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Abstract

We investigate a large class of N = (2, 2) supersymmetric field theories in two dimen-
sions, which contains the Murugan-Stanford-Witten model, and can be naturally re-
garded as a disordered generalization of the two-dimensional Landau-Ginzburg mod-
els. We analyze the two and four-point functions of chiral superfields, and extract from
them the central charge, the operator spectrum, and the chaos exponent in these mod-
els. Some of the models exhibit a conformal manifold parameterized by the variances of
the random couplings. We compute the Zamolodchikov metrics on the conformal man-
ifold, and demonstrate that the chaos exponent varies nontrivally along the conformal
manifolds. Finally, we introduce and perform some preliminary analysis of a disordered
generalization of the gauged linear sigma models, and discuss the low energy theories
as ensemble averages of Calabi-Yau sigma models over complex structure moduli space.

Copyright C.-M. Chang and X. Shen.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

14-10-2023
30-04-2024
30-05-2024

Check for
updates

doi:10.21468/SciPostPhys.16.5.140

Contents

1 Introduction 2

2 Disordered Landau-Ginzburg models 3
2.1 The models 3
2.2 A classification 6
2.3 Review of the Murugan-Stanford-Witten (MSW) model 8
2.4 Models with two disordered chiral superfields 10

2.4.1 I2,q type 14
2.4.2 I3,3 type 15
2.4.3 I4,3 type 16
2.4.4 II3,4 type 18

2.5 Two-sphere partition function and two-point functions 19

3 Disordered gauged linear sigma models 24

1

https://scipost.org
https://scipost.org/SciPostPhys.16.5.140
mailto:cmchang@tsinghua.edu.cn
mailto:xiaoyangshum@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.16.5.140&amp;domain=pdf&amp;date_stamp=2024-05-30
https://doi.org/10.21468/SciPostPhys.16.5.140


SciPost Phys. 16, 140 (2024)

4 Summary and discussion 27

A N = (2, 2) superspace 28

B Two dimensional superconformal partial wave 29

C Two dimensional central charge 32

References 33

1 Introduction

Disordered couplings have provided us a large class of large N solvable models, and brought
many new insights into the dynamics of black holes in quantum gravity. The classic example
is the Sachdev-Ye-Kitaev (SYK) model [1,2], which is a quantum mechanical system of N Ma-
jorana fermions interacting with random multi-fermion couplings. Using large N techniques,
the correlation functions of the fermions in the SYK model can be explicitly solved [3–5]. For
instance, the two-point function can be solved by summing over the melonic diagrams using
the Schwinger-Dyson equation, and the four-point function is solved by summing over the lad-
der diagrams. Interesting physical observables are then extracted from these exact solutions,
such as the spectrum of two-particle states and the chaos exponent from the Euclidean and the
out-of-time order four-point correlation functions, respectively. They reveal many remarkable
properties of the SYK model.

At low temperatures, the SYK model exhibits an emergent time reparameterization symme-
try, which is weakly broken by finite temperature leading to a Goldstone mode, the Schwarzian
sector [4,6]. Despite the low energy spectrum of the SYK model is not sparse, the Schwarzian
sector dominates over the rest of the states. Consequently, the holographic dual at low ener-
gies is governed by a two-dimensional dilaton gravity, the Jackiw Teitelboim (JT) gravity [6–8].
The SYK model further displays maximal chaos, as the chaos exponent saturates the bound on
chaos [9], which is a notable feature that shares with black holes in Einstein gravity [10].

Over the years, the SYK model has been generalized to include complex fermions [11–13],
additional flavor symmetry [14], and supersymmetry [15–20]. Going beyond 0+1 dimensions,
the two and three-dimensional generalizations of the SYK have been studied with various num-
bers of supersymmetries [21–27]. In higher dimensions, one has to consider nontrivial renor-
malization group (RG) flows, which introduce additional complications. On the one hand, the
couplings involving only fermions are (marginally) irrelevant in two dimensions and above.
On the other hand, the bosonic models typically require fine-tunings of the relevant couplings
to reach the conformal fixed point in the infrared (IR), which becomes subtle when the cou-
plings are random variables. Nevertheless, with N = 2 supersymmetry in two dimensions, the
Murugan-Stanford-Witten (MSW) model, introduced in [21], overcomes both problems and
admits a superconformal fixed point.

In this paper, we study generalizations of the MSW model by introducing multiple families
of disordered chiral superfields. The models are solvable in the large N limit, defined as
the numbers of the chiral superfields in each family becoming large while the ratios between
the numbers remain finite. They can also be viewed as the disordered generalization of the
N = 2 Landau-Ginzburg models in two dimensions, and follow a similar classification [28–30]
(see Section 2.2).1 The MSW model is the simplest model in the classification with only one

1A closely related tensor model generalization of the N = 2 Landau-Ginzburg models was studied in [31].
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family of chiral superfields. An important new feature of the more general disordered Landau-
Ginzburg models is that when there are two or more families of chiral superfields, the models
could admit nontrivial conformal manifolds in the IR parametrizing by the variances of the
random couplings. We investigate several examples in the classification with two families of
chiral superfields, including one with an IR conformal manifold (see Section 2.4). In particular,
we compute the two and four-point functions of the chiral superfields in these models in the
large N limit by summing over the melonic and ladder diagrams, and we extract the chaos
exponents from the four-point functions. In general, the chaos exponent λL depends on the
ratio of the numbers of chiral superfields in each family, as well as the coordinates of the
conformal manifold (when the manifold exists). We find an upper bound λL ≲ 0.5824 across
all the examples we studied. We propose that this is a universal upper bound for the chaos
exponents in the disordered Landau-Ginzburg models.

Besides large N techniques, the disordered Landau-Ginzburg models can also be studied by
supersymmetric localization. Following the analysis of the non-disordered models in [32–34],
we compute the two-sphere partition functions and the two-point functions of the disordered
models (see Section 2.5). In the large N limit, the results of the two-point function coeffi-
cients agree nicely with those computed before from summing Feynman diagrams. This pro-
vides extra evidence that the disordered Landau-Ginzburg models flow to superconformal fixed
points in the IR. Furthermore, in the example with an IR conformal manifold, we compute the
Zomoldchikov metric by taking derivatives of the two-sphere partition function.

Another new feature when there are multiple families of chiral superfields is that the super-
potential could be engineered such that the theory possesses nontrivial flavor U(1) symmetries.
Such a superpotential always has flat directions, and the IR theory is non-compact. One could
make the theory compact by gauging the U(1) flavor symmetries, where the D-terms potential
lifts all the flat directions. The resulting theory is a disordered generalization of the gauged
linear sigma models. In the seminal work [35], it was shown that the (non-disordered) gauged
linear sigma models, with an anomalous-free axial R-symmetry and a positive Fayet-Iliopoulos
coupling, are in the same universality class as the nonlinear sigma models on Calabi-Yau tar-
get spaces, i.e. they flow to the same N = (2,2) superconformal field theories. This result
implies that the disordered gauged linear sigma models, with the same conditions as above,
are IR-dual to the ensemble averages of the Calabi-Yau sigma models over the complex struc-
ture moduli (see Section 3). To support this, we compute the two-point functions of the chiral
superfields and the result confirms that the theories flow to IR superconformal fixed points.

The remainder of this paper is organized as follows. Section 2.2 introduces the disor-
dered Landau-Ginzburg models and presents a classification of the models. Section 2.3 re-
views the Murugan-Stanford-Witten model. Section 2.4 studies examples of the disordered
Landau-Ginzburg models with two families of chiral superfields, computing the two and four-
point functions and analyzing the chaos exponents. Section 2.5 applies the supersymmetric
localization to the disordered Landau-Ginzburg models, and computes the two-sphere parti-
tion functions, two-point functions, and the Zamolodchikov metric for several examples. Sec-
tion 3 introduces the disordered gauged linear sigma models, discusses their relations to the
ensemble averages of Calabi-Yau sigma models, and performs some preliminary analysis.

2 Disordered Landau-Ginzburg models

2.1 The models

Let us consider a disordered N = 2 Ginzburg-Landau model with n different families of chiral
superfields: Φ(1)i for i = 1, · · · , N1, Φ(2)i for i = 1, · · · , N2, and so on. The chiral superfields
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have a standard kinetic term

Lkin =

∫

d2θd2θ̃
�

eΦ(1),iΦ
(1)
i + eΦ

(2),iΦ
(2)
i + · · ·+ eΦ

(n),iΦ
(n)
i

�

, (1)

and are coupled via an interaction term

LW = i

∫

d2θW
�

Φ
(1)
i , · · · ,Φ(n)i

�

�

�

�

θ̃= ¯̃θ=0
+ h.c. (2)

Our conventions of the superspace are given in Appendix A. The disordered superpotential W
contains terms with random couplings, with the general form as

W =
∑

p≡(p1,··· ,pn)∈I
g I1···In

p

�

Φ
(1)
I1

�p1 · · ·
�

Φ
(n)
In

�pn
, (3)

where I is an index set that controls which terms would appear in the superpotential, the
index Ip is a collection of pa indices, Ia = (i1, · · · , ipa

), and (Φ(a)Ia
)pa stands for

�

Φ
(a)
I

�p
≡ Φ(a)i1

· · ·Φ(a)ip
. (4)

The coupling constants g I1···In
p are independent Gaussian random variables with zero mean and

variance as

¬

g I1···In
p

¶

= 0 ,
¬

g I1···In
p gp,I ′1···I ′n

¶

=
J2

p

N p1+···+pn−1
δ

I1

I ′1
· · ·δIn

I ′n
, δI

I ′ ≡ δ
(i1
i′1
· · ·δip)

i′p
, (5)

where N = N1+ · · ·+Nn, We are interested in the limit Ni →∞ while fixing Jp and the ratios

λi =
Ni

N
. (6)

The superspace coordinates θ+ and θ− have charges (1,0) and (0, 1) under U(1)L×U(1)R
R-symmetry, and the coordinates θ̄± have the opposite charges. For the interaction terms
to preserve the U(1)L × U(1)R symmetry, the superpotential has to be a quasi-homogeneous
polynomial, and we further demand that the chiral superfields in the same family scale by the
same weight, i.e.

W
�

λq1Φ
(1)
i , · · · ,λqnΦ

(n)
i

�

= λW
�

Φ
(1)
i , · · · ,Φ(n)i

�

, for λ ∈ C∗ . (7)

Under the renormalization group, the theory flows to a strongly coupled N = (2, 2) SCFT.
The U(1)L ×U(1)R R-symmetry becomes the part of the superconformal algebra. The bottom
component of the chiral superfields Φ(a) become chiral primary operators of R-charges (qa, qa).
By the quasi-homogeneity condition, the powers pa in (3) and the R-charges qa satisfy

n
∑

a=1

paqa = 1 . (8)

For a given (p1, · · · , pn), we focus on the cases that the couplings g I1,··· ,In
p are generic, since

generic couplings give dominant contributions to the ensemble average over the coupling con-
stants.
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IR conformal manifold and field redefinitionss In the non-disordered models, the coeffi-
cients in the superpotential modulo (quasi-homogeneous) field redefinitions of the chiral su-
perfields correspond to exactly marginal deformations of the IR SCFTs. In disordered models,
the coefficients in the superpotential are random couplings and should be averaged over, but
we could still vary the variances Jp in (5). Some of the variances could be fixed again by field
redefinitions (of bilocal superfields), and the remaining variances give marginal deformations
and parameterize the IR conformal manifold of the disordered models.

To see more precisely how field redefinitions fix the variances, let us integrate out the
random couplings g I1···In

p ’s and arrive at the action of the bilocal superfields G(a)(eZ1, Z2) and
Σ(a)(eZ1, Z2),

S =
∑

a

Na log det
�

θ12
¯̃θ12δ(〈12〉)δ(




1̄2̄
�

)D2D2 +Σ
(a)(eZ1, Z2)

�

+ N
∑

a

Tr
�

Σ(a) · G(a)
�

− N

∫

d2|2
eZ1d2|2Z2

∑

p≡(p1,··· ,pn)∈I
J2

p G(1)(eZ1, Z2)
p1 · · ·G(n)(eZ1, Z2)

pn ,
(9)

where Z = (y, ȳ ,θ , θ̄ ), eZ = ( ỹ , ¯̃y, θ̃ , ¯̃θ ). The super-derivatives D, D are defined in A.2, and
the super-distances 〈12〉 and




1̄2̄
�

are defined in (A.9). We have used the matrix notation for
the second term on the first line of (9) as

Tr
�

Σ(a) · G(a)
�

=

∫

d2|2
eZ1d2|2Z2Σ

(a)(eZ1, Z2)G
(a)(eZ1, Z2) . (10)

In the low energy limit E≪ Jp, we can drop the derivative term D2D2 in (9).
Now, we follow the arguments in [36,37] (with suitable generalizations to bilocal actions)

to show that one could use field redefinitions to simplify the action (9). Consider the field
redefinition of the bilocal field G(a) as

G(a)(eZ1, Z2)→ G(a)
′
(eZ1, Z2) = F (a)

�

G(1)(eZ1, Z2), · · · , G(n)(eZ1, Z2)
�

, (11)

where F (a) is a quasi-homogeneous polynomial that has the same homogeneous degree as
G(a), i.e.

F (a)
�

λq1 G(1)(eZ1, Z2), · · · ,λqn G(n)(eZ1, Z2)
�

= λqa F (a)
�

G(1)(eZ1, Z2), · · · , G(n)(eZ1, Z2)
�

. (12)

Under the field redefinition (11), the path integral measure DG(a) becomes

DG(a)→ DG(a)
′
= |det(δF/δG)|DG(a) . (13)

The Jacobian |det(δF/δG)| is a constant and can be ignored because δF/δG could be
arranged to a block upper triangular matrix with constant diagonal blocks by the quasi-
homogeneous condition (12).

Next, we consider the field redefinition of Σ(a) as

Σ(a)→ Σ(a)
′
= Σ(a) · G(a) · (F (a))−1 , (14)

where “·” is the matrix product that stands for integrating over Z or eZ as in (10), and (F (a))−1

is the matrix inverse of F (a). Under the field redefinition (14), the path integration measure
DΣ(a) changes to

DΣ(a)→ DΣ(a)
′
=
�

�det
�

G(a) · (F (a))−1
��

�

V
DΣ(a) , (15)
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where V is the rank of the bilocal superfield Σ(a) regarded as a matrix.2 In summary, we arrive
at the action

S =
∑

a

Na log det
�

Σ(a)
�

+ N
∑

a

Tr
�

Σ(a) · G(a)
�

− N

∫

d2|2
eZ1d2|2Z2

∑

p≡(p1,··· ,pn)∈I
J2

p F (1)(eZ1, Z2)
p1 · · · F (n)(eZ1, Z2)

pn

−
∑

a

(Na − V ) logdet
�

F (a) · (G(a))−1
�

.

(16)

The last term in (16) can be written as a ghost action

Sgh =
∑

a

(Na − V )

∫

d2|2
eZ1d2|2Z2 eC(eZ1)

�

F (a) · (G(a))−1
�

(eZ1, Z2)C(Z2) , (17)

where eC and C are the anti-chiral and chiral ghost superfields, respectively. Because F (a) is a
quasi-homogeneous polynomial with the same degree as G(a), it should take the form as

F (a)
�

G(1), · · · , G(n)
�

= κG(a) +H(a)
�

G(1), · · · ,���G(a), · · · , G(n)
�

, (18)

where H(a) is a quasi-homogeneous polynomial that does not depend on G(a). We have

�

F (a) · (G(a))−1
�

(eZ1, Z2) = κθ12
¯̃θ12δ(〈12〉)δ(




1̄2̄
�

) +
�

H(a) · (G(a))−1
�

(eZ1, Z2) . (19)

Substituting (19) into the ghost action (17), the first term in (19) gives a mass term for the
ghost fields C and eC . Hence, in the IR limit, we can integrate out the ghost fields C and eC ,
equivalent to deleting the last term in (16). Because F (a)’s are quasi-homogeneous, the second
line of (16) can be rewritten as

−N

∫

d2|2
eZ1d2|2Z2

∑

p≡(p1,··· ,pn)∈I
J ′2p G(1)(eZ1, Z2)

p1 · · ·G(n)(eZ1, Z2)
pn , (20)

which takes the same form as the second line of (9), but with new coefficients J ′2p which

are linear combinations of the old coefficients J2
p . Hence, the field redefinition (11) gives us

equivalence relations between variances

J ′2p ∼ J2
p , (21)

which can be used to fix (some of) the variances J2
p .

2.2 A classification

We presently discuss the constraints and classifications of the disordered superpotential W .
In this discussion, we could treat a family of superfields {Φ(a)i | i = 1, · · · , Na} as a single
superfield Φ(a), and treat the superpotential W as a function of the variables Φ(1), · · · ,Φ(n).
The classification problem now reduces to the problem of classifying non-disordered Ginzburg-
Landau theories (Ni = 1 for all i = 1, · · · , n) [28–30]. We briefly review the classification
in [30].

We impose the following two constraints on the superpotentials.

2More precise definition of V can be found in [38].
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1. The IR SCFT has a unique normalizable vacuum. This implies that the superpotential
W (Φ(i)) is compact, i.e. the equations

∂Φ(1)W = · · ·= ∂Φ(n)W = 0 , (22)

has a unique solution
Φ(1) = · · ·= Φ(n) = 0 . (23)

2. The theory is indecomposable, which implies that the superpotential cannot be written
as a sum of two terms involving different variables, i.e. for example

W
�

Φ(1), · · · ,Φ(n)
�

=W1

�

Φ(1), · · · ,Φ(k)
�

+W2

�

Φ(k+1), · · · ,Φ(n)
�

. (24)

Since we will focus on the IR SCFT, two different superpotentials, which define different UV
theories, are regarded as IR-equivalent if the theories flow to the same IR SCFT. In particular,
this implies the following two IR-equivalence relations between superpotentials.

1. If two superpotentials are related by a field redefinition compatible with quasi-
homogeneity, then they are IR-equivalent.

2. If a superpotential W has a variable Φ(a), which appears only linearly or quadratically,
then W is IR-equivalent to a superpotential given by substituting equations of motion
∂Φ(a)W = 0 into W .

In [30], the authors found all the possible R-charge assignments to the superfields Φ(1),
· · · , Φ(n) up to n = 5, which give superpotentials that satisfy the above two constraints and
two equivalence relations. We will focus on the cases of n= 1 and 2.

For n= 1, the possible R-charges are

q1 =
1
q

, for q ∈ Z≥3 . (25)

The superpotential is
W (Φi) = g i1···iqΦi1 · · ·Φiq , (26)

where we have suppressed the superscript. This model has been studied in [21, 22], and we
refer to it as the Murugan-Stanford-Witten (MSW) model. The MSW model with a specified q
would be referred to as the MSWq model. Some analysis of the MSW model will be reviewed
in Section 2.3. For the non-disordered model (N = 1), this superpotential was referred as the
Aq−1 superpotential in [28].

For n= 2, the possible R-charges are

Ik,l : (q1, q2) =
�

l − 1
kl

,
1
l

�

, for (k, l) ∈ Z≥2 ×Z≥3 , (27)

and

IIk,l : (q1, q2) =
�

l − 1
kl − 1

,
k− 1
kl − 1

�

, for (k, l) ∈ Z≥2 ×Z≥2 . (28)

We will refer to them as type Ik,l and type IIk,l models. These two classes of models are
overlapped, and we have the identifications

Ik,l = IIk,l+ 1−l
k

. (29)

Given the R-charges of the chiral superfields, we consider the most general quasi-homogeneous
superpotentials up to field redefinitions. Such superpotentials would satisfy the compactness
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and indecomposable conditions. If we specialize the superpotential by turning off some of the
coefficients, then the superpotential might not satisfy the compactness and indecomposable
conditions.

In Section 2.4, we will study and give detailed analyses of the models

I2,q , I3,3 , I4,3 , II3,4 . (30)

For the non-disordered theories (N1 = N2 = 1), the type I2,q, I3,3, and I4,3 superpotentials were
referred as the Dl+1, E7, and J10 superpotentials, respectively, in [28]. The superpotentials of
I2,l , I3,3 and II3,4 do not have any exactly marginal deformations. The models I3,4 has one-
dimensional conformal manifolds. We will inspect how physical quantities (especially the
chaos exponent) vary along the conformal manifolds.

2.3 Review of the Murugan-Stanford-Witten (MSW) model

The models with only one type of disordered chiral superfields and Aq−1 superpotential (26)
were studied in [21, 22]. Let us give a brief review following [22] of the computation of the
two and four-point functions of the chiral superfields Φi , the operator spectrum in the Φi ×Φ j
OPE, and the chaos exponent of the model.

We start with the two-point function



eΦi(eZ1)Φ j(Z2)
�

= δi
jG(〈12〉) , (31)

which is a function of the super-distances 〈12〉 and



1̄2̄
�

given in (A.9). The coordinates Z , eZ

are Z = (y, ȳ ,θ , θ̄ ), eZ = ( ỹ , ¯̃y, θ̃ , ¯̃θ ). In the leading order of the large N limit, the propagators
can be computed by summing over the melonic diagrams and satisfy the Schwinger-Dyson
equations

D3D3G(〈13〉) + qJ2

∫

d2 y2d2θ2 G(〈12〉)G(〈32〉)p−1 = θ̃13
¯̃θ13δ(〈13〉)δ

�


1̄3̄
��

. (32)

In the low energy (conformal) limit E ≪ J , we can drop the first term of the equation, and
solve the equations by considering the conformal Ansatz

G(〈12〉) =
b

|〈12〉|2∆Φ
. (33)

Casting the Ansatz into Dyson-Schwinger equation, one can determine the scaling dimension
and the coefficient:

∆Φ =
1
q

, bqJ2 =
1

4π2q
. (34)

In Section 2.5, we compute the same two-point function using supersymmetric localization,
and find agreement with (33) and (34).

Next, we turn to the four-point function. We focus on the average four-point function
which has a large N expansion as

1
N2

N
∑

i, j=1




eΦi(eZ1)Φi(Z2)Φ j(Z3)eΦ
j(eZ4)

�

= G(〈12〉)G(〈43〉) +
1
N

F
�

eZ1, Z2, Z3, eZ4

�

, (35)

where the first term is from a disconnected diagram. The leading connected four-point func-
tion F

�

eZ1, Z2, Z3, eZ4

�

can be computed by summing over the ladder diagrams, which gives the
result

F
�

eZ1, Z2, Z3, eZ4

�

=
∞
∑

n=0

K⋆n ⋆ F0

�

eZ1, Z2, Z3, eZ4

�

,

F0

�

eZ1, Z2, Z3, eZ4

�

≡ G(〈13〉)G(〈42〉) ,

(36)
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where K is the ladder kernel, whose action, denoted by ⋆, is given by

K ⋆ F
�

eZ1, Z2, Z3, eZ4

�

≡
∫

d2 yad2θad2 ỹbd2θ̃b K
�

eZ1, Z2, Za, eZb

�

F
�

eZb, Za, Z3, eZ4

�

,

K
�

eZ1, Z2, Z3, eZ4

�

≡ (p− 1)J2G(〈1, 3〉)G(〈4,3〉)q−2G(〈4,2〉) ,
(37)

and K⋆n denotes the n-th power of the ⋆-product, i.e. for example K⋆2 = K ⋆ K .
The kernel can be diagonalized by the eigenfunction

V∆,ℓ(eZ1, Z2) =
1

|〈12〉|2∆Φ−∆

�

〈12〉



1̄2̄
�

�
ℓ
2

, (38)

as

k∆,ℓV∆,ℓ

�

eZ1, Z2

�

=

∫

d2 yad2θad2 ỹbd2θ̃b K
�

eZ1, Z2, Za, eZb

�

V∆,ℓ

�

eZb, Za

�

. (39)

The eigenvalue is

k∆,ℓ =
1−∆Φ
∆Φ

Γ (1−∆Φ)2Γ (
ℓ−∆

2 +∆Φ)Γ (
∆+ℓ

2 +∆Φ)

Γ (∆Φ)2Γ (1+
ℓ−∆

2 −∆Φ)Γ (1+
∆+ℓ

2 −∆Φ)
. (40)

The spectrum of the operators in the eΦ×Φ OPE can be computed by solving the equation

k∆,ℓ = 1 . (41)

Each solution in the domain ∆ ≥ 1 corresponds to a superconformal primary of dimension ∆
and spin ℓ.

Using the superconformal symmetry, we can fix the four-point function as

F
�

eZ1, Z2, Z3, eZ4

�

=
1

〈12〉2∆Φ〈43〉2∆Φ
F(z, z̄) , (42)

where z and z̄ are the cross ratios

z =
〈12〉〈43〉
〈12〉〈42〉

, z̄ =




1̄2̄
�


4̄3̄
�




1̄2̄
�


4̄2̄
� . (43)

The four-point function could be expanded in the superconformal partial wave basis as

F(z, z̄) =
∞
∑

ℓ=0

∫ ∞

0

ds




Ξ∆,ℓ,F0

�

1− k(∆,ℓ)

Ξ∆,ℓ(z, z̄)



Ξ∆,ℓ,Ξ∆,ℓ

� , (44)

where s = −i∆, Ξ∆,ℓ(z, z̄) is the superconformal partial wave, and 〈·, ·〉 is the superconformal
invariant inner product. We have removed the δ(0) in the inner product




Ξ∆,ℓ,Ξ∆,ℓ

�

in the
denominator. Their explicit expressions are given in Appendix B. Using the relation between
superconformal partial waves and superconformal blocks (B.2), we can rewrite the expansion
as

F(z, z̄) =
∞
∑

ℓ=0

∫ ∞

−∞
dsρ(∆,ℓ)G∆,ℓ(z, z̄) , (45)

where the density function ρ(∆,ℓ) is explicitly given by

ρ(∆,ℓ) =
ρMFT(∆,ℓ)
1− k(∆,ℓ)

, (46)
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where ρMFT(∆,ℓ) is the density function for the mean-field theory, explicitly given by

ρMFT(∆,ℓ) =




Ξ∆,ℓ,F0

�

S∆̃,ℓ



Ξ∆,ℓ,Ξ∆,ℓ

�

= −21−2∆Φ+ℓ csc
�

1
2
π(∆− ℓ+ 2∆Φ)

�

sin
�

1
2
π(∆− ℓ− 2∆Φ)

�

×
Γ (1−∆Φ)2Γ

�1
2(1−∆+ ℓ)

�

Γ
�1

2(∆+ ℓ)
�

Γ (∆Φ)2Γ
�1

2(2−∆+ ℓ)
�

Γ
�1

2(1+∆+ ℓ)
�

×
Γ
�

−∆2 −
ℓ
2 +∆Φ

�

Γ
�1

2(−∆+ ℓ) +∆Φ
�

Γ
�1

2(2−∆− ℓ− 2∆Φ)
�

Γ
�1

2(2−∆+ ℓ− 2∆Φ)
� . (47)

The operator spectrum in the eΦ×Φ OPE is given by the solutions to the equation

k(∆,ℓ) = 1 . (48)

The OPE coefficients are given by the residue of the density function. In particular, the OPE
coefficient of (the bottom component of) the stress tensor multiplet R is given by

�

�c
eΦΦR

�

�

2
= −

1
N

Res
∆=1
(ρ(∆, 1)) =

4∆2
Φ

N(1− 2∆Φ)
, (49)

from which we compute the central charge of the IR theory

c =
12∆2

Φ

|c
eΦΦR|2

= N(3− 6∆Φ) =
N
∑

i=1

6
�

1
2
−∆Φ

�

. (50)

We recognize that the central charge computed in this way agrees with the one obtained
from the general arguments using the R-symmetry anomaly matching and the structure of
N = (2, 2) superconformal algebra [28, 39]. This central charge coincides with the central
charge of N copies of the Aq−1 type N = (2, 2) minimal model, which shows up as the IR
theory of the non-disordered (N = 1) version of the superpotential (26) [28]. This is because
the central charge is invariant under exactly marginal deformations [40], which corresponds
to deformations of the UV superpotential.

As discussed in [21], after analytic continuing of the Euclidean four-point function (44)
to the out-of-time-order correlator in the Lorentzian signature, and taking the long time limit
(chaos limit), the chaos exponent λL is computed by solving the same equation (48) with
∆ = 0 and ℓ = λL . The chaos exponent λL as a function of ∆Φ is plotted in Figure 1. At
∆Φ =

1
3 (q = 3), the chaos exponent reaches the highest value λL ≈ 0.5824.

2.4 Models with two disordered chiral superfields

Let us now consider the models with two disordered chiral superfields Φ(1)i ,Φ(2)a for i = 1, · · ·N1
and a = 1, · · ·N2. For type Ik,l or IIk,l models, the general form of the superpotential (3)
specializes becomes

W =
∑

(m,n)∈I
gm,n

�

Φ(1)
�m �
Φ(2)

�n
≡

∑

(m,n)∈I
g i1···im,a1···an

�

Φ
(1)
i1
· · ·Φ(1)im

��

Φ(2)a1
· · ·Φ(2)an

�

, (51)

where the random coupling g(i1,··· ,im),(a1,··· ,an) satisfies

¬

g i1···im,a1···an ḡi′1···i′m,a′1···a′n

¶

=
J2

m,n

N m+n−1
1

δ
(i1
i1
· · ·δ im)

i′m
δ
(a1

a′1
· · ·δ an)

a′n
. (52)
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Figure 1: The chaos exponent λL as function of ∆Φ =
1
q in MSW model. When

∆Φ =
1
3 , chaos exponent arrives at the maximum value 0.5824. Extrapolation is

used to reach large q behavior.

Note that we have changed to a different convention on the variance here comparing to (5).
The index set I is given by

I =
�

(m, n) ∈ Z≥0 ×Z≥0 | mq1 + nq2 = 1
	

, (53)

where q1, q2 are the R-charges of Φ(1) and Φ(2) given in (27) and (28). The large N limit of
these models are taken as

N1, N2→∞ , fixing λ=
N2

N1
. (54)

We would follow Section 2.3, and perform the same analysis for the type Ik,l and IIk,l
models as we did for the MSW model. We first consider models with general k, l, and derive
general formulae for the two and four-point functions. Then we would specialize in the mod-
els in (30) and study the spectra and chaos exponents. To start, we consider the two-point
functions




eΦ(1),i(eZ1)Φ
(1)
j (Z2)

�

= δi
jGΦ(1)(〈12〉) ,




eΦ(2),a(eZ1)Φ
(2)
b (Z2)

�

= δa
bGΦ(2)(〈12〉) , (55)

where Z = (y, ȳ ,θ , θ̄ ) and eZ = ( ỹ , ¯̃y, θ̃ , ¯̃θ ), and the super-distances 〈12〉 and



1̄2̄
�

are given
in (A.9). In the large N limit, the two-point functions satisfy the Schwinger-Dyson equations

D3D3GΦ(1)(〈13〉) +
∫

d2 y2d2θ2 GΦ(1)(〈12〉)ΣΦ(1)(〈32〉) = θ̃13
¯̃θ13δ(〈13〉)δ

�


1̄3̄
��

,

D3D3GΦ(2)(〈13〉) +
∫

d2 y2d2θ2 GΦ(2)(〈12〉)ΣΦ(2)(〈32〉) = θ̃13
¯̃θ13δ(〈13〉)δ

�


1̄3̄
��

,

(56)

where the self-energies ΣΦ(1) and ΣΦ(2) are

ΣΦ(1)(〈32〉) =
∑

(m,n)∈I
mλnJ2

m,nGΦ(1)(〈32〉)m−1GΦ(2)(〈32〉)n ,

ΣΦ(2)(〈32〉) =
∑

(m,n)∈I
nλn−1J2

m,nGΦ(1)(〈32〉)mGΦ(2)(〈32〉)n−1 .
(57)
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Similar to the MSW model, in the low energy limit E≪ J , after ignoring the first terms of the
equations in (56), we consider the conformal Ansatz

GΦ(1)(〈12〉) =
b1

|〈12〉|2∆1
, GΦ(2)(〈12〉) =

b2

|〈12〉|2∆2
. (58)

The Schwinger-Dyson equations (56) fix the conformal dimensions ∆1, ∆2 by R-charges as

∆1 = q1 , ∆2 = q2 , (59)

and impose the equations on the two-point function coefficients b1, b2,

∑

(m,n)∈I
mλnJ2

m,n bm
1 bn

2 =
1

4π2
,

∑

(m,n)∈I
nλn−1J2

m,n bm
1 bn

2 =
1

4π2
. (60)

The equations (60) admit multiple solutions. Unitarity imposes further constraints that the
two-point function coefficients b1 and b2 are non-negative numbers,

b1 ≥ 0 , b2 ≥ 0 . (61)

Later in the examples, we will see that the unitarity bounds (61) give bounds on λ, and the
model becomes non-compact when the bounds are saturated.

Next, we consider the averaged four-point functions,




O1(eZ1, Z2)O1(eZ4, Z3)
�

= GΦ(1)(〈12〉)GΦ(1)(〈34〉) +
1
N1

F11

�

eZ1, Z2, Z3, eZ4

�

,




O2(eZ1, Z2)O2(eZ4, Z3)
�

= GΦ(2)(〈12〉)GΦ(2)(〈34〉) +
1
N2

F22

�

eZ1, Z2, Z3, eZ4

�

,




O1(eZ1, Z2)O2(eZ4, Z3)
�

=
1
N2

F12

�

eZ1, Z2, Z3, eZ4

�

,




O2(eZ1, Z2)O1(eZ4, Z3)
�

=
1
N1

F21

�

eZ1, Z2, Z3, eZ4

�

,

(62)

where O1 and O2 are the bi-local operators

O1(eZ1, Z2) =
1
N1

N1
∑

i=1

Φ(1),i(eZ1)Φ
(1)
i (Z2) ,

O2(eZ1, Z2) =
1
N2

N2
∑

a=1

Φ(2),a(eZ1)Φ
(2)
a (Z2) .

(63)

The four-point functions F11, F12, F21, F22 can be computed by summing over the ladder
diagrams, and the result can be written in a compact form as

F(z, z̄)≡
�

F11 F12
F21 F22

�

=
∞
∑

n=0

�

K11 K12
K21 K22

�⋆n

⋆

�

F11,0 0
0 F22,0

�

. (64)

F11,0, F22,0 are the zeroth ordered disconnected ladder diagrams,

F11,0 = GΦ(1)(〈13〉)GΦ(1)(〈42〉) , F22,0 = GΦ(2)(〈13〉)GΦ(2)(〈42〉) . (65)
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The matrix elements K11, K12, K21, K22 of the ladder kernel matrix are

K11 =
∑

(m,n)∈I
m(m− 1)λnJ2

m,nGΦ(1)(〈13〉)GΦ(1)(〈42〉)GΦ(1)(〈43〉)m−2GΦ(2)(〈43〉)n ,

K12 =
∑

(m,n)∈I
mnλnJ2

m,nGΦ(1)(〈13〉)GΦ(1)(〈42〉)GΦ(1)(〈43〉)m−1GΦ(2)(〈43〉)n−1 ,

K21 =
∑

(m,n)∈I
mnλn−1J2

m,nGΦ(2)(〈13〉)GΦ(2)(〈42〉)GΦ(1)(〈43〉)m−1GΦ(2)(〈43〉)n−1 ,

K22 =
∑

(m,n)∈I
n(n− 1)λn−1J2

m,nGΦ(2)(〈13〉)GΦ(2)(〈42〉)GΦ(1)(〈43〉)mGΦ(2)(〈43〉)n−2 ,

(66)

which acts on F11,0, F22,0 in the way as in (37).
Consider the eigenvector:

VT
∆,ℓ =





v1

|〈43〉|2∆1−∆

�

〈43〉



4̄3̄
�

�
ℓ
2

,
v2

|〈43〉|2∆2−∆

�

〈43〉



4̄3̄
�

�
ℓ
2



 , (67)

the ladder kernel matrix acts on VT
∆,ℓ as a 2×2 matrix,

�

K11 K12
K21 K22

�

⋆V∆,ℓ =
∑

(m,n)∈I
J2

m,n

�

m(m− 1)λn bm
1 bn

2k1 mnλn bm+1
1 bn−1

2 k1
mnλn−1 bm−1

1 bn+1
2 k2 n(n− 1)λn−1 bm

1 bn
2k2

�

V∆,ℓ

≡
�

k11 k12
k21 k22

�

V∆,ℓ ,

(68)

where k1, k2 are functions of the conformal dimension ∆ and spin ℓ,

ki(∆,ℓ) = 4π2(−1)ℓ+1
Γ (1−∆i)2Γ

�

ℓ−∆
2 +∆i

�

Γ
�

ℓ+∆
2 +∆i

�

Γ (∆i)2Γ
�

1+ ℓ−∆2 −∆i

�

Γ
�

1+ ℓ+∆2 −∆i

� . (69)

We denote the eigenvalues of this matrix by k+(∆,ℓ) and k−(∆,ℓ). The four-point function
can be expanded in the superconformal partial waves as

F(z, z̄) =
∞
∑

ℓ=0

∫ ∞

0

ds
1

(1− k+(∆,ℓ))(1− k−(∆,ℓ))

Ξ∆,ℓ(z, z̄)



Ξ∆,ℓ,Ξ∆,ℓ

�

×
�

1− k22 k12
k21 1− k11

��


Ξ∆,ℓ,F11,0

�

0
0




Ξ∆,ℓ,F22,0

�

�

,

(70)

where again we have removed the δ(0) in the inner product



Ξ∆,ℓ,Ξ∆,ℓ

�

in the denominator.
Using the shadow symmetry of the superconformal partial wave, the s-integral can be

completed to the entire real line R. The conformal block expansion of the four-point function
is obtained by pulling the s-contour to the right. The operator spectrum in the eΦ(a)×Φ(b) OPE
is given by the solution to the equation

(1− k+(∆,ℓ))(1− k−(∆,ℓ)) = 0 . (71)

The OPE coefficients between the disordered chiral superfields Φ(1), Φ(2) and the bottom
component of the stress tensor multiplet R are extracted from the residues

�

�c
eΦ(1)Φ(1)R

�

�

2
= −

1
N1

Res
∆=1

�

1− k22(∆,ℓ)
(1− k+(∆,ℓ))(1− k−(∆,ℓ)




Ξ∆,ℓ,F11,0

�




Ξ∆,ℓ,Ξ∆,ℓ

�

�

�

�

ℓ=1

�

,

�

�c
eΦ(2)Φ(2)R

�

�

2
= −

1
N2

Res
∆=1

�

1− k11(∆,ℓ)
(1− k+(∆,ℓ))(1− k−(∆,ℓ)




Ξ∆,ℓ,F22,0

�




Ξ∆,ℓ,Ξ∆,ℓ

�

�

�

�

ℓ=1

�

.

(72)
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We also obtain the central charge of the IR SCFT

c =
12∆2

Φ(1)

|c
eΦ(1)Φ(1)R|2

=
12∆2

Φ(2)

|c
eΦ(2)Φ(2)R|2

. (73)

For the examples (30) that will be studied in details in the following subsubsections, we show
that (73) simplifies to

c = 6N1

�

1
2
− q1

�

+ 6N2

�

1
2
− q2

�

, (74)

which is consistent with the R-symmetry anomaly matching and the IR N = (2,2) supercon-
formal algebra, and is independent of the couplings (coefficients) in the superpotential as
expected from the Zamolodchikov c-theorem [40]. Finally, similar to the MSW model, the
chaos exponent λL can be computed by solving the equation (71) with ∆= 0 and ℓ= λL . For
the examples we studied below, the chaos exponents are bounded above by

λL ≤ 0.5824 , (75)

where the upper bound is the chaos exponent for the MSW3 model.
In the following subsections, we will specialize the above analysis of the two and four-point

functions to the models (30).

2.4.1 I2,q type

For I2,q model, which is also a disordered generalization of Dq type model, the superpotential
is:

W = g i1 j2,aΦ
(1)
i1
Φ
(1)
i2
Φ(2)a + ga1···aqΦ(2)a1

· · ·Φ(2)aq
, (76)

which means the index set I is
I = {(2,1), (0, q)} . (77)

Following the discussion in Section 2.1, the field redefinitions of the bilocal superfields give
the equivalent relations

�

J2
2,1

J2
0,q

�

∼
�

λ2
1λ2J2

2,1
λ

q
2J2

0,q

�

. (78)

When J2,1 and J0,q are both non-zero, we use this field redefinition to set

J2,1 = J0,q ≡ J , (79)

where J is a dimensionful overall coupling that sets the energy scale of the theory. The physical
observables in the IR (E≪ J) SCFT are independent of J .

The conformal dimensions and R-charges of the chiral superfields Φ(1) and Φ(2) are

∆1 = q1 =
q− 1
2q

, ∆2 = q2 =
1
q

. (80)

Specializing the equations (60) for the two-point function coefficients b1 and b2 gives

2λJ2
2,1 b2

1 b2 =
1

4π2
, qλq−1J2

0,q bq
2 + J2

2,1 b2
1 b2 =

1
4π2

. (81)

When λ < 1
2 , all the solutions to (81) violate the unitarity bounds (61). When λ≥ 1

2 , there is
a unique solution to (81) that satisfies the unitarity bounds (61):

b1 =
2

3(1−q)
2q q

1
2qπ

1−q
q J

1
q

0,q

J2,1(2λ− 1)
1
2q

, b2 =
(2λ− 1)

1
q

2
3
qπ

2
q q

1
q J

2
q

0,qλ

. (82)
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Figure 2: The chaos exponent for the I2,q (Dq) type model as a function of flavor ratio
λ ≥ 1

2 and ∆2 =
1
q . For a fixed λ, the chaos exponent grows monotonically in a

similar way to the MSW model (λ→∞). For a fixed ∆2 =
1
q , the chaos exponent

decreases with the growth of λ. The dotted red line 0.5824 in the subfigure is the
upper bound for the MSW model, which turns out to be also the upper bound for I2,q
type model. The dots stand for the integer value of q, and extrapolation is used for
the general value q.

At λ = 1/2, the equations (81) imply J0,q = 0, and the theory becomes non-compact. The
formula (73) gives the central charge of the theory

c
N1
=

3
2
+ 3

�

1−
2
q

��

λ−
1
2

�

≥
3
2

. (83)

The kernel of the theory is
�

k11 k12
k21 k22

�

=

�

2λb2
1 b2J2

2,1k1(∆,ℓ) 2λb3
3J2

2,1k1(∆,ℓ)
2b1 b2

2J2
2,1k2(∆,ℓ) q(q− 1)λq−1 bq

2J2
0,qk2(∆,ℓ)

�

, (84)

where k1(∆,ℓ) and k2(∆,ℓ) are given in (69). The equation (71) for the operator spectrum
in the OPE can be explicitly written down as

1+
4π2(2λ− 2λq+ q− 1)k2(∆,ℓ)− k1(∆,ℓ)

�

(2λ− 2λq+ q+ 1)k2(∆,ℓ) + 8π2λ
�

32π4λ
= 0 ,

(85)
where we have substituted b1 and b2 by using the equations (81).

The chaos exponent λL can be computed by solving the equation (85) with ∆ = 0 and
ℓ= λL . The result is shown in Figure 2.

2.4.2 I3,3 type

The I3,3 type (aka E7 type) superpotential is:

W = g i1 i2 i3,aΦ
(1)
i1
Φ
(1)
i2
Φ
(1)
i3
Φ(2)a + ga1a2a3Φ(2)a1

Φ(2)a2
Φ(2)a3

, (86)

and we have the index set
I = {(3, 1), (0,3)} . (87)
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Again, the field redefinitions of the bilocal superfields give the equivalent relations
�

J2
3,1

J2
0,3

�

∼
�

λ3
1λ2J2

3,1
λ3

2J2
0,3

�

. (88)

We use it to set the variances of the random couplings to

J3,1 = J0,3 ≡ J . (89)

The conformal dimensions and R-charges of the chiral superfields Φ(1) and Φ(2) are

∆1 = q1 =
2
9

, ∆2 = q2 =
1
3

, (90)

The equations (60) for the two-point function coefficients b1 and b2 become

3λJ2
3,1 b3

1 b2 =
1

4π2
, 3λ2J2

0,3 b3
2 + J2

3,1 b3
1 b2 =

1
4π2

. (91)

When λ≥ 3, there is a unique solution to (91) that satisfies the unitarity bounds (61):

b1 =
J

2
9

0,3

2
4
9 3

1
9π

4
9 J

2
3

3,1(3λ− 1)
1
9

, b2 =
(3λ− 1)

1
3

(6π)
2
3λJ

2
3

0,3

. (92)

At λ = 1/3, the equations (91) imply J0,3 = 0, and the theory becomes non-compact. When
λ < 1

3 , (91) does not admit any unitary solutions.3 From (73), the central charge of the theory
is

c
N1
= 2+

�

λ−
1
3

�

≥ 2 . (93)

The kernel of the theory is
�

k11 k12
k21 k22

�

=

�

6b3
1 b2λJ2

3,1k1(∆,ℓ) 3b4
1λJ2

3,1k1(∆,ℓ)
3b2

1 b2
2J2

3,1k2(∆,ℓ) 6b3
2λ

2J2
0,3k2(∆,ℓ)

�

. (94)

The equation (71) for the operator spectrum can be explicitly written down as

1+
8π2(1− 3λ)k2(∆,ℓ) + k1(∆,ℓ)

�

(12λ− 7)k2(∆,ℓ)− 24π2λ
�

48π4λ
= 0 . (95)

We further take a look at the chaos exponent λL by solving (95) with ∆ = 0 and ℓ = λL .
The result is shown in Figure 3.

2.4.3 I4,3 type

The I4,3 model has the superpotential

W = g i1···i3Φ
(1)
i1
· · ·Φ(1)i3

+ g i1 i2,a1a2Φ
(1)
i1
Φ
(1)
i2
Φ(2)a1
Φ(2)a2
+ g i,a1···a4Φ

(1)
i Φ

(2)
a1
· · ·Φ(2)a4

+ ga1···a6Φ(2)a1
· · ·Φ(2)a6

. (96)

The index set is I = {(3,0), (2,2), (1,4) (0, 6)}. The field redefinitions of the bilocal super-
fields give the equivalent relations









J2
3,0

J2
2,2

J2
1,4

J2
0,6









∼







λ3
1 0 0 0

3aλ2
1 λ2

1λ
2
2 0 0

3a2λ1 2aλ1λ
2
2 λ1λ

4
2 0

a3 a2λ2
2 aλ4

2 λ6
2















J2
3,0

J2
2,2

J2
1,4

J2
0,6









. (97)

3We thanks Micha Berkooz for discussion on this point.
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Figure 3: The chaos exponent of the I3,3 model as function of λ. When λ→∞, the
chaos exponent saturates 0.5824. When λ → 1

3 , the chaos exponent equals to the
non-compact lower bound 0.5496.

We find a combination that is invariant under the above transformation

u2 =
3
�

J4
2,2 − 3J2

1,4J2
3,0

�
3
2

(J4
2,2 − 3J2

1,4J2
3,0)

�

2J6
2,2 − 9J2

1,4J2
3,0J2

2,2 + 27J2
0,6J4

3,0 − 2
�

J4
2,2 − 3J2

1,4J2
3,0

�
3
2
�

1
3

. (98)

Hence, in the IR, there is a one-dimensional conformal manifold parameterized by u. Equiva-
lently, one can use the equivalence relation (97) to set the variances of the random couplings
to

J1,4 = 0 , J3,0 = J0,6 = J , J2,2 = uJ , (99)

where J is an overall dimensionful coupling. At u = 0, the theory factories into a tensor
product of a MSW3 model and a MSW6 model. The parameter u can be regarded as the
coupling between the MSW3 and the MSW6 models.

Another interesting limit is u→∞. To properly take this limit, we apply the transforma-
tion (97) with a = 0, λ1 = u−

2
3 , and λ2 = u−

1
3 on (99), and find

J1,4 = 0 , J3,0 = J0,6 = u−1J , J2,2 = J . (100)

Hence, the theory becomes non-compact in the limit u→∞.
The conformal dimensions of the chiral superfields are

∆1 =
1
3

, ∆2 =
1
6

. (101)

The two-point function coefficients b1 and b2 satisfy the equation

2λ2J2
2,2 b2

1 b2
2 +λ

4J2
1,4 b1 b4

2 + 3J2
3,0 b3

1 =
1

4π2
,

6λ5J2
0,6 b6

2 + 2λJ2
2,2 b2

1 b2
2 + 4λ3J2

1,4 b1 b4
2 =

1
4π2

.
(102)
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The equations (102) admit one or zero solution that satisfies the unitarity bounds (61) de-
pending on the values of λ and u. It is hard to determine the precise region for the existence
of a unitary solution. We have tested numerically that a unitary solution exists for all values
of λ, u≥ 0.

The ladder kernel is
�

k11 k12
k21 k22

�

=

 

2b2
1

�

b2
2λ

2J2
2,2 + 3b1J2

3,0

�

k1(∆, l) 4b2
1 b2λ

2
�

b2
2λ

2J2
1,4 + b1J2

2,2

�

k1(∆, l)

4b3
2λ
�

b2
2λ

2J2
1,4 + b1J2

2,2

�

k2(∆, l) 2b2
2λ
�

15b4
2λ

4J2
0,6 + 6b1 b2

2λ
2J2

1,4 + b2
1J2

2,2

�

k2(∆, l)

!

.

(103)
The equation (71) for the operator spectrum can be explicitly written down as

g(u)
�

2λk1(∆,ℓ) + k2(∆,ℓ)
�

8−
(5λ+ 8)k1(∆,ℓ)

2π2

��

+

�

k1(∆,ℓ)− 2π2
� �

5k2(∆,ℓ)− 4π2
�

8π4
= 0 ,

g(u) = b2
1 b2

2λu2J2 ,

(104)

where b1 and b2 can be solved by the equations (102), and g(u) is a function of only the
variable u. For general λ, g(u) is a complicated function, and becomes simple when λ= 1 as

g(u)
�

�

λ=1 =
1

4π2

�

3×2
1
3

u2 + 2
� .

(105)

The OPE spectrum depends on u only through the function g(u). The formula (73) gives
the central charge of the theory:

c
N1
= 1+ 2λ . (106)

The central charge is independent of the g(u) even though the ladder kernel function is the
function of the parameters. However, the chaos exponent, equivalently the Regge intercept
of the theory, is the function of these parameters. When g(u) = 0, the two models decouple,
hence one finds two roots corresponding to chaos exponent for the MSW3 and the MSW6,
respectively.

To see the dependence between the exactly marginal deformation and chaos exponent, we
first set λ= 1, then g(u) = b2

1 b2
2u2J2. One can then solve b1, b2 from the simplified equations

numerically (102) as function of u. Together with (71), we find the relation between u and
λL , as shown in Fig(5).

2.4.4 II3,4 type

The II3,4 model has the superpotential:

W = g i1···i3,a1Φ
(1)
i1
· · ·Φ(1)i3

Φ(2)a1
+ g i1,a1···a4Φ

(1)
i1
Φ(2)a1
· · ·Φ(2)a4

. (107)

We have the index set to be
I = {(3,1), (1,4)} , (108)

and the conformal dimensions and R-charges are given by:

∆1 =
3

11
, ∆2 =

2
11

. (109)
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Figure 4: The chaos exponent of the I4,3 model as function of λ when g(u) = 1.
When λ→ 0, the chaos exponent saturates the bound (75), when λ→∞, the chaos
exponent goes to the one of the MSW6.

The two-point function coefficients satisfy the equations

3λJ2
3,1 b3

1 b2 +λ
4J2

1,4 b1 b4
2 =

1
4π2

, J2
3,1 b3

1 b2 + 4λ3J2
1,4 b1 b4

2 =
1

4π2
. (110)

When 4 ≥ λ ≥ 1
3 , the equations (110) admit a unique solution that satisfies the unitarity

bounds (61). At λ= 1
3 , the equations (110) imply J1,4 = 0, and at λ= 4, the equations (110)

imply J3,1 = 0. The model is non-compact at both of these two points. When λ > 4 or λ < 1
3 ,

(110) does not have any unitary solution.
The kernel of the theory is
�

k11 k12
k21 k22

�

=
�

6b3
1 b2λJ2

3,1k1(∆,ℓ) 3b4
1λJ2

3,1k1(∆,ℓ) + 4b2
1 b3

2λ
4J2

1,4k1(∆,ℓ)
3b2

1 b2
2J2

3,1k2(∆,ℓ) + 4b5
2λ

3J2
1,4k2(∆,ℓ) 12b1 b4

2λ
3J2

1,4k2(∆,ℓ)

�

.

(111)
From Eq.(73), we can obtain the central charge is

c
N1
=

3
11
(5+ 7λ) . (112)

The OPE spectrum can be explicitly written out:

1+
3(−4+λ)

22π2
k1(∆,ℓ) +

3− 9λ
11π2λ

k2(∆,ℓ) +
−32+ 9(8− 3λ)λ

176π4λ
k1(∆,ℓ)k2(∆,ℓ) = 0 . (113)

The chaos exponent is shown in Fig.(6)

2.5 Two-sphere partition function and two-point functions

The two-sphere partition function of the Landau-Ginzburg models can be computed by super-
symmetric localization [32]. Consider a theory with N chiral superfields Φi for i = 1, · · · , N
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Figure 5: The chaos exponent of the I4,3 model as function of u when λ = 1. When
u = 0, the model becomes decoupled MSW3 and MSW6 with the chaos exponent
equals to 0.5824. When increasing u, λL decreases and becomes the value 0.5379
of a non-compact model when u →∞. The chaos exponent depends on u weakly
when u> 2−

1
3 3

1
2 ≈ 1.37, where the Zamolochikov metric in (132) becomes negative.

and a superpotential W (Φi), the infinite-dimensional path integral localizes onto constant field
configurations and becomes a finite-dimensional integral

Z =

∫

�∏

i

dφid eφ
i
�

e−4πirW (φi)−4πirW ( eφ i) , (114)

where r is the radius of the two-sphere, and φi , eφ
i are the bottom components of the chiral

and anti-chiral superfields Φi , eΦi , respectively. The integration contour of the integral (114)
is defined along the half-dimensional space given by eφ i = φ∗i inside the space C2N of the
variablesφi ’s and eφ i ’s. A common method to evaluate the integral is to decompose the contour
as a sum over Lefschetz thimbles by the Picard-Lefschetz theory (see Appendix D in [34]).

This result has been generalized to extremal correlators on the two-sphere [33,34], which
is an n-point function of n− 1 chiral operators inserted at arbitrary points on the two-sphere
and one anti-chiral operator inserted at the south pole. For instance, the two-point function
of a chiral operator O at the north pole and an anti-chiral operator eO at the south pole is
computed by




eOO
�

S2 =
1
Z

∫

�∏

i

dφid eφ
i
�

eOOe−4πirW (φi)−4πirW ( eφ i) . (115)

When the IR theory is an SCFT, the correlation functions on S2 can be conformally mapped
to the correlation functions on R2. In particular, the two-point function on the two-sphere is
related to that on the plane by

(2r)2∆



eOO
�

S2 = lim
x→∞
|x |2∆




eO(x)O(0)
�

R2 . (116)

Now, let us apply supersymmetric localization to the disordered Landau-Ginzburg models
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Figure 6: The chaos exponent as function of λ in the type II34 theory. When λ= 1/3
and 4, the model is non-compact.

with the superpotential (3). The disorder-averaged two-sphere partition function is

Z =
1
N

∫

� ∏

I1,··· ,In,p

d g I1···In
p d ḡp,I1···In

�

e
−
∑

p
N p1+···+pn−1

J2
p

g
I1 ···In
p ḡp,I1 ···In Z(g, ḡ) ,

N =
∫

� ∏

I1,··· ,In,p

d g I1···In
p d ḡp,I1···In

�

e
−
∑

p
N p1+···+pn−1

J2
p

g
I1 ···In
p ḡp,I1 ···In ,

(117)

where Z(g, ḡ) is the two-sphere partition function with fixed coupling constants g I1···In
p and

ḡp,I1···In
. Using supersymmetric localization, Z(g, ḡ) is computed by the integral

Z(g, ḡ) =

∫

�∏

a

∏

i

dφ(a)i d eφ(a),i
�

exp
�

− 4πir
∑

p≡(p1,··· ,pn)∈I
g I1···In

p

�

φ
(1)
I1

�p1 · · ·
�

φ
(n)
In

�pn

− 4πir
∑

p≡(p1,··· ,pn)∈I
ḡp,I1···In

�

eφ(1),I1
�p1 · · ·

�

eφ(n),In
�pn
�

.
(118)

Recall our notation Ia = (i1, · · · , ipa
) and (φ(a)Ia

)pa = φ(a)i1
· · ·φ(a)ia

. Performing the g I1···In
p and

ḡp,I1···In
integrals first, we find

Z =

∫

�∏

a

∏

i

dφ(a)i d eφ(a),i
�

exp
�

−16π2V
�

φ
(a)
i , eφ(a),i

��

,

V
�

φ
(a)
i , eφ(a),i

�

=
∑

p≡(p1,··· ,pn)∈I

r2J2
p

N p1+···+pn−1

�

φ(1) eφ(1)
�p1 · · ·

�

φ(n) eφ(n)
�pn .

(119)

Note that since the function V (φ(a)i , eφ(a),i) with eφ(a),i = (φ(a)i )
∗ is real and bounded from

below, and the integral (119) is much easier to compute than the integral (114) for non-
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disordered theories.4 The integral can be further simplified as

Z =

∫ �

∏

a

2πNa

Γ (Na)
R2Na−1

a dRa

�

exp



−
∑

p≡(p1,··· ,pn)∈I

16π2r2J2
p

N p1+···+pn−1
R2p1

1 · · ·R
2pn
n



 , (120)

where we have used the spherical coordinates with the radius R2
a = φ

(a)
eφ(a).

The disorder-averaged sphere two-point function is




eOO
�

S2 =
1

N Z

∫

 

∏

I1,··· ,In,p

d g I1···In
p d ḡp,I1···In

!

e
−
∑

p
N p1+···+pn−1

J2
p

g
I1 ···In
p ḡp,I1 ···In

×
∫

 

∏

a

∏

Ia

dφ(a)Ia
d eφ(a),Ia

!

eOO

× exp
�

− 4πir
∑

p≡(p1,··· ,pn)∈I
g I1···In

p (φ(1)I1
)p1 · · · (φ(n)In

)pn

− 4πir
∑

p≡(p1,··· ,pn)∈I
ḡp,I1···In

( eφ(1),I1)p1 · · · ( eφ(n),In)pn

�

.

(121)

Note that (121) is more precisely an annealed disordered sphere two-point function, meaning
that the disorder averages in the numerator and denominator are performed separately. This
definition allows us to compute the two-point functions exactly in the following examples.

As discussed in the previous subsection, the variances that cannot be fixed by field redefini-
tions parameterize the IR conformal manifold. Similar to the non-disordered model in [33,41],
we can compute the Zamolodchikov metric of the IR conformal manifold by taking derivatives
of the two-sphere partition function as

gp1p2
= −∂Jp1

∂Jp2
log Z . (122)

In the following, we compute the two-sphere partition functions and the two-point func-
tions of chiral superfields in the MSW, I2,q, and I3,3 model, and compute the Zamolodchikov
metric of the I4,3 model.

Supersymmetric localization in the MSW, I2,q , and I3,3 models The two-sphere partition
function of the MSW model with the superpotential (26) is

ZMSWq
=

1
N

∫

 

∏

i1,··· ,ip

d g i1···iq d ḡi1···iq

!

e−
Nq−1

J2 |g
i1 ···iq |2

∫

�

∏

i

dφid eφ
i

�

× exp
�

−4πir g i1···iqφ1 · · ·φiq − 4πir ḡi1···iq
eφ1 · · · eφ iq

�

=

∫

�

∏

i

dφid eφ
i

�

exp

�

−
16π2r2J2

Nq−1

�

φi
eφ i
�q
�

=
16−

N
q N N− N

q πN− 2N
q J−

2N
q r−

2N
p Γ
�

N+q
q

�

Γ (N + 1)
.

(123)

4We thank Sungjay Lee for a discussion on this point.
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Next, we compute the disorder-averaged sphere two-point function,




eφ iφ j

�MSWq

S2 =
1

N ZMSWq

∫

 

∏

i1,··· ,iq

d g i1···iq d ḡi1···iq

!

e−
Nq−1

J2 |g
i1 ···iq |2

∫

�

∏

i

dφid eφ
i

�

× eφ iφ j exp
�

−4πir g i1···iqφ1 · · ·φiq − 4πir ḡi1···iq
eφ1 · · · eφ iq

�

=
δi

jΓ
�

N+1
q

�

16
1
qπ

2
q J

2
q N

1
q r

2
q Γ
�

N
q

� .

(124)

In the large N limit, the result becomes




eφ iφ j

�MSWq

S2 =
δi

j

(2π)
2
q q

1
q J

2
q (2r)

2
q

+O(N−1) . (125)

Mapping the two-point function from S2 to R2 using (116), we find




eφ i(x)φ j(0)
�MSWq

R2 =
δi

j

(2π)
2
q p

1
q J

2
q |x |

2
q

+O(N−1) . (126)

We see that our result here nicely agrees with (33) and (34) from summing over the melonic
diagrams using the Schwinger-Dyson equation.

Now, let us perform the same computation for the I2,q and I3,3 models. For the I2,q model,
we find

ZI2,q
=
π

N2(q−2)+N1
q N

N1(q+1)+2N2(q−1)
2q

1 Γ
�

N1
2

�

Γ
�

2N2−N1
2q

�

�

rJ0,q

�

N1−2N2
q

2
2N1(q−1)+4N2+q

q qΓ (N1) Γ (N2)
�

rJ2,1

�N1
,




eφ(1),iφ
(1)
j

�I2,q

S2 = δ
i
j

(4π)
1
q−1N

1
2

�

1
q−1

�

1 Γ
�

N1+1
2

�

Γ
�

2N2−N1−1
2q

�

�

rJ0,q

�
1
q

Γ
�

N1
2

�

Γ
�

2N2−N1
2q

�

(rJ2,1)
,




eφ(2),aφ
(2)
b

�I2,q

S2 = δ
a
b

N
q−1

q

1 Γ
�

2N2−N1+2
2q

�

16
1
qπ

2
q N2Γ

�

2N2−N1
2q

�

�

rJ0,q

�
2
q

,

(127)

where the two-point functions in the large N limit agree with the previous result (82) computed
by solving the Schwinger-Dyson equations.

For the I3,3 model, we find

ZI3,3
=
π

1
9 (5N1+3N2)N

1
9 (7N1+6N2)

1 Γ
�

N1
3

�

Γ
�

N2
3 −

N1
9

�

�

rJ0,3

�
2
9 (N1−3N2)

2
4
9 (2N1+3N2)9Γ (N1) Γ (N2)

�

rJ3,1

�

2N1
3

,




eφ(1),iφ
(1)
j

�I3,3

S2 = δ
i
j

Γ
�

N1+1
3

�

Γ
�

3N2−N1−1
9

�� rJ0,3
N1

�
2
9

28/9π4/9Γ
�

N1
3

�

Γ
�

N2
3 −

N1
9

�

�

rJ3,1

�
2
3

,




eφ(2),aφ
(2)
b

�I3,3

S2 = δ
a
b

Γ
�

3N2−N1+3
9

�

2
4
3π

2
3 N2Γ

�

N2
3 −

N1
9

�� rJ0,3
N1

�
2
3

,

(128)

where the two-point functions in the large N limit agree with the previous result (92) computed
by solving the Schwinger-Dyson equations.
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Zamolodchikov metric of the I4,3 model Let us compute the two-sphere partition function
of the I4,3 model. For simplicity, we focus on the case N1 = N2 ≡ N , and use the parametrization
of the variances (99). The formula (119) gives

ZI4,3
=

∫

�∏

i

dφ(1)i d eφ(1),i
∏

a

dφ(2)a d eφ(2),a
�

exp

�

− 16π2
�

r2J2

N2

�

φ
(1)
i
eφ(1),i

�3

+
u2r2J2

N3

�

φ
(1)
i
eφ(1),i

�2 �
φ(2)a

eφ(2),a
�2
+

r2J2

N5

�

φ(2)a
eφ(2),a

�6
�

�

=
π2N N2N

2Γ (N)2

∫ ∞

0

∫ ∞

0

dR1dR2 RN−1
1 R

N
2 −1
2 e−16π2N r2J2(R3

1+u2R2
1R2+R3

2) ,

(129)

where we have changed the integration variables as φ(1)i
eφ(1),i = NR1 and φ(2)a

eφ(2),a = N
p

R2.
The integral in the large N limit can be evaluated using the saddle point approximation. The
result is

log ZI4,3
= N





3
2
+

1
2

log





π2

2
13
3 J2r2

�

2
2
3 u2 + 3

�







+O(N0) . (130)

For a consistency check, we take u= 0 of log ZI4,3
and find that it factorizes to a sum of the log

of the partition functions of the MSW3 and the MSW6 models in (123) in the large N limit,

log ZI4,3

�

�

u=0 = log ZMSW3
+ log ZMSW6

. (131)

Taking u-derivatives, we compute the Zamolodchikov metric,

guu = −
d2 log Z

du2
= N

3× 2
2
3 − 2× 2

1
3 u2

(3+ 2
2
3 u2)2

. (132)

Curiously, note that the metric guu vanishes at u = 2−
1
3 3

1
2 , and becomes negative when

u> 2−
1
3 3

1
2 .

Since the random couplings g I1···In
p in the superpotential (3) are complex, it is tempting

to replace the variance J2
p in (5) by JpJ p for a complex Jp. This leads to the replacement of

u2 by uū in the two-sphere partition function (130). Now, the conformal manifold is complex
one-dimensional, and we find the metric

guū =
3N

2
1
3 (3+ 2

2
3 uū)2

, (133)

which is the metric of a round two-sphere of radius
p

N/2. However, since u always appears
in the combination uū, we do not know how to probe the angular direction on the conformal
manifold.

We have seen that the theory becomes non-compact in the u → ∞ limit. The u =∞
point is at infinity on the conformal manifold with respect to the metric (132), but at a finite
distance with respect to the metric (132).

3 Disordered gauged linear sigma models

Let us start by reviewing some basics of the gauge linear sigma models following [35] to set
up our convention and notation, and along the way introduce the disordered couplings to the
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theory. Consider a U(1) gauge theory with chiral superfields Φ(1)i for i = 1, · · · , N of charge
1 and Φ(2)a for a = 1, · · · , M of charge −q. The U(1) gauge field and its superpartners form a
vector superfield V , or equivalently a twisted chiral superfield Σ = 1p

2
eDDV . The (Euclidean)

Lagrangian density of the model is

L= Lkin +LW +LFI ,

Lkin = −
∫

d4θ

�

eΦ(1),ie2VΦ
(1)
i + eΦ

(2),ae−2(q−1)VΦ(2)a +
1

4e2
ΣΣ

�

,

LW = −
∫

d2θW
�

Φ(1),Φ(2)
�

�

�

�

θ̃= ¯̃θ=0
− h.c. ,

LFI = −
∫

dθd ¯̃θ
i t

2
p

2
Σ
�

�

θ̃=θ̄=0 +

∫

dθ̃dθ̄
i t̄

2
p

2
Σ
�

�

θ= ¯̃θ=0
.

(134)

The superpotential W is a homogeneous polynomial given by

W
�

Φ(1),Φ(2)
�

= Φ(2)a Ga
�

Φ(1)
�

≡ g i1···iq ,aΦ
(1)
i1
· · ·Φ(1)iq

Φ(2)a , (135)

where the coupling constants gai1···iq is a Gaussian random variable with mean and variance




g i1···iq ,a
�

= 0 ,
¬

g i1···iq ,a ḡ j1··· jq ,b

¶

=
J2

Nq
δa

bδ
(i1
j1
· · ·δiq)

jq
. (136)

LFI is the Fayet-Iliopoulos term. After integrating out the Grassmann coordinates, it becomes

LFI = rD+
iθ
2π

F12 , (137)

where t = ir + θ
2π is the Fayet-Iliopoulos parameter.

After integrating out the auxiliary fields, the potential for the bosonic fields is

U =
1

2e2
D2 +

M
∑

a=1

�

�Ga(φ(1))
�

�

2
+

N
∑

i=1

�

�

�

�

�

M
∑

a=1

φ(2)a
∂ Ga(φ(1))

∂ φ
(1)
i

�

�

�

�

�

2

, (138)

withs

D = −e2

� N
∑

i=1

|φ(1)i |
2 − q

M
∑

a=1

|φ(2)a |
2 − r

�

, (139)

where φ(1)i and φ(2)a denote the bottom components of the chiral superfields Φ(1)i and Φ(2)a . For
generic couplings gi1···iq ,a, the polynomials Ga(φ(1)) satisfy the “transverse” condition, i.e. for

any (φ(2)1 , · · · ,φ(2)M ) ̸= (0, · · · , 0), the equations

Ga(φ(1)) = 0=
M
∑

a=1

φ(2)a
∂ Ga(φ(1))

∂ φ
(1)
i

, (140)

have a common solution only for φ(1)1 = · · · = φ(1)N = 0. Note that the transverse condition
is different from the compactness condition (22), (23) of the disordered Landau-Ginzburg
models.

Let us analyze the low energy physics of the model. First, we assume r > 0. Vanishing
of the D-term (D = 0) requires φ(1)i cannot all vanish. The transverse condition then implies
φ(2)a = 0. Hence, vanishing of the potential U gives

N
∑

i=1

|φ(1)i |
2 = r , Ga(φ(1)) = 0 . (141)
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We further divide the space of solutions of (141) by the U(1) gauge transformation, i.e. impos-
ing the identification φ(1)i

∼= φ(1)i eiθ . Therefore, the classical moduli space X is an intersection
of hypersurfaces Ha ≡ {Ga(φ(1)) = 0} inside the complex project space CPN−1 with the pro-
jective coordinates φ(1)i . After integrating out the massive fields φ(2)a , the low energy effective
theory is a sigma model with target space X .

Next, we consider the case r < 0. Vanishing of the D-term requires φ(2)a cannot all vanish.

The transverse condition then implies φ(1)i = 0. The classical moduli space is then a CPM−1

with the projective coordinates φ(2)a . For q > 2, the massless fields are the φ(1)i and the oscilla-

tions tangent to the CPM−1. For q = 2, some parts of the φ(1)i become massive. The low energy
effective theory is a hybrid Landau-Ginzburg/sigma model on a vector bundle over CPM−1.

We will be particularly interested in the case when the IR theory is a CFT. The N = 2
superconformal algebra contains a U(1)R affine Lie algebra. However, in general, the axial
part U(1)L×U(1)R R-symmetry is broken quantum mechanically due to a mixed anomaly with
the U(1) gauge symmetry. Vanishing of such an anomaly requires

M
N
=

1
q

. (142)

It is expected that the IR theory is a CFT when the condition (142) is met. When r > 0,
this condition also implies that the classical moduli space X is a Calabi-Yau manifold; hence,
the IR CFT is a Calabi-Yau sigma model. The space of the Calabi-Yau manifold X becomes
the conformal manifold of the IR CFT. In particular, the complex structure moduli of X is
parametrized by the Gaussian random coupling constants gi1···iq ,a with mean and variance
given in (136). The ensemble average over gi1···iq ,a becomes an average of the Calabi-Yau
sigma models over the part of the conformal manifold corresponding to the complex structure
moduli.

The theory is solvable in the large N limit:

N →∞ , λ≡
M
N

, q , t , J , µ≡ e
p

N , (143)

where the last two parameters J , µ have classical dimension one, and the other parameters
are dimensionless. We relax the condition (142) so that λ and q are independent parameters.
We focus on the two-point functions of the chiral superfields,




eΦ(1),i(eZ1)Φ
(1)
j (Z2)

�

= δi
jGΦ(1)(〈12〉) ,




eΦ(2),a(eZ1)Φ
(2)
b (Z2)

�

= δa
bGΦ(2)(〈12〉) . (144)

They satisfy the same Schwinger-Dyson equations (56) as the disordered Landau-Ginzburg
models. We note that, in the leading order of the large N limit (143), the propagators of the
chiral superfields do not receive corrections from the loops involving the gauge field and its
superpartners. It is similar to the case of the quantum electrodynamics (QED) or the CPN−1

model in two or three dimensions, where the matter propagators also do not receive loop
corrections from the gauge fields in the leading order large N limit.

In the low energy limit E ≪ J , we consider the same conformal Ansatz (58). The
Schwinger-Dyson equations (56) imply

q∆1 +∆2 = 1 , λ=
1
q

, J2 bq
1 b2 =

q
4π2

. (145)

Note importantly that we have reproduced the condition (142) for the absence of U(1)R sym-
metry anomaly, which gives evidence for the IR conformal fixed point. This gives additional
evidence that when (142) is satisfied the IR theory is conformal. The dimensions∆1 and∆2 for
the chiral superfields are undetermined and constrained only by the linear equation in (145).
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This does not imply that the theory is short of determinability because the chiral superfields
Φ(1) and Φ(2) are not gauge invariant operators. The only constraint on the scaling dimensions
is that to ensure the self-energy dominates in IR, the scaling dimension of Φ(1) should satisfy
∆1 ∈ (0, 1

q ).
The natural next step is to study the four-point function of the superfields Φ(a) and eΦ(a),

and extract the OPE spectrum and the chaos exponent. However, since the Φ(a) and eΦ(a) are
not gauge invariant operators, the interpretation of these quantities is subtle. We leave the
analysis for future work.

4 Summary and discussion

In this paper, we studied N = (2,2) supersymmetric field theories with random couplings in
the superpotential.

1. We introduced the disordered Landau-Ginzburg models, which generalize the Murugan-
Stanford-Witten model by including more families of chiral superfields. The models fol-
low a similar classification as the non-disordered Landau-Ginzburg models. In particular,
with two families of chiral superfields, the model are classified as type Ik,l and IIk,l with
R-charges given in (27) and (28).

2. We analyzed the models I2,q, I3,3, I4,3, and II3,4. From the two and four-point functions
computed exactly in the large N limit, we extracted the conformal dimensions of the
chiral superfields ∆1 and ∆2, the central charge c, and the chaos exponent λL . The
former two agree with the expectation from the IR superconformal field theories.

3. The chaos exponent λL depends on the ratio λ of the numbers of chiral superfields in
each families. For the examples we studied, we plotted λL against λ in Figures 2, 3,
4, and 6. From these data, we proposed a universal upper bound λL ≲ 0.5824 for the
chaos exponents in the unitary disordered Landau-Ginzburg models.

4. We computed the partition functions and two-point correlation functions of the disor-
dered Landau-Ginzburg models on a two-sphere using supersymmetric localization. In
the large N limit, we showed that the results on the two-point function coefficients for
the MSW, I2,q, and I3,3 models nicely agree with those computed by summing over mel-
onic diagrams. We also computed the Zamolodchikov metric for the I4,3 model.

5. We introduced the disordered gauged linear sigma models, and showed that with a
positive Fayet-Iliopoulos parameter and an anomalous free U(1)R symmetry, they flow
to the ensemble averages of Calabi-Yau sigma models over complex structure moduli.

It is important to extend our analysis of the disordered gauged linear sigma models to
the four-point functions, from which we can extract many physical quantities such as the OPE
spectrum and the chaos exponent. This would give as valuable information about the ensemble
averages of Calabi-Yau sigma models. In Section 3, the average over the coupling constants
in the gauged linear sigma models was performed with a Gaussian distribution. It would be
more natural to consider instead the average with a measure implied by the Zamolodchikov
metric on the conformal manifold following [42–44].5 In the IR Calabi-Yau sigma models, on
the part of the conformal manifold corresponding to the complex structure moduli space of
the Calabi-Yau target space, the Zamolodchikov metric at one-loop order in the large volume
limit is the Weil-Petersson metric [45].

5We thank the SciPost referee for comments on this point.
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In [46], the ensemble average of Calabi-Yau sigma models over complex structure moduli
in the large volume limit with an uniform distribution was studied. It was found that the aver-
aged spectrum of scalar local operators exhibits the same statistical properties as the Gaussian
orthogonal ensemble of random matrix theory. It would be interesting to compare their result
with the OPE spectrum in our model.

Our studies on the disordered Landau-Ginzburg models can be straightforwardly gener-
alized to higher dimensions. In three dimensions, the superpotential can be at most cubic in
order for the theories to flow to nontrivial superconformal fixed points. With three or more
families of chiral superfields, the disordered cubic superpotentials would have some random
couplings whose variances are not fixed by field definitions, and the IR theories would ex-
hibit nontrivial conformal manifolds. The OPE spectrum as a function of the coordinates on
the conformal manifold could provide nontrivial data for testing the CFT distance conjecture
in [47].
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A N = (2, 2) superspace

The N = (2, 2) superspace has the holomorphic and anti-holomorphic coordinates
�

z,θ , θ̃
�

,
�

z̄, θ̄ , ¯̃θ
�

. (A.1)

The super-derivatives are

D =
∂

∂ θ
+ θ̃

∂

∂ z
, D =

∂

∂ θ̄
+ ¯̃θ

∂

∂ z̄
,

eD = −
∂

∂ θ̃
− θ

∂

∂ z
, eD = −

∂

∂ ¯̃θ
− θ̄

∂

∂ z̄
.

(A.2)

The supercharges are realized by the differential operators

Q =
∂

∂ θ
− θ̃

∂

∂ z
, Q =

∂

∂ θ̄
− ¯̃θ

∂

∂ z̄
,

eQ = −
∂

∂ θ̃
+ θ

∂

∂ z
, eQ = −

∂

∂ ¯̃θ
+ θ̄

∂

∂ z̄
.

(A.3)

The integration measure for the superspace is defined as

d2θ ≡ dθdθ̄ , d2θ̃ ≡ dθ̃d ¯̃θ . (A.4)

A chiral superfield Φ satisfies the condition

eDΦ= 0= eDΦ , (A.5)
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and an anti-chiral superfield eΦ satisfies the condition

DeΦ= 0= DeΦ . (A.6)

Hence, the chiral superfield Φ depends only on the coordinates

Z =
�

y, ȳ ,θ , θ̄
�

, y = z + θθ̃ , ȳ = z̄ + θ̄ ¯̃θ , (A.7)

and the anti-chiral superfield eΦ depends only on the coordinates

eZ =
�

ỹ , ¯̃y, θ̃ , ¯̃θ
�

, ỹ = z − θθ̃ , ¯̃y = z̄ − θ̄ ¯̃θ . (A.8)

The super-distances are defined as the combinations

〈12〉= ỹ1 − y2 − 2θ̃1θ2 ,



1̄2̄
�

= ¯̃y1 − ȳ2 − 2 ¯̃θ1θ̄2 , (A.9)

which are annihilated by all the supercharges Q1 +Q2, eQ1 + eQ2, Q1 +Q2, eQ1 + eQ2.

B Two dimensional superconformal partial wave

When expanding the four point function in the basis of superconformal partial waves, one has:

F =
∞
∑

ℓ=0

∫ ∞

0

ds




Ξ∆,ℓ,F0

�

1− k(∆,ℓ)

Ξ∆,ℓ(u, v)



Ξ∆,ℓ,Ξ∆,ℓ

� . (B.1)

The principal series for the N = 2 superconformal partial waves have conformal dimension
∆ = is, s ∈ R. There are some related works about the bosonic partial waves in general d
dimensions, see [25,48,49].

One has two quantities to evaluate from the above expression: the inner product between
zero rung ladder and conformal partial waves




Ξ∆,ℓ,F0

�

and the norm of superconformal par-
tial waves




Ξ∆,ℓ,Ξ∆,ℓ

�

. Our strategy is to use known relations between superconformal blocks
and bosonic blocks which enable us to deduce the relationship between the superconformal
partial waves and bosonic conformal partial waves.

The superconformal partial wave is a linear superposition of superconformal blocks:

Ξ∆,ℓ(z, z̄) = S
e∆,ℓG∆,ℓ(z, z̄) +S∆,ℓGe∆,ℓ(z, z̄) . (B.2)

S∆,ℓ are some coefficients determined by ∆ and ℓ, and ∆̃ = −∆ is the 2 dimensional super-
shadow of ∆. By using the shadow symmetry, we can unfold the integral:

F =
∞
∑

ℓ=0

∫ ∞

−∞
ds




Ξ∆,ℓ,F0

�

1− k(∆,ℓ)

S∆̃,ℓG∆,ℓ(z, z̄)



Ξ∆,ℓ,Ξ∆,ℓ

� =
∞
∑

ℓ=0

∫ ∞

−∞
ds
ρMFTG∆,ℓ(z, z̄)

1− k(∆,ℓ)
, (B.3)

where we have defined:

ρMFT ≡
〈Ξ∆,ℓ,F0〉S∆̃,ℓ

〈Ξ∆,ℓ,Ξ∆,ℓ〉
, (B.4)

as the mean field spectral function. When z, z̄→ 0, the superconformal block with 4 identical
operator relates bosonic conformal block by

G∆,ℓ(z, z̄) =
1
|z|

G1,−1
∆+1,ℓ(z, z̄) . (B.5)
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G∆12,∆34
∆,ℓ is the bosonic conformal block in the four point function with primaries∆a, a=1, · · · , 4,

and ∆12 = ∆1 −∆2,∆34 = ∆3 −∆4. The relation enables us to write superconformal partial
waves in terms with bosonic conformal blocks:

Ξ∆,ℓ(z, z̄) =
1
|z|

�

S∆̃,ℓG
1,−1
∆+1,ℓ(z, z̄) +S∆,ℓG

1,−1
1−∆,ℓ(z, z̄)

�

, (B.6)

on the other hand, since the linear combination of blocks appears in the superconformal partial
wave, we must have

Ξ∆,ℓ(z, z̄) =
1
|z|

N (∆,ℓ)Ψ1,−1
∆+1,ℓ(z, z̄) , (B.7)

here Ψ∆12,∆34
∆,ℓ is conformal partial waves in the four point function with primaries

∆a, a = 1, · · · , 4, which can be expressed as the linear combination as the bosonic conformal
block:

Ψ
∆12,∆34
∆,ℓ = S∆34

Ò∆,ℓ
G∆12,∆34
∆,ℓ + S∆12

∆,ℓ G∆12,∆34
Ò∆,ℓ

. (B.8)

∆̂= 2−∆ is the bosonic shadow of ∆. N (∆,ℓ) is the normalization coefficient, which relates
the S∆,ℓ and S∆,ℓ by:

S−∆,ℓ =N (∆,ℓ)S∆34=−1
1−∆,ℓ . (B.9)

The shadow coefficient is given by:

S∆34
∆,ℓ =

πΓ (∆+ ℓ− 1)Γ
�

Ò∆+∆34+ℓ
2

�

Γ
�

Ò∆−∆34+ℓ
2

�

Γ (Ò∆+ ℓ)Γ
�

∆+∆34+ℓ
2

�

Γ
�

∆−∆34+ℓ
2

� , (B.10)

the normalization of the superconformal partial waves follows from the bosonic case:

〈Ξ∆,ℓ,Ξ∆′,ℓ′〉=N (∆,ℓ)N
�

∆′,ℓ′
�



1
|z|
Ψ

1,−1
∆+1,ℓ,

1
|z|
Ψ

1,−1
∆′+1,ℓ′

·

SUSY

=N (∆,ℓ)N
�

∆′,ℓ′
�

¬

Ψ
1,−1
∆+1,ℓ,Ψ

1,−1
∆′+1,ℓ′

¶1,−1

Bosonic

=N (∆,ℓ)2n∆+1,ℓ2πδ
�

s− s′
�

δℓℓ′ ,

(B.11)

here we denote 〈, 〉SUSY and 〈, 〉Bosonic as SUSY/bosonic invariant inner product under properly
gauge fixing, for the detail of measure after gauge fixing, refer to [25]:

〈F, G〉SUSY =

∫

d2z
1

|z|2|1− z|2
FG =

∫

d2z
1

|z|4|1− z|2
(|z|F) (|z|G) = 〈|z|F, |z|G〉∆12=1,∆34=−1

Bosonic .

(B.12)

n∆,ℓ is the normalization coefficients in 2d bosonic conformal partial wave:

n∆,ℓ =
vol
�

Sd−2
�

vol(SO(d − 1))
4(2ℓ+ d − 2)πΓ (ℓ+ 1)Γ (ℓ+ d − 2)

2d−2Γ
�

ℓ+ d
2

�2

1
22ℓ

×
πdΓ (∆− d

2 )Γ (∆̂−
d
2 )

(∆+ ℓ− 1)(∆̂+ ℓ− 1)Γ (∆− 1)Γ (∆̂− 1)
. (B.13)

We need not care about the expression of N (∆,ℓ), since it cancels in the calculation of ρMFT
in the following context. Let us now consider the superconformal zero rung laddder diagram.
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For simplicity, we fix the gauge to be 〈eΦ(0)Φ(z)eΦ(1)Φ(∞)〉. Under this gauge, the zero rung
ladder becomes |z|2∆Φ . The inner product is given as:

〈Ξ∆,ℓ,F0〉=N (∆,ℓ)


1
|z|
Ψ

1,−1
∆+1,ℓ, |z|

2∆Φ

·

SUSY
=N (∆,ℓ)〈Ψ1,−1

∆+1,ℓ, |z|
2∆Φ+1〉1,−1

Bosonic . (B.14)

Within the new gauge set up G= {x1 = 0, x2 = 1, x5 =∞}, one can evaluate the above inner
product as:

〈Ξ∆,ℓ,F0〉=
∫

d2 x1 · · · d2 x5

vol(SO(2,2))
|x12|∆1+∆2 |x34|∆3+∆4

|x12|4|x34|4

×
� |x14|
|x23|

�∆21
� |x14|
|x13|

�∆34

Ψ
∆12,∆34
∆+1,ℓ (x1, . . . , x5)F

1+ 1
2∆Φ

0

�

�

�

�

G

,

(B.15)

in our definition,

Ψ
∆12,∆34
∆,ℓ =

∫

dd x5
|x12|

∆−∆1−∆2

|x25|
∆2+∆−∆1 |x15|

∆1+∆−∆2

�

�x34

�

�

Ò∆−∆3−∆4

|x35|
∆3+Ò∆−∆4

�

�x45

�

�

∆4+Ò∆−∆3

bCℓ(η) , (B.16)

where

|n|J |m|J bCJ

�

n ·m
|n||m|

�

= (nµ1 · · ·nµJ − traces)
�

mµ1
· · ·mµJ

− traces
�

, (B.17)

and

η=
|x15| |x25|
|x12|

|x35|
�

�x45

�

�

�

�x34

�

�

�

x⃗15

x2
15

−
x⃗25

x2
25

�

·
�

x⃗35

x2
35

−
x⃗45

x2
45

�

�

�

�

�

�

G

=
1⃗ · x⃗34

|x34|
. (B.18)

And the zero rung ladder under the gauge is normalized as:

F0 =
|x12|2∆Φ |x34|2∆Φ

|x13|2∆Φ |x24|2∆Φ
. (B.19)

Inserting Eq.(B.16)(B.17)(B.18)(B.19) into Eq.(B.15), we have:

〈Ξ∆,ℓ,F0〉=N (∆,ℓ)
2
π

∫

d2 x3d2 x4
|x34|2∆Φ−∆−2

|x4|2|x3|2∆Φ |1− x4|2∆Φ
× (−1)ℓ bCℓ

�

1⃗ · x⃗34

|x34|

�

=N (∆,ℓ)I(∆,ℓ) . (B.20)

2
π

comes from the Berzinian under this gauge. The integral can be evaluated as:

2
π

∫

d2 x3d2 x4
|x34|2∆Φ−∆−2

|x4|2|x3|2∆Φ |1− x4|2∆Φ
(−1)ℓ bCℓ

�

1⃗ · x⃗34

|x34|

�

=
2
π

∫

d2 x43d2 x4

|x43|2∆Φ−∆−2−ℓ(xµ1
43 . . . xµℓ43 − traces)

|x4|2|x4 − x43|2∆Φ |1− x4|2∆Φ
�

eµ1
· · · eµJ

− traces
�

=
2
π

F
�

∆Φ − 1−
∆

2
−
ℓ

2
,−∆Φ,ℓ

�

�

eµ1
· · · eµℓ − traces

�

∫

d2 x4

xµ1
4 . . . xµℓ4 − traces

|x4|∆+ℓ+2|1− x4|2∆Φ

=
2
π

F
�

∆Φ − 1−
∆

2
−
ℓ

2
,−∆Φ,ℓ

�

F
�

−
∆

2
−
ℓ

2
− 1,−∆Φ,ℓ

�

bCℓ(1⃗) , (B.21)
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where

F (a, b, s)≡ π
sinπ(a+ s)

sinπ(a+ b+ s+ 1)
Γ (a+ 1)Γ (b+ 1)Γ (a+ s+ 1)

Γ (a+ b+ 2)Γ (a+ b+ s+ 2)Γ (−b)
. (B.22)

bCℓ(1) = (e
µ1 · · · eµℓ − traces)

�

eµ1
· · · eµℓ − traces

�

=
1
2ℓ

. (B.23)

Since we have collected all the necessary data, we can get the spectral coefficient function:

ρMFT =
〈Ξ∆,ℓ,F0〉S∆̃,ℓ

〈Ξ∆,ℓ,Ξ∆,ℓ〉
=

N (∆,ℓ)2I(∆,ℓ)S∆34=−1
1−∆,ℓ

N (∆,ℓ)2n∆+1,ℓ
=

I(∆,ℓ)S∆34=−1
1−∆,ℓ

n∆+1,ℓ

= −21−2∆Φ+ℓ csc
�

1
2
π(∆− ℓ+ 2∆Φ)

�

sin
�

1
2
π(∆− ℓ− 2∆Φ)

�

×
Γ (1−∆Φ)2Γ

�1
2(1−∆+ ℓ)

�

Γ
�1

2(∆+ ℓ)
�

Γ (∆Φ)2Γ
�1

2(2−∆+ ℓ)
�

Γ
�1

2(1+∆+ ℓ)
�

×
Γ
�

−∆2 −
ℓ
2 +∆Φ

�

Γ
�1

2(−∆+ ℓ) +∆Φ
�

Γ
�1

2(2−∆− ℓ− 2∆Φ)
�

Γ
�1

2(2−∆+ ℓ− 2∆Φ)
� .

(B.24)

C Two dimensional central charge

Under the gauge {θ̄1 = θ2 = θ3 = θ̄4 = 0}, the superconformal block expansion of four point
function for identical complex scalar reads:

W
�

X̄1, X2, X3, X̄4

��

�

θ̄1=θ2=θ3=θ̄4=0 =




φ̄ (x1)φ (x2)φ (x3) φ̄
�

x4

��




φ̄ (x1)φ (x2)
� 


φ (x3) φ̄
�

x4

�� =
∑

O∈Φ×Φ̄

�

�cΦΦ̄O
�

�

2 G∆,ℓ(u, v) .

(C.1)

The superconformal block can be regarded as linear superposition of conformal block:

G∆,ℓ = G∆,ℓ + a1(∆,ℓ)G∆+1,ℓ+1 + a2(∆,ℓ)G∆+1,ℓ−1 + a3(∆,ℓ)G∆+2,ℓ , (C.2)

a1 =
(∆+ ℓ)

2(∆+ ℓ+ 1)
,

a2 =
(∆− ℓ)

8(∆− ℓ+ 1)
,

a3 =
(∆+ ℓ) (∆− ℓ)

16(∆+ ℓ+ 1)(∆− ℓ+ 1)
.

(C.3)

Notice that when (∆,ℓ) = (1, 1), a2 = a3 = 0. In the limit of u → 0, v → 1, the conformal
block goes to:

G∆,ℓ(u, v)→
(−1)ℓ

2ℓ
u
∆−ℓ

2 (1− v)ℓ . (C.4)

By using the OPE, we have the contribution from stress tensor in the above four point function:

1+
C2
φφ̄T

c

V 2
S1

u−1v

�

(u+ v − 1)2

4uv
−

1
2

�

⊂




φ̄ (x1)φ (x2)φ (x3) φ̄
�

x4

��




φ̄ (x1)φ (x2)
� 


φ (x3) φ̄
�

x4

�� , (C.5)

compare with the linear combination of superconformal blocks, we have:

a1(∆,ℓ)
�

�C
eΦΦR

�

�

2
=

�

�

�Cφ̄φT

�

�

�

2

c
V 2

S1 , (C.6)
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where the Ward identity fixes the OPE coefficient |Cφ̄φT |:

|Cφ̄φT |=
∆Φ
π

, (C.7)

together with Eq.(C.3) and Eq.(C.6), we have:

c =
12∆2

Φ

|C
eΦΦR|2

. (C.8)

References

[1] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg
magnet, Phys. Rev. Lett. 70, 3339 (1993), doi:10.1103/PhysRevLett.70.3339.

[2] A. Kitaev, A simple model of quantum holography, Kavli Institute for Theoretical Physics,
Santa Barbara, USA (2015).

[3] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, J. High En-
ergy Phys. 04, 001 (2016), doi:10.1007/JHEP04(2016)001.

[4] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94,
106002 (2016), doi:10.1103/PhysRevD.94.106002.

[5] D. J. Gross and V. Rosenhaus, All point correlation functions in SYK, J. High Energy Phys.
12, 148 (2017), doi:10.1007/JHEP12(2017)148.

[6] A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,
J. High Energy Phys. 05, 183 (2018), doi:10.1007/JHEP05(2018)183.

[7] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in
two-dimensional nearly anti-de Sitter space, Prog. Theor. Exp. Phys. 12C104 (2016),
doi:10.1093/ptep/ptw124.

[8] K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117, 111601 (2016),
doi:10.1103/PhysRevLett.117.111601.

[9] J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, J. High Energy Phys. 08,
106 (2016), doi:10.1007/JHEP08(2016)106.

[10] S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energy Phys.
03, 067 (2014), doi:10.1007/JHEP03(2014)067.

[11] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025
(2015), doi:10.1103/PhysRevX.5.041025.

[12] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport
in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography,
Phys. Rev. B 95, 155131 (2017), doi:10.1103/PhysRevB.95.155131.

[13] Y. Gu, A. Kitaev, S. Sachdev and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev
model, J. High Energy Phys. 02, 157 (2020), doi:10.1007/JHEP02(2020)157.

[14] D. J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, J. High Energy Phys.
02, 093 (2017), doi:10.1007/JHEP02(2017)093.

33

https://scipost.org
https://scipost.org/SciPostPhys.16.5.140
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1007/JHEP04(2016)001
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1007/JHEP12(2017)148
https://doi.org/10.1007/JHEP05(2018)183
https://doi.org/10.1093/ptep/ptw124
https://doi.org/10.1103/PhysRevLett.117.111601
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1103/PhysRevX.5.041025
https://doi.org/10.1103/PhysRevB.95.155131
https://doi.org/10.1007/JHEP02(2020)157
https://doi.org/10.1007/JHEP02(2017)093


SciPost Phys. 16, 140 (2024)

[15] D. Anninos, T. Anous and F. Denef, Disordered quivers and cold horizons, J. High Energy
Phys. 12, 071 (2016), doi:10.1007/JHEP12(2016)071.

[16] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev mod-
els, Phys. Rev. D 95, 026009 (2017), doi:10.1103/PhysRevD.95.026009.

[17] C. Peng, M. Spradlin and A. Volovich, Correlators in the N = 2 supersymmetric SYK model,
J. High Energy Phys. 10, 202 (2017), doi:10.1007/JHEP10(2017)202.

[18] C.-M. Chang, S. Colin-Ellerin and M. Rangamani, On melonic supertensor models, J. High
Energy Phys. 10, 157 (2018), doi:10.1007/JHEP10(2018)157.

[19] M. Berkooz, A. Sharon, N. Silberstein and E. Y. Urbach, Onset of quan-
tum chaos in random field theories, Phys. Rev. Lett. 129, 071601 (2022),
doi:10.1103/PhysRevLett.129.071601.

[20] M. Berkooz, A. Sharon, N. Silberstein and E. Y. Urbach, Onset of quantum chaos in disor-
dered CFTs, Phys. Rev. D 106, 045007 (2022), doi:10.1103/PhysRevD.106.045007.

[21] J. Murugan, D. Stanford and E. Witten, More on supersymmetric and 2d analogs of the
SYK model, J. High Energy Phys. 08, 146 (2017), doi:10.1007/JHEP08(2017)146.

[22] K. Bulycheva, N = 2 SYK model in the superspace formalism, J. High Energy Phys. 04,
036 (2018), doi:10.1007/JHEP04(2018)036.

[23] C. Peng, N = (0, 2) SYK, chaos and higher-spins, J. High Energy Phys. 12, 065 (2018),
doi:10.1007/JHEP12(2018)065.

[24] J. Kim, E. Altman and X. Cao, Dirac fast scramblers, Phys. Rev. B 103, L081113 (2021),
doi:10.1103/PhysRevB.103.L081113.

[25] C.-M. Chang, S. Colin-Ellerin, C. Peng and M. Rangamani, A 3d disordered superconformal
fixed point, J. High Energy Phys. 11, 211 (2021), doi:10.1007/JHEP11(2021)211.

[26] C.-M. Chang, S. Colin-Ellerin, C. Peng and M. Rangamani, Disordered vector mod-
els: From higher spins to incipient strings, Phys. Rev. Lett. 129, 011603 (2022),
doi:10.1103/PhysRevLett.129.011603.

[27] S. Prakash, Spectrum of a Gross-Neveu Yukawa model with flavor disorder in three dimen-
sions, Phys. Rev. D 107, 066025 (2023), doi:10.1103/PhysRevD.107.066025.

[28] C. Vafa and N. Warner, Catastrophes and the classification of conformal theories, Phys. Lett.
B 218, 51 (1989), doi:10.1016/0370-2693(89)90473-5.

[29] S. S.-T. Yau and Y. Yu, Classification of 3-dimensional isolated rational hypersurface singu-
larities with C*-action, Rocky Mt. J. Math. 35, 1795 (2005).

[30] I. C. Davenport and I. V. Melnikov, Landau-Ginzburg skeletons, J. High Energy Phys. 05,
050 (2017), doi:10.1007/JHEP05(2017)050.

[31] C.-M. Chang, S. Colin-Ellerin and M. Rangamani, Supersymmetric Landau-Ginzburg ten-
sor models, J. High Energy Phys. 11, 007 (2019), doi:10.1007/JHEP11(2019)007.

[32] J. Gomis and S. Lee, Exact Kähler potential from gauge theory and mirror symmetry, J.
High Energy Phys. 04, 019 (2013), doi:10.1007/JHEP04(2013)019.

34

https://scipost.org
https://scipost.org/SciPostPhys.16.5.140
https://doi.org/10.1007/JHEP12(2016)071
https://doi.org/10.1103/PhysRevD.95.026009
https://doi.org/10.1007/JHEP10(2017)202
https://doi.org/10.1007/JHEP10(2018)157
https://doi.org/10.1103/PhysRevLett.129.071601
https://doi.org/10.1103/PhysRevD.106.045007
https://doi.org/10.1007/JHEP08(2017)146
https://doi.org/10.1007/JHEP04(2018)036
https://doi.org/10.1007/JHEP12(2018)065
https://doi.org/10.1103/PhysRevB.103.L081113
https://doi.org/10.1007/JHEP11(2021)211
https://doi.org/10.1103/PhysRevLett.129.011603
https://doi.org/10.1103/PhysRevD.107.066025
https://doi.org/10.1016/0370-2693(89)90473-5
https://doi.org/10.1007/JHEP05(2017)050
https://doi.org/10.1007/JHEP11(2019)007
https://doi.org/10.1007/JHEP04(2013)019


SciPost Phys. 16, 140 (2024)

[33] J. Chen, On exact correlation functions of chiral ring operators in 2d N = (2, 2) SCFTs via
localization, J. High Energy Phys. 03, 065 (2018), doi:10.1007/JHEP03(2018)065.

[34] N. Ishtiaque, 2D BPS rings from sphere partition functions, J. High Energy Phys. 04, 124
(2018), doi:10.1007/JHEP04(2018)124.

[35] E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403, 159 (1993),
doi:10.1016/0550-3213(93)90033-L.

[36] H. Georgi, On-shell effective field theory, Nucl. Phys. B 361, 339 (1991),
doi:10.1016/0550-3213(91)90244-R.

[37] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342, 189 (1995), doi:10.1016/0370-
2693(94)01419-D.

[38] O. Aharony, S. M. Chester and E. Y. Urbach, A derivation of AdS/CFT for vector models, J.
High Energy Phys. 03, 208 (2021), doi:10.1007/JHEP03(2021)208.

[39] E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys.
A 09, 4783 (1994), doi:10.1142/S0217751X9400193X.

[40] A. B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field
theory, J. Exp. Theor. Phys. Lett. 43, 730 (1986).

[41] E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere partition functions and the Zamolod-
chikov metric, J. High Energy Phys. 11, 001 (2014), doi:10.1007/JHEP11(2014)001.

[42] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition func-
tions and an averaged holographic duality, J. High Energy Phys. 01, 130 (2021),
doi:10.1007/JHEP01(2021)130.

[43] A. Maloney and E. Witten, Averaging over Narain moduli space, J. High Energy Phys. 10,
187 (2020), doi:10.1007/JHEP10(2020)187.

[44] N. Benjamin, C. A. Keller, H. Ooguri and I. G. Zadeh, Narain to Narnia, Commun. Math.
Phys. 390, 425 (2021), doi:10.1007/s00220-021-04211-x.

[45] P. Candelas, T. Hübsch and R. Schimmrigk, Relation between the Weil-Petersson
and Zamolodchikov metrics, Nucl. Phys. B 329, 583 (1990), doi:10.1016/0550-
3213(90)90072-L.

[46] N. Afkhami-Jeddi, A. Ashmore and C. Córdova, Calabi-Yau CFTs and random matrices, J.
High Energy Phys. 02, 021 (2022), doi:10.1007/JHEP02(2022)021.

[47] E. Perlmutter, L. Rastelli, C. Vafa and I. Valenzuela, A CFT distance conjecture, J. High
Energy Phys. 10, 070 (2021), doi:10.1007/JHEP10(2021)070.

[48] J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops,
and 6j symbols, J. High Energy Phys. 03, 052 (2019), doi:10.1007/JHEP03(2019)052.

[49] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of
the Lorentzian OPE inversion formula, J. High Energy Phys. 07, 085 (2018),
doi:10.1007/JHEP07(2018)085.

35

https://scipost.org
https://scipost.org/SciPostPhys.16.5.140
https://doi.org/10.1007/JHEP03(2018)065
https://doi.org/10.1007/JHEP04(2018)124
https://doi.org/10.1016/0550-3213(93)90033-L
https://doi.org/10.1016/0550-3213(91)90244-R
https://doi.org/10.1016/0370-2693(94)01419-D
https://doi.org/10.1016/0370-2693(94)01419-D
https://doi.org/10.1007/JHEP03(2021)208
https://doi.org/10.1142/S0217751X9400193X
https://doi.org/10.1007/JHEP11(2014)001
https://doi.org/10.1007/JHEP01(2021)130
https://doi.org/10.1007/JHEP10(2020)187
https://doi.org/10.1007/s00220-021-04211-x
https://doi.org/10.1016/0550-3213(90)90072-L
https://doi.org/10.1016/0550-3213(90)90072-L
https://doi.org/10.1007/JHEP02(2022)021
https://doi.org/10.1007/JHEP10(2021)070
https://doi.org/10.1007/JHEP03(2019)052
https://doi.org/10.1007/JHEP07(2018)085

	Introduction
	Disordered Landau-Ginzburg models
	The models
	A classification
	Review of the Murugan-Stanford-Witten (MSW) model
	Models with two disordered chiral superfields
	I2,q type
	I3,3 type
	I4,3 type
	II3,4 type

	Two-sphere partition function and two-point functions

	Disordered gauged linear sigma models
	Summary and discussion
	N=(2,2) superspace
	Two dimensional superconformal partial wave
	Two dimensional central charge
	References

