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Abstract

We devise new boundary conditions for the near-horizon geometries of extremal BTZ and
Kerr black holes, as well as for the ultra-cold limit of the Kerr-de Sitter black hole. These
boundary conditions are obtained as the higher-dimensional uplift of recently proposed
boundary conditions in two-dimensional gravity. Their asymptotic symmetries consist in
the semi-direct product of a Virasoro and a current algebra, of which we determine the
central extensions.
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1 Introduction and Outlook

When formulating a physical problem, the equations of motion have to be supplemented by
boundary conditions (BCs) on the dynamical variables. In fact, the latter turn out to be as
important as the former [1] (cited in [2]). This is especially clear when the theory is for-
mulated in terms of an action principle and the partition function defined through a path
integral: the boundary conditions specify the off-shell configurations over which the integral
has to be performed. Systems with identical field equations but different boundary conditions
could describe significantly distinct physical phenomena and exhibit different contents (e.g.
closed/open strings, Dirichlet vs Neumann BCs).

Boundary conditions play a crucial role in gauge theories, in particular in theories of grav-
ity. There, the set of metrics satisfying given equations of motion and boundary conditions
constitute the configuration space of the theory, which can be identified with its phase space.
The identification of the symmetries of the phase space are of crucial importance since one
expects, upon quantization, that the Hilbert space of the corresponding quantum theory will
fall into a representation of the symmetry group, for instance in the spirit of the geometric
quantization program [3,4].

In gauge theories, the symmetries of the phase space, mapping one solution onto another
with distinct physical charges, are of great importance. These are called asymptotic symmetries
and form the asymptotic symmetry group (ASG). The study of asymptotic symmetries in gravity
theories has a long history that started in 1962 with the founding papers [5,6] which identified
the BMS group of supertranslations and Lorentz transformations as ASG of four-dimensional
asymptotically flat spacetimes. It was later extended to include superrotations in [7-9] and
diffeomorphisms on the 2-sphere in [10, 11]. The renewed interest in BMS symmetries is
largely due to recent work on BMS invariance of scattering amplitudes [12] and the “infrared
triangle” relating BMS supertranslation symmetries, Weinberg’s soft graviton theorem and the
displacement memory effect [13].

Equally impactful is the discovery by Brown and Henneaux of two-dimensional confor-
mal symmetry in the asymptotic structure of AdS5 gravity [14], an early precursor of the
AdS/CFT correspondence [15]. It brought deep insights into the holographic nature of gravity
and in particular the identification of microscopic degrees of freedom for specific classes of
black holes, either asymptotically AdS; (the BTZ black hole [16,17]) [18] or with an AdS;
factor in their near-horizon geometry [19]. The three-dimensional situation in flat space has
been addressed more recently, identifying the BMS; asymptotic symmetry algebra at null infin-
ity [20,21] and at spatial infinity [22]. The flat limit from AdS; to Minkowski was described
in [21] for the symmetry algebra, and for the full phase space in [23]. The flat spacetime
cosmologies [24,25] — the flat counterparts of the BTZ black holes — and their thermodynam-
ical interpretation in terms of BMS; symmetries were addressed in [26,27]. Interestingly, the
non-uniqueness of the ASG given a vacuum solution and non-trivial zero-mode solutions has
been brought to light only rather recently. Superrotations in four-dimensional asymptotically
flat space have been introduced almost half a century after the works of Bondi, van der Burg,
Metzner and Sachs. In three-dimensional gravity, a variety of alternative boundary conditions
— allowing e.g. for a fluctuating boundary metric, in contrast with the Dirichlet-like Brown-
Henneaux boundary conditions — have been proposed in recent years both for AdS; [28-33]
and Minkowski space [34-36] exhibiting in general different ASGs, hence potentially different
field theory dual interpretations. A particular way of relating different ASGs in three dimen-
sions has been discussed in [37].

Among holographic dualities involving AdS spaces, the two-dimensional case has always
stood out as more challenging. The boundary of AdS, consists in two disconnected pieces, and
finite energy excitations have been observed to destroy the asymptotic geometry [38,39]. This
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has long been a hindrance for a microscopic understanding of extremal higher-dimensional
black holes, as these generally exhibit a near-horizon geometry including an AdS, factor
[40, 41] when the cosmological constant is non-positive (we will later discuss a situation
where AdS, in replaced by Mink, for the near-horizon limit of the ultra-cold Kerr-de Sitter
black hole [42]). It has however recently been found how to circumvent these obstructions
and identify the relevant degrees of freedom describing the low energy physics driving a black
hole away from extremality. It consists in considering nearly-AdS, holography by including
the leading corrections away from pure AdS, [43,44] (for reviews, see e.g. [45,46] or App.B
of [47]). The physics near the horizon of near-extremal black holes in higher dimensions can
be shown to be universally described by a particular occurrence of two-dimensional dilaton
gravity theory — JT gravity [48,49], with certain Dirichlet boundary conditions at the boundary
of AdS,. The latter exhibit time-reparametrization invariance whose generators' are reminis-
cent of (one half of) the Brown-Henneaux ones [50-52]. Again, like in higher dimensions,
different sets of boundary conditions with different symmetries can be considered [53]. Re-
cently, new boundary conditions for AdS, have been proposed [54], where the usual time-
reparametrization symmetry is enhanced with an additional local U(1) symmetry, extending
the symmetry algebra to a Virasoro-Kac-Moody U(1) algebra. The latter represent the sym-
metries of a so-called Warped CFT (WCFT) [55,56], a two-dimensional non-relativistic theory
with chiral scale invariance and SL(2,R) x U(1) global symmetry (see [29,57-62] for some of
their properties).

The goal of the present work will be to explore new boundary conditions for extremal
black holes, in particular determine whether the boundary conditions of [54] and [63] can be
uplifted to the near-horizon geometry in higher dimensions. Our work can thus be regarded
as a proof of principle that certain boundary conditions existing in 2d gravity have a natural
uplift to higher dimensions.

Motivations stem from the ubiquity of AdS, in the near-horizon geometry of extremal
black holes, but also from the Kerr/CFT correspondence [64] — an attempt to relate four-
dimensional extremal Kerr black holes to a chiral CFT in two dimensions. The argument there
parallels the connection between AdS; and 2d CFTs, where the AdS; near-region throat geom-
etry is replaced with the NHEK (near-horizon extreme Kerr) geometry found by Bardeen and
Horowitz [65] via a near-horizon limit. Constant polar sections of the NHEK geometry consist
in deformations of AdS;, termed Warped AdS; (WAdS;) spaces [66-72], where the original
undeformed SO(2, 2) isometries get broken down to SL(2,R) x U(1). Holographic properties
of WAdS; spaces have been explored over the years [56,73-89] as a toy model for Kerr black
holes. For generic Kerr black holes, the relevance of WCFTs was pointed out in [90] in the
spirit of [91]. In the extremal limit, the question is still open.

The Kerr/CFT proposal is based on boundary conditions extending the U(1) part of the
isometry group into a Virasoro algebra, whose computed central charge allowed to reproduce
the macroscopic Bekenstein-Hawking extremal Kerr entropy. This was one of the landmarks
of the original proposal.? From a gravity perspective these boundary conditions might seem
unnatural, as their symmetries do not include all the exact symmetries of the background.
Soon after the Kerr/CFT proposal, other boundary conditions have been proposed extending
instead the SL(2,R) part of the isometries, but found vanishing central extensions [94,95]. In
this work, we will propose new boundary conditions for the NHEK geometry, inspired by the
Godet-Marteau analysis in two dimensions [ 54]. One feature of these boundary conditions and
their symmetries is the dependence of the generators on (retarded) time. Extracting a non-

INote that the reparameterisation symmetry is broken both spontaneously by pure AdS, and explicitly due to
the non-trivial boundary condition for the dilaton.

2This is currently being debated in recent works suggesting instead a vanishing entropy at low temperatures
[92,93].
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trivial symmetry algebra therefore requires to integrate charges over time instead of the usual
constant-time, angular integration. This procedure has been applied both in two and higher
dimensions [51,53,96,97]. Integration over time produces time-averaged charges which can
be seen to give a canonical representation of the asymptotic symmetry algebra with non-trivial
central extensions. The procedure can also be interpreted from the boundary perspective,
in particular when the putative dual theory is two-dimensional (CFT, WCFT, or other) and
enjoys modular invariance. A modular invariant field theory at finite chemical potentials is
naturally defined on a torus with two cycles, the spatial one (angular identifications) and the
thermal one (in particular, time has a period set by the inverse temperature). Its partition
function can be expressed either as a trace over states defined on spatial cycles (with charges
integrated over a spatial cycle) and evolved with the usual hamiltonian operator, or as states
defined on thermal cycles (hence with time periodic in particular and charges integrated over
a thermal cycle) and evolved with the angular momentum operator. This yields one possible
boundary interpretation of a bulk time integration and it is this interpretation that we will
employ throughout this work.

The paper is organized as follows. As a warm-up, we devise in Sect. 2 new boundary
conditions for the near-horizon limit of extremal BTZ black holes, the so-called selfdual orb-
ifold. Kerr/CFT-like boundary conditions had appeared e.g. in [98]. Here we define a new
phase space with WCFT symmetries of which we identify the non-trivial central extensions,
the Virasoro one coinciding with the Brown-Henneaux central charge. In Sect. 3 we turn to
boundary conditions including the NHEK geometry. Following a similar strategy, we define a
phase space, identify their asymptotic symmetries, and compute the asymptotic charges. The
latter are shown to satisfy through their Poisson bracket a WCFT algebra with non trivial cen-
tral extensions both for the Virasoro and current algebra. The Virasoro central extensions is
seen to match that of the original Kerr/CFT correspondence. We address a slightly different
case in Sect. 4. It consists in boundary conditions including the near-horizon limit of the
ultra-cold Kerr-de Sitter black hole in 4 dimensions (where the 3 horizons come to coincide).
There is no known way to associate a CFT or any other boundary theory for that matter to
the ultracold limit [42] (see however [99] studying the response of ultracold black holes to
small perturbations). The latter does not fall in the general category of AdS, near-horizon ge-
ometry. Instead, the AdS, factor is replaced by two-dimensional Minkowski space. As it turns
out, boundary conditions for Mink, have been proposed and their asymptotic symmetries de-
termined [63,100]. We uplift these boundary conditions to 4 dimensions, demonstrating that
they yield well defined charges and asymptotic symmetry algebras, again consisting in a WCFT
algebra of which we compute the central extensions. This provides a first step towards building
a holographic dual for ultracold Kerr-dS black holes. In section 5 we conclude with a summary
and interpretation of our results in the context of holography.

2 Extremal BTZ

2.1 Geometry and near-horizon Limit

The metric of the extremal BTZ black hole is

2
(r?2 —r?)? 2 re
ds?=—~— g2y T 5 2dr2+r2 dqﬁ——zdt ) )
r

r2 (r2—r;)

where r;, is the horizon radius and where the AdS radius [ has been set to one. We consider
the change of coordinates

T T
t==, r’=ri+ep, ¢p=¢+—, (2)
€ €

4
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and then study the near-horizon limit (NHL) by taking ¢ — 0. The extremal BTZ metric
becomes [101]

1dp

ds? = +2pd’rd<p+rhdcp
1 do2 2 2
=280 P a2 de+Lar . 3)
4 o2 2 R| 4P T 5
P T T

In order to apply Godet-Marteau boundary conditions on this metric, we will write it in a
system of coordinates that is similar to the Bondi gauge described in [54] for AdS,. We thus
define new coordinates (u, 7, ¢) such that

u 1 1
= ———, = A’ = — A—lA, 4
T 5 oF p=rpr, ¢ 2rh(¢ nt) @)
and the metric becomes
1 1
s2 = Z(—f‘zduz—Zdud?)—k Z(f’du+d¢7)2. (5)

AN

From now on, we will omit of the coordinates, keeping in mind that the new coordinates
are different from the ones in (3).

2.2 Phase space and asymptotic Killing vectors

Inspired by the Godet-Marteau boundary conditions for AdS, [54], we consider the following
family of metrics

1 1
ds? = Z((—r2 +2P(w)r + 2T (u))du? — Zdudr) + Z(rdu +dyp)? (6a)
1
=ds§d+z(rdu+dgo)2, (6b)
where P and T are arbitrary functions of u. Here, the first part of the metric ds% ; corresponds

to boundary conditions that were previously imposed for 2d gravity [54]. The boundary con-
ditions (6) can be obtained from (5) by applying the finite coordinate transformation

1
u— F(u), r—>]_—_/(r+g/(u)), ¢ —p—Gu). (7)

The functions P, T, F and G are related by

_ F'(u)
P =—9'W+ F5 ®
1 2 F'(u) 1
T(w= Q() +G()]__,() g (w). )
The asymptotic Killing vectors generating the transformations (7) are given by

&= e, + (—re'(w) — '), +{(wW3a,, (10)

where e(u) and {(u) are two arbitrary functions of u. By applying the Lie derivative on the
metric (6), we can also find the variations of P(u) and T (u)
5;P=eP' +e'P+e’"+, (11)
5:T=€eT +2'T—'P+". (12)
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Alternatively, we can define a perturbation h,,, on the background metric (5) such that

hy=0),  hy=0("2), hy=0(7), (13a)
h,=0(r7?), hy,=0("%), h,,=0(r""), (13b)

and the vectors solving the asymptotic Killing equation are given by
E=(e+0(r ) o, +(—re@—'W+0(r ™) 3.+ (Cw+0(r2)) d,. (14

Fixing the coordinate system, by setting g, =—1/4, g., =0 and g, = 0, and assuming that
the remaining components admit an expansion in powers of r

Suu = rguul(u’ (10)+guu0(un 90)+O(r_1) ) (153)
r gu(pO(UJ (10) —2

Sup= gt — —— +0(r ), (15b)
1 ggo(p—l(u: (10) —92

ngz+f+(9(r ), (15C)

one readily obtains that (6) is the unique class of metrics that solves the vacuum Einstein
equations with a negative cosmological constant and the fall-off conditions (13). It is in this
sense, that (13) and (14) are equivalent to (6) and (10). In the following, we will always work
with a class of metrics instead of directly working with boundary conditions.

From now on, we assume that u is periodic with period L € iR, where i is the imaginary
unit, and define the modes of the vectors (10) as

L - L ‘
h=g(e= o™it g=0), ji=g(e=0,¢= =) ae)
21 211
where n € Z. The motivation for this arises from the Euclidean where Euclidean time is

periodic with period 8. Wick rotating, the period of Lorentzian time becomes L = i3 where 3
is the temperature. These modes satisfy a warped Witt algebra under the Lie bracket:

il ] =(m—n)lpn, (17a)
i[lm,jn] = _njm+n’ (17b)
i[jm,jn] =0. (17¢)

2.3 Charge algebra

The infinitesimal charge difference between two geometries g,,, and g, +h
an infinitesimal perturbation, is given by

uv> where hy,,, is

%

The differential form k; associated to an asymptotic Killing vector & is defined by®

V= 1
ke[h,g]= Wg(d"—zx)w(guvghw — &'V R+ £, VR 4 JhVER — 1PV, g4), a9
where n is the space-time dimension, V is the covariant derivative of g,, and h = g""h,,,.
One readily checks that integrating (18) along the direction of ¢ over a constant u surface and

taking the limit r — o0, yields zero — all surface charges vanish. One may obtain non-zero

3See e.g. [102] for a pedagogical account and references.

6
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surface charges by integrating (18) along the direction of u over a constant ¢ surface and
then taking the limit r — oo, which is what we will do in what follows. The motivation for
this stems from holography. In particular, as detailed in the introduction, assuming that the
putative dual field theory is modular invariant, we can use this modular invariance to switch
the angular and temporal cycle for the computation of the charges.

For this, we begin by defining the variation of the metric (6) as

og og
hyy =088,y = a;v6P+ a;ﬂsT. (20)

Computing the variation of the charges, we find

L

! du(edT —C6P). 2D
0

0Q = ——
Qe 167G

We see that this expression can be directly integrated in order to obtain the finite charges

L
Q= AT~ P, 22)

where the metric of the extremal black hole in the NHL, which has P(u) = T(u) = 0, has been
chosen as the background metric. In particular, we define

L

1 L ;
L — — d T _ Zmnu/L, 23
V= Q= g | duT@y e (23)
L
J :Q. :_L dup(u)LeZm‘nu/L. (24)
T 167G J, 2mi

Computing the algebra of these charges under the Dirac bracket yields

i{Lp, Ly} =i8) Ly =(m—n)Lyin, (25a)
L
i{LyyJn} =i8; Ly = —NJpyn — ——m>5 , 25b
l{ m n} L Jam NJmin 167‘EGm m+n,0 ( )
L2
l{Jm,Jn} = l6jn‘]m = mm6m+n’0. (25C)

The algebra described by the relations (25) corresponds to a Virasoro-Kac-Moody U(1)
algebra, the symmetry algebra of a WCFT,

i{L,, L} =(m—n)L, ., + 1C—2m35m+n,0 s (26a)
i{LmsJn} = =N pyn — IKM*S im0 (26b)
i{J,Jdnt = §m5m+n,o s (26¢)
with central charges c, k and k
L L?

c=0,

L = , 2
"= T6nic 16m2G 27)

Note that the central extensions obtained here are manifestly real, since L € iR.
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2.4 Boundary conditions in Schwarzschild-like coordinates

Previously, we applied the Godet-Marteau boundary conditions on the extremal BTZ black hole
by introducing a new system of coordinates (with a retarded time u). With this system of coor-
dinates, the metric was written in a form that was similar to the Bondi gauge for AdS,. Here,
we perform our analysis in the Schwarzschild-like system of coordinates. In these coordinates,
the metric of the extremal BTZ black hole (in the NHL) reads (3). Upon rescaling p — (r,p)/2
and ¢ — @ /(2ry), the metric (3) becomes

1(dp? 1
dSZ = Z (p—pz—pzd’fz) + Z(d@ +pd’f)2 . (28)

We now impose Godet-Marteau boundary conditions on this metric by applying a finite coor-
dinate transformation given by

1
T — F(1), p—>;(p+g’(r)), ¢ — ¢ —G(1). (29)
Defining a function H(7) = F”(7)/F'(7), this transformation yields the metric components

((p +6'(m) H(1)—G"(1))?

1 1
T e e G ERE (302)
= (p+ G (@) H()+6"(x) _p
8rp = 4(P +g/(T))2 o 8rp = Z: (30b)
&op = ;2’ 8oy =0, 8y = 1 (300)
4(p+7'(7)) 4

The metric of the extremal BTZ black hole (in the NHL) corresponds to (30) with G’'(t) = 0
and H(t)=0.
The asymptotic Killing vectors generating the transformations (29) are given by

& =e(1)d; —(pe'(7)+{'(1))3, +¢(1)a,, (31)

where e¢(7) and {(7) are two arbitrary functions of 7. By applying the Lie derivative on the
metric, we find the variations of G’(7) and H(7):

5:G' (1) =€/ (1)G'(7) + e(1)G (1) =/ (7)), (32)
SeH(t) =€ (D)H(T) +€"(7) + e(v)H (7). (33)
In the following, we assume that 7 is periodic with period L. We define modes as
Ly = 6(6 = g/l ¢ = 0) » = 5(6 =0, = i.e”“’”“) : 349
21 2mi

Under the Lie bracket, these modes satisfy the warped Witt algebra (17).
Here, the integral considered in (18) for the computation of the charges is taken over T
while p — o0 and ¢ is constant. Explicitly computing the charges yields

L

! d7 (20(1)G/(7) — e(v)G'(v)? + 26/ (TYH(T) + e(TIH()?) 35)

321G ),

where the metric of the extremal black hole in the NHL, which has §’(7) = H(t) = 0, has
been chosen as the background metric. We define

Qe

L

1 4min L .
L = [ — d ! 2+ + 2) 2nint /L 36
n=Q, =35 = . T( G'(7) 7 H(T)+H(T) 7 , (36)
L
— .—L / L 2nint/L
Jn=Qj, = 390G dr(2G (T))zﬂ_ie . (37)
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The algebra of the charges L, and J,, is given by (26a)-(26¢) with central charges
_3 -0, k=t

2G 16m2G
which are different from those found in (27). We would like to know if it is possible to relate

algebras (26) with different central charges, given by (27) and (38), respectively. By defining
new surface charges [54]

*

c (38)

N 2ix
Ln =L,+ TTLJ” 5
it is possible to go from an algebra with central charges ¢, xk and k to a new algebra with central

charges given by

(39

24K
P
Using this relation, the central charges found here, (c*, k*, k*), can be related to those found
in (27), (c, k, k). Explicitly, we have

c*=c k*=0, k*=k. (40)

(41)

. —L? 16m°G 3
c"=0—-24 =

(16m)2G2 ) 12 2G’
and the relations for k* and k* are trivial. Note that c* is recognized as the Brown-Henneaux
central charge for AdS; gravity [14].

From a holographic perspective, the redefiniton of the charges, equation (39), corre-
sponds to twisting the stress tensor in the boundary theory. This is the boundary counter-
part of performing the change of coordinates from Eddington-Finkelstein-like coordinates to
Schwarzschild-like coordinates in the bulk.

3 Extremal Kerr

3.1 Geometry and NHEK

The analysis of the previous sections can also be applied to extremal Kerr black holes. The
metric of the extremal Kerr black hole in Boyer-Lindquist coordinates reads

A , 2 sin’6 2 p?
a5 = =5 (de—asin® 0d¢)" + == (2 +a*) dp —adt) + %drz +p%d0%,  (42)
where
A=(r—a)?, p2=r2+da%cos’0, a=GM. (43)
We consider the change of coordinates
r—GM n At A t
| — , t=——, = —_——, 44
"T aoMm 2om’ P=% %6m (44
and take the limit A — 0, yielding the near-horizon extremal Kerr (NHEK) geometry
df? . 4G*M?sin?6 _  , A
ds? = G2M2(1 +cos? 0) | Z- +d62 —#2d82 | + 20 74 + pd)2. (45)
2 1+ cos260

“wA”

Hereafter, we will omit of the coordinates. In order to apply Godet-Marteau boundary
conditions to this metric, we write it in a system of coordinates similar to the Bondi coordinates

1
t=u—;, ¢=¢—Inr, (46)

such that the metric becomes
4G>*M?sin® 6

2
1T 020 (de +rdu)”. 47)

ds?> = G2M? (1 + cos? 9) (—rzdu2 —2dudr + d92) +
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3.2 Phase space and asymptotic Killing vectors

Inspired by the Godet-Marteau boundary conditions for AdS, [54], we consider the following
family of metrics

ds? = G®M?(1 + cos? 0)((—r2du?® + 2P(wW)r + 2T (w))du? — 2dudr + d6?)
4G*M?sin’ 6

d du)?
1+ cos20 (dip +rdu)”, (48)

where P and T are arbitrary functions of u. They can be obtained from (47) by applying a
finite coordinate transformation given by

1
u— F(u), r—>;(r+g’(u)), - p—Gu), 0-0. (49)

The functions P, T, F and G are related by

o F' ()
P(u)=—G'(w)+ )’ (50)
_ _1 / 2 / f//(u) o
T(w)=-59W +g W 0 G"(w). (6D
The asymptotic Killing vectors generating the transformations (49) are given by
& =e(w)d, —(re'(w) + ¢'(w)a, + {(wa,, (52)

where e(u) and {(u) are two arbitrary functions of u. By applying the Lie derivative on the
metric (48), we can also find

5c:P=eP' +e'P+e”"+{, (53)
5:T=€T' +2'T-0'P+". (54)

From now on we assume that u is periodic with period L. We define the modes
L i L :
[ = e2mnu/L’O) , P (O, eZmnu/L) , 55
n=¢ (27‘5 =6 2mi (55)

where n € Z. Under the Lie bracket, these modes satisfy the warped Witt algebra (17).

3.3 Charge algebra

We can now compute the surface charges by using the expression (18). For this, we integrate
over u and 6 while keeping ¢ fixed and taking r — ©0. Defining

hyy =088,y = aag;v(Sp - aag;v”’ (56)
we compute
0Qs = Gzsz duJ dOsinf(6Te—06P (), (57)
which upon integration yields
0= f Au(T ()e()~ P (), 58)
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where the NHEK geometry, which has P(u) = T(u) = 0, has been chosen as the background
metric. In particular, we define

eMm? [* L .
L,=Q, = J duT(u) e/t (59)
27 0 21
GMZ ’ L 2minu/L
Jp=Qj =— duP(u)—e . (60)
27 0 211

The charges L,, and J,, respect the algebra (26) with central charges given by

_ LGM? e L*GM?

c=0, « s 22

2mi (61

3.4 Boundary conditions in Boyer-Lindquist coordinates

So far, we studied the NHEK geometry by writing it in a new system of coordinates (with a
retarded time u). Now, we perform the same analysis in Boyer-Lindquist coordinates. Again,
we obtain a phase space of metrics from (45) by applying the finite coordinate transformation

£ — F(1), H]%(rwm), ¢ —d—G(0). 62)

Defining H(t) = F”(t)/F'(t), yields

4r2G*M?sin” 6 /
gt = r1+co;§ — G2M2(1 +cos20) (r + G'(1))?
G*M?(1 + cos? 0) , 2
H(t)— : 63
e (IOILOREO) (63)

(r+g'@®)H(®)—G"(1))

ger = —G>M?(1+cos? ) YOI , (63b)
86 =0, &= %, (63c)
200 = G2M?(1 + cos? 0), 809 =0, &¢pp = % , (63e)

where the NHEK geometry is obtained by setting G’(t) = 0 and H(t) = 0. Hence, the order of
the non-zero fluctuations of the boundary metric is given by

he=0@), h,=0(r"1), h,=0(r"3). (64)
The asymptotic Killing vectors generating the transformations (62) are given by
&(e,0) = e()d, + (—re' ()= ¢'()) 8, + {()0, (65)

where €(t) and {(t) are two arbitrary functions of t.
We recall that the group of exact isometries of the NHEK geometry, SL(2,R) x U(1), is
generated by the Killing vectors

1 2
§1=0, & =to,—ro, glz(t2+r_2) at_Ztrar_;a¢’ (66)
£y =0, 67)
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Comparing these vectors with (65), we find that §_; =&(e =1, =0), §, =&(e =t,{ =0),
&y = &(e = 0, = 1) and that &; correspond to &(e = t2,{ = 0) up to subleading terms
in r. Hence, the asymptotic symmetry group contains all the exact isometries of the NHEK
geometry, which was not the case for the boundary conditions studied in [64].

By applying the Lie derivative on (63), we find

5:G' (1) =€'()G (1) +e()G"(t)—C'(t), (68)
SeH() =€ (tYH(t) +€”(0) + e(D)H'(1). (69)

From now on we assume that t is periodic with period L. We define modes as

L ; L ;
Z — ™ 2mint/L 0) - (O _ ZTEle/L) 70
n g (27_[ e > > ]n g > 27_“ e > ( )
with n € Z, which satisfy (17).
Here, the integral considered in (18) for the computation of the charges is taken over t
and 0 while r — oo and ¢ is constant. Computing the charges explicitly, we find

GM?
Qg T 4n

L
J dt(2G'()Z() =G (t)*e(t) + 2€"(O)H(E) + e(O)H()?), (71)
0

where the NHEK geometry, which has G’(t) = H(t) = 0, has been chosen as the background
metric. In particular, we define

em? (" 4mi L o
L,=Q, = dt (—g’(t)2 + )+ H(t)z) —e2mint/L (72)
4 0 L 27
em? (" L
Ja=Q; = —J dt 2 G'(t) ——e2mint/L (73)
n 4m 0 271

The charges L, and J,, fulfill the algebra (26) with central charges given by

_L’GM?* _JIL?

*=12G6M?=12J, k" =0, ki=—"— =°""_, 74
¢ K 272 272 74

The algebra (26) with central charges (74), (c*,kx*,k*) can be related to the one with
central charges (61), (¢, k, k), by the transformation (39) and (40). Indeed, we have

=12GM?, (75)

L2GM?

LGM2\* 2r2
271

c*=0—24(

and the relations for x* and k* are trivial. Here c* is recognized as the Kerr/CFT central
charge [64].
3.5 Comparison to other boundary conditions for extremal Kerr black holes

We now compare our results with those obtained in [94]. There, the perturbations defined on
the background metric (45) were

hy =0(r?), he=0(r3), he=0(r"2), hy=0(72), (76a)
hey =00, he=0(""), he=0(7), (76b)
hgg = (’)(r_g) 5 h9¢ = O(r_B) B h¢¢, = (’)(r_z) 5 (76C)
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and the vectors solving the asymptotic Killing equation took the general form

&= (G(t) + 6;5;) + O(r_3)) o + (—re/(t) + # + @(r—z)) 5,

+ (C— € r(t) + O(r‘s)) 85 +0(r )0y, (77)

where e(t) is an arbitrary function of ¢t and C is an arbitrary constant. The boundary conditions
(76) are different from ours, compare equation (64). Neglecting the subleading terms, we see
that (65) reduces to (77) upon setting {(t) = C = const. Hence, in both cases the expression
(77) contains the vectors (66)-(67) generating the SL(2,R) x U(1) group of isometries.

In [94] it is claimed that the charges associated to the vectors (77) with C = 0 form a
Virasoro algebra with vanishing central extension, contrary to our result. Indeed, restricting to
a subset of our charges by considering only asymptotic Killing vectors (65) that have {(t) =0,
we obtain a Virasoro algebra (26a) with non-zero central charge.

Different boundary conditions encompassing the NHEK geometry were also presented in
[103,104]. Starting from the background metric (45), a phase space of metrics was obtained
by applying a finite coordinate transformation

2f"(O)f'(6)
4r2f (02 = /(02
. 4T2f/(t)2 _f//(t)Z

t— f()+

4rf/(t)3 ’ (78)
2rf'(0)—f(t)
o~ o+1o8 ST
yielding the line element
ds? = G2M?(1 + cos? 0)(—r2( {f;r)z }) dt? + +d6 )
4G2M?sin? HONAVAY
* 1+ cos26 (d¢+r(1— 2r2 )dt) ’ 79)
with the Schwarzian derivative
AN 177N\ 2
voa=(5)-3(5) (50)

Equivalently, the components of this metric read

2027752 302 2
g, = @M sin* § (1_{f(t),t}) —GZM2(1+c0529)r2( L Y, t}) . (8la)

1+ cos26 2r2 2r2
4G2M?sin? 6 {f(t) t})

=0, g0=0, gp=-o L Zp(q T 81b

8er 8e0 8eo 14 cos?6 r( 2r2 (81b)
G*M?(1 + cos?6)
&rr = 2 > &ro = 0: grqb = O, (81C)
r

—G2M2(1+C052 0) =0 — w (81d)

800 = > 8¢ =VYs &¢op = 1+c0s20 °

which are different from the components (63) that we obtained from applying the transfor-
mation (62). The order of the non-zero fluctuations of the boundary metric

he=0("%), hy,=0("), (82)
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are different from (76) and ours, compare equation (64). Furthermore, while here the com-
ponents only depend on one free function of t, our class of metrics (63a)-(63e) depends on
two. Expanding f(t) = t + e(t) + O(e?), the asymptotic Killing vectors generating the trans-
formations (78) are given by

e//(t)

r

6//(1')
2r2

&= (e(t)+ )at—re’(t)ar— p (83)

where €(t) is an arbitrary function of t. Again, up to subleading terms, these vectors are a
subset of the vectors (65), obtained by setting {(t) = 0.

4 Ultra-cold Kerr-dS

4.1 Geometry and phase space

In this section, we study the near-horizon geometry of the Kerr-dS black hole in the ultracold
limit where the inner, outer and cosmological horizon coincide. In this limit, the metric takes
the form [42]

ds? 2 2 2 7 2
€—2=F(9)(—dt +dr? +a(0)d6%) +1(0)(de +krde)?, (84)
with
v2v/3-3((3—2v3)cos?(6)—1) 24/14+/3—24
ro) = s a(0)= , (85)
2(1/§—3) (7\/5—12)c052(9)+ V3
) _ 2 —
(6)= sin (9)((151/5 26)cos (0)++3 2) ’ A (86)

3(4v3—7)cos(20) +8v3—15

where the bar has been introduced to avoid possible confusions between the parameter k with
the central extension k. Here, we have chosen our units such that the cosmological constant
A = 3/(2, with { being the dS radius. The sign of k is arbitrary and can be changed by sending
t — —t. We change to Eddington-Finkelstein-like coordinates

u=eer ¢=¢—k7r2: (87)
yielding
d%zz =T(6) (—du2 —2dudr + a(9)d92) +7(60) (d@ + l_crdu)2 . (88)
Upon setting ]
¢ =k, y(0)=%, (89)
we get
C%z =T(8)(—du?® — 2dudr + a(8)d6%) + 7(6)(d ¢ + rdu)?. (90)

Inspired by [63], we consider the following family of metrics

‘%2 =T(0)(2(P(wr + T(w))du? — 2dudr + a(8)d6?) + 7(0)(dy + rdu)?,  (91)
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where P and T are arbitrary functions of u. This family can be obtained by applying the finite
coordinate transformation

u— F(u), rﬁ%(r-ﬁ-g’(u)), v — 9o —G(u), (92)

to (90). The functions P, T, F and G are related by

1 G'W)F" (W) F'(W)
T(w)=—=F(u)?—-g" P(u) = .
(=5 F WP ~G" W)+ T2, P = 93)
4.2 Asymptotic Killing vectors
The asymptotic Killing vectors generating the transformations (92) read
£ =e(Wd,—(re'W)+{'W) o, +¢(wWa,, €]

where e(u) and {(u) are two arbitrary functions of u. We take the retarded time u to be periodic
with period L, and define the generators

L . L .
ln=€(€=§62mnu/L,§=0)’ jn=§(€=0,c=—,€2mnu/]“), (95)

211

which obey (17). By applying the Lie derivative on the metric (91), we find the variations of
T(u) and P(u)

5:T(w) = (2T (we' () + €@ T’(w) — Pa)¢(w) + " (w) ), (96)
5¢P(u) = (P(we' (W) + e@)P'(w) + " (w)). (96b)

4.3 Charge algebra
We compute the surface charges from (18), yielding
e ("
Q=—— | du(v3-1)(eT W)~ WPW), 97)
8nG J,

where we have integrated over a constant r, ¢ surface and taken the limit r — c0. Defining

ez (* o
—0 = J3 /L
L=, = 16752GJ0 dulV3 1)@, o8
ez [*
— — _ [ 2minu/L
Jn=Qj, = 167-521'(;JAO du( 3 1)6 " P(u), (98b)
one readily computes that the charges L, J, obey (26) with c =k =0 and
1L0?
_L1IE 5y,
K= 86 ) 9

5 Conclusion
In this paper, we studied new boundary conditions for the near-horizon geometries of extremal

black holes in three and four dimensions. Our boundary conditions for extremal BTZ and Kerr
black holes were obtained by uplifting the boundary conditions by Godet and Marteau [54],
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from two to three or from two to four dimensions. In the case of the ultra-cold Kerr-dS black
hole, our boundary conditions were obtained by uplifting the boundary conditions by Afshar,
Gonzalez, Grumiller and Vassilevich [63 ] from two to four dimensions. This shows that certain
boundary conditions existing in 2d gravity can be uplifted to higher dimensions in a natural
way.

We studied the asymptotic symmetries preserving these boundary conditions and associ-

ated charges. Our charges are computed by integrating over time on a constant azimuthal
angle surface, instead of doing it vice versa (integrating over the azimuthal angle on a con-
stant time surface). To obtain finite charges, Lorentzian time necessarily needs to be periodic
— this is to be understood as the Wick rotation of the periodicity in Euclidean time. Switching
angular and temporal circle for the computation of the charges is motivated from modular
invariance of the putative dual field theory, as detailed in the introduction. This introduces a
time scale L = if3 in our charges and central extensions, where f3 is the temperature. In this
way, we obtain non-trivial charges which span a Virasoro-Kac-Moody algebra, the symmetry
algebra of a warped conformal field theory. The results for the central extensions are summa-
rized in table 1. For the case of the extremal BTZ and Kerr black holes we studied boundary
conditions and the associated asymptotic symmetry algebras in two different systems of coor-
dinates. A priori, such boundary conditions are not equivalent, as when it comes to asymptotic
symmetries and charges, diffeomorphisms can have non-vanishing associated charges and thus
carry non-trivial information. Having different boundary conditions available, the choice of
boundary conditions is related to how the asymptotic boundary of spacetime is approached
— in our case: following spacelike curves in Schwarzschild-like coordinates or null curves in
Eddington-Finkelstein-like coordinates. However, even if one fixes the direction of approach to
the asymptotic boundary, different boundary conditions are possible. The particular choice of
boundary conditions is not unique and depends on the physical situation at hand. Our analysis
for extremal BTZ and Kerr black holes yields, in each case a Virasoro-Kac-Moody algebra, albeit
with different central extensions. We then showed that in both cases these different central
extensions can be related by a mere redefinition of generators, showing that the two algebras
are isomorphic. This mirrors the analysis of [23], which studied the asymptotic symmetries of
three-dimensional asymptotically AdS spacetime in Bondi gauge, yielding a Virasoro algebra,
the algebra found in the previous analysis performed in the Fefferman-Graham gauge [14].
In the case of extremal Kerr black holes we relate our results to boundary conditions which
have previously been studied in the literature [94, 103,104]. For this, we have to truncate
our asymptotic symmetries to a Virasoro & u(1) algebra. Contrary to [94], we find, that the
Virasoro algebra has non-vanishing central charge, paving the way for possible microstate
countings using asymptotic symmetries, in the spirit of [64].
Lastly, we studied the near-horizon geometry of the ultra-cold Kerr-dS black hole whose holo-
graphic interpretation has so far been elusive. We find, using an uplift of the boundary condi-
tions [63], that the asymptotic symmetries span a Virasoro-Kac-Moody algebra, thereby pro-
viding first evidence that warped conformal field theories could be the holographic dual for
such black holes.

While our analysis is purely classical, our results suggest that warped conformal field the-
ories provide a holographic description of extremal black holes. This kinematical observation,
based on symmetries, could be pushed in various directions, such as entropy matchings and
perturbation theory to put the proposal on firmer grounds. In line with this, the question
arises, whether the quantum theories obtained by performing standard canonical quantiza-
tion are unitary. In the case of the extremal Kerr and BTZ black holes, due to the isomorphism
mentioned above, it suffices to consider whether representation with central charges (c, 0, k)
can be unitary. We answer this question in the negative, as in our case ¢ > 0 and k < O, c.f.
table 1, due to L € iR and M € R. However, to have unitary highest-weight representation it is
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Table 1: Central charges obtained for different black holes in different systems of co-
ordinates: the central charges, (c, k, k), found by studying the asymptotic symmetries
in Eddington-Finkelstein coordinates are related to the central charges, (c*, x*, k*),
found by studying the asymptotic symmetries in Schwarzschild-like coordinates due
to the isomorphism (39).

Black hole c K k Relation between the central charges
Extremal BTZ L L2 * o 2
(w,r,¢) 0 671G 1672G C*_CO 24 ke,
2% K = B

Extremal BTZ 3 12 k* =k

(t,0,9) 2G 0 162G
](Extre;nal ;(err 0 Lg,ITsz LzZGn]yz * =c— 24Kk,

w,r,0,p K* =0,
Extremal Kerr 9 L2GM? k*=k
(o) | M0 |
Ultra-cold

2(./3—

Kerr-dS o | HWED L

(u,1,0,9)

necessary to have ¢ > 0 and k > 0, see [56, Section 2.3]. For the case of the ultracold Kerr-dS
black hole, the answer is not clear, since we cannot make the redefintion and representations
with k = 0 and x # 0 have not been discussed in the literature to the best of our knowledge.

In the context of holography, WCFTs with a positive central charge but a negative U(1)
level have appeared generically. Despite featuring negative norm descendant states that vio-
late unitarity, some of their properties are kept under good control. For instance, it was shown
that the modular bootstrap remains feasible in theories with mild violations of unitarity, where
the negative norm states can be resummed into a Virasoro-Kac-Moody character whose con-
tribution to the bootstrap equations is positive [60]. In fact, any WCFT with a negative level
must feature at least two states with imaginary U(1) charge, rendering the Hamiltonian non-
hermitian. However, that feature is essential for the WCFT counterpart of the Cardy formula
to be able to reproduce the entropy of WAdS; black holes [56]. Furthermore, the study of
the extremal limits of WAdS; black holes and WCFTs (in the spirit of [105] for 2d CFTs) has
revealed the emergence of a universal Schwarzian sector (as expected on general grounds for
extremal black holes [44,106]), but only when the seed theory was non-unitary [62,89].

We leave it to future work to exploit our results to establish a potential dual holographic
description of extremal black holes in terms of a warped conformal field theory and study the
microscopic description of extremal black holes.
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