chosen such that FΓ has a connected interior.

Congruence subgroups can have two types of special points: cusps and elliptic points. The
cusps are equivalence classes in Q∪{∞} under the action of the congruence subgroup, while
elliptic points are points with non-trivial stabilizer. The modular group PSL(2,Z) has a single
cusp, with the equivalence class representative typically chosen as τ∞ = i∞. Every congru-
ence subgroup Γ has at least one cusp, which corresponds to the aforementioned representa-
tive. The width of this cusp τ∞ in Γ is the smallest integer w such that T w ∈ Γ . Note that for
more general cusps positioned on the real axis at eτ= γτ∞, for some γ ∈ PSL(2,Z), the width
is defined as the width of τ∞ for the group γ−1Γγ.

The Coulomb branch is called modular if it can be mapped to the upper-half plane by a
bi-holomorphim. A key point of this mapping is that cusps correspond to certain singular fibers
of the SW geometry [7,8]:

cusp of width w ←→ Iw or I∗w singular fiber. (A.54)

In such cases, fundamental domains are particularly useful for determining the monodromies
around the Coulomb branch singularities. We use this correspondence throughout the text to
determine the electromagnetic charges of the light BPS states, directly from the fundamen-
tal domains. Consider, for instance, a cusp of width w (corresponding to an undeformable Iw
singularity) positioned at τ= − q

m on the real axis, with q, m ∈ Zmutually prime. Then, we as-
sociate a light BPS state of magnetic-electric charges ±

p
w (m, q). Given a coset representative

α such that α(i∞) = − q
m , we have:

αT wα−1 =Mpw (m,q) , (A.55)

where the monodromy generated by the BPS state is given as in (A.5). We refer to [8] for
more details on this identification.
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B Charge lattices and defect groups

In this appendix, we expound on the relation between our conventions and the conventions
of [3] for the su(2) gauge theories. Let t∼= u(1) denote the one-dimensional Cartan subalgebra.
The weight lattices of SU(2) and SO(3) are related as:

ΛSO(3)
w ⊂ ΛSU(2)

w ≡ Λsu(2)
w ⊂ t∗ , (B.1)

and the magnetic weight lattices are related as:

t ⊃ ΛSO(3)
mw ≡ Λsu(2)

mw ⊃ ΛSU(2)
mw . (B.2)

The non-trivial center of SU(2) is isomorphic to the following quotients:

Z(SU(2))∼=
ΛSU(2)

w

Λ
SO(3)
w

∼=
ΛSO(3)

mw

Λ
SU(2)
mw

∼= Z2 . (B.3)

Note also that, for a fixed gauge group G, the weight and magnetic weight lattices are dual,
ΛG

mw
∼=
�

ΛG
w

�∗
. When discussing the su(2) gauge theory without committing to a global form

of the gauge group, it is natural to denote electromagnetic charges as in [3]:

(λm,λe) ∈ Λsu(2)
mw ⊕Λ

su(2)
w , λm,λe ∈ Z . (B.4)

In this paper, instead, we consider the SU(2) and SO(3)+ charges:

(m, q) ∈ ΛSU(2)
mw ⊕ΛSU(2)

w , m, q ∈ Z ,

(m+, q+) ∈ ΛSO(3)
mw ⊕ΛSO(3)

w , m+, q+ ∈ Z ,
(B.5)

which are related to the conventions of [3] by:

(m, q) =
�

λm

2
,λe

�

, (m+, q+) =
�

λm,
λe

2

�

. (B.6)

This directly gives us the relation (29). We also have:

(m−, q−) =
�

λm,
λe −λm

2

�

, m−, q− ∈ Z , (B.7)

for the SO(3)− normalisation. Starting from the su(2) gauge theory and imposing the condi-
tion




(λm,λe), (λ
′
m,λ′e)
�

= 0 mod 2 , (B.8)

so that the lines are mutually local, there are three consistent spectrum of lines [2,3]:

SU(2) : λm ∈ 2Z , λe ∈ Z ,

SO(3)+ : λm ∈ Z , λe ∈ 2Z ,

SO(3)− : λm,λe ∈ Z , λm +λe ∈ 2Z .

(B.9)

This is equivalent to our condition that γL ∈ Γ in section 2.1.1, meaning that the charges m, q
and m±, q± are all integers.

Defect group. Given a 4d N = 2 gauge theory whose BPS particles on its Coulomb branch
have electromagnetic charges taking value in some lattice Λ, the defect group of the theory
is the group D = Λ∗/Λ that encodes the charges of BPS lines that cannot be screened by
dynamical particles – see e.g. [14,65]. In the case at hand, we simply have:

D= Z2 ⊕Z2 , (B.10)

corresponding to the elements (λm mod 2 , λe mod 2). The absolute theories (B.9) correspond
to the three distinct Lagrangian subgroups Z2 ⊂ D generated by (0, 1), (1, 0) and (1, 1), re-
spectively.
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