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Abstract

We set up a hydrodynamic description of the non-equilibrium dynamics of sine–Gordon
quantum field theory for generic coupling. It is built upon an explicit form of the Bethe
Ansatz description of general thermodynamic states, with the structure of the resulting
coupled integral equations encoded in terms of graphical diagrams. The resulting frame-
work is applied to derive results for the Drude weights of charge and energy. Quantities
associated with the charge universally have fractal dependence on the coupling, which
is notably absent from those associated with energy, a feature explained by the different
roles played by reflective scattering in transporting these quantities. We then present far-
from-equilibrium results, including explicit time evolution starting from bipartite initial
states and dynamical correlation functions. Our framework can be applied to explore
numerous other aspects of non-equilibrium dynamics, which opens the way to a wide
array of theoretical studies and potential novel experimental predictions.
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1 Introduction

Non-equilibrium dynamics of quantum many-body systems is at the forefront of present re-
search [1–3], in large part due to the tremendous progress in their experimental realisation
by ultra-cold atoms [4–11]. The sine–Gordon quantum field theory is a paradigmatic example
with a highly nontrivial dynamics with a long history of interest [12,13], for which many exact
results are available based on its integrability [14–17]. It provides a universal description of
the low energy properties of gapped one-dimensional systems within the framework of boson-
isation [18, 19]. For example, it can be realised with cold atom systems [20–24]; additional
proposals include realisations via quantum circuits [25] or coupled spin chains [26].

Various methods can address non-equilibrium time evolution in sine–Gordon quantum field
theory. The full quantum field dynamics can be addressed using truncated Hamiltonian ap-
proaches. However, these are limited in time by finite volume and to small quenches by the
presence of the cutoff [27, 28]. Another approach to quantum dynamics uses the exact form
factors of local operators [29, 30] to construct a spectral expansion valid for small quenches.
However, its extension to the attractive regime [31] faces severe difficulties [32], which remain
unresolved.

Semiclassical field theory approximations, such as the truncated Wigner approximation
[33] or a self-consistent Hartree–Fock method [34,35] are limited in scope to the deep semi-
classical regime and contain approximations which are hard to control [27, 28, 36]. A differ-
ent semiclassical approximation [37–40] can be constructed using the quasi-particle picture of
time evolution. Although the quasi-particle picture is more generally valid for time evolution
induced by quantum quenches [41, 42], the semiclassical approximation can only take into
account a very simplified version of the scattering processes, although it can be supplemented
by some quantum corrections [39].

Description of the dynamics in inhomogeneous situations is much more limited, with only
some approaches having extensions to this case, such as the semiclassical quasiparticle ap-
proach [40] and truncated Hamiltonian methods [43].
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Recently, a novel approach has been developed to describe the large-scale non-equilibrium
behaviour of integrable systems called generalised hydrodynamics (GHD) [44, 45]. It relies
on the separation between the scales of spatial variation and microscopic quantum dynamics
scales, which occurs in many physical situations. This leads to the assumption of local thermo-
dynamic equilibrium, a common basis for hydrodynamic approaches in general. The specific
feature of integrable systems is an infinite number of local conserved quantities, leading to an
infinite set of continuity equations. To obtain a closed system of equations, it is necessary to
describe the locally homogeneous thermodynamic state, which for integrable systems is accom-
plished by the thermodynamic Bethe Ansatz (TBA) [46–48]. However, for the sine–Gordon
model, the main issue preventing progress in modelling the non-equilibrium dynamics has
been the absence of an explicit description of thermodynamic states for general couplings. So
far, it has only been formulated explicitly for special values of the coupling [49–51], although
a corresponding set of functional relations (the so-called Y system) was conjectured for the
general case in [52]. We note that the thermodynamic description of the classical sine–Gordon
model has only been constructed recently [53].

This work explicitly derives the thermodynamic Bethe Ansatz system necessary for formu-
lating generalised hydrodynamics for sine–Gordon theory at general coupling values. We then
set up the sine–Gordon GHD and consider its predictions for transport in the theory. In partic-
ular, we compute Drude weights for energy transport, comparing them to previously obtained
charge Drude weights [54], and also examine the asymptotic state obtained after a bipartition
protocol.

The outline of the paper is as follows. In Section 2 we present the sine–Gordon TBA system
for thermal states in a partially decoupled form following the example of the XXZ spin chain
[48]. We obtain the ingredients required for the GHD in Section 3, which include equations
for quasi-particle densities, the so-called dressing relations and effective velocity. In Section 4
we study the charge and energy Drude weights. Section 5 presents results obtained from the
GHD, such as the asymptotic state resulting after time evolution in a bipartition protocol and
dynamical two-point correlation functions. We present our conclusions and outlook in Section
6. The detailed derivations of the coupled and partially decoupled TBA systems are presented
in the Appendices.

2 Thermodynamic Bethe Ansatz of the sine–Gordon model

This section presents the TBA equations for generic couplings in fully coupled and partially
decoupled forms and tests them against the Destri–de Vega NLIE.

2.1 The sine–Gordon model and its factorised scattering theory

The dynamics of the sine–Gordon field theory is governed by the Hamiltonian (we set ħh=c=1)

H =

∫

dx :
1
2
(∂tφ)

2 +
1
2
(∂xφ)

2 −λ cos(βφ) : , (1)

where φ is a real scalar field, and normal ordering is defined relative to the modes of the free
massless boson obtained in the limit λ = 0. The coupling λ is dimensionful and defines the
scale of the theory, with the eventual strength of interaction determined by the dimensionless
coupling β , which takes values 0 < β2 ≤ 8π for which the cosine interaction is relevant.
To describe the spectrum and the exact scattering theory, it is convenient to introduce the
renormalised coupling

ξ=
β2

8π− β2
. (2)
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The spectrum contains a doublet of topologically charged excitations consisting of a kink and
antikink of mass mS , which is related to the parameter λ as [55]

λ=
2Γ
�

ξ
ξ+1

�

πΓ
�

1
ξ+1

�





p
πΓ
�

ξ+1
2

�

mS

2Γ (ξ/2)





2
ξ+1

. (3)

In the repulsive regime ξ > 1, the kink doublet is the only particle excitation in the spectrum,
while in the attractive regime ξ < 1, there are ⌊1/ξ⌋ species of neutral kink-antikink bound
states also known as breathers with masses

mBk
= 2mS sin

kπξ
2

, k = 1, ..., ⌊1/ξ⌋ , (4)

except for the points where ξ−1 is integer, where the number of breathers is 1/ξ−1. The mo-
menta and energies of these particles are given in terms of the rapidity θ as p(θ ) = ma sinh(θ ),
E(θ ) = ma cosh(θ ).

The theory is integrable at the classical and quantum levels, implying that general multi-
particle scattering processes can be factorised in terms of 2→ 2 particle processes. The scat-
tering of the kinks is described by the following two-particle amplitudes [15]:

S++++(θ ) = S−−−−(θ ) = S0(θ ) , S+−+−(θ ) = S−+−+(θ ) = ST (θ )S0(θ ) ,

S−++−(θ ) = S+−−+(θ ) = SR(θ )S0(θ ) ,

ST (θ ) =
sinh

�

θ
ξ

�

sinh
�

iπ−θ
ξ

� , SR(θ ) =
i sin

�

π
ξ

�

sinh
�

iπ−θ
ξ

� ,

S0(θ ) = −exp



i

∞
∫

−∞

dt
t

sinh
� tπ

2 (ξ− 1)
�

2sinh
�

πξt
2

�

cosh
�

πt
2

�

eiθ t



 ,

(5)

where +/− stands for kinks/antikinks, with θ denoting the difference of their rapidities. Note
that for integer values of 1/ξ, the kink-antikink reflection amplitude SR vanishes, correspond-
ing to purely transmissive scattering; these points in the parameter space are called reflection-
less.

The breather-soliton and soliton-soliton scattering amplitudes can be specified in terms of
the following elementary blocks:

Sa(θ ) = [a]θ =
sinhθ + i sinπa
sinhθ − i sinπa

. (6)

Since these amplitudes are pure phases, their logarithms define phase shifts, which can be fixed
unambiguously by a suitable choice of the branch of the logarithm. We adopt a convention for
which the phase shift δa corresponding to an elementary block is defined as

[a]θ = −eiδa(θ ) , (7)

with δa(0) = 0 and δa(±∞) = π. The derivative of the phase shift is

ϕa(θ ) =
∂ δa(θ )
∂ θ

=
4cosh(θ ) sin(πa)

cos(2πa)− cosh(2θ )
. (8)
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Throughout this work, we adopt the following conventions for Fourier transformation and the
convolution

f (θ ) =

∞
∫

−∞

dt ef (t)eiθ t , ef (t) =

∞
∫

−∞

dθ
2π

f (θ )e−iθ t , ( f ∗g)(θ ) =
∫

dθ ′

2π
f (θ−θ ′)g(θ ′) , (9)

which means that the Fourier transform of ϕa can be written as

eϕa(t) =

(

−cosh(π(1− 2a)t/2)
cosh(πt/2) , a ̸= 0 ,

0 , a = 0 .
(10)

With these preliminaries, the scattering amplitudes between a kink/antikink and a breather
are

S±,Bk
(θ ) =

∏

a∈Pk

[a]θ , Pk =
§

1− kξ
2

,
1− (k− 2)ξ

2
, . . . ,

1+ (k− 2)ξ
2

ª

, (11)

while the amplitudes for the scattering of two breathers are

SBk ,Bk′
(θ ) =

∏

a∈Pkk′

[a]θ ,

Pkk′ =
§

(k+ k′)ξ
2

,
(k+ k′ − 2)ξ

2
,
(k+ k′ − 2)ξ

2
, . . . ,

(|k− k′|+ 2)ξ
2

,
(|k− k′|+ 2)ξ

2
,
|k− k′|ξ

2

ª

.

(12)

All entries except the first and the last are repeated, indicating that the corresponding block
occurs twice, i.e. Pnm is treated as a set with multiplicities (multiset).

2.2 The sine–Gordon TBA system

Here we discuss the sine–Gordon TBA system apart from reflectionless points.1 For the details
of the derivation, see Appendix A.

Let us write the coupling as

ξ=
1

nB +
1
α

, nB ∈ N , (13)

with nB specifying the number of breathers and α≥ 1, with reflectionless points corresponding
to setting α = 1. Considering the field theory in a finite volume R, we can describe a generic
eigenstate of the system by specifying the following ingredients:

• Rapidities of breathers θ ( j)Bk
, where k = 1, . . . , nB runs through the breather species and

for a fixed k, j = 1, . . . , NBk
where NBk

is the number of breathers of species k present;

• solitonic rapidities θ ( j)S , j = 1, . . . , NS , where NS is the total number of kinks/antikinks
present; and

• so-called magnonic rapidities that are variables specifying the internal wave function in
the 2NS -dimensional space of topological charges.

1For integer values of 1/ξ, the system can be directly written down due to the absence of reflection.
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Figure 1: The number of species (breathers, one or two solitons, and magnons alto-
gether) appearing in the Bethe Ansatz equations as a function of the coupling strength
shows an intricate structure. We adopt the convention of denoting couplings corre-
sponding to zero (reflectionless), one, two, and three magnonic levels with green
circles, blue squares, red diamonds and brown stars, respectively.

Up to exponentially small corrections in the volume, the energy of the state (relative to the
vacuum) can be computed as

E =
nB
∑

k=1

NBk
∑

j=1

mBk
coshθ ( j)Bk

+
NS
∑

j=1

mS coshθ ( j)S +O
�

e−m′R
�

, (14)

where the rapidities satisfy the Bethe equations (A.1). The magnons can be brought into
one-to-one correspondence with the Bethe Ansatz of the gapless XXZ spin chain of length NS ,
which allows us to borrow the string hypothesis for the magnons from the XXZ spin chain:
the thermodynamic limit is assumed to be dominated by string configurations of elementary
magnons which we call magnonic strings or simply magnons. The string configurations can
be classified writing ξ as a (unique) simple continued fraction

ξ=
1

nB +
1

ν1 +
1

ν2 + ...

, with α= ν1 +
1

ν2 + ...
, (15)

where the νi , i = 1, . . . , l are positive integers. We call the number l of integers νi appearing
in the above representation the number of levels, which is finite when ξ is rational and infinite
when it is irrational. The number of magnonic species is given by the sum of the integers,
nM = ν1+ν2+ · · ·+νl , and they can be indexed with a species label Mi with i = 1, . . . , nM . As
shown in Fig. 1 for several rational couplings, the number of species has a very complicated
dependence on the couplings.

Magnonic strings (or magnons for short) consist of elementary magnons with the same real
and equidistant imaginary parts. The number of elementary magnons that make up a string is
called the string’s length, which we denote by ℓ. In the thermodynamic limit, the Bethe Ansatz
is formulated in terms of the densities of Bethe Ansatz roots (filled states), denoted by ρi(θ ).
The difference ρ(h)i (θ ) = ρ

tot
i (θ )−ρi(θ ) is the density of unoccupied rapidities called holes.
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We find

ηBk
ρtot

Bk
(θ ) =

mBk

2π
coshθ +

nB
∑

k′=1

∫

dθ ′

2π
ΦBk ,Bk′

(θ − θ ′)ρBk′
(θ ′) +

∫

dθ ′

2π
Φ+,Bk

(θ − θ ′)ρS(θ
′) ,

(16a)

ηSρ
tot
S (θ ) =

mS

2π
coshθ +

nB
∑

k′=1

∫

dθ ′

2π
Φ+,Bk′

(θ − θ ′)ρBk′
(θ ′) +

∫

dθ ′

2π
Φ0(θ − θ ′)ρS(θ

′)

+
nM
∑

k′=1

∫

dθ ′

2π
Φ+,Mk′

(θ − θ ′)ρMk′
(θ ′) , (16b)

ηMk
ρtot

Mk
(θ ) =

∫

dθ ′

2π
Φ+,Mk

(θ − θ ′)ρS(θ
′) +

nM
∑

k′=1

∫

dθ ′

2π
ΦMk ,Mk′

(θ − θ ′)ρMk′
(θ ′) , (16c)

where the integration kernels Φ are given explicitly in Appendix A in Eqs.(A.19,A.22). Observe
that the system (16) has the overall form

ρtot
i = ρi +ρ

(h)
i = ηi

mi

2π
coshθ +

∑

j

ηiΦi j ∗ρ j , (17)

where mi = 0 for magnonic degrees of freedom. Note that the breathers and the magnons are
coupled only through the soliton, not directly. Following the usual procedure [46], the TBA
equations for the thermal equilibrium state follow by minimising the free energy density

f = e− Ts−µq

=
∑

i

∫

dθ







ρimi coshθ − T



ρi log

 

1+
ρ
(h)
i

ρi

!

+ρ(h)i log

 

1+
ρi

ρ
(h)
i

!



−ρiµqi







,
(18)

with respect to the root densities ρi subject to the conditions (17). Here T is the tempera-
ture, s is the Yang–Yang entropy density [46], and µ is the chemical potential coupled to the
topological charge, while the qi are the topological charges carried by the various excitations:

qi =











0 , when i is a breather,

1 , when i is the soliton,

−2ℓi , when i is a magnon of length ℓi .

(19)

Introducing the pseudo-energy functions

εi = log

 

ρ
(h)
i

ρi

!

, (20)

the resulting TBA system is

εBk
=

mBk

T
coshθ −

nB
∑

k′=1

ηBk′
ΦBk ,Bk′

∗ log
�

1+ e−εBk′
�

−ηSΦ+,Bk
∗ log

�

1+ e−εS
�

, (21a)

εS =
mS

T
coshθ −

µ

T
−

nB
∑

k=1

ηBk
Φ+,Bk
∗ log

�

1+ e−εBk
�

−ηSΦ0 ∗ log
�

1+ e−εS
�

−
nM
∑

k=1

ηMk
Φ+,Mk

∗ log
�

1+ e−εMk
�

, (21b)

εMk
=
µ

T
· 2ℓMk

−ηSΦ+,Mk
∗ log

�

1+ e−εS
�

−
nM
∑

k′=1

ηMk′
ΦMk ,Mk′

∗ log
�

1+ e−εMk′
�

, (21c)
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which can be written in the concise form

εi = wi −
∑

j

η jΦi j ∗ log
�

1+ e−ε j
�

, (22)

where the source terms are wi = mi coshθ/T − µqi/T . The free energy density f of the
equilibrium state can be computed as

f
T
= −

∑

i

∫

dθ
2π
ηimi coshθ log

�

1+ e−εi
�

. (23)

2.3 Partial decoupling of the TBA system

As noted in the previous section, the magnonic part of the sine–Gordon TBA is essentially
identical to the TBA system of the XXZ spin chain, for which a partial decoupling of the system
of equations can be achieved [56], which is also the case for quantum field theories with
diagonal scattering [49]. Partial decoupling means that a system like (21) can be recast in
the form where every pseudo-energy is only coupled to a few others, and the structure of
the TBA can be represented with a simple graph. Moreover, the kernels in this form are also
much simpler, and the partial decoupling makes the system’s numerical solution much more
computationally efficient.

Albeit the decoupling problem is solved for the XXZ spin chain, the result cannot be directly
transferred to the system (21) due to the presence of the massive nodes, and the structure must
be analysed carefully. We adopt the following strategy. First, we decouple the system with a
single magnonic level, i.e. when the coupling has a continued fraction expansion

ξ=
1

nB +
1
ν1

. (24)

It turns out that the major issues can be fixed by considering this case. We then perform
decoupling with two magnonic levels, i.e. when

ξ=
1

nB +
1

ν1 +
1
ν2

. (25)

We find that the resulting structure is stabilised with the equations involving only magnons
coinciding with the appropriate decoupled equations for the XXZ spin chain using the mapping
defined by Eqs. (A.4),(A.5). It is then clear that higher magnonic levels can also be directly
obtained from the XXZ case, and we check this by considering systems with three and four
magnonic levels. The validity of these systems can be checked numerically in a very stringent
way by comparing the free energy at a finite temperature and vanishing chemical potential
to that resulting from the Destri–de Vega (DdV) complex nonlinear integral equation [57]. In
addition, we also carry out various self-consistency checks.

After decoupling, the TBA system can be concisely written as

εi = wi +
∑

j

Ki j ∗
�

σ
(1)
j ε j −σ

(2)
j w j + L j

�

, (26)

where L j = log
�

1+ e−εi
�

and the kernel Ki j is a sparse matrix encoding the coupling of each

species to the others, σ(1,2)
j are numerical coefficients taking values 0 and 1, and the source
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Table 1: Building blocks of diagrams encoding the sine–Gordon TBA systems at dif-
ferent couplings.

k k′

i+ 1 lines

k k′

i+ 1 lines

k k′

i+ 1 lines

−

−

k k′

i+ 1 lines

Kkk′ = Kk′k = Φpi
−Kkk′ = Kk′k = Φpi

Kkk′ = −Kk′k = Φpi
Kkk′ = Kk′k = −Φpi

k

i+ 1 lines k

i+ 1 lines

Kkk = Φ
(i)
self Kkk = −Φ

(i)
self

terms wi are modified by the decoupling procedure in comparison to the source terms wi
appearing in the fully coupled TBA equations (22). This modification does not affect the
contributions related to energy and momentum; however, for all other charges, their one-
particle value hi(θ ) is modified to a new form hi(θ ). In the cases considered here, this only
affects the topological charge. However, when extending the TBA system by higher conserved
charges to construct a generalised Gibbs ensemble [58], all the corresponding one-particle
eigenvalues are modified in the decoupled equations.

For later reference, we also introduce a notation for the kernels that appear in this section

eΦpi
(t) =

1

2 cosh
� pi
α
π
2ξt

� , eΦ
(i)
self(t) =

cosh
� pi−pi+1

α
π
2ξt

�

2cosh
� pi
α
π
2ξt

�

cosh
� pi+1
α
π
2ξt

� , (27)

specified by their Fourier transforms with the pi defined in Eq. (A.10).
To depict the kernel matrix Ki j in Eq. (26) in a graphical way, we borrow a formalism intro-

duced in Ref. [59] which treated the TBA of the boundary sine–Gordon model. We extended
this formalism to allow for special cases when some of the integers in the continued fraction
expansion (15) are small, i.e. satisfy νi ≤ 2. The diagrams can be built using six types of
blocks corresponding to various kernels as summarised in Table 1.

The decoupling procedure up to two levels is detailed in Appendix B, while the resulting
TBA system at general coupling is presented in the next section.

2.4 The TBA system at general coupling

Once we have the system for one and two magnonic levels, all possibilities for sewing together
the massive and the magnonic nodes through the soliton are covered. Deeper magnonic levels
are exactly identical to the XXZ Bethe Ansatz, so instead of explicitly performing the decou-
pling, the results can be borrowed from that case [48]. Note that the system’s structure is
somewhat altered at reflectionless points, for which the result is given in Eq. (B.3).

Introducing the notation
Ψ j = σ

(1)
j ε j −σ

(2)
j w j + L j , (28)
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Table 2: Source terms and coefficients appearing in the TBA system Eq. (26) and
the dressing equation (47) in the generic case (except the reflectionless points). See
Eqs. (A.10,A.12) for the definition of yi and ri . This table extends the results of [54],
which were only derived for up to two magnonic levels.

Excitations Labels w η σ(1) σ(2)

Breathers Bk, k = 1, ..., nB mBk
coshθ/T +1 +1 +1

Soliton S mS coshθ/T +1 0 0

Intermediate magnons Mk, k = 1, . . . ,κl − 1 0 −sign(rk) +1 0

Next-to-last magnon Mκl−1 yl ·µ/T −sign(rκl−1) +1 0

Last magnon Mκl
yl ·µ/T −sign(rκl

) 0 0

the resulting system takes the form

εB1
= wB1

+Φp0
∗ΨB2

, if nB ≥ 2 , (29a)

εB j
= wB j

+Φp0
∗ΨB j−1

+Φp0
∗ΨB j+1

, j = 2, ..., nB − 1 , (29b)

εBnB
= wBnB

+ΘnB≥2 ·Φp0
∗ΨBnB−1

+Φ(0)self ∗ΨBnB
+Φp1

∗ΨS , (29c)

εS = wS +ΘnB≥1 ·Φp1
∗ΨBnB

−δν1,1 ·Φ
(1)
self ∗ΨS −δν1,1 ·Φp2

∗ΨM1
−
�

1−δν1,1

�

·Φp1
∗ΨM1

−δκl ,2 ·Φp1
∗ΨM2

, (29d)

εM j
= wM j

+
�

1− 2δκi−1, j

�

·Φpi
∗ΨM j−1

+Φpi
∗ΨM j+1

, κi−1 ≤ j ≤ κi − 2 , j ̸= κl − 2 ,

εMκi−1
= wMκi−1

+
�

1− 2δκi−1,κi−1

�

Φpi
∗ΨMκi−2

+Φ(i)self ∗ΨMκi−1
+Φpi+1

∗ΨMκi
, for i < l ,

εMκl−2
= wMκl−2

+
�

1− 2δκl−1,κl−2

�

Φpl
∗ΨMκl−3

+Φpl
∗ΨMκl−1

+Φpl
∗ΨMκl

, (29e)

εMκl−1
= wMκl−1

+Φpl
∗ LMκl−2

, (29f)

εMκl
= wMκl

−Φpl
∗ LMκl−2

, (29g)

where Θ is the Heaviside function and δ is the Kronecker delta, with the parameters appearing
in the above system defined in Eqs. (A.10,A.11,A.12) and summarised in Table 2. To ease the
notations further, we introduced a species label M0 whose occurrences should be replaced by
the soliton label S on the RHS, while equations with M0 on the LHS must be omitted.

Appendix B shows examples of the graphical representation of Eq.(29). Figs. 2 and 3 depict
more intricate graphs with multiple magnonic levels with a different number of magnons on
each level to show examples with various structures. Fig. 3 also shows how a graph is altered
as the number of magnons ν2 at level 2 changes.

So far, we assumed that the continued fraction (15) has a finite number of levels corre-
sponding to a rational value of the coupling parameter ξ. We note that irrational couplings
correspond to an infinite continued fraction (15); truncating the continued fraction at progres-
sively deeper levels leads to rational approximants of the coupling converging to the eventual
irrational value. Similarly to the case of the XXZ spin chain, the relevant physical quantities
are expected to be obtained as a limit of a sequence constructed from these rational approxi-
mants. This is trivially valid for quantities (such as the free energy) that are a smooth function
of the coupling. For quantities with a fractal dependence of the couplings, such as charge
Drude weights, numerical evidence shows that the discontinuities decrease with the number
of magnonic levels and are fully consistent with convergence in the limit of the infinite con-
tinued fraction.
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−

−

S M1 M2

M3

M4

M5

Figure 2: Graphical representation of the TBA system with four magnonic levels
corresponding to ξ = 8/5 (nB = 0, ν1 = 1, ν2 = 1, ν3 = 1 and ν4 = 2, see also
Table 3).

2.5 Ultraviolet limit and central charge

In the high temperature (ultraviolet) limit, the cosine perturbation in the sine–Gordon Hamil-
tonian (1) can be neglected, and the theory becomes that of a massless boson corresponding
to the first two terms. We can test our TBA equations by checking that they are consistent with
this behaviour.

In the limit of large temperature, T ≫ mS , mBk
, the source terms in the TBA equa-

tions (29) of the massive particles of mass ma can be neglected in the rapidity domain
− log(2T/ma) ≲ θ ≲ log(2T/ma). Consequently, all the source terms are constant (in a ther-
mal state), so the pseudo-energies also take constant values εa, and the TBA equations reduce
to a set of algebraic equations for the ȳa = exp(ε̄a) “plateau” values.

For example, for two magnonic levels, using that the integral of all kernels Φa are equal to
π (equivalently, Φ̃(0) = 1/2), we obtain in the generic case

y2
B1
= 1+ yB2

,

y2
Bl
= (1+ yBl−1

)(1+ yBl+1
) , 1< l < nB ,

y2
Bl
= (1+ yBl−1

)(1+ yBl
)(1+ y −1

S ) , l = nB ,

y2
S = (1+ yBl

)(1+ y M1
)−1 , l = nB ,

y2
M1
= (1+ y −1

S )(1+ y M2
) ,

y2
Mk
= (1+ y Mk−1

)(1+ y Mk+1
) , 1< k < ν1 − 2 ,

y2
Mν1−1

= (1+ y Mν1−2
)(1+ y Mν1−1

)(1+ y Mν1
) ,

y2
Mν1
= (1+ y Mν1−1

)−1(1+ y Mν1+1
) ,

y2
Mk
= (1+ y Mk−1

)(1+ y Mk+1
) , ν1 < k < ν1 + ν2 − 2 ,

y2
Mκ2−2

= (1+ y Mκ2−3
)(1+ y Mκ2−1

)(1+ y −1
Mκ2
) ,

y2
Mκ2−1

= e2(1+ν1ν2)µ/T (1+ y Mκ2−2
) ,

y2
Mκ2
= e2(1+ν1ν2)µ/T (1+ y Mκ2−2

)−1 , (30)
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S M1 M2 M3 M4 M5 M6 M7 M8 M9

M10

M11

M12

S M1 M2 M3 M4 M5 M6 M7 M8

M9

M10

M11

S M1 M2 M3 M4 M5 M6 M7

M8

M9

M10

Figure 3: Four-level graphs corresponding to repulsive couplings ξ = 109/33
(nB = 0, ν1 = 3, ν2 = 3, ν3 = 3, ν4 = 3), ξ = 79/23 (nB = 0, ν1 = 3, ν2 = 2,
ν3 = 3, ν4 = 3), and ξ = 49/13 (nB = 0, ν1 = 3, ν2 = 1, ν3 = 3, ν4 = 3), demon-
strating how the TBA system collapses at level 2 as the corresponding number of
magnons is gradually reduced.

where κ2 = ν1 + ν2. For µ= 0 the solution for two magnonic levels is

yBk
= (k+ 1)2 − 1 , 1≤ k ≤ nB ,

yS =

�

�

nB + 2
nB + 1

�2

− 1

�−1

,

y Mk
=
�

k+
nB + 2
nB + 1

�2

− 1 , 1≤ k < ν1 ,

y Mν1
=
�

1+
nB + 1

1+ (nB + 1)ν1

�2

− 1 ,

y Mk
=
�

k− ν1 + 1+
nB + 1

1+ (nB + 1)ν1

�2

− 1 , ν1 < k < ν1 + ν2 − 1 ,

y Mν1+ν2−1
= y−1

Mν1+ν2
= ν2 − 1+

nB + 1
1+ (nB + 1)ν1

. (31)

For a single magnonic level, the same expressions hold up to magnon number ν1 − 2, and

y Mν1−1
= y−1

Mν1
= ν1 − 1+

1
nB + 1

. (32)

Interestingly, these expressions also hold in the special cases (e.g. ν1 = 1 or ν2 = 2) and
in the repulsive regime with nB = 0. In the reflectionless case, there are no magnons, but
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there are two soliton nodes instead of one (the soliton and the antisoliton). The breather
pseudoenergies are the same as in the generic case, and the soliton and antisoliton plateau
values are yS = y S̄ = nB + 1.

In the complementary domain |θ | ≫ log 2T/ma, the pseudo-energy functions for the mas-
sive excitations grow rapidly as ∼ ma coshθ and their filling functions decay to zero faster
than exponential. As eεS(θ ) becomes very large, it can be dropped in the equation of εM1

(θ ).
As a result, the magnonic TBA equations decouple completely from the massive equations.
Since the source terms are constant in a thermal state, the magnonic pseudo-energies become
constants eεMk

, and eyMk
= exp(eεMk

) obey algebraic equations again. These are the same as the
magnonic equations in (30) except for the first magnon, which reads

ey2
M1
= 1+ eyM2

. (33)

The solution for two magnon levels and µ= 0 reads

eyMk
= (k+ 1)2 − 1 , 1≤ k < ν1 − 1 ,

eyMk
=
�

k− ν1 + 1+
1
ν1

�2

− 1 , ν1 ≤ k < ν1 + ν2 − 1 ,

eyMν1+ν2−1
= ey −1

Mν1+ν2
= ν2 − 1+

1
ν1

. (34)

For a single magnonic level the first line holds and

eyMν1−1
= ey −1

Mν1
= ν1 − 1 . (35)

The root densities ρa(θ ) are supported around θ = log 2T/Ma and exponentially small
elsewhere, so the equations split to equations describing independent left and right moving
modes. In these rapidity regions, the effective velocities agree with the speed of light ±1 for
all the excitations.

The free energy density can then be expressed using the standard procedure [47, 60, 61]
based on Roger’s dilogarithm function

L(x) = −
1
2

x
∫

0

dt
�

log t
1− t

+
log(1− t)

t

�

. (36)

Taking into account the nonzero constant pseudo-energies of the magnons as |θ | →∞ as well
as their associated signs ηMk

, the free energy density in a thermal state with µ= 0 is

f = −T2

 

nB
∑

k=1

L(ϑ̄Bk
) + L(ϑ̄S)−

nM
∑

j=1

ηM j

�

L(ϑ̄M j
)− L(eϑM j

)
�

!

, (37)

where
eϑa =

1
1+ eya

, ϑ̄a =
1

1+ ya
, (38)

are the constant filling fractions. Substituting the solutions of Eqs. (34) and (31), we checked
numerically in various cases that

f = −
πT2

6
, (39)

which is the exact result for a free massless boson (a conformal field theory with central charge
c = 1). This provides another consistency check of the validity of our TBA equations. We note
that, from a mathematical viewpoint, Eq. (37) constitutes nontrivial dilogarithm identities
[52,62].
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Figure 4: Comparison of the free energy density calculated from DdV (Eq. (41), black
curve) and from TBA (Eq. (23), symbols) for two temperatures and several different
values of the coupling, shown with coloured symbols as specified in Fig. 1. The
relative difference between the result of the two methods is less than 10−5 in all
cases we considered.

2.6 Comparison with the NLIE

An independent verification for our TBA system can be obtained by setting the chemical poten-
tial to zero and comparing the resulting free energies to those computed from the Destri–de
Vega complex nonlinear integral equation (NLIE) [57]

Z(θ ) =
mS

T
sinhθ − i

∞
∫

−∞

dθ ′G(θ − θ ′ − iϵ) log
�

1+ eiZ(θ ′+iϵ)
�

+ i

∞
∫

−∞

dθ ′G(θ − θ ′ + iϵ) log
�

1+ e−iZ(θ ′−iϵ)
�

,

G(θ ) =
1

2πi
d

dθ
log S0(θ ) =

1
2π

∞
∫

−∞

dt
sinh

� tπ
2 (ξ− 1)

�

2 sinh
�

πξt
2

�

cosh
�

πt
2

�

eiθ t . (40)

The above equation can be solved iteratively for the function Z(θ ), from which the free energy
density f is obtained using the formula

f
T
= −2 Im

∞
∫

−∞

dθ
2π

mS sinh(θ + iϵ) log
�

1+ eiZ(θ+iϵ)
�

. (41)

Comparisons of the free energy density calculated from the DdV and the TBA for different
values of the coupling and temperature are shown in Fig. 4 and Tables 3, 4. The excellent
agreement provides a nontrivial and stringent verification of the TBA system (29).

3 Dressing and further tests of the TBA system

This section presents the dressing equations and the partially decoupled form of the density
equations. We also perform further consistency checks of the full TBA system.
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Table 3: Comparing the free energy f /T (in units of mS) computed from the NLIE
to the sine–Gordon TBA at coupling ξ= 8/5, corresponding to four magnonic levels
with nB = 0, ν1 = 1, ν2 = 1, ν3 = 1 and ν4 = 2, see also Fig. 2.

T/mS f /T from NLIE f /T from TBA rel. err.

10 −5.14640752525 −5.14641435683 1.3 · 10−6

5 −2.49792538470 −2.49792889912 1.2 · 10−6

2 −0.88247971549 −0.88248108696 1.6 · 10−6

1 −0.33530211822 −0.33530269076 1.7 · 10−6

0.5 −0.08371384269 −0.08371400241 1.9 · 10−6

0.2 −0.00256518304 −0.00256518834 2.1 · 10−6

0.1 −1.187185 · 10−5 −1.187187 · 10−5 2.1 · 10−6

Table 4: Comparing the free energy f /T (in units of mS) computed from the NLIE to
the sine–Gordon TBA at the coupling ξ = 109/33, corresponding to four magnonic
levels with nB = 0, ν1 = 3, ν2 = 3, ν3 = 3 and ν4 = 3.

T/mS f /T from NLIE f /T from TBA rel. err.

10 −5.10055231669 −5.10055370028 2.7 · 10−7

5 −2.46839913783 −2.46839979418 2.7 · 10−7

2 −0.87107315214 −0.87107336729 2.5 · 10−7

1 −0.33207314179 −0.33207321065 2.1 · 10−7

0.5 −0.08338024842 −0.08338025872 1.2 · 10−7

0.2 −0.00256471578 −0.00256471582 1.5 · 10−8

0.1 −1.187184 · 10−5 −1.187184 · 10−5 3.3 · 10−9

3.1 Dressing and partially decoupled equations for the densities

The presence of finite quasi-particle density in thermodynamic states leads to a dressing of
all one-particle quantities, such as momentum, energy, and charges. To derive the dressing
equations, we follow [63] and write the source terms in Eq. (26) as

wi =
∑

h∈e,p,q

β (h)hi(θ ) =
1
T

mi coshθ +
λ

T
mi sinhθ −

µ

T
qi , (42)

where hi(θ ) are the charge eigenvalues modified by the decoupling procedure. The one-
particle energies and momenta ei = mi coshθ and pi = mi sinhθ are unchanged, while qi
are the topological charge values resulting after decoupling which must be distinguished from
the bare charges qi . The “partially decoupled charges” are given by

qi =
∂ wi

∂ (−µ/T )
=

¨

0 , for massive particles, and intermediate magnons,

−yl , for the last two magnons,
(43)

as can be seen from Table 2. Note that in the reflectionless case, the charge assignment is

qi = qi =

¨

0 , for breathers,

±1 , for the soliton/antisoliton.
(44)
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In addition, β (e) = 1/T , β (p) = λ/T , and β (q) = µ/T are the thermodynamic conjugate
variables associated with energy, momentum and topological charge. We note that this idea
can be extended to construct generalised Gibbs ensembles from TBA by including the higher
conserved charges associated with integrability [58].

Starting from the free energy (23), the expectation value of a charge conjugate to the
generalised temperature variables β (h)

h=
∂

∂ β (h)
f
T
=
∑

i

∫

dθ
2π

mi coshθ
�

∂ (−L)
∂ εi

��

∂ εi

∂ β (h)

�

ηi =
∑

i

∫

dθ
2π

mi coshθ ϑi(θ )h
dr
i (θ ) ,

(45)
where hdr

i is the dressed charge, and we introduced the filling fractions:

ϑi(θ ) =
∂ (−L)
∂ εi

=
1

1+ eεi(θ )
=
ρi(θ )
ρtot

i (θ )
. (46)

Using Eqs. (26,42), the dressed charges satisfy the dressing equation

∂ εi

∂ β (h)
= ηi hdr

i = hi +
∑

j

Ki j ∗
��

σ
(1)
j − ϑ j

�

η j hdr
j −σ

(2)
j h j

�

. (47)

In particular, the total density of states corresponds to dressing the derivative of the momentum
(which is equivalent to the energy), i.e.

ηi ρ
tot
i =

∂θ pi

2π
+
∑

j

Ki j ∗
�

�

σ
(1)
j − ϑ j

�

η j ρ
tot
j −σ

(2)
j

∂θ p j

2π

�

. (48)

These equations are nothing but the partially decoupled versions of Eqs. (A.24), which formu-
late the Bethe Ansatz (A.16) for thermodynamic states in terms of the densities. We stress that
these equations hold for all thermodynamic states, i.e. for states in which the quasi-particles
can be described in terms of density functions. The density equations provide relations be-
tween the total densities of states ρtot

i and the filling fractions ϑ j (or, equivalently, the root
densities ρi). Still, they do not determine the state by themselves. In thermal equilibrium, the
missing information is provided by the pseudo-energy functions which solve the TBA equations
Eqs. (A.28) or, equivalently, their partially decoupled form Eqs. (29). In an inhomogeneous
situation, the missing information is provided by the time evolution determined by the GHD
equations (60) introduced in Section 5.

Comparing Eq. (48) to (47) demonstrates that the density equations can be obtained by
taking the derivatives of the TBA equations [48], which can be compared to the result of
explicitly decoupling the density equations, which is eventually used in Subsection 3.2 as a
cross-check for our calculations.

The dressed values of the (rapidity derivatives of) energy and momentum can be used to
define the effective velocity

veff
i (θ ) =

(∂θ ei)
dr (θ )

(∂θ pi)
dr (θ )

=
(∂θ ei)

dr (θ )
2πρtot

i (θ )
, (49)

which enters the equations of Generalised Hydrodynamics (60) and can be interpreted as the
velocity of individual quasi-particle excitations in the finite density medium constituted by the
other quasi-particles present in the thermodynamic state.
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Figure 5: ξ = 2/7, T = 2mS , µ = 0: filling fraction, root density, effective velocity
and dressed topological charges.

3.2 Further tests of the TBA system

In the previous subsection, the description of thermodynamic states was extended by intro-
ducing dressing, an example of which is Eq. (48) for the densities. In Figs. 5 and 6, we show
examples of what the fillings, the root densities, the effective velocities and the dressed topo-
logical charges look like as functions of the rapidity. We found that in the attractive case, a
shorter θ -grid is enough to resolve the non-trivial structure of the above quantities, while in
the repulsive case, this grid usually needs to be longer.

We tested the self-consistency of the TBA system and our numerical implementation by:

(i) Comparing free energy values calculated from the coupled system (A.29) and the par-
tially decoupled system (26).

(ii) Comparing free energy values calculated from the pseudo-energies (23) and the densi-
ties (18).

(iii) Comparing numerical derivatives of the pseudo-energy functions as in the derivation in
Sec. 3.1, to the direct calculation of (47). This also provides a way to check the signs ηi ,
as they do not appear in the pseudo-energy equations (26) but do appear in the dressing
equations (47).

(iv) Testing the symmetry of the free energy under the µ→−µ transformation, which must
hold on physical grounds but is not manifest in the TBA system (26).

(v) Calculating charge and current expectation values in multiple ways, which must give
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Figure 6: ξ = 7/2, T = 2mS , µ = 0: filling fraction, root density, effective velocity
and dressed topological charges.

identical results:

h=
∑

i

∫

dθρtot
i (θ )ϑi(θ )hi(θ ) =

∑

i

∫

dθ
mi

2π
cosh(θ )ϑi(θ )h

dr
i (θ ) , (50a)

jh =
∑

i

∫

dθρtot
i (θ )ϑi(θ )hi(θ )v

eff(θ )

=
∑

i

∫

dθ
2π
(e′i)

dr(θ )ϑi(θ )hi(θ ) =
∑

i

∫

dθ
2π

mi sinh(θ )ϑi(θ )h
dr
i (θ ) . (50b)

Note that here hi is the bare charge and hdr
i is its dressed counterpart, but as mentioned in

connection with Eq. (42) above, in the partially decoupled form of the TBA equations (26)
their contribution to the source term is modified to hi . In each case, we have found good
agreement, confirming the validity of the TBA system and its self-consistency.

4 Transport and Drude weights

As our first application of sine-Gordon thermodynamics, we consider Drude weights describing
ballistic transport of charge and energy.

4.1 Drude weights from TBA

The Drude weight is defined as the integral of the connected correlation function:

Dh = lim
τ→∞

1
2τ

∫ τ

−τ
dt

∫

dx 〈 jh(x , t) jh(0,0)〉c , (51)
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where jh is the current of the charge, which we specify by giving its one-particle eigenvalue
hi(θ ) that depends on the species i and rapidity θ of the excitation. In the TBA framework,
the Drude weight can be computed as [64–66]

Dh =
∑

i

∫

dθρtot
i (θ )ϑi(θ ) [1− ϑi(θ )]

�

veff
i (θ )h

dr
i (θ )

�2
, (52)

where the sum runs over all particle species. However, for topologically neutral states (µ= 0),
the dressed topological charge of all species turns out to be zero except for the last two
magnons with opposite and constant dressed charges.

The energy and charge Drude weight results are shown in Fig. 7. The charge Drude weights
show the characteristic fractal pattern already established in our previous work [54], while the
energy Drude weights depend on the coupling in a fully continuous manner. This is due to
a fundamental difference in energy and charge transport. In the scattering of field-theoretic
excitations (kinks and breathers), the energy (parameterised by rapidity) is always transmit-
ted. However, in the kink-antikink scattering described by the amplitudes (5), the topological
charge can also be subject to reflection, altering its transport. The non-diagonal structure of
the kink-antikink scattering is reflected in the magnonic quasi-particles of the Bethe Ansatz,
which have a very intricate structure that follows the continued fraction representation (15)
of the coupling. The observed fractal structure is similar to the case of the XXZ chain in its
gapless regime [67–71], a phenomenon also known as “popcorn” Drude weights [72]. The
sine–Gordon model is the second example for which the fractal nature of the spin Drude weight
was established; more recently, it was established for higher spin variants of XXZ spin chain
as well [73].

It is argued in the recent work [72] that the fractal structure of the Drude weight results
from theUq(sl(2)) symmetry of the model. This argument is strongly supported by finding frac-
tal Drude weights in the sine–Gordon model since it has the same quantum symmetry [74,75],
which is also true for the higher spin variants of XXZ spin chain. Note that while the magnonic
part of the Bethe Ansatz is essentially the same as that of the gapless XXZ spin chain, the
presence of the massive breather and solitonic excitations of the Bethe Ansatz makes the sine–
Gordon TBA system essentially different from that of the spin chain. Therefore, the finding
of a fractal structure in the sine–Gordon model, while not unexpected, is still a nontrivial
confirmation of the arguments advanced in [72].

Note that in a naive semiclassical picture, the presence of reflections results in a random
walk for the topological charge, which would seem to imply a diffusive behaviour. Therefore,
the nonzero charge Drude weight requires a specific explanation. In the framework of Mazur’s
inequality [76, 77], a nonzero Drude weight for the topological charge strongly suggests the
existence of yet unknown conserved quantities that are odd under charge conjugation, in par-
allel with those found in the XXZ spin chain [68].

4.2 Low-temperature limit at the reflectionless points

In the attractive regime and at reflectionless couplings ξ= 1/(nB −1), the TBA simplifies to a
form involving only breathers and a kink/antikink pair given in (B.3). For low temperatures,
the convolution terms in the TBA equations can be dropped, and all effects of interactions are
exponentially suppressed due to the mass terms. As a result, the kinks/antikinks can be de-
scribed as non-interacting fermions with energy M coshθ and with an effective velocity equal
to their bare velocity tanhθ . The filling factors are given by simple Fermi-Dirac distributions

ϑS(θ ) = ϑS̄(θ ) =
1

1+e−mS coshθ/T
. (53)
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Figure 7: Comparison of the energy and charge Drude weights at different temper-
atures as a function of the coupling strength. Even though the number of particles
has an intricate dependence on the coupling (cf. Fig. 1), the TBA system captures
the continuous coupling dependence of the energy Drude weight. In contrast, the
charge Drude weight shows a fractal/popcorn dependence on the coupling strength.
Besides the numerically calculated values, the bottom left panel shows Eq. (54) with
a red dashed line, showing excellent agreement at the reflectionless points. In the
rightmost figures, we omit individual points for clarity and only display the data us-
ing continuous black lines, as the fractal structure is not resolved numerically at these
high temperatures. The continuous behaviour of the charge Drude weight (bottom
right panel) in the limit T →∞ is justified by the agreement with the result (55)
of the analytical calculations in Sec. 4.3, shown as a red dashed line. The analytical
high-temperature limit of the energy Drude weight, Eq. (57), plotted as a red dashed
line in the top right panel, also shows good agreement with the numerical results.

Due to the absence of interactions, the dressing (47) is trivial since all kernels Ki j vanish.
Additionally, all relevant signs are trivial (ηi = +1); therefore, all quantities are equal to their
dressed counterparts. Since only the kinks carry topological charge, the Drude weight (52)
simplifies to the explicit expression

Dlow-T
q = 2

∫

dθ
2π

mS coshθ e−mS coshθ/T

�

1+e−mS coshθ/T
�2 tanh2 θ , (54)

with the factor 2 accounting for the presence of kinks and antikinks, which carry topological
charge h(θ ) = hdr(θ ) = ±1. The result (54) is independent of the coupling and agrees fully
with the numerical results obtained from the full TBA as shown in Fig. 7.

4.3 High-temperature limit

In the high-temperature limit, the sine-Gordon interaction can be neglected, and the dynamics
can be described by the Hamiltonian of a massless free boson, which makes possible the explicit
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evaluation of the charge Drude weight with the result

Dq = T
β2

4π2
=

2T
π

ξ

ξ+ 1
. (55)

We refer to the Supplemental Material of [54] for details. This result agrees perfectly with
the numerically obtained data, as shown in Fig. 7. Note that the high-temperature limit of the
Drude weight is a continuous function of the coupling parameter ξ with the fractal structure
suppressed, except when β2 is close to 8π. In fact, the numerical computations described in
the previous subsection show that the Drude weight goes to zero at all finite T in the Kosterlitz–
Thouless limit β2/8π→ 1; therefore Eq. (55) implies that the limits β2/8π→ 1 and T →∞
do not commute.

The high-temperature limit of the energy Drude weight can be obtained simply from known
results in non-equilibrium conformal field theory. In a bipartitioned system with temperatures
T1/T2 in the left/right halves [78], respectively, the current flowing between the two halves is

πc
12

�

T2
1 − T2

2

�

, (56)

where c is the central charge, which in our case is 1. Using the formula (65) below results in

De =
π

3
T3 , (57)

which agrees well with the numerics as shown in the top right panel of Fig. 7. In addition, the
energy Drude weight also shows the non-commutativity of the limits β2/8π→ 1 and T →∞.

4.4 Charge Drude weight at finite chemical potential

To further analyse the fractal structure of the charge Drude weight, we also calculated it for
finite chemical potential. The results, shown in Fig. 8, reveal that the fractal structure persists
away from zero chemical potential but is gradually suppressed with increasing µ.

5 Generalised Hydrodynamics in the sine–Gordon model

Generalised Hydrodynamics is a framework that describes the dynamics of integrable systems
on the hydrodynamic (Euler) scale. It is based on the transport of the infinitely many conserved
quantities captured by the continuity equation

∂th(x , t) + ∂xjh(x , t) = 0 . (58)

The expectation values of the charge and current density can be expressed in terms of the root
densities as

h=
∑

i

∫

dθρi(θ )hi(θ ) , (59a)

jh =
∑

i

∫

dθρi(θ )hi(θ )v
eff(θ ) . (59b)

The expression for the current densities was originally conjectured in [44,45] and proven later
in [79]. Exploiting the completeness of the charges, one arrives at the GHD equation [44,45]

∂tρi(t, x ,θ ) + ∂x

�

veff
i

�

{ρ j}
�

(θ )ρi(t, x ,θ )
�

= 0 . (60)
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Figure 8: Gradual suppression of the fractal structure of the Drude weight with in-
creasing chemical potential.

for the densities ρi(t, x ,θ ) of quasi-particles of species i and rapidity θ that are space and
time-dependent on the Euler scale. The effective velocity (49)

veff
i

�

{ρ j}
�

(θ ) =
(∂θ ei)

dr (θ )

(∂θ pi)
dr (θ )

, (61)

carries an implicit dependence on t and x via the densities {ρ j} used to dress the derivatives
of energy and momentum. These equations are supplemented by the dressing equations (47)
and the density equations (48) necessary to reconstruct the filling fractions needed for the
dressing from the quasi-particle (root) densities ρi .

5.1 Bipartition protocol

Arguably the most frequently implemented protocol to study non-equilibrium dynamics in
inhomogeneous states is the bipartition protocol, where the two halves of an infinite system
are prepared in different equilibrium states and the system is described by the source terms

wi =











wi,L =
∑

h

β
(h)
L hi , x < 0 ,

wi,R =
∑

h

β
(h)
R hi , x > 0 .

(62)
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At t = 0 the system is let to evolve freely, and it is shown e.g. in [44, 45] that in the limit
x , t →∞, the state of the system is described by the filling function

ϑi(ζ,θ ) = Θ
�

veff
i (ζ,θ )− ζ

�

ϑi,L(θ ) +Θ
�

ζ− veff
i (ζ,θ )

�

ϑi,R(θ ) , (63)

where ζ= x/t and ϑi,L and ϑi,R are the filling functions of the left and the right initial states.
Note that Eq. (63) is an implicit equation for ϑi , as the effective velocities on the right-hand side
depend on ϑi . Despite this, we found that the usual recursive scheme [63,80] also converges
to the solution in the sine-Gordon model. Using Eq. (50) together with the fillings at each ray,
one obtains the asymptotic h(ζ) and jh(ζ) profiles in the bipartite system, which are the limits
along “rays” of fixed ζ= x/t:

h (ζ) = lim
t→∞

h(x = ζt, t) , jh (ζ) = lim
t→∞

jh(x = ζt, t) . (64)

Examples of such energy and topological charge profiles are shown in Fig. 9. Note the cusps
[81] in the charge and charge-current profiles in the repulsive regime, which are due to the
maximum magnonic velocities being considerably smaller than the speed of light (correspond-
ing to the speed of sound in a condensed matter context and equal to 1 in our units), cf. Fig. 6.
In contrast, there are no such cusps in the attractive regime nor in the energy profiles in both
regimes because the maximum soliton and magnon velocities are equal to the speed of light
in these cases, cf. Fig. 5.

One can compare the position of these cusps to the maximum values of the magnonic effec-
tive velocities in the “reference” thermal states corresponding to the post-quench temperature
T = 2mS and chemical potential µ = 0 shown in Figs. 5, 6. Note that while the maximal
effective velocities qualitatively agree with the locations of the cusps, the eventual numerical
values of ζ where the cusps occur in the non-equilibrium evolution differs from those one
would guess from the equilibrium effective velocity profiles; for example, they are not sym-
metric under ζ → −ζ. The reason is that in the non-equilibrium evolution induced by the
bipartition protocol, there is a different asymptotic state at each ray ζ, which also differs from
the reference thermal equilibrium state.

The Drude weight of any conserved charge can also be evaluated from an infinitesimally
unbalanced bipartition protocol using the linear response formula [69,82]

Dh =
∂

∂ δβ (h)

∫

dζ jh (ζ)

�

�

�

�

δβ (h)=0

, (65)

which gives identical results to the method used in Sec. 4 [54].

5.2 Dynamical correlators

The GHD framework provides access to dynamical correlation functions on the Euler scale in
a large distance/time limit. Here, we consider the simplest kind, the connected correlators of
conserved densities. In a homogeneous equilibrium state, these are given by [64]

Sh1,h2
(ζ) = 〈h1(x , t)h2(0,0)〉c =

∑

i

∫

dθ δ
�

x − veff
i t
�

ρi(θ )[1− ϑi(θ )]h
dr
1,i(θ )h

dr
2,i(θ )

= t−1
∑

i

∑

θ∈θ ∗i (ζ)

ρi(θ )[1− ϑi(θ )]
�

�

�

�

veff
i

�′
(θ )

�

�

�

hdr
1,i(θ )h

dr
2,i(θ ) , (66)

where ζ= x/t and θ ∗i (ζ) is the set of rapidities where the effective velocity takes the value of
ζ, i.e. the solution of the equation

veff
i (θ ) = ζ . (67)
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Figure 9: Profiles of the energy, energy-current (blue), charge and charge-current
(red) densities in the bipartition protocol. Top two rows: ξ = 2/7 (nB = 3, ν1 = 2),
bottom two rows: ξ= 7/2 (nB = 0, ν1 = 3, ν2 = 2). Parameters: TL/R = (2±0.5)mS ,
µL/R = ±0.5 mS , while after the quench T = 2 mS , µ= 0.
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Figure 10: Dynamical correlation functions of the energy density (left column, blue)
and the topological charge density (right column, red). First row: ξ = 2/7 (nB = 3,
ν1 = 2), T = 2 mS , second row: ξ = 7/2 (nB = 0, ν1 = 3, ν2 = 2), T = 2 mS , third
row: ξ = 2/7 (nB = 3, ν1 = 2), T = 0.1 mS , fourth row: ξ = 7/2 (nB = 0, ν1 = 3,
ν2 = 2), T = 0.1 mS . Note that the sharp peaks at higher temperatures (top two
rows) correspond to the maximal value of the effective velocity, c.f. Figs. 5,6. In con-
trast, at low temperatures, the peaks appear only when this maximum value is small
(bottom right panel). Otherwise, at low temperatures, high rapidity states (corre-
sponding to the maximum value of the effective velocity) are unoccupied; therefore,
the correlator takes a bell shape.
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This formula expresses that correlations are built by quasiparticles that travel ballistically at
velocities veff

i and contribute with their dressed charges.
The correlators of the energy density and the topological charge density are shown in

Fig. 10 for the attractive (ξ= 2/7) and the repulsive (ξ= 7/2) regime. For high temperatures
(top two rows), they are seen to be strongly peaked at the boundaries of their support in ζ,
which for the energy density corresponds to the light cone ζ= ±1. The reason for the peaks is
that high rapidity states are also occupied at high temperatures, which carry correlations with
the maximum of the corresponding effective velocity. For small temperatures (bottom two
rows), the correlators often take a bell shape because the density of occupied states is concen-
trated at small rapidities, and therefore the particles cannot sample the maximal value of the
effective velocity. If the maximum velocity is also small at low temperatures, the correlators
take a peaked shape again, as the bottom right example shows in Fig. 10. Interestingly, the
topological charge density correlator has a smaller support in the repulsive regime, indicating
a difference between charge and energy transport, which we address in a separate study [83].

These correlators can also be used to reconstruct the Drude weights as [64]

Dh =

∫

dζ ζ2 t · Shh(ζ) , (68)

however, evaluating the integral accurately requires a sufficiently large number of grid points
in ζ due to the presence of cusps and is very costly in numerical terms. For this technical
reason, a suitably accurate calculation only proved possible in the repulsive regime, where we
found complete agreement with the Drude weights computed from Eq. (52).

6 Conclusions and Outlook

In this work, we described the thermodynamics and hydrodynamics of the sine–Gordon quan-
tum field theory at generic couplings in detail. Thermodynamic states can be specified with
quasi-particle densities in rapidity space, which satisfy linear integral equations derived from
the Bethe Ansatz. These equations introduce a relation between the total and occupied (root)
densities of states, allowing us to determine one set of densities in terms of the other. For
equilibrium states such as grand canonical (or arbitrary generalised Gibbs) ensembles, a sys-
tem of nonlinear integral equations known as Thermodynamic Bethe Ansatz (TBA) supplies
the missing information to determine the state completely. For states inhomogeneous at the
hydrodynamic Euler scale, the Generalised Hydrodynamics (GHD) equations determine the
evolution of the root densities from an arbitrary initial condition given in terms of the root
densities. GHD requires the determination of the effective velocity of quasi-particles as an
input from the Bethe Ansatz, which is given in terms of the dressing equations. After deriving
the full thermodynamic description, including the density equations, the TBA, and the dress-
ing equations, we verified their structure extensively, cross-checking them against each other
and comparing them to the Destri–de Vega nonlinear integral equation.

We presented the thermodynamic equations in both their fully coupled and partially de-
coupled form, and the derivation of the latter was greatly simplified by incorporating results
from the XXZ spin chain. The decoupled equations have several advantages, such as (i) the
much simpler structure of kernels and (ii) the sparse form of coupling between densities,
which greatly reduce the computational cost associated with their solution. This is very im-
portant in the GHD formalism, where they play the role of the equation of state of the system,
completing the evolution equations to allow for the determination of time evolution from the
initial conditions. A further advantage is that they have a relatively simple encoding in terms
of graphical diagrams, facilitating the construction and programming of the system. These
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graphs can be determined from a continued fraction expansion of the coupling, which is finite
for rational couplings, and its length is called the number of levels. The first of these levels
contains massive nodes describing the massive excitations, such as the soliton (corresponding
to the kink/anti-kink) and the breathers; subsequent levels involve the so-called magnons that
can be considered as auxiliary quasi-particle excitations encoding the charge degrees of free-
dom of the kink/anti-kink particles. Irrational coupling values can be described by truncating
the continued fraction expansion to a level which gives a desired approximation precision. We
gave explicit examples of TBA systems for up to 4 magnonic levels.

The graphs we obtained are similar, but not identical, to the well-known sine–Gordon Y-
system [52]. Establishing the equivalence of the two systems is an interesting task that we
leave for further study. In this work, by computing the central charge, we only checked that
our system gives the correct ultraviolet (high-temperature) limit for at most two magnonic
levels.

We then applied sine–Gordon thermodynamics to compute the Drude weight for the charge
and energy transport. In contrast to the case of the charge Drude weight studied in [54],
quantities involving the energy show no fractal structure, which can be understood from the
fact that while the reflective scattering of kinks with anti-kinks introduces a random walk
component for the transport of the topological charge, this effect is absent for the energy
transport. Indeed, a naive expectation would be to find diffusive transport (i.e. vanishing
Drude weight) for the charge. In this connection, we note that in the framework of the so-
called hybrid semiclassical approach [39], the (partial) inclusion of the non-diagonal form of
kink scattering does indeed lead to diffusive effects [40, 51, 84]. The ballistic transport we
find strongly suggests the existence of yet unknown conserved quantities that are odd under
charge conjugation, paralleling the case of the XXZ spin chain [68].

Our second application was to the full GHD system, where we considered the simple but
paradigmatic setting of a bipartitioned initial state consisting of two semi-infinite parts, each
in a different thermal equilibrium state. We demonstrated that the usual iterative scheme
[63, 80] can be used in both the attractive and repulsive regimes of the sine–Gordon model
to obtain the energy and charge (and their current) profiles. We gave an example where
the discontinuities [81], coming from the effective velocities of the magnons being less than
the speed of light, are shown. Furthermore, we also performed an alternative computation
of Drude weights using the bipartition protocol with infinitesimally imbalanced initial states.
The results of this calculation match the results of the direct TBA calculation to a very high
precision, further supporting the self-consistency of the TBA system and the correctness of the
methods used.

We also calculated dynamical correlators in thermal states. The shape of the correlators
depends strongly on the temperature because of the interplay of the effective velocity and the
densities of occupied states. More interestingly, the support of the charge-charge correlators
clearly differs from that of the energy-energy correlators. This is related to a novel effect
discussed elsewhere [83].

In addition to the results presented here, the sine–Gordon GHD system completed by the
TBA system and the associated dressing equations opens the way to study the sine–Gordon
model’s hydrodynamics at generic coupling values, which offers many potential applications.
Beyond the partitioning protocol studied here, more general inhomogeneous setups are ex-
pected to lead to further results relevant to condensed matter and cold atom experiments. In
particular, the sine–Gordon model is realised in atom chip experiments [23] in which gener-
alised hydrodynamics can be investigated [85, 86] due to the ability of phase imprinting and
of designing arbitrary inhomogeneous optical potentials [87, 88]. Using ballistic fluctuation
theory [89–91], GHD can also access fluctuations and full distribution functions of conserved
charges and currents. Additionally, dynamical correlation functions of vertex operators can
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also be computed. Studying diffusive corrections to the ballistic behaviour and the possibility
of superdiffusive transport [92,93] also provide promising avenues of further research, which
we plan to address in the near future.
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A The fully coupled TBA-system of the sine-Gordon model

In this appendix, we present the detailed derivation of the fully coupled TBA equations and
list their auxiliary parameters.

Following the well-known Bethe Ansatz idea, the rapidities of the breathers, solitons and
magnons satisfy the following Bethe equations

eimBk
R sinhθ ( j)Bk ×

(k′, j′)=(nB ,NBk′
)

∏

(k′, j′)
(k′, j′ )̸=(k, j)

SBk ,Bk′

�

θ
( j)
Bk
− θ ( j

′)
Bk′

�

×
NS
∏

j′=1

S+,Bk

�

θ
( j)
Bk
− θ ( j

′)
S

�

= 1 , (A.1a)

eimSR sinhθ ( j)S Λ
�

θ
( j)
S |{µr}|{θS}

�

×
nB
∏

k′=1

NBk′
∏

j′=1

S+,Bk′

�

θ
( j)
S − θ

( j′)
Bk′

�

= 1 , (A.1b)

NS
∏

j=1

1

ST

�

µr − θ
( j)
S

� =
NM
∏

s ̸=r

ST (µs −µr)
ST (µr −µs)

, (A.1c)

where [94]

Λ
�

θ
( j)
S |{µr}|{θS}

�

=
NM
∏

r=1

1

ST

�

µr − θ
( j)
S

�

NS
∏

j′=1

S0

�

θ
( j)
S − θ

( j′)
S

�

. (A.2)

The variables µr are interpreted as the rapidities of auxiliary particles called elementary
magnons, which describe the different possible internal states of the NS solitons, with their
number NM taking values between 0 and NS . For a fixed value of solitonic rapidities NS , differ-
ent solutions of (A.1c) correspond to states with different arrangements which diagonalise the
NS-soliton scattering for the subspace of total topological charge NS−2NM with an eigenvalue
Λ
�

θ
( j)
S |{µr}|{θS}

�

. This corresponds to a nested Bethe Ansatz structure. The magnons give
the internal part of the nesting and can be brought into one-to-one correspondence with the
Bethe Ansatz of the gapless XXZ spin chain of length NS [48]:

NS
∏

j=1

sinh(γ2(xr − y j + i))

sinh(γ2(xr − y j − i))
=

NM
∏

s ̸=r

sinh(γ2(xr − xs + 2i))

sinh(γ2(xr − xs − 2i))
, (A.3)
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by shifting the magnonic rapidities

µr → µr + iχ−1 , (A.4)

and redefining variables as

γ=
π

α
, xr = χµr , (A.5)

where we introduced the parameter

χ = 2α/πξ . (A.6)

The solitonic rapidities θs are mapped to inhomogeneities

y j = χθ
( j)
S , (A.7)

in the XXZ spin chain. This mapping allows us to borrow the string hypothesis for the magnons
from the XXZ spin chain as explained in the main text. The string configurations can be clas-
sified writing ξ as a (unique) simple continued fraction

ξ=
1

nB +
1

ν1 +
1

ν2 + ...

, with α= ν1 +
1

ν2 + ...
, (A.8)

where the νi are positive integers. We call the number of integers νi appearing in the above
representation the number of levels. The number of magnonic species can be indexed with a
species label Mi with i = 1, . . . , nM = ν1 + ν2 + · · ·+ νl , i.e. we denote the number of levels
by l.

Magnonic strings (or magnons for short) consist of elementary magnons with the same real
and equidistant imaginary parts. The number of elementary magnons that make up a string
is called the string’s length, which we denote by ℓ. In addition, some magnons are symmetric
with respect to the real axis, while others are shifted in the imaginary direction by iα. This is
coded into the parity v of magnons: v = 1 for unshifted and v = −1 for shifted strings. Here,
we recall the general rule to compute these quantities from [48]. Introducing the number κi
of magnons up to level i

κ0 = 0 , κi =
i
∑

k=1

νk , for i = 1, . . . , l , (A.9)

as well as the following auxiliary variables

y−1 = 0 , y0 = 1 , y1 = ν1 , and yi = yi−2 + νi yi−1 , for i = 1, . . . , l , (A.10a)

p0 = α , p1 = 1 , pi = pi−2 − pi−1

�

pi−2

pi−1

�

, for i = 1, . . . , l + 1 , (A.10b)

the lengths and parities of the magnons can be iteratively calculated as

ℓ j = yi−1 + ( j −κi)yi , v j = (−1)
j

ℓ j−1
p0

k

, for κi < j < κi+1 , (A.11a)

ℓκi
= yi−1 , vκi

= (−1)i , for i = 1, . . . , l . (A.11b)

For later reference, we also define a third set of variables

r j = (−1)i (pi − ( j −κi)pi+1) , for κi ≤ j < κi+1 . (A.12)
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Rewriting the Bethe Ansatz equations with nM magnon types, NMk
magnons of type Mk

and length ℓMk
gives

eimBk
R sinhθ ( j)Bk ×

nB
∏

k′=1

NBk′
∏

j′=1

SBk ,Bk′

�

θ
( j)
Bk
− θ ( j
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Bk′

�

×
NS
∏

j′=1

S+,Bk

�

θ
( j)
Bk
− θ ( j

′)
S

�

= −1 ,

j = 1, ..., NBk
, k = 1, ..., nB , (A.13a)
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θ
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S − θ
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k=1
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S+,Bk

�

θ
( j)
S − θ

( j′)
Bk

�

= −1 , j = 1, ..., NS , (A.13b)
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∏
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θ
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Mk
− θ ( j
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�
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j = 1, ..., NMk
, k = 1, ..., nM . (A.13c)

Here θ ( j)Mk
is the common real part of the rapidities in the jth string of type Mk, and the

magnonic scattering amplitudes are

S+,Mk
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θ
( j)
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− θ ( j
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S

�

= g
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( j)
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, (A.14a)
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Mk
− θ ( j

′)
Mk′

�

,ℓMk
+ ℓMk′

, vMk
vMk′

�

, (A.14b)

where θ ( j)Mk
is the real part of the rapidities of the jth string of type Mk, and where we defined

g(θ , k,+1) =
sinh

�

π/α
2 (θ + ik)

�

sinh
�

π/α
2 (θ − ik)

� , g(θ , k,−1) =
cosh

�

π/α
2 (θ + ik)

�

cosh
�

π/α
2 (θ − ik)

� . (A.15)

Taking the logarithm of the Bethe Ansatz equations (A.13)

2πI ( j)Bk
= mBk

R sinhθ ( j)Bk
+

nB
∑

k′=1

NBk′
∑

j′=1

−i log SBk ,Bk′

�

θ
( j)
Bk
− θ ( j

′)
Bk′

�

+
NS
∑

j=1

−i log S+,Bk

�

θ
( j)
Bk
− θ ( j)S

�

,

(A.16a)

2πI ( j)S = mSR sinhθ ( j)S +
nM
∑

k′=1

NMk′
∑

j′=1

−i log S+,Mk′

�

θ
( j)
S − θ

( j′)
Mk′

�

+
NS
∑

j′=1

−i log S0

�

θ
( j)
S − θ

( j′)
S

�

+
nB
∑

k′=1

NBk′
∑

j′=1

−i log S+,Bk′

�

θ
( j)
S − θ

( j′)
Bk′

�

, (A.16b)

2πI ( j)Mk
=

NS
∑

j′=1

−i log S+,Mk

�

θ
( j)
Mk
− θ ( j

′)
S

�

+
nM
∑

k′=1

NMk′
∑

j′=1

−i log SMk ,Mk′

�

θ
( j)
Mk
− θ ( j

′)
Mk′

�

, (A.16c)
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where the various I are quantum numbers for the Bethe states.
In the thermodynamic limit, the state is described by rapidity densities. The total density

of states in rapidity space is related to the quantum numbers as

I = R

∫ θi(I)

dθρtot
i (θ ) , or I = R

∫

θi(I)
dθρtot

i (θ ) , (A.17)

with θi(I) denoting the rapidity variable of excitation type i corresponding to the quantum
number I , and the choice between the two options depends on whether the RHS of Eq. (A.16)
is an increasing or decreasing function of θ . The density of eventual Bethe Ansatz roots (filled
states) is instead denoted byρi(θ ) and can be used to replace the sums on the RHS by integrals.
The difference ρ(h)i (θ ) = ρ

tot
i (θ )−ρi(θ ) is the density of unoccupied rapidities called holes.

Taking the derivative of Eq. (A.16) with respect to the rapidity variables corresponding to the
quantum numbers of the LHS and dividing by 2πR, we find

ηBk
ρtot

Bk
(θ ) =

mBk

2π
coshθ +

nB
∑

k′=1

∫

dθ ′

2π
ΦBk ,Bk′

(θ − θ ′)ρBk′
(θ ′) +

∫

dθ ′

2π
Φ+,Bk

(θ − θ ′)ρS(θ
′) ,

(A.18a)

ηSρ
tot
S (θ ) =

mS

2π
coshθ +

nB
∑

k′=1

∫

dθ ′

2π
Φ+,Bk′

(θ − θ ′)ρBk′
(θ ′) +

∫

dθ ′

2π
Φ0(θ − θ ′)ρS(θ

′)

+
nM
∑

k′=1

∫

dθ ′

2π
Φ+,Mk′

(θ − θ ′)ρMk′
(θ ′) , (A.18b)

ηMk
ρtot

Mk
(θ ) =

∫

dθ ′

2π
Φ+,Mk

(θ − θ ′)ρS(θ
′) +

nM
∑

k′=1

∫

dθ ′

2π
ΦMk ,Mk′

(θ − θ ′)ρMk′
(θ ′) , (A.18c)

where the signs are related to the choice in Eq. (A.17): ηBk
and ηS are +1 due to the pres-

ence of the source terms involving the masses, while the magnonic signs ηMk
can be fixed by

requiring the positivity of the densities. The various kernels appearing in (A.18) are

Φ0(θ ) =

∫ ∞

−∞
dt

sinh
� tπ

2 (ξ− 1)
�

2 sinh
�

πξt
2

�

cosh
�

πt
2

�

eiθ t , (A.19a)

Φ+,Bk
(θ ) =

∑

a∈Pk

ϕa(θ ) , (A.19b)

ΦBk ,Bk′
(θ ) =

∑

a∈Pkk′

ϕa(θ ) , (A.19c)

Φ+,Mk
(θ ) = χ a

�

χθ ,ℓMk
, vMk

�

, (A.19d)

ΦMk ,Mk′
(θ ) = −χ

�

a
�

χθ ,
�

�ℓMk
− ℓMk′

�

� , vMk
vMk′

�

+

min
�

ℓMk
,ℓMk′

�

−1
∑

l=1

2a
�

χθ ,
�

�ℓMk
− ℓMk′

�

�+ 2l, vMk
vMk′

�

+ a
�

χθ ,ℓMk
+ ℓMk′

, vMk
vMk′

�

�

, (A.19e)
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where χ is defined in Eq. (A.6), and

a(θ , k,+1) =











0 , for k mod(0,α) = 0 ,

π

α

sin
�

π
α k
�

cos
�

π
α k
�

− cosh
�

π
αθ
� , otherwise,

(A.20a)

a(θ , k,−1) =











0 , for k mod(0,α) = 0 ,

π

α

sin
�

π
α k
�

cos
�

π
α k
�

+ cosh
�

π
αθ
� , otherwise,

(A.20b)

where

y mod(a, b) = x , if a ≤ x < b , and y = x + n(b− a) , with n ∈ Z . (A.21)

With the conventions Eq. (9), the kernels in Fourier-space read

eΦ0(t) =
sinh

�

π
2 (ξ− 1)t

�

2sinh
�

π
2ξt

�

cosh
�

π
2 t
� , (A.22a)

eΦ+,Bk
(t) =

∑

a∈Pk

eϕa(t) , (A.22b)

eΦBk ,Bk′
(t) =

∑

a∈Pkk′

eϕa(t) , (A.22c)

eΦ+,Mk
(t) = ea

�

χ−1 t,ℓMk
, vMk

�

, (A.22d)

eΦMk ,Mk′
(t) = −

�

ea
�

χ−1 t,
�

�ℓMk
− ℓMk′

�

� , vMk
vMk′

�

+

min
�

ℓMk
,ℓMk′

�

−1
∑

l=1

2ea
�

χ−1 t,
�

�ℓMk
− ℓMk′

�

�+ 2l, vMk
vMk′

�

+ ea
�

χ−1 t,ℓMk
+ ℓMk′

, vMk
vMk′

�

�

, (A.22e)

and

ea(t, k,+1) =







0 , for k mod(0,α) = 0 ,
sinh[(k̂−α)t]

sinhαt
, k̂ = k mod (0,2α) otherwise,

(A.23a)

ea(t, k,−1) =







0 , for k mod(0,α) = 0 ,
sinh k̂t
sinhαt

, k̂ = k mod (−α,α) otherwise.
(A.23b)

Note that all explicit references to the volume R have disappeared, and the above equations
are exact in the limit R→∞. Also, observe that the system (A.18) has the overall form

ρtot
i = ρi +ρ

(h)
i = ηi

mi

2π
coshθ +

∑

j

ηiΦi j ∗ρ j , (A.24)

where mi = 0 for magnonic degrees of freedom.
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Following the usual procedure [46], the TBA equations for the thermal equilibrium state
follow by minimising the free energy density

f = e− Ts−µq

=
∑

i

∫

dθ







ρimi coshθ − T



ρi log

 

1+
ρ
(h)
i

ρi

!

+ρ(h)i log

 

1+
ρi

ρ
(h)
i

!



−ρiµqi







,

(A.25)
with respect to the root densities ρi subject to the conditions (A.24). Here T is the tempera-
ture, s is the Yang–Yang entropy density [46], and µ is the chemical potential coupled to the
topological charge, while the qi are the topological charges carried by the various excitations:

qi =











0 , when i is a breather,

1 , when i is the soliton,

−2ℓi when i is a magnon of length ℓi .

(A.26)

Introducing the pseudo-energy functions

εi = log

 

ρ
(h)
i

ρi

!

, (A.27)

the resulting TBA system is

εBk
=

mBk

T
coshθ −

nB
∑

k′=1

ηBk′
ΦBk ,Bk′

∗ log
�

1+ e−εBk′
�

−ηSΦ+,Bk
∗ log

�

1+ e−εS
�

, (A.28a)

εS =
mS

T
coshθ −

µ

T
−

nB
∑

k=1

ηBk
Φ+,Bk
∗ log

�

1+ e−εBk
�

−ηSΦ0 ∗ log
�

1+ e−εS
�

−
nM
∑

k=1

ηMk
Φ+,Mk

∗ log
�

1+ e−εMk
�

, (A.28b)

εMk
=
µ

T
· 2ℓMk

−ηSΦ+,Mk
∗ log

�

1+ e−εS
�

−
nM
∑

k′=1

ηMk′
ΦMk ,Mk′

∗ log
�

1+ e−εMk′
�

, (A.28c)

which can be written in the concise form

εi = wi −
∑

j

η jΦi j ∗ log
�

1+ e−ε j
�

, (A.29)

where the source terms are wi = mi coshθ/T − µqi/T . The free energy density f of the
equilibrium state can be computed as

f
T
= −

∑

i

∫

dθ
2π
ηimi coshθ log

�

1+ e−εi
�

. (A.30)

B Derivation of the partially decoupled TBA-system of the sine-
Gordon model

In this appendix, we present the detailed decoupling procedure that maps the fully coupled
TBA system (22) to the partially decoupled form (26).
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. . .

B1 B2 B3 BnB−1 BnB

S

S

Figure 11: Graph representation of the decoupled TBA system at reflectionless points.

At the reflectionless points ξ= 1,1/2, 1/3, . . . , there are no magnonic degrees of freedom,
and the number of breathers is given by nB = ξ−1 − 1. At the same time, the soliton and
antisoliton excitations enter separately and symmetrically. In this case, p0 = α = 1, resulting
in a single kernel with the Fourier transform

eΦ(t) = eΦp0
(t) =

1

2 cosh
�

π
2ξt

� , (B.1)

which in real space has the form

Φ(θ ) =
1

ξ cosh
�

θ
ξ

� . (B.2)

The decoupled form of the equations was obtained in [49] with the result

εB1
= w1 +Φ ∗

�

εB2
−wB2

+ LB2

�

, (B.3a)

εBk
= wk +Φ ∗

�

εBk−1
−wBk−1

+ LBk−1

�

+Φ ∗
�

εBk+1
−wBk+1

+ LBk+1

�

, k = 1, ..., nB − 1 , (B.3b)

εBnB
= wnB

+Φ ∗
�

εBnB−1
−wBnB−1

+ LBnB−1

�

+Φ ∗ (εS −wS + LS) +Φ ∗
�

εS̄ −wS̄ + LS̄

�

, (B.3c)

εS = wS +Φ ∗
�

εBnB
−wBnB

+ LBnB

�

, (B.3d)

εS̄ = wS̄ +Φ ∗
�

εBnB
−wBnB

+ LBnB

�

. (B.3e)

The above TBA system has the general structure Eq. (26), where the coupling between the
degrees of freedom can be encoded by a graph shown in Fig. 11, with each link corresponding
to the same kernel (B.2), while the constants appearing in (26) are given in Table 5.

B.1 Decoupling at level 1

For a system with a single magnonic level, the coupling can be written as

ξ=
1

nB +
1
ν1

. (B.4)

Table 5: Parameters appearing in the TBA system Eq. (26) and the dressing equation
(47) at reflectionless points.

Excitations Labels w η σ(1) σ(2)

Breathers Bk, k = 1, ..., nB mBk
cosh(θ )/T +1 +1 +1

Soliton S mS cosh(θ )/T −µ/T +1 +1 +1

Antisoliton S̄ mS cosh(θ )/T +µ/T +1 +1 +1
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The decoupling calculations are easiest to work out in Fourier space, where the convolutions
become multiplications, and the computation reduces to simple, albeit somewhat tedious,
algebraic matrix manipulations [95]. These cases include the points where ξ is a positive
integer [81] by setting nB = 0. For general couplings, the coupled TBA equations can be
written in Fourier space as























...

eεi − ewm,i − ewq,i + eLi

...























=
�

1− eΦη
�

i j L j

=



























¦

δi j −ηB j
eΦBi ,B j

©nB

i, j=1

¦

−ηSeΦBi ,+

©nB

i=1
0

¦

−ηB j
eΦ+,B j

©nB

j=1
1−ηSeΦ0

¦

−ηM j
eΦ+,M j

©nM

j=1

0
¦

−ηSeΦMi ,+

©nM

i=1

¦

δi j −ηM j
eΦMi ,M j

©nM

i, j=1

















































...

eL j

...























,

(B.5)

where the dashed lines delineate the row/column with index nB + 1,
�

eΦη
�

i j = η jeΦi j and

Li = log
�

1+ e−εi
�

. We also separated the parts depending on the masses and the charges (i.e.
temperature and the chemical potential) in the source terms as ewi = ewm,i + ewq,i . We define
the following matrix

ÝM=

























0
�
¦

δi j −ηB j
eΦBi ,B j

©nB

i, j=1

�−1 ... 0

0
1
0

0
...

�
¦

δi j −ηM j
eΦMi ,M j

©nM

i, j=1

�−1

0

























. (B.6)

While the column nB + 1 is zero except for the element ÝMnB+1,nB+1 which is 1, the elements
in row nB + 1 depend on ν1 and nB. In all cases,

ÝMnB+1,nB+2 = eΦp1
(t) , (B.7)

while for nB > 0 (i.e. when the following matrix element exists)

ÝMnB+1,nB
= −eΦp1

(t) , (B.8)

and for ν1 = 2 there is another nonzero entry,

ÝMnB+1,nB+3 = eΦp1
(t) , (B.9)
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while all other elements in row nB + 1 are zero. It turns out that similarly to ÝM, the matrix
ÝM(1− eΦη) has a sparse structure, and we define new matrices eK(1) and eK(2) as

ÝM= 1− eK(1) , ÝM(1− eΦη) = 1+ eK(2) . (B.10)

Multiplying (B.5) by ÝM from the left yields

eεi − ewm,i −
�

ewq,i − eK
(1)
i j ewq, j

�

= eK(1)i j

�

eε j − ewm, j + eL j

�

+ eK(2)i j
eL j . (B.11)

Note that the charge part of the driving term wq,i is constant in rapidity space, so
eK(1)i j ewq, j = eK

(1)
i j (t = 0)wq, jδ(t = 0). We define the modified source terms

ewm,i = ewm,i , ewq,i = ewq,i − eK
(1)
i j ewq, j , ewi = ewm,i + ewq,i . (B.12)

In writing down the general TBA structure, we also exploit that ewm is zero for magnons and
that ewq,S turns out to be always zero.

We now consider the cases ν1 = 2 and ν1 > 2 as they require separate treatments.

The case ν1 = 2

This case was already considered in Ref. [50]. The relevant matrices are the following:

K(1) =



















. . . . . .
...

...
...

...
. . . 0 eΦp0

0 0 0
. . . eΦp0

eΦ
(0)
self 0 0 0

. . . 0 eΦp1
0 −eΦp1

−eΦp1

. . . 0 0 0 0 0

. . . 0 0 0 0 0



















, (B.13a)

K(2) =





















. . . . . .
...

...
...

...
. . . 0 0 0 0 0
. . . 0 0 eΦp1

0 0
. . . 0 0 −eΦ2

p1
0 0

. . . 0 0 eΦp1
0 0

. . . 0 0 −eΦp1
0 0





















, basis:

















...
BnB−1
BnB

S
M1
M2

















. (B.13b)

To get to the final form of the system, the last equation for magnon M2

eεM2
− ewM2

= −eΦp1
eLS =⇒ eΦp1

�

eεM2
− ewM2

�

+ eΦ2
p1
eLS = 0 , (B.14)

can be used to rewrite the soliton equation S

eεS − ewS = eΦp1

�

eεBnB
− ewBnB

+ eLBnB

�

− eΦ2
p1
eLS − eΦp1

�

eεM1
− ewM1

+ eLM1

�

− eΦp1

�

eεM2
− ewM2

+ eLM2

�

= eΦp1

�

eεBnB
− ewBnB

+ eLBnB

�

− eΦp1

�

eεM1
− ewM1

+ eLM1

�

− eΦp1
eLM2

. (B.15)

Putting all together, the resulting K matrix is

K =



















. . . . . .
...

...
...

...
. . . 0 Φp0

0 0 0
. . . Φp0

Φ
(0)
self Φp1

1 1
. . . 0 Φp1

0 −Φp1
−Φp1

. . . 0 0 Φp1
0 0

. . . 0 0 −Φp1
0 0



















, basis:

















...
BnB−1
BnB

S
m1
m2

















. (B.16)
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. . .
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−BnB
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M1

M2

Figure 12: Graphical representation of the TBA system at one magnon level and
ν1 = 2. The various links encode kernels as specified in Table 1. Filled nodes denote
massive particles, while empty nodes correspond to massless ones.
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Figure 13: Graphical representation of the TBA system at one magnon level and
ν1 = 3 and ν1 > 3. The various links encode kernels as specified in Table 1.

The graph describing this matrix is shown in Fig. 12, while the other ingredients of the TBA
system Eq. (26) are listed in Table 6. In Fig. 12 and all subsequent graphs, we introduced
the common convention that filled nodes denote massive excitations, while empty nodes cor-
respond to massless ones (magnons).

The case ν1 > 2

In this case, the procedure is the same. However, the end result is slightly different in detail:

K =


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,

(B.17)
which is depicted in Fig. 13. The other ingredients appearing in the TBA system at one
magnonic level are summarised in Table 6.
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Table 6: Source terms and coefficients appearing in the TBA system Eq. (26) and the
dressing equation (47) for one magnonic level. For ν1 = 2, intermediate magnons
are absent.

Excitations Labels w η σ(1) σ(2)

Breathers Bk, k = 1, ..., nB mBk
coshθ/T +1 +1 +1

Soliton S mS coshθ/T +1 0 0

Intermediate magnons Mk, k = 1, ...,ν1 − 2 0 −1 +1 0

Next-to-last magnon Mν1−1, (k = ν1 − 1) ν1 ·µ/T −1 +1 0

Last magnon Mν1
ν1 ·µ/T +1 0 0

B.2 Decoupling at level 2

For a system with two magnonic levels, the coupling can be written as

ξ=
1

nB +
1

ν1 +
1
ν2

. (B.18)

This case includes repulsive regime couplings ξ= ν1 +
1
ν2

by omitting breathers nB = 0. Note
that in this case, it is possible that ν1 = 1, which must be treated separately for ν2 = 2 and
ν2 > 2. The computation itself is similar to the level 1 case, and the resulting TBA kernels are
specified by the graphs in Fig. 14 for ν1 = 1 and in Fig. 15 for ν1 ≥ 2. Note that for ν1 = 1 the
soliton gains a self-coupling with an additional negative sign compared to the generic kernel
indicated by the loop turned upside down, and additional negative signs appear in the kernels
connecting the soliton to the first magnon.

The other ingredients appearing in the TBA system at two magnonic levels are summarised
in Table 7.

Table 7: Source terms and coefficients appearing in the TBA system Eq. (26) and the
dressing equation (47) for two magnonic levels.

Excitations Labels w η σ(1) σ(2)

Breathers Bk, k = 1, ..., nB mBk
coshθ/T +1 +1 +1

Soliton S mS coshθ/T +1 0 0

First level intermediate magnons Mk, k = 1, ...,ν1 − 1 0 −1 +1 0

First level final magnon Mν1
0 +1 +1 0

Second level intermediate magnons Mν1+k, k = 1, ...,ν2 − 2 0 +1 +1 0

Second level next-to-last magnon Mν1+ν2−1, (k = ν2 − 1) (1+ ν1 · ν2) ·µ/T +1 +1 0

Second level last magnon Mν1+ν2
(1+ ν1 · ν2) ·µ/T −1 0 0
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−
. . .
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Mν1+ν2−1
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Figure 14: Graphical representation of the TBA system at two magnon levels, ν1 = 1,
ν2 = 2 and ν2 > 2.

. . . . . . . . .

BnB
S M1 Mν1
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Figure 15: Graphical representation of the TBA system at two magnon levels, ν1 ≥ 2
and ν2 ≥ 2.
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