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Abstract

Following the work of [1], we define a generally covariant max-entanglement wedge of a
boundary region B, which we conjecture to be the bulk region reconstructible from B. We
similarly define a covariant min-entanglement wedge, which we conjecture to be the bulk
region that can influence the state on B. We prove that the min- and max-entanglement
wedges obey various properties necessary for this conjecture, such as nesting, inclu-
sion of the causal wedge, and a reduction to the usual quantum extremal surface pre-
scription in the appropriate special cases. These proofs rely on one-shot versions of the
(restricted) quantum focusing conjecture (QFC) that we conjecture to hold. We argue
that these QFCs imply a one-shot generalized second law (GSL) and quantum Bousso
bound. Moreover, in a particular semiclassical limit we prove this one-shot GSL directly
using algebraic techniques. Finally, in order to derive our results, we extend both the
frameworks of one-shot quantum Shannon theory and state-specific reconstruction to
finite-dimensional von Neumann algebras, allowing nontrivial centers.
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1 Introduction

In AdS/CFT, the entanglement wedge EW(B) of a boundary region B is a bulk region b such
that [2–16]

1. All information within b can be reconstructed from B,

2. No information outside b can be reconstructed from B.

In this sense, EW(B) is holographically dual to B. Whether a given b satisfies each condi-
tion depends on the state, and it was shown in [1] that there are many semiclassical gravity
states for which no bulk region simultaneously satisfies both. For such states, therefore, no
entanglement wedge exists.1

When EW(B) does exist, however, one can find it using the following well-known “quantum
extremal surface” (QES) prescription. Consider all bulk regions b with conformal boundary
B. To each b assign the generalized entropy

Sgen(b) :=
A(ðb)

4G
+ S(b) , (1)

where A(ðb) is the area of the edge ðb of b, and S(b) is the von Neumann entropy of quantum
fields in b. The region b is said to be quantum extremal – and its edge ðb is called a quantum
extremal surface – if Sgen(b) is unchanged at linear order under local deformations of ðb.
The entanglement wedge EW(B) is the quantum extremal region b with minimal generalized
entropy. The QES prescription further says that the boundary entanglement entropy is then
given by

S(B) = Sgen(EW(B)) . (2)

1One example is the following. Consider an AdS-size black hole, and let B be a spherical region that is 60% of
the boundary. If the black hole is in a pure state ρpure, EW(B) includes the black hole. If it is in a thermal state
ρtherm, then EW(B) excludes the black hole. However, if the black hole is in a mixture 1

2ρpure+
1
2ρtherm, then EW(B)

does not exist. B has partial information about the black hole.
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For states where no region satisfies both conditions 1 and 2, there is no entanglement
wedge for the QES prescription to find, and the region b found by it has no operational signif-
icance. Still, one might hope to classify the regions satisfying condition 1 and 2 separately by
similar prescriptions. Exactly this was proposed in [1]. The largest region b satisfying condi-
tion 1 was conjectured to be a region named the max-entanglement wedge (max-EW). Mean-
while, the smallest b satisfying condition 2 was conjectured to be a different region named the
min-entanglement wedge (min-EW). Both regions were defined using prescriptions analogous
to the QES prescription. Indeed, it was shown that whenever the min-EW and max-EW coin-
cided – and hence an entanglement wedge satisfying both conditions existed – the max-EW
and min-EW always agreed with the region found by the traditional QES prescription. It is
only when this occurs that the formula (2) for the entanglement entropy S(B) is correct (even
as a leading-order semiclassical approximation).2

The definitions of max- and min-EWs given in [1], however, were valid only for two special
classes of spacetime. The first was spacetimes with a moment of time-reflection symmetry, for
example static spacetimes. The second was spacetimes where all but two quantum extremal
surfaces could be neglected in replica trick computations. In this work, we propose gener-
ally covariant definitions of the max- and min-EWs that are applicable in any spacetime, thus
significantly extending the conjecture of [1].

To define the min- and max-EWs more precisely, we must first review some ideas from
“one-shot quantum Shannon theory”, which lie at the heart of our conjectures. Traditional
(non-one-shot) quantum Shannon theory quantifies the information in a quantum state by
studying tasks involving an infinite number of copies of the same state (often referred to as
“the asymptotic i.i.d. limit”). Consider for example the communication task of quantum state
merging, which will be important for us. The goal is to extract all information in a system
AB given access only to the subsystem B, along with a minimal number of additional qubits
containing information about A.3 When merging a large number of copies of the same quan-
tum state, the minimal number of qubits required, per copy, is given by the conditional von
Neumann entropy S(AB)− S(B) [20].4 On the other hand, the number of qubits required to
merge a single copy of the state, up to errors set by some small ϵ, is given by a different, one-
shot entropic quantity called the smooth conditional max-entropy Hϵmax(AB|B) [21]. (We give
a formal definition of this quantity in Section 2.1.)

A rough definition of max-EW(B) is that it is the largest region b1 such that all information
in b1 can flow to B through some Cauchy slice of b1 via one-shot quantum state merging.5 By
this we mean that every subregion b2 ⊆ b1 with edge in that Cauchy slice satisfies

Hϵmax(b1|b2)<
A(ðb2)

4G
−

A(ðb1)
4G

. (3)

Similarly, min-EW(B) is roughly the smallest region b3 such that all information outside b3
can flow through some Cauchy slice to the complementary boundary subregion B′ via one-
shot quantum state-merging.

Notably, the distinction between these new definitions and the QES prescription comes
entirely from the difference between one-shot and traditional quantum state merging. If tra-
ditional state merging through a Cauchy slice was sufficient to allow bulk reconstruction, the
max- and min-EWs would always be the same and the traditional QES prescription would
always be valid. However, it is instead one-shot quantum Shannon theory that determines

2See also [17–19] for additional discussion.
3One also has access to unlimited classical bits (or more generally zero-bits) containing information about A.
4Note that this conditional entropy may be negative! Bell pairs shared between A and B act as a resource that

can be used to teleport other qubits via the free classical information. When negative, S(AB)− S(B) counts how
many such Bell pairs can be recovered from the state.

5As we shall see, for this prescription to make sense one must additionally require that b1 be (max-)antinormal.

3

https://scipost.org
https://scipost.org/SciPostPhys.16.6.144


SciPost Phys. 16, 144 (2024)

whether bulk information is accessible from a boundary subregion. This is perhaps unsurpris-
ing, because the holographic (bulk-to-boundary) map acts only on a single copy of the bulk
state.

Having defined the min- and max-EW, we then corroborate their conjectured interpreta-
tions by proving that they satisfy a number of important properties. First, whenever the min-
and max-EW coincide, we show that they match the traditional QES prescription for the en-
tanglement wedge. Second, they limit to (a minor modification of) the definitions of [1] in
the appropriate special cases. Finally, we show that they satisfy important consistency checks,
such as nesting: max-EW(B1) ⊇max-EW(B2) if B1 ⊇ B2.

To prove these results, we assume the validity of two new conjectures, closely related to
the “quantum focusing conjecture” (QFC) of [22], which we call the min-QFC and max-QFC.
Like the original QFC, these min- and max-QFCs imply many interesting results of independent
interest.

The structure of the paper is as follows. In Section 2, we briefly review definitions from one-
shot quantum Shannon theory and then generalize them to finite-dimensional von Neumann
algebras. In Section 3, we apply those ideas to quantum gravity to define “generalized min-
and max-entropies” that combine one-shot bulk entropies with area term contributions. In
Section 4, we define one-shot quantum expansions and conjecture one-shot versions of the
quantum focusing conjecture. In Section 5, we propose our definition of the max- and min-EWs
and establish various properties for them. In Section 6, we explain how one-shot generalized
entropies are concretely realized in the recently discovered Type II von Neumann algebras
describing semiclassical black holes. In Section 7, we discuss the conceptual significance of our
results along with open questions. Finally, in appendices, we prove various technical results
about one-shot quantum Shannon theory for algebras and give a definition of state-specific
reconstruction for algebras with centers, generalizing earlier work in [14].

2 One-shot entropies for algebras

It is our goal to discuss the one-shot quantum Shannon theory of subregions in semiclassi-
cal gravity. In this section we take the first step. In Section 2.1, we briefly review the main
definitions from one-shot quantum Shannon theory in the traditional setting of a tensor prod-
uct factorization of Hilbert space. (For a gentler introduction for a quantum gravity audience
see [1]. For a thorough treatment see [23], and also [24–30].) Then in Section 2.2 we gener-
alize those definitions to (finite-dimensional) von Neumann algebras.

2.1 Review: One-shot quantum Shannon theory

For all proofs of theorems in this subsection see [23].

Definition 2.1 (Conditional entropies). Given a density matrix ρAB on HA ⊗HB, the min-
entropy, von Neumann entropy, and max-entropy of AB conditioned on B are

Hmin(AB|B)ρ := −min
σ

inf{λ : ρA ≤ eλ1A⊗σB} , (4)

S(AB|B)ρ := −TrAB[ρAB logρAB] + TrB[ρB logρB] , (5)

Hmax(AB|B)ρ := sup
σ

log
�

TrA

�
Ç

σ
1/2
B ρABσ

1/2
B

��2

, (6)

where ρB = TrA[ρAB], 1A is the identity operator on HA, and the minimization and supremum
are taken over all sub-normalized density matrices σB on HB.
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The (conditional) min-entropy and max-entropy are sometimes called the (conditional)
one-shot entropies.

Remark 2.2. The terminology and notation used in Definition 2.1 is non-standard. More com-
monly, one would refer for example to the conditional von Neumann entropy of A conditioned
on B as

S(A|B) = S(AB)− S(B) ,

with S(C) = −Tr(ρC logρC). Similar notation is also standard for the conditional min- and
max-entropies. However our choice of notation will be convenient later in the algebraic context
where there is no analogue of the subsystem A independent of B.

Remark 2.3. In the special case that HB is trivial, we write Hmin(A)ρ, S(A)ρ, and Hmax(A)ρ
and call them the (unconditional) min-entropy, von Neumann entropy, and max-entropy re-
spectively.

Remark 2.4. While the conditional von Neumann entropy equals the difference of two uncon-
ditional von Neumann entropies, in general the conditional one-shot entropies do not. Instead,
they are bounded by such differences via the chain rule inequality, Theorem 2.10 below.

It is often useful to allow for small errors, and for this one defines the smooth one-shot
entropies. Let P≤(AB) denote the set of density matrices on HA⊗HB with trace less than or
equal to 1.

Definition 2.5 (Purified distance). Let ρ,σ ∈ P≤(AB). The purified distance between ρ and
σ is

P(ρ,σ) :=
Æ

1− F∗(ρ,σ)2 , (7)

where F∗(ρ,σ) is the generalized fidelity between ρ and σ, defined as

F∗(ρ,σ) := F(ρ,σ) +
Æ

(1− Tr[ρ])(1− Tr[σ]) , (8)

and F(ρ,σ) := ∥pρ
p
σ∥1 is the (standard) fidelity, with ∥X∥1 := Tr

p
X †X .

Definition 2.6 (Smooth conditional one-shot entropies). Let ρAB be a normalized density
matrix on HA⊗HB, and let ϵ > 0. The smooth conditional min-entropy and max-entropy are

Hϵmin(AB|B)ρ := sup
ρϵ∈P≤(AB),P(ρϵ ,ρ)≤ϵ

Hmin(AB|B)ρϵ , (9)

Hϵmax(AB|B)ρ := inf
ρϵ∈P≤(AB),P(ρϵ ,ρ)≤ϵ

Hmax(AB|B)ρϵ . (10)

These have the following important properties – see [23] for proofs.

Theorem 2.7 (Duality between min- and max-entropies). For all |ψ〉 ∈HA⊗HB ⊗HC ,

Hmin(AB|B)ψ = −Hmax(AC |C)ψ . (11)

Furthermore, this continues to hold under smoothing:

Hϵmin(AB|B)ψ = −Hϵmax(AC |C)ψ . (12)

Remark 2.8. Theorem 2.7 is the “one-shot version” of the easily-verifiable equality

S(AB|B)ψ = −S(AC |C)ψ . (13)
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Theorem 2.9 (Quantum asymptotic equipartition principle). Let ρAB be a normalized density
matrix on Hilbert space HA⊗HB, and let 0< ϵ < 1. It holds that

lim
n→∞

1
n

Hϵmin(A
nBn|Bn)ρ⊗n = S(AB|B)ρ = lim

n→∞

1
n

Hϵmax(A
nBn|Bn)ρ⊗n , (14)

where An, Bn denote the union of each A, B factor respectively from each of the n copies.

Theorem 2.10 (Chain rule). Let ρABC be a normalized density matrix on Hilbert space
HA⊗HB ⊗HC . For ϵ > 2ϵ′ > 0,

Hϵmin(ABC |C)ρ ≥ Hϵ
′

min(ABC |BC)ρ +Hϵ
′

min(BC |C)ρ +O
�

log
�

1
ϵ − 2ϵ′

��

, (15)

S(ABC |C)ρ = S(ABC |BC)ρ + S(BC |C)ρ , (16)

Hϵmax(ABC |C)ρ ≤ Hϵ
′

max(ABC |BC)ρ +Hϵ
′

max(BC |C)ρ +O
�

log
�

1
ϵ − 2ϵ′

��

. (17)

Theorem 2.11 (Strong subadditivity). Let ρABC be a normalized density matrix on Hilbert space
HA⊗HB ⊗HC . For ϵ ≥ 0, it holds that

Hϵmin(ABC |BC)ρ ≤ Hϵmin(AB|B)ρ , (18)

S(ABC |BC)ρ ≤ S(AB|B)ρ , (19)

Hϵmax(ABC |BC)ρ ≤ Hϵmax(AB|B)ρ . (20)

2.2 One-shot entropies for von Neumann algebras

We now generalize the statements of one-shot quantum Shannon theory to finite-dimensional
von Neumann algebras, possibly with non-trivial center. This requires us to handle a number
of additional subtleties, including an ambiguity in the trace which will be important in gravity.

Although we restrict to finite-dimensional algebras here for simplicity (and because the
subtleties of von Neumann algebras in infinite-dimensions are not very important for our pur-
poses), we expect that our framework generalizes straightforwardly to any finite von Neumann
algebras (including e.g. Type II1 algebras) and that large parts generalize to any semifinite al-
gebra. We will briefly discuss how our results are related to the semifinite Type II∞ algebras
that describe black holes in the semiclassical G→ 0 limit in Section 6.

Our presentation here will be self-contained, although closely related ideas have previously
appeared in the literature. In particular, a related but different definition of conditional one-
shot entropies for von Neumann algberas was considered in [31], which restricted to algebras
of the form MAB = B(HA)⊗MB, for a general Hilbert space HA and general von Neumann
algebra MB, where B(HA) denotes the algebra of bounded operators. In contrast, here we
let AB be associated with a finite-dimensional algebra which does not necessarily factorize
between A and B. Indeed, we avoid talking about the analog of AB \ B at all, because in
our applications it is not necessarily associated to an algebra. In line with this, our notation
starting in this subsection is to denote the joint algebra as simply A. Additionally, entropic
certainty relations closely related to duality (Theorem 2.33) were proven for von Neumann
algebras in [32] and an asymptotic equipartition principle (Theorem 2.34) was proven for the
max-relative entropy in any von Neumann algebra in [33].

We use the following notation. Let L(H) denote the set of linear operators acting on a
Hilbert space H. For a von Neumann algebra M ⊆ L(H), let M′ denote its commutant, the
subset of L(H) that commutes with M. Let Z(M) =M∩M′ denote its center. M is called
a factor if Z(M) is trivial, meaning it contains only multiples of the identity operator.

6
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Recall the following theorem.

Theorem 2.12 (Structure theorem of finite-dimensional algebras (Theorem A.6 of [10])). Let
MA be a von Neumann algebra acting on H and let dimH <∞. Then there is a direct sum
decomposition H = ⊕α

�

HAα ⊗HA′α

�

such that

MA =
⊕

α

�

L(HAα)⊗1A′α

�

,

M′A =
⊕

α

�

1Aα ⊗L(HA′α
)
�

. (21)

Remark 2.13. From now on we will let algebra denote finite-dimensional von Neumann alge-
bra unless otherwise stated.

Given operators p, q ∈ L(H), we say q ≤ p if p− q is a positive semidefinite operator.

Definition 2.14 (Minimal central projector). An operator p ∈ L(H) is a projector if p† = p
and p2 = p. An operator p ∈ Z(M) is a minimal central projector if it is a projector and for
any projector q ∈ Z(M) we have q ≤ p if and only if q = 0 or q = p.

Remark 2.15. Let M be an algebra on H. With respect to the decomposition of H in Theorem
2.12, each minimal central projector in M projects onto a single α-sector in (21), and hence
we will call them pα:

pαH =HAα ⊗HA′α
. (22)

Note these pα satisfy pαpβ = pαδαβ and
∑

α pα = 1.

Remark 2.16. Any operator C ∈ Z(M) can be expanded as C =
∑

α Cαpα with Cα ∈ C.

We now introduce the general notion of a trace that will play an important role.

Definition 2.17 (Trace). Let MA be an algebra on a Hilbert space H. A map trA : MA→ C is
said to be a trace on MA if for all non-zero m1, m2 ∈MA,

trA[m1m2] = trA[m2m1] , (23)

trA[m1m†
1]> 0 . (24)

Remark 2.18. Given a trace trA on MA, then the linear functional tr′A is a trace if and only if
there exists a positive invertible central operator C ∈ Z(MA) such that

tr′A[·] = trA [C( · )] . (25)

Remark 2.19. We will distinguish between the trace on a Hilbert space and a trace on an
algebra, denoting the former by upper-case, Tr, and the latter by lower-case, tr.

Remark 2.20. By Remark 2.16, we can relate any algebraic trace on MA to the Hilbert space
trace on each sector HAα by

trA (·) =
∑

α

CA
α TrAα [pα (·) pα] , (26)

for some set of coefficients CA
α > 0 that can be computed as

CA
α =

1
dim Aα

trA[pα] . (27)

7
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Definition 2.21 (Canonical trace). We define the canonical trace trA,can on MA to be the trace
with CA

α = 1 for all sectors α.

Note the trace Tr is defined by a sum over a complete set of states on a Hilbert space. The
canonical trace is its natural extension to algebras.

Definition 2.22 (Complementary traces). Let MA be an algebra acting on H and let
MA′ :=M′A. Let trA, trA′ be traces for MA, MA′ respectively. We say these traces are comple-
mentary if

CA
α = CA′

α , (28)

with CA
α, CA′

α as defined in (27).

Remark 2.23. As we will see below, gravity will naturally assign complementary traces to the
algebras associated to complementary subregions.

Definition 2.24 (Density matrix). Let M be an algebra on Hilbert space H with trace tr. A
positive semi-definite ρ ∈M is a normalized density matrix if tr(ρ) = 1, and is subnormalized
if tr(ρ)≤ 1. It is said to be a density matrix on M for |ψ〉 ∈H if

tr(ρm) = 〈ψ|m|ψ〉 , ∀m ∈M . (29)

Remark 2.25. Density matrices always exist and are unique. Note that the density matrix ρ
depends not only on the state |ψ〉 and the algebra M but also on the trace tr. In contrast, the
reduced state ψ of |ψ〉 on the algebra M is defined as the linear functional

ψ(m) = 〈ψ|m|ψ〉 , ∀m ∈M , (30)

and is trace-independent.

Remark 2.26. The canonical density matrix ρA,can for the state |ψ〉 on the algebra MA with
respect to the canonical trace trA,can can be written as

ρA,can = ⊕αqαρAα , (31)

where qα = 〈ψ|pα|ψ〉 is the probability of the state |ψ〉 being in sector α and ρAα is the reduced
density matrix of pα |ψ〉 on HAα .

Remark 2.27. The density matrix ρA associated to an arbitrary trace trA can be written as

ρA = C−1ρA,can , (32)

where C =
∑

α pαCA
α is defined as in Remark 2.20.

Definition 2.28 (Conditional entropies). Let MB ⊆MA be algebras on a Hilbert space H,
with traces trB and trA respectively. Given a state |ψ〉 ∈ H, the min-entropy, von Neumann
entropy, and max-entropy of A conditioned on B are

Hmin(A|B)ψ := −min
σ

inf{λ : ρA ≤ eλσB} , (33)

S(A|B)ψ := − trA(ρA logρA) + trB(ρB logρB) , (34)

Hmax(A|B)ψ := sup
σ

log
�

trA

Ç

σ
1/2
B ρAσ

1/2
B

�2

, (35)

where ρA, ρB are sub-normalized density matrices on MA, MB for |ψ〉 and the minimization
and supremum are taken over all sub-normalized density matrices σB on MB, i.e. trBσB ≤ 1.
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The (conditional) min-entropy and max-entropy are sometimes called the (conditional)
one-shot entropies. We will often drop the ψ subscript when it is clear from context.

Remark 2.29. In the special case that MB is trivial, including only multiples of the identity,
we write Hmin(A)ψ, S(A)ψ, and Hmax(A)ψ and call them the (unconditional) min-entropy, von
Neumann entropy, and max-entropy respectively.

Given a von Neumann algebra M with trace tr, let P≤(M) denote the set of subnormalized
density matrices on M.

Definition 2.30 (Purified distance). Let ρ,σ ∈ P≤(M). The purified distance between ρ and
σ is

P(ρ,σ) :=
Æ

1− F∗(ρ,σ)2 , (36)

where F∗(ρ,σ) is the generalized fidelity between ρ and σ, defined as

F∗(ρ,σ) := F(ρ,σ) +
Æ

(1− tr[ρ])(1− tr[σ]) , (37)

and F(ρ,σ) := ∥pρ
p
σ∥1 is the (standard) fidelity, with ∥X∥1 := tr

p
X †X .

Definition 2.31 (Smooth conditional one-shot entropies). Let MB ⊆MA be algebras on a
Hilbert space H. Let |ψ〉 ∈H, ϵ > 0. Furthermore, let ρ ∈MA be a density matrix on MA for
|ψ〉. The smooth conditional min-entropy and max-entropy are

Hϵmin(A|B)ψ := max
ρϵ∈P≤(MA),P(ρϵ ,ρ)≤ϵ

Hmin(A|B)ρϵ , (38)

Hϵmax(A|B)ψ := min
ρϵ∈P≤(MA),P(ρϵ ,ρ)≤ϵ

Hmax(A|B)ρϵ . (39)

Theorem 2.32. Let MB ⊆MA be algebras on a Hilbert space H, and |ψ〉 ∈H. Then

Hmin(A|B)ψ ≤ S(A|B)ψ ≤ Hmax(A|B)ψ . (40)

Furthermore, this continues to hold for sufficiently small ϵ > 0,

Hϵmin(A|B)ψ ≤ S(A|B)ψ ≤ Hϵmax(A|B)ψ . (41)

Proof. See Appendix A.4.

Theorem 2.33 (Duality between min- and max-entropies). Let MB ⊆MA be algebras on a
Hilbert space H and denote their commutants by MA′ :=M′A and MB′ :=M′B. Assuming that
the traces for MA, MA′ and MB, MB′ are respectively complementary, then for any pure state
|ψ〉 ∈H it holds that

Hmin(A|B)ψ = −Hmax(B
′|A′)ψ . (42)

Furthermore, this continues to hold under smoothing:

Hϵmin(A|B)ψ = −Hϵmax(B
′|A′)ψ . (43)

Proof. See Appendix A.1. Using the appendix, one can check that the equality continues to
hold under smoothing because of the choice to use the purified distance (36) as the metric on
states. Other metrics – like the trace distance – would have led to an inequality.6

6These duality relations are an example of so-called entropic certainty relations which were explored in the
setting of finite dimensional quantum systems in [34] and discussed in the context of QFT in [32]. We thank
Thomas Faulkner for pointing out this connection to us.
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Theorem 2.34 (Quantum asymptotic equipartition principle). Let MB ⊆MA be algebras on a
Hilbert space H, let |ψ〉 ∈H, and let 0< ϵ < 1. It holds that

lim
n→∞

1
n

Hϵmin(A
n|Bn)ψ⊗n = S(A|B)ψ = lim

n→∞

1
n

Hϵmax(A
n|Bn)ψ⊗n . (44)

Proof. See Appendix A.3.7

Theorem 2.35 (Chain rule). Let MA ⊇MB ⊇MC be von Neumann algebras on Hilbert space
H, and let |ψ〉 ∈H. The chain rule states that for ϵ > 2ϵ′ > 0, then

Hϵmin(A|C)≥ Hϵ
′

min(A|B) +Hϵ
′

min(B|C) +O
�

log
�

1
ϵ − 2ϵ′

��

, (45)

S(A|C) = S(A|B) + S(B|C) , (46)

Hϵmax(A|C)≤ Hϵ
′

max(A|B) +Hϵ
′

max(B|C) +O
�

log
�

1
ϵ − 2ϵ′

��

. (47)

Proof. See Appendix A.5.

Definition 2.36 (Partial trace). Let M ⊃ N be algebras with corresponding traces trM and
trN . A partial trace from M to N is a completely positive and trace-preserving linear map
trM→N : M→N which obeys the so-called bi-module property8

trM→N [n1mn2] = n1 trM→N [m]n2 , ∀n1, n2 ∈N and m ∈M . (48)

Remark 2.37. One can check that in the setting of the previous section, if we have
HX Y =HX ⊗HY , with algebras MX = L(HX ) and MY = L(HY ), then the map

trX Y→Y [·] = TrX [·] , (49)

defines a partial trace from L(HX Y )→ L(HY ).

Theorem 2.38. There exists a unique partial trace trM→N for any algebras M ⊇N and pair of
traces trM and trN .

Proof. Given a density matrix ρM ∈M, there is a unique density matrix ρN ∈ N such that
for all n ∈N ,

trM[ρMn] = trN [ρN n] . (50)

Define trM→N : M→N such that for all ρM it holds that trM→N [ρM] = ρN . Then linearly
extend trM→N to all operators in M. It follows that for all m ∈M and n ∈N ,

trN [trM→N [m]n] = trM[mn] . (51)

By construction, trM→N is trace-preserving and completely positive. Moreover, trM→N obeys
the bi-module property, because for all n ∈N ,

trN (trM→N (n1mn2)n) = trM (n1mn2n) = trN (n1 trM→N (m)n2n) , (52)

where we used cyclicity of the trace and twice used (51).
Now we prove this trM→N is the unique trace-preserving linear map satisfying the bi-

module property. Suppose t̂rM→N is another partial trace. Then for all density matrices
ρ ∈M,

trN
�

t̂rM→N (ρ)n
�

= trN
�

t̂rM→N (ρn)
�

= trM (ρn) , (53)

where in the first equality we used the bi-module property and in the second we used the fact
that t̂rM→N is trace-preserving. We see that t̂rM→N (ρ) = trM→N (ρ) for any density matrix
ρ and hence by linearity t̂rM→N = trM→N .

7During the preparation of this manuscript, a proof of a (closely related) AEP for the max-relative entropy on
any von Neumann algebra (including infinite-dimensional ones) was independently given in [33].

8For a definition of complete-positivity, see for example [35].
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Remark 2.39. Note that this construction of a partial trace used the fact that all operators
m ∈M have a well-defined trace. Semifinite (infinite-dimensional) von Neumann algebras of
Type I∞ and Type II∞, do not have this property.

Theorem 2.40 (Strong subadditivity). Let MA0
, MA1

, MB0
, and MB1

be von Neumann alge-
bras, each with a trace, acting on H with the following inclusion structure: MA0

⊃MB0
⊃MB1

and MA0
⊃MA1

⊃MB1
. Finally, let the partial trace trB0→B1

: MB0
→MB1

be no less than the
restriction to MB0

of the partial trace trA0→A1
: MA0

→MA1
, i.e. trB0→B1

≥ trA0→A1
|B0

. Then for
ϵ > 0

Hϵmin(A0|B0)≤ Hϵmin(A1|B1) , (54)

S(A0|B0)≤ S(A1|C1) , (55)

Hϵmax(A0|B0)≤ Hϵmax(A1|B1) . (56)

Proof. See Appendix A.6.

3 One-shot entropies for gravity

In this section we propose how to discuss the one-shot quantum Shannon theory of subregions
in semiclassical gravity, specializing from the algebraic definitions of the previous section.

3.1 Definitions

Let M be an (AdS-)globally hyperbolic Lorentzian spacetime with conformal boundary M∂ and
let J± denote the causal future and past. Given any set s ⊂ M , ∂ s denotes the boundary of
s in M . The interior of s is s \ ∂ s and is denoted int(s). For figures illustrating the following
definitions, we refer the reader to Section 4.1 of [62].

Definition 3.1. The spacelike complement of a set s ⊂ M is denoted s′, and is defined as the
interior of the set of points that are spacelike related to all points in s,

s′ := int
�

M \ J+(s) \ J−(s)
�

. (57)

Definition 3.2. A wedge is a set a ⊂ M that satisfies a = a′′.

Remark 3.3. Wedges are open.

Remark 3.4. The intersection of two wedges can be shown to be a wedge. Similarly, the
spacelike complement of a wedge is itself a wedge.

Definition 3.5. Given two wedges a and b, the wedge union is defined as

a ⋓ b := (a′ ∩ b′)′ . (58)

By the above remark, a ⋓ b is a wedge.

Definition 3.6. The edge of wedge a is defined as

ða := ∂ a ∩ ∂ a′ . (59)

Conversely, a wedge is fully characterized by specifying its edge and one spatial side of that
edge as the inside.
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3.2 Generalized one-shot entropies

We take semiclassical gravity to mean quantum field theory (QFT) on a curved background,
coupled to gravity with Newton’s constant G sufficiently small for perturbative approximations
to be valid.

In regular QFT – without the coupling to gravity – the algebra Mb of operators associated
to a wedge b is generally of type III and density matrices do not exist. Nonetheless, one can
regulate the theory, for example by introducing a lattice cutoff with spacing δ. The von Neu-
mann entropy S(b) is then well defined in the regulated theory but diverges as the regulator
is taken away, δ→ 0, with the leading divergence proportional to the area A(ðb).

In semiclassical gravity the situation is expected to be better (see for example [22] and
references therein, and [36–38] for relevant recent work). The physical entropy associated to
a wedge is the generalized entropy

Sgen(b) =
A(ðb)

4G
+ S(b) , (60)

which is thought to be UV finite, the divergence in S(b) cancelling against a counterterm in
A(ðb)/4G.9

In the same spirit, we conjecture that the min-entropy and max-entropy also admit UV finite
“generalized” versions [1]. To introduce them, it will be helpful to UV regulate semiclassical
gravity, say again by some δ such that δ→ 0 removes the regulator. In this cutoff theory, the
algebra Mb has a non-trivial center, generated by the observables measurable in both b and
its complement b′ [10]. In particular this includes geometric features of the surface ðb, such
as the operator Â(ðb) measuring the area of ðb, which by Remark 2.16 takes the form

Â(ðb) = ⊕αAα , (61)

where Aα ∈R is the area of states in sector α.
If the regulated algebras are finite-dimensional, we can also define canonical density ma-

trices for the cutoff algebra Mb. As discussed in Section 2.2, these take the form

ρb,can = ⊕α qαρb,α , (62)

where qα is a probability distribution over α sectors and ρb,α is the normalized density matrix
of the quantum fields in b conditioned on the center observables being in sector α.

Canonical density matrices are not regulator independent, however, and are not expected
to have a nice limit as we take δ→ 0. Instead, we focus on a trace which is expected to be UV
finite.

Definition 3.7 (Generalized trace). The generalized trace is the canonical trace with an inser-
tion of the exponential of the area operator,

trb,gen[·] := trb,can

�

eÂ(ðb)/4G(·)
�

. (63)

We will sometimes drop the subscript b when it is clear from context. Since eÂ(ðb)/4G is
central in the algebra Mb, trgen is a trace, with coefficients C b

α as defined in (27) given by

C b
α = eAα/4G . (64)

Definition 3.8 (Generalized density matrices). The generalized density matrices are

ρb,gen := e−Â(ðb)/4Gρb,can . (65)
9Subleading divergences in S(b) are expected to be renormalized by other geometric terms in the gravitational

entropy [22,39].
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The von Neumann entropy of a generalized density matrix is given by

S(ρb,gen) = −〈logρb,gen〉= 〈Â〉/4G − 〈logρb,can〉= Sgen(b) . (66)

Since generalized entropy is strongly expected to be UV-finite and regulator independent, it is
reasonable to expect that generalized density matrices – unlike canonical density matrices –
are also regulator independent. Indeed, as we discuss in Section 6, the continuum algebra Mb
describing a black hole in the strict G → 0 limit is a Type II∞ von Neumann factor [36, 37].
As a result, the continuum algebra has a unique trace and hence unique density matrices
(up to normalization); the ambiguity present in regulated descriptions where the algebras
have centers vanishes. One can show that this trace indeed describes the δ → 0 limit of the
generalized trace rather than e.g. the canonical trace.

With the definition of generalized traces and density matrices in hand, we can define con-
ditional generalized one-shot entropies using the definitions given in Section 2.2.

Definition 3.9 (Generalized conditional entropies). For any pair of wedges a ⊂ b, we define

Hmin,gen(b|a)ψ := −min
σ

inf{λ : ρb,gen ≤ eλσa,gen} , (67)

Sgen(b|a)ψ := Sgen(b)ψ − Sgen(a)ψ , (68)

Hmax,gen(b|a)ψ := sup
σ

log
�

trb,gen

r

σ
1/2
a,genρb,genσ

1/2
a,gen

�2

, (69)

where Sgen(x) = − trgen[ρx ,gen logρx ,gen].

Remark 3.10. After smoothing, these define the smooth conditional generalized entropies.

Remark 3.11. For notational convenience, we will sometimes define generalized entropies for
sets s that are not a wedge. In this case, Sgen(s) := Sgen(s′′).

Of these three quantities, the difference in generalized entropies Sgen(b|a) is the most
familiar, with a straightforward physical interpretation:

Sgen(b|a) =
〈A(ðb)〉 − 〈A(ða)〉

4G
+ S(b)− S(a) , (70)

where 〈A(ðb)〉 , 〈A(ða)〉 are the expectation value of area for the edges of regions b and a
respectively.

What about the (smooth) generalized one-shot entropies? Consider the unconditional
generalized min-entropy,

Hmin,gen(b) = − inf
¦

λ : e−Â(ðb)/4Gρb,can ≤ eλ
©

. (71)

This equals Hmin,gen(b) = − logλlargest, where λlargest is the largest eigenvalue of the operator

e−Â(∂ b)/4Gρb. In other words, while the generalized von Neumann entropy is the expecta-
tion value of Â/4G − logρ, the generalized min-entropy is the minimal possible value for the
operator Â/4G − logρ. The smooth generalized min-entropy is closely related: it is a lower
confidence bound on Â/4G − logρ.

The unconditional generalized max-entropy

Hmax,gen(b) = 2 log
�

trgenρ
1/2
b,gen

�

, (72)

is the Rényi-1/2 entropy of the density matrix e−Â(ðb)/4Gρb,can with respect to the generalized
trace. Just like ordinary Rényi-1/2 entropies, it is typically dominated by the many small
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eigenvalues of e−Â(ðb)/4Gρb,can. As a result, the smooth generalized max-entropy is an upper
confidence bound on Â/4G − logρ.

As emphasized in Section 2.1, conditional one-shot entropies cannot generally be written as
differences between unconditional entropies. Instead they are best understood operationally;
see e.g. [27]. However there exist interesting classes of states [1] for which (regulated) bulk
smooth min-, von Neumann, and smooth max-entropies all differ at O(1/G) while fluctations
in areas are O(1/

p
G). In that case, we can treat the area terms in Definition 3.9 as c-numbers

at leading order. We then obtain

Hϵmin/max,gen(b|a)ψ ≈ Hϵmin/max,can(b|a)ψ +
A(ðb)− A(ða)

4G
, (73)

where A(ðb) and A(ða) are the classical areas of the respective surfaces.
We emphasize however that this approximation only makes sense if Hϵmin/max,can is ex-

plicitly regulated. While the leading divergence in Hϵmin/max,can as δ → 0 is proportional to
A(ðb)−A(ða) as for the conditional von Neumann entropy, the subleading divergences will be
different.10 As a result, Hϵmin/max,can cannot be rendered UV-finite by the addition of the same
area difference that works for the conditional von Neumann entropy. On the other hand we do
expect Definition 3.9 to be genuinely UV-finite. We provide some evidence for this in Section
6 where we show how to define certain examples of finite conditional generalized one-shot
entropies in the continuum G→ 0 theory.

We conclude this section by noting two important properties of generalized one-shot en-
tropies that are inherited from the corresponding properties of general algebraic one-shot en-
tropies from Section 2.2.

Proposition 3.12 (Duality). Let a ⊂ b be wedges and let a′, b′ be their complements. Then
for any pure state |ψ〉 ∈H and ϵ ≥ 0, it holds that

Hϵmin,gen(b|a)ψ = −Hϵmax,gen(a
′|b′)ψ . (74)

Proof. Since each pair of complementary regions shares a common edge ðb=ðb′ and ða=ða′,
we have

C b
α = C b′

α = eAα(ðb)/4G , (75)

with a similar equality holding for a and a′. The generalized traces on b and b′ (and a and a′)
are therefore complementary in the sense of Definition 2.22. Consequently, the result follows
from Theorem 2.33.

Proposition 3.13 (Strong subadditivity). Let a ⊇ b, c be bulk subregions with a∩ b′ ⊆ c. Then

Hϵmin,gen(a|c)≤ Hϵmin,gen(b|c ∩ b) , (76)

Sgen(a|c)≤ Sgen(b|c ∩ b) , (77)

Hϵmax,gen(a|c)≤ Hϵmax,gen(b|c ∩ b) . (78)

Proof. Note that we have the inclusion structure Ma ⊇Mc ⊇Mb∩c and Ma ⊇Mb ⊇Mb∩c .
According to Theorem 2.40, we then just need to verify that tra→c,gen |b ≤ trb→b∩c,gen. Consider
a general operator Ob ∈Mb. By definition,

tra→c,gen[Ob] = e−Â(ðc)/4Gtra→c, can

�

eÂ(ða)/4GOb

�

, (79)

trb→b∩c,gen[Ob] = e−Â(ð(b∩c))/4Gtrb→b∩c, can

�

eÂ(ðb)/4GOb

�

. (80)

10UV-divergences in QFT entanglement entropies come from UV Rindler-like modes near the edges of regions.
The leading divergence is linear in the number of such modes n that are below the UV-cutoff. Thanks to the
asymptotic equipartition principle, this O(n) divergence is the same for both one-shot and von Neumann entropies.
However there will be subleading O(

p
n) differences between them that will still diverge as n→∞.
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Because Ma ⊃Mb, then Â(ða) commutes with Â(ðb) and so we can write the exponential for
the area operator for a as

eÂ(ða)/4G = eÂ(ðb)/4GeÂ(ða)/4G−Â(ðb)/4G . (81)

By the assumption that a ∩ b′ ⊆ c, we further know that Ma ∩M′b ⊆ Mc . Since
Â(ða), Â(ðb) ∈ Ma ∩M′b, then also Â(ða) − Â(ðb) ∈ Mc . Using the bi-module property,

we can then pull eÂ(ða)/4G−Â(ðb)/4G out of the partial trace so that

tra→c,gen[Ob] = e
1

4G (−Â(ðc)+Â(ða)−Â(ðb))tra→c,can

�

eÂ(ðb)/4GOb

�

. (82)

If we use the fact that in a local (regulated) quantum field theory, the restriction of tra→c, can to
Mb is simply trb→(b∩c), can, then the necessary inequality holds if we can prove the following
inequality on areas

−A(ðc) + A(ða)− A(ðb)≤ −A(ð(b ∩ c)) , (83)

but this is just the statement of strong sub-additivity for areas, a true fact about geometric
area.

4 One-shot quantum expansion and focusing conjectures

The goal of this section is to define new, one-shot versions of ideas that have been impor-
tant in the study of quantum gravity: min- and max-quantum expansions and min- and max-
quantum focusing conjectures (QFC). While also of intrinsic interest themselves, these will
play vital roles in Section 5, helping us define and prove theorems about covariant min- and
max-entanglement wedges.

4.1 Min- and max-quantum expansions

Given a wedge a, there are two outwards-directed null hypersurfaces orthogonal to ða, one
future-directed (past-directed) which we will call N+ (N−), forming part of the boundary of
the causal future and past of a respectively. Let N denote either one. Through each point of
ða passes one generator of N . Let λ be an affine parameter along this generator, such that
λ = 0 on ða and λ increases away from ða. This defines a coordinate system (λ, y) on N . A
continuous function V (y) ≥ 0 defines a slice of N , consisting of the point on each generator
y for which λ = V . Any such V defines a new wedge a(V ) with ða(V ) = V and the inside
chosen in the direction of decreasing λ.

A local deformation of wedge a can be defined as follows. Consider ða and a second slice of
N that differs from ða only in a neighborhood of generators with infinitesimal area A around
a generator y0:

VA,δ,y0
(y) := δ fA,y0

(y) . (84)

Here δ ≥ 0 and we define fA,y0
= 1 in a neighborhood of area A around point y0 and fA,y0

= 0
everywhere else (smoothed out to be appropriately continuous). See Figure 1.

Definition 4.1 (von Neumann expansion). Let a be a wedge, let y0 ∈ ða, and let V+ (V−)
be associated to a future-directed (past-directed) outwards null hypersurface orthogonal to
ða. The future (past) von Neumann expansion Θ+[a, y0] (Θ−[a, y0]) is the derivative of the
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Figure 1: This figure depicts the deformation of a wedge. The undeformed wedge is
a with edge ða drawn with the solid line. We deform the region a by deforming ða
in the null direction by the bump V+A,δ,y0

at transverse coordinate y0 with width A
and height δ. This takes ða to the dashed line. The new, deformed wedge a(V+A,δ,y0

)
then has edge given by V+A,δ,y0

. Expansions are then defined via limits as A,δ→ 0.

generalized entropy with respect to local deformation (84) along the future (past) null con-
gruence:11

Θ±[a; y0] := lim
A→0

lim
δ→0

4G
Aδ

Sgen

�

a
�

V±A,δ,y0

�

|a
�

. (85)

Remark 4.2. An equivalent but perhaps more familiar definition is

Θ± [a; y0] =
4G
p

h(y0)

δ

δV (y0)
Sgen(a) , (86)

where h is the induced area element on ða. We use (85) because it nicely generalizes to the
one-shot expansions.

Remark 4.3. The von Neumann expansion can be decomposed as

Θ± [a; y0] = θ[a; y0] + 4G lim
A→0

lim
δ→0

1
Aδ

S
�

a
�

V±A,δ,y0

�

|a
�

, (87)

where θ is the classical expansion and S(a(V )|a) is the conditional von Neumann entropy of
a(V ) conditioned on a.

This von Neumann expansion is used in a number of conjectures, such as the generalized
second law (GSL) and QFC, which we will review momentarily. We first construct the following
one-shot versions of the quantum expansions.

Definition 4.4 (One-shot expansions). Let a be a wedge, let y0 ∈ ða, and let V+ (V−) be
associated to a future-directed (past-directed) outwards null hypersurface orthogonal to ða.

11Θ± is often called the quantum expansion, to emphasize the use of generalized entropy instead of just the area.
We use this new name to distinguish the use of generalized von Neumann entropy from the generalized one-shot
entropies.
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Let ϵ > 0. The future (past) max-expansion Θϵ+,max[a, y0] (Θϵ−,max[a, y0]) is the smooth con-
ditional generalized max-entropy associated to local deformation (84) along the future (past)
null congruence:

Θϵ±,max[a; y0] := lim
A→0

lim
δ→0

4G
Aδ

Hϵmax,gen

�

a
�

V±A,δ,y0

�

|a
�

. (88)

The future (past) min-expansion Θϵ+,min[a, y0] (Θϵ−,min[a, y0]) is the smooth conditional gener-
alized min-entropy associated to local deformation (84) along the future (past) null congru-
ence:

Θϵ±,min[a; y0] := lim
A→0

lim
δ→0

4G
Aδ

Hϵmin,gen

�

a
�

V±A,δ,y0

�

|a
�

. (89)

Remark 4.5. We shall assume that these limits are well defined and depend continuously on
the wedges a(V ) for semiclassical states.

Remark 4.6. Unlike the von Neumann expansion, the one-shot expansions cannot in general
be decomposed as in Remark 4.3, with one term pertaining to the area and a separate term
to the one-shot entropy. Furthermore, the one-shot conditional generalized entropies, e.g.
Hϵmax,gen(a(V )|a), cannot be written as a difference by Remark 2.4, and therefore under the
limits they do not describe a standard derivative.

These min- and max-expansions inherit useful properties from the generalized min- and
max-entropies. In the following we assume the global state is pure for simplicity, such that
for example Sgen(a) = Sgen(a′). This can always be achieved by purifying the system with a
reference R and including R ⊂ a′ when R ̸⊂ a.

Lemma 4.7 (Complementary expansions). It holds that

Θϵ±,min[a; y0] = −Θϵ∓,max[a
′; y0] . (90)

Proof. Let b := a(VA,δ,y0
) denote a wedge defined by local deformation of a, for some finite

A,δ. By Theorem 2.33, it holds that Hϵmin,gen(b|a) = −Hϵmax,gen(a
′|b′). By Remark 4.5, this

continues to hold in the limits A,δ→ 0.

Lemma 4.8 (Ordering of expansions). For sufficiently small ϵ > 0,

Θϵ±,min[a; y0]≤ Θ±[a; y0]≤ Θϵ±,max[a; y0] . (91)

Proof. Let b :=a(VA,δ,y0
) denote a wedge defined by local deformation of a, for some finite

A,δ. By Theorem 2.32, for sufficiently small ϵ it holds that Hϵmin,gen(b|a)≤S(b|a)≤Hϵmax,gen(b|a).
By Remark 4.5 this continues to hold in the limits A,δ→ 0.

Lemma 4.9 (Strong subadditivity of expansions). Let a ⊆ b be wedges in M. Let y0 ∈ ða, ðb,
and let there be a non-zero open ball O ⊂ M containing y0 such that a ∩O = b ∩O. Then

Θϵ±,min[b; y0]≤ Θϵ±,min[a; y0] , (92)

Θ±[b; y0]≤ Θ±[a; y0] , (93)

Θϵ±,max[b; y0]≤ Θϵ±,max[a; y0] . (94)

Proof. By assumption, there exists a small enough A,δ such that we can take VA,δ,y0
from

(84) to describe a deformation of both b and a. Then, for any finite A,δ smaller than that,
we have b(VA,δ,y0

) ⊃ b ⊃ a and b(VA,δ,y0
) ⊃ a(VA,δ,y0

) ⊃ a. Furthermore, by Proposition 3.13
the generalized conditional entropies satisfy strong subadditivity, Theorem 2.40. Therefore

Hϵmin,gen(b(VA,δ,y0
)|b)≤ Hϵmin,gen(a(VA,δ,y0

)|a) , (95)

and similarly for Sgen and Hϵmax,gen. This continues to hold in the limitsA,δ→ 0 by Remark 4.5.
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4.2 One-shot quantum focusing conjectures

Definition 4.10 (Quantum focusing conjecture [22, 40]). Let a be a wedge, and let V1 and
V2 ≥ V1 each define a slice of the same outwards-directed null hypersurface orthogonal to ða.
Let Θ be the von Neumann expansion associated to this null hypersurface. For all y ∈ ða such
that V2(y)> 0 (i.e. y ∈ supp V2), let Θ[a; y]≤ 0. Then

Sgen(a(V2)|a(V1))≤ 0 . (96)

Remark 4.11. The above QFC is weaker than the original version defined in [22], and was first
defined in [40] where it was called the restricted QFC.12 We use it for three reasons: (1) While
there are no proofs of the original QFC, there are settings where this (restricted) QFC can be
derived [40]. (2) While weaker, it seems to be sufficient to obtain the desirable implications
of the original QFC. (3) It generalizes nicely to a one-shot version.

Conjecture 4.12 (Max-quantum focusing). Let a be a wedge, and let V1 and V2 ≥ V1 each
define a slice of the same outwards-directed null hypersurface orthogonal to ða. Let ϵ > 0,
and let Θϵmax be the max-expansion associated to this null hypersurface. For all y ∈ ða such
that V2(y)> 0, let Θϵmax[a; y]≤ 0. Then

Hϵmax,gen(a(V2)|a(V1))≤ 0 . (97)

Conjecture 4.13 (Min-quantum focusing). This conjecture takes the same form as Conjecture
4.12 but with min replacing max everywhere.

Remark 4.14. The min- and max-quantum focusing conjectures are not equivalent because
the requirement Θϵmax[a; y]≤ 0 at the beginning of a null congruence is dual to a condition on
Θϵmin[a; y] at the end of a congruence.

One could instead conjecture the following stronger statement, analogous to the QFC of
[22], that one could call the “unrestricted one-shot QFC”:

Θϵmax[a(V ); p]≤ Θϵmax[a; p] . (98)

This is equivalent by Lemma 4.7 to the same statement with max replaced by min. It is easy to
verify that (98) alone would therefore imply both Conjectures 4.12 and 4.13 (up to O(logϵ)
corrections) using the chain rule. However since Conjectures 4.12 and 4.13 are sufficient for
all our results, we will never assume (98).

Proposition 4.15 (Θϵmax/min remains non-positive). Let a be a wedge, let V define a slice of an
outwards-directed null hypersurface orthogonal to ða, let ϵ > 0, and let Θϵmax/min be the max-
expansion associated to this null hypersurface. Denote by Xmax/min the set of y ∈ ða such that
Θϵmax/min[a; y] ≤ 0, and denote by Ymax/min ⊆ Xmax/min the set of y ∈ ða such that V (y) > 0.
Then assuming Conjectures 4.12 and 4.13, it holds for all y ∈ Xmax/min that

Θϵmax/min[a(V ); y]≤ 0 . (99)

Proof. Consider a local deformation (84) of a(V ) at a point y0 ∈ Ymax,

eVA,δ,y0
(y) := VA,δ,y0

(y) + V (y) . (100)

Because V (y) is continuous, there are small enough A,δ such that eVA,δ,y0
(y)−V (y)> 0 only

for y ∈ Y . Therefore, for sufficiently small A,δ, Conjecture 4.12 implies that

Hϵmax,gen

�

a
�

eVA,δ,y0

�

|a(V )
�

≤ 0 . (101)

12Technically our QFC is different than the restricted QFC of [40] in the following sense. One could obtain
our QFC from that restricted QFC by integrating it and using the assumption that generators which exit the null
hypersurface do not increase Sgen.
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By Remark 4.5 this continues to hold in the limits A,δ → 0. The proof for the min-entropy
works analogously.

Proposition 4.16. The min-QFC implies the (restricted) QFC.

Proof. Our strategy is to apply the min-QFC to many independent copies of the spacetime, then
use the quantum asymptotic equipartition principle to relate the min-entropy of this replicated
setup to the von Neumann entropy of the original setup.

Say we are given a spacetime M , a wedge a ⊂ M , and an outwards-directed null hypersur-
face N orthogonal to ða. Let Θ and Θϵmin be the von Neumann and min-expansion associated
to N .

Consider n copies of M , which we will denote Mn. Let an denote the union of each copy of
a in Mn, which is itself a wedge in Mn. Finally, let V1 and V2 ≥ V1 be slices of N , and let an(Vi)
for i ∈ {1, 2} denote the union of a(Vi) over each copy in Mn.

Suppose that Θ[a; y] ≤ 0 for all y ∈ ða such that V2(y) > 0. Denote by yi the transverse
position along ðan in the ith copy of the spacetime. By the fact that the generalized entropy
of a tensor product of two states is the sum of the generalized entropy for each state, we find
that

Θ[an; yi] = Θ[a; y] , (102)

and so Θ[an; yi] ≤ 0 for all 1 ≤ i ≤ n. By Lemma 4.8, we then have that Θϵmin[an; yi] ≤ 0 for
small enough ϵ. By the min-QFC applied to the replicated spacetime, we then have that

Hϵmin,gen(an(V2)|an(V1))≤ 0 , (103)

for slices V2 ≥ V1. By the quantum asymptotic equipartition principle, Theorem 2.34, as ap-
plied to the generalized conditional entropies, we see that

Hϵmin,gen(an(V2)|an(V1)) = nSgen(a(V2)|a(V1)) +O(
p

n)≤ 0 , (104)

as we take n→∞. Therefore Sgen(a(V2)|a(V1))≤ 0 as we wanted to show.

Remark 4.17. (One-shot covariant entropy bound) The one-shot QFCs imply a one-shot co-
variant entropy bound (see [61] for the original). That is, for a wedge a, slice V , and ϵ > 0, if
V (y)> 0 only for y such that Θϵmax/min,gen[a; y]≤ 0, then

Hϵmax/min,gen(a(V )|a)≤ 0 . (105)

Proposition 4.18 (One-shot generalized second law). The one-shot QFCs imply a min- and
max-GSL. Let a1, a2 be wedges such that ða1, ða2 are slices of a future (past) causal horizon,
with ða2 everywhere to the future (past) of ða1, and a2 ⊆ a1. Let ϵ > 0. Then assuming the
one-shot QFCs,

Hϵmax/min,gen(a1|a2)≤ 0 . (106)

Proof sketch. Without loss of generality we restrict to future causal horizons. LetΣ∂ ⊂ M∂ be a
spacelike Cauchy slice for (a subregion of) the asymptotic boundary M∂ . The boundary (in the
bulk) of the past of Σ∂ , ∂ J−(Σ∂ ), forms a future causal horizon in the bulk. Now consider a
wedge ã with edge ðã ⊆ ∂ J−(Σ∂ ), such that Θϵ−,max/min is the expansion of the causal horizon.
For ðã sufficiently close to asymptotic infinity,Θϵ−,max/min will approach its classical value which
is negative everywhere. The desired result for the causal horizon ðã ⊆ ∂ J−(Σ∂ ) then follows
directly from the max-/min-QFC. To extend this result to all causal horizons in asymptotically-
AdS spacetimes, we note that all such causal horizons can be approached uniformly at any
finite affine parameter by J−(Σn

∂
) for a sequence of spacelike boundary Cauchy slices Σn

∂
,

indexed by n. The result therefore follows from the special case above by assuming continuity
of Hϵmax/min,gen(a1|a2).
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Figure 2: An illustration of V as a tensor “network” composed of a single, random
tensor from b to outputs B and C . We then feed the state |ψ〉 ∈ Ha ⊗Hb ⊗Hc into
this random tensor on b.

5 Covariant min- and max-entanglement wedges

We now turn to the central goal of this paper: proposing a fully covariant generalization of
the min- and max-entanglement wedges (EW) of [1] that can be applied in arbitrary time-
dependent spacetimes. We first review known results about one-shot quantum Shannon theory
and information flow in tensor networks and gravity in Section 5.1. In Section 5.2, we then
explain the intuition behind our proposal for the generalization of those results to arbitrary
time-dependent spacetimes and give formal definitions of the min- and max-EWs. Finally, in
Section 5.3, we show that the min- and max-EWs satisfy many desirable properties that support
their conjectured operational interpretations.

5.1 State merging and gravity

Let V : Hb → HB ⊗HC be a Haar random isometry13 with output Hilbert space dimensions
dB and dC , as in Figure 2. Let |ψ〉 ∈Ha ⊗Hb ⊗Hc be an arbitrary state with reduced density
matrix ψc on Hc . A standard fact from one-shot quantum Shannon theory [41] says that we
have

traB[V |ψ〉〈ψ|V †]≈
1
dC
1C ⊗ψc , (107)

with high probability whenever

Hϵmax(ab|a) + log dC − log dB ≪ 0 . (108)

Conversely, (107) never holds when

Hϵmax(ab|a) + log dC − log dB ≫ 0 . (109)

A consequence is that one can do “state-specific reconstruction” [14] of operators in Hb from
Ha⊗HB for the state |ψ〉 if and only if (108) holds. By state-specific reconstruction, we mean
that for any unitary Ub there exists a unitary UaB on Ha ⊗HB such that

UaBV |ψ〉 ≈ V Ub |ψ〉 . (110)

That such a UaB exists follows from (107) because |ψ〉 and Ub |ψ〉 have the same reduced
density matrix on HC ⊗Hc , and all purifications are related by a unitary on the purifying

13V : H1 →H2 is a Haar random isometry if it can be written as V = UV0, with V0 : H1 →H2 a fixed isometry
and U a Haar random unitary on H2.
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Figure 3: An illustration of a random tensor network described in the text. Each
square or triangle represents a single random tensor with a dangling bulk leg (in
blue), denoted by ai , with local Hilbert space Hai

. The network maps the tensor
product of Hai

over all i into the boundary Hilbert space HB ⊗Hγ. In the analogy to
AdS/CFT, we can think of HB as being associated to some CFT subregion and Hγ as
associated to degrees of freedom localized to the entangling surface of the bulk legs
Ha = ⊗iHai

.

system. From a quantum information perspective, the existence of UaB can be thought of as a
Heisenberg-picture version of quantum state merging; giving access to HB to an observer that
controls Ha allows them to manipulate all information in Hb.

The same inequalities applied to the complement, using the duality between min- and max-
entropies, say that when

Hϵmin(ab|a) = −Hϵmax(bc|c)≫ log dB − log dC , (111)

then

trCc[V |ψ〉〈ψ|V †]≈
1
dB
1B ⊗ψa , (112)

and HB alone carries no useful information about b. In the intermediate regime with

Hϵmin(ab|a)≪ log dB − log dC ≪ Hϵmax(ab|a) , (113)

the Hilbert space HB carries some but not all information in Hb.
It was shown in [1] using Euclidean replica trick computations that a similar result holds

in gravity, with log dB and log dC replaced by the areas of extremal surfaces. Specifically, when
only two extremal surfaces, bounding wedges b1 and b2 ⊃ b1 respectively, are relevant in
replica trick computations, one finds that state-specific reconstruction of b2\b1 is possible if
and only if

Hϵmax,gen(b2|b1)≪ 0 , (114)

while no information is accessible from b2\b1 if and only if

Hϵmin,gen(b2|b1)≫ 0 . (115)

In contrast, a naive application of the QES prescription would lead to (von Neumann) gener-
alized entropies appearing in both (114) and (115).

In general, there is no reason that only two extremal surfaces can contribute in replica trick
computations. So one would like a more general prescription. Suppose we have a random
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Figure 4: An illustration of a random tensor network as described in the text. This
time we denote a candidate surface γã which bounds all the bulk sites ã between γã
and B. The dimension dimγã is then the product of dimensions of the black legs cut
by the dashed green line.

tensor network V with bulk legs a1. . . an and boundary legs divided into HB and Hγ as shown
in Figure 3. Let |ψ〉 ∈

⊗

i Hai
⊗Hr be an arbitrary state. It was shown in [42] (in somewhat

different language) that with high probability

trB[V |ψ〉〈ψ|V †]≈
1
dγ
1γ ⊗ψr , (116)

whenever

Hmax(a1 . . . an|ã)− log dγã
+ log dγ≪ 0 , (117)

for all subsets ã ⊂ {a1 . . . an}. Here dγ is the dimension of Hγ and dγã
is the dimension of

the cut γã bounding ã and B, as shown in Figure 4. The authors of [42] conjectured that this
continues to be true if the max-entropies in (117) are replaced by smooth max-entropies, so
that

∀ ã ⊆ {a1...an} , Hϵmax(a1 . . . an|ã)− log dγã
+ log dγ≪ 0 . (118)

This conjecture was recently proved in [43]. Conversely, the results of [41] show that (116)
is never true if

∃ ã ⊆ {a1...an} , Hϵmax(a1 . . . an|ã)− log dγã
+ log dγ≫ 0 . (119)

So (118) is optimal. It follows from (116) that any unitary Ua on
⊗

i Hai
that preserves (118)

can be state-specifically reconstructed on HB.
For most tensor networks, (118) will not be satisfied if a1...an is the entire set of bulk sites.

However, you can use the chain rule to show that there always exists a unique largest subset
amax ⊆ {a1...an} of bulk legs14 such that (118) holds. This is the “max-EW” of the tensor net-
work; it is the largest region amax such that state-specific reconstruction of everything in amax
is possible [1]. (See Appendix B or [14] for a precise definition of what state-specific recon-
struction means in this context.) Similarly there is a smallest region amin such that the part of
the tensor network outside amin satisfies (118) for the complement B′ and so no information
from outside amin can ever reach B. This is the “min-EW” of the tensor network; it is the bulk

14By “largest” we mean a subset that contains all other subsets satisfying the same property.
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Figure 5: A tensor network with the regions max-EW[B] and min-EW[B] labeled. As
discussed in the main text, the max-EW is conjectured to be the largest bulk region
that can be state-specifically reconstructed from B. The min-EW is the bulk region
whose state possibly affects the state of B. The vN-EW, which we discuss in the next
subsection, is bounded by the minimal generalized entropy surface. The vN-EW lies
between the min- and max-EWs.

complement of the max-EW for the complementary boundary region B′. The max-EW and
min-EW are illustrated in Figure 5.

In [1], analogous results were conjectured to hold for time-reflection symmetric states in
gravity.15 The max-EW was defined as the largest wedge b1 with edge in the time-reflection
symmetric time slice such that

Hϵmax,gen(b1|b2)≪ 0 , (120)

for any smaller wedge b2 ⊂ b1 with edge in that slice. It was conjectured to be the largest
wedge for which state-specific reconstruction is possible. Similarly, the min-EW was defined as
the smallest time-reflection symmetric wedge b1 such that any larger time-reflection symmetric
wedge b2 ⊃ b1 has

Hϵmin,gen(b2|b1)≫ 0 . (121)

By duality, the min-EW of B is the complement of the max-EW of B′. It follows from the
conjectured properties of the max-EW that no information outside the min-EW is present in B.

It is worth noting that the discussion in [1] treated the algebra associated to a bulk region
b as tensor product factor, ignoring the existence of central operators such as A(ðb). In fact,
until now no precise definition of state-specific reconstruction for algebras with centers has
appeared in the literature. We rectify this deficiency in Appendix B.

5.2 Definitions

The primary goal of the present paper is to extend the definitions of the max- and min-EW
from [1] to general time-dependent spacetimes while preserving the conjectured operational
interpretations described above.

15The paper [42] was not actually cited in [1] because of an embarrasssing failure of one of the authors’ knowl-
edge of his own PhD advisor’s prior work on the subject.
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Figure 6: An illustration why an anti-normality condition is needed. Consider a BTZ
black hole and let ðb1 be a trapped surface in the black hole interior. It is easy to
find a Cauchy slice Σ[b1] for b1 such that all sub-wedges b2 ⊂ b1 with ðb2 ⊂ Σ[b1]
have A(ðb2) > A(ðb1). However, one can send signals to b1 from the left boundary,
and hence it cannot be reconstructible from B. On the other hand, imposing an anti-
normality condition ensures that ðb lies in the right black hole exterior.

Before giving a formal definition of our proposal, it is helpful to discuss the intuition be-
hind it. (We focus on the max-EW case since the min-EW is directly related by duality.) The
most naive generalization of (120) to arbitrary spacetimes would be to simply remove the
requirement that b1 and b2 be time-reflection symmetric. In other words, we would require

Hϵmax,gen(b1|b2)≪ 0 , (122)

for any wedge b2 ⊆ b1. But this is too strong! In the strict classical limit, we have

4GHϵmax,gen(b1|b2)→ A(ðb1)− A(ðb2) . (123)

If the area A(ðb1) > 0, then this will always be positive for some b2 because we can choose
the edge of b2 to be piecewise lightlike.

A slightly more sophisticated guess would be to require (122) only for all wedges b2 whose
edge lies within one particular Cauchy slice Σ[b1] for b1. This condition is at least achievable
since one can choose Σ[b1] to exclude wedges with a piecewise-lightlike edge. However, it
turns out to have the opposite problem of being too easily satisfied. Let us again consider the
strict classical limit. As shown in Figure 6, one can easily find a wedge b1 and Cauchy slice
Σ[b1] such that A(ðb2) > A(ðb1) for all wedges b2 with edge ðb2 ∈ Σ[b1] even though b1 is
not reconstructible by its conformal boundary.

The fact that the proposal above is too weak suggests we need an additional condition on
the wedge b1. An answer that seems to work is to require b1 to be max-antinormal, defined
below to mean that both outgoing max-expansions are everywhere negative. This rules out,
for example, the problematic wedge in Figure 6.

The previous discussion will straightforwardly lead to our proposed definition of the max-
EW. However, since one-shot entropies may not be very familiar to the reader, it will be illumi-
nating to first reformulate the standard QES prescription in terms of conditional von Neumann
entropies in a similar manner, before turning to a formal definition of the max-EW.

Definition 5.1 (vN-normal & vN-antinormal). A wedge b is called vN-normal (respectively
vN-antinormal) if Θ±[b; p]≥ 0 (respectively Θ±[b; p]≤ 0) for all p ∈ ðb.
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Definition 5.2 (vN-accessible). Given a wedge B ⊂ M∂ , a wedge b1 ⊂ M is said to be vN-
accessible for B if b1 ∩M∂ = B, it is vN-antinormal, and it has a Cauchy slice Σ[b1] such that
for all wedges b2 ⊂ b1 with edge ðb2 ∈ Σ[b1] and B ⊂ b2,

Sgen(b1|b2) = Sgen(b1)− Sgen(b2)< 0 . (124)

Definition 5.3 (vN-entanglement wedge). Given a wedge B ⊆ M∂ and a state |ψ〉, let F(B) be
the set of wedges in M that are vN-accessible for B. The von Neumann-entanglement wedge
is the wedge union over all wedges in F(B):

vN-EW[B] = ⋓b∈F(B)b . (125)

Remark 5.4. We will eventually show in Theorem 5.28 that the vN-EW is itself vN-accessible,
and therefore is the unique largest vN-accessible wedge. We will also show in Theorem 5.23
that the vN-EW is bounded by the minimal generalized entropy quantum extremal surface, in
accordance with the usual QES prescription.

The definition of max-EW is almost identical to the vN-EW, except with conditional gener-
alized entropies replaced by ϵ-smooth conditional max-generalized entropies.

Convention 5.5. In all the definitions below we have 0 < ϵ ≪ 1 and − logϵ ≪ K ≪ O(1/G)
unless otherwise stated.

Intuitively, the parameter ϵ will capture the accuracy with which reconstruction is possi-
ble. Note that ϵ may be perturbatively small in G, but cannot be exponentially small without
rendering the bounds on K inconsistent. This is related to the fact that entanglement wedge
reconstruction always has nonperturbative corrections from subleading saddle point contribu-
tions [12].

The parameter K will describe how close the max-EW is allowed to be to a phase transition
that would make it smaller. It has long been understood (see e.g. [1, 12, 44]) that the entan-
glement wedge is not sharply defined unless the difference between the generalized entropy
of the QES region and that of any nonminimal QES region is much larger than O(1). The
parameter K characterizes how sharply defined it is.

Definition 5.6 (max-normal & max-antinormal). A wedge b is called ϵ max-normal if

Θϵ±,max[b; p]≥ 0 , (126)

and ϵ max-antinormal if
Θϵ±,max[b; p]≤ 0 , (127)

for all p ∈ ðb.

Definition 5.7 (max-accessible). Given a wedge B ⊆ M∂ and a state |ψ〉, a wedge b1 is said
to be (ϵ, K) max-accessible for B if (1) b1 ∩M∂ = B, (2) it is ϵ max-antinormal, and (3) there
exists a Cauchy slice Σ[b1] such that for all macroscopically distinct wedges b2 ⊂ b1 with edge
ðb2 ⊂ Σ[b1] and B ⊂ b2,

Hϵmax,gen(b1|b2)≤ −K . (128)

The phrase “macroscopically distinct” here needs some clarification. Clearly, if b2 = b1,
then Hϵmax,gen(b1|b2) = 0 and (128) is not satisfied for K > 0. But if Hϵmax,gen(b1|b2) is a
continuous function of b2 then presumably you can also always violate (128) by making b2
be sufficiently close to b1. However, since K ≪ O(1/G) doing so will generally require b2
to be perturbatively close to b1 in the limit G → 0. In order to avoid issues with Planckian
perturbations, by macroscopically distinct, we mean that the difference between b2 and b1 is
at least comparable in size to the smallest scale allowed in the bulk effective field theory.
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Definition 5.8 (max-entanglement wedge). Given a boundary region B and a state |ψ〉, let
G(ϵ,K)(B) be the set of wedges in M that are (ϵ, K) max-accessible for B. The (ϵ, K) max-
entanglement wedge of a boundary region B is the wedge union over all wedges in G(ϵ,K)(B):

max-EW(ϵ,K)[B] = ⋓b∈G(ϵ,K)(B)b . (129)

Remark 5.9. As we show in Theorem 5.28, the max-EW is itself (ϵ′, K) max-accessible with
ϵ′ = O(ϵ). In this sense it is therefore the unique largest max-accessible wedge.

Remark 5.10. The (ϵ, K) max-EW monotonically increases in size when increasing ϵ at fixed
K and monotonically decreases in size when increasing K at fixed ϵ.

Conjecture 5.11. Consider a wedge B ⊆ M∂ and a state |ψ〉. The (ϵ, K) max-EW of B with
K ≫ − logϵ for |ψ〉 can be state-specifically reconstructed from B with error at most ϵO(1).
Conversely, for K ≪ logϵ no region b outside the (ϵ, K) max-EW of B can be state-specifically
reconstructed from B with error smaller than ϵO(1).

Remark 5.12. We define state-specific reconstruction formally for algebras in appendix B.

The min-EW is the complement of the max-EW of the complement.16

Definition 5.13 (min-entanglement wedge). Given a state |ψ〉, the (ϵ, K) min-entanglement
wedge of a boundary subregion B is the spacelike complement of max-EW(ϵ,K)[B′],

min-EW(ϵ,K)[B] =
�

max-EW(ϵ,K)[B
′]
�′

. (130)

Remark 5.14. By duality (Theorem 2.33) the min-EW could also be defined directly as the
intersection of all min-normal wedges b where there exists a Cauchy slice Σ[b′] for wedge
b′ such that Hϵmin,gen(a|b) > K for all macroscopically distinct a ⊃ b with ða ∈ Σ[b′] and
a ∩M∂ = B.

Remark 5.15. An immediate consequence of Conjecture 5.11 is that no information from
outside the min-EW can affect the state of B by more than an ϵO(1)-amount.

5.3 Properties

We now prove properties about the min-EW, max-EW, and vN-EW. These properties are con-
sistency conditions which corroborate Conjecture 5.11. We will assume throughout that the
max-QFC and (von Neumann) QFC both hold.17

Let us motivate these consistency conditions. The first is that in certain cases, the max-
EW and min-EW should coincide, and in such cases should equal the QES region. Indeed for
special “compressible” states, the QES region is believed to satisfy the conditions in Conjecture
5.11 for both the max-EW and min-EW [1,9,10,14].

The second consistency condition is that the max-EW should be contained inside the
min-EW. This follows from a well-known principle in quantum information theory called
the information-disturbance trade-off, which says that a system B fully encodes some quan-
tum information if and only if the complementary subsystem B′ knows nothing about it (see
e.g. [45]).18 If Conjecture 5.11 is right, then the max-EW of B and B′ cannot overlap.

16We continue to assume the global state is pure for simplicity, such that Sgen(a) = Sgen(a′). Again, this can
always be achieved by purifying the system with a reference R and including R ⊂ a′ when R ̸⊂ a.

17We could alternatively assume the max-QFC and min-QFC since the latter implies the von Neumann QFC by
Proposition 4.16, or we could assume the unrestricted one-shot QFC from Remark 4.14, which implies both the
max- and min-QFCs.

18The famous quantum no-cloning and no-erasure theorems can be thought of as examples of this principle.
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The third consistency condition is that the max-EW contains subregions of the bulk that
we know B can reconstruct. For example, the max-EW[B] should include the causal wedge
of B, which we know is reconstructible via the HKLL protocol [46, 47]. Finally, the max-EW
should also nest, which means it includes the max-EW of smaller regions: if B ⊇ A, then
max-EW[B] ⊇max-EW[A].

Throughout this section we take M∂ to be the conformal boundary of M , and we will
assume the following generic condition on M :

Definition 5.16. The generic condition is an assumption that all inequalities involving general-
ized conditional entropies apply strictly at some scale κ. For example, the max-QFC states that
Hmax,gen(a(V2)|a(V1)) ≤ 0 for V2 ≥ V1 ≥ 0 slices of some outward null congruence emanating
from a wedge a with non-positive initial max-expansion. The generic condition assumes the
stronger condition that instead

Hmax,gen(a(V2)|a(V1))≪−κ . (131)

It is often assumed that the scale of κ is leading order (κ = O(ℓd−2/G) with ℓ a characteristic
scale in the state). However, in our case it will be acceptable for κ to be much smaller than
this, so long as κ≫ K .

Definition 5.17 (Causal wedge [48]). Given a wedge B ⊆ M∂ , the causal wedge of B is
C[B] := J+[B]∩ J−[B].

Lemma 5.18. Given a wedge B ⊆ M∂ with complement B′ in M∂ , assuming the QFC then its
causal wedge C[B] is spacelike to B′.

Proof. The QFC implies the GSL which implies C[B] ∩ J±[B′] = ∅ [49]. Note this also fol-
lows from the Gao-Wald theorem, which requires only the weaker condition that the achronal
average null energy condition holds [50].

Lemma 5.19. Assuming the QFC, the causal wedge C[B] of a boundary wedge B is vN-accessible.
Assuming the max-QFC and the generic condition, it is (ϵ, K) max-accessible for any ϵ > 0 and
K ≪ κ. Moreover, in both cases, given any Cauchy slice Σ[B] for B, we can always choose the
Cauchy slice Σ[C[B]] to have Σ[B] as its conformal boundary.

Proof. The boundary of the causal wedge C[B] is the union of portions of past and future
causal horizons, denoted I −(C[B]) and I +(C[B]) respectively. By the GSL and the max-GSL,
C[B] is therefore vN-antinormal and max-antinormal. (Note that C[B] ∩ M∂ = B by lemma
5.18.)

To finish the proof, we now want to construct a Cauchy slice Σ[C[B]] with conformal
boundary Σ[B] satisfying the appriopriate conditions. Define β+ := (∂ J+(Σ[B])∩C[B]) to be
the co-dimension one region which is given by the portion of the future light sheet from Σ[B]
that lies inside C[B]. Define β− := (I +(C[B])∩Σ[B]′) to be the portion of the future horizon
of C[B] that is space-like separated from Σ[B]. We define the Cauchy slice Σ[C[B]] as their
union

Σ[C[B]] = β ≡ β+ ∪ β− . (132)

Let us first consider the vN-accessible case. We want to show that Sgen(β) ≤ Sgen(α) for any
α ⊂ β . By the QFC, we have Sgen(α) ≥ Sgen(α ∪ β+) and Sgen(α ∪ β+) ≥ Sgen(β), which
completes the proof.19

19Note that ða cannot intersect the same generator of β+ or β− more than once. If it did, there would exist a
lightlike geodesic between two points on ða. If any such geodesic is not contained in a, then it will be contained in
a′′. On the other hand if all such geodesics are contained in a then they cannot be contained in a′′. Both contradict
the requirement that a be a wedge.
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For the max-accessible case, by the max-QFC and generic condition, we have
Hϵ/4max,gen(α∪ β

+|α)≪−κ and Hϵ/4max,gen(β |α∪ β
+)≪−κ. But, by the chain rule,

Hϵmax,gen(β |α)≤ Hϵ/4max,gen(α∪ β
+|α) +Hϵ/4max,gen(β |α∪ β

+) +O(logϵ)≪−K , (133)

which is what we needed to show.

Corollary 5.20. The causal wedge is contained in the max-entanglement wedge and vN-
entanglement wedge,

C[B] ⊆max-EW[B], vN-EW[B] . (134)

Lemma 5.21. Let b1 and b2 be vN-accessible wedges with complementary conformal boundaries
B and B′, and let Σ[B] (resp. Σ[B′]) be the conformal boundary of the Cauchy slice Σ[b1] (resp.
Σ[b2]). Assuming the QFC, if b1 (resp. b2) is spacelike separated from Σ[B′] (resp. Σ[B]), then
b1 will also be spacelike separated from the entirety of b2.

Proof. The edge ðb1 can be decomposed as a disjoint union ðb1 = ðb1,0⊔ðb1,+⊔ðb1,− where
ðb1,0 is spacelike separated from b2, ðb1,+ lies in the future of Σ[b2], and ðb1,− lies in the past
of Σ[b2]. We define the deformed wedge b̃1 ⊇ b1 by shooting outwards, past lightrays from
ðb1,+ and outwards, future lightrays from ðb1,− until they hit Σ[b2]. (These lightrays intersect
Σ[b2] before reaching the asymptotic boundary because b1 is assumed spacelike from Σ[B′].)
By the QFC, Sgen(b̃1)≤ Sgen(b1).

Let b′2 be the spacelike complement of b2. We can similarly decompose
ðb′2 = ðb′2,0⊔ðb′2,+⊔ðb′2,− where ðb′2,0 is spacelike separated from b1, ðb′2,+ is in the future of

Σ[b1] and ðb′2,− is in the past of Σ[b1]. We definefb′2 by shooting inwards, past lightrays from
ðb′2,+ and inwards, future lightrays from ðb′2,− until they hit Σ[b1]. (These lightrays intersect
Σ[b1] before reaching the asymptotic boundary because b2 is assumed spacelike from Σ[B].)
By the QFC, Sgen(fb′2)≤ Sgen(b′2) = Sgen(b2). (Recall again our convention that the global state
is always purified using reference systems as necessary.)

Finally by strong sub-additivity we have

Sgen(b̃1 ∩fb′2) + Sgen(b̃1 ∪fb′2)≤ Sgen(b̃1) + Sgen(fb′2) . (135)

Combining inequalities, we have

Sgen(b̃1 ∩fb′2) + Sgen((b̃1 ∪fb′2)
′)≤ Sgen(b1) + Sgen(b2) . (136)

But b̃1 ∩fb′2 ⊆ b1 and (b̃1 ∪fb′2)
′ ⊆ b2 with equalities if and only if b1 is spacelike separated

from b2. Therefore because we assumed that b1 and b2 are vN-accessible, we get the reverse
inequality

Sgen(b̃1 ∩fb′2) + Sgen((b̃1 ∪fb′2)
′)≥ Sgen(b1) + Sgen(b2) . (137)

This completes the proof.

Corollary 5.22 (Complementary causal wedge exclusion). Given a boundary wedge B with
complement B′, and assuming the QFC, the causal wedge of B′ lies in the complement of the
vN-entanglement wedge of B:

C[B′] ⊆ vN-EW[B]′ . (138)
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Proof. It suffices to show that an arbitrary vN-accessible wedge b is spacelike separated from
C[B′]. Let Σ be a Cauchy slice for M such that Σ[b] ⊆ Σ, and let Σ[B′] be the intersection of
its conformal boundary with B′. From lemma 5.19, we know that C[B′] is vN-accessible, and
that we can choose Σ[C[B′]] to have conformal boundary Σ[B′]. Moreover, from lemma 5.18
it follows that B is spacelike to C[B′]. We can therefore apply lemma 5.21.

Theorem 5.23 (vN-Entanglement wedge complementarity). Assuming the QFC, the comple-
ment of the vN-entanglement wedge of B is equal to the vN-entanglement wedge of the comple-
ment,

vN-EW[B]′ = vN-EW[B′] . (139)

Moreover the vN-EW is vN-accessible and its edge ðvN-EW[B] is the minimal generalized entropy
quantum extremal surface.

Proof. By corollary 5.22, we see that any wedges b1 vN-accessible to B and b2 vN-accessible
to B′ satisfy all the conditions of lemma 5.21 and so must be everywhere space-like separated.
It follows that vN-EW[B] and vN-EW[B′] must be spacelike separated.

To show that they are in fact complementary, it only remains to find a single complementary
pair of wedges b and b′ that are both vN-accessible. (This also shows that the vN-EW is vN-
accessible.) To do so, we consider the quantum maximin wedge b [4, 51]. This is defined by
first choosing a Cauchy slice Σ for M that contains ðB and finding the minimal-Sgen wedge b
with ðb ∈ Σ. One then maximizes that minimal-Sgen wedge over all possible Cauchy slices Σ.
Both b and b′ are therefore vN-accessible, with Σ[b] = Σ ∩ b and Σ[b′] = Σ ∩ b′. It can be
shown that b (and hence also b′) is extremal.

To show that b has minimal-Sgen among all extremal wedges, and hence is the same as the
region found by the QES prescription, one simply shoots lightrays from any other extremal
wedge b3 to obtain a wedge b̃3 with edge ðb̃3 ⊆ Σ. By the QFC, Sgen(b̃3) ≤ Sgen(b3). But by
definition Sgen(b̃3)≥ Sgen(b1). See [4,51] for details.

Theorem 5.24 (max-EW ⊆ vN-EW ⊆ min-EW). Let B ⊂ M∂ be a wedge. For sufficiently small
ϵ, we have

max-EW[B] ⊆ vN-EW[B] ⊆min-EW[B] . (140)

This is shown in Figure 7.

Proof. It will suffice to prove that the max-EW is always contained in the vN-EW. Applying this
and Theorem 5.23 to the complementary region B′ ⊆ M∂ immediately implies that the vN-EW
is contained in the min-EW.

For sufficiently small ϵ, every max-accessible wedge is also vN-accessible because
Hϵmax,gen(b|b

′)≥ Sgen(b|b′) and Θϵmax ≥ Θ by Lemma 4.8. Therefore the wedge union defining
the vN-EW is at least as large as that defining the max-EW.

Remark 5.25. When the max-EW and min-EW are equal (up to perturbatively small correc-
tions), we say that an entanglement wedge EW(B) =max-EW(B) =min-EW(B) exists. When
it exists, the entanglement wedge is also equal to the vN-EW, by Theorem 5.24, and hence is
bounded by the minimal QES by Theorem 5.23.

Corollary 5.26 (max- and min-EW conformal boundaries). The conformal boundary of the
max-EW and min-EW for any boundary wedge B is itself equal to B,

max-EW[B]∩M∂ =min-EW[B]∩M∂ = B . (141)
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Figure 7: The containment of each wedge discussed in this section, assuming the
validity of the QFC and max-QFC.

Proof. By definition, the conformal boundary of max-EW[B] includes B whenever G(ϵ,K)(B)
is nonempty, which is always true because of Corollary 5.20. The converse statement, that
max-EW[B] ∩ M∂ ⊆ B, follows from combining Theorem 5.24 and Theorem 5.23. The min-
EW proof follows from applying the same arguments to B′.

Lemma 5.27 (Unions of accessible wedges are accessible). Let b1 and b2 be (ϵ, K) max-
accessible (resp. vN-accessible) wedges with conformal boundary B. Then their wedge union
b = b1 ⋓ b2 is (5ϵ, K) max-accessible (resp. vN-accessible). Moreover the conformal boundary of
Σ[b] can be chosen to agree with conformal boundary of Σ[b1].

Proof. It is helpful to classify the edge ðb1 based on its relationship to b2, and vice versa. Let

1. ðb1,I be the part of ðb1 inside b2,

2. ðb1,O be the part inside b′2,

3. ðb1,F be the part in the future of ðb2,

4. ðb1,P be the part in the past of ðb2 ,

and analogously for b1↔ b2. The edge ðb can also be decomposed into four pieces as follows:

ðb = ðb1,O ⊔ ðb2,O ⊔ F[b1, b2]⊔ F[b2, b1] , (142)

where we have defined F[b1, b2] := ðb ∩ ∂ J−[ðb1,F ] ∩ ∂ J+[ðb2,P] and
F[b2, b1] := ðb ∩ ∂ J−[ðb2,F ] ∩ ∂ J+[ðb1,P]. Note that, thanks to corollary 5.26, the con-
formal boundary of b is itself B. Therefore by corollary 5.22 and Theorem 5.24, the entire
future outwards null congruence from ðb1,P hits the edge ðb before it reaches the asymptotic
boundary, and likewise for the past congruence from ðb1,F .

We first show that b is max-antinormal (resp. vN-antinormal). Consider some p ∈ ðb1,O.
By assumption, Θϵmax[b1; p] ≤ 0 (resp. Θ[b1; p] ≤ 0), in both the future and past directions.
Since b1 ⊆ b, we also have Θϵmax[b; p]≤ 0 (resp. Θ[b; p]≤ 0) by strong subadditivity, lemma
4.9. An analogous argument applies for p ∈ ðb2,O.

Now consider the other two pieces of ðb. By symmetry, it is sufficient to consider only
F[b1, b2]. For p ∈ F[b1, b2], let q ∈ ∂ b1,F be lightlike separated from p. Then the max-QFC
implies

Θϵ−,max[fb1, p]≤ Θϵ−,max[b1, q]≤ 0 , (143)
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Figure 8: Left: A bulk Cauchy slice with an example β =
⊔

i βi = Σ[b] divided into its
four constituents. Right: an arbitrary region α =

⊔

i αi ⊆ β is drawn, showing each
constituent αi ⊆ βi . Different shadings are meant to clarify the boundaries between
each region.

where fb1 is formed from b1 by shooting an outwards, past-directed null congruence from
a neighbourhood of p to a neighbourhood of q on ðb. Finally strong subadditivity im-
plies Θϵ−,max[b; p] ≤ Θϵ−,max[fb1; p]. Analogous arguments bound Θϵ+,max[b; p] using the max-
antinormality of b2 and bound Θ±[b; p] in the vN-accessible case.

It remains to construct a Cauchy sliceΣ[b] and prove that it satisfies the desired properties.
We define

Σ[b] = Σ[b1]⊔ (∂ J+[b1]∩ J−[Σ[b2]])⊔ (∂ J−[b1]∩ J+[Σ[b2]])⊔ (Σ[b2]∩ b′1) . (144)

This is notationally somewhat messy so let us explain each portion and introduce some sim-
pler notation. The first piece of the Cauchy slice β = Σ[b] consists of the full Cauchy
slice β1 = Σ[b1] for b1. We then attach future (β2 = ∂ J+[b1] ∩ J−[Σ[b2]]) or past
(β3 = ∂ J−[b1]∩J+[Σ[b2]]) outwards null congruences from the parts of the edge ðb1 that lie
in the interior of b (i.e. ðb1,P , ðb1,F ). These null congruences are included until either they hit
the edge of b, or they reach the Cauchy slice Σ[b2]. Finally we need to attach β4 = Σ[b2]∩ b′1,
namely the part of the Cauchy slice for b2 that lies outside b1. (Note that the conformal
boundary of Σ[b] is the same as that of Σ[b1] by construction.)

The full construction is illustrated in Figure 8.
We first prove that β is a suitable Cauchy slice for b in the von Neumann case, because it is

somewhat simpler and so will serve as a warm up for the max-entropy problem. (For notational
simplicity, below we will sometimes refer to Sgen of a Cauchy slice of a wedge when we mean
the Sgen of the wedge.) If a ⊆ b has edge ða ∈ Σ[b] then a has a Cauchy slice α = a ∩Σ[b].
Let αi = α∩ βi . Since b1 is vN-accessible, we have Sgen(β1) ≤ Sgen(α1). Strong subadditivity
therefore implies Sgen(β1 ⊔ α2 ⊔ α3 ⊔ α4) ≤ Sgen(α). The antinormality of b1 ensures via the
QFC and strong subadditivity that Sgen(β1⊔β2⊔β3⊔α4)≤ Sgen(β1⊔α2⊔α3⊔α4). Finally the
vN-accessibility of b2 and strong subadditivity means that Sgen(β)≤ Sgen(β1⊔β2⊔β2⊔α4). In
summary, we have Sgen(b) = Sgen(β)≤ Sgen(α) = Sgen(b′), which is what we needed to show.

Now let us consider the max-entropy case. By strong subadditivity and the max-
accessibility of b1, we have

H1 := Hϵmax,gen(β1 ⊔α2 ⊔α3 ⊔α4|α)≤ −K , (145)

whenever the inclusion α ⊆ β1 is strict.
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By the max-QFC, the generic condition, and strong subadditivity, we have

H2 := Hϵmax,gen(β1 ⊔ β2 ⊔α3 ⊔α4|β1 ⊔α2 ⊔α3 ⊔α4)≲ −κ≪−K , (146)

whenever the inclusion α2 ⊆ β2 is strict. Similarly,

H3 := Hϵmax,gen(β1 ⊔ β2 ⊔ β3 ⊔α4|β1 ⊔ β2 ⊔α3 ⊔α4)≲ −κ≪−K , (147)

whenever α3 ⊆ β3 is strict. Finally, strong subadditivity and the max-accessibility of b2 ensure

H4 := Hϵmax,gen(β |β1 ⊔ β2 ⊔ β3 ⊔α4)≤ −K , (148)

whenever α4 ⊆ β4 is strict.
Since α ⊆ β is required to be a strict inclusion, at least one of the four inclusions αi ⊆ βi

must be strict. If only one inclusion is strict, then the corresponding inequality immediately
gives Hϵmax,gen(β |α) < −K . If more than one inclusion is strict then we can use the chain rule
to write

H5ϵ
max,gen(β |α)≤ H1 +H2 +H3 +H4 +O(logϵ)≤ −4K +O(logϵ)≤ −K . (149)

In the last step we used the assumption K ≫− logϵ. This completes the proof.

Theorem 5.28 (The max-EW is max-accessible). For any boundary region B, the (ϵ, K) max-
entanglement wedge b is (ϵ′, K)max-accessible with ϵ′ = O(ϵ). Moreover, the conformal boundary
of the Cauchy slice Σ[b] can be chosen to be any desired Cauchy slice for B.

Proof. The proof follows immediately from Lemma 5.27. To select a particular conformal
boundary for the Cauchy slice Σ[b], we again apply Lemma 5.27 with b1 equal to the causal
wedge C[B] and C[B] chosen to have the desired conformal boundary, as allowed by Lemma
5.19.

Theorem 5.29 (Vanishing expansions). If the (ϵ, K) max-entanglement wedge b of a boundary
region B is itself (ϵ/3, K) max-accessible, then we must have

Θϵ+,max[b; p], Θϵ−,max[b; p] = 0 .

for all p ∈ ðb.

Proof. To derive a contradiction, we can assume without loss of generality that there exists
p ∈ ðb such that Θϵ+,max[b; p] < 0. We will construct an (ϵ, K) max-accessible region not con-

tained in the max-EW. By Remark 4.5, we must also have Θϵ+,max[b̃; p̃]< 0 for any sufficiently

small deformation b̃ of b mapping p to p̃. Suppose we define b̃ by deforming outwards along
a null congruence in the past direction. Then we also have Θϵ−,max[b̃; p̃]≤ 0 by the max-QFC,

and hence b̃ is ϵ/3 max-antinormal (and hence also ϵ max-antinormal).
Now, take β = Σ[b̃] to be the union of β1 = Σ[b] with the null congruence β2 from b to

b̃. Let a ⊆ b̃ with ða ∈ Σ[b̃] have Cauchy slice α= a∩β and let αi = α∩βi . By the max-QFC
and the generic condition, we have

Hϵ/3max,gen(β |β1 ⊔α2)≲ −κ≪−K , (150)

if α2 ⊆ β2 is strict. Meanwhile by the (ϵ/3, K) max-accessibility of b and strong subadditivity
we have

Hϵ/3max,gen(β1 ⊔α2|α)≤ −K , (151)

if α1 ⊆ β1 is strict. The desired inequality Hϵmax,gen(β |α)≤ −K follows via the chain rule.

32

https://scipost.org
https://scipost.org/SciPostPhys.16.6.144


SciPost Phys. 16, 144 (2024)

Remark 5.30. The assumption in Theorem 5.29 is slightly stronger than that derived in Theo-
rem 5.28, which only showed that the max-EW is (ϵ′, K)max-accessible for some ϵ′ = O(ϵ). In
most situations of physical interest, one expects the max-EW to be (approximately) constant
over a wide range of values for ϵ. In such a situation, the assumption of Theorem 5.29 is
always (approximately) satisfied.

Theorem 5.31 (Nesting). For any two boundary wedges B2 ⊆ B1, the (ϵ, K) max-EW, vN-EW,
and (ϵ, K) min-EW of B2 are entirely contained respectively in the (5ϵ, K) max-EW, vN-EW, and
(5ϵ, K) min-EW of B1.

Proof. Since we have already proven the equivalence of the vN-EW and the region found by
the QES prescription, the von Neumann case is a standard result, but we include it here for
completeness. The proof of the min-EW case follows by applying the max-EW result to the
complementary regions B′1 ⊆ B′2.

Let b2 be an (ϵ, K) max-accessible (resp. vN-accessible) wedge with conformal boundary
B2. Let b1 be an (ϵ, K) max-accessible wedge with conformal boundary B1. We can then
take the union of these two wedges in exactly the same way as described in Lemma 5.27.
Call this union b. The only difference in the current setting will be that b will contain some
portion of the conformal boundary which is not in the domain of dependence of the conformal
boundary of b2. This does not affect any of the relevant inequalities (e.g. the chain rule,
strong sub-additivity) assuming reflecting boundary conditions at the asymptotic boundary. By
Lemma 5.27, we end up with a (5ϵ, K) max-accessible (resp. vN-accessible) wedge, b, whose
conformal boundary is B1 and which contains b2. This produces the desired statement.

Theorem 5.32 (Time-reflection symmetric wedges). Let M be time-reflection symmetric with
invariant Cauchy slice Σ and let B be a boundary region with ðB ∈ Σ. Let b be the (ϵ, K) max-
entanglement wedge for B. Then ðb ∈ Σ.

Proof. By time-reflection symmetry of M , for every (ϵ, K) max-accessible wedge, b1, there
exists a time-reflected version, b̂1, which is also (ϵ, K) max-accessible. The wedge union over
all max-accessible wedges will then manifestly produce a time-reflection symmetric wedge. By
the definition of b, we see that b itself must be time-reflection symmetric and so ðb ∈ Σ.

Note that this statement is significantly weaker than what one might have hoped for. A
reasonable sounding statement is that when M has a moment of time-reflection symmetry
the max-EW for a region B with ðB ∈ Σ should be max-accessible with Σ = Σ[b1] in Defini-
tion 5.7. While this statement is true for the vN-EW, it appears likely that the corresponding
statement fails for the max- and min-EW in general. We suspect that this may be related to up-
coming work [52], which suggests that a tensor network representation of a bulk state cannot
necessarily be associated to the time-symmetric slice, even when such a slice exists.

6 The continuum limit and type II von Neumann algebras

Until now, we have focused our attention on regulated bulk theories featuring finite-
dimensional algebras Mb, while conjecturing that generalized one-shot entropies should
be UV-finite and regulator-independent. However, it has recently been shown that in cer-
tain settings one can make interesting progress in understanding generalized entropy with-
out regulation by studying the algebraic structure of quantum gravity in the weak coupling
limit [36, 37, 53, 54]. We now briefly discuss how generalized one-shot entropies can be un-
derstood in such a framework; we refer readers to the aforementioned papers for more details.
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Following [36, 37, 54], we will consider the G → 0 limit of small perturbations around a
black hole background, and take the bulk wedge b of interest to be the right black hole exte-
rior. In this limit, the quantum gravity Hilbert space can be understood without introducing
any regulator as the Hilbert space of continuum quantum field theory (QFT) on the black hole
background, together with an additional degree of freedom describing the timeshift between
the two boundaries. QFT operators in the right exterior are described by a Type III von Neu-
mann algebra Ar,0, which means that density matrices from a regulated field theory have no
continuum limit.

Meanwhile, the operator Â(ðb)/4G generates boosts at the horizon, which change the
timeshift while keeping fields in each exterior fixed relative to their respective boundaries.
Such an operator renders the quantum fields singular at the horizon and hence also has no
continuum limit. Indeed, Raychaudhuri’s equation together with Einstein’s equations show
that

Â(ðb)− A0

4G
+ ĥr = ĤR − E0 , (152)

where ĤR is the right ADM mass, A0 and E0 are respectively the reference horizon area and
mass of the black hole background, and ĥr is a one-sided boost operator on the quantum fields
in the right exterior. In fixed-background QFT, the operator ĥr is UV-divergent. In gravity,
however, this divergence is absorbed into a renormalization of G in [Â(ðb)− A0]/4G. On the
right hand side, the ADM mass HR is UV-finite, but diverges for a fixed radius black hole as
G → 0. This divergence is cancelled by subtracting E0. The result is that the renormalized
ADM mass ĥR = ĤR − E0 is a finite operator in the G → 0 continuum quantum gravity theory
that is not present in a quantum field theory on the black hole background.

The addition of this extra quantum gravity operator ĥR to the QFT algebra Ar,0 leads to the
full quantum gravity algebra Ar for the black hole right exterior. This algebra turns out to be
a Type II von Neumann factor, implying that the center of Ar consists only of multiples of the
identity; all central operators such as [Â(ðb)−A0]/4G in the regulated theory are UV-divergent
and hence do not exist in the continuum theory.20 It also means that one can define a trace trII
– and hence also density matrices – for Ar , which are unique up to an overall factor related
to the choice of reference energy E0. One can show [37] that the density matrix of this Type
II algebra is proportional to the continuum limit of

ρb,gen = e(A0−Â(ðb))/4Gρb,can , (153)

while the trace is

trII [·] = lim
G→0

e−A0/4G trgen [·] = lim
G→0

lim
δ→0

trcan

�

e(Â(ðb)−A0)/4G (·)
�

. (154)

In other words, the only choice of trace (and density matrices) in the regulated theory, where
the algebra has a center, with a sensible semiclassical, continuum limit G,δ→ 0 (up to a state-
independent factor e−A0/4G) is the generalized trace (and generalized density matrices) that
we defined in Section 3.

The one-shot GSL for Type II∞ algebras

In Section 4, we argued for the existence of a one-shot GSL. One setting in which the ordinary
GSL can be rigorously defined as an inequality between entropies was described in Section 4

20One can make the area operator UV finite by smearing it over some small region of spacetime. However doing
so makes it no longer central.
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of [37]. We now introduce a similarly rigorous continuum definition of a one-shot GSL, along
with a direct proof that does not rely on the one-shot QFC.

In the construction of [37], one first introduces a new timescale T that diverges in the
G → 0 limit.21 We consider black holes that have arbitrary boundary excitations at times
t = O(1), and additional arbitrary boundary excitations at times t = T + O(1), but with the
black hole allowed to equilibrate during the intervening period.

There is then a Type II∞ von Neumann algebra AR generated by the (renormalized)
right boundary Hamiltonian along with both early- and late-time right boundary (noncen-
tral) single-trace operators. The entropy of this algebra is equal to the generalized entropy of
the black hole bifurcation surface. The algebra AR contains a Type II∞ von Neumann subal-
gebra eAR generated by only the boundary Hamiltonian and late-time single-trace operators.
The entropy of this subalgebra is equal to the generalized entropy of the black hole horizon
during the equilibration period between the two sets of excitations.

If we choose the constant factor eA0/4G from (154) to be the same for both eAR and AR,
the inclusion eAR ⊆ AR is trace-preserving, meaning that the trace (on eAR) of an operator in
eAR is equal to its trace as an element of the larger algebra AR. It is a standard fact about

von Neumann algebras [55] that entropy is monotonically decreasing under trace-preserving
inclusions. This fact is sufficient to derive a “discretized” version of the generalized second law:
namely that the entropy of any state on AR (i.e. the generalized entropy of the bifurcation
surface) is less than or equal to the entropy on eAR (the generalized entropy of the temporarily
equilibrated black hole horizon).

This derivation extends to a one-shot GSL as follows. Let b̃ be the outer wedge of a cut of
the temporarily equilibrated horizon, and let b be the entire black hole exterior. Finally let ρb̃
and ρb be the density matrices of a state |Ψ〉 on eAR and AR respectively.

Because of the relationship (154) between the unique trace on the Type II algebras and
the generalized trace, the conditional generalized min-entropy limits to the conditional min-
entropy on the Type II algebra as

lim
G→0

Hϵmin,gen(b|b̃) = Hϵmin,II(b|b̃) = − inf
ρϵb∈Bϵ(ρb)

inf
σb̃

inf
�

λ : ρϵb ≤ eλσb̃

	

, (155)

where σb̃ is a normalized density matrix on eAR. Note that (155) is independent of the choice
of normalization for the traces on eAR and AR so long as their relative normalization is chosen
so that the inclusion is trace-preserving.

It is easy to check Hϵmin,gen(b|b̃) ≤ 0: suppose there existed a normalized density matrix

σb̃ such that eλσb̃ −ρ
ϵ
b ≥ 0. Because the inclusion eAR ⊆AR is trace-preserving, we have

trAR
(eλσb̃ −ρ

ϵ
b) = eλ tr
eAR
(σb̃)− 1= eλ − 1≤ 0 . (156)

Thus, λ≤ 0 for all candidate λ in the allowed set. The optimal λ will saturate this inequality,
λ= 0, if and only if ρϵb ∈ eAR.

Similarly, the limit of the conditional generalized max-entropy Hϵmax,gen(b|b̃) is simply

lim
G→0

Hϵmax,gen(b|b̃) = 2 inf
ρϵb∈Bϵ(ρb)

sup
σb̃

log tr
�

�

�

�

ρϵb
�1/2

σ
1/2
b̃

�

�

� , (157)

where |X | :=
p

X †X . Von Neumann algebras always admit polar decompositions, so there

21More precisely, we require β ≪ T ≪ tscr where tscr is the scrambling time of the black hole.
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exists a partial isometry v ∈AR such that v
�

ρϵb

�1/2
σ

1/2
b̃
= |
�

ρϵb

�1/2
σ

1/2
b̃
|. Hence

lim
G→0

Hϵmax,gen(b|b̃) = 2 inf
ρϵb∈Bϵ(ρb)

sup
σb̃

log tr
�

v
�

ρϵb
�1/2

σ
1/2
b̃

�

(158)

≤ 2 inf
ρϵb∈Bϵ(ρb)

sup
σb̃

log
�

tr[v†vρϵb] tr[σb̃]
�

≤ 0 . (159)

In the second step we used the Cauchy-Schwarz inequality.

7 Discussion

One of the biggest lessons we have learned in the last decade of quantum gravity research
is that you can get an awfully long way by taking theorems in classical general relativity and
turning them into correct statements about semiclassical gravity simply by replacing areas with
generalized entropies [7,22,49]. On the other hand, the lesson of one-shot quantum Shannon
theory is that von Neumann entropies should almost never feature in operational statements –
such as entanglement wedge reconstruction – that involve only a single copy of a state. If they
appear to do so, it is probably because you’re only considering special classes of nice states
where those von Neumann entropies are equal to the one-shot entropies that actually matter.
Our goal in this paper was to synthesize both of these lessons into a consistent framework of
holographic one-shot information theory.

We defined two regions, the max-EW and min-EW, associated to any boundary subregion
B, that we conjectured to have operational interpretations valid for any semiclassical state.
The max-EW is the largest region that can be state-specifically reconstructed with access just
to B. The min-EW is the smallest region whose complement cannot influence the state on B.
We also provided multiple pieces of evidence corroborating these conjectures, demonstrating
self-consistency and reduction to known correct statements in certain cases. To do so, we
conjectured new quantum focusing conjectures for max- and min-entropies and extended the
frameworks of both one-shot quantum Shannon theory and state-specific reconstruction to
finite-dimensional von Neumann algebras.

Entanglement wedge reconstruction as quantum state merging

A guiding principle of this work and the work of [1] is that bulk reconstruction can be viewed
through the operational lens of (one-shot) quantum state-merging. In [1] this was argued
in special cases. Here we have improved that argument, explaining how in any spacetime
the QES prescription can be reformulated in terms of (traditional) quantum state merging
through a Cauchy slice. In turn, this reformulation helped us propose one-shot versions of
the QES prescription by replacing state merging with one-shot state merging, leading to our
max-EW and min-EW.

While tensor network models [56–60] oversimplify quantum gravity in many ways (as we
shall discuss below), the success of (multiparty) state merging in describing bulk reconstruc-
tion suggests something is deeply correct about them. The holographic map seems to push
information “outwards” toward the boundary by acting in a spatially local way on some time
slice, similar to how tensors act locally in a tensor network.

On a different note, one main advantage of phrasing entanglement wedge reconstruction
operationally is to detach entanglement wedges from the restrictive context of AdS/CFT. In
particular, the framework we have put forth leads to a nice picture for the flow of quantum
information in general, dynamical spacetimes. It is thus natural to expect that our prescription
can help to understand entanglement wedge reconstruction for general regions in spacetime,
as was explored in [62,63].

36

https://scipost.org
https://scipost.org/SciPostPhys.16.6.144


SciPost Phys. 16, 144 (2024)

The emergence of time

A major open problem in holography is to give an information-theoretic interpretation of the
emergence of dynamical (and generally covariant) bulk time; that is, how bulk time fits into
the story of bulk reconstruction. Tensor networks have helped us understand the emergence
of an extra bulk spatial dimension, but so far have not provided a satisfactory understanding
of general covariance.

As a generally covariant information-theoretic property of holographic spacetimes, the QES
prescription seemingly should provide hints towards the right answer to this question, in the
same way that tensor network models were inspired by the earlier Ryu-Takayanagi formula [2]
which describes the classical limit of the QES prescription for time-reflection symmetric states.

However, so far no clear hint has appeared. In particular, the number of equivalent ways
that the QES prescription can be formulated make it hard to know what the correct insight
is supposed to be. Is the key point the local invariance of Sgen under small perturbations
of the quantum extremal surface? Or is the natural operational explanation in terms of the
“maximin” prescription, the global maximization of minimum-Sgen surfaces over all Cauchy
slices [4,51]? Or perhaps even the maximization of Sgen within a timelike hypersurface [64]?

Because one-shot entropies only satisfy the chain-rule as an (approximate) inequality and
not as an equality, there are far fewer equivalent definitions of the max- and min-EWs. In
fact, we are not aware of any nontrivial ways of reformulating our covariant definitions of
those wedges, or of any alternative proposals that could satisfy the required properties. We
therefore expect that our proposal (Conjecture 5.11) will significantly narrow the search for
an information-theoretic meaning for dynamical bulk time.

The first lesson of our proposal is that the state-merging process described in [1] can hap-
pen through any Cauchy slice of max-EW(B); only one slice needs to satisfy the required prop-
erties for information to successfully flow to the boundary. This seems relatively intuitive even
if we don’t have a specific microscopic explanation for it. But we also learned that the edge
of max-EW(B) needs to satisfy a anti-normality property to act as an origin for information
flow. So both a global condition on a Cauchy slice of max-EW(B) and a local condition on the
edge of max-EW(B) seem important. We don’t have good intuition for why the latter condi-
tion is necessary from an information-theoretic point of view, but its existence seems key to
understanding the emergence of time.

One-shot energy conditions

A great deal of progress has been made by taking information-theoretic constraints from quan-
tum gravity and taking a G → 0 limit to recover purely field-theoretic statements. A prime
example of this is discussed in [22], where the authors took the G → 0 limit of the quantum
focussing conjecture (QFC) and obtained the so-called quantum null energy condition (QNEC).
This condition was later derived using purely field-theoretic techniques [65,66], thus corrob-
orating aspects of the quantum focusing conjecture itself.

In principle, the same game could be played here with the one-shot QFCs proposed in
Conjectures 4.12 and 4.13. One could imagine taking the G → 0 limits of the one-shot QFCs
in the hopes of recovering interesting field theoretic inequalities. It is not obvious, however,
exactly how to phrase these limits in terms of continuum field theoretic quantities, and naive
attempts to do so suffer from various technical issues. We therefore leave the task of defining
one-shot versions of the QNEC to future work.

The proof of the QNEC due to Ceyhan & Faulkner [65] was inspired by the so-called Ant
Conjecture of Wall [67]. We expect that a one-shot version of Wall’s conjecture will concern
the nature of fluctuations in null energy, whereas the ant conjecture as presented in [67] is
about the mean null energy flowing past a point. Understanding this better may prove helpful
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in determining the correct statement of one-shot versions of the QNEC. Again, we defer a
detailed analysis of these issues to future work.
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A Properties of the min- and max-entropies

In this appendix, we collect the proofs of properties of the conditional min- and max-entropies
used in the main text. While these proofs mostly follow those in [23], we generalize them
where necessary to (finite) non-factor algebras, based on the definitions given in Section 2.2.

A.1 Duality between min- and max-entropies

Here we prove the first part of Theorem 2.33. Our discussion closely follows that in [68],
generalized to the algebraic setting. The theorem states that given a pure state |ψ〉 on a finite
Hilbert space H and given the nested subalgebras MB ⊂MA ⊂ L(H), with complementary
traces on MA, MA′ and separately on MB, MB′ , then

Hmin(A|B)ψ = −Hmax(B
′|A′)ψ . (A.1)

To prove it, we first rewrite the min- and max-entropies in terms of the so-called sandwiched
Renyi divergences, defined as follows.

Definition A.1. Let ρA,σA be density matrices on algebra MA with trace trA. The sandwiched
quantum Renyi divergences are

Sα(ρA||σA) :=

(

1
α−1 log trA

h

σ
1−α
2α

A ρAσ
1−α
2α

A

iα

, if suppρA ⊆ suppσA ,

∞ , else.
(A.2)

Using these sandwiched Renyi divergences we can define Renyi conditional entropies for
every α.

Definition A.2. Let MA ⊇MB be algebras on H with traces trA and trB, and let |ψ〉 ∈H be a
pure state. Let ρA be a density matrix on MA for |ψ〉. The conditional α-entropy is

Hα(A|B)ψ := sup
σB

−Sα(ρA||σB) , (A.3)
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where the supremum is over density matrices σB on MB that are sub-normalized with respect
to trB, and we regard σB as an operator in MA via the natural inclusion MB ⊆MA. The trace
used in the definition of the sandwiched Renyi entropy is trA.

Definition A.3. Let M be an algebra on H with trace tr, let m ∈M be positive semi-definite,
and let p ∈ (0,∞). The Schatten p-norm of m is

∥m∥p := (tr[mp])1/p . (A.4)

Note that when p < 1, ∥m∥p is not technically a norm. The Schatten p-norms satisfy a
useful relationship:

Lemma A.4 (Lemma 12 of [68]). Let M be an algebra on H with trace tr. Let p, q ∈R \ {0, 1}
satisfy 1

p +
1
q = 1. Then for any positive semi-definite m ∈M,

∥m∥p = sup
z≥0

tr z≤1

tr
�

mz
1
q
�

if p > 1 , and ∥m∥p = inf
z≥0

tr z≤1
supp z⊇supp m

tr
�

mz
1
q
�

if p < 1 . (A.5)

Proof sketch. For p > 1, this statement follows directly from the duality statement on p-norms:

||m||p = sup
||x ||q≤1

| tr[mx]| . (A.6)

This duality statement follows in turn directly from Holder’s inequality on the Schatten p-
norms. Holder’s inequality holds if the trace used to define the p-norm on the algebra is faith-
ful, normal, and semi-finite, which ours is by assumption. For a proof of Holder’s inequality
that only uses these assumptions see [69].22

For p < 1, || · ||p is not a norm and so we cannot use Holder’s inequality. Instead, we prove
the statement following [68]. One can solve the optimization problem

inf
z≥0

tr z≤1
supp z⊇supp m

tr
�

mz
1
q
�

, (A.7)

via Lagrange multipliers. Note that without loss of generality we can take z to commute with
m by basic theorems in matrix analysis. Furthermore, we can take z to be trace one, tr z = 1.
Otherwise, we could re-scale z by its trace and get a lower value for tr[mz1/q] since q < 0.
Therefore, we can write a Lagrangian like

L = tr
�

mz1/q
�

−µ(tr[z]− 1) , (A.8)

with µ the Lagrange multiplier. Solving the equations for each component of z, we find the
optimum (z∗,µ∗) satisfy

mz1/q−1
∗ = qµ∗1 . (A.9)

Remembering tr z∗ = 1, the trace of this equation tells us qµ∗ = tr(mp)1/p. Moreover,

(A.9) gives an optimum value of L∗ = qµ∗, which we recall equals tr[mz
1
q
∗ ]. Therefore

tr(mp)1/p = qµ∗ = tr(mz1/q
∗ ), completing the argument.

Following [68], we now prove the following statement, which is stronger than (A.1).

22We thank Jon Sorce for pointing us to this reference.
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Theorem A.5 (Adapted from Theorem 10 of [68]). Let MB ⊆MA ⊆ L(H) be algebras on a
Hilbert space H and denote their complements by MA′ :=M′A and MB′ :=M′B. Let |ψ〉 be a
pure state in H and let α,β ∈ (1

2 , 1)∪ (1,∞) be related by 1
α +

1
β = 2. Then for traces on A and

B which are complementary, as in definition 2.22, to those on A′ and B′ respectively, it holds

Hα(A|B)ψ = −Hβ(B
′|A′)ψ . (A.10)

Proof. Assuming suppσA ⊇ suppρA, it holds that

Sα(ρA||σA) =
α

α− 1
log







σ
1−α
2α

A ρAσ
1−α
2α

A










α
=

α

α− 1
log







ρ
1/2
A σ

1−α
α

A ρ
1/2
A










α
, (A.11)

where the second equality uses the cyclicity of the trace. Applying lemma A.4, we have

Sα(ρA||σA) =







α
α−1 log supτA

trA

h

ρ
1/2
A σ

1−α
α

A ρ
1/2
A τ

α−1
α

A

i

, if α > 1 ,

α
α−1 log infτA

trA

h

ρ
1/2
A σ

1−α
α

A ρ
1/2
A τ

α−1
α

A

i

, if α < 1 ,
(A.12)

where we define trA

h

ρ
1/2
A σ

1−α
α

A ρ
1/2
A τ

α−1
α

A

i

= +∞ if α < 1 and suppρA ⊈ suppτA. It follows

that

Hα(A|B) =







α
1−α log infσB

supτA
trA

h

ρ
1/2
A σ

1−α
α

B ρ
1/2
A τ

α−1
α

A

i

, if α > 1 ,

α
1−α log supσB

infτA
trA

h

ρ
1/2
A σ

1−α
α

B ρ
1/2
A τ

α−1
α

A

i

, if α < 1 .
(A.13)

Theorem 2.12 allows us to decompose H = ⊕α(HAα ⊗HA′α
), and write the purification of ρA

in terms of its Schmidt decomposition as

|ψ〉=
∑

α

∑

i

rαi |α; i〉Aα |α; i〉A′α . (A.14)

From this we get a simple representation of ρA of the form (32) that is diagonal within each
α-block. Using this representation, it is straightforward to find that

trA

h

ρ
1/2
A σ

1−α
α

B ρ
1/2
A τ

α−1
α

A

i

= 〈ψ|σ
1−α
α

B τ
α−1
α

A′ |ψ〉 , (A.15)

where τA′ is defined as the transpose of τA with respect to the Schmidt basis in equation (A.14)
and so obeysρ1/2

A τn
Aρ
−1/2
A |ψ〉= τn

A′ |ψ〉, as one can easily check. More explicitly, we can define
the un-normalized pure state derived from |ψ〉

|1〉=
∑

α

∑

i

|α; i〉Aα |α; i〉A′α . (A.16)

Then the operator τA′ obeys the equation

τA |1〉= τA′ |1〉 . (A.17)

By remarks 2.18 and 2.20, we can write trA and trA′ in terms of the canonical trace and
central operators

CA =
∑

α

pα
dim Aα

trA[pα] , CA′ =
∑

α

pα
dim A′α

trA′[pα] . (A.18)

In the optimization over τA in (A.13), it suffices to optimize only over τA which have the same
support as |ψ〉, and similarly for σB. Therefore

trA[τA] = 〈1|CAτA|1〉= 〈1|CA′(CA′)−1CAτA′ |1〉= trA′
�

(CA′)−1CAτA′
�

= trA′[τA′] , (A.19)
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where in the last equality we used CA = CA′ because the traces are complementary.
This then allows us to write

Hα(A|B)ψ =

(

α
1−α log infσB

supτA′
〈ψ|σ

1−α
α

B τ
α−1
α

A′ |ψ〉 , if α > 1 ,
α

1−α log supσB
infτA′
〈ψ|σ

1−α
α

B τ
α−1
α

A′ |ψ〉 , if α < 1 ,
(A.20)

where the sup and inf are over τA′ such that trA′[τA′]≤ 1. For α < 1, this is concave in σB and
convex in τA′ . When α > 1, the reverse is true: it is convex (concave) in σB (τA′). For such
a function which is concave-convex in its two arguments, von Neumann’s minimax theorem
allows us to swap the inf and the sup.

Now, we could proceed by using similar manipulations to replace σB with σB′ . However,
we are already done. Take (A.20) and plug in A → B′, B → A′, and use that for α,β with
1
α+

1
β = 2 it holds that α

α−1 = −
β
β−1 . Up to a sign this gives an identical expression on the right

hand side, proving

Hα(A|B)ψ = −Hβ(B
′|A′)ψ . (A.21)

Finally, we relate these conditional α-entropies to the min- and max-entropies used in the
main text.

Proposition A.6 (theorem 5 of [68]). From definition 2.28, it follows that

H∞(A|B) = Hmin(A|B) , (A.22)

H1/2(A|B) = Hmax(A|B) . (A.23)

Proof. Equation (A.23) for Hmax(A|B) follows directly from equations (A.2), (A.3) and (35).
To prove (A.22), we first note that by equation (A.13) and the manipulations in (A.11), we
have that

H∞(A|B) = − log inf
σB

sup
τA

trA

�

ρ
1/2
A σ−1

B ρ
1/2
A τA

�

= − log inf
σB

sup
τA

trA

�

σ
−1/2
B ρAσ

−1/2
B τA

�

. (A.24)

The supremum over τA is achieved by the τA projecting onto the largest eigenvalue of
σ
−1/2
B ρAσ

−1/2
B . This log of the maximum eigenvalue can alternatively be written as

− inf
σB

inf{λ : σ−1/2
B ρAσ

−1/2
B ≤ eλ}= H∞(A|B) . (A.25)

Remark A.7. With equations (A.22) and (A.23), we can take the α →∞ limit of Theorem
A.5 to get

Hmin(A|B) = −Hmax(B
′|A′) . (A.26)

A.2 Smoothed duality

We now extend the results of the previous subsection to the smoothed one-shot entropies,
proving

Hϵmin(A|B)ψ = −Hϵmax(B
′|A′)ψ . (A.27)
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Definition A.8. The ϵ-ball around ρ is

Bϵ(ρA) := {ρϵA : P(|ρ〉 , |ρϵ〉)A < ϵ} , (A.28)

with P(|ρ〉 , |ρϵ〉)A := P(ρA,ρϵA) and P(ρA,ρϵA) from Definition 2.30.

Remark A.9. As before, the smoothed min- and max-entropies are related to limits of the
smoothed α-entropies as

Hϵmin(A|B)ψ = max
ρϵ∈Bϵ(ρ)

H∞(A|B)ρϵ , (A.29)

Hϵmax(A|B)ψ = min
ρϵ∈Bϵ(ρ)

H1/2(A|B)ρϵ . (A.30)

Remark A.10. One can show that P(|Ψ〉 , |Ω〉)A defined above gives a good metric on the space
of states and in particular obeys the triangle inequality. Furthermore, this metric is monotonic
under inclusion so that if we have two nested algebras MA ⊃MB, then

P(|Ψ〉 , |Ω〉)A ≥ P(|Ψ〉 , |Ω〉)B . (A.31)

We will need these properties below.

In what follows, we will use isometries to map algebras into larger algebras. Of course,
when these algebras are non-factors, there is an ambiguity in each choice of trace. It will be
important to define a special class of isometries which preserve the trace.

Definition A.11 (Isometry between algebras). Let the algebra M act both on H1 and on H2
and let the commutant algebras of M on those Hilbert space be M′1 and M′2 respectively. We
say that an isometry W : H1→H2 maps M′1 into M′2 if

[W,M] = 0 . (A.32)

Lemma A.12. An isometry W : H1→H2 mapping M′1 into M′2 satisfies the following proper-
ties:

1. W †W = 1 ,

2. Π :=WW † ∈M′2 ,

3. ΠM′2Π=WM′1W † .

Proof. Property 1 is the definition of an isometry. Property 2 follows directly from (A.32)
and its conjugate since M† = M. To see Property 3, note that [WM′1W †,M] = 0 and
ΠWM′1W †Π = WM′1W †. Hence WM′1W † ⊆ ΠM′2Π. Similarly, [W †M′2W,M] = 0 and
hence ΠM′2Π ⊆WM′1W †.

Definition A.13 (Trace-preserving isometry). We say that an isometry W : H→ eH mapping
MA into M

eA is trace-preserving with respect to MA if for all m ∈MA,

tr
eA

�

W mW †
�

= trA [m] . (A.33)

Remark A.14. A sufficient condition for an isometry to be trace-preserving is if for every
minimal central projector pA

α ∈ Z(MA) there exists a minimal central projector peAα such that

V †peAαV = pA
α , (A.34)

trA(pα) = tr
eA

�

ΠpeAαΠ
�

, (A.35)
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where Π= V V †. Note these conditions imply

V (HAα ⊗HA′α
) = V pA

αH = ΠpeAαΠ eH ⊆ peAα eH =: eH
eAα
⊗HA′α

, (A.36)

with the action of V commuting with operators on HA′α
. In the last equality we used the fact

that M′A ∼=M′
Ã

to identify HA′α
with HÃ′α

. In other words, within each α-sector, V embeds

HAα isometrically into eH
eAα

. In what follows, we will often need to construct embeddings with
these properties.

Remark A.15. An important example of a trace-preserving isometry is the map V0 : H→H⊗HR
defined by

V0 |ψ〉= |ψ〉 |0〉 , (A.37)

for some fixed state |0〉 ∈HR. This maps any algebra MA acting on H into M
eA :=MA⊗L(HR)

and is trace-preserving for tr
eA = trA⊗TrR.

Lemma A.16 (Adapted from Proposition 5.3 of [23]). Let V : H → eH be a trace-preserving
isometry mapping the algebra MA into the algebra M

eA. Let MB ⊆ MA and M
eB ⊆ M
eA be

subalgebras such that V †M
eBV ⊆MB with trB[V †O

eBV ] = tr
eB[OeB] for all O

eB ∈MeB. Finally let
T : MB →M

eB be a trace-preserving completely positive superoperator such that VOB = T (OB)V
for all OB ∈MB. The smoothed conditional min- and max-entropies are invariant under V :

Hϵmin(eA|eB)eρ = Hϵmin(A|B)ρ , (A.38)

Hϵmax(eA|eB)eρ = Hϵmax(A|B)ρ , (A.39)

where ρA ∈MA and eρ
eA := VρAV † ∈M

eA are density matrices.

Proof. We first prove this for ϵ = 0. By definition, for λ = Hmin(A|B)ρ there exists a σB such
that

ρA ≤ e−λσB , (A.40)

and hence

VρAV † ≤ e−λVσBV † = e−λT (σB)Π= e−λT (σB)
1/2ΠT (σB)

1/2 ≤ e−λT (σB) . (A.41)

By assumption, VρAV † and T (σB) are normalized density matrices on M
eA and M
eB respec-

tively. Hence

Hmin(A|B)ρ ≤ Hmin(eA|eB)eρ . (A.42)

Conversely, let λ̃ = Hmin(eA|eB)eρ. There exists a sub-normalized σ
eB such that eρ

eA ≤ e−eλσ
eB.

Conjugating by V †,

V †
eρ
eAV = ρA ≤ e−

eλV †σ
eBV . (A.43)

By assumption, σB = V †σ
eBV is a sub-normalized density matrix on MB. Hence

Hmin(A|B)ρ ≥ Hmin(Ã|B̃)ρ̃. The proof for the max-entropy works analogously.
To prove the statement for ϵ > 0, we will need the fact that to optimize the min-

or max-entropies in the target algebra M
eA, it is enough to consider density matrices in

ΠM
eAΠ= VMAV †, within Bϵ(VρAV †). To see this, first note that

max
Π eωΠ∈Bϵ(VρV †)

Hmin(eA|eB)Π eωΠ ≤ Hϵmin(eA|eB)VρV † , (A.44)
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because the restriction to ΠM
eAΠ can only decrease the maximum. Conversely, note that

for the density matrix eρ∗ ∈MeA such that Hϵmin(eA|eB)VρV † = Hmin(eA|eB)eρ∗ , it decreases the min-
entropy if eρ∗ has support in a subspace orthogonal toΠ. Indeed, Hmin(eA|eB)eρ∗ ≤ Hmin(eA|eB)Πeρ∗Π,
which follows from Πeρ∗Π≤ eρ∗. Furthermore, by monotonicity of the purified distance under
projections we know that Πeρ∗Π ∈ Bϵ(ΠVρAV †Π), and moreover we know that ΠV = V .
Therefore

max
Π eωΠ∈Bϵ(VρV †)

Hmin(eA|eB)Π eωΠ ≥ Hϵmin(eA|eB)VρV † . (A.45)

In particular, Hϵmin(eA|eB)VρV † = Hmin(eA|eB)Πeρ∗Π. The analogous statement also holds for the
max-entropy.

Now let ρ∗ ∈MA be such that Hϵmin(A|B)ρ = Hmin(A|B)ρ∗ and Πeρ∗Π be defined as above.
Then since the isometry is trace preserving, we have that both Vρ∗V

† ∈ Bϵ(VρAV †) and
V †
eρ∗V ∈ Bϵ(ρA). Therefore,

Hϵmin(A|B)ρ = Hmin(A|B)ρ∗ = Hmin(eA|eB)Vρ∗V † ≤ Hϵmin(eA|eB)VρV † (A.46)

= Hmin(eA|eB)Πeρ∗Π = Hmin(A|B)V †
eρ∗V ≤ Hϵmin(A|B)ρ . (A.47)

The proof for the max-entropy works analogously.

Remark A.17. Lemma A.16 is very general. We will be primarily interested in two spe-
cial cases, both related to the isometry V0 from Remark A.15. In both cases, we have
M
eA :=MA ⊗ L(HR). In the first case we have M

eB :=MB and T is the identity channel,
T (ρB) = ρB ⊗1R. In the second case we have M

eB :=MB ⊗L(HR) and T (ρB) = ρB ⊗ |0〉〈0|.

Lemma A.18 (Uhlmann’s theorem). Let ρ and σ be positive operators. For any purification |φ〉
of ρ,

F(ρ,σ) =max
|ψ〉
|〈φ|ψ〉| , (A.48)

where the maximum is taken over all purifications |ψ〉 of σ.

For a proof of Uhlmann’s theorem that applies to general algebras, see [70].

Theorem A.19 (Adapted from theorem 5.4 of [23]). Let |ψ〉 ∈H be a pure state. Assuming that
the traces on the algebras MA,MB ⊂ L(H) are complementary to those on M′A, M′B respectively,
then the smoothed conditional min- and max-entropies obey the duality statement

Hϵmin(A|B)ψ = −Hϵmax(B
′|A′)ψ . (A.49)

Proof. We would like to write

Hϵmin(A|B)ψ = Hmin(A|B)ρϵ = −Hmax(B
′|A′)ρϵ ≤ −Hϵmax(B

′|A′)ρ , (A.50)

and then obtain the opposite inequality from analogous manipulations starting from
Hϵmax(B

′|A′). However, the second equality is too quick.
We have not proven that given a density matrix ρϵA, there is a density matrix ρϵB′ ∈ B

ϵ(ρB′)
that purifies trA→B[ρϵA].

Let V0 be defined as in Remark A.15 with M
eB :=MB⊗L(HR) as in case 2 of Remark A.17.

We wish to prove that given a ρϵA ∈ Bϵ(ρA), there exists a ρϵ
eB′
∈ Bϵ(V0ρB′V

†
0 ) that purifies

trA→B[ρϵA]. By Uhlmann’s theorem, for any ρϵA, there is a purification | eψ〉 ∈ eH = H ⊗HR

for sufficiently large HR such that P(ρA,ρϵA) = |〈 eψ|V |ψ〉|. Now let ρϵ
eB′

be the density ma-

trix of | eψ〉 on M
eB′ . Tracing out MB can only decrease the purified distance, and hence

P(ρA,ρϵA)≥ P(VρB′V
†,ρϵ
eB′
). Therefore indeed ρϵ

eB′
∈ Bϵ(V0ρB′V

†
0 ).
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Now we can run the argument. Let ρϵA optimize the min-entropy on A. By Lemma A.16
and Theorem A.5 we have that

Hϵmin(A|B)ψ = Hmin(A|B)ρϵ = −Hmax(eB
′|eA′)ρϵ ≤ −Hϵmax(eB

′|eA′)VρV † = −Hϵmax(B
′|A′)ρ . (A.51)

Conversely, we have

Hϵmax(B
′|A′)ψ = Hmax(B

′|A′)ρϵ = −Hmin(eB|eA)ρϵ ≥ −Hϵmin(eB|eA)VρV † = −Hϵmin(B|A)ρ . (A.52)

A.3 Quantum asymptotic equipartition principle

In this subsection, we present the proof of the quantum asymptotic equipartition principle
(QAEP), following [23,71]. During the preparation of this manuscription, a proof of an asymp-
totic equipartition principle for max-relative entropies in any von Neumann algebras (includ-
ing infinite-dimensional ones) was independently given in [33]. Let MA ⊇MB be algebras
on Hilbert space H with trace tr and trB respectively. Let ΨA ∈MA be a normalized density
matrix and ΨB = trA→B ΨA. The operators σ,ρ ∈MA are positive and we assume tr(ρ) ≤ 1.
Finally, we let 0< ϵ < 1.

Theorem A.20 (QAEP). It holds that

lim
n→∞

1
n

Hϵmin(A
n|Bn)Ψ⊗n = S(A|B)Ψ = lim

n→∞

1
n

Hϵmax(A
n|Bn)Ψ⊗n . (A.53)

We begin with some preliminary definitions and lemmas.

Definition A.21. The smoothed version of the α-Renyi entropies defined in A.2 are

Sϵα(ρ||σ) =

¨

inf
eρ∈Bϵ(ρ) Sα(eρ||σ) , if α > 1 ,

sup
eρ∈Bϵ(ρ) Sα(eρ||σ) , if α < 1 ,

(A.54)

where again Bϵ(ρ) is as in definition A.8.

Remark A.22. By using equation (A.12) and an argument similar to that in Proposition A.6,
we obtain

S∞(ρ||σ) = inf
�

λ : ρ ≤ eλσ
	

. (A.55)

Proposition A.23. It holds that

S(A|B)Ψ = −S(ΨA||ΨB) , (A.56)

Hϵmin(A|B)Ψ ≥ −Sϵ∞(ΨA||ΨB) . (A.57)

Proof. To derive the first equality, note that

S(ΨA||ΨB)Ψ := tr(ΨA logΨA)− tr(ΨA logΨB) = S(B)− S(A) ,

the last equality following from the definition of the density matrix on MA and MB.
To derive the second inequality, from definition A.1 we have

Hmin(A|B)Ψ := −min
eΨB

inf{λ : ΨA ≤ eλeΨB}=max
eΨB

sup{λ : ΨA ≤ e−λeΨB}

≥ sup{λ : ΨA ≤ e−λΨB}= −S∞(ΨA||ΨB) .

The inequality continues to hold under smoothing.
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Lemma A.24 (lemma 6.1 of [23]). Let λ≤ S∞(ρ||σ). Then

Sϵ∞(ρ||σ)≤ λ , where ϵ =
Æ

2 tr(∆)− tr(∆)2 , and ∆= {ρ − eλσ}+ , (A.58)

where for Hermitian operator X , {X }+ is the positive operator defined by setting all negative
eigenvalues to zero.

Proof. The strategy is to choose ρ̃, bound S∞(ρ̃||σ) and then show that ρ̃ ∈ Bϵ(ρ). This then
bounds the smoothed-entropy. Define Λ := eλσ and also

ρ̃ := GρG† , where G := Λ
1
2 (Λ+∆)−

1
2 , (A.59)

using the generalized inverse. From the definition of ∆ we have ρ ≤ Λ +∆ and therefore
ρ̃ ≤ Λ and so S∞(ρ̃||σ)≤ λ.

Now let |ψ〉 be a purification of ρ. Then G |ψ〉 is a purification of ρ̃. Using Uhlmann’s
theorem for the generalized fidelity,

F(ρ̃,ρ)≥ |〈ψ|G|ψ〉|+
Æ

(1− tr[ρ])(1− tr[ρ̃]) (A.60)

≥ Re(tr[ρG]) + 1− tr[ρ] (A.61)

≥ 1− tr[(1− Ḡ)ρ] , (A.62)

where we have introduced Ḡ := (G + G†)/2 and in going from the first to second line used
that tr[ρ̃]≤ tr[ρ]. It also holds that

G†G = (Λ+∆)−
1
2Λ(Λ+∆)−

1
2 ≤ 1 , (A.63)

where the final inequality follows from multiplying Λ ≤ Λ+∆ with (Λ+∆)−
1
2 from the left

and right. It follows that Ḡ ≤ 1 by the triangle inequality. Moreover,

tr[(1− Ḡ)ρ]≤ tr[Λ+∆]− tr[Ḡ(Λ+∆)]

= tr[Λ+∆]− tr
�

(Λ+∆)
1
2Λ

1
2

�

≤ tr[∆] ,

(A.64)

where we have used ρ ≤ Λ+∆ and
p
Λ+∆≥

p
Λ, the latter following from the monotonicity

of the square root. Finally we can combine all of this to bound the purified distance

P(ρ̃,ρ) :=
Æ

1− F2(ρ̃,ρ)≤
Æ

1− (1− tr[∆])2 =
Æ

2 tr[∆]− tr[∆]2 . (A.65)

This confirms ρ̃ ∈ Bϵ(ρ) and so, by use of definition A.21, concludes the proof.

Definition A.25. When supp(ρ) ⊆ supp(σ), the α-Petz relative entropy is

Dα(ρ||σ) :=
1

α− 1
log tr
�

ρασ1−α� , (A.66)

where for α > 1 we use the generalized inverse of σ. When supp(ρ) ̸⊆ supp(σ), it is defined
to equal∞.

Lemma A.26 (proposition 6.2 of [23]). Let α ∈ (1,2]. Then

Sϵ∞(ρ||σ)≤ Dα(ρ||σ) +
g(ϵ)
α− 1

, where g(ϵ) = log
1

1−
p

1− ϵ2
. (A.67)
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Proof. Suppose supp(ρ) ⊈ supp(σ). Then Dα(ρ||σ) diverges to +∞ and the inequality holds
trivially.

Now suppose supp(ρ) ⊆ supp(σ). Then for the sake of this proof we can assume σ is
invertible. (More precisely, we can define an isometry H′→H that maps σ′ 7→ σ and ρ′ 7→ ρ
such that σ′ has full support, and the entropies are invariant under such an isometry.)

From lemma A.24 we have Sϵ∞(ρ||σ)≤ λ for some λ. Introduce the operator X := ρ−eλσ
with eigenbasis {|ei〉} for i ∈ S. The set S+ ⊆ S is the indices i corresponding to positive
eigenvalues of X . Therefore P+ :=

∑

i∈S+ |ei〉 〈ei| is the projector on the positive eigenspace of
X and P+X P+ = ∆ as defined in lemma A.24. Let ri := 〈ei|ρ|ei〉 ≥ 0 and si := 〈ei|σ|ei〉 > 0.
Now, the trace on the algebra is related to the canonical trace via the action of a central
operator. In particular, we can write

tr [ · ] = trcan [C · ] . (A.68)

We define Ci := 〈ei|C |ei〉. Note that Ci ≥ 0 by assumption.
Using this, we note that

∀ i ∈ S+ : ri − eλsi ≥ 0 , thus
ri

si
e−λ ≥ 1 . (A.69)

Then for any α ∈ (1, 2] we bound tr(∆) = 1−
p

1− ϵ2 with

1−
p

1− ϵ2 = tr(∆) =
∑

i∈S+
Ci

�

ri − eλsi

�

≤
∑

i∈S+
Ci ri

≤
∑

i∈S+
Ci ri

�

ri

si
e−λ
�α−1

≤ eλ(1−α)
∑

i∈S

Ci r
α
i s1−α

i .
(A.70)

We then take the logarithm and divide by α− 1> 0 to get

λ≤
1

α− 1
log
∑

i∈S

Ci r
α
i s1−α

i +
1

α− 1
log

1

1−
p

1− ϵ2
. (A.71)

Finally, define the completely-positive trace-preserving map N : ω 7→
∑

i∈S |ei〉 〈ei|ω |ei〉 〈ei|,
and use the monotonicity of the Petz relative entropies [70] to obtain

Dα(ρ||σ)≥ Dα(N (ρ)||N (σ)) =
1

α− 1
log
∑

i∈S

Ci r
α
i s1−α

i . (A.72)

Combining this with (A.71) and the lowerbound on λ from lemma A.24 concludes the proof.

The following quantity will help us describe how fast the α-entropies converge to the von
Neumann entropy.

Definition A.27. We define the α-entropy convergence parameter

Υ (ρ||σ) := e
1
2 D3

2
(ρ||σ)

+ e
− 1

2 D1
2
(ρ||σ)

+ 1 . (A.73)

We now bound the α-entropies for α≈ 1.

Lemma A.28 (lemma 6.3 of [23]). Let tr(ρ) = 1 and let 1< α < 1+ log 3
4 log v where v := Υ (ρ||σ).

Then
Dα(ρ||σ)< S(ρ||σ) + 4(α− 1)(log v)2 . (A.74)
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Proof. As in the proof of lemma A.26, we will assume without loss of generality thatσ is invert-
ible. Let {|i〉} be an orthonormal basis for H, and let |MAX〉=

∑

i |i〉⊗ |i〉 be an unnormalized
maximally entangled state on H⊗H, and define |φ〉 :=

p

Cρ |MAX〉, where C is the central
operator such that tr[·] = trcan[C ·]. Let β := α−1 and X := ρ⊗ (σ−1)T . We first approximate
Dα for small β > 0.

Dα(ρ||σ) =
1
β

log 〈φ|X β |φ〉 ≤
1
β
(〈φ|X β |φ〉 − 1) , (A.75)

where we have used that log x ≤ x − 1 for x > 0. Now define rβ(t) := tβ − β log t − 1. Then

Dα(ρ||σ)≤
1
β
(〈φ|rβ(X )|φ〉 − 1+ tr(ρ) + β 〈φ| log X |φ〉)

≤ S(ρ||σ) +
1
β
〈φ|rβ(X )|φ〉 .

(A.76)

Now we continue to simplify by defining

sβ(t) := 2(cosh(β log t)− 1)≥ rβ(t) . (A.77)

One can confirm that sβ(t) is monotonically increasing for t ≥ 1 and concave in t for β ≤ 1/2
and t ∈ [3,∞). It also holds that sβ(t) = sβ(1/t) and sβ(t2) = s2β(t). Thus we can bound

sβ(t)≤ sβ

�

t +
1
t
+ 2
�

= s2β

�p
t +

1
p

t

�

≤ s2β

�p
t +

1
p

t
+ 1
�

. (A.78)

Next use that
p

X + 1/
p

X + 1 has all eigenvalues in [3,∞) and that 2β < log 3
2 log v ≤ 1/2 to get

〈φ|sβ(X )|φ〉 ≤ 〈φ| s2β(
p

X +
1
p

X
+1) |φ〉 ≤ s2β(v) , (A.79)

where in the last inequality we have used concavity and v = 〈φ|(
p

X + 1/
p

X +1)|φ〉. Finally,
we use that sβ(t)≤ β2(log t)2 cosh(β t) to write

s2β(v)≤ 4β2(log v)2 cosh(2β log v)< 4β(log v)2 . (A.80)

Combining this with (A.79) and (A.77) and plugging into (A.76) completes the proof.

Theorem A.29 (theorem 6.4 of [23]). Let tr(ρ) = 1 and v = Υ (ρ||σ). Then for any
n> 10g(ϵ)/3, the operators ρ⊗n and σ⊗n satisfy

1
n

Sϵ∞(ρ
⊗n||σ⊗n)≤ S(ρ||σ) +

δ(ϵ, v)
p

n
, where δ(ϵ, v) = 4

Æ

g(ϵ) log v , (A.81)

and g(ϵ) = − log(1−
p

1− ϵ2).

Proof. Let α := 1+ 1/2µ
p

n, for some µ we will optimize later. Using lemmas A.26 and A.28,
we have

1
n

Sϵ∞(ρ
⊗n||σ⊗n)≤

1
n

Dα(ρ
⊗n||σ⊗n) +

g(ϵ)
n(α− 1)

= Dα(ρ||σ) +
2µ
p

n
g(ϵ)

≤ S(ρ||σ) +
2
p

n

�

(log v)2

µ
+µg(ϵ)

�

.

(A.82)
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For the best bound, we would like to choose µ to minimize (log v)2/µ+ µg(ϵ), but we must
keep in mind that our use of lemma A.28 limits 1 < α < 1+ log(3)/4 log(v), restricting our
choice of µ for any given n. Fortunately, the optimum can be achieved for large enough n, in
particular:

µ∗ =

√

√(log v)2

g(ϵ)
, for n≥

10
3
(log v)2

µ2
∗
=

10
3

g(ϵ) , (A.83)

where we have used that
p

6/5< log 3. Substituting this optimum into the previous inequality
completes the proof.

Theorem A.30 (corollary 6.5 of [23]). It holds that

1
n

Hϵmin(A
n|Bn)Ψ⊗n ≥ S(A|B)Ψ −

δ(ϵ, v)
p

n
, (A.84)

1
n

Hϵmax(A
n|Bn)Ψ⊗n ≤ S(A|B)Ψ +

δ(ϵ, v)
p

n
, (A.85)

where δ(ϵ, v) is as defined in Theorem A.29 and v = Υ (ΨA||ΨB).

Proof. From Proposition A.23 and Theorem A.29, it follows that

1
n

Hϵmin(A
n|Bn)Ψ⊗n ≥ −

1
n

Sϵ∞(Ψ
⊗n
A ||Ψ

⊗n
B )

≥ −S(ΨA||ΨB)−
δ(ϵ, v)
p

n

= S(A|B)Ψ −
δ(ϵ, v)
p

n
.

(A.86)

From duality it holds that Hϵmin(A
n|Bn)Ψ⊗n=−Hϵmax(B

′n|A′n)Ψ⊗n and also that S(B′|A′)Ψ=−S(A|B)Ψ .
Therefore

1
n

Hϵmax(B
′n|A′n)Ψ⊗n ≤ S(B′|A′)Ψ +

δ(ϵ, v)
p

n
. (A.87)

Corollary A.31 (QAEP, direct). It holds that

lim
n→∞

1
n

Hϵmin(A
n|Bn)Ψ⊗n ≥ S(A|B)Ψ ≥ lim

n→∞

1
n

Hϵmax(A
n|Bn)Ψ⊗n . (A.88)

Now we need to prove the converse direction. Essentially this will follow from
Hmin(A|B) ≤ S(A|B) ≤ Hmax(A|B). However, we would get too weak a bound if we naively
smoothed to ϵ > 0 using the continuity of the conditional entropy. At the end we would also
need to take the limit ϵ→ 0. We get a stronger bound as follows.

First, note that so far the smoothing optimizes over sub-normalized states. It will be con-
venient to isometrically extend the algebras such that the optimizing density matrix is normal-
ized.

Lemma A.32 (Adapted from Lemma 5.2 of [23]). Given any density matrix ρA ∈MA ⊃MB,
there exists an isometry V : H→ eH, satisfying the conditions of Lemma A.16, along with density
matrices ρ̂
eA,min, ρ̂
eA,max ∈ B

ϵ(VρAV †), normalized on M
eA, such that

Hϵmin(A|B)ρA
= Hmin(eA|eB)ρ̂

eA,min
, Hϵmax(A|B)ρA

= Hmax(eA|eB)ρ̂
eA,max

. (A.89)
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Proof. Let V0 : H → H ⊗HR1
be defined as in Remark A.15 with M

eB =MB as in case 1 of
Remark A.17.

Now given a sub-normalized density matrix ρϵA ∈ Bϵ(ρA) which optimizes the smoothed
min-entropy, there exists a sub-normalized density matrix σB such that

ρϵA ≤ e−λσB , (A.90)

with λ= Hϵmin(A|B)ρ. We can then define the state ρ̂
eA as

ρ̂
eA := ρϵA⊗ |0〉〈0|R1

+
1− trA(ρϵA)

(dimHR1
− 1) trA[σB]

σB ⊗ (1R1
− |0〉〈0|R1

) , (A.91)

which is by construction normalized, tr
eA ρ̂eA = 1. Furthermore, for large enough dimHR1

, we
have the inequality

ρ̂
eA ≤ e−λσB ⊗1R1

, (A.92)

and so

Hmin(eA|B)ρ̂
eA
≥ Hϵmin(A|B)ρA

. (A.93)

To prove equality, note that ρ̂
eA ∈ Bϵ(V0ρAV †

0 ) because the distance between ρ̂
eA and

V0ρAV †
0 = ρA⊗ |0〉〈0| is the same as that between ρϵA and ρA. Thus, we have

Hϵmin(eA|B)V0ρAV †
0
≥ Hmin(eA|B)ρ̂

eA
. (A.94)

Then use Lemma A.16 with T the identity on MB to obtain

Hϵmin(eA|B)V0ρV †
0
= Hϵmin(A|B)ρ . (A.95)

Combining these implies what we wanted:

Hmin(eA|B)ρ̂
eA
= Hϵmin(A|B)ρ . (A.96)

This is what we wanted to show, but so far only for the min-entropy. We would like to use
duality (Theorem A.5) to derive the analogous thing for max-entropy. Consider any ρA ∈MA,
and let the purification be |ψ〉AA′ . By duality,

Hϵmax(A|B)ψ = −Hϵmin(B
′|A′)ψ . (A.97)

As above, we can find an isometry W0 : H→H⊗HR2
acting on B′, defined as in Remark A.15,

and a normalized state ρ̂
eB′ ∈ B

ϵ(W0ρB′W
†
0 ) such that

Hϵmin(B
′|A′)ρB′

= Hmin(eB
′|A′)ρ̂
eB′

, (A.98)

with the algebras defined as in case 1 of Remark A.17. Here ρB′ is the reduced density matrix
of |ψ〉AA′ on M′B.

We would like to apply duality again to convert the right hand side of eq. (A.98) back to
a max-entropy, but the issue is that ρ̂

eB′ may not have a purification on M′
eB′
=MB. We solve

this with a third isometry X0 : H → H ⊗HR3
on MB, again defined as in Remark A.15. For

sufficiently large HR3
, we can find | eψ〉 ∈H⊗HR2

⊗HR3
that purifies ρ̂

eB′ . We have

Hmax(eA|eB)ρ̂
eA
= −Hmin(eB

′|A′)ρ̂
eB′

, (A.99)
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where now ρ̂
eA is the reduced state of | eψ〉 on M

eA =MA⊗L(HR3
)with M
eB =MB⊗L(HR3

). If

| eψ〉 is chosen to maximize the inner product with X0W0 |ψ〉, we have ρ̂
eA ∈ B

ϵ(X0ρAX †
0), which

completes the proof.
Note that we used different isometries V0 (on MA) and X0 (on MB) in our constructions

of ρ̂
eA,min, ρ̂
eA,max. However, we could have easily adapted both our proofs to define V = X0V0

with M
eA =MA⊗L(HR1

)⊗L(HR3
) and M
eB =MB ⊗L(HR3

) in both, which also satisfies all
the conditions required for Lemma A.16.

Lemma A.33 (proposition 5.5 of [23]). Let ϵ′ ≥ 0 such that ϵ + ϵ′ < 1. Then it holds that

Hϵmin(A|B)Ψ ≤ Hϵ
′

max(A|B)Ψ + log
1

1− (ϵ + ϵ′)2
. (A.100)

Proof. According to lemma A.32, we can always extend the Hilbert space and alge-
bras isometrically MA → M

eA such that there exists a normalized state Ψ
eA,min with

Hmin(eA|eB)Ψ
eA,min

= Hϵmin(A|B)Ψ . Similarly, there exists a normalized state Ψ
eA,max with

Hϵ
′

max(A|B)Ψ = Hmax(eA|eB)Ψ
eA,max

. Both of these states can be found within ϵ, ϵ′ distance of the
image of ΨA, respectively.

Hence there exists a normalized Ψ
eB such that Ψ

eA,min ≤ e−λΨ
eB, with λ= Hϵmin(A|B)Ψ . There-

fore

Hϵ
′

max(A|B)Ψ = Hmax(eA|eB)Ψ
eA,max

≥ log∥
q

Ψ
eA,max

Æ

Ψ
eB∥

2
1

≥ λ+ log∥
q

Ψ
eA,max

q

Ψ
eA,min∥

2
1

= λ+ log(1− P2(Ψ
eA,min,Ψ
eA,max))

≥ Hϵmin(A|B)Ψ − log
1

1− (ϵ + ϵ′)2
,

(A.101)

where the first inequality follows from the definition of the smooth max-entropy and that we
picked a particular Ψ

eB instead of supremizing, the fourth line from the definition of the puri-
fied distance P, and the final inequality from the triangle inequality for the purified distance,
P(Ψ
eA,min,Ψ
eA,max)≤ ϵ + ϵ

′.

Theorem A.34 (QAEP, converse; corollary 6.7 of [23]). Let 0< ϵ < 1. Then

lim
n→∞

1
n

Hϵmin(A|B)Ψ ≤ S(A|B)Ψ ≤ lim
n→∞

1
n

Hϵmax(A|B)Ψ . (A.102)

Proof. From lemma A.33 and Theorem A.30, it follows that

1
n

Hϵmin(A|B)Ψ ≤
1
n

Hϵ
′

max(A|B)Ψ +
1
n

log
1

1− (ϵ + ϵ′)2

≤ S(A|B)Ψ +
1
n

log
1

1− (ϵ + ϵ′)2
+
δ(ϵ′, v)
p

n
,

(A.103)

where v = Υ (ΨA||ΨB). Using duality to obtain the analogous inequality for the max-entropy
then taking the limit n→∞ completes the proof.

A.4 Bounds between the smooth min-, max-, and von Neumann entropies

In this subsection, we relate the smooth min- and max-entropies to the von Neumann entropy.
It suffices to relate the smooth max-entropy to a smooth von Neumann entropy. The bound
on the min-entropy follows by duality.
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First, a technical lemma on the monotonicity in α of the sandwiched α-Renyi divergences.

Lemma A.35. The sandwiched quantum Renyi diverges obey the inequality

Sα(ρA||σA)≥ Sβ(ρA||σA) , (A.104)

for α≥ β and σA ≥ 0 such that suppρA ⊆ suppσA.

Proof. Using the expression for the sandwiched Renyi divergences in (A.12), we see that it is
enough to prove monotonicity in α for a fixed choice of τA. In particular, we need to prove
that

α

α− 1
trA

�

ρ
1/2
A σ

1−α
α

B ρ
1/2
A τ

α−1
α

A

�

≥
β

β − 1
trA

�

ρ
1/2
A σ

1−β
β

B ρ
1/2
A τ

β−1
β

A

�

, (A.105)

for α ≥ β . This is proved simply in Lemma 19 of [68] using Jensen’s inequality. This fact is
related to the monotonicity of the α-norms defined in eq. (A.11).

From definition (A.2), it follows

Hα(A|B)≥ Hβ(A|B) , for α≤ β . (A.106)

Theorem A.36. Given nested algebras MA ⊃MB and ϵ,ϵ′ ≥ 0 such that ϵ + ϵ′ < 1, we have

Hϵmax(A|B)≥ Sϵ
′
(A|B)− log

1

(1− 2(ϵ + ϵ′))2
, (A.107)

with Sϵ(A|B) := limα→1 Hϵα(A|B) the smooth conditional von Neumann entropy.

Proof. By lemma A.32, we can embed MA into M
eA with a trace-preserving isometry V such

that there exists a normalized state ρ̂
eA ∈ B

ϵ(VρAV †)with Hϵmax(A|B)ρ = Hmax(eA|eB)ρ̂. Similarly,
let ρ∗A ∈ B

ϵ′(ρA) be such that Hϵ
′
(A|B)ρ = S(A|B)ρ∗ . Denote by ρ∗B the density matrix of this

state reduced to B. Then, by the definition of Hmax, we have the chain of inequalities

Hϵmax(A|B)ρ = Hmax(eA|eB)ρ̂ ≥ log F2(ρ̂
eA, Vρ∗BV †) = log

�

1− P2(ρ̂
eA, Vρ∗BV †)
�

≥ log
�

1− P2(Vρ∗AV †, Vρ∗BV †)− 2(ϵ + ϵ′)− (ϵ + ϵ′)2
�

≥ log F2(ρ∗A,ρ∗B)− log
1

(1− 2(ϵ + ϵ′))2

= −S1/2(ρ
∗
A||ρ
∗
B)− log

1

(1− 2(ϵ + ϵ′))2

≥ Sϵ
′
(A|B)− log

1

(1− 2(ϵ + ϵ′))2
. (A.108)

In the first inequality, we used the definition of Hmax. In the second inequality, we used the
triangle inequality of the purified distance and the fact that the isometry V preserves the pu-
rified distance. In the third inequality, we used that the purified distance obeys 0 < P < 1, as
well as the fact that 1− P2 ≥ F2. Then in the final inequality we used lemma A.35, together
with the definition of ρ∗A and ρ∗B.

Note that from Theorem A.19, we can bound the smoothed von Neumann entropy by

Hϵ
′

min(A|B)− log
1

(1− 2(ϵ + ϵ′))2
≤ Sϵ(A|B)≤ Hϵ

′′

max(A|B) + log
1

(1− 2(ϵ + ϵ′′))2
. (A.109)

Taking the various smoothing parameters independently to zero gives us bounds between
smoothed and non-smoothed conditional entropies.
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A.5 The chain rule

In this subsection, we will prove the chain rule that we need in the main text. Given a chain
of inclusions of algebras MA ⊃MB ⊃MC with a state ρA ∈MA, the chain rule states that for
ϵ,ϵ′,ϵ′′ > 0, then

Hϵ+2ϵ′+ϵ′′
min (A|C)≥ Hϵ

′

min(A|B) +Hϵ
′′

min(B|C)− log
2
ϵ2

. (A.110)

Remark A.37. Let |Ψ〉 ∈ H be a pure state, and let L(H) ⊃ MA ⊃ MB be alge-
bras. Then for any projector ΠB ∈ MB, there exists a projector ΠB′ ∈ M′B such that

ΠBΨ
−1/2
B |Ψ〉= Ψ−1/2

B ΠB′ |Ψ〉. The proof follows from using the Schmidt decomposition on |Ψ〉.

Lemma A.38 (Lemma 21 of [72]). Given a (possibly subnormalized) pure state |Ψ〉 ∈H along
with nested algebras L(H) ⊃ MA ⊃ MB, then there exists a projection ΠB′ ∈ M′B such that
P(|ψ〉 ,ΠB′ |ψ〉)≤ ϵ and

−S∞(Ψ
′
A||ΨB)≥ Hmin(A|B)Ψ − log

2
ϵ2

, (A.111)

where |Ψ′〉= ΠB′ |Ψ〉.

Proof. Consider an arbitrary projectorΠB′ ∈M′B. By remark A.37, there exists a dual projector

ΠB ∈MB such that ΠBΨ
−1/2
B |Ψ〉= Ψ−1/2

B ΠB′ |Ψ〉. Therefore by (A.2) and lemma A.4, we have
the expression

S∞(Ψ
′
A||ΨB) = log sup

τA:trAτA=1
trA

�

τAΠBΨ
−1/2
B ΨAΨ

−1/2
B ΠB

�

≤ −Hmin(A|B)Ψ + log sup
τA:trAτA=1

trA

�

τAΠBΨ
−1/2
B σBΨ

−1/2
B ΠB

�

, (A.112)

where σB is the state which optimizes the Renyi-divergence in the definition of Hmin(A|B)Ψ ,
and we have plugged in ΨA ≤ e−Hmin(A|B)ΨσB. Since the optimization over τA computes the
maximum eigenvalue of the operator OB := ΠBΨ

−1/2
B σBΨ

−1/2
B ΠB and since the spectral pro-

jectors of OB are in both MA and MB, we have the relation

S∞(Ψ
′
A||ΨB)≤ −Hmin(A|B)Ψ + log sup

τB:trB τB=1
trB

�

τBΠBΨ
−1/2
B σBΨ

−1/2
B ΠB

�

. (A.113)

This has been for a general projector. Now consider a Π∗B which projects onto the smallest

eigenvalues of ΓB := Ψ−1/2
B σBΨ

−1/2
B such that 〈Ψ|Π∗B|Ψ〉 ≥ 〈Ψ|Ψ〉 − ϵ

2/2. Note that by the
definition of the purified fidelity distance this inequality guarantees that

P(|Ψ〉 ,Π∗B′ |Ψ〉)≤ ϵ, (A.114)

with Π∗B′ the conjugate of Π∗B on B under the Schmidt decomposition of |Ψ〉BB′ .
Let Π+B be a projector onto the maximal eigenvalue of O∗B = Π

∗
BΓBΠ

∗
B. Using that all the

projectors commute with ΓB, we can then write

sup
τB:trB τB=1

trB

�

τBΠ
∗
BΓBΠ

∗
B

�

= inf
τB:trB τB=1

trB

�

τB(1−Π∗B +Π
+
B )ΓB
�

. (A.115)

This follows because the left-hand side equals the largest eigenvalue of Π∗BΓBΠ
∗
B, while the

right-hand side equals the same thing: its smallest eigenvalue in the union of the orthogonal
subspace and the maximal eigenvector of Π∗BΓBΠ

∗
B. Then, picking the case

τB =
(1−Π∗B +Π

+
B )ΨB(1−Π∗B +Π

+
B )

trB

�

(1−Π∗B +Π
+
B )ΨB(1−Π∗B +Π

+
B )
� , (A.116)
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we have that

sup
τB:trB τB=1

trB

�

τBΠ
∗
BΓBΠ

∗
B

�

≤
trB

�

Γ
1/2
B ΨBΓ

1/2
B (1−Π∗B +Π

+
B )
�

〈Ψ|(1−Π∗B +Π
+
B )|Ψ〉

≤
2
ϵ2

, (A.117)

where in the last line we used the bound on the overlap, 〈Ψ|(Π∗B −Π
+
B )|Ψ〉 ≤ 〈Ψ|Ψ〉 − ϵ

2/2,

together with the fact that trB

�

Γ
1/2
B ΨBΓ

1/2
B (1−Π∗B +Π

+
B )
�

≤ trB

�

Γ
1/2
B ΨBΓ

1/2
B

�

= trBσB ≤ 1.
This proves the bound.

Using the above lemma, we now prove the chain rule inequality.

Theorem A.39 (Chain rule; lemma A.8 of [29]). Given a (possibly subnormalized) density
matrix ρA ∈MA ⊂ B(H) and inclusions MA ⊃MB ⊃MC , then the conditional min entropies
obey

Hϵ+2ϵ′+ϵ′′
min (A|C)ρ ≥ Hϵ

′

min(A|B)ρ +Hϵ
′′

min(B|C)ρ − log
2
ϵ2

. (A.118)

Proof. In this proof, we will use asterisks to denote states that optimize the relevant quantity.
For example, let ρ∗A ∈ B

ϵ′(ρA) such that

Hmin(A|B)ρ∗ = Hϵ
′

min(A|B)ρ . (A.119)

Furthermore, let ρ̃∗B and σC be states such that ρ̃∗B ∈ B
ϵ′′(ρB) with

ρ̃∗B ≤ e−Hϵ
′′

min(B|C)ρσC , (A.120)

and Hϵ
′′

min(B|C)ρ = Hmin(B|C)ρ̃∗B .
Given a purification |Ψ∗〉 of ρ∗A on AA′, by Lemma A.38, we can find a projector ΠA′ such

that 〈Ψ∗|ΠA′ |Ψ∗〉 ≥ 1− ϵ2/2 so that
�

ρ∗P
�

AA′ := ΠA′ |Ψ∗〉 〈Ψ∗|ΠA′ ∈ Bϵ(ρ∗AA′) as well as

�

ρ∗P
�

A ≤ ρ
∗
Be−Hmin(A|B)ρ∗+log

�

2
ϵ2

�

= ρ∗Be−Hϵ
′

min(A|B)ρ+log
�

2
ϵ2

�

. (A.121)

Note that by construction the purified distance between |Ψ∗〉 and ΠA′ |Ψ∗〉 is

P(|Ψ∗〉 ,ΠA′ |Ψ∗〉)A ≤ ϵ . (A.122)

Now, by Lemma B.3 in [29], there is an operator TB such that TB |Ψ∗〉AA′ = |Ψ̃∗〉AA′ where |Ψ̃∗〉AA′

is a purification of ρ̃∗B onto AA′ and

P(|Ψ∗〉 , |Ψ̃∗〉)AA′ = P(|Ψ∗〉 , |Ψ̃∗〉)B . (A.123)

Applying TB to the states on either side of (A.121), we get

TB

�

ρ∗P
�

A T †
B ≤ ρ̃

∗
Be−Hϵ

′
min(A|B)ρ+log
�

2
ϵ2

�

≤ σC e−Hϵ
′

min(A|B)ρ−Hϵ
′′

min(B|C)+log
�

2
ϵ2

�

. (A.124)

To finish the proof, we thus just need to show that TB

�

ρ∗P
�

A T †
B ∈ Bϵ+2ϵ′+ϵ′′(ρA), after

which the result follows by definition of the smoothed conditional min-entropy. Let |Ψ〉 be a
purification of ρA. Then

P(TBΠA′ |Ψ∗〉 , |Ψ〉)A ≤ P(TBΠA′ |Ψ∗〉 ,ΠA′ |Ψ∗〉)A+ P(ΠA′ |Ψ∗〉 , |Ψ∗〉)A+ P(|Ψ∗〉 , |Ψ〉)A , (A.125)

using the triangle inequality. Moreover,

P(TBΠA′ |Ψ∗〉 ,ΠA′ |Ψ∗〉)A ≤ P(TBΠA′ |Ψ∗〉 ,ΠA′ |Ψ∗〉)AA′ ≤ P(TB |Ψ∗〉 , |Ψ∗〉)AA′

= P(|Ψ∗〉 , |Ψ̃∗〉)B , (A.126)
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by monotonicity and the fact that projections decrease the purified distance. Putting this all
together we get

P(TBΠA′ |Ψ∗〉 , |Ψ〉)A ≤ P(|Ψ∗〉 , |Ψ̃∗〉)B + P(ΠA′ |Ψ∗〉 , |Ψ∗〉)A+ P(|Ψ∗〉 , |Ψ〉)A
≤ P(|Ψ∗〉 , |Ψ〉)B + P(|Ψ〉 , |Ψ̃∗〉)B + P(ΠA′ |Ψ∗〉 , |Ψ∗〉)A+ P(|Ψ∗〉 , |Ψ〉)A
≤ ϵ + 2ϵ′ + ϵ′′ , (A.127)

where again we used the triangle inequality and the fact that the relevant states are in their
respective ϵ-balls. This is what we needed to show.

A.6 Strong sub-additivity

In this subsection, we prove Theorem 2.40 which is the statement of strong sub-additivity of
the conditional min-, max- and vN entropies. First we recall lemmas about completely positive
and trace preserving maps.

Lemma A.40 (Theorem 2 of [73]). Let ρ,σ be positive operators in some algebra M. Let
ϵ : M → N be a completely-positive and trace-preserving map (CPTP). Then the sandwiched
quantum Renyi divergences from definition A.1 are monotonically decreasing under action by the
map

Sα(ρ||σ)≥ Sα(ϵ(ρ)||ϵ(σ)) . (A.128)

Corollary A.41. The purified distance between two density matrices ρ,σ ∈M is monotonically
decreasing under action by a CPTP map ϵ : M→N ,

P(ϵ(ρ),ϵ(σ))≤ P(ρ,σ) . (A.129)

Proof. The fidelity between ρ,σ is related to the sandwiched Renyi entropy for α = 1/2 as
F(ρ,σ) = −S1/2(ρ||σ). Given the definition of the purified distance in (36) in terms of the
fidelity, we see that Lemma A.40 implies the claim.

Theorem A.42 (Strong subadditivity). Let MA0
, MA1

,MB0
and MB1

be von Neumann algebras
with corresponding traces acting onH with the following inclusion structure: MA0

⊃MB0
⊃MB1

and MA0
⊃MA1

⊃MB1
. Let trA0→A1

: MA0
→MA1

and trB0→B1
: MB0

→MB1
be partial traces

such that the restriction trA0→A1
|B0

is a map trA0→A1
|B0

: MB0
→MB1

and trA0→A1
|B0
≤ trB0→B1

.
Then

Hϵmin(A0|B0)≤ Hϵmin(A1|B1) , (A.130)

S(A0|B0)≤ S(A1|C1) , (A.131)

Hϵmax(A0|B0)≤ Hϵmax(A1|B1) . (A.132)

Proof. We begin by proving the statements for ϵ = 0. Using Definition 2.28, we have that the
equation

Hmin(A0|B0) = − min
σB0

:trB0
[σB0

]≤1
inf
�

λ : ρA0
≤ eλσB0

	

. (A.133)

Let σB0
and λ0 be such that

ρA0
≤ eλ0σB0

, (A.134)

where λ0 = −Hmin(A0|B0). Then by the fact that trA0→A1
is a partial trace, it holds that

ρA1
= trA0→A1

[ρA0
]≤ eλ0 trA0→A1

[σB0
]≤ eλ0 trB0→B1

[σB0
] = eλ0σB1

. (A.135)

Therefore Hmin(A1|B1) ≥ −λ0, proving A.130. To prove inequality (A.132), we can just use
the inequality for Hmin together with statement of duality, Theorem 2.33.
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Finally, to prove strong sub-additivity for the von Neumann conditional entropy, we just
use that we can write the conditional entropy in terms of the relative entropy as

S(A0|B0) = −Srel(ρA0
||ρB0

) := − trA0
[ρA0

logρA0
] + trA0

[ρA0
logρB0

] , (A.136)

whereρB0
∈MB0

is a viewed as an operator onMA0
via the standard inclusion of MB0

⊂MA0
.

Since trA0→A1
is a completely-positive map by assumption of being a partial trace, it follows

that Lemma A.40 applied in the limit of α→ 1 gives

Srel(ρA0
||ρB0

)≥ Srel(trA0→A1
[ρA0

]|| trA0→A1
[ρB0

]) = Srel(ρA1
|| trA0→A1

[ρB0
]) . (A.137)

Now by assumption
trA0→A1

(ρB0
)≤ trB0→B1

(ρB0
) = ρB1

, (A.138)

and so because the log function is an operator monotone,

log trA0→A1
(ρB0

)≤ logρB1
. (A.139)

Plugging this in above, we get the desired inequality

S(A0|B0) = −Srel(ρA0
||ρB0

)≤ −Srel(ρA1
||ρB1

) = S(A1|B1) . (A.140)

We now prove the statements for ϵ > 0. Let ρ∗A0
∈ Bϵ(ρA0

) be a density matrix which
optimizes the min-entropy. Because the purified distance is monotonically decreasing under
completely positive maps [23], it holds that trA0→A1

(ρ∗A0
) ∈ Bϵ(ρA1

) and so we have the in-
equality

Hϵmin(A0|B0)ρ = Hmin(A0|B0)ρ∗ ≤ Hϵmin(A1|B1)ρ . (A.141)

The use of duality for the smoothed conditional entropies then proves the corresponding in-
equality for the max-entropy.

B State-specific reconstruction for algebras

In this appendix we give a formal definition of state-specific reconstruction for finite-
dimensional von Neumann algebras and prove some basic results about it. The definitions
given here are based heavily on those of [14] which gave an in-depth discussion of state-
specific reconstruction for tensor product Hilbert spaces. We will focus here on the formal
details of the generalization to algebras with centers, and refer readers to [14] for detailed
motivation and discussion.

Definition B.1 (Haar unitaries on algebras). Let MA be a finite-dimensional von Neumann
algebra. We say that a unitary UA ∈MA is Haar random if

UA = ⊕αUAα , (B.1)

with UAα independently sampled Haar random unitaries on HAα (with HAα defined as in The-
orem 2.12).

Definition B.2. Let MA be a finite-dimensional von Neumann algebra acting on a Hilbert
space H and let HUA

be the space of square-integrable functions on the group of unitaries
UA ∈MA. We define the isometry WA : H→H⊗HUA

by

WA :=

∫

dUA |UA〉UA
⊗ UA , (B.2)

and dUA is the Haar measure normalized to
∫

dUA = 1.
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Remark B.3. The isometry WA commutes with M′A and hence maps MA into MA ⊗L(HUA
)

in the sense of Definition A.11.

Lemma B.4. We have HUA
∼= ⊗αHUAα

where HUAα
is the Hilbert space of square-integrable func-

tions on the unitary group on HAα . HUAα
can be decomposed using Peter-Weyl duality as

HUAα

∼=
⊕

µ

�

Hµ ⊗H∗µ
�

, (B.3)

where {µ} is the set of irreducible representation of the unitary group on HAα and Hµ is the Hilbert
space on which the representation µ acts. Given |ψα〉 ∈HAα ⊗HA′α

, we have

WA |ψα〉=
�

⊗
eα̸=α |0〉UA

eα

�

OSWAP |ψα〉 |MAX〉UAα
, (B.4)

where |0〉UA
eα

is the trivial representation state in HUA
eα
, |MAX〉UAα

is the canonical maximally
entangled state in Hµ0

⊗H∗µ0
⊂HUAα

with µ0 the fundamental representation, and OSWAP swaps
HAα with Hµ0

.

Proof. See the proof of Lemma 4.4 in [14]. The only novel ingredient here is the additional
tensor product factor of ⊗α̸̃=α |0〉UAα̃

which follows from the fact that |ψα〉 is invariant under
unitaries UA

eα
acting on HA

eα
with α̃ ̸= α.

Heuristically, we can think of WA as extracting all information from MA into HUA
.

Definition B.5 (State-specific reconstruction). Let V : Hcode → Hphys be an isometry and
let Mb ⊆ L(Hcode) and MB ⊆ L(Hphys) be finite-dimensional von Neumann algebras with
commutants Mb′ :=M′b and MB′ :=M′B. We say that MB state-specifically reconstructs
Mb for the state |ψ〉 with error ϵ if there exists an isometry WB : Hphys → Hphys ⊗ HUb

mapping MB to MB ⊗L(HUb
) such that for all isometries Tb′ : Hcode→Hcode ⊗HR mapping

Mb′ to Mb′ ⊗L(HR),
∥WBV Tb′ |ψ〉 − VWbTb′ |ψ〉∥ ≤ ϵ , (B.5)

with the isometry Wb defined as in Definition B.2.

Remark B.6. We demand WB works for all Tb′ so that the reconstruction depends only on
the state within b, and not on the state in b′. Indeed, if the reconstruction of b is allowed to
depend on the bulk state outside b, there exist known examples where a region b that is larger
than the max-EW can be completely reconstructed. See Section 7.3 of [1].

Remark B.7. Definition B.5 (and Theorems B.8 and B.12 below) also extends to linear maps
V – such as those studied in [74] – that are not isometric but that nonetheless approximately
preserve the normalization of all relevant states.23

Definition B.5 may seem unfamiliar to readers used to definitions of bulk reconstruction
involving reconstructing any bulk operator with a boundary operator (as in e.g. (110)). The
following two theorems connect these ideas, showing that being able to reconstruct the sin-
gle isometry Wb is (morally) equivalent to being able to reconstruct a large class of unitary
operators Ub with state-specific boundary unitaries UB.

It is worth emphasizing that, as a general rule, not all unitaries Ub will be reconstructible
even when state-specific reconstruction is possible. Intuitively this is because some Ub make
the max-EW smaller and thus exclude themselves from the reconstructible region. This is
true even though all unitaries, Ub, are integrated over in the definition of Wb, and Wb is, by

23For nonisometric codes, it is natural to restrict the isometry Tb′ to have subexponential complexity. Such a
restriction does not materially affect either of the proofs below.
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definition, reconstructible! The consistency of these two statements depends crucially on the
fact that the reconstruction of Wb is only approximate; see [14] for detailed discussion of this
point.

Theorem B.8 (State-specific reconstruction of operators). Let Mb ⊆ L(Hcode) be state-
specifically reconstructible from MB ⊆ L(Hphys) with error ϵ for both the state |ψ〉 and the
state Ub |ψ〉 with Ub ∈Mb unitary. Then there exists UB ∈MB such that for all isometries Tb′ ,

∥UBV Tb′ |ψ〉 − V UbTb′ |ψ〉∥ ≤ 2ϵ + 2ϵ1/2 . (B.6)

Proof. Let Hcode
∼= ⊕α(Hb,α⊗Hb′,α)with Mb = ⊕αL(Hb,α). We have Ub = ⊕αUb,α. We define

the unitary Fb,α ∈ L(HUbα
) to act as U T

b,α on H∗µ0
within the fundamental representation sector

and act trivially within all other sectors and define Fb ∈ L(HUb
) by

Fb = ⊗αFb,α . (B.7)

It follows from Lemma B.4 that
FbWb =WbUb . (B.8)

By assumption,

∥WBV Tb′ |ψ〉 − VWbTb′ |ψ〉∥ ≤ ϵ , (B.9)

∥fWBV Tb′ |ψ〉 − VWbUbTb′ |ψ〉∥ ≤ ϵ , (B.10)

for isometries WB and fWB. Now define OB :=fW †
B FbWB. By the triangle inequality, we have

∥OBV Tb′ |ψ〉 − V UbTb′ |ψ〉∥ ≤∥OBV Tb′ |ψ〉 −fW
†
B FbVWbTb′ |ψ〉∥

+ ∥fW †
B FbVWbTb′ |ψ〉 −fW

†
B VWbUbTb′ |ψ〉∥

+ ∥fW †
B VWbUbTb′ |ψ〉 − V UbTb′ |ψ〉∥ ,

(B.11)

for any Tb′ . The first term on the righthand side is upperbounded by ϵ because of (B.9) and
the fact that ∥fW †

B Fb∥∞ ≤ 1 . The second term vanishes because of (B.8). Finally, the third
term is upperbounded by ϵ because of (B.10). We conclude that

∥OBV Tb′ |ψ〉 − V UbTb′ |ψ〉∥ ≤ 2ϵ . (B.12)

This is almost what we want, except that OB is not necessarily unitary. However, we do have

∥OB∥∞ ≤ ∥fW
†
B∥∞ · ∥Fb∥∞ · ∥WB∥∞ ≤ 1 . (B.13)

We can define a unitary UB ∈MB by

UB := OB(O
†
BOB)

−1/2 , (B.14)

as in the polar decomposition.24 We then have

U†
BOB = O†

BUB = (O
†
BOB)

1/2 ≥ O†
BOB , (B.15)

where the final inequality follows from (B.13). Hence

∥(UB −OB)V Tb′ |ψ〉∥2 ≤ ∥UBV Tb′ |ψ〉∥2 − ∥OBV Tb′ |ψ〉∥2 ≤ 4ϵ , (B.16)

where in the second inequality we used the fact that ∥OBV Tb′ |ψ〉∥ ≥ 1− 2ϵ by (B.12). The
result then follows by applying the triangle inequality and (B.16) to (B.12).

24If OB is not invertible, we define UB to act as given in (B.14) on the support of O†
BOB and as the identity on the

kernel of O†
BOB to ensure that it is unitary.
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Definition B.9 (One-design). A finite set S ⊆MA of unitary matrices is said to form a one-
design for MA if

1
|S|

∑

eUA∈S

P(1,1)(eUA) =

∫

dUAP(1,1)(UA) , (B.17)

where P(1,1)(UA) is any polynomial of degree at most one in the matrix elements of UA and at
most one in the matrix elements of U∗A, dUA is the Haar measure on unitaries in MA normalized
to
∫

dUA = 1, and |S| is the size of the set S.

Remark B.10. Let the set Sα form a one-design for L(HAα) (e.g. the generalized Pauli group
on HAα) for each α-sector in MA. Then the set

S =
�

⊕α eUAα : eUAα ∈ Sα
	

,

forms a one-design for MA.

Remark B.11. If MA
∼=MA1

⊗ . . .MAn
, the set of product unitaries UA1

⊗ . . . UAn
forms a one-

design for MA.25 This set (with the algebras MAi
each describing operators at a local bulk site)

played a central role in [14] because such operators cannot change the entanglement structure
– and hence the max-EW – of the state and therefore should always be reconstructible.

Theorem B.12 (One-design reconstruction). Let S ⊆ Mb ⊆ L(Hcode) form a unitary one-
design for Mb. If for a state |ψ〉 and every Ub ∈ S, there exists UB ∈ MB such that for all
Tb′

∥UBV Tb′ |ψ〉 − V UbTb′ |ψ〉∥ ≤ ϵ , (B.18)

then Mb can be state-specifically reconstructed from MB with error ϵ for the state |ψ〉.

Proof. Define HS to be the Hilbert space spanned by the orthonormal basis {|eUb〉 : eUb ∈ S}.
We define the isometry fWb : Hcode→Hcode ⊗HS by

fWb =
1
p

|S|

∑

eUb∈S

|eUb〉S ⊗ eUb . (B.19)

Let |MAX〉 ∈ Hcode ⊗HR be maximally entangled. We have, by the definition of a unitary
one-design,

TrS[fWb |MAX〉〈MAX|fW †
b ] =

1
|S|

∑

eUb∈S

eUb |MAX〉〈MAX| eU†
b (B.20)

=

∫

dUbUb |MAX〉〈MAX|U†
b (B.21)

= TrUb

�

Wb |MAX〉〈MAX|W †
b

�

. (B.22)

Because all purifications are related by an isometry, it follows that there exists an isometry
WS : HS →HUb

such that
WSfWb |MAX〉=Wb |MAX〉 . (B.23)

25Since the set of product unitaries is infinite, it really only satisfies a slight generalization of Definition B.9
where the uniform measure on a finite set is replaced by the Haar measure on product unitaries. A true example
of a finite one-design satisfying Definition B.9 as written is given by the set of products of elements of a one-design
for each algebra MAi

.
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This in turn implies WSfWb =Wb. With this result in hand, we can define

WB :=
1
p

|S|

∑

eUb∈S

WS |eUb〉S ⊗ eUB , (B.24)

where eUB satisfies (B.18) for eUb. We then have

∥WBV Tb′ |ψ〉 − VWbTb′ |ψ〉∥= ∥WBV Tb′ |ψ〉 −WSVfWb |ψ〉∥ (B.25)

=
1
p

|S|

∑

eUb∈S

∥eUBV Tb′ |ψ〉 − V eUbTb′ |ψ〉∥ (B.26)

≤ ϵ . (B.27)
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