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Abstract

We study four-dimensional adjoint QCD with gauge group SU(2) and two Weyl fermion
flavors, which has an SU(2)R chiral symmetry. The infrared behavior of this theory is
not firmly established. We explore candidate infrared phases by embedding adjoint QCD
into N = 2 supersymmetric Yang-Mills theory deformed by a supersymmetry-breaking
scalar mass M that preserves all global symmetries and ’t Hooft anomalies. This includes
’t Hooft anomalies that are only visible when the theory is placed on manifolds that do not
admit a spin structure. The consistency of this procedure is guaranteed by a nonabelian
spin-charge relation involving the SU(2)R symmetry that is familiar from topologically
twisted N = 2 theories. Since every vacuum on the Coulomb branch of the N = 2
theory necessarily matches all ’t Hooft anomalies, we can generate candidate phases for
adjoint QCD by deforming the theories in these vacua while preserving all symmetries
and ’t Hooft anomalies. One such deformation is the supersymmetry-breaking scalar
mass M itself, which can be reliably analyzed when M is small. In this regime it gives
rise to an exotic Coulomb phase without chiral symmetry breaking. By contrast, the
theory near the monopole and dyon points can be deformed to realize a candidate phase
with monopole-induced confinement and chiral symmetry breaking. The low-energy
theory consists of two copies of a CP1 sigma model, which we analyze in detail. Certain
topological couplings that are likely to be present in this CP1 model turn the confining
solitonic string of the model into a topological insulator. We also examine the behavior
of various candidate phases under fermion mass deformations. We speculate on the
possible large-M behavior of the deformed N = 2 theory and conjecture that the CP1

phase eventually becomes dominant.
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1 Introduction

In this paper we analyze four-dimensional adjoint QCD with gauge group SU(2) and two
Weyl fermion flavors. We describe several candidate IR phases for this theory, among them a
scenario with confinement and chiral symmetry breaking, which results in two copies of a CP1

sigma model at low energies, as well as more exotic phases where chiral symmetry is unbroken
and there are deconfined gauge fields. We motivate these phases by embedding adjoint QCD
into a larger parent theory with adjoint scalars and N = 2 supersymmetry. We explore the
Coulomb branch of the N = 2 theory in the presence of a certain supersymmetry-breaking
scalar mass term, as well as other deformations or modifications that preserve all symmetries
and ’t Hooft anomalies, and show how each candidate phase emerges from the deformed low-
energy theory.

1.1 Adjoint QCD in four dimensions

Adjoint QCD with gauge group SU(2) and two fermions belongs to a larger class of theories
with SU(Nc) gauge group and N f massless flavors of two-component Weyl fermions λi

α in the

adjoint representation of SU(Nc).
1 Here i = 1, . . . , N f is a flavor index (until further notice, we

suppress gauge indices). These theories are asymptotically free for any Nc , as long as N f ≤ 5.

Since the fermions transform in the adjoint representation, all such theories possess a Z(1)Nc

generalized 1-form global symmetry associated with the center of the SU(Nc) gauge group,
whose realization in the IR is related to confinement [2,3].2 Theories with a fixed value of Nc
but different values of N f are related, because the number of flavors can be reduced by adding
mass terms for some of the fermions.

We can broadly distinguish adjoint QCD theories with different values of N f as follows:

• The case N f = 0 corresponds to pure SU(Nc) Yang-Mills (YM) theory. The only ad-
justable coupling is the θ -angle. The theory is believed to confine, so that all Wilson
loops obey an area law.3 This amounts to the statement that the Z(1)Nc

center symmetry
is unbroken [3]. If θ = 0 or θ = π, the theory possesses a time-reversal symmetry T.
Pure SU(Nc) YM theory with θ = 0 is believed to flow to a trivial phase with a unique
vacuum in the deep IR. However, the theory at θ = π has a mixed ’t Hooft anomaly
that involves T and the Z(1)Nc

1-form global symmetry [4], and therefore it cannot be
completely trivial at low energies. The simplest scenario is that the theory has a unique
vacuum for all θ ̸= π, but spontaneously breaks T when θ = π, which leads to two
degenerate vacua (see [4, 5] and references therein). Other possibilities are discussed
in [4].

• The case N f = 1 corresponds to pure N = 1 supersymmetric Yang-Mills (SYM) theory
with gauge group SU(Nc) (see e.g. [6] for a summary of its basic properties). The theory
has a classical U(1)r symmetry, under which the adjoint gauginos λα carry charge 1. It is
explicitly broken to Z2Nc

by an Adler-Bell-Jackiw (ABJ) anomaly, so that the θ -angle can
be set to zero. The theory is therefore invariant under time reversal T. There are Nc su-
persymmetric (and hence degenerate) vacua [7], which are the result of spontaneously
breaking Z2Nc

→ Z2 via a gaugino condensate, 〈tr
�

λαλα
�

〉 ̸= 0.4 In [9] it was shown
that N = 1 SYM theory with Nc = 2 confines via monopole condensation (in particular,

1We use the conventions of [1] for two-component fermions (see also appendix A).
2We use a superscript (p) to denote p-form symmetries, as well as differential p-forms.
3This has not been conclusively established for all values of Nc and θ (see e.g. [4] and references therein).
4The fact that the gaugino condensate is necessarily non-vanishing in every supersymmetric vacuum of

the N = 1 SYM theory was established in [8].
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the Z(1)Nc
center symmetry is unbroken), by embedding it inside pure N = 2 SYM theory

with gauge group SU(2). Crucially, the low-energy dynamics of the latter theory could be
determined exactly [9,10]. The generalization to Nc ≥ 3 was found in [11,12]. Perturb-
ing N = 1 SYM theory by a small supersymmetry-breaking gaugino mass m ∈ C (whose
phase can break T and generate an effective θ -angle in the resulting low-energy pure
YM theory) is consistent with the expected behavior of the N f = 0 theory summarized
above (see e.g. [4] and references therein).

• Adjoint QCD with 2 ≤ N f ≤ 5 possesses a continuous SU(N f ) flavor symmetry, under

which the fermions λi
α transform in the fundamental representation. Note that this is

a chiral symmetry; only a subgroup of SU(N f ) acts in a vector-like fashion, i.e. on full
Dirac fermions. The theory also has a discrete Z2NfNc

flavor symmetry, which (as in

the N f = 1 case) is the remnant of a classical U(1)r symmetry under which the λi
α have

charge 1 that is broken to Z2NfNc
by an ABJ anomaly. Therefore θ can again be set to

zero, so that the theory is invariant under time reversal T.

The standard lore (see for instance [13] and references therein) is that theories with
larger values of N f flow to an interacting CFT (similar to the Banks-Zaks phase of con-
ventional QCD with fundamental quarks [14]), while theories with smaller values of N f
undergo confinement and break chiral symmetry via the condensation of a fermion bi-
linear,

Oi j ∼ tr
�

λαiλ j
α

�

. (1)

When N f = 2, such a chiral condensate implies that the IR theory includes a CP1 sigma
model describing the Nambu-Goldstone (NG) bosons that are the result of spontaneously
breaking SU(2)→ U(1). Since the phase of the chiral condensate can take Nc distinct
values, there are in fact Nc degenerate copies of a CP1 model.

Although plausible, it is not known whether the phases described above are actually
realized by the dynamics. One is therefore free to contemplate other candidate phases,
such as the recent proposal [15], which we will comment on below, and the forthcoming
work [16]. Since it is possible to flow from a given value of N f to lower values by
adding large fermion masses, any candidate scenario for the theories with N f ≥ 2 should
reproduce the expected behavior of the theories with N f = 0 and N f = 1 under such an
RG flow.

In this paper we will systematically explore candidate IR phases for SU(Nc) adjoint QCD
with N f = 2 flavors that are motivated by softly-broken N = 2 SYM theory. For simplicity we
focus on the case Nc = 2. For the remainder of this paper we will therefore use the term adjoint
QCD to refer to the two-flavor theory with gauge group SU(2) (i.e. we will take N f = Nc = 2).

1.2 ’t Hooft anomalies and the nonabelian spin-charge relation

Before investigating candidate scenarios for adjoint QCD, it is essential to understand the a pri-
ori constraints implied by the global symmetries, as well as the associated ’t Hooft anomalies,
which must match along any RG flow [17] and constitute a powerful constraint on consistent
candidate phases. The global symmetries and ’t Hooft anomalies of adjoint QCD are described
in section 2.

As we will explain in section (2.4), some ’t Hooft anomalies of adjoint QCD only become
visible when the theory is placed on euclidean 4-manifolds M4 that do not admit a spin struc-
ture. This means that the second Stiefel-Whitney class w2(M4) of M4 does not vanish. Since
adjoint QCD contains fermions, which typically require a spin structure, it may seem surprising
that it is possible to consistently place the theory on non-spin manifolds. The fact this can be
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done is due to a special property of adjoint QCD, which is also shared by the N = 2 parent
theory (see below): fermion parity (−1)F is identified with the non-trivial central element 1
of the SU(2) flavor symmetry,

(−1)F = −1 ∈ SU(2) . (2)

Concretely, this means that fermions have to transform in half-integer spin representations of
the SU(2) flavor symmetry, while bosons can only transform in integer spin representations.
One can view (2) as a generalization of the conventional abelian spin-charge relation (see for
instance [18]) to SU(2) representations. For this reason we will refer to (2) as a nonabelian
spin-charge relation.

As was emphasized in [19], identifications of global symmetries, such as (2), enable us
to access a larger class of background field configurations than is naively possible. It follows
from (2) that we can consider both non-spin four-manifolds, where w2(M4) ̸= 0, as well as
bundles for the quotient symmetry SU(2)/Z2 = SO(3). Such bundles B are characterized
by a second Stiefel-Whitney class w2(B), which vanishes when B is an SU(2) bundle. The
identification (2) implies that turning on M4 and B is only consistent if

w2(B) = w2(M4) . (3)

This can be viewed as a generalization of a spinc structure to SU(2) background gauge fields.
The backgrounds in (3) enable to exhibit more ’t Hooft anomalies, and hence more constraints
on the dynamics of adjoint QCD. For instance, we will see below that the recent proposal [15]
must be modified in order to render it consistent with anomaly matching on non-spin mani-
folds.

1.3 Embedding of adjoint QCD into N = 2 supersymmetric Yang-Mills theory

Our primary tool for systematically exploring candidate phases for adjoint QCD is to embed
it inside pure N = 2 SYM theory with gauge group SU(2).5 The details are described in
section 2.3. Under this embedding, the adjoint QCD fermions are identified with the N = 2
gauginos. In addition, the supersymmetric theory possesses a complex scalar φ in the adjoint
representation of SU(2).

In order to flow from the parent N = 2 theory to adjoint QCD, we deform the former by a
large, supersymmetry-breaking mass term for φ,6

∆V ∼ M2 tr
�

φφ
�

. (4)

Pure N = 2 SYM theory is asymptotically free and therefore characterized by a strong coupling
scale Λ. If we choose M ≫ Λ, the scalar φ is very heavy and can be reliably integrated out in
the UV. Consequently, the mass-deformed N = 2 theory with M ≫ Λ flows to adjoint QCD in
the IR.

It is crucial to our analysis below that theN = 2 theory has the same global symmetries and
’t Hooft anomalies as adjoint QCD. For instance, the SU(2)R symmetry of the N = 2 theory,
under which the supercharges Qi

α and the gauginos λi
α transform as doublets, is identified

with the SU(2) flavor symmetry of adjoint QCD. (From now on we will therefore use the
supersymmetric terminology and refer to this symmetry as SU(2)R.) Moreover, unlike other
possible mass terms (including those that involve the holomorphic operator u= trφ2 discussed
below), the deformation in (4) preserves all global symmetries. Thus all symmetries and
anomalies are visible for any value of the mass M .

5Basic aspects of N = 2 supersymmetry, including the supersymmetric lagrangians and transformation rules
needed throughout this paper, are summarized in appendix B.

6The scalar potential of the N = 2 SYM theory has flat directions. Therefore inverting the sign of the mass term
in (4) leads to runaway behavior.
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The fact that the N = 2 theory and adjoint QCD share the same symmetries and ’t Hooft
anomalies extends to the nonabelian spin charge relation (2), and the associated ’t Hooft
anomalies on non-spin manifolds. If we activate a very special configuration of background
fields satisfying (3) in the N = 2 SYM theory, we obtain the topologically twisted theory
described in [20], whose supersymmetric observables capture the Donaldson invariants (see
e.g. [21]) of the 4-manifold M4. For this reason the global properties of N = 2 SYM on
such manifolds have been thoroughly investigated. This includes certain subtle sign factors
discussed in [21–25], which only arise on non-spin manifolds. In section 2.4.3, we will inter-
pret some of these signs as arising from a mixed ’t Hooft anomaly that involves the Z(1)2 center
symmetry and w2(M4).

Since the scalar mass term (4) completely breaks supersymmetry, it is challenging to quan-
titatively analyze the deformed N = 2 theory when M ≫ Λ. By contrast, when the scalar mass
is small, M ≪ Λ, the effects of the deformation (4) can be determined using the exact, weakly-
coupled IR effective description of the N = 2 theory established in [9].

Our philosophy below will be to see what phases for adjoint QCD are suggested by the
N = 2 theory if we allow ourselves to naively extrapolate to large M , or to continuously vary
the IR couplings. Of course it is not possible to use this approach to determine which, if any,
of these phases is actually realized by the dynamics. However this approach ensures that such
candidate scenarios automatically match all ’t Hooft anomalies. One such candidate phase
will turn out to be the CP1 phase with confinement and chiral symmetry breaking discussed
around (1). The various candidate phases we consider are summarized in section 1.6 below.

1.4 Review of Seiberg-Witten theory

We begin our investigation at M = 0 and gradually increase the mass. Our starting point is
therefore the N = 2 supersymmetric theory, whose IR behavior was determined exactly in [9].
Here we recall some basic features of this low-energy description (additional details can be
found in section 4):

• There is a moduli space of supersymmetric (and therefore degenerate) vacua labeled by
the vev 〈u〉 ∈ C of the N = 2 chiral operator u = tr

�

φ2�.7 This operator transforms as
follows under the Z8 flavor symmetry and time reversal,

r
�

u
�

= −u , T
�

u
�

= u . (5)

• For generic values of u, the low-energy theory consists of a single U(1) vector multiplet
of N = 2 supersymmetry, which contains the U(1) field strength f (2) and its superpart-
ners, all of which are neutral under the U(1) gauge symmetry,

ϕ , ρi
α , f (2) . (6)

Here ρi
α is the U(1) gaugino,8 andϕ is a complex scalar. Since there is an unbroken U(1)

gauge symmetry, the theory is a Coulomb phase, and consequently the moduli space of
vacua is known as the Coulomb branch. The couplings of the low-energy theory are
functions of u. One such coupling is the complexified U(1) gauge coupling

τ=
θ

2π
+

2πi

e2 . (7)

7We will frequently write u for the vev 〈u〉 when there is no potential for confusion.
8We denote the U(1) gaugino in the deep IR by ρi

α in order to distinguish it from the SU(2) gauginos λi
α of the

UV theory.
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As we vary u, the low-energy physics changes in a smooth fashion, but the U(1)
gauge theory may undergo electric-magnetic duality transformations, which act on τ
by SL(2,Z) modular transformations. In the solution of [9], duality acts on a
pair
�

aD(u), a(u)
�

of special coordinates on the Coulomb branch, which transforms as
an SL(2,Z) doublet.

Let us summarize the broken and unbroken symmetries on the Coulomb branch:

1.) The SU(2)R symmetry, under which the gaugino ρi
α transforms as a doublet, is

unbroken for all u.

2.) Since r(u) = −u (see (5)), the Z8 symmetry is spontaneously broken to its Z4,
except at the special point u = 0. As we will explain later, the Z4 symmetry acts
on f (2) via charge conjugation C, i.e. r2( f (2)) = − f (2) = C

�

f (2)
�

.
At the special point u = 0 the Z8 symmetry is restored and its generator acts as a
square root of C. In a suitable electric-magnetic duality frame this is the S duality
transformation. Consequently, the U(1) gauge coupling at u = 0 necessarily takes
the self-dual value τ= i.

3.) The Z(1)2 center symmetry is accidentally enhanced to the U(1)(1)electric×U(1)(1)magnetic

1-form symmetries [3] of the low-energy U(1) gauge theory.9 Since the theory is in
a Coulomb phase, these symmetries (and hence the Z(1)2 center symmetry of the UV
theory) are spontaneously broken, and all Wilson-’t Hooft loops obey a perimeter
law.

4.) Since T(u) = u (see (5)) and T is anti-unitary, it maps the vev 〈u〉 to its com-
plex conjugate (〈u〉)∗. Time reversal symmetry is therefore preserved on the real
axis 〈u〉 ∈ R, but it is spontaneously broken when Im〈u〉 ̸= 0.

• At two special special points u = ±Λ2 on the Coulomb branch,10 there are additional
massless particles. In the duality frame that is adapted to the weakly coupled re-
gion |u| ≫ Λ2, the light particles at u = Λ2 are magnetic monopoles whose magnetic
and electric charges are given by (nm = 1, ne = 0). The light particles at u = −Λ2 are
dyons of charge (nm = 1, ne = 2). Consequently these points in the u-plane are known
as the monopole and dyon points. They are exchanged by the spontaneously broken Z8

symmetry.

The additional particles that become light at the monopole point are described by
an N = 2 hypermultiplet with field content,

hi , ψ+α , ψ−α . (8)

The scalar hi is an SU(2)R doublet, while the two fermions ψ±α are SU(2)R singlets. In
a suitable electric-magnetic duality frame, the hypermultiplet hi carries electric charge 1

under the low-energy U(1) gauge symmetry. (Its complex conjugate h
i
carries charge−1,

while its superpartnersψ+α andψ−α carry charges 1 and −1, respectively.) In the vicin-
ity of u = Λ2, the physics at very low energies is therefore described by the renormaliz-
able N = 2 SQED theory consisting of the abelian vector multiplet (6) and the charged
hypermultiplet (8).

The scalar potential of this theory is given by

V =
e2

2

�

h
i
hi

�2
+ 2|ϕ|2 h

i
hi . (9)

9The precise embedding depends on the duality frame.
10Since Λ is the only mass scale of the N = 2 theory, it is common to set Λ = 1. We will not do so here, since

we would like to compare Λ to the scalar mass M in (4).
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Here ϕ has been defined to vanish at the monopole point, and e is the low-energy U(1)
gauge coupling, which flows logarithmically to zero at ϕ = 0. The potential (9)
sets hi = 0, while ϕ is a flat direction that parametrizes the Coulomb branch in the
vicinity of the monopole point. Note that the mass of hi is proportional to |ϕ|.

1.5 Soft supersymmetry breaking

In order to study the effect of the mass deformation (4) when the mass M is small, M ≪ Λ,
we must map the non-holomorphic operator tr(φφ) from the UV to the weakly-coupled
Coulomb branch description in the deep IR. The problem of tracking soft supersymmetry-
breaking masses along RG flows and across dualities has been thoroughly investigated, see for
instance [26–40], and has recently been reinvigorated in the context of three-dimensional du-
alities [41–44]. The case of pure N = 2 SYM with gauge group SU(2) and a non-holomorphic
soft scalar mass was analyzed in [38], and we will reproduce some of their results. We will
follow the approach of [40], where non-holomorphic scalar masses were analyzed by tracking
operators associated with the stress tensor multiplet of the supersymmetric theory.11 In fact,
the mass deformation that we are interested in is the bottom component T of the N = 2 stress
tensor multiplet [47],12

T = 2

g2 tr
�

φφ
�

. (10)

Here g is the SU(2) gauge coupling in the UV.13 Since T is the bottom component of the N = 2
stress tensor supermultiplet, it can be reliably tracked to the deep IR. The details will be ex-
plained in section 5. Here we only summarize the results:

• Away from the monopole and dyon points, the operator T in (10) flows to the following
duality-invariant combination of the special coordinates a(u) and aD(u),

T = i
4π

�

aaD − aaD

�

. (11)

If we use the exact formulas for a(u) and aD(u) derived in [9], we find that T has a
unique minimum at the origin u= 0 of the Coulomb branch. (This minimum was found
in [38].) In particular, it does not display notable features near the monopole or dyon
points. (See Figure 1.)

• Near the monopole point, where ϕ = 0, the operator T is given by

T = 1

e2 |ϕ|
2 −

1
2

h
i
hi −

iΛ

2π2 (ϕ −ϕ) + · · · . (12)

As we will explain in section 5, the linear term ∼ i (ϕ −ϕ) is an improvement term
for the N = 2 stress tensor multiplet that is needed to match the Coulomb branch ex-
pression (11). The ellipsis in (12) denotes higher-order terms that are not captured by
the N = 2 SQED description that applies at low energies and small ϕ.

Note that the deformation (12) includes a tachyonic mass for hi . This will be important
below when we speculate on the possible large-M behavior of the theory.

11See [45,46] for other exact results that can be obtained by tracking the supersymmetric stress tensor multiplet
along RG flows.

12The operator T coincides with the operator U discussed in [45], which exists in certain N = 1 theories. By
contrast, the operator T is generically present in theories with N = 2 supersymmetry.

13The factor 1
g2 in (10) arises because φ is conventionally normalized so that its kinetic term contains a non-

canonical factor of 1
g2 . This factor was omitted in (4) in order to simplify the discussion there.
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Figure 1: Real slices of the potential function (11) on the Coulomb branch. The
function is symmetric about the real axis. The global minimum is at the origin u= 0.

It follows from the form of the function in (11) that a scalar mass deformation

∆V = M2T = 2M2

g2 tr
�

φφ
�

, M ≪ Λ , (13)

lifts all points on the Coulomb branch, except for the origin u = 0, which is stable minimum
of the function (11) (see Figure 1). The scalar ϕ in the low-energy U(1) vector multiplet (6)
acquires a mass ∼ M , while the gaugino ρi

α and the U(1) gauge field f (2) remain massless.
It is important to understand the compatibility of this result with the expression (12) for T

near the monopole point. Classically, the linear term in (12) leads to a local minimum of the
potential at ϕ ≈ −ie2Λ, which would be reliable if e were parametrically small. This, how-
ever, is incompatible with the fact that the function (11) shown in Figure 1 has no such local
minimum. This superficial mismatch between the two descriptions does not occur, because
the effective value of the U(1) gauge coupling e that is implied by the exact solution of [9] is
not in fact small. More precisely, e runs logarithmically to zero at the monopole point, but this
is not sufficient to overcome its large threshold value at the strong-coupling scale Λ.

For these reasons, we will not be able to quantitatively analyze the behavior of the N = 2
SQED theory at the monopole point under the deformation (12). Instead, we will use this
theory as inspiration to propose a candidate phase for adjoint QCD.

1.6 Candidate phases for adjoint QCD

As we have seen, a small soft mass M in (13) stabilizes the theory at the point u = 0 of the
Coulomb branch. There is a massless gaugino, which is acted on by the unbroken SU(2)R
chiral symmetry, and a massless photon signifying a Coulomb phase (in particular the theory
is deconfined). Note that while this scenario may seem exotic, the fact that it emerges from
the N = 2 SYM theory in the UV and the weakly coupled Seiberg-Witten description in the
deep IR implies that it automatically matches all ’t Hooft anomalies.

In this exotic Coulomb phase the Z8 symmetry is unbroken. Moreover, its realization in-
volves the action of electric-magnetic duality. As long as this symmetry remains unbroken,
this means that the coupling is pinned to the self-dual value τ = i. Moreover, r relates any
dyon (nm, ne) to an exactly degenerate dyon with charges (ne,−nm). Some possible implica-
tions of these facts will be discussed below.
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We would now like to understand whether this phase persists to larger values of M , for
which we can no longer reliably analyze the soft mass deformation. Broadly speaking, there
are three scenarios for what may happen as we increase M :

1.) The phase at u = 0 may persist for all values of M (in particular for M ≫ Λ). If this
is the case, it describes the IR behavior of adjoint QCD. While consistent, this scenario
(in particular the fact that τ = i and the realization of the unbroken Z8 symmetry via
electric-magnetic duality) is quite exotic. Note however, that it is not possible to simply
remove the U(1) gauge field from the spectrum (e.g. by higgsing) since its presence is
tied to the realization of the Z8 symmetry via S-duality.

If this scenario is realized in adjoint QCD, we must invoke a transition to a confining
phase once we add fermion masses, in order to match the known behavior of adjoint
QCD with N f = 0,1 (see section 1.1).14

2.) The vacuum at u = 0 persists, but there is a second order phase transition at which
additional massless degrees of freedom appear.

3.) There is a first-order transition to a different vacuum.

Without some additional guidance, it is difficult to determine which of the options listed above
is realized. In particular, it is not clear what other states or vacua should be considered in
options 2.) and 3.). It is therefore desirable to have a better sense of the consistent candidate
phases that could conceivably be realized once we explore the deformed N = 2 SYM theory
for larger values of the soft scalar mass M .

Since every point on the Coulomb branch automatically satisfies ’t Hooft anomaly match-
ing, it represents a consistent candidate phase. Moreover, even if these points are not minima
of the potential at parametrically small values of M , the potential at larger values of M could
take a different shape and favor points other that u = 0 on the Coulomb branch. Of course
it is entirely possible that the physics at larger values of M is completely divorced from any
Coulomb-branch intuition. In this case we have very little to say.

With this in mind, we will explore different points on the u-plane. Moreover, we allow our-
selves to contemplate modifications of the low-energy theory at these points, as long as these
modifications preserve all symmetries and ’t Hooft anomalies. For instance, at the monopole
point we will permit ourselves to investigate the regime where the gauge coupling of the N = 2
SQED theory is small, e≪ 1. We make two additional simplifying, but well-motivated, assump-
tions:

• We focus on the real axis u ∈ R. Vacua with Im u ̸= 0 break time reversal.15

• We focus on the strong-coupling region |u| ≲ Λ2. At sufficiently large values of u, the
scalar mass deformation reliably produces a large potential that pushes us into the inte-
rior of the u-plane. This is reflected in Figure 1.

1.6.1 A phase with confinement and unbroken chiral symmetry

Let us first discuss a generic point u ̸= 0,±Λ2 on the real axis. Even though all such points are
lifted once we turn on the soft scalar mass M , they still furnish a candidate phase that matches
all ’t Hooft anomalies. Moreover, it is possible that the shape of the effective potential changes

14In the context of Seiberg-Witten theory, adding soft fermion masses typically drives the theory toward the
monopole and dyon points. For instance, this is the case for the N = 1 preserving deformation in [9]. More
general soft fermion masses are analyzed in [38].

15It is sometimes possible to justify this assumption by adapting the arguments in [48], see e.g. section 3.4.
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as we increase M , so that these points are eventually favored. In the N = 2 theory, the low-
energy field content is given by the abelian vector multiplet

�

ϕ,ρi
α, f (2)
�

. The Z8 symmetry is
spontaneously broken to Z4 and the low-energy gauge coupling τ need not take a particular
fine-tuned value.16

We can now attempt to deform the theory while preserving all symmetries and ’t Hooft
anomalies. To start, we can imagine that the scalars acquire a mass. A more subtle question is
whether it is possible to deform the theory so as to remove the U(1) gauge field. For instance,
it was recently conjectured [15] that adjoint QCD (with N f = Nc = 2) flows to a theory with

two vacua that spontaneously break Z8 to Z4 and only the gaugino ρi
α, but no gauge fields.

This conjecture was motivated by the known behavior of adjoint QCD on a small S1 (with
periodic, i.e. non-thermal, boundary conditions for the fermions) established in [49, 50] (see
for instance [51] for a recent review with references).

In order to remove the U(1) gauge field in a way that can be interpreted as confinement
from the point of the UV theory (in particular, the Z(1)2 center symmetry should be unbroken),
it is appropriate to use a duality frame that is adapted to the monopole point. As was explained
in [23,24] (and will be reviewed in section 4.3), this dual U(1) gauge field f (2)D is in fact a spinc

gauge field. (This is ultimately a consequence of the mixed anomaly involving the Z(1)2 center
symmetry and w2(M4) mentioned in section 1.2.) It is therefore inconsistent to completely
remove this U(1) gauge field by higgsing.

To see this, imagine lifting the photon by adding heavy charged scalar fields. If such a field
condenses, it can higgs the U(1) gauge symmetry. However since f (2)D is a spinc gauge field
it can only couple to odd-charge Higgs fields in half-integer-spin representations of SU(2)R
(e.g. doublets), or to even-charge Higgs fields in integer-spin representations of SU(2)R. If
one is seeking a scenario with unbroken SU(2)R symmetry, the only option is an SU(2)R-
neutral Higgs field of even U(1) gauge charge, which can at most Higgs the U(1) gauge field
to a Z2 gauge field. Moreover, since the massive Higgs field does not contribute to any anoma-
lies, this argument also shows that the resulting Z2 gauge theory (together with the massless
gaugino ρi

α) is sufficient to match all ’t Hooft anomalies.
The resulting candidate phase nicely matches the results of [49,50], because adjoint QCD

on a small S1 is known to posses two vacua. These could then be interpreted as the two possible
values of the Z2 Wilson line on S1. As was already mentioned above, the fact that we have
higgsed the dual gauge field f (2)D implies that the UV theory is confined. In particular, all SU(2)
Wilson loops obey an area law, and the Z(1)2 center symmetry is unbroken. Nevertheless there
is an emergent, deconfined Z2 gauge theory in the IR, and it gives rise to loop operators that
do not obey an area law.

We would like to make two additional comments about this phase:

• As was the case for the exotic Coulomb phase at u= 0, we must invoke phase transitions
under fermion mass deformations to make the candidate phase discussed here consistent
with the known behavior of N f = 0, 1 adjoint QCD.

• In the discussion above we postulated the existence of scalar Higgs field that cou-
ples to f (2)D with charge 2. In terms of the UV variables, this amounts to a magnetic
monopole of charge 2. This also fits nicely with the results of [49,50], where such mag-
netic charge 2 excitations become available once the theory is compactified. However,
there is no evidence for the existence of such an excitation in the spectrum of the four-
dimensional N = 2 SYM theory. For instance, the BPS particle spectrum was determined
in [9,52] and consists of particles of magnetic charge zero or one.

16As we will discuss in section 4.1, the θ -angle in the region |u| < 1 is π, up to a duality transformation, while
it vanishes when |u|> 1, up to a duality transformation.
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1.6.2 The CP1 phase

Finally, we consider the monopole (and, using Z8, also the dyon) point. As was already ex-
plained in section 1.3, there is no reliable vacuum at these points when M is small. Instead,
we use the same logic as above and modify the theory without changing its symmetries or
’t Hooft anomalies. In this case we make the gauge coupling e parametrically small, so that
the N = 2 SQED theory at the monopole point becomes weakly coupled and can be analyzed.
The outcome of this analysis is another candidate phase of adjoint QCD, which turns out to be
the CP1 sigma model anticipated around (1).

If we deform this SQED theory (with small e and scalar potential (9)) by the operator (12),
we find that the tachyonic mass term for the hypermultiplet scalar in (12) eventually leads to
a non-zero vev 〈hi〉 ≠ 0. Since hi carries U(1) gauge charge 1, it completely higgses the gauge
symmetry. In terms of the UV variables, the theory confines, and the Z(1)2 center symmetry is
unbroken. However, because hi also transforms in an SU(2)R doublet, this global symmetry
is spontaneously broken to its U(1)R subgroup. The model also preserves the time-reversal
symmetry eT= Tr2, even though r2 and T are separately broken. By tracking a supersymmetric
descendant of the chiral operator u from the UV to the IR, one can show that the vev of hi

induces a UV gaugino condensate tr(λiλ j)∼ h
(i

h j) ̸= 0. It is remarkable that the IR theory on
the Coulomb branch has the right degrees of freedom to realize this scenario.

The low-energy theory of the NG bosons for the spontaneous breaking SU(2)R → U(1)R
is a CP1 sigma model. This theory has two interesting topological couplings that arise from
N = 2 SQED by integrating out the massive fermions. Both of them have important implica-
tions for the solitonic states of the model:

• There is a discrete θ -angle associated with π4(CP
1) = Z2 [53, 54]. The model has

skyrmion particles associated with the Hopf mapπ3(CP
1) = Z. (See for instance [55] for

a discussion in the context of adjoint QCD.) In fact, skyrmion number is only conserved
modulo 2 (for reasons closely related to those discussed in [56]), and coincides with
fermion parity (−1)F , due to the presence of the discrete theta term. Moreover, both
quantum numbers also coincide with the central element −1 ∈ SU(2)R. Therefore the
skyrmions have exactly the right quantum numbers to describe hadronic states created
by local operators constructed out of gauginos λi

α and gauge fields.

• There is also an ordinary θ -angle of the form Ω∧Ω, where Ω is the pullback to spacetime
of theCP1 Kähler form.17 It takes the value θ = π, which is consistent with time reversal
invariance.

The model has solitonic strings associated with π2(CP
1) = Z, a Z2 subgroup of which

is identified with the Z(1)2 center symmetry. Therefore the strings are stable modulo 2.
These are the confining strings of the theory. (In the N = 2 SQED description, they are
ANO strings.) When we turn on background fields for the unbroken U(1)R ⊂ SU(2)R,

we find that the θ -term for the pions induces a θ -term of the form θR
2π G(2)R on the string

worldsheet, with θR = π. Here G(2)R is the background spinc field strength associated
with the U(1)R symmetry. This means that, though gapped, the worldsheet theory on the
confining string is in fact a topological insulator. It is protected by the unbroken U(1)R
and time reversal eT symmetries.

So far we have only discussed the theory near the monopole point. The theory near the
dyon point is identical. Therefore we get two copies of the CP1 model related by the sponta-

17Whether or not such a theta term is generated depends on the sign of the vev of ϕ. A non-trivial θ -angle
is generated if ϕ lies inside the strong-coupling region. This is plausible, given the form of the scalar potential
discussed above.
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neously broken Z8 symmetry. This is precisely what is expected from chiral symmetry break-
ing by a gaugino condensate. Unlike the phases without chiral symmetry breaking discussed
above, the CP1 phase very economically captures the expected properties of the N f = 0, 1

theories when we add small fermion masses, which can be analyzed in the CP1 model using
spurions:

• If we add generic masses, we flow to pure YM theory with θ ̸= π. In this case we find a
unique vacuum.

• If we add mass for only one gaugino, we find the two degenerate vacua expected inN =1
SYM theory.

• We can add the same complex mass m for both gauginos, which preserves the U(1)R
symmetry. The phase of m determines the θ -angle of the resulting YM theory at low
energies. As long as θ ̸= π, we find a single vacuum, but when θ = π, we find two
exactly degenerate vacua (one on each CP1), as expected.

When m > 0, we preserve the U(1)R and eT symmetries that protect the topological
insulator on the worldsheet of the confining string. However, for sufficiently large m
we flow to pure YM at θ = 0, whose strings are expected to have trivial ground states.
This is only possible if the theory on the string undergoes a phase transition (while the
bulk remains gapped). The simplest possibility is that a single massive Dirac fermion
on the string worldsheet becomes massless. This is precisely the scenario that occurs
when the mass-deformed CP1 phase is realized in the deformed N = 2 SQED theory
(see section (5)). There the massless Dirac fermion that is responsible for the transition
on the string worldsheet arises from conventional fermion zero modes on Abrikosov-
Nielsen-Olesen (ANO) strings.

1.6.3 Speculations on phase transitions

Having analyzed possible phases for adjoint QCD suggested by Seiberg-Witten theory, we are
left to speculate which phase is ultimately realized. As was emphasized before, this is a ques-
tion of energetics (i.e. the shape of the effective potential), and general constraints such as ’t
Hooft anomaly matching are not sufficient to distinguish between different candidate scenar-
ios. Even though we cannot do this in a controlled fashion, we permit ourselves the following
speculations:

• Perhaps the most striking feature of the mass deformation (12) is that it gives a tachy-
onic mass to the hypermultiplet hi . If this behavior persists at larger values of M , the
hypermultiplet will eventually become light and condense. If this crude, but suggestive
picture can be taken seriously, it is natural to conjecture that the CP1 phase is eventually
reached for large enough values of M .

• Even if the CP1 phase ultimately takes over, there is a question of how this happens. One
possibility is that there is a first-order transition, i.e. the vacuum at u= 0 disappears and
the two CP1 vacua appear somewhat closer to the monopole and dyon points. One
could also imagine passing through other intermediate phases without chiral symmetry
breaking, such as the one discussed in section 1.6.1.

• A more dramatic scenario is that the theory remains at u = 0 until the monopoles and
dyons become massless. The unbroken Z8 symmetry there relates monopoles and dyons
with exactly the right quantum numbers to be identified as the particles that become
light at the points u= ±Λ2 (see section (4.2.2)). If the picture suggested by the form of
the mass deformation (12) is correct, increasing M will make them lighter and lighter,
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but they will stay exactly degenerate as long as the theory is at u = 0. If the monopole
and the dyon (which are mutually non-local) become simultaneously massless, there is
necessarily an interacting CFT at the transition point [57]. If the naive picture suggested
by the form of (12) continues, the theory will then transition out of the CFT and into
the CP1 phase.

Our work using soft supersymmetry breaking of supersymmetric field theories to explore
candidate phases of non-supersymmetric gauge theories can be generalized to a variety of
other models. See for instance [58–60] for recent work on increasing the number of colors or
otherwise changing the gauge group, [61, 62] for recent examples attempting to reduce the
initial amount of supersymmetry from N = 2 to N = 1, and [63, 64] for recent examples
changing the dimension of the theory under investigation.

2 The UV theory: SU(2) adjoint QCD with N f = 2 flavors

In this section we review the lagrangian and global symmetries of adjoint QCD and its N = 2
supersymmetric extension. We also describe in detail the various ’t Hooft anomalies that con-
strain RG flows, including some that become visible only when the theory is placed on non-spin
manifolds.

2.1 Lagrangian

Adjoint QCD with gauge group SU(2) and N f = 2 massless flavors is described by the following

classical lagrangian,18

L = −
1

4g2 vAµνvA
µν −

i

g2λ
A
i σ

µDµλ
iA+

θ

64π2 ϵ
µνρλvA

µνvA
ρλ . (14)

Let us discuss the parameters and fields that appear in this lagrangian:

• g is the dimensionless gauge coupling. In the quantum theory it runs and is traded for
a physical strong coupling scale Λ. At one loop 1

g2 →
β

8π2 log
ΛUV
Λ , where β = 14

3 and ΛUV

is a UV cutoff. The theory is therefore asymptotically free.

• vA
µν is the SU(2) field strength. Here A= 1,2, 3 is an adjoint triplet index of SU(2).19 In

terms of the SU(2) gauge field vA
µ,

vA
µν = ∂µvA

ν − ∂νvA
µ + ϵABC vB

µ vC
ν . (15)

Here ϵABC is the totally antisymmetric symbol, normalized as ϵ123 = 1. We will occa-
sionally use the SU(2) generators tA = 1

2σ
A in the fundamental representation (here σA

are the Pauli matrices). They are hermitian and satisfy

�

tA, tB�= iϵABC tC , tr
�

tAtB�=
1
2
δAB . (16)

The connection 1-form v(1) and the field-strength 2-form v(2) are then defined as follows,

v(1) = vA
µ tAd xµ , v(2) =

1
2

vA
µν tAd xµ ∧ d xν = dv(1) − iv(1) ∧ v(1) . (17)

18We work in Minkowski signature, so that the path integral weight is eiS with S =
∫

d4 xL . Throughout, we
use the conventions of [1].

19We use uppercase latin letters A, B, C , . . . from the beginning of the alphabet to denote adjoint triplet indices
of the SU(2) gauge group. We will not distinguish between raised and lowered indices, since we can freely change
the placement of any index using δAB ,δAB .

14

https://scipost.org
https://scipost.org/SciPostPhys.16.5.139


SciPost Phys. 16, 139 (2024)

• There are N f = 2 left-handed Weyl fermions λiA
α in the adjoint representation of

the SU(2) gauge group. The index i = 1, 2 is a flavor doublet index.20 The right-handed
hermitian conjugate of λiA

α is

λ
A
α̇i =
�

λiA
α

�†
. (18)

Note that hermitian conjugation exchanges raised and lowered flavor indices (see ap-
pendix A). For completeness we write out the covariant derivative in (14),

Dµλ
iA
α = ∂µλ

iA
α + ϵABC vB

µλ
iC
α . (19)

In the N = 2 SYM parent theory (see section 2.3), the λiA
α are identified as gauginos. It

is therefore natural to normalize them as in (14), so that their kinetic term contains a
factor of 1

g2 .

• As we will review in section 2.2, the classical θ -parameter in (14) is absent in the quan-
tum theory. We nevertheless include it here, because it will be useful when we discuss ’t
Hooft anomalies in section 2.4, and mass deformations in section 2.5.

The θ -parameter appears in the functional integral as eiθn, where n is the SU(2) instan-
ton number on the spacetime 4-manifold M4,

n=
1

8π2

∫

M4

tr
�

v(2) ∧ v(2)
�

=
1

64π2

∫

M4

d4 x ϵµνρλvA
µνvA

ρλ . (20)

The quantization of n on orientable 4-manifolds21 is as follows (see e.g. [65–67]):

– If the gauge group is SU(2), the instanton number n ∈ Z.
– If the gauge group is SO(3) and the 4-manifold is spin, then 2n ∈ Z.
– If the gauge group is SO(3) and the 4-manifold is not spin, then 4n ∈ Z.

In this paper we will focus on two-flavor adjoint QCD with gauge group SU(2). Therefore
θ is an angle with standard periodicity θ ∼ θ + 2π. However, when we analyze the ’t
Hooft anomalies of this theory in section 2.4, it will occasionally be useful to refer to the
theory with SO(3) gauge group.

2.2 Symmetries

In addition to Poincaré symmetry, adjoint QCD with SU(2) gauge group and N f = 2 massless
flavors has several global symmetries, which we now describe in turn.

2.2.1 SU(2)R flavor symmetry

There is an SU(2)R symmetry under which the fermions λAi
α transform as doublets. The fla-

vor index i = 1, 2 is the corresponding doublet index. We refer to the symmetry as an R-
symmetry, because this terminology is standard in the N = 2 SYM parent theory (see sec-
tion 2.3), where SU(2)R acts on the supercharges.

20We use lowercase latin letters i, j, k, . . . from the middle of the alphabet to denote flavor doublet indices. These
indices are acted on by an SU(2)R flavor symmetry (see section 2.2). It is therefore natural to raise and lower them
using the antisymmetric invariant symbols ϵi j ,ϵi j of SU(2)R (see appendix A).

21As we will mention in section 2.2.4, the fact that the theory preserves parity and time-reversal means that it is
possible to study it on unorientable 4-manifolds.
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The Z2 center of SU(2)R is generated by the element−1 ∈ SU(2)R. This element multiplies
all fermions by a sign and is therefore be identified with fermion parity (−1)F

−1= (−1)F . (21)

As we describe in section 2.4.2 this is an analog of the spin-charge relation discussed in [18]
for SU(2)R representations.

2.2.2 Z8 flavor symmetry

The classical lagrangian (14) has a U(1)r flavor symmetry under which the fermions λAi
α have

charge 1. More precisely, the flavor symmetry that acts faithfully on the fermions is

U(2) =
SU(2)R ×U(1)r

Z2
. (22)

The quotient identifies the element −1 ∈ U(1)r with the central element −1 ∈ SU(2)R. As
in (21), both elements are further identified with fermion parity,

−1= −1= (−1)F . (23)

Quantum mechanically, the U(1)r symmetry is explicitly broken to its Z8 subgroup by an
Adler-Bell-Jackiw (ABJ) anomaly. This leads to the following non-conservation equation for
the classically conserved U(1)r current,

jµr =
1

g2 λ
A
i σ

µλiA , ∂µ jµr =
1

8π2 ϵ
µνρλvA

µνvA
ρλ . (24)

Therefore a U(1)r rotation by an angle χr ∼ χr + 2π shifts the θ -angle in (14) as follows,

θ → θ + 8χr . (25)

We can use such a rotation to set θ = 0, which explains why it is not a parameter of the
quantum theory. Since both θ and χr have periodicity 2π, it follows from (25) that the ABJ
anomaly explicitly breaks

U(1)r −→ Z8 . (26)

The unbroken Z8 symmetry is generated by U(1)r rotations with angle χr =
π
4 . We will denote

the Z8 generator by r and use multiplicative notation, so that

r
�

λiA
α

�

= e
iπ
4 λiA

α . (27)

Since r4 = −1 ∈ U(1)r, it follows from (23) that r satisfies the following relations,

r4 = −1= (−1)F . (28)

The ABJ anomaly therefore explicitly breaks the classical U(2) flavor symmetry in (22) to

SU(2)R ×Z8

Z2
, (29)

where the Z2 quotient enforces the identification in (28).22

22A further quotient that also involves the Lorentz group is needed to enforce the identification with (−1)F . This
will be important in section 2.4.2.
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2.2.3 Z(1)2 1-form center symmetry

Since we are studying SU(2) gauge theory with matter in the adjoint representation (the
fermions λiA

α ), but no fundamental matter, there is a generalized 1-form global symmetry Z(1)2

associated with the center of the SU(2) gauge group [2, 3].23 It is common to refer to Z(1)2

as a center symmetry. The action of the Z(1)2 symmetry on a Wilson line Wj in the spin- j

representation of SU(2) (with j ∈ 1
2Z) is Wj → (−1)2 jWj .

As is the case for an ordinary flavor symmetry, the vacuum of the theory may or may not
preserve the Z(1)2 center symmetry, i.e. it can be unbroken or spontaneously broken. As was
explained in [3], this is closely related to whether or not the theory confines. If all Wilson
loops have an area law, then Z(1)2 is unbroken. By contrast, if Z(1)2 is spontaneously broken,
then some Wj with half-integer j must have a perimeter law.

2.2.4 Parity P and time-reversal T

As was explained around (25), the θ -angle in (14) can be set to zero using the ABJ anomaly
of the classical U(1)r symmetry. The theory is therefore invariant under parity P and time-
reversal T. In lorentzian signature P is unitary and T is anti-unitary. Since we are discussing a
theory with gauge group SU(2) (which admits no outer automorphisms), there is no separate
notion of charge conjugation C. In this situation the CPT-theorem implies that P and T can
be used interchangeably.

Lorentz invariance requires the action of P and T on two-component spinors ψα,ψα̇ to
take the following form,

P
�

ψα
�

∼ψ
α̇

, T
�

ψα
�

∼ψα . (30)

It is natural to choose P and T to commute with the unitary operators that implement SU(2)R
flavor transformations. SinceP is unitary, it preserves the placement of SU(2)R doublet indices.
By contrast, T is anti-unitary and therefore exchanges raised and lowered SU(2)R indices.
Schematically,

P
�

Oi�∼Oi , T
�

Oi�∼Oi . (31)

With these comments in mind, it can be checked that the following parity and time-reversal
transformations are symmetries of the lagrangian (14) (once we set θ = 0),

P
�

vA
µ(x)
�

=Pµ
νvA
ν(P x) , T

�

vA
µ(x)
�

= Tµ
νvA
ν(T x) ,

P
�

λiA
α (x)
�

= λ
α̇iA
(P x) , T

�

λiA
α (x)
�

= iλαA
i (T x) .

(32)

Here Pµ
ν = diag(1,−1,−1,−1) and Tµ

ν = diag(−1,1, 1,1) are the parity and time-reversal
Lorentz transformation matrices. It follows from (32) that

P2 = T2 = 1 . (33)

Note that T2 squares to 1, rather than to the more common (−1)F , because the fermions λiA
α

transform in the pseudo-real doublet representation of SU(2)R. This is also responsible for the
identification (21).

Although we will not utilize it below, the fact that adjoint QCD preserves parity and time-
reversal means that it is possible to place the theory on non-orientable 4-manifolds. More
specifically (33) means that (after analytic continuation to euclidean signature) the class of
four-manifolds accessible are those with a Pin− structure (see e.g. [69].) In section 2.4.2 we
will see that the class of 4-manifolds can be further enlarged if we include SU(2)R backgrounds.

23Here we use the notation of [68] for higher-form symmetries, whose form degree is indicated by a superscript
in parentheses, but not for ordinary 0-form flavor symmetries.
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2.3 Embedding into N = 2 supersymmetric Yang-Mills theory

We now explain how adjoint QCD can be embedded into N = 2 SYM theory. The basics
of N = 2 supersymmetry are reviewed in appendix B. Here we only present those aspects that
will be needed below. The N = 2 supersymmetry algebra takes the following form,

�

Qi
α,Qα̇ j

	

= 2δi
jσ
µ
αα̇Pµ ,
�

Qi
α,Q j

β

	

= 2ϵαβϵ
i j Z . (34)

Here Qi
α and Qα̇i =
�

Qi
α

�†
are the N = 2 supercharges and Z is a complex central charge, with

hermitian conjugate Z = Z†.
Pure N = 2 SYM theory with gauge group SU(2) is based on a single N = 2 vector

multiplet, whose component fields are given by

vA
µ , φA, λiA

α , Di jA = D(i j)A =
�

DA
i j

�†
. (35)

All fields are in the adjoint representation of SU(2), and therefore carry a triplet in-
dex A= 1, 2,3. The superpartners of the gauge field vA

µ consist of complex scalars φA (whose

hermitian conjugates we denote by φ
A
), an SU(2)R doublet of gauginos λiA

α (whose hermitian

conjugates we denote by λ
A
α̇i), and a real SU(2)R triplet Di jA of auxiliary scalar fields. The su-

persymmetry transformations of the fields in (35) are summarized in appendix B. They satisfy
theN = 2 algebra (34) with central charge Z = 0 off shell, and modulo gauge transformations.
The vector multiplet is characterized by the following supersymmetric constraints,

Qα̇iφ
A = 0 , Q(iQ j)φA = −Q

(i
Q

j)
φ

A
. (36)

The first constraint expresses the fact that the vector multiplet is chiral, while the second
constraint expresses the reality of Di jA, which is related to the Bianchi identity for the field
strength vA

µν by supersymmetry.
In appendix B we also review the construction of the N = 2 SYM lagrangian, which takes

the following form when it is expressed in terms of the vector multiplet component fields (35),

L =
1

g2

�

−
1
4

vA
µνvAµν +

1
4

Di jADA
i j − Dµφ

A
Dµφ

A− iλ
A
i σ
µDµλ

iA

−
1
2

�

iϵABCφ
B
φC
�2
+

i
p

2
ϵABCφ

A
λiBλC

i +
i
p

2
ϵABCφ

Aλ
B
i λ

iC
�

.
(37)

Here the field strength vA
µν takes the same form as in (15), while the covariant derivatives are

as in (19).
The auxiliary field Di jA in (37) can be integrated out by setting Di jA = 0. The scalar

potential is given by

V =
1
2

�

iϵABCφ
B
φC
�2

. (38)

This potential admits flat directions of the formφ3 = 2a ∈ C. These are the classical precursors
of the quantum vacua analyzed in [9] and reviewed in section 4.

For the purpose of this paper, the most important feature of the N = 2 SYM lagrangian
in (37) is that it reduces to the lagrangian (14) of SU(2) adjoint QCD with N f = 2 flavors

(with θ = 0),24 once we delete all terms that involve the scalar fields φA. Moreover, the two
theories have the same global symmetries, once the symmetries of adjoint QCD discussed in
section 2.2 are extended to the additional fields in the N = 2 vector multiplet (35) in a suitable
fashion:

24Since the θ -term is topological, adding it to the lagrangian of N = 2 SYM preserves supersymmetry. (Its
supersymmetry variation is a total derivative.) Just as in adjoint QCD, we can set θ = 0 using a U(1)r symmetry
that suffers from an ABJ anomaly.
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• As in section 2.2.1, there is an SU(2)R symmetry under which the gauginos λiA
α are

doublets. The same is true of the N = 2 supercharge Qi
α. The auxiliary fields Di jA are

triplets, while vA
µ and φA are neutral.

• As in section 2.2.2, there is a classicalU(1)r symmetry under which the gauginosλiA
α have

charge 1. The scalarsφA have charge 2, Di jA and vA
µ are neutral, and the supercharges Qi

α

have charge −1. The discussion around (24) applies without modification, so that U(1)r
is also broken to its Z8 subgroup by an ABJ anomaly. The Z8 generator r acts as follows,

r
�

φA�= iφA , r
�

λiA
α

�

= e
iπ
4 λiA

α , r
�

Qi
α

�

= e−
iπ
4 Qi

α , (39)

while vA
µ and Di jA are invariant. This action is consistent with the relation in (28).

• All fields transform in the adjoint representation of the SU(2) gauge group. Conse-
quently, theZ(1)2 1-form symmetry associated with the center of SU(2) that was discussed
in section 2.2.3 is also present in the N = 2 theory.

• The action of parity P and time-reversal T in (32) of section 2.2.4 can be extended to
all fields in the N = 2 vector multiplet to give symmetries of (37),

P
�

vA
µ(x)
�

=Pµ
νvA
ν(P x) , T

�

vA
µ(x)
�

= Tµ
νvA
ν(T x) ,

P
�

φA(x)
�

= φ
A
(P x) , T

�

φA(x)
�

= φA(T x) ,

P
�

λiA
α (x)
�

= λ
α̇iA
(P x) , T

�

λiA
α (x)
�

= iλαA
i (T x) ,

P
�

Di jA(x)
�

= Di jA(P x) , T
�

Di jA(x)
�

= DA
i j(T x) .

(40)

By comparing with the supersymmetry transformations in appendix B, we can determine
the action of P and T on the supercharges,

P
�

Qi
α

�

=Q
α̇i

, T
�

Qi
α

�

= −iQαi . (41)

Just as in (33), the transformations in (40) satisfy P2 = T2 = 1. Using (41), we can
determine the transformation properties of the central charge Z in the supersymmetry
algebra (34),

P
�

Z
�

= Z , T
�

Z
�

= −Z . (42)

As was explained in the introduction, we will interpolate between N = 2 SYM and adjoint
QCD by adding the following mass term for the scalars φA,

∆V =
M2

g2 φ
Aφ

A
. (43)

We will study the deformed theory as a function of M (which we take to be positive). The
N = 2 theory corresponds to M = 0, while two-flavor adjoint QCD is obtained in the limit
M ≫ Λ, where Λ is the strong-coupling scale of the N = 2 theory.25 Crucially, this mass
deformation preserves all symmetries (and all ’t Hooft anomalies, as we will see in section 2.4)
as we interpolate between the two theories.

25The N = 2 theory is asymptotically free, just as adjoint QCD. Due to the extra complex scalars φA in the
adjoint representation of SU(2), the one-loop beta function is βN=2 = 4. For our purposes, it will not be necessary
to distinguish the strong coupling scales of the two theories, and we denote both of them by Λ.
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2.4 Background fields and ’t Hooft anomalies

In this section we describe the ’t Hooft anomalies of adjoint QCD.26 These anomalies must
be reproduced in any phase of the theory [17] and hence constitute a powerful constraint on
candidate IR scenarios. Since the N = 2 theory enjoys the same symmetries as adjoint QCD
and differs from it only by scalars, the two theories have the same anomalies. We will examine
as many anomalies as possible, without claiming to be exhaustive. We will also discuss them
via inflow (though in some cases, only schematically).

The allowed background fields and possible ’t Hooft anomalies are dictated by the global
symmetries of the theory. If we ignore the Z8 flavor symmetry and the Z(1)2 center symmetry,
the symmetry class is CII (in condensed matter language), or Pin− ×{±1} SU2 in the notation
of [70].

We will first summarize largely familiar anomalies that are visible on spin 4-manifolds. We
then generalize to anomalies that are visible only on non-spin 4-manifolds. Here we benefit
greatly from the fact that the global properties of the topologically twisted N = 2 theory are
very well understood.

2.4.1 Spin manifolds

We begin by assuming that spacetime M4 is an oriented manifold with a spin structure. When
we discuss anomaly inflow we should therefore imagine that M4 is the boundary of a 5-
manifold M5 with the same properties. We can then define conventional spinors and Dirac
operators on both M4 and M5.

The Witten anomaly for SU(2)R The SU(2)R symmetry allows us to couple the fermions to
background SU(2)R gauge fields A(1)R , with field strength F (2)R .27 There are no ’t Hooft anoma-
lies under background gauge transformations that are continuously connected to the identity.
However, there can be a Z2-valued ’t Hooft anomaly (often referred to as the Witten anomaly)
under large SU(2)R gauge transformations associated to π4(SU(2))∼= Z2 [71]. If the anomaly
is present, a large gauge transformation g modifies the partition function by a sign

Z
�

g
�

A(1)R

��

= −Z
�

A(1)R

�

. (44)

The partition function of the five-dimensional invertible spin-TQFT that captures the anomaly

via inflow on a closed 5-manifold M5 is given by (−1)I[A
(1)
R ], where I[A(1)R ] is the index of a

certain real Dirac operator coupled to a fermion in the doublet representation of SU(2)R [71].
From [71] we recall that this anomaly is present if the theory under consideration contains

an odd number of Weyl fermions in the doublet representation of SU(2)R. This is indeed the
case here: the gauginos λiA

α constitute three SU(2)R doublets. Note that even though this
anomaly is discrete in nature (i.e. Z2-valued), it can only be matched by massless degrees of
freedom [72]. We therefore conclude that the IR of adjoint QCD is necessarily gapless.

For future use, we also observe that the anomaly trivializes if we only consider the Cartan
subgroup U(1)R ⊂ SU(2)R, because every SU(2)R doublet decomposes into two U(1)R repre-
sentations of charge±1. This is related to the fact that the U(1)R symmetry acts in a vector-like
fashion, and can be preserved while giving mass to all fermions, while SU(2)R acts chirally.
This will be important in section 2.5 below.

26See for instance [68] for a pedagogical introduction to ’t Hooft anomalies.
27We use the same conventions for the SU(2)R background gauge field A(1)R and its field strength F (2)R as for the

dynamical SU(2) gauge field v(1) and its field strength v(2) (see (17)).
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Mixed anomalies involving Z8 and SU(2)R or gravity Next we turn to ’t Hooft anomalies
associated with the Z8 symmetry. To describe these it is convenient to embed Z8 in the classi-
cally conserved U(1)r symmetry under which the gauginos λiA

α have charge 1. (See [73] for a
related discussion.) We can therefore couple the classical theory to a U(1)r background gauge
field A(1)r , with the understanding that A(1)r will ultimately be restricted to a Z8 gauge field.

The U(1)r symmetry has ’t Hooft anomalies with itself, the SU(2)R flavor symmetry, and
with background gravity. The corresponding anomaly coefficients are given by

κr3 = TrU(1)r
3 = 6 , κrR2 = TrU(1)rSU(2)2R = 3 , κr = TrU(1)r = 6 . (45)

The anomalies are summarized by the following anomaly inflow action for the background
fields in five dimensions,

S5[A
(1)
r , A(1)R ] = i

∫

M5

�

κr3

24π2 A
(1)
r ∧ dA(1)r ∧ dA(1)r +κrR2 A(1)r ∧ c2(R)−

κr
24

A(1)r ∧ p1(M5)
�

.

(46)
Here c2(R) =

1
8π2 tr
�

F (2)R ∧ F (2)R

�

is the second Chern class of the SU(2)R bundle and p1(M5)
is the first Pontryagin class of the tangent bundle.

Let us first concentrate on the anomalies above that are linear in A(1)r (i.e. the last two
terms in (46)). If we perform a U(1)r background gauge transformation A(1)r → A(1)r + dχr,
the action (46) captures the anomalous variation of the four-dimensional partition function.
To see what remains when we restrict A(1)r to a Z8 gauge field we impose the constraint

χr =
2π
8

kr , kr ∈ Z8 . (47)

We then obtain the following anomalous variations of the four-dimensional partition function,

Z
�

A(1)r → A(1)r + dχr, A(1)R

�

= Z
�

A(1)r , A(1)R

�

exp
� iπkr

4

�

κrR2 nR −
1
8
κrσ

��

, kr ∈ Z8 . (48)

Here nR =
∫

M4
c2(R) is the SU(2)R instanton number and σ = 1

3

∫

p1(M4) is the signature
of M4. The instanton number is always an integer, nR ∈ Z. By contrast, σ ∈ 16Z, since M4 is
a spin manifold (see for instance [74]).

By choosing kr = 1 (which corresponds to the Z8 generator r) we deduce that:

• The mixed Z8-SU(2)R anomaly is κrR2 = 3 (mod 8).

• The mixed Z8-gravity anomaly is κr = 6 (mod 4).

Notice also that the Z4 ⊂ Z8 subgroup generated by r2 (corresponding to kr = 2 above) has
no mixed ’t Hooft anomaly with gravity when M4 is a spin manifold.

The cubic Z8 anomaly Although we will not use it in later sections, we briefly describe
the discrete remnant of the anomaly in (46), which is cubic in the background field A(1)r . To
characterize this term we note that abstractly a Z8 background gauge field z is a 1-cochain
with values in Z8. It is related to the U(1)r uplift via

A(1)r −→
2π
8

z . (49)

The quantity kr appearing above is then a gauge parameter for z.
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To discuss the analog of the curvature dA(1)r we consider an integral uplift ez to a 1-chain
with values in Z. This cochain is not closed but, since z is closed, the coboundary δez is a
multiple of 8. We can use this to define an integral 2-cochain β(z) as

δez

8
= β(z) . (50)

Note that although this definition appears to depend on the lift ez in fact the cohomology class
of β(z) ∈ H2(M4,Z) depends only on z. More formally, the operation β defined above is the
Bockstein homomorphism associated to the exact sequence Z→ Z→ Z8.

When translating from the continuous U(1)r to Z8, the Bockstein element β(z) gives a
discrete analog of the curvature

dA(1)r

2π
−→ β(z) . (51)

In particular, the Bockstein element β(z) is always a torsion element of the cohomology.
With the above ingredients, we can evaluate the cubic Z8 anomaly, which yields the fol-

lowing result for the five-dimensional partition function that captures the anomaly via inflow,

exp

�

2πi
8

∫

M5

z∪ β(z)∪ β(z)

�

. (52)

Note that this is well defined under shifts of z by multiples of 8. Since this anomaly is only
visible on manifolds with torsion in their cohomology we will not utilize it below.

Mixed anomalies involving Z8 and the 1-form symmetry Z(1)2 Finally, we turn to anomalies

that involve the 1-form symmetry Z(1)2 . This symmetry has no anomalies with itself: gauging
it leads to the theory with SO(3) gauge group (see below). However we will see that it has a
mixed anomaly with the Z8 symmetry.

We first review how to couple the Z(1)2 center symmetry to background fields. Additional

details can be found in [2–5, 75]. The background field associated with Z(1)2 is a 2-form Z2

gauge field B2. It is a closed 2-cochain with coefficients in Z2,28 which is subject to 1-form
gauge transformations of the form B2→ B2+δΛ1, where gauge parameterΛ1 is aZ2 1-cochain.
Therefore B2 defines a cohomology class in H2(M4,Z2).

In the presence of B2, the functional integral over the dynamical SU(2) gauge fields is
modified: instead of summing over SU(2) bundles on M4, we sum over SO(3) bundles with
fixed ’t Hooft flux w2(SO(3)) = B2, where w2(SO(3)) is the second Stiefel-Whitney class. It
is known that Z(1)2 does not have ’t Hooft anomalies that prevent us from gauging it. It can
therefore be gauged by summing over all B(2) ∈ H2(M4,Z2). In the resulting theory we sum
over all SO(3) gauge bundles, without a constraint on w2(SO(3)). Therefore gauging B(2) has
the effect of converting the SU(2) theory to a theory with gauge group SO(3).

This perspective is useful when discussing mixed anomalies involving the Z(1)2 symmetry:
Any symmetry that is present if the gauge group is SU(2), but absent if we replace the gauge
group by SO(3) necessarily has a mixed anomaly with Z(1)2 in the original SU(2) gauge theory.
Precisely this happens for the Z8 flavor symmetry.

Indeed, as discussed in section 2.2.2, this symmetry is the remnant of a classical U(1)r sym-
metry, which is broken to Z8 by an ABJ anomaly. In SU(2) gauge theory, this breaking pattern
follows from the fact that the θ -angle was 2π periodic, together with its U(1)r transformation

28We do not use the notation B(2) because B2 is not a differential 2-form.
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rule (25). As was discussed around (20), replacing the gauge group by SO(3) extends the
periodicity of θ . On spin manifolds this leads to θ ∼ θ + 4π. Therefore only U(1)r rotations
by integer multiples of π2 preserve θ = 0. In SO(3) gauge theory the ABJ anomaly therefore
breaks U(1)r→ Z4. It follows that the original SU(2) gauge theory must have a mixed ’t Hooft
anomaly between Z8 and the Z(1)2 center symmetry, while the Z4 ⊂ Z8 subgroup does not have
such an anomaly on spin manifolds.

We can make this more explicit in terms of background fields as follows. The effect of
an r transformation is to modify the action by a θ -term for the dynamical gauge field with
coefficient 2π,

δS = 2πnv =
1

4π

∫

M4

tr
�

v(2) ∧ v(2)
�

. (53)

However, the fractional part of the instanton number can be expressed in terms of the back-
ground field B2. Specifically, let P(B2 ∪ B2) denote the Pontryagin square of B2. This is Z4
cohomology class which is even on spin manifolds. Then we have (see e.g. [21])

nv =
1
4

∫

M4

P(B2 ∪ B2) (mod Z) . (54)

From the above we deduce that after a Z8 gauge transformation with parameter kr the
partition function is modified as follows,

Z[B2] −→ Z[B2]exp

�

iπkr

2

∫

M4

P(B2 ∪ B2)

�

. (55)

Since the Pontryagin square is even, this anomalous variation is ±1 depending on the parity
of kr . In particular this means that the Z4 subgroup generated by r2 does not have an anomaly
with the Z(1)2 symmetry on spin manifolds. (Below we will see that this conclusion is modified
on non-spin manifolds.)

It is also straightforward to write a five-dimensional partition function that produces the
anomalous variation (55) by inflow,

exp

�

iπ
2

∫

M5

z∪P(B2 ∪ B2)

�

, (56)

where z is the Z8 gauge field discussed in (50).

2.4.2 Background fields on non-spin manifolds

In the previous subsection we considered mass-deformed deformed N = 2 SYM theories (in-
cluding adjoint QCD) on spin manifolds M4. On such manifolds spinors are well defined, and
we were free to turn on additional background fields associated with the global SU(2)R, Z8,
and Z(1)2 symmetries. In fact, the deformed N = 2 theories we are discussing can be placed on
more general manifolds, and coupled to more general background fields. In particular, they
can be placed on manifolds that are not spin. As we will discuss in more detail below, this
is due to the fact that all fields in the theory satisfy a nonabelian analog of the spin-charge
relation [18], which correlates their SU(2)R representation with their Lorentz spin. This cor-
relation is expressed by the identification (21) between the central element −1 ∈ SU(2)R and
fermion parity,

−1= (−1)F . (57)

Explicitly, this means that all fields whose SU(2)R spin jR is half-integer are fermions, while all
fields for which jR ∈ Z are bosons. (More precisely, this relation holds for all gauge-invariant
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local operators.) The ability to place the theory on non-spin manifolds allows us to probe more
of its properties; in particular, more ’t Hooft anomalies.

Let us describe the class of backgrounds compatible with (57). This relation means that
the symmetry group in question is a quotient29

Spin(4)× SU(2)R
Z2

. (58)

Where in the above Spin(4) is the spacetime symmetry group. One class of allowed back-
grounds are products of bundles for the groups in the numerator. These are spin manifolds
and SU(2)R gauge bundles. However, the most general class of backgrounds, where the quo-
tient is relevant, can be expressed as a pair consisting of an SO(4) bundle (describing the
geometrty) and SO(3)R bundle (denoted by BR) subject to a constraint

w2(M4) = w2(BR) . (59)

The relation (59) can be thought of as the SU(2) analogue of a spinc structure. For
instance, (59) implies that the background gauge field associated with the Cartan sub-
group U(1)R ⊂ SU(2)R is a conventional spinc connection.

To see why such backgrounds are consistent consider for instance the fermions λiA
α . If M4

is a spin manifold then λiA
α is a well-defined section of both the left-handed spinor bundle S+

and the SU(2)R bundle BR acting via the fundamental representation. On non-spin manifolds
the bundle S+ is not well-defined: the fact that w2(M4) ̸= 0 implies that it fails to be consistent
on some triple overlaps of patches on M4. However whenever this happens there is similarly
an obstruction to defining the action of BR in the fundamental representation (i.e. defining a
lift to SU(2)R). As a result λiA

α can always be defined.

Relationship to topologically twisted N = 2 SYM theory An important and well stud-
ied case of backgrounds satisfying (59) occurs in the supersymmetric theory in the con-
text of topological twisting [20]. In that construction one takes the SU(2)R symmetry and
the Spin(4) = SU(2)+ × SU(2)− Lorentz symmetry of the theory, and replaces the prod-

uct SU(2)R × SU(2)+ by its diagonal subgroupåSU(2)+,

SU(2)R × SU(2)+ × SU(2)− −→ åSU(2)+ × SU(2)− . (60)

The symmetryåSU(2)+ × SU(2)− is then interpreted as a twisted Lorentz group.
Twisting therefore modifies the Lorentz quantum numbers of fields that carry SU(2)R

charge. Explicitly, a field that carries spins ( jR, j+, j−) (with jR,± ∈
1
2Z) under

SU(2)R × SU(2)+ × SU(2)− turns into a field that transforms in the (ej+ = jR ⊗ j+, j−) rep-
resentation of the twisted Lorentz group. The gauge field vA

µ and the scalars φA are therefore
not modified, while the fermions and the auxiliary field turn in to differential forms. Explicitly,
λiA
α transforms as

�1
2 , 1

2 , 0
�

, and thus gives rise to a scalar and a self-dual 2-form in the (e0, 0)

and (e1,0) representations of the twisted Lorentz group. Similarly, λ
A
α̇i transforms as

�1
2 , 0, 1

2

�

and turns into a 1-form (e12 , 1
2) after twisting, while the auxiliary field Di jA (which transforms

as (1,0, 0)) gives rise to another self-dual 2-form (e1,0).
Since all fields have turned into differential forms, the twisted theory can be formulated on

an arbitrary 4-manifold M4: A spin structure is not needed. The (suitably decorated) super-
symmetric partition function ZDW of the twisted theory coincides with the Donaldson invari-
ants (see for instance [21]) of the smooth 4-manifold M4. We refer to ZDW as the Donaldson-
Witten partition function. Due to this relation, the global properties of twisted N = 2 SYM

29The fact that theZ8 generator r satisfies r4 = −1= (−1)F implies that this discussion can be further generalized
to also include the Z8 background gauge field, but we will not do so here.
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on 4-manifolds are quite well understood. This includes several subtle effects that will be
important below.

Rather than thinking of the twisted N = 2 theory in terms of fields that are differential
forms on M4, we can equivalently describe it by coupling the physical, untwisted theory to
a special configuration of the SU(2)R background gauge fields on M4.30 In order to describe
the twisted N = 2 theory in this language, we decompose the spin connection into its self-dual
part, which is valued in SU(2)+, and its anti-self-dual part, which is valued in SU(2)−. The
topologically twisted theory is obtained by embedding the self-dual part of the curvature in
the SU(2)R background gauge field A(1)R , i.e. the SU(2)R field strength F (2)R is chosen so that

F (2)R = R(2)+ , (61)

where R(2)+ is the self-dual part of the Riemann curvature 2-form. This special choice of back-
ground fields ensures that there is a suitably covariantly constant spinor on M4, so that a
conserved supercharge can be defined. When interpreted on a non-spin manifold. This rela-
tionship (61) between the curvature tensors implies the constraint (59).

2.4.3 ’t Hooft anomalies on non-spin manifolds

We now discuss refinements of the ’t Hooft anomalies that are present on non-spin manifolds.
Additionally we will discuss a mixed anomaly between the Z(1)2 1-form symmetry and geometry
that does not have an analog on spin manifolds. Throughout we take M4 to be an oriented
4-manifold with w2(M4) ̸= 0.

Anomalies involving SU(2)R and geometry We begin by discussing the ’t Hooft anomalies
associated with SU(2)R and the geometry of M4. As discussed in section 2.4.1, on spin man-
ifolds the only such anomaly is the Z2-valued global anomaly of [71], which counts SU(2)R
doublets modulo 2. In our case there are three such doublets, so the anomaly is present. We
would like to know how to describe the anomaly when M4 is not spin, and also whether it
becomes more refined on such manifolds. Both questions are answered in [70], where the
authors classify candidate ’t Hooft anomalies for fermionic theories with different symmetries.
In their notation, we are discussing theories with symmetry Pin− ×{±1} SU(2)R, or symmetry
class CII. This means that we have a time-reversal symmetry that satisfies T2 = 1, as in (40),
and an SU(2)R flavor symmetry whose −1 element is identified with with (−1)F as in (57), so
that all fields satisfy the nonabelian spin-charge relation discussed in section 2.4.2.

The analysis in [70] (see in particular corollary 9.95 on p.94) shows that candidate ’t Hooft
anomalies for four-dimensional theories (corresponding to n= 5 in table (9.96) of [70]) have
a Z2 ×Z2 classification. Only one Z2 anomaly is present in free fermion theories, or theories
that are continuously connected to such theories (as is the case for us, since our theories are
asymptotically free).31 This is precisely the global SU(2)R anomaly already discussed above,
suitably generalized to non-spin manifolds. For instance, the partition function of the five-
dimensional anomaly-inflow theory on a closed 5-manifold M5 now involves the mod 2 index
of a certain SU(2)R-twisted Dirac operator, which is also described in [70].

30The approach to supersymmetric field theories on curved manifolds based on supergravity background fields
(such as the SU(2)R background field strength F (2)R ) was pioneered in [76]. See [77] for a pedagogical introduction,
and [78] for a detailed discussion of the relation between twisted and untwisted theories.

31The additional Z2 anomaly that does not arise in free fermion theories is related to a five-dimensional invertible

TQFT with partition function exp
�

iπ
∫

M5
w2 ∪w3

�

, which was discussed in [79,80]. An example of a theory that
carries this anomaly is a version of Maxwell theory in which all three fundamental line operators (with electric
and magnetic charges (1,0), (0, 1), and (1, 1)) are fermions [80, 81]. This theory can be engineered by coupling
ordinary Maxwell theory (where the (1, 0) and (0, 1) lines are bosonic, while the (1,1) line is a fermion) to w2(M4)
via its electric and magnetic 2-form background gauge fields.
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Thus we see that there are no new anomalies that involve SU(2)R and gravity. As was the
case on spin manifolds, the anomaly trivializes if we only consider the U(1)R ⊂ SU(2)R Cartan
subgroup.

Mixed anomalies involving Z8 We will now reexamine the mixed anomalies involving the
Z8 and Z(1)2 symmetries, which were discussed on spin manifolds in section 2.4.1. We first re-
consider the mixed anomalies between Z8 and SU(2)R or gravity in (48). We substitute for the
anomaly coefficients in (45), and we also write the SU(2)R instanton number as nR =

1
4 p1(BR),

where p1(BR) is the Pontryagin class, and the signature is expressed as σ = 1
3 p1(M4). Then

the anomalous transformation rule (48) becomes

Z −→ Z exp
� iπkr

16

�

3p1(BR)− p1(M4)
�

�

, kr ∈ Z8 . (62)

Here it is understood that the bundles satisfy the constraint in (59). It is instructive to verify
that (62) trivializes when kr ∈ 8Z. This amounts to showing that

3p1(BR)− p1(M4) = 0 (mod 4) . (63)

Now we use the relations

p1(BR) = P(w2(BR)∪w2(BR)) (mod 4) ,

p1(M4) = P(w2(M4)∪w2(M4)) + 2w4(M4) (mod 4) .
(64)

Together with the identification in (59), the statement (63) reduces to

w2(M4)∪w2(M4) +w4(M4) = 0 (mod 2) , (65)

which is indeed true on any oriented 4-manifold.32

The mixed anomaly between Z8 and Z(1)2 discussed around (66) is essentially the same:

Z[B2]→ Z[B2]exp

�

iπkr

2

∫

M4

P(B2 ∪ B2)

�

. (66)

The only difference is that on a non-spin manifold the Pontryagin square of B2 is not in general
even. Therefore only the Z2 ⊂ Z8 subgroup generated by r4 = (−1)F does not have a mixed ’t
Hooft anomaly with the Z(1)2 center symmetry.

A mixed anomaly involving the 1-form symmetry Z(1)2 and geometry Finally, we will now
discuss an ’t Hooft anomaly that has no analogue on a spin manifold. To start the discussion,
we briefly return to the twisted N = 2 SYM theory on a 4-manifold discussed in section 2.4.2,
whose partition function ZDW coincides with the Donaldson invariants. It is known that that
the definition of ZDW depends on certain non-canonical choices. (See [21–25] for background
and additional details.) The effect we will focus on here is absent for SU(2) gauge bundles,
but present for SO(3) bundles. When phrased solely in terms of the SU(2) theory, this means
that the effect is only present when the 2-form background field B2 that couples to the Z(1)2
center symmetry is activated.

In this case, it is known that the Donaldson-Witten partition function requires a choice of
spinc structure on M4. (Such a structure exists on every orientable 4-manifold.) A choice of

32On an oriented 4-manifold, the combination w2 ∪ w2 + w4 coincides with the top Wu class ν4, which always
vanishes. This follows from the fact that the top Wu class is equal to the top Steenrod square operation on the
degree zero cohomology class of 1.
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spinc structure is equivalent to a choice of lift of w2 to an integral cohomology class ew2. (Such
a lift always exists in four dimensions because β(w2) vanishes on any 4-manifold, see below.)
If we change the integral lift by shifting ew2 → ew2 + 2y with y an integral cohomology class,
the Donaldson-Witten partition function shifts as follows,

ZDW −→ ZDW (−1)B2∪y . (67)

Note that this expression is invariant under B2 gauge transformations, because y is a coho-
mology class. The transformation in (67) was derived in [24], by examining the path integral
measure of the gaugino zero-modes on M4.

Alternatively, it is possible to define ZDW so that it does not depend on an integral lift of w2,
but rather an integral lift eB2 of the Z(1)2 background gauge field B2. As before, changing lifts
amounts to shifting eB2 → eB2 + 2x , but now x is an arbitrary integer 2-cochain. This leads to
the following shift of the partition function,

ZDW −→ ZDW (−1)x∪w2(M4) . (68)

We will now interpret (67) and (68) as an ’t Hooft anomaly of adjoint QCD. More precisely,
it is a mixed anomaly that involves the Z(1)2 center symmetry background field B2 and the
topology of M4. First, note that the two presentations of the anomaly are related by a local
counterterm on M4, which depends the integral lifts of both B2 and w2,

Sc.t. =
iπ
2

∫

M4

eB2 ∪ ew2(M4) . (69)

If we shift ew2(M4) by 2y , the partition function is multiplied by (−1)eB2∪y = (−1)B2∪y , and
shifting eB2 by 2x multiplies the partition function by (−1)x∪ew2(M4) = (−1)x∪w2(M4). Therefore
the counterterm in (69) relates the two shifts in (67) and (68), but it cannot give rise to either
one of them in isolation. This is typical of mixed ’t Hooft anomalies.

We claim that the anomaly arises from the following five-dimensional action via inflow,33

S5 = iπ

∫

M5

B2 ∪w3(M5) . (70)

Note that this is invariant under 1-form gauge transformations of B2,

B2 → B2 +δΛ1 , S5 → S5 = iπ

∫

M4

Λ1 ∪w3 = 0 , (71)

because w3(M4) vanishes on any 4-manifold. We will interpret (70) by choosing lifts eB2
and ew3(M5) to integral 2- and 3-cochains, respectively. Note that in five dimensions nei-
ther eB2 nor ew3 are, in general, closed. We also need a lift of w2 to an integral 2-cochain ew2.
Since B2 and w2(M4) are Z2 cohomology classes, it follows that δeB2 = δew2 = 0 (mod 2).
Therefore δeB2 and δew2 are even integral 3-chains.

In particular, the discussion above implies that 1
2δew2 is an integral 3-cochain which is

closed. Moreover if the integral lift of w2 is changed then 1
2δew2 shifts by an exact element.

Therefore 1
2δew2 defines a well-defined cohomology class in H3(Z,M5). This class is the image

of w2 under the Bockstein homomorphsim β : H2(Z2,M5)→ H3(Z,M5) associated with the

33In a different context, this anomaly was recently discussed in [75].
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short exact coefficient sequence Z→ Z→ Z2. The cohomology class β(w2) is an uplift of w3
to integer cohomology

1
2
δew2 = β(w2) = ew3 . (72)

Using the identification of ew3 above we now determine the anomalous variation implied by
the action (70). We change the integral lifts as ew2→ ew2+2y and eB2→ eB2+2x . Substituting
into (70) and working modulo 2πiZ, we find that

δS5 = iπ

∫

M5

eB2 ∪δ y = iπ

∫

M5

δeB2 ∪ y + iπ

∫

M4

eB2 ∪ y . (73)

The term iπ
∫

M5
δeB2 ∪ y vanishes modulo 2πiZ, because δeB2 is an even integer 3-chain.

Since eB2 = B2 (mod 2), the last term gives rise to the anomalous shift in (67).
Note that β(w2) = ew3 is the obstruction to the existence of a spinc structure. The anomaly

therefore trivializes if we are only allowed to consider spinc 5-manifolds M5. From the per-
spective of four-dimensional ’t Hooft anomalies, this means that the anomaly (70) cannot be
detected if we only activate spinc background gauge fields. Instead, we must allow the more
general class of background fields discussed in section (2.4.2). This observation is important
to resolve an apparent paradox once we add fermion masses in section 2.5. These preserve
the U(1)R ⊂ SU(2)R Cartan subgroup, but render all fermions massive, hence there should be
no ’t Hooft anomalies for this U(1)R subgroup.

2.5 Adding fermion masses

As discussed in section 1.1, a general constraint on possible phases for adjoint QCD is that after
giving large masses to the fermions it should reproduce the expected behavior of theories with
smaller N f . In this section, we examine the possible fermion mass terms and the symmetries
that they preserve.

The most general masses for the fermions λiA
α take the form

∆V =
1
2

mi jO
i j +

1
2

mi jO
i j

, mi j = m(i j) ,
�

mi j

�∗
= mi j . (74)

Here Oi j is the following fermion bilinear,

Oi j =O(i j) = λαiAλ jA
α . (75)

This operator is also an order parameter for chiral symmetry breaking (see section 3). InN = 2
SYM theory, supersymmetry relates Oi j to the chiral operator u = tr

�

φ2� that parametrizes
the Coulomb branch. Using the supersymmetry transformations (B.11) in appendix B.1, we
find that

−
1
2

QαiQ j
αu= λαiAλ jA

α − i
p

2φADi jA =Oi j − i
p

2φADi jA . (76)

If we are only interested in correlation functions or expectation values of Oi j , we can set
the D-term in (76) to zero using its equation of motion. This can be used to reliably track the
operatorOi j to the deep IR (see section 5.3). If we deform the potential by 1

2 mi jQ
αiQ j

αu+(h.c.),
we obtain the O(m) fermion mass in (74), as well as an O(m2) scalar mass that arises by
integrating out the D-term.
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In order to analyze the mass deformation (74), it is helpful to diagonalize the complex
symmetric mass matrix mi j using an SU(2)R rotation,34

mi j = eiχ

�

α 0
0 β

�

, α≥ 0 , β ≥ 0 . (78)

The Z8 symmetry can then be used to restrict the range of the angle χ to a single quadrant,
for instance χ ∈

�

0, π2
�

, although it is not always convenient to do so. If α,β are sufficiently
large, the fermions λ1A

α , λ2A
α are very heavy and can be integrated out. In this way we can flow

from adjoint QCD with N f = 2 flavors to the theories with N f = 0, 1.
The anomalous U(1)r transformation in (25) can be used to set the phase χ in (78) to

zero, at the expense of introducing a θ -angle θ = 4χ for the dynamical SU(2) gauge field.
When θ = 0, the measure that appears in the euclidean functional integral is real and positive,
as in [48,82]. This happens when χ is an integer multiple of π4 , so that m11 and m22 in (78)
are real or purely imaginary. Symmetries that remain unbroken in the presence of such mass
terms should therefore be free of ’t Hooft anomalies.35

We would like to make some additional comments that will be useful in later sections:

1.) For generic choices of α and β , the SU(2)R and Z8 symmetries are explicitly broken.

The Z8 generator r and time-reversal T act on the gaugino via
�

λiA
α

�

= e
iπ
4 λiA

α (see (27))
and T
�

λiA
α

�

= iλαA
i (see (32)). The fermion bilinear Oi j in (75) then transforms as

follows,
r
�

Oi j�= iOi j , T
�

Oi j�= −Oi j . (79)

For special choices of the phase χ, it is therefore possible to combine T with a power
of r to define a preserved time-reversal symmetry,

• When χ = 0,π the masses m11, m22 are real and preserve eT = r2T. Since these
values of χ correspond to θ = 0, it follows from the discussion above that eT should
be free of ’t Hooft anomalies.36

• When χ = ±π2 , the masses m11, m22 are purely imaginary and preserve T, which
should therefore be free of ’t Hooft anomalies.

• When χ = π
4 , the complex masses m11 = e

iπ
4 α and m22 = e

iπ
4 β can be traded

for an SU(2) θ -angle with θ = π. This choice of masses is preserved by rT, but
since θ = π, this symmetry may have an ’t Hooft anomaly. Indeed, it follows
from (55) that the partition function transforms as

rT
�

Z
�

= Ze
iπ
2 P(B2∪B2) . (80)

This matches the mixed ’t Hooft anomaly between time-reversal and the Z(1)2 center
symmetry of pure SU(2) YM theory at θ = π uncovered in [4]. As was explained

34In triplet notation (see appendix A), this amounts to

m1 =
i
2

eiχ (α− β) , m2 = −
1
2

eiχ (α+ β) , m3 = 0 . (77)

35With the exception of Weyl anomalies, ’t Hooft anomalies manifest as phases in euclidean signature.
36 This is not manifest, because r2 has a variety of ’t Hooft anomalies, while T does not (see below). However, it is

possible to adjust the local counterterms so that eT= r2T is free of ’t Hooft anomalies. For instance, recall from (55)
that there is a mixed anomaly between Z8 and Z(1)2 , which leads to the transformation rule r2

�

Z
�

= ZeiπB2∪B2 for

the partition function Z . (Here B2 is the Z(1)2 background gauge field.) This transformation can be absorbed by the

local counterterm e
iπ
2 P(B2∪B2), which is well defined because P(B2 ∪ B2) ∈ Z4. This counterterm transforms by the

right amount under T to render eT= r2T anomaly free. Similar comments apply to mixed anomalies with SU(2)R
and gravity.
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there (and unlike the discussion in footnote 36), it is not possible to remove this
anomaly using well-defined local counterterms.37

2.) When m22 = β = 0, the fermion λ2A
α remains massless, while λ1A

α acquires a com-
plex mass m11 = eiχα. For large α, the theory flows to adjoint QCD with N f = 1,
i.e. pure N = 1 SYM theory. In this case the fermion masses break SU(2)R and Z8

to the expected Z4 symmetry of the N = 1 SYM theory (see section 1.1). Moreover,
there is a preserved time-reversal symmetry for any value of m11. Note that the oper-
ator m11Qα1Q1

αu + (h.c.), which preserves the supercharge Qα = Q1
α and its hermitian

conjugate (see appendix B), is precisely the N = 1 preserving superpotential deforma-
tion studied in [9].

3.) If α = β , the U(1)R ⊂ SU(2)R Cartan subgroup is preserved. While r remains broken,
we can combine r2 with an SU(2)R rotation U =

�

0 i
i 0

�

by π around the 1-axis to define
a preserved eZ2 symmetry generated by r2U . In order to verify that r2U has order two,
note that U2 = −1 is a 2π rotation in SU(2)R. Together with (28), we find

�

r2U
�2
= r4U2 = (−1)F (−1)F = 1 . (81)

Since r2U acts as reflection across the 2-3 plane and U(1)R describes rotations around
the 3-axis, the two symmetries do not commute. Rather, they combine into

O(2)R = eZ2 ⋉ U(1)R . (82)

This symmetry is unbroken when m11, m22 are real or purely imaginary (corresponding
to θ = 0), and hence it should be free of ’t Hooft anomalies.38

In section 2.4.2 we explained how to place the theories under consideration on non-spin
manifolds using SU(2)R background gauge fields that satisfy the spinc-like condition (59).
Once we add fermion masses that break the SU(2)R symmetry this is no longer possible. An
exception occurs when α = β (see point 3.) above), since this preserves the U(1)R ⊂ SU(2)R
Cartan subgroup. The U(1)R background gauge field is a conventional spinc connection, which
can be used to place the theory on non-spin manifolds. This necessarily involves a choice of
spinc structure onM4, because the conventionally normalized U(1)R field strength G(2)R defines

an integral lift 2
2πG(2)R of w2(M4).

As was already pointed out in section 2.4.3, the ’t Hooft anomaly associated with the
five-dimensional anomaly inflow action exp

�

iπ
∫

M5
B2 ∪w3(M5)
�

trivializes when we restrict

to U(1)R spinc background fields, because w3(M5) vanishes on 5-manifolds with a spinc struc-
ture. More prosaically, this also follows from an extension of the discussion around (82): both
the U(1)R symmetry (which is needed to access 4-manifolds with non-vanishing w2(M4))
and the Z(1)2 center symmetry are compatible with real (or purely imaginary) fermion masses.
Hence there cannot be a mixed ’t Hooft anomaly involving these symmetries.

37By contrast, rT does not have mixed ’t Hooft anomalies with the SU(2)R symmetry or gravity. As in footnote 36,
they can be eliminated by adding suitable local counterterms.

38This is easy to see for U(1)R, because the doublet gauginos λi
α decompose into fields of U(1)R charge ±1. On

spin manifolds r2 does not have a mixed ’t Hooft anomaly with gravity (see the discussion around (55)), and hence
the same is true for r2U . Showing that r2U does not have mixed ’t Hooft anomalies with SU(2)R is complicated by
the fact that the SU(2)R symmetry has a Witten anomaly (see section 2.4.1).
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3 A CP1 phase with confinement and chiral symmetry breaking

As was discussed around (1), the most familiar scenario for the IR behavior of adjoint QCD
is that it confines and spontaneously breaks the SU(2)R chiral symmetry. This is expected to
happen via the condensation of the following fermion bilinear,

Oi j =O(i j) = λαiAλ jA
α ⇐⇒ OI =

i
2
τI

i jλ
αiAλ jA

α . (83)

In this section we explore some consequences of this assumption, without referring to a more
complete microscopic description. (Such a description will be discussed in section 5.3.) As we
will see, the long-distance physics is described by two copies of a CP1 sigma model.

3.1 Broken and unbroken symmetries

We begin by discussing the symmetries that are preserved and broken by a condensate for the
operator Oi j in (83). (Since this operator also appears in the mass deformation (74), there
is some overlap with the discussion in section 2.5.) The operator Oi j is a complex triplet
of SU(2)R. Equivalently, OI is a complex SO(3)R vector. If ReOI and ImOI were to acquire
generic expectation values, the SU(2)R symmetry would be completely broken. This possibility
is ruled out by the general arguments of [82], which imply that the U(1)R ⊂ SU(2)R Cartan
subgroup is necessarily unbroken. To see this, note that the fermions λiA

α can be assembled

into a single Dirac spinor Ψ =
�

λ1A
α ,λ

1A
α̇

�

, which has charge 1 under U(1)R. We can therefore
add a Dirac mass mΨ for Ψ that preserves the U(1)R symmetry.39 The arguments of [82] then
imply that U(1)R is not spontaneously broken if we take mΨ → 0. Note that these arguments
apply to adjoint QCD, but not in general to the (deformed or undeformed) N = 2 SYM theory,
due to the Yukawa couplings in (37) (see e.g. [36] for a discussion of this point).

The upshot is that ReOI and ImOI must have parallel vevs, which spontaneously
break SU(2)R to its U(1)R Cartan subgroup. This leads to two NG bosons (which we will some-
times refer to as pions) that parametrize the coset space SU(2)/U(1) = CP1 via a real SO(3)R
unit vector nI . At low energies, the operator OI therefore flows to

OI → C nI , 〈nI〉= δI3 , nI nI = 1 , C ∈ C . (84)

Here we have oriented the vev of nI along the positive 3-direction. At the end of section 3.4
we will show that the constant C in (84), which determines the vev of OI , must in fact be real
or purely imaginary,

C ∈ R , or C ∈ iR . (85)

Let us consider the fate of the other global symmetries of adjoint QCD that were discussed
in section 2.2:

• The generator r of the Z8 symmetry acts as (see (27))

r
�

λiA
α

�

= e
iπ
4 , r
�

OI�= iOI . (86)

Therefore r is always spontaneously broken. Moreover, it necessarily sends the CP1

we started with (denoted by CP1
+), characterized by a constant C = C+ in (84), to a

second, disconnected CP1 (denoted by CP1
−), characterized by C = C− = iC+. Together

with (85) this implies that we are free to choose

C+ = f 3
π , C− = iC+ = i f 3

π , fπ > 0 . (87)

39In the language of section 2.5 this amounts to the statement that the U(1)R symmetry is preserved by the
addition of fermion masses (74) with real or purely imaginary m11, m22. As was noted there, this symmetry is free
of ’t Hooft anomalies.
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Here fπ is the pion decay constant, which has units of energy.

The symmetry r2 acts as

r2
�

OI�= −OI , r2
�

nI) = −nI . (88)

It is therefore spontaneously broken, but mapsCP1
+ to itself. (Similarly, r2 also mapsCP1

−
to itself.) We can combine r2 with a broken SU(2)R rotation U by π around the 1-axis,40

so that
r2U
�

n1

�

= −n1 , r2U
�

n2,3

�

= n2,3 . (89)

Thus r2U generates an unbroken eZ2 symmetry, which acts as a reflection across the
2-3 plane. As such it does not commute with the U(1)R symmetry, which acts by
rotations around the 3-axis. Together, the two symmetries assemble into the group
O(2)R = eZ2 ⋉ U(1)R.

The preceding discussion shows that the symmetry-breaking pattern induced by the
vev (84) for the fermion bilinear OI is given by

Z8 × SU(2)R
Z2

−→ eZ2 ⋉ U(1)R = O(2)R . (90)

As discussed above, this implies that there are two disconnected, physically equivalent
copies CP1

± of the CP1 model, which are exchanged by the spontaneously broken Z8

generator r. For this reason we will mostly focus on CP1
+.

• The assumption of confinement implies that the Z(1)2 1-form symmetry is unbroken. In
section 3.2 we will discuss its embedding into the symmetries of the CP1 model.

• Time-reversal T acts on the fermions via T
�

λiA
α

�

= iλαA
i (see (32)), so that the fermion

bilinear in (83) transforms as follows,

T
�

OI�= −OI . (91)

Together with (87), this implies that T is preserved on CP1
−, where 〈OI〉 = C− = i f 3

π is
purely imaginary, while eT = r2 T is preserved on CP1

+, where 〈OI〉 = C+ = f 3
π is real.

Note that T and eT are related via conjugation by the broken Z8 generator r,

rT r−1 = r2 T= eT . (92)

3.2 The CP1 model

As discussed above, chiral symmetry breaking via (83) leads to two copies of a CP1 sigma
model. We will now describe some aspects of this model in more detail.

3.2.1 Discrete θ -angle and Hopf solitons

The low-energy pions are described by a real SO(3)R unit vector nI (see (84)). Even though
the SU(2)R symmetry is spontaneously broken, we must match the associated Witten anomaly

40We can take U to be a rotation by π around any axis in the 1-2 plane. Different choices of U are related by the
unbroken U(1)R symmetry.
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discussed in section 2.4.1.41 As in [53, 54] this is achieved by including in the definition of
the CP1 model a discrete θ -angle associated with

π4(CP
1) = Z2 . (93)

More explicitly, the model is defined by a functional integral over maps nI from euclidean
spacetime S4 (the compactification from R4 to S4 arises because the pions must approach the
vacuum at infinity) to the target CP1. Due to (93) this function space has two disconnected
components. We are free to weight the contributions from the topologically non-trivial sec-
tor by a minus sign. This is accomplished by the discrete θ -term for the CP1 model. (In
section 3.2.3 below, we will also discuss conventional continuous θ -terms.)

As in [53], adding the discrete θ -term affects the quantum numbers of solitons, which
makes it possible to identify them with the baryons of the underlying microscopic model. In
adjoint QCD, the analogue of a baryonic operator takes the following schematic form,

tr
�

λi
α · · · vµν · · ·Dµλ

j · · ·
�

. (94)

These operators satisfy the nonabelian spin-charge relation (21), according to which the cen-
tral element−1 ∈ SU(2)R is identified with fermion parity (−1)F . In other words, the operators
in (94) are either bosons in integer-spin representations of SU(2)R, or fermions in half-integer
spin representations of SU(2)R. In a confining phase we expect all excitations to arise by acting
with such gauge-invariant local operators on the vacuum, and hence these excitations should
also satisfy the spin-charge relation. Note that this is the case for the perturbative sector of
the CP1 model, described by small fluctuations of the pion field nI , which is a boson in the
vector representation of SO(3)R.42

The solitons of the CP1 model are characterized by a topological charge given by the Hopf
invariant (for this reason we refer to them as Hopf solitons),

π3(CP
1) = Z . (95)

As discussed above, matching the SU(2)R Witten anomaly requires a discrete θ -angle. This has
the effect of turning the minimal Hopf soliton of topological charge 1 into a fermion, while
maintaining consistency with the generalized spin-charge relation (21).43 There are three
related aspects to this claim:

• If we consider a sufficiently simple spatial manifold, such as S3, the Hopf invariant (95)
appears to define a meaningful integer charge QH and suggests the existence of a (per-
haps accidental) U(1)H symmetry of the CP1 model. However, it was shown [56] in the
closely related context of the three-dimensional CP1 model, that the Hopf charge QH is

41By contrast, the mixed ’t Hooft anomalies that involve the spontaneously broken discrete symmetries r and r2

with SU(2)R, Z(1)2 or gravity are matched because the vacua that are related by these broken symmetries have
different counterterms for the corresponding background fields. (This leads to non-trivial ’t Hooft anomalies on
domain walls interpolating between such vacua.) Recall from the discussion in section (2.5) that the unbroken
symmetries T or eT= r2T (depending on the CP1) and r2U are free of ’t Hooft anomalies.

42More precisely, we should use the unbroken U(1)R charge to label dynamical excitations, in terms of which the
nonabelian spin-charge relation (21) reduces to the conventional spin-charge relation for an abelian symmetry. By
contrast, local operators always transform in full SU(2)R representations and thus continue to satisfy (21) in the
spontaneously broken phase.

43Aspects of this problem were discussed in [55]. For the Nf = Nc = 2 adjoint QCD theory studied here, we do not
encounter the exotic soliton states discussed there. Note that if we study adjoint QCD with Nf = 2 and general Nc ,
there is an SU(2)R Witten anomaly if and only if Nc is even. Therefore the CP1 model only has a discrete θ -angle
for even Nc . Since this coupling is also responsible for turning the Hopf solitons of the CP1 model into fermions, a
possible confining and chiral-symmetry breaking phase for adjoint QCD with odd Nc may be qualitatively different
than the scenario discussed here.
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at best meaningful modulo 2. The basic issue is that, unlike conventional topological
charges, QH cannot be expressed as the integral of a well-defined local density. In other
words, there is no good notion of a conserved current for a putative U(1)H symmetry.44

As a result, the charge QH cannot be consistently defined if space is chosen to be a more
complicated 3-manifold M3. However, it was shown in [56] that a Z2-valued charge can
be defined on any 3-manifold M3 with a spinc structure, and that this charge reduces
to QH (mod 2) when M3 = S3.

• The presence of the discrete θ -angle implies that the topological charge QH (mod 2)
coincides with (−1)F . To see that the elementary Hopf soliton with QH = 1 is a fermion,
one can follow [53] and consider a process that involves the nucleation and annihila-
tion of a soliton-antisoliton pair that also involve a spatial rotation by 2π. This process
is described by a map from spacetime S4 to the CP1 target space that is a non-trivial
element of π4(CP

1). Due to the discrete θ -angle, it is weighted by a minus sign in the
path integral, which implies that the soliton is a fermion. Alternatively, we can study the
disorder operators of the CP1 model (as was done in [83]), which are defined by remov-
ing a small euclidean ball from spacetime and demanding that the configuration of the
pions on the S3 boundary of this ball has non-trivial Hopf number. (Alternatively, we can
study these operators by considering states on S3.) The discrete θ -angle then implies
that the operators with odd Hopf number are fermions. They furnish the IR description
of the baryon operators (94).

• In order to see why the Hopf solitons, and the corresponding disorder operators, satisfy
the generalized spin-charge relation (−1)F = −1 ∈ SU(2)R, we can follow [84] and
explicitly examine the simplest Hopf map from S3 to CP1, where we think of S3 as space.
In suitable conventions, this map identifies the −1 element of the left SU(2) isometry
of the spatial S3 with the −1 element of the SU(2)R isometry of the CP1 target space.
Since the former is a spatial rotation by 2π, it coincides with (−1)F .

3.2.2 Unbroken 1-form symmetry and confining strings

As was explained in [3], the CP1 sigma model has a U(1)(1) 1-form symmetry. The corre-
sponding 2-form current J (2) is pullback to spacetime (via the pion field nI) of the CP1 Kähler
form ω,

∗J (2) = n∗(ω) . (96)

Since ω is closed, it follows that J (2) is conserved. We normalize ω such that the target space
has unit volume,

∫

CP1ω = 1. It follows that J (2) associates integer charges to 2-cycles Σ2 in
spactime,

∫

Σ2

∗J (2) =
∫

Σ2

n∗(ω) ∈ Z . (97)

The U(1)(1) symmetry is unbroken, and there are solitonic strings, associated withπ2(CP
1)=Z,

that are charged under U(1)(1). The charge in (97) measures the number of strings piercing
the spatial 2-plane Σ2. There are also disorder line operators charged under U(1)(1), which
therefore create solitonic strings. These operators can be defined by excising a small euclidean
tubular neighborhood (with boundary∼ S2×R) of the line and demanding that the pion fields
on the S2 have non-trivial winding number.

44In section 5.3 we will describe the CP1 model using a gauged linear sigma model that arises by deform-
ing N = 2 SQED. In this description, the U(1)H symmetry is conserved classically, but explicitly broken to (−1)F

by an ABJ anomaly involving the U(1) gauge field.
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The Z(1)2 center symmetry of UV theory is a subgroup of U(1)(1), which is therefore an
accidental symmetry of the low-energy theory. Higher-energy process can violate the U(1)(1)

symmetry, so that the 1-form charge of strings and line operators is only meaningful modulo 2.
The remaining Z(1)2 , which is neither explicitly nor spontaneously broken, is consistent with
the assumption of confinement. As in the examples discussed in [53], this means that the
elementary solitonic string of the CP1 model can be interpreted as the confining string of
adjoint QCD.

For future use, we present the coupling of J (2) to a U(1)(1) background 2-form gauge
field B(2) (normalized so that

∫

Σ2
B(2) is gauge invariant modulo 2π),

exp

�

i

∫

M4

B(2) ∧ ∗J (2)
�

= exp

�

i

∫

M4

B(2) ∧ n∗(ω)

�

. (98)

We can then embed the Z(1)2 background gauge field B2 ∈ H2(M4,Z2) via B(2) = πB2, so that
the coupling (98) takes the form

exp

�

iπ

∫

M4

B2 ∪ n∗(ω)

�

. (99)

3.2.3 Possibility of a continuous θ -angle

The CP1 sigma-model admits a topological coupling that is analogous to a conventional, con-
tinuous θ -term. It modifies the functional integral by the following phase factor,

exp

�

iθ
2

∫

M4

n∗(ω)∧ n∗(ω)

�

. (100)

Here the normalization follows from (97). Despite the factor of 1
2 in (100), θ has standard

periodicity θ ∼ θ + 2π if M4 is a spin manifold.45 The necessary modification on non-spin
manifolds is discussed in section 3.3.

As discussed around (91), both CP1
± sigma models that arise in the context of adjoint QCD

preserve a time-reversal symmetry. (CP1
+ preserves eT = r2T, while CP1

− preserves T.) It
follows that the θ -angle in (100) can only take the time-reversal invariant values

θ = 0 , or θ = π . (101)

Even if the chiral-symmetry breaking scenario discussed here occurs in adjoint QCD, we cannot
reliably determine which possibility in (101) is realized. However, we will see in section 5.3
that the value θ = π appears more natural from the point of view of deformed N = 2 SYM
theory. In section 3.5 we will show that (if present) this value of θ has interesting implications
for the physics of the confining strings.

3.3 Aspects of the CP1 model on non-spin manifolds

As was discussed in sections 2.4.2 and 2.4.3, certain features of adjoint QCD, and in particular
certain ’t Hooft anomalies, only become visible if we place the theory on a non-spin mani-
fold M4. We must therefore also explain how to place the CP1 model on non-spin manifolds,

45This is particularly transparent in the abelian Higgs model description discussed in section 5.3.

There n∗(ω) = f (2)

2π , where f (2) the field strength of a dynamical U(1) gauge field.
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so that the anomalies match.46 This may seem trivial, because the low-energy pion fields
are bosons. (On the other hand, the solitons of the model are fermions.) To proceed, we
must remember that the coupling to non-spin manifolds proceeds via background fields for
the SU(2)R symmetry that are connections on an SO(3)R bundle BR that satisfies the condi-
tion w2(BR) = w2(M4) in (59). We must therefore couple the model to SU(2)R background
gauge fields so that this constraint is satisfied.

Consider the Kähler form n∗(ω). In the absence of background fields, it has the following
explicit expression in terms of the pion fields

n∗(ω) =
1

8π
ϵI JK nI dnJ ∧ dnK . (102)

In the presence of SU(2)R background fields, we must replace the exterior derivative d by
its SU(2)R covariant version dR.47 However, the resulting n∗(ω)(A(1)R ) is not closed and must be

corrected by adding an SU(2)R-invariant term∼ nI F (2)IR , where F (2)IR is the SU(2)R background
field strength 2-form,48

n∗(ω)(A(1)R ) =
1

8π

�

ϵI JK nI dRnJ ∧ dRnK − 2nI F (2)IR

�

. (103)

This expression is closed, SU(2)R-invariant, and reduces to (102) in the absence of background
fields.

If the dynamical field nI resides in the vacuum configuration nI = δ
I3, the expression

in (103) reduces to

n∗(ω)(A(1)R ) = −
1

4π
F (2)3R = −

1
2π

G(2)R . (104)

Here G(2)R is the conventionally normalized background field strength 2-form corresponding to

the unbroken U(1)R ⊂ SU(2)R Cartan subgroup. Recall that G(2)R is the field strength of a spinc

connection. This means that 2
2π G(2)R is an integral cohomology class congruent to w2(M4)

modulo 2 (i.e. it defines an integral lift of w2(M4)). We would like to turn this into an SU(2)R
covariant statement that is valid for all configurations of the pion field. We are therefore
led to demand that the expression n∗(ω)

�

A(1)R

�

in (103), which involves both the dynamical

pion fields nI and the SU(2)R background fields, is such that 2n∗(ω)
�

A(1)R

�

defines an integral
cohomology class that is congruent to w2(M4) modulo 2,

2n∗(ω)
�

A(1)R

�

= w2 (mod 2) . (105)

We will perform the functional integral over the dynamical pions so that this constraint is
satisfied. Not coincidentally, the constraint (105) is analogous to the constraint satisfied by
the field strength of a dynamical spinc gauge field (see section 5.3). One a spin manifold,
where w2(M4) = 0, (105) implies that n∗(ω) is an integral cohomology class, as in (97).

Having modified the definition of the functional integral on non-spin manifolds, we must
reexamine the couplings (99) and (100):

1.) Since n∗(ω) is no longer an integral cohomology class when M4 is not spin, the cou-
pling (99) to the Z(1)2 background field B2 is no longer automatically invariant un-
der B2 gauge transformations. It is therefore natural to choose an integral lift ew2(M4)

46Much of the discussion in this section becomes very natural when viewed through the lens of the abelian Higgs
model described in section 5.3.

47Here dRnI = dnI + εI JK A(1)JR nK .
48Recall that F (2)IR = dA(1)IR + 1

2ϵI JKA(1)JR ∧ A(1)KR .
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of w2(M4) and modify the coupling as follows,

exp

�

iπ

∫

M4

B2 ∪ n∗(ω)
�

A(1)R

�

+
iπ
2

∫

M4

B2 ∪ ew2(M4)

�

. (106)

Using (105), we can check that (106) is invariant under B2 background gauge trans-

formations. This is because B2 only couples to n∗(ω)
�

A(1)R

�

+ 1
2 ew2(M4), which is an

integral cohomology class.

2.) Due to (105), the θ term (100) is no longer 2π-periodic if M4 is not a spin manifold.
This can be cured by including a purely gravitational coupling that involves the signa-
ture σ(M4) of the spacetime 4-manifold,

exp

�

iθ
2

∫

M4

n∗(ω)
�

A(1)R

�

∪ n∗(ω)
��

A(1)R

��

−
iθ
8
σ(M4)

�

. (107)

With this definition, θ still has periodicity 2π (see for instance appendix A of [18]).49

In particular, the value θ = π remains invariant under time-reversal.

We can now verify that the definition of the CP1 model given above reproduces the mixed
’t Hooft anomaly (70) between the Z(1)2 center symmetry and w2(M4) that was discussed
in section 2.4.3. As we did there, we choose lifts eB2, ew2(M4) of B2, w2(M4) to integral
2-cochains and examine the behavior of the model under changes of these lifts,

eB2 → eB2 + 2x , ew2(M4) → ew2(M4) + 2y . (109)

Here x , y are integral 2-cochains. Since n∗(ω)
�

A(1)R

�

is summed over all configurations subject
to the constraint (105), it does not shift under (109). The coupling in (106) then produces
the expected anomalous variation (67) of the partition function,

Z → Z exp

�

iπ

∫

M4

B2 ∪ y

�

. (110)

By contrast, the θ -term (107), and all other terms constructed using only n∗(ω)(A(1)R ), are
invariant under (109).

3.4 Adding fermion masses

We will now follow the discussion in section (2.5) and deform the model by adding masses
for the fermions λiA

α . When the fermion masses are large, the theory flows to adjoint QCD
with N f = 0,1. In fact, we will reproduce the expected vacuum structure of these theories

even when the fermion masses are small.50 This makes the CP1 phase very economical – no
phase transitions are required to occur as we increase the fermion masses.

49Note that any lift ew2 ∈ H2(M4,Z) of w2(M4) to an integral cohomology class satisfies

ew2 ∪ ew2 = σ(M4) (mod 8) . (108)

This is because w2(M4) ∪ x = x ∪ x (mod 2) for any x ∈ H2(M4,Z), so that ew2 is a characteristic vector of the
intersection form on H2(M4,Z) (see e.g. section 1.1.3 of [21]).

50A similar phenomenon generically occurs in the chiral lagrangian for conventional QCD with massless funda-
mental flavors, see e.g. [5] for a recent discussion.
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We consider the mass deformation ∆V in (74) in the parametrization (78). Together
with (84) and (87), we can then express the resulting potential ∆V± in the two discon-
nected CP1

± sigma models as
∆V± = −x I

± · n
I , (111)

where the SO(3)R vectors x I
± are functions of the mass parameters χ,α,β in (78),

x I
+ =
�

(α− β) sinχ , (α+ β) cosχ , 0
�

,

x I
− =
�

(α− β) cosχ , −(α+ β) sinχ , 0
�

.
(112)

To start, assume that the mass parameters are sufficiently generic so that both x I
+ and x I

− are
non-vanishing. (We will subsequently discuss degenerate cases.) The ferromagnetic form of
the potential (111) then implies that there is a unique minimum on CP1

+ and CP1
− in which the

pion field nI aligns with the vectors x I
+ and x I

−, respectively. This leads to two local minima
with energy ∆V± = −|x

I
±|, where

|x I
±|

2 = α2 + β2 ± 2αβ cos 2χ . (113)

The minimum that is energetically favored, and hence the global minimum, is determined by
the vector with the larger norm (113).

We can now explore the implications of the preceding discussion for different choices of
the mass parameters listed in section 2.5:

• Consider first the special case m22 = β = 0. As explained in point 2.) of section 2.5,
this leads to N f = 1 adjoint QCD, i.e. pure N = 1 SYM. We see from (113) that the two

minima on CP1
+ and CP1

− are exactly degenerate. This is in perfect agreement with the
two vacua that are expected in N = 1 SYM with gauge group SU(2).

• If α and β are both non-zero and generic, both fermions acquire masses. As explained
in point 1.) of section 2.5, taking these masses to be large leads to pure YM theory
with θ = 4χ. Instead we will consider what happens when they are small, as predicted
by (113):

i) For 0 ≤ θ < π (corresponding to 0 ≤ χ < π
4 ) we see that |x I

+| > |x
I
−|, so that

there is a unique minimum on CP1
+. Similarly, for π < θ < 2π (corresponding

to π
4 < χ <

π
2 ) we find |x I

+|< |x
I
−| and there is a unique minimum on CP1

−. This is
consistent with the standard expectation that pure SU(2) YM theory has a unique
vacuum for all θ ̸= π.

ii) At the special value θ = π (which corresponds to χ = π
4 ) we find that |x I

+|= |x
I
−|,

so that the minima on CP1
+ and CP1

− are exactly degenerate. As was explained
below (80), this is consistent with the fact that pure YM theory at θ = π has
a mixed ’t Hooft anomaly that obstructs a single, trivial gapped vacuum [4]. This
simplest option is that T is spontaneously broken, leading to two degenerate vacua,
and this is the option that is realized here in the small mass limit.

Let us comment on the case where the masses are such that one of the vectors x I
± vanishes,

e.g. x I
+ = 0. (The case x I

− = 0 is similar.) In this case the potential ∆V+ on CP1
+ vanishes at

leading O(m) order in the mass deformation. However, it follows from (113) that x I
± cannot

simultaneously vanish (unless α = β = 0). Consequently, the potential ∆V− on CP1
− is non-

trivial at O(m) and leads to a negative O(m) shift in the vacuum energy. It follows that the
unique CP1

− minimum is also the global minimum. The conclusions described above therefore
remain valid.
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We can extend the preceding discussion to justify the claim in (85) that the constant C
determining the vev of the chiral condensate must either be real or purely imaginary. To
see this, assume that C ∈ C is complex and turn on real masses m11 = m22 = α > 0 (this
corresponds to χ = 0 and α = β in (78)). As was discussed around (79), these masses
preserve the time-reversal symmetry eT = r2T. Moreover, they lead to a euclidean functional
integral with strictly positive measure. Therefore the arguments in [48] apply and we can
conclude that eT should not be spontaneously broken.51 If we assume that α is small, we can
compute the O(α) potential in the CP1 description,

∆V = −α
�

C + C
�

n2 . (114)

This leaves only two possibilities: either C ∈ iR is purely imaginary, or n2 = ±1. In the latter
case the chiral condensate is given by 〈OI〉 = ±CδI2, which only preserves eT if C ∈ R is real
(see the discussion around (91)). Therefore C can only be real or purely imaginary.

3.5 Possibility of a topological insulator on the confining string

We now describe some additional aspects of the worldsheet theory of the confining strings
discussed in section 3.2.2. Note that the presence of the massless CP1 pion fields means that
the worldsheet theory does not make sense as a genuine two-dimensional quantum field theory,
but only as a coupled 2d-4d system.52 This changes once we turn on small fermion masses,
as in section 3.4 above. The bulk dynamics is then gapped, and hence there is a meaningful
two-dimensional effective field theory on the string worldsheet.

Here we focus on masses that preserve the U(1)R ⊂ SU(2)R Cartan subgroup, as well
as the eT = r2T time-reversal symmetry. In the notation of (78), this corresponds to χ = 0
and α= β , so that

m11 = m22 = α > 0 . (115)

It follows from the discussion in section 3.4 that the vacuum for the pion fields is at the
point (n1, n2, n3) = (0, 1,0). If the masses in (115) are taken to be large, we flow to pure SU(2)
YM theory with θ = 0, which is expected to be in a trivial gapped phase.

Recall that the CP1 model admits a θ -term of the form (100), which can take the time-
reversal invariant values θ = 0,π in (101). We now show that this induces a θ -angle of the
same value on the worldsheet of the minimal confining string. We parametrize the pion field
in the presence of the string worldsheet Σ2 as follows,

n∗(ω) = PD(Σ2) + n∗(ω)fluct. . (116)

Here PD(Σ2) is the Poincaré dual to the two-dimensional string worldsheet. Its presence
in (116) guarantees that the string charge (97) integrates to 1. The term n∗(ω)fluct. repre-
sents the fluctuating pion fields in the presence of the strings. Substituting into (100), we find
that the bulk θ -term gives rise to the following coupling on the string worldsheet,53

exp

�

iθ
2

∫

M4

n∗(ω)∧ n∗(ω)

�

⊃ exp

�

iθ

∫

Σ2

n∗(ω)fluct.

�

. (117)

In order to uncover the significance of the term in (117) we turn on a background
gauge field for the unbroken U(1)R ⊂ SU(2)R symmetry. It is a spinc connection, with field

51Since we are discussing SU(2) gauge theory, which does not admit a charge-conjugation symmetry, what is
called T here corresponds to CT in [48].

52A consequence of this fact is that the minimal solitonic string of the CP1 model has non-normalizable zero
modes, which label different superselection sectors for the soft pions [85].

53Here we use the fact that
∫

M4
PD(Σ2)∪ x (2) =

∫

Σ2
x (2) for any closed 2-form x (2).
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strength G(2)R . In the presence of SU(2)R background fields, we must replace n∗(ω) by the
quantity n∗(ω)(A(1)) in (103). As in (104), this leads to a non-trivial expression involving the
background field strength G(2)R , even when the pion fields reside in their vacuum configuration,

n∗(ω)
�

A(1)R

�

−→ −
1

2π
G(2)R . (118)

Substituting back into the worldsheet coupling (117), we find a two-dimensional θ -term for
the U(1)R background gauge field,

exp

�

−
iθ
2π

∫

Σ2

G(2)R

�

. (119)

This term is trivial when θ = 0. However, if θ takes the non-trivial eT-invariant value θ = π,
then the coupling (119) implies that the worldsheet of the confining string is a topological
insulator protected by the unbroken eT and U(1)R symmetries.

Let us contemplate the fate of this topological insulator as we increase the bulk fermion
mass α in (115). Since the topological insulator is protected by symmetries, it should persist
for sufficiently small masses. As we make the masses larger, we eventually flow to pure YM
theory at θ = 0, which is expected to a trivial gapped theory. Its confining strings are therefore
also expected to be in a trivial gapped phase. If this is the case, there must be some critical
value α∗ of the bulk fermion mass at which the theory on the string worldsheet undergoes a
phase transition, while the bulk remains gapped.

The simplest possibility for this transition is that a two-dimensional Dirac fermion becomes
massless on the string worldsheet when the bulk mass is tuned to the critical value α = α∗.
(Here it is important that G(1)R is a spinc background gauge field, which can couple to the Dirac
fermion with unit charge.) It is not possible to study this transition within the CP1 model.
However, precisely this scenario is realized in the abelian Higgs model completion of the CP1

model analyzed in section 5.3.

4 The Seiberg-Witten solution of the N = 2 SYM theory

In this section we review some additional details about the IR solution of SU(2) N = 2 SYM
found in [9]. In particular, we spell out how some of the symmetries and ’t Hooft anomalies
of the UV theory are realized in the low-energy description.

4.1 The Coulomb branch sigma model

As was reviewed around (6), the low-energy dynamics at every point u ∈ C on the Coulomb
branch is described by an abelian N = 2 vector multiplet

�

ϕ,ρi
α, f (2)
�

. (An exception are
the monopole and dyon points, where there are additional massless particles.) The leading
(irrelevant) interactions of these fields are described by an N = 2 special Kähler sigma model
characterized by a holomorphic prepotential F(ϕ). The lagrangian schematically takes the
form

L ∼Q4F(ϕ) + (h.c.) . (120)

The fact that F is a function of ϕ implies that the kinetic terms for ϕ and ρi
α have a non-

trivial ϕ-dependent metric. Similarly, the complexified U(1) gauge coupling τ depends on ϕ,
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and moreover this dependence is holomorphic,54

τ(ϕ) =
θ (ϕ)
2π

+
2πi

e2(ϕ)
= F ′′(ϕ) . (122)

In a free theory, where τ is constant, F = 1
2τϕ

2.
In order to discuss the action of electric-magnetic duality, it is convenient to trade the

prepotential F (which does not transform in a simple way under duality) for the quantity

ϕD = F ′(ϕ) . (123)

Note that τ = F ′′ = dϕD
dϕ . The pair (ϕD,ϕ) defines a set of special coordinates that trans-

forms as a doublet of the SL(2,Z) duality group. The solution of [9] is expressed in terms of
a particular set of special coordinates denoted by a and aD. In general, ϕ is an integer linear
combination of a, aD that depends on the duality frame. An electric-magnetic duality trans-
formation is characterized by an SL(2,Z) matrix. Under such a transformation, the special
coordinates (aD, a) and the gauge coupling τ transform as follows,
�

a′D
a′

�

=

�

m n
p q

��

aD
a

�

, τ′ =
mτ+ n
pτ+ q

,

�

m n
p q

�

∈ SL(2,Z) . (124)

In order to express the mapping from the variable u that parametrizes the Coulomb branch
to the low-energy field ϕ, we must express the special coordinates as functions of u. This is
achieved by the following definite integrals,55

a(u) =
1

π
p

2

∫ Λ2

−Λ2
d x
p

u− x
p

Λ4 − x2
, aD(u) =

p
2i
π

∫ u

Λ2
d x
p

u− x
p

x2 −Λ4
. (125)

This presentation of a(u) and aD(u) as definite integrals is valid when Re(u) > Λ2. When |u|
is large, they behave as

a(u)≈
Æ

u/2 , aD(u)≈
i
p

2u
π

log
�

u/Λ2� , |u| ≫ Λ2 . (126)

The behavior of a(u) reflects the fact that in this weakly-coupled large-u region the SU(2)
adjoint scalar field φ of the UV theory acquires a vev φ =

�

a 0
0 −a

�

that higgses SU(2)→ U(1).
Then u = trφ2 = 2a2. Meanwhile the asymptotic behavior of aD(u) in (126) encodes the
logarithmic running of the asymptotically free gauge coupling,

τ=
daD

da
≈

2i
π

log
�

u/Λ2�+O(1) , |u| ≫ Λ2 . (127)

54We define τ = θ
2π +

2πi
e2 , rather than the more common θ

2π +
4πi
e2 , to ensure that the U(1) gauge theory has

conventionally normalized Maxwell kinetic terms, and a θ -term with periodicity 2π on spin manifolds and 4π on

non-spin manifolds, assuming that f (2)

2π has integral fluxes. In lorentzian signature, the lagrangian is

L =
i

16π

�

τ f +µν f +µν −τ f −µν f −µν
�

= −
1

4e2 fµν f µν −
θ

32π2 ϵ
µνρσ fµν fρσ . (121)

Here f ±µν =
1
2

�

fµν ±
i
2ϵµνρσ f ρσ
�

. Since we use the conventions of [1] (with ϵ0123 = 1), a Wick rotation x0 = −i x4

to euclidean signature (with ϵ1234 = 1) maps f +µν and f −µν to the standard self-dual and anti-self-dual components

of fµν. The euclidean lagrangian takes the form LE =
1

4e2 fµν f µν + iθ
32π2 ϵ

µνρσ fµν fρσ.
55Our conventions for the special coordinates a and aD are those of [10]. The resulting monodromies therefore

lie in the subgroup Γ 0(4) ⊂ SL(2,Z).
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Note that τ is purely imaginary as long as u is real, so that the effective θ -angle vanishes. This
is consistent with the fact that time-reversal is unbroken on the real u-axis. As we will see
below, this behavior persists until we reach the monopole point u= Λ2.

The values of a(u) and aD(u) outside the region Re(u) > Λ2 can be obtained by analytic
continuation. We will use the following useful representation in terms of hypergeometric
functions (see for instance [86]),

a(u) =

√

√(Λ2 + u)
2 2F1

�

−
1
2

,
1
2

, 1 ;
2Λ2

Λ2 + u

�

,

aD(u) =
i
�

u−Λ2�

2Λ 2F1

�

1
2

,
1
2

, 2 ;
Λ2 − u

2Λ2

�

.

(128)

These are branched functions. Specifically, a(u) has a branch cut just below the real axis,
which runs from u = −∞ to the monopole point u = Λ2. Similarly, aD(u) has a branch cut
just below the real axis that runs from u= −∞ to the dyon point u= −Λ2. Across these cuts,
the functions (128) jump by SL(2,Z) duality transformations.56 Below we will often work on
the real u-axis. When we evaluate the functions (128) there we will implicitly evaluate them
slightly above the real axis, i.e. we choose an iϵ prescription of the form a(u+ iϵ), aD(u+ iϵ)
with u ∈ R. For future reference, we note that the formulas (128) can be inverted to give a
formula for u in terms of a, aD and the prepotential [87],

u= 2πi
�

F(a)− 1
2

aaD

�

. (129)

This formula can also be derived by promoting the strong-coupling scale Λ to an N = 2 back-
ground chiral superfield [38]. Unlike u, the expression on the right-hand side of (129) is not
obviously duality invariant, but the prepotential can be defined in such a way that this is in
fact the case.

We would like to use the formulas (128) to clarify the behavior of the effective θ -angle
on the real u-axis, where time-reversal symmetry is preserved. Therefore θ necessarily takes
one of the two time-reversal invariant values θ = 0 or θ = π, but importantly this statement
need only hold up to an SL(2,Z) duality transformation. As was explained below (127), the θ
angle vanishes when u≫ Λ2. Using (128) it can be checked that this behavior persists until
the monopole point u= Λ2. If we continue to u< Λ2 in this duality frame, we find that the θ
angle continuously evolves from θ = 0 to θ = −2π at u= 0 and ultimately to θ = −4π at the
dyon point u= −Λ2, beyond which it remains constant.

In order to see that this behavior is consistent with time-reversal, we can perform an S-
duality transformation to go to the duality frame that is appropriate near the monopole point,
where ϕ = aD and τD = −

1
τ . The dual θ -angle θD = 2πReτD vanishes when u > Λ2 and

jumps discontinuously as we cross the monopole point,

θD =

¨

0 , u> Λ2 ,

π , −Λ2 < u< Λ2 .
(130)

Therefore θD always takes a value consistent with time-reversal symmetry. The physical mech-
anism behind the jump in (130) is that the monopole hypermultiplet

�

hi ,ψ+α,ψ−α
�

becomes
massless when u = Λ2. As we pass through that point along the real axis, the mass of the
Dirac fermion comprised of ψ+α and ψ−α passes through zero, and this leads to a jump by π
in the θ -angle.

56The presentation in (128) is useful in computer software programs such as Mathematica. Other presentations
in terms of elliptic functions in general do not implement the same choice of branch cuts.
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4.2 Symmetries and ’t Hooft anomalies

The realization of the global symmetries on the Coulomb branch was already discussed in
section 1.4. Here we present some additional details. In particular, we match some of the ’t
Hooft anomalies of the UV theory (see section 2.4) on the Coulomb branch.

4.2.1 Generic points on the Coulomb branch

We begin by discussing points u ̸= 0,±Λ2 on the Coulomb branch. The SU(2)R symmetry is
unbroken and acts on the gaugino ρi

α of the low-energy abelian vector multiplet. This matches
the Witten anomaly for the SU(2)R symmetry.

The Z(1)2 1-form global symmetry associated with the center of the UV gauge group is em-

bedded into the accidental U(1)(1)electric×U(1)(1)magnetic 1-form symmetries of the low-energy U(1)

gauge theory. Massive charged particles explicitly break it to Z(1)2 . Whether this Z(1)2 is em-
bedded into the electric or magnetic 1-form symmetry depends on the duality frame. For
instance, if we use the duality frame associated with the special coordinate a(u) and examine
the weak-coupling region |u| ≫ Λ2, we find a massive W-boson of electric charge 2, which
breaks U(1)(1)electric → Z

(1)
2 , and a magnetic monopole of magnetic charge 1, which completely

breaks U(1)(1)magnetic.

Recall from (5) that the Z8 symmetry generated by r acts via r
�

φA� = iϕA, and
hence r
�

u
�

= −u. As long as u ̸= 0, this symmetry is therefore spontaneously broken to
its Z4 ⊂ Z8 subgroup. The unbroken generator r2 acts on the abelian vector multiplet fields
on the Coulomb branch as follows,

r2
�

ϕ
�

= ϕ , r2
�

ρi
α

�

= −iρi
α , r2
�

f (2)
�

= − f (2) . (131)

This a discrete R-symmetry, under which r2
�

Qi
α

�

= −iQi
α.57 If we track the symmetry r2 to

the weak-coupling region of the Coulomb branch, we find that the IR action in (131) differs
from the action (39) on the UV fields by an overall sign. This sign corresponds to the action
of charge-conjugation symmetry C, which is an exact symmetry of the low-energy theory. It
corresponds to the non-trivial central element C = −1 ∈ SL(2,Z), which is a symmetry for
every value of τ. In the nonabelian gauge theory description that is appropriate when |u| ≫ Λ2,
C becomes the Weyl element of the SU(2) gauge group. We are therefore free to mix the global
symmetry generated by r2 with C to obtain (131).

On spin manifolds, the only non-trivial ’t Hooft anomaly that involves the unbroken r2

symmetry is a mixed anomaly with the SU(2)R symmetry, which was discussed around (48).58

(The ’t Hooft anomalies of the Coulomb-branch theory on non-spin manifolds are discussed
in section 4.3.) If we turn on an SU(2)R background field with instanton number nR = 1, the
partition functions shifts as follows under the action of r2,

r2
�

Z
�

= exp
�

iπ
2
κrR2

�

. (132)

In the UV, there are three gauginos ofU(1)r charge 1, so that κUV
rR2 = 3 (see (45)). In the IR there

is only one gaugino, and the transformation rule (131) implies that it effectively has U(1)r
charge −1, so that κIR

rR2 = −1. (Recall that U(1)r is the classical symmetry that is broken to Z8

by an ABJ anomaly.) The anomaly (132) is then matched because 3= −1 (mod 4).
We would like to also identify the action of the time-reversal symmetry T, whose action

on the UV fields was defined in (40). By going to the weak-coupling region, where a arises
57Note that (131) is a symmetry of any special Kähler sigma model (120).
58The ’t Hooft anomalies for the broken Z8 symmetry are matched because the vacua related by the broken

generator r have different local counterterms for the background fields.
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from the UV scalar field φA by adjoint higgsing (see the discussion below (126)), we find
that T
�

a
�

= a. The action on the other fields in the abelian vector multiplet then follows from
supersymmetry (recall from (41) that T

�

Qi
α

�

= −iQαi ),

T
�

a
�

= a , T
�

ρi
α

�

= iραi , T
�

f (2)
�

= f (2) . (133)

Here the last equation means that each tensor index of fµν is acted on by the time-reversal
Lorentz transformation Tµ

ν = diag(−1,1, 1,1). It follows from (133) that the magnetic and

electric charges (nm, ne) transform as T(nm, ne) = (nm,−ne). Note that T2 = 1 when acting
on the fields in (133).59

Under an S-duality transformation, the T-operation (133) combines with charge conjuga-
tion C, so that

T
�

aD

�

= −aD , T
�

ρi
Dα

�

= −iραDi , T
�

f (2)D

�

= − f (2)D . (134)

Again we find that T2 = 1. In this duality frame, electric and magnetic charges transform
as T(nm, ne) = (−nm, ne). The action of T in a general duality frame can be deduced by
writing ϕ as a linear combination of a, aD and using (133), (134).

4.2.2 The origin of the Coulomb branch

At the origin u = 0 of the Coulomb branch, the Z8 symmetry is unbroken. So far we have
so far only identified the action (131) of the Z4 ⊂ Z8 subgroup generated by r2. In order
to determine the action of r, we begin with the observation that r2

�

f (2)
�

= − f (2) = C
�

f (2)
�

.
Here C= −1 ∈ SL(2,Z) is the charge conjugation operation discussed above. Since r must be
a square root of this action, it must (roughly speaking) act on the gauge field f (2) by phase. As
we will now explain, this is possible if r acts via the electric-magnetic S-duality transformation.

In general, an SL(2,Z) duality transformation maps a given U(1) gauge theory (with cou-
pling τ) to a physically equivalent abelian gauge theory with a different coupling. However,
there are special values of τ that are stabilized by an element of SL(2,Z). This particular du-
ality transformation then maps the original theory back to itself and therefore defines a global
symmetry. Precisely this phenomenon occurs at the origin u= 0 if the Coulomb branch. If we
work in the duality frame

ϕ = a , ϕD = a+ aD , (135)

we can use (128) to evaluate60

ϕ(u= 0) = i x , ϕD(u= 0) = x , τ(u= 0) = i . (136)

Here x ̸= 0 is a complex constant, whose precise value will not be important for us. The
coupling τ = i is invariant under the S-duality transformation, which sends τ → − 1

τ . In

lorentzian signature, it acts on the self-dual and anti-self-dual parts of f (2) via S( f (2)± ) = ±i f (2)± ,
so that S2 = C. It also sends S(ϕ) = ϕD = −iϕ and S(ϕD) = −ϕ = −iϕD.

Although S is a global symmetry of the U(1) gauge field at τ = i, it does not leave the
scalars ϕ and ϕD invariant. In order to define a global symmetry of the full N = 2 abelian
gauge theory, we must therefore accompany S by a discrete R-symmetry transformation X that
acts as follows,

X
�

ϕ
�

= iϕ , X
�

ρi
α

�

= e
iπ
4 ρi

α , X
�

f (2)
�

= f (2) , X
�

Qi
α

�

= e−
iπ
4 Qi

α . (137)

59This statement is not meaningful on states that carry electric charge, since we can change the value of T2 on
these states by mixing T with a gauge transformation.

60We note that (136) as well as (130) can also be derived using the biholomorphism between the u-plane and
the τ upper half-plane revisited recently in [88,89].
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We can now define the action of the Z8 generator as follows,

r = XS . (138)

Note that this leaves the scalars vevs in (136) invariant and acts via S-duality on f (2).
We can use (138) to determine the action of the Z8 generator r on the IR gaugino ρi

α at
the origin. Using the supersymmetry transformations in appendix B.2 and the fact that τ= i,
we can write

S
�

ρi
α

�

= ρi
Dα = −

i
p

2
Qi
αϕD = −

i
p

2
F ′′(ϕ)Qi

αϕ = τ(ϕ)ρ
i
α = iρi

α . (139)

Combining this with the transformation rule of ρi
α under X in (137), we find that

r
�

ρi
α

�

= e
3iπ
4 ρi

α . (140)

This is indeed a square root of the phase found for the action of r2 in (131).
It follows from (140) that the IR gaugino effectively has U(1)r charge 3. This leads to

exactly the same mixed anomaly coefficients κrR2 = 3 and κr = 6 with SU(2)R and gravity
as the three UV gauginos of U(1)r charge 1. Therefore these mixed ’t Hooft anomalies are
matched at u= 0 on both spin and non-spin manifolds.

The interplay between the Z8 symmetry and electric-magnetic duality is also responsible
for matching the mixed anomaly between Z8 and the Z(1)2 1-form symmetry. As was discussed
around (55), acting with the Z8 generator r can change the partition function by at most a
sign, i.e. the anomaly is Z2-valued.61 By contrast, the generator r2 does not have a mixed
anomaly with the Z(1)2 symmetry on spin manifolds.

To see that the anomaly is present, we work in a duality frame where Z(1)2 ⊂ U(1)(1)electric.
This symmetry multiplies odd-charge Wilson lines by −1, but leaves even-charge Wilson lines
invariant. Gauging the Z(1)2 symmetry therefore removes the odd-charge Wilson lines from
the spectrum. If we would like the new U(1) gauge field to be conventionally normalized, we
must rescale it by a factor of 2, i.e. f (2)old = 2 f (2)new. If f (2)old was at the self-dual coupling τ = i,

this will not be the case for f (2)new. In other words, gauging the Z(1)2 1-form symmetry ruins
the S-duality symmetry and therefore breaks the Z8 symmetry at the origin of the Coulomb
branch. This demonstrates the presence of a mixed ’t Hooft anomaly between Z8 and Z(1)2 in

the original theory, where the Z(1)2 symmetry is not gauged.
As a final remark on the theory at the origin we note that the realization of r via electric-

magnetic duality implies that the spectrum of massive charged dyons enjoys some degen-
eracy. In the duality frame (135) the action of r maps a dyon with charges (nm, ne) to
an exactly degenerate dyon with charges (ne,−nm). Of course there is also the degeneracy
(nm, ne)↔ (−nm,−ne) implied by charge conjugation. In particular this implies that the two
hypermultiplets that become massless at the special points u = ±Λ2 are degenerate at the
origin. In the duality frame (135) their charges are (1,−1) and (1, 1).

4.2.3 Monopole and dyon points

We now discuss the global symmetries and ’t Hooft anomalies at the monopole and dyon points
at u= Λ2 and u= −Λ2. Since they are related by the spontaneously broken Z8 symmetry, we
will focus on the monopole point. We work in the duality frame where ϕ = aD, where the
low-energy theory in the vicinity of the monopole point is described by N = 2 SQED (see
appendix B.2).

61This is true on spin manifolds. If M4 is not spin, the anomaly is valued in Z4.
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The unbroken Z4 symmetry acts on the fields in the abelian vector multiplet as in (131),

r2
�

ϕ
�

= ϕ , r2
�

ρi
α

�

= −iρi
α , r2
�

f (2)
�

= − f (2) . (141)

This can be extended to a symmetry of SQED by defining the action on the hypermultiplet
fields as follows,62

r2
�

hi

�

= hi , r2
�

hi

�

= −hi , r2
�

ψ+α
�

= iψ−α , r2
�

ψ−α
�

= −iψ+α . (142)

Note that this exchanges fields of opposite charge, which is consistent with the fact that the
action of r2 on f (2) in (141) implements charge conjugation. For instance, the transforma-
tions (141) and (142) preserve the Yukawa couplings of the SQED lagrangian (see (B.18)),

L ⊃
p

2
�

hiρ
iψ+ − hiρ

iψ−

�

+ (h.c.) . (143)

Note that r4
�

ψα±
�

= ψα±. Moreover, the fermions ψα± are neutral under SU(2)R. The iden-
tification r4 = (−1)F = −1 in (28) therefore does not hold. In particular, the fields ψα± do
not satisfy the nonabelian spin-charge relation. This is not a contradiction, because they are
charged under the dynamical U(1) gauge field, i.e. they are not gauge invariant. (Moreover, as
we will review below, this gauge field is actually a spinc connection.) By contrast, it is straight-
forward to check that r4 = (−1)F = −1 does hold on all gauge-invariant local operators.

With the definitions above, the hypermultiplet fermions ψ±α do not contribute to any ’t
Hooft anomalies. Therefore the anomaly matching at generic points of the Coulomb branch
(see section 4.2.1) persists at the monopole and dyon points.

For future reference, we spell out the action of time-reversal T on the hypermultiplets.
Since ϕ = aD, time-reversal acts on the vector multiplet at the monopole point as in (134),

T
�

ϕ
�

= −ϕ , T
�

ρi
α

�

= −iραi , T
�

f (2)
�

= − f (2) . (144)

Together with the form of the SQED lagrangian (B.18), (in particular the Yukawa couplings
(143)) this fixes the action of T on the hypermultiplet fields,

T
�

hi

�

= hi , T
�

hi

�

= h
i
, T
�

ψ+α
�

= −iψα+ , T
�

ψ−α
�

= −iψα− . (145)

Observe that T2 = −1 on the fields in the hypermultiplet, while T2 = 1 on the fields in the
vector multiplet.63 Therefore the hypermultiplet fields (which are identified with a magnetic
monopole at weak coupling) are Kramers doublets.

4.3 Considerations on non-spin manifolds

When M4 is not a spin manifold, there are additional interaction terms in the low-energy
effective action on the Coulomb branch that involve w2(M4) [24]. Consider first the duality
frame ϕ = a, which can loosely be thought of as arising from adjoint higgsing. It was shown
in [24] that the action for the corresponding gauge field f (2) must be supplemented by the
following term,

exp

�

iπ

∫

M4

f
2π
∪ ew2

�

. (146)

62The N = 2 SQED lagrangian can be found in (B.18). Recall that hermitian conjugation acts on the hypermul-

tiplet scalars via
�

hi

�†
= h

i
and
�

hi
�†
= −hi .

63This sign is gauge invariant, because T preserves electric charge in this duality frame, so that mixing T with
gauge transformations does not modify T2.
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Here ew2 is an integral lift of the second Stiefel-Whitney class w2(M4).
One consequence of the interaction (146) is that it turns ’t Hooft lines of odd magnetic

charge into fermions (see for instance [80]).64 It is also plays a crucial role in matching the
’t Hooft anomalies that involve the Z(1)2 1-form symmetry on non-spin manifolds. To describe

these effects, we must first explain how the background gauge field B2 corresponding to Z(1)2
appears at low energies. Since activating B2 turns SU(2) gauge bundles into SO(3) bundles
with w2(SO(3)) = B2 and f (2) is obtained from SU(2) by adjoint higgsing, it follows that f (2)

satisfies the following flux quantization condition,

2 f (2)

2π
= B2 (mod 2) . (148)

If B2 = 0 then f (2) is conventionally normalized, but when B2 is activated then f (2) admits
magnetic monopoles of half-integer charge.

We can now describe how the interaction (146) depends on the lift ew2. If we choose a
different lift by shifting ew2 → ew2 + 2y (with y an integral 2-cochain), we find that the
partition function is multiplied by the following factor,

exp

�

iπ

∫

M4

B ∪ y

�

. (149)

This is precisely the anomalous variation of the partition under the mixed anomaly discussed
around (73).

We can also match the ’t Hooft anomaly between the Z4 generator r2 and the Z(1)2 1-
form symmetry discussed around (66). According to (131), r2 acts on the gauge field f (2) by
charge conjugation. Applying such a transformation to the interaction (146), we find that the
functional integral is modified by the following factor,

exp

�

2iπ

∫

M4

f
2π
∪ ew2

�

= exp

�

iπ

∫

M4

B2 ∪w2(M4)

�

= exp

�

iπ

∫

M4

B2 ∪ B2

�

, (150)

which matches (66) with kr = 2.
The effects described above in the duality frame defined by ϕ = a propagate to other

duality frames. For our purposes it will be sufficient to know what happens when ϕ = aD.
This was analyzed in [24]. Since S-duality transforms the ’t Hooft line to a Wilson line and
the interaction (146) implies that the ’t Hooft line before duality is a fermion, it follows that
the Wilson line after duality is a fermion. Consequently, the dual gauge field f (2)D should be a
spinc connection, which satisfies

2 f (2)D

2π
= ew2 (mod 2) . (151)

64To see this, consider an ’t Hooft line of magnetic charge 1, so that f (2)

2π integrates to one over a small S2

surrounding the line. The interaction then reduces to

exp

�

iπ

∫

Σ2

w2(N)

�

, (147)

where Σ2 is a surface ending on the line and w2(N) is the second Stiefel-Whitney class of the normal bundle to Σ.
Here we have used adjunction to reduce the bulk class w2(M4) onΣ2. (We have 0= w1(M4)|Σ2

= w1(Σ2)+w1(N)
and 0 = w2(M4)|Σ2

= w2(Σ2) + w2(N) + w1(N) ∪ w1(M4). We also use the fact that w2(Σ2) + w1(Σ2) ∪ w1(Σ2)
always vanishes. Since (147) defines an SPT for the SO(2) rotation symmetry of the normal bundle, the edge
modes are in a projective representation of this SO(2). This means that a 2π rotation acts as −1, i.e. the edge
modes are fermions. Since the boundary of Σ2 is the ’t Hooft line, we conclude that the ’t Hooft line is a fermion.
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Recall that ew2 is an integral lift of w2(M4).
Since B2 couples to f (2) electrically (i.e. before duality), it must couple to f (2)D magnetically

(i.e. after duality). This coupling takes the following form,

exp

�

iπ

∫

M4

f (2)D

2π
∪ eB2 +

iπ
2

∫

M4

ew2 ∪ eB2

�

. (152)

The pure counterterm in this expression is fixed by the duality transformation, as was explicitly
shown in [24].

As in the ϕ = a duality frame discussed above, we can use (151) and (152) to match the
’t Hooft anomalies that involve B2 in the ϕ = aD duality frame. It is not an accident (see
section 5.3) that the matching involves exactly the same manipulations as those carried out
for the CP1 model in section 3.3.

5 Candidate phases for adjoint QCD from deformed N = 2 SYM

In this section we will track the soft scalar mass deformation

∆V =
M2

g2 φ
A
φA , (153)

from the N = 2 SYM theory in the UV to the IR description on the Coulomb branch. As in [40],
this is possible even though the operator (153) is not holomorphic, because this operator
resides in the N = 2 stress tensor supermultiplet. In fact, it is the bottom component of that
multiplet. This leads to a streamlined derivation of some formulas in [38]. Note that the factor
of 1

g2 is due to the non-canonical kinetic terms for φA in the N = 2 lagrangian (37), so that M

is the classical pole mass of φA.
We then analyze the effects of the mass deformation (153) on the Coulomb branch, ex-

panding on the discussion in sections 1.5 and 1.6. The analysis is reliable when M ≪ Λ
(where Λ is the strong-coupling scale of the N = 2 SYM theory) and leads to a unique vac-
uum at the origin u = 0 of the Coulomb branch. (This vacuum was also found in [38].) The
massless fields in this vacuum are the IR gaugino ρi

α and a U(1) gauge field at the S-duality
invariant value τ= i of the gauge coupling. The physics of this vacuum was already discussed
in sections 1.6 and 4.2.2.

We will also examine the mass deformation (153) near the monopole and dyon points. As
was discussed below (13), a naive classical analysis suggests the existence of a meta-stable
vacuum near these points. However, this analysis does not correctly capture the small-M
behavior of the deformed N = 2 theory, because the low-energy U(1) gauge coupling e in
the N = 2 SQED theories that describe the monopole and dyon points is not sufficiently weak.
As long as M ≪ Λ, the only vacuum is therefore the one u= 0.

In the spirit of exploring consistent candidate phases for adjoint QCD that could emerge
from the deformed N = 2 theory when M ≫ Λ, we nevertheless permit ourselves to explore
the semiclassical regime e≪ 1 of the N = 2 SQED theories at the monopole and dyon points.
In this regime, the classical analysis is reliable, as long as M is not too small (see below). More-
over, as we stressed throughout the paper, any phase obtained in this fashion automatically
matches all ’t Hooft anomalies of the UV theory.

In the e ≪ 1 regime, the hypermultiplet scalars hi of the SQED theory condense, so
that the U(1) gauge group is higgsed. As in [9], this means that the UV theory con-
fines via monopole condensation. Moreover, the monopole condensate spontaneously breaks
the SU(2)R symmetry. The resulting low-energy theory consists of two copies of a CP1 sigma
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model and was already discussed in section 3. It is remarkable that the massless degrees of
freedom of the N = 2 theory at the monopole and dyon points are sufficient to realize this
chiral-symmetry breaking phase.

The embedding into the supersymmetric theory provides several additional handles. For
instance, we will show that the monopole condensate in the IR in fact corresponds to a con-
densate of the gaugino bilinear Oi j = λαiAλ jA

α . Moreover, the deformed N = 2 SQED theory
provides a rigorous definition of the CP1 model that takes into account all global subtleties.
Finally, we use the deformed SQED theory to explicitly exhibit the phase transition on the
confining string that was discussed at the end of section (3.5).

5.1 The N = 2 stress tensor multiplet

As was already mentioned above, the scalar T = 1
g2φ

A
φA that appears in the mass deforma-

tion (153) is the bottom component of the N = 2 stress tensor supermultiplet. This multiplet
was introduced in [47] (see also [90–93], as well as section 4.3 of [94] and section 5.5.2
of [95]). Here we will only briefly summarize its basic properties, since this will be sufficient
for our purposes below.

In general, the N = 2 stress tensor multiplet is a short multiplet of supersymmetry that is
characterized by the following constraint,65

QαiQ j
αT = X i j , X i j = X (i j) , Q(iαX jk) =Q

(i
α̇X jk) = 0 . (154)

The real scalar T , which furnishes the bottom component of the multiplet, was already men-
tioned above. The complex SU(2)R triplet X i j is the bottom component of a non-trivial sub-
multiplet that contains a complex abelian flavor current associated with the central charge
in the N = 2 supersymmetry algebra,66 as well as the traces of the supersymmetry currents
and the stress tensor. Therefore, the operator X i j vanishes if and only if the N = 2 theory is
superconformal.

Since pure N = 2 SYM theory is classically conformal, the operator X i j vanishes at tree
level. Using the supersymmetry transformations in (B.11) it can be checked that

T = 1

g2 φ
A
φA , (155)

indeed satisfies the shortening condition (154) with X i j = 0. Quantum mechanically, the
theory is not conformal and the gauge coupling g runs logarithmically. As a result, the opera-

tor X i j ∼Q
i
α̇Q

α̇ j
u is generated at one-loop. (The coefficient is proportional to the one-loop β-

function.) The details of this will not be important below.
A given supersymmetric field theory may admit distinct stress tensor multiplets that differ

by improvement terms. Such improvements change the operators in the stress tensor multiplet
while preserving the shortening condition (154). In particular, the conserved currents in the
multiplet (including the stress tensor) are only modified by suitable total derivative terms that
do not affect the corresponding conserved charges. The N = 2 stress tensor multiplet (154)
admits the following improvements (see for instance [93]),

T −→ T +Φ+Φ , X i j −→ X i j +QαiQ j
αΦ , Q

i
α̇Φ= 0 . (156)

65This stress tensor multiplet is appropriate for conventional N = 2 gauge theories, or deformed superconformal
theories, which possess an SU(2)R symmetry. It does not, for instance, exist in theories where the SU(2)R symmetry
is explicitly broken, such as N = 2 SQED with a Fayet-Iliopoulos term.

66On the Coulomb branch, the central charge is also sensitive to certain boundary terms that arise from total
derivatives in the supersymmetry current algebra. These terms are responsible for the familiar electromagnetic
contributions to the central charge [96].
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Here Φ is an N = 2 chiral multiplet. In the UV, such a chiral multiplet can only be a holo-
morphic function f (u) of the gauge-invariant chiral operator u = tr(φ)2 that parametrizes
the Coulomb branch.67 In the UV we are free to choose the stress tensor multiplet so that its
bottom component is given by (155), without any improvements of the form f (u)+ f (u). How-
ever, such improvements may well be generated when we flow to the deep IR. Below we will
determine these improvements on the Coulomb branch of the N = 2 SYM theory (see [38,40]
for related discussions).

5.2 The stress tensor multiplet on the Coulomb branch

We would like to analyze the effect of the mass deformation (153) on the Coulomb branch of

the N = 2 theory. Thanks to (155), it suffices to track the bottom component T = 1
g2φ

A
φA of

the N = 2 stress tensor multiplet along the RG flow. In the deep IR, we would like to express T
in terms of the special Coulomb branch coordinates a and aD. We claim that, away from the
monopole and dyon points (see below), the operator T is given by the following expression,

T = i
4π

�

aaD − aaD

�

. (157)

To justify this formula, we argue as follows:

1.) The right-hand side of (157) defines a valid stress tensor multiplet of the low-energy
theory. This can be checked explicitly: if we use aD = F ′(a) (where F(a) is the prepo-
tential), as well as the equations of motion that follow from the low-energy lagrangian
(120), and the supersymmetry transformations in (B.20), we can verify that (157) satis-
fies the shortening condition (154) for a suitable choice for X i j . This is particularly sim-
ple in a free N = 2 U(1) gauge theory (which is supeconformal), where F(a) = 1

2τa2,
with constant τ= θ

2π +
2πi
e2 . In this theory aD = τa, so that

Tfree =
Imτ
2π
|a|2 =

1

e2 |a|
2 , (158)

which satisfies (154) with X i j = 0, as expected for a superconformal theory.

Since (157) defines a valid stress-tensor multiplet for the IR theory, it must agree with
the UV stress tensor multiplet up to an improvement term. We will now argue that no
such improvement terms are needed to match the UV operator (155).

2.) Since the UV operator (155) is globally well-defined on the entire Coulomb branch, the
same must be true of the corresponding IR operator. In particular, this operator must
be invariant under SL(2,Z) duality transformations. This is indeed the case for the
expression in (157), because (aD, a) transform as an SL(2,Z) doublet. Any possible
improvements are therefore also globally well defined, and therefore determined by a
globally holomorphic function f (u) of the Coulomb-branch coordinate u (see the UV
discussion below (156)).

2.) Using the asymptotic expressions (126) and (127), we can compare the UV and IR op-
erators in the region |u| ≫ Λ2. Up to subleading corrections, we find that68

1

g2 φ
A
φA ≈

|u|
2π2 log

|u|
Λ2 ≈

i
4π

�

aaD − aaD

�

. (159)

67In pure N = 2 SYM theory, we can use such an improvement to make X i j real, so that it satisfies
�

X i j
�†
= X i j .

This will not play a role in our discussion below.
68The SU(2) gauge theory is higgsed to U(1) by the adjoint scalar φ3 = 2a. Then u = tr(φ)2 = 1

2 (φ
3)2 = 2a2.

Since we use a normalization in which the U(1) gauge field f (2) on the Coulomb branch has integral fluxes,
1

2π

∫

Σ2
f (2) ∈ Z, the SU(2) gauge coupling g and the U(1) gauge coupling e are related by g = 2e.

50

https://scipost.org
https://scipost.org/SciPostPhys.16.5.139


SciPost Phys. 16, 139 (2024)

This implies that any improvement term that may be present must be subleading
to |u| log |u| when |u| ≫ Λ2. Therefore the globally holomorphic function f (u) that
governs the possible improvements can at most be linear in u.

3.) To rule out the possibility of an improvement term of the form f (u)∼ u, we use the fact
that the UV operator (155) is invariant under the global Z8 symmetry, while u changes
by a sign. To prove that such an improvement is absent in the IR, it therefore suffices
to check that the IR expression (157) is also Z8 invariant. As discussed in section 4.2.2,
the Z8 symmetry acts on the moduli space through a combination of SL(2,Z) dual-
ity transformations and the discrete R-symmetry transformation (137), under which a
and aD rotate by the same phase (see also [97]). The expression in (157) is manifestly
invariant under both of these transformations.

The preceding discussion shows that the UV operator (155) flows to the IR operator (157),
up to an overall c-number constant that can be set to any value using a UV counterterm. (This
corresponds to an improvement for which the function f (u) is constant.) Since such a constant
will play no role below, we set it to zero.

Having identified the IR expression (157) for the operator T , and hence the soft scalar mass
deformation (153), we have now justified the starting point for the discussion in sections 1.5
and 1.6. Indeed, it is straightforward to check that u = 0 is in fact a critical point of the mass
deformation (153). We compute

d
du

�

aaD − aaD

�

=
da
du

�

aD − aτ(a)
�

. (160)

Using the values a = i x , aD = x , and τ = i from (136), we find that the right-hand side
of (160) vanishes at the origin u = 0 of the Coulomb branch. Moreover examining Figure 1,
it is clear that the origin is a global minimum and that the potential slopes rapidly upwards in
all directions away from that point.

As discussed in section 1.6, the vacuum of the mass-deformed theory at u = 0 involves
a massless gaugino ρi

α and a U(1) gauge field with an S-duality invariant coupling con-
stant τ= i.

5.3 A candidate CP1 phase from the monopole and dyon points

As was already discussed at the beginning of this section, we will now repeat the analysis of the
previous subsection near the monopole and dyon points. (Due to the Z8 symmetry it suffices
to focus on the monopole point u = Λ2.) In the spirit of generating a consistent candidate
phase for adjoint QCD, we will dial the IR gauge coupling e of the N = 2 SQED theories at
these points to very small values e≪ 1. In this regime we find a CP1 phase with confinement
and chiral symmetry breaking, as described in section 3.

5.3.1 Matching the stress tensor multiplet

At the monopole point u= Λ2 we work in the duality frame where ϕ = aD, which vanishes at
the monopole point. As we did on the Coulomb branch, we must first match the UV operator T
in (155) in the low-energy SQED theory at the monopole point. Unlike in section (5.2), where
we considered the full Coulomb-branch sigma model, we will here only discuss the immediate
vicinity of the monopole point. As we will see, this is justified because we assume that e≪ 1.
This will enable us to drop most higher-order terms in ϕ (see however below). In this approx-
imation, the N = 2 theory at the monopole point is described by the renormalizable SQED
lagrangian (B.18).
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This theory is classically superconformal, so that the tree-level stress tensor multiplet bot-
tom component T0 satisfies (154) with X i j = 0. Using the supersymmetry transformations
in (B.20) and (B.21), it can be checked that T0 is given by

T0 =
1

e2 |ϕ|
2 −

1
2

h
i
hi . (161)

As was explained below (155), the operator X i j is generated at one-loop, because the SQED
theory is not conformal and the U(1) gauge coupling e runs to zero in the deep IR.

We claim that the operator T0 in (161) is related to the UV operator T in (155) via

T = T0 −
iΛ

2π2 (ϕ −ϕ) + · · ·=
1

e2 |ϕ|
2 −

1
2

h
i
hi −

iΛ

2π2 (ϕ −ϕ) + · · · . (162)

Here the term ∼ i (ϕ −ϕ) is an improvement term, and the ellipsis denotes higher-order im-
provement terms that vanish more rapidly at the monopole point. Unlike these higher-order
terms, we can reliably match the linear term in (162) by only considering field excursions
of ϕ in the immediate vicinity of the monopole point, where our approximations are valid.
In order to justify (162), we turn on a small non-zero vev for ϕ, so that the hypermultiplet
becomes massive and can be integrated out. This turns the gauge coupling e into a logarith-
mically running function of ϕ that is captured by the behavior of the gauge coupling τD(aD)
near the monopole point. Importantly, integrating out the hypermultiplet does not generate
any improvement terms.69 We can then match the resulting expression to the Coulomb-branch
formula (157). Near the monopole point, this leads to

i
4π

�

aaD − aaD

�

− T0 =
i

4π

�

aaD − aaD

�

−
Im(τD)

2π
|aD|

2 = −
iΛ

2π2 (ϕ −ϕ) + · · · . (163)

Note that the non-analytic terms that capture the logarithmic running of e have canceled be-
tween i

4π

�

aaD − aaD

�

and T0. This explains why T0 appears in (162) with unit coefficient.
The term on the right-hand side of (163) is the improvement term in (162).

5.3.2 Analyzing the scalar potential

The full scalar potential V of the N = 2 SQED theory at the monopole point in the presence
of the mass deformation ∆V in (153) is given by adding the supersymmetric potential (B.19)
to ∆V = M2T , where T is the bottom component of the N = 2 stress-tensor multiplet. Near
the monopole point T is given by (162).

Before writing down an explicit formula for V and analyzing its consequences, we choose
the following parametrization for the complex scalar ϕ,

ϕ =
−y + i x

2
, x , y ∈ R . (164)

This parameterization is motivated by the fact that near the monopole point,70

ϕ = aD(u)≈
i

2Λ

�

u−Λ2� , (165)

so that (164) amounts to
u≈ Λ2 +Λ (x + i y) . (166)

69As we will discuss below, N = 2 SQED has an accidental U(1)X superconformal R-symmetry that assigns
charge 2 to ϕ. This symmetry is broken by an ABJ anomaly, but remains valid in perturbation theory. Since T0 is
neutral under U(1)X , while any improvements are necessarily charged, integrating out the massive hypermultiplet
cannot generate such improvement terms.

70This can seen by expanding the exact formula for aD(u) in (128).
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Therefore x and y parametrize real and imaginary motions in the complex u-pane, away from
the monopole point.

In terms of the variables x , y and hi , the scalar potential V is given by

V =
e2

2

�

h
i
hi

�2
+

1
2

�

x2 + y2� h
i
hi +M2
�

1

4e2 (x
2 + y2)−

1
2

h
i
hi +

Λx

2π2

�

. (167)

As was explained above, we will analyze this potential in the regime e≪ 1 and |x |, |y| ≪ Λ,
i.e. close to the monopole point. Classically, there are two distinct possibilities:

a) There is an extremum of the potential in which the vev of hi vanishes,

hi = 0 , x = −
Λe2

π2 , y = 0 , V = −
M2Λ2e2

4π4 . (168)

Note that x is very close to the monopole point, because e ≪ 1. The scalars x and y
have large positive masses m2

x ,y ∼
M2

e2 , while the mass of hi satisfies m2
h ∼

e4Λ2

π4 − M2.
This vacuum is therefore only stable if M is sufficiently small,

M <
e2Λ

π2 . (169)

For larger values of M the scalar hi becomes tachyonic.

b) There is another extremum where hi has a vev. The equations governing this extremum
take the following form,

h
i
hi =

M2 − x2

2e2 , x3 − 2M2 x −
e2M2Λ

π2 = 0 , y = 0 . (170)

Since h
i
hi > 0, we must restrict |x | < M . When M ≪ e2Λ these constrained equations

do not have a solution. By contrast, when M ≫ e2Λ we find a minimum where

h
i
hi =

M2

2e2 , x = −
Λe2

2π2 , y = 0 , V = −
M4

8e2 . (171)

Here we have only retained the leading form of the solution when M ≫ e2Λ. Note that M
may still be well below the scale Λ, since we assume that e ≪ 1. As in (168) the vev

of x is very close to the monopole point, and m2
x ,y ∼

M2

e2 . The mass of the radial mode

of hi (i.e. the Higgs particle) is m2
h ∼ M2. It is also straightforward to analyze (170)

in the intermediate region M ∼ e2Λ, but this will not be necessary for the qualitative
considerations below.

The preceding discussion shows that the vacuum in (168), where hi = 0, is realized
when M is small. As we increase M we eventually encounter a transition to the vacuum
in (171), where hi condenses. When M is sufficiently small, the nature of the vacua, as well as
the transition between them, can be affected by the detailed structure of the potential (167),
or by Coleman-Weinberg effects [98]. However, as long as e≪ 1, the Higgs vacuum (171) is
reached for sufficiently large M . This is simply because the tachyonic mass term for hi in (167)
eventually becomes dominant and forces hi to condense.
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5.3.3 The CP1 model from deformed N = 2 SQED

We now analyze the low-energy physics of the deformed N = 2 SQED theory in the Higgs vac-
uum (171), which is realized for sufficiently large M . As we will see, this vacuum is described
by the CP1 model analyzed in section 3. To see this, consider the masses of the various fields
in the vacuum (171):

• The fact that h
i
hi ∼

M2

e2 implies that the U(1) photon is higgsed and acquires a

mass m2
γ ∼ M2.

• As was already mentioned below (171), the fields x , y acquire masses m2
x ,y ∼

M2

e2 , while

the mass of the radial mode of the Higgs field hi is m2
h ∼ M2. The remaining three com-

ponents of hi are massless and constrained to lie on the S3 defined by the vev h
i
hi ∼

M2

e2 .

However, the Hopf fiber of the S3 is acted on by U(1) gauge transformations, and the
corresponding massless scalar is eaten when the photon acquires a mass (see above).
The remaining two massless scalars parametrize the space S3/U(1) = CP1. The ra-

dius of this CP1 sigma model sets the pion decay constant f 2
π ∼ h

i
hi ∼

M2

e2 (see also
section 5.3.4 below).

• The Yukawa couplings of N = 2 SQED are given by (143) (see also (B.18)),

L ⊃
p

2
�

hiρ
iψ+ − hiρ

iψ−

�

+ (h.c.) . (172)

Since hi has a vev ∼ M
e , all fermions acquire masses ∼ M . (Recall that the gauginos ρi

α

are not canonically normalized, while this is the case for ψ±α, see (B.18).)

We see that the long-distance physics is indeed described by a CP1 model. We can use
the embedding of this model into the deformed N = 2 SQED theory at the monopole point to
motivate and clarify some of the more subtle points discussed in section 3:

1.) After higgsing, the gauginos ρi
α become massive. Since they carry the SU(2)R Witten

anomaly, integrating them out generates a discrete theta angle for the CP1 model.

2.) After higgsing, the dynamical U(1) gauge field f (2) of SQED flows to the Kähler form of
the CP1 model,

f (2)

2π
−→ n∗(ω) . (173)

We can also couple the SQED theory to SU(2)R background gauge fields A(1)R . In this

case the dynamical U(1) field strength f (2) flows to the Kähler form n∗(ω)(A(1)R ) coupled
to SU(2)R background fields, which was defined in (103).

As we reviewed in section 4.3, the dynamical U(1) gauge field f (2) at the monopole point
is in fact a spinc connection. Therefore 2

2π f (2) defines an integral cohomology class that
satisfies the usual spinc constraint,

2
2π

f (2) = w2 (mod 2) . (174)

Since f (2) flows to n∗(ω)(A(1)R ) after higgsing, we find the spinc-like constraint on the
pion fields in (105).
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3.) The presence of the linear improvement term ∼ i (ϕ −ϕ) in (163) leads to the tadpole
term ∼ x in the scalar potential (167). This term is responsible for the negative expec-
tation value of x in the Higgs vacuum (171). It follows from (166) that u is displaced
away from the monopole point, and towards the origin u = 0 of the Coulomb branch.
(More generally, we expect the scalar potential in Figure 1 to push us into the strong-
coupling region.) As was explained around (130), the fact that x < 0 (i.e. that u < Λ2)
implies that there is a dynamical θ -angle for the U(1) gauge field f (2) that takes the non-
trivial time-reversal invariant value θ = π. Using the identification (173), we see that
the CP1 model similarly acquires a θ -angle (100) with θ = π. We will further explore
the implications of this fact in section 5.3.5 below.

4.) The N = 2 SQED theory has an (accidental) superconformal U(1)X superconformal R-
symmetry that assigns the following charges to the various fields,

qX (ϕ) = 2 , qX

�

ρi
α

�

= 1 , qX

�

f (2)
�

= 0 , qX

�

hi

�

= 0 , qX

�

ψ±α
�

= −1 .
(175)

This symmetry suffers from an ABJ anomaly with the U(1) gauge field that breaks it
to its Z2 subgroup, which can be identified with fermion parity (−1)F . The classically
conserved U(1)X current j(1)X therefore satisfies the following non-conservation equation,

d ∗ j(1)X =
1

4π2 f (2) ∧ f (2) . (176)

We can locally express the right-hand side as d ∗ j(1)H , where j(1)H = 1
4π2 b(1) ∧ d b(2)

(here f (2) = d b(1)), but of course j(1)H is not gauge invariant. After higgsing, f (2) flows

to the CP1 Kähler form according to (173). In this case the charge QH =
∫

S3 ∗ j(1)H is
precisely the Hopf invariant of the map S3 → CP1 defined by the pion field. The fact
that j(1)H is not gauge invariant obstructs a satisfactory definition of QH on general 3-
manifolds. However, the Z2 ⊂ U(1)X subgroup is unbroken and identified with (−1)F .
We can therefore use (176) to conclude that QH (mod 2) is also meaningful and equal
to (−1)F . This is consistent with the discussion around (95), as well as in [56].

5.3.4 Chiral condensate

Even though the deformed N = 2 SQED theory we are discussing is not strictly speaking the
one that arises from the UV N = 2 SYM theory, we can nevertheless use supersymmetry to
motivate relations between UV and IR operators. (These relations would be exact if we studied
the SQED theory in the parameter regime dictated by the Seiberg-Witten solution.) Here we
will do this for the gaugino condensate and verify that it has the expected properties discussed
in section 3.

Recall from (76) that the gaugino condensate satisfies

Oi j = λαiAλ jA
α = −

1
2

QαiQ j
αu+ i

p
2φADi jA . (177)

If we are only interested in the expectation value of Oi j we can set the D-term to zero on-shell,
since it appears quadratically in (37). As was reviewed around (129), the chiral operator u
can be expressed as follows on the Coulomb branch,

u= 2πi
�

F(a)− 1
2

aaD

�

. (178)

If we act on this expression with the supercharges (see (B.20)) and use F ′(a) = aD, we can
obtain an exact expression for −1

2QαiQ j
αu that involves the functions a(u), aD(u) and τ(u).
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Using (128) to expand these functions near the monopole point u≈ Λ2+Λ(x+i y) (see (166)),
we find that

−
1
2

QαiQ j
αu=
�

−2
p

2Λ−
1

2
p

2
(x + i y)
�

Di j −
�

1
2
−

3
16Λ

(x + i y)
�

ραiρ j
α + · · · . (179)

Here the ellipsis denotes terms that are subleading at the monopole point and Di j is the aux-
iliary D-term of the N = 2 abelian vector multiplet in the SQED theory.

In the Higgs phase x , y , and ρi
α are massive and can be integrated out. This only leaves

the D-term. Integrating it out (see (B.18)) sets Di j = 2ie2h
(i

h j). Comparing with (177),
we find a non-vanishing gaugino condensate (recall from (171) that x is very close to the
monopole point and can therefore be neglected),

Oi j ≈ −2
p

2ΛDi j = −4
p

2Λie2h(ih j) ∼ M2Λ . (180)

Note that since the D-term is real, the the same is true for the chiral condensate Oi j , i.e. OI is
a real SO(3)R vector. This precisely matches our expectations from section 3.

5.3.5 A phase transition on the confining string

One virtue of embedding the CP1 phase into the deformed N = 2 SQED theory is that the
latter is UV complete. We can therefore use it to explore phenomena that are not captured by
the low-energy CP1 model analyzed in section 3. We will now use the SQED description to
exhibit the phase transition on the confining string discussed in section 3.5.

We begin by adding small fermion masses mi j in the UV, as in (74) and (78),

∆V =
1
2

mi jO
i j + (h.c.) , mi j = eiχ

�

α 0
0 β

�

, α,β ≥ 0 . (181)

If we use the identification (177) and continue to drop the UV D-term,71 the mass deformation
reduces to

∆V = −
1
4

mi j Q
αiQ j

αu+ (h.c.) . (182)

We can now use (179) to analyze the effect of this mass deformation on the SQED theory in
the IR. Working to linear order in the masses mi j and the field ϕ = 1

2(−y + i x), we can solve
for the D-term of the abelian vector multiplet,

Di j = 2ie2
�

h(ih j) + i
p

2Λ(mi j +mi j) +
1

2
p

2
(mi jϕ −mi jϕ)
�

. (183)

Using this D-term, we can recompute the scalar potential, which now takes the form

V =
e2

2

�

h
i
hi

�2
+

1
2

�

x2 + y2� h
i
hi +M2
�

1

4e2

�

x2 + y2�−
1
2

h
i
hi +

Λx

2π2

�

+ 4
p

2Λ e2 h
i
hi Re(mI)nI +

e2

p
2

h
i
hi

�

x Re(mI)− y Im(mI)
�

nI .

(184)

In this formula we have introduced the pion field nI , which satisfies nI nI = 1, to describe the
direction of the SO(3)R vector h(ih j). The components mI of the mass vector are related to the
parameters in (181) as follows (see appendix A),

m1 =
i
2

eiχ (α− β) , m2 = −
1
2

eiχ (α+ β) , m3 = 0 . (185)

71When added to the lagrangian, a term ∼ φADi jA gives rise to a mass term for the scalar φA. Since we assume
that M is sufficiently large to lift all the scalars in the UV, we can neglect this term.
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As in section 3.4, the term∼ Re(mI)nI in (184) gives the pion fields a mass. The additional
information we get from (184) is how the UV fermion masses affect the critical point (171)
that defines the CP1 phase. We will be particular interested in the expectation value of ϕ.

Let us choose the mass parameters so that the U(1)R ⊂ SU(2)R symmetry is preserved.
Recall from the discussion around (82) that this requires α = β in (185), so that m1 = 0
and m2 = −αeiχ . Working to O(α) in the mass parameters, we find that the critical point
in (171) is perturbed as follows,

h
i
hi =

M2

2e2 + 4
p

2α| cosχ| , x = −
Λe2

2π2 +
αe2

2
p

2
| cosχ| , y = −

αe2

2
p

2
sinχ . (186)

Here the absolute value on the cosine arises because we must take into account the correct
minimum n2 = ±1 for the pion fields. If the phase χ is generic, then y acquires an expectation
value, so that time-reversal symmetry is broken. However, when χ = 0 or χ = π, we find
that y = 0 so that the time-reversal symmetry eT= r2T is preserved.

As was discussed in section 3.5, the unbroken symmetries U(1)R and eT protect the topo-
logical insulator on the worldsheet of the confining string. Since the strings of pure YM theory
with θ = 0 (which is reached when the mass parameter α is large) are expected to be trivial,
we were led to expect a phase transition on the string worldsheet at some critical value α= α∗
of the mass deformation.

We can now test this picture using the SQED description. As the fermion mass α is in-
creased, it follows from (186) that x (which starts out to the left of the monopole point) starts
moving to the right (i.e. toward the monopole point). If we naively extrapolate the formu-
las (186), we find that at the critical value α∗ ∼ Λ the minimum reaches the monopole point
and continues towards x > 0.

At the critical value α= α∗ of the mass parameter, there is a phase transition on the world-
sheet of the confining string that involves a single massless two-dimensional Dirac fermion.
To see this, note that when x = y = 0, the only mass term for the charged fermions ψ±α of
the SQED theory arises from the Yukawa couplings (172). (When ϕ = 1

2(−y + i x) is nonzero,
there is another mass term ∼ ϕψ+ψ− + (h.c.), see (B.18).) Although the Yukawa couplings
keep all fermions massive in the four-dimensional bulk, there can be fermion zero modes on
the ANO strings of the SQED theory in the Higgs phase. As was shown in [99, 100], the
charged fermionsψ±α give rise to chiral zero modes on the string worldsheet. Since the chiral
is correlated with the electric charge of the fermions, we find both a left-moving and a right-
moving chiral fermion in two dimensions. Together, they assemble into a single massless Dirac
fermion.

This massless Dirac fermion on the string worldsheet is exactly what is needed to describe
the transition between a two-dimensional topological insulator protected by U(1)R and eT, and
a trivial gapped phase. For α < α∗ the string worldsheet Σ2 supports a topological insulator
characterized by the background-field action

exp

�

iπ

∫

Σ2

G(2)R

2π

�

. (187)

Here G(2)R is the field strength of the background spinc gauge field for the U(1)R symmetry.
Since the Higgs field hi is charged under both U(1)R ⊂ SU(2)R and the U(1) gauge symmetry,
the unbroken U(1)R symmetry after higgsing mixes with the gauge symmetry. Therefore the
fermions ψ±α acquire U(1)R charges ±1 after higgsing, and hence the same is true of the
two-dimensional Dirac fermion on the string worldsheet that becomes massless when α= α∗.
Thus, dialing the mass of this Dirac fermion through zero causes the U(1)R background θ -
angle (187) to jump from θ = π to θ = 0, so that the topological insulator gives way to a
trivial gapped phase. This entire process takes place while the bulk theory remains gapped.
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A Conventions

In lorentzian signature, we follow the conventions of [1] for two-component spinor indices. In
this appendix we adapt these conventions to SU(2)R doublet indices. (The resulting conven-
tions are similar to those used for euclidean spacetime spinors in [101].) We consider SU(2)R
doublets v i , wi (i = 1, 2) with raised and lowered indices. Their SU(2)R transformations are
such that v iwi is invariant. Hermitian conjugation exchanges raised and lowered indices,

�

v i�† = v i ,
�

wi

�†
= wi . (A.1)

SU(2)R doublet indices can be raised and lowered from the left using the antisymmetric sym-
bols ϵi j ,ϵi j , which are normalized as follows,

ϵ12 = −ϵ12 = 1 . (A.2)

Raising and lowering indices on both sides of the equations in (A.1) leads to a sign,
�

vi

�†
= −v i ,
�

wi�† = −wi . (A.3)

A symmetric SU(2)R tensor V i j = V (i j) transforms as a triplet. It is sometimes useful to
convert V (i j) to an SO(3)R vector V I (I = 1,2, 3). For this we use the SU(2)R Pauli matrices τI ,
which we define with the following index structure,

�

τ1�

i
j
=

�

0 1
1 0

�

,
�

τ2�

i
j
=

�

0 −i
i 0

�

,
�

τ3�

i
j
=

�

1 0
0 −1

�

. (A.4)

Since all τI are traceless, (τI)i
i
= 0, it follows that τI i j = τI(i j) and τI

i j = τ
I
(i j) are symmetric.

We can therefore use them to convert between the symmetric tensor V i j and the vector V I ,

Vi j = iτI
i jVI , V I =

i
2
τI

i jV
i j . (A.5)

Explicitly,
τI

i j =
�

−τ3, i1,τ1� , τI i j =
�

τ3, i1,−τ1� , (A.6)

so that (A.5) gives,

V 1 = −
i
2

�

V 11 − V 22� , V 2 = −
1
2

�

V 11 + V 22� , V 3 = iV 12 . (A.7)

From (A.6) we also see that
�

iτI
i j

�∗
= iτI i j . (A.8)

Therefore
�

Vi j

�†
= iτI i j �VI

�†
, so that VI is real if and only if

�

Vi j

�†
= V i j .
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B Review of N = 2 supersymmetry

The N = 2 supercharges and their hermitian conjugates are given by

Qi
α , Qα̇i =
�

Qi
α

�†
, i = 1, 2 . (B.1)

The N = 2 supersymmetry algebra takes the following form,
�

Qi
α,Qα̇ j

	

= 2δi
jσ
µ
αα̇Pµ ,
�

Qi
α,Q j

β

	

= 2ϵαβϵ
i j Z . (B.2)

Here Z is the complex central charge and Z = Z† is its hermitian conjugate. The algebra
admits the following R-automorphism,

SU(2)R ×U(1)r
Z2

. (B.3)

Here the Z2 quotient identifies the central element −1 ∈ SU(2)R with −1 ∈ U(1)r. The super-
charges Qi

α are SU(2)R doublets, while the central charge Z is SU(2)R invariant. Under U(1)r,
the supercharges Qi

α carry charge −1, while Z has charge 2.
We can embed an N = 1 supersymmetry algebra into (B.2) by choosing Qα = Q1

α to be
the N = 1 supercharge, with hermitian conjugate Qα̇ =Qα̇1. When we discuss representations
of (B.2) on fields or local operators O, we take the supercharges to act from the left via nested
graded (anti-) commutators, while PµO = i∂µO.

B.1 SU(2) supersymmetric Yang-Mills theory

Pure N = 2 supersymmetric Yang-Mills (SYM) theory with gauge group SU(2) is based on a
single, nonabelian N = 2 vector multiplet VA

N=2, which transforms in the adjoint representa-
tion of the SU(2) gauge group,

VA
N=2 =
�

vA
µ , φA , λiA

α , Di jA � , Di jA = D(i j)A =
�

DA
i j

�†
. (B.4)

Under the N = 1 supersymmetry algebra generated by Qα =Q1
α, it decomposes into an N = 1

SU(2) vector multiplet VA, and an N = 1 chiral multiplet ΦA in the adjoint representation
of SU(2),

VA =
�

vA
µ , λA

α = iλ2A
α , DA = iD12A− iϵABCφ

B
φC
�

,

ΦA =
�

φA , λ1A
α , FA =

i
p

2
D11A
�

.
(B.5)

Here λA
α is the N = 1 gaugino, and DA is the corresponding N = 1 D-term (note the shift

relative to the N = 2 D-term). We also define the quantities V = VAtA and Φ = ΦAtA,
where tA = 1

2σ
A are the conventionally normalized, hermitian SU(2) generators in (A.4),

�

tA, tB�= iϵABC tC , tr
�

tAtB�=
1
2
δAB . (B.6)

We denote the nonabelian N = 1 field strength superfield corresponding to V by Wα.
In N = 1 superspace, the N = 2 SYM theory is defined by the following lagrangian,

L =
1

g2

∫

d4θ Φe−2VΦ+
1

2g2

∫

d2θ tr
�

WαWα

�

+ (h.c.) . (B.7)
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Using formulas in [1], this can be expanded in terms of the component fields in (B.4),

L =
1

g2

�

−
1
4

vA
µνvAµν +

1
4

Di jADA
i j − Dµφ

A
Dµφ

A− iλ
A
i σ
µDµλ

iA

−
1
2

�

iϵABCφ
B
φC
�2
+

i
p

2
ϵABCφ

A
λiBλC

i +
i
p

2
ϵABCφ

Aλ
B
i λ

iC
�

.
(B.8)

The SU(2) field strength vA
µν is given by

vA
µν = ∂µvA

ν − ∂νvA
µ + ϵABC vB

µ vC
ν , (B.9)

while the covariant derivatives in (B.8) are given by

Dµφ
A = ∂µφ

A+ ϵABC vB
µφ

C , Dµλ
iA
α = ∂µλ

iA
α + ϵABC vB

µλ
iC
α . (B.10)

The N = 1 supersymmetry transformation rules for the multiplets in (B.5) can be found
in [1]. If we covariantize then with respect to the SU(2)R symmetry, we obtain the full N = 2
supersymmetry transformations of the vector multiplet (B.4),

Qi
αφ

A = i
p

2λiA
α , Q

i
α̇φ

A = 0 ,

Qi
αλ

jA
β
= −ϵi j �σµν
�

αβ
vA
µν + ϵαβ
�

Di jA− ϵi jϵABCφ
B
φC
�

, Q
i
α̇λ

jA
α = ϵ

i jp2σµαα̇Dµφ
A ,

Qi
αvA
µ = iσµαα̇λ

α̇iA
, Q

i
α̇vA
µ = −iσµαα̇λ

αiA ,

Qi
αD jkA = i
�

ϵi jσ
µ
αα̇Dµλ

α̇kA
+ ϵikσ

µ
αα̇Dµλ

α̇ jA
�

+ i
p

2ϵABCφ
B �
ϵi jλkC

α + ϵ
ikλ jC

α

�

,

Q
i
α̇D jkA = −i
�

ϵi jσ
µ
αα̇Dµλ

αkA+ ϵikσ
µ
αα̇Dµλ

α jA�+ i
p

2ϵABCφ
B
�

ϵi jλ
kC
α̇ + ϵ

ikλ
jC
α̇

�

.

(B.11)

These transformations obey the supersymmetry algebra (B.2) (with Z = 0) off shell, and
modulo gauge transformations (since we have fixed Wess-Zumino gauge).

B.2 Supersymmetric QED

At the monopole point u = Λ2, the low-energy dynamics is described by massless N = 2
supersymmetric QED (SQED). This theory involves two different N = 2 multiplets:

• A U(1) vector multiplet VN=2, which takes the same form as in (B.4),

VN=2 =
�

ϕ , ρi
α , f (2) = d b(1) , Di j � , Di j = D(i j) =

�

Di j

�†
. (B.12)

Its decomposition under the N = 1 supersymmetry algebra generated by Qα = Q1
α con-

sists of an N = 1 vector multiplet V , with field strength Wα, as well as an N = 1 chiral
multiplet Φ,

V =
�

b(1) , λα = iρ2
α , D = iD12 � , Φ=

�

ϕ , ρ1
α , Fϕ =

i
p

2
D11
�

. (B.13)

Here λα is the N = 1 gaugino, while D and Fϕ are N = 1 auxiliary fields.

• An N = 2 hypermultiplet Hi of U(1) charge +1, and its hermitian conjugate Hi
of U(1)

charge −1,

Hi =
�

hi ,ψ+α , ψ−α̇
�

, Hi
=
�

h
i
, ψ+α̇ , ψ−α
�

. (B.14)
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Note that, unlike the supercharges Qi
α or the gauginos ρi

α, we define hi with lower
indices, so that hermitian conjugation acts as follows,

h
i
=
�

hi

�†
, hi = −
�

hi�† . (B.15)

The hypermultiplet decomposes into two N = 1 chiral multiplets H± of U(1) charge ±1,

H+ =
�

h1 , ψ+ , F+
�

, H− =
�

h
2

, ψ− , F−
�

. (B.16)

Here F± are N = 1 auxiliary fields.

In N = 1 superspace, the lagrangian of N = 2 SQED takes the following form,

L =
∫

d4θ

�

1

e2ΦΦ+H+e−2VH+ +H−e2VH−
�

+

∫

d2θ

�

1

4e2 WαWα +
p

2ΦH+H−
�

+ (h.c.) . (B.17)

Using formulas in [1], as well as (B.13) and (B.16), and integrating out the auxiliary fields F±
(which have no simple uplift toN = 2), but not D, Fϕ (which assemble into theN = 2 auxiliary

field Di j), we find that (B.17) gives rise to the following component lagrangian,

L =
1

e2

�

−∂ µϕ∂µϕ − iρiσ
µ∂µρ

i −
1
4

f µν fµν +
1
4

Di j Di j

�

−
�

∂ µ + i bµ
�

h
i �
∂µ − i bµ
�

hi − iψ+σ
µ
�

∂µ − i bµ
�

ψ+ − iψ−σ
µ
�

∂µ + i bµ
�

ψ−

− iDi jhih j − 2|ϕ|2h
i
hi −
p

2
�

ϕψ+ψ− +ϕψ+ψ−
�

+
p

2
�

hiρ
iψ+ − hiρ

iψ− − hiρiψ+ − h
i
ρiψ−

�

.

(B.18)

Note that the Yukawa couplings in the last line are real, because hi satisfies (B.15). If we
integrate out the auxiliary field Di j = 2ie2h(ih j), we find the following scalar potential,

V =
e2

2

�

h
i
hi

�2
+ 2|ϕ|2h

i
hi . (B.19)

The supersymmetry transformations of the N = 1 multiplets in (B.13) and (B.16) can
be found in [1]. By covariantizing these formulas with respect to SU(2)R, we deduce the
full N = 2 supersymmetry transformations. For the abelian vector multiplet VN=2 in (B.12),
they can be obtained from the nonabelian transformation rules (B.11) by restricting to
a U(1) ⊂ SU(2) subalgebra,

Qi
αϕ = i

p
2ρi

α , Q
i
α̇ϕ = 0 ,

Qi
αρ

j
β
= ϵαβDi j − ϵi j �σµν

�

αβ
fµν , Q

i
α̇ρ

j
α = ϵ

i jp2σµαα̇∂µϕ ,

Qi
αD jk = i
�

ϵi jσ
µ
αα̇∂µρ

α̇k + ϵikσ
µ
αα̇∂µρ

α̇ j� , Q
i
α̇D jk = −i
�

ϵi jσ
µ
αα̇∂µρ

αk + ϵikσ
µ
αα̇∂µρ

α j� ,

Qi
α fµν = −i
�

σµαα̇∂νρ
α̇i −σναα̇∂µρ

α̇i� , Q
i
α̇ fµν = i
�

σµαα̇∂νρ
αi −σναα̇∂µρ

αi� .
(B.20)

The N = 2 supersymmetry transformations of the hypermultiplet (B.14) are

Qi
αh j = −i

p
2ϵi jψ+α , Q

i
α̇h j = i

p
2ϵi jψ−α̇ ,

Qi
αh

j
= i
p

2ϵi jψ−α , Q
i
α̇h

j
= i
p

2ϵi jψ+α̇ ,

Qi
αψ+β = 2iϵαβϕhi , Q

i
α̇ψ+α =

p
2σµαα̇
�

∂µ − i bµ
�

hi ,

Qi
αψ−β = 2iϵαβϕh

i
, Q

i
α̇ψ−α = −

p
2σµαα̇
�

∂µ + i bµ
�

h
i
.

(B.21)
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These transformations only close on-shell, because we have integrated out the N = 1 auxiliary
fields F±, as well as modulo gauge transformations, because we are working in Wess-Zumino
gauge. The latter fact is also responsible for the covariant derivatives in (B.21).
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