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Abstract

We investigate ϵ-factorised differential equations, uniform transcendental weight and
purity for Feynman integrals. We are in particular interested in Feynman integrals be-
yond the ones which evaluate to multiple polylogarithms. We show that a ϵ-factorised
differential equation does not necessarily lead to Feynman integrals of uniform transcen-
dental weight. We also point out that a proposed definition of purity works locally, but
not globally.
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1 Introduction

The concepts of ϵ-factorised differential equations [1], uniform transcendental weight and
purity, simple poles and constant leading singularities [2–4] play a crucial role in modern
techniques for analytically computing Feynman integrals. These concepts are well understood
for Feynman integrals which evaluate to multiple polylogarithms.

However, as soon as we leave this class of function not everything is as clear as we want
it. This is already the case for the simplest Feynman integrals beyond the class of multiple
polylogarithms, the ones which are associated to an elliptic curve. It is therefore timely and
appropriate to clarify several issues. Although the main results of this paper are negative –
we show that a certain basis does not have the uniform weight property and that a certain
definition of purity does not apply globally to the simplest elliptic Feynman integral – we
believe that exposing these subtleties is beneficial to progress in our understanding of Feynman
integrals. The points which we discuss can be exemplified by the simplest elliptic Feynman
integral, the two-loop sunrise integral with equal non-zero masses.

We start with ϵ-factorised differential equations. A ϵ-factorised differential equation to-
gether with boundary values at a given point allows for a systematic solution in terms of
iterated integrals to any order in the dimensional regularisation parameter ϵ. But do these
iterated integrals have additional nice properties like a definition of transcendental weight or
integrands with simple poles only? In this paper we show that the general answer is no, but
there might be bases of master integrals which have more of the nice properties than others.

This occurs already for the sunrise integral: We know two bases of master integrals, which
put the associated differential equation into an ϵ-factorised form. The construction of either
basis generalises to more complicated integrals, so it is worth examining the two bases in
detail.

The first basis is constructed along the lines of an analysis of the maximal cut [5,6] and/or
along the lines of prescriptive unitarity [7, 8]. Concretely this basis is constructed by the re-
quirement that the period matrix on the maximal cut is proportional to the unit matrix [9]. For
the sunrise integral we present a cleaned-up basis along these lines. Throughout this paper
we denote this basis by K⃗ .

The second basis is constructed from Picard-Fuchs operators and leads to a differential
equation with modular forms [10]. For the sunrise integral we consider the basis given in [11].
This approach generalises nicely to more complicated Feynman integrals [12–18]. Throughout
this paper we denote this basis by J⃗ .

In this paper we work out the relation between the two bases. The first question we ad-
dress is the following: Do these bases define master integrals of uniform weight? In principle,
this requires a definition of transcendental weight for elliptic Feynman integrals. Let us first be
agnostic to a full and complete definition of transcendental weight. We only make the minimal
assumption that the definition of transcendental weight in the elliptic case should be compat-
ible with the restriction of the kinematic space to a sub-space. With this assumption we may
restrict to a point in kinematic space where the elliptic curve degenerates. The master inte-
grals reduce to multiple polylogarithms, for which the definition of transcendental weight is
unambiguous. Choosing this point as the boundary point for the integration of the differential
equation forces the boundary constants (given by special values of multiple polylogarithms)
to be of uniform weight (in the classical sense for multiple polylogarithms). In this way we
may detect master integrals of non-uniform weight.

It turns out that basis K⃗ (constructed by the requirement that the period matrix on the
maximal cut is proportional to the unit matrix) has boundary constants of non-uniform weight.
Hence it is not a basis of uniform weight if we require that the notion of uniform weight is
compatible with restrictions in the kinematic space.
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The second question which we address in this paper is the relation between pure functions
and logarithmic singularities. In order to answer this question we have to adopt a definition
of purity for elliptic Feynman integrals. A generalisation of purity, which can be applied to
the elliptic case, has been defined in ref. [19]: Functions which satisfy a differential equa-
tion without any homogeneous term are called unipotent. Unipotent functions, whose total
differential involves only pure functions and one-forms with at most simple poles are called
pure. Adopting this definition, we investigate if basis J⃗ (i.e. the modular form basis) for the
sunrise integral is pure in this sense. We find that this is the case locally, but not globally. The
argument which we present applies not only to the specific example of the equal mass sunrise
integral, but to a wide range of elliptic Feynman integrals expressible in terms of the elliptic
polylogarithms eΓ [20]. We also present an argument that modifying the definition of purity
by requiring that the above property holds only locally is too weak: It enlarges the function
space too much.

This paper is organised as follows: In section 2 we start with a toy example, showing that an
ϵ-factorised differential equation alone does not guarantee a solution of uniform weight. The
boundary values need to be of uniform weight as well. The toy example is entirely within the
class of multiple polylogarithms. In section 3 we introduce the standard example of an elliptic
Feynman integral: the two-loop sunrise integral with equal non-zero masses. We introduce
the notation which we will use in later sections of this paper.

In section 4 we investigate the first question: Are the known bases, which put the differen-
tial equation into an ϵ-factorised form also of uniform weight? In sub-section 4.1 we introduce
three bases I⃗ , J⃗ and K⃗ for the sunrise integral. The first one I⃗ is a pre-canonical basis and serves
only in intermediate steps. The basis J⃗ is the one appearing in [11], while the basis K⃗ is the
one appearing in [9]. The associated differential equations are given in sub-section 4.2. For
the bases J⃗ and K⃗ , the differential equations are in ϵ-factorised form. In sub-section 4.3 we
discuss the period matrix on the maximal cut for the bases J⃗ and K⃗ . By construction, the pe-
riod matrix for the basis K⃗ is proportional to the unit matrix. In sub-section 4.4 we present
the solutions for the master integrals for the bases J⃗ and K⃗ . We then look at the values at
p2 = 0. At this point the elliptic curve degenerates and both solutions are given in terms of
special values of multiple polylogarithms. We find that the basis K⃗ is not of uniform weight.

In section 5 we investigate the second question: What is the relation between purity and
simple poles? We start in sub-section 5.1 with recapitulating the definition of purity from
the literature. We then show in sub-section 5.2 that this definition does fit the modular form
basis locally, but not globally. In sub-section 5.3 we demonstrate that our argument extends
to Feynman integrals expressible in terms of elliptic polylogarithms eΓ . The problem is the
behaviour at the finite cusps. However, modular transformations, which we discuss in sub-
section 5.4, allow us to cover the kinematic space with coordinate charts such that in each
coordinate chart the requirement from the definition of purity holds locally. Our conclusions
are given in section 6. In appendix A we present the q-expansions of the modular forms and
Eisenstein series appearing in the main text. In appendix B we give the boundary constants
for the sunrise integral.

2 A toy example

We start with a simple toy example, showing that an ϵ-factorised differential equation alone
does not guarantee a solution of uniform weight. The boundary values need to be of uniform
weight as well.
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Consider the two functions F1(x) and F2(x)

F1 (x) = eϵ ln(x)

= 1+ ϵ ln (x) +
1
2
ϵ2 (ln (x))2 +O

�

ϵ3
�

,

F2 (x) = (1+ 2ϵ) eϵ ln(x)

= 1+ ϵ [2+ ln (x)] + ϵ2
�

2 ln (x) +
1
2
(ln (x))2

�

+O
�

ϵ3
�

. (1)

F1(x) is of uniform weight (where we count algebraic numbers to be of weight zero, ln(x) to
be of weight one, and ϵ to be of weight minus one), while F2(x) is not. However, both function
satisfy the ϵ-factorised differential equation

d
d x

Fi (x) =
ϵ

x
Fi (x) , i ∈ {1,2} . (2)

The general solution of eq. (2) as a power series in ϵ reads

Fi (x) = C (0)i +
�

C (1)i + C (0)i ln (x)
�

ϵ +
�

C (2)i + C (1)i ln (x) +
1
2

C (0)i (ln (x))
2
�

ϵ2 +O
�

ϵ3
�

, (3)

with boundary values C ( j)i , corresponding to the values of Fi(x) at the point x = 1. For F1(x)
the boundary values are

C (0)1 = 1 , C ( j)1 = 0 , for j ≥ 1 . (4)

For F2(x) the boundary values are

C (0)2 = 1 , C (1)2 = 2 , C ( j)2 = 0 , for j ≥ 2 . (5)

For a solution of uniform weight we must have that any non-zero boundary value C ( j)i is of

weight j. This is the case for F1(x), but not for F2(x): The boundary value C (1)2 is of weight
zero, for a solution of uniform weight it is supposed to be of weight one.

From this simple example we see that a ϵ-factorised differential equation alone does not
guarantee a solution of uniform weight, we must in addition require that the boundary values
C ( j)i ϵ

j are of uniform weight as well. This statement is of course obvious to experts in the
field. We will use it in the following way: If we assume that a definition of transcendental
weight beyond the polylogarihmic case is compatible with the restriction of the kinematic
space to a sub-space, we may detect master integrals of non-uniform weight from their (non-
uniform weight) boundary constants at a point where the master integrals reduce to values of
multiple polylogarithms. For multiple polylogarithms the definition of transcendental weight
is unambiguous.

3 Feynman integrals and elliptic curves

In this section we introduce the standard example of an elliptic Feynman integral: the two-loop
sunrise integral with equal non-zero masses. This section also serves to set up the notation.

We consider the family of Feynman integrals

Iν1ν2ν3
(D, x) = e2ϵγE

�

m2
�ν123−D

∫

dDk1

iπ
D
2

dDk2

iπ
D
2

1
�

−q2
1 +m2

�ν1
�

−q2
2 +m2

�ν2
�

−q2
3 +m2

�ν3
,

(6)
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with x = p2/m2, ν123 = ν1 + ν2 + ν3 and q1 = k1, q2 = k2 − k1, q3 = −k2 − p. Below we will
set D = 2− 2ϵ.

The elliptic curve associated to this Feynman integral can be obtained from the maximal
cut and is given by a quartic polynomial

P (u) = u (u+ 4)
�

u2 + 2 (1+ x)u+ (1− x)2
�

, (7)

as

E : v2 = P (u) . (8)

We denote the roots of the quartic polynomial P(u) by

u1 = −4 , u2 = −
�

1+
p

x
�2

, u3 = −
�

1−
p

x
�2

, u4 = 0 . (9)

For 0< x < 1 the roots are real and ordered as

u1 < u2 < u3 < u4 . (10)

We set

U1 = (u3 − u2)
�

u4 − u1

�

= 16
p

x ,

U2 = (u2 − u1)
�

u4 − u3

�

=
�

1−
p

x
�3 �

3+
p

x
�

,

U3 = (u3 − u1)
�

u4 − u2

�

=
�

1+
p

x
�3 �

3−
p

x
�

. (11)

We define the modulus and the complementary modulus of the elliptic curve E by

k2 =
U1

U3
=

16
p

x
�

1+
p

x
�3 �

3−
p

x
�

, k̄2 = 1− k2 =
U2

U3
=

�

1−
p

x
�3 �

3+
p

x
�

�

1+
p

x
�3 �

3−
p

x
�

. (12)

Our standard choice for the periods and quasi-periods is

ψ1 =
4K (k)

U
1
2

3

, ψ2 =
4iK

�

k̄
�

U
1
2

3

,

φ1 =
4 [K (k)− E (k)]

U
1
2

3

, φ2 =
4iE

�

k̄
�

U
1
2

3

.

(13)

K(x) and E(x) denote the complete elliptic integral of the first kind and second kind, respec-
tively:

K(x) =

1
∫

0

d t
p

(1− t2) (1− x2 t2)
, E(x) =

1
∫

0

d t

√

√1− x2 t2

1− t2
. (14)

The geometric interpretation is as follows: For simplicity we assume that the roots u1-u4 are
real and ordered as in eq. (10). The square root v can be taken as a single-valued and contin-
uous function on C\([u1, u2]∪ [u3, u4])

v =
p

u− u1
p

u− u2
p

u3 − u
p

u4 − u , (15)

where
p

x denotes the standard square root with a branch cut along the negative real axis.
For the ordering as in eq. (10) v is positive for u ∈]u2, u3[. It is purely imaginary with positive
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u1 u2 u3 u4

γ1 γ2

Figure 1: Branch cuts and cycles for the computation of the periods of an elliptic
curve.

imaginary part just below the branch cut [u3, u4]. Let γ1 and γ2 be two cycles which generate
the homology group H1(E,Z). This is shown in fig. 1. We choose γ1 and γ2 such that their
intersection number is (γ1,γ2) = +1. Note that the intersection number is anti-symmetric:
(γ2,γ1) = −1. The periods are alternatively given by

ψ1 =

∫

γ1

du
v
= 2

u3
∫

u2

du
v

, ψ2 =

∫

γ2

du
v
= 2

u3
∫

u4

du
v

. (16)

In the last expression the square root is evaluated below the cut [u3, u4]. Similar formulae can
be given for the quasi-periods.

The derivatives of the periods and quasi-periods are given for i ∈ {1,2} by

d
d x
ψi = −

1
2
ψi

d
d x
(ln U2) +

1
2
φi

d
d x

�

ln
U2

U1

�

,

d
d x
φi = −

1
2
ψi

d
d x

�

ln
U2

U3

�

+
1
2
φi

d
d x

�

ln
U2

U2
3

�

. (17)

In particular we may use these relations to replace φi by dψi
d x or vice versa. Explicitly we have

3
�

1+
p

x
�2
φi = 4

p
x
�

2+
p

x
�

ψi − 4x
�

1−
p

x
� �

3+
p

x
� d

d x
ψi . (18)

Replacing φi by dψi
d x is often advantageous to eliminate the square root

p
x . In the following

we will often write ∂x for d
d x . The Legendre relation reads

ψ1φ2 −φ1ψ2 =
8πi

�

1+
p

x
�3 �

3−
p

x
�

. (19)

We denote the Wronskian by

W =ψ1∂xψ2 −ψ2∂xψ1 = −
6πi

x (1− x) (9− x)
. (20)

Finally, we set

τ=
ψ2

ψ1
, q = e2πiτ . (21)

We have

dτ=
W
ψ2

1

d x , (22)
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and

x = 9
η (τ)4η (6τ)8

η (3τ)4η (2τ)8
, (23)

where η denotes Dedekind’s eta-function. The first few terms read

x = 9q− 36q2 + 90q3 +O
�

q4
�

. (24)

4 Uniform weight and ϵ-factorised differential equations

In this section we investigate the question of uniform weight for bases of master integrals,
which have ϵ-factorised differential equations. The two-loop sunrise integral with equal non-
zero masses serves as an example.

4.1 Bases of master integrals

We consider three bases I⃗ , J⃗ and K⃗ for the family of the sunrise integral. The first one, I⃗ , is a
basis without any additional properties and given by

I⃗ =





I110
I111
I211



 . (25)

The latter two, J⃗ and K⃗ , put the differential equation into an ϵ-form:

dJ⃗ = ϵBJ⃗ , dK⃗ = ϵCK⃗ , (26)

where the (3×3)-matrices B and C are independent of the dimensional regularisation param-
eter ϵ. The basis J⃗ , appearing in [11,21–23], is defined by

J1 = ϵ
2 I110 ,

J2 = ϵ
2 π

ψ1
I111 ,

J3 =
ψ2

1

2πiϵW
d

d x
J2 +

1
24

�

3x2 − 10x − 9
�

�

ψ1

π

�2

J2 . (27)

In terms of I111 and I211 the master integral J3 is given by

J3 =
�

−
ϵ2

24

�

x2 − 30x + 45
� ψ1

π
−
ϵ

4

�

1+
p

x
� �

3−
p

x
� ψ1

π
+
ϵ

16

�

1+
p

x
�3 �

3−
p

x
� φ1

π

�

I111

+
ϵ

4
(1− x) (9− x)

ψ1

π
I211 . (28)

Note that the definition of the master integrals J⃗ involves only ψ1 and φ1 (through d
d xψ1),

but not ψ2 nor φ2.
The basis K⃗ , appearing in [9], is defined by

K1 = ϵ
2 I110 , (29)

K2 = −
ϵ (1+ 2ϵ)

4π

�

1+
p

x
� �

3−
p

x
�

�

ψ2 −
1
4

�

1+
p

x
�2
φ2

�

I111 +
ϵ

4π
(1− x) (9− x)ψ2 I211 ,

K3 = +
ϵ (1+ 2ϵ)

4π

�

1+
p

x
� �

3−
p

x
�

�

ψ1 −
1
4

�

1+
p

x
�2
φ1

�

I111 −
ϵ

4π
(1− x) (9− x)ψ1 I211 .

In the definition of the master integrals K⃗ all periods ψ1,ψ2 and all quasi-periods φ1,φ2
appear. The master integrals K2 and K3 are related by ψ2 ↔ ψ1, φ2 ↔ φ1 and an overall
minus sign.
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4.2 The differential equations

The differential equation in the basis I⃗ reads

d I⃗ = AI⃗ , (30)

with

A=





0 0 0
0 − (1+ 2ϵ) 3
0 −1

3 (1+ 2ϵ) (1+ 3ϵ) 1+ 3ϵ





d x
x

+





0 0 0
0 0 0
ϵ2

4
1
4 (1+ 2ϵ) (1+ 3ϵ) − (1+ 2ϵ)





d x
x − 1

+





0 0 0
0 0 0

− ϵ
2

4
1
12 (1+ 2ϵ) (1+ 3ϵ) − (1+ 2ϵ)





d x
x − 9

. (31)

In this basis, the entries are rational dlog-forms. However, the differential equation is not in
ϵ-form.

The differential equation in the basis J⃗ reads

dJ⃗ = ϵBJ⃗ , (32)

with

B =





0 0 0
0 ω2 ω0
ω3 ω4 ω2



 , (33)

and

ω0 = 2πi dτ=
2πiW
ψ2

1

d x ,

ω2 = − f2(τ) (2πi) dτ=
d x
2x
−

d x
x − 1

−
d x

x − 9
,

ω3 = f3(τ) (2πi) dτ= −
1
2
ψ1

π
d x ,

ω4 = f4(τ) (2πi) dτ=
(x + 3)4

48x (x − 1) (x − 9)

�

ψ1

π

�2

d x .

(34)

f2, f3 and f4 are modular forms of Γ1(6). The minus sign in front of f2 is convention. Γ1(N) is
the subgroup of SL2(Z) defined by

Γ1(N) =

��

a b
c d

�

∈ SL2(Z) : a, d ≡ 1 mod N , c ≡ 0 mod N

�

. (35)

Γ1(N) is one of the standard congruence subgroups of SL2(Z). A modular form f (τ) of
a congruence subgroup Γ is required to be holomorphic on the complex upper half-plane
H = { τ ∈ C | Im(τ) > 0 } and at the cusps. In addition it is required to transform under
modular transformations γ ∈ Γ as

f
�

aτ+ b
cτ+ d

�

= (cτ+ d)k · f (τ) , for γ=

�

a b
c d

�

∈ Γ . (36)
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Note that this transformation law is only required for γ ∈ Γ , but not for γ ∈ SL2(Z)\Γ . Text-
books on modular forms and congruence subgroups are refs. [24–26], the appearance of mod-
ular forms in the context of this particular Feynman integral is discussed in more detail in
refs. [10,23].

In terms of the variable x the modular forms f2, f3 and f4 are given by

f2 =
1
24

�

3x2 − 10x − 9
�

�

ψ1

π

�2

,

f3 = −
1
24

x (x − 1) (x − 9)
�

ψ1

π

�3

,

f4 =
1

576
(3+ x)4

�

ψ1

π

�4

. (37)

Their q-expansions are given in appendix A.
The differential equation in the basis K⃗ reads

dK⃗ = ϵCK⃗ , (38)

with

C =





0 0 0
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3



 , (39)

and

C2,1 = −
1
2
ψ2

π
d x , (40)

C2,2 =
iπ
6

�

(1+ x)
ψ1

π

ψ2

π
+
�

3x2 − 10x − 9
� ψ2

π

∂xψ1

π
+ 2x (x − 1) (x − 9)

∂xψ1

π

∂xψ2

π

�

d x ,

C2,3 =
iπ
6

�

(1+ x)
�

ψ2

π

�2

+
�

3x2 − 10x − 9
� ψ2

π

∂xψ2

π
+ 2x (x − 1) (x − 9)

�

∂xψ2

π

�2�

d x ,

C3,1 =
1
2
ψ1

π
d x ,

C3,2 = −
iπ
6

�

(1+ x)
�

ψ1

π

�2

+
�

3x2 − 10x − 9
� ψ1

π

∂xψ1

π
+ 2x (x − 1) (x − 9)

�

∂xψ1

π

�2�

d x ,

C3,3 = −
iπ
6

�

(1+ x)
ψ1

π

ψ2

π
+
�

3x2 − 10x − 9
� ψ1

π

∂xψ2

π
+ 2x (x − 1) (x − 9)

∂xψ1

π

∂xψ2

π

�

d x .

4.3 Periods on the maximal cut

In this section we investigate the period matrices on the maximal cut of the sunrise integral.
On the maximal cut of the sunrise integral only the last two master integrals are relevant
(either I2, I3 or J2, J3 or K2, K3). The defining property for basis K⃗ is that the period matrix on
the maximal cut is constant and proportional to the unit matrix.

We denote by

ϕX
i , X ∈ {I , J , K} , i ∈ {1,2, 3} , (41)

the integrand of the master integral X i in the loop-by-loop Baikov representation [27]. In the
loop-by-loop Baikov representations we have four integration variables z1 − z4, where z1 − z3
correspond to the three propagators and z4 to an irreducible scalar product. Let CMaxCut be
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the integration domain selecting the maximal cut, i.e. a small counter-clockwise circle around
z1 = 0, a small counter-clockwise circle around z2 = 0 and a small counter-clockwise circle
around z3 = 0. We set z4 = u in accordance with the notation used in eq. (8). We denote by γ1
and γ2 the two cycles of the elliptic curve. They define the integration domain in the variable
u. We define

C2 = CMaxCut ∪ γ1 , C3 = CMaxCut ∪ γ2 . (42)

We consider the period matrix

PX =

�



ϕX
2 |C2

� 


ϕX
2 |C3

�




ϕX
3 |C2

� 


ϕX
3 |C3

�

�

. (43)

In the i-th row of this matrix we then look at the leading term in the expansion in the dimen-
sionsal regularisation parameter ϵ for this row. We denote the order of the leading term of
row i by jmin(i). This defines a matrix PX ,leading with entries

PX ,leading
i j = coeff

�


ϕX
i |C j

�

,ϵ jmin(i)
�

· ϵ jmin(i) . (44)

One finds

P I ,leading = −8iπ

 

ψ1 ψ2
ψ1−

1
4(1+
p

x)2φ1

(1−px)(3+px)
ψ2−

1
4(1+
p

x)2φ2

(1−px)(3+px)

!

,

PJ ,leading = 2i

�

(2πiϵ)2 (2πiϵ)2τ
0 − (2πiϵ)

�

,

PK ,leading = 4πϵ

�

1 0
0 1

�

. (45)

We see that PK ,leading is constant and proportional to the unit matrix. This is not surprising,
since the basis K⃗ has been defined such that the whole period matrix on the maximal cut PK

has that property, which of course implies that PK ,leading has it as well.
Note that PJ ,leading can be written as

PJ ,leading = 2i

�

(2πiϵ)2 0
0 − (2πiϵ)

��

1 τ

0 1

�

. (46)

This is the decomposition of the period matrix PJ ,leading into a semi-simple matrix and an
unipotent matrix [28,29].

4.4 Solutions

In the basis J⃗ we may give a solution for the master integrals in terms of iterated integrals of
modular forms.

Let f1(τ), f2(τ), ..., fn(τ) be a set of modular forms. We define the n-fold iterated integral
of these modular forms by

I ( f1, f2, ..., fn;τ,τ0) = (2πi)n
τ
∫

τ0

dτ1

τ1
∫

τ0

dτ2· · ·

τn−1
∫

τ0

dτn f1 (τ1) f2 (τ2) . . . fn (τn) . (47)
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With q = exp(2πiτ) we may equally well write

I ( f1, f2, ..., fn;τ,τ0) =

q
∫

q0

dq1

q1

q1
∫

q0

dq2

q2
...

qn−1
∫

q0

dqn

qn
f1 (τ1) f2 (τ2) ... fn (τn) , τ j =

1
2πi

ln q j .

(48)

It will be convenient to introduce a short-hand notation for repeated letters. We use the nota-
tion

{ fi}
j = fi , fi , ..., fi

︸ ︷︷ ︸

j

, (49)

to denote a sequence of j letters fi and more generally

�

fi1 , fi2 , ..., fin

	 j
= fi1 , fi2 , ..., fin , ......, fi1 , fi2 , ..., fin
︸ ︷︷ ︸

j copies of fi1 , fi2 ,..., fin

, (50)

to denote a sequence of ( j · n) letters, consisting of j copies of fi1 , fi2 , ..., fin . For example

{ f1, f2}
3 = f1, f2, f1, f2, f1, f2 . (51)

Our standard choice for the base point τ0 will be τ0 = i∞, corresponding to q0 = 0. This is
unproblematic for modular forms which vanish at the cusp τ = i∞. In this case we have for
a single integration

f =
∞
∑

j=1

a jq
j ⇒

q
∫

0

dq1

q1
f =

∞
∑

j=1

a j

j
q j . (52)

For modular forms which attain a finite value at the cusp τ = i∞ we employ the standard
“trailing zero” or “tangential base point” regularisation [10, 30, 31]: We first take q0 to have
a small non-zero value. The integration will produce terms with ln(q0). Let Rln(q0) be the
operator, which removes all ln(q0)-terms. After these terms have been removed, we may take
the limit q0→ 0. With a slight abuse of notation we set

I ( f1, f2, ..., fn; q) = lim
q0→0

Rln(q0)





q
∫

q0

dq1

q1

q1
∫

q0

dq2

q2
. . .

qn−1
∫

q0

dqn

qn
f1 (τ1) f2 (τ2) . . . fn (τn)



 . (53)

We define the boundary constants Bk for the sunrise integral J2 by

lim
q→0

Rln(q)J2 = e
2
∞
∑

n=2

(−1)n
n ζnϵ

n ∞
∑

k=2

ϵkBk . (54)

The left-hand side corresponds to setting all iterated integrals to zero, including the ones which
are proportional to powers of ln(q). The boundary values Bk are collected in appendix B. Let
us mention that the boundary values Bk are of weight k. The right-hand side of eq. (54) is
therefore of uniform weight.
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We may express the master integrals in the basis J⃗ to all orders in the dimensional regu-
larisation parameter in terms of iterated integrals of modular forms. We have

J1 = e
2
∞
∑

n=2

(−1)n
n ζnϵ

n

,

J2 = e
−ϵI( f2;q)+2

∞
∑

n=2

(−1)n
n ζnϵ

n











∞
∑

j=0

�

ϵ2 j I
�

�

1, f4
	 j

; q
�

−
1
2
ϵ2 j+1 I

�

�

1, f4
	 j

, 1; q
�

�





∞
∑

k=2

ϵkBk

+
∞
∑

j=0

ϵ j+2
⌊ j

2 ⌋
∑

k=0

I
�

�

1, f4
	k

, 1, f3, { f2}
j−2k ; q

�







,

J3 = e
−ϵI( f2;q)+2

∞
∑

n=2

(−1)n
n ζnϵ

n











∞
∑

j=0

�

ϵ2 j+1 I
�

�

f4, 1
	 j

, f4; q
�

−
1
2
ϵ2 j I

�

�

f4, 1
	 j

; q
�

�





∞
∑

k=2

ϵkBk

+
∞
∑

j=0

ϵ j+1
⌊ j

2 ⌋
∑

k=0

I
�

�

f4, 1
	k

, f3, { f2}
j−2k ; q

�







. (55)

The expression for J2 appeared already in [10], the expression for J3 follows from (see eq. (27))

J3 =
1
ϵ

1
2πi

d
dτ

J2 + f2J2 . (56)

For the first few terms of ϵ-expansion we have

J1 = 1+ ζ2ϵ
2 −

2
3
ζ3ϵ

3 +
7

10
ζ2

2ϵ
4 +O

�

ϵ5
�

,

J2 = [B2 + I (1, f3; q)]ϵ2 +
�

B3 −
1
2

B2 I (1; q)− B2 I ( f2; q)− I (1, f2, f3; q)− I ( f2, 1, f3; q)
�

ϵ3

+
�

B4 + ζ2B2 −
1
2

B3 I (1; q)− B3 I ( f2; q) +
1
2

B2 I (1, f2; q) +
1
2

B2 I ( f2, 1;q)

+B2 I
�

1, f4; q
�

+ B2 I ( f2, f2; q) + ζ2 I (1, f3; q) + I (1, f2, f2, f3; q) + I ( f2, f2, 1, f3; q)

+I
�

1, f4, 1, f3; q
�

+ I ( f2, 1, f2, f3; q)
�

ϵ4 +O
�

ϵ5
�

,

J3 = ϵI ( f3; q) +
�

−
1
2

B2 − I ( f2, f3; q)
�

ϵ2 +
�

−
1
2

B3 +
1
2

B2 I ( f2; q) + B2 I
�

f4; q
�

+ζ2 I ( f3; q) + I ( f2, f2, f3; q) + I
�

f4, 1, f3; q
�

�

ϵ3 +
�

−
1
2

B4 −
1
2
ζ2B2 +

1
2

B3 I ( f2; q)

+B3 I
�

f4; q
�

−
2
3
ζ3 I ( f3; q)− B2 I

�

f4, f2; q
�

− B2 I
�

f2, f4; q
�

−
1
2

B2 I ( f2, f2; q)

−
1
2

B2 I
�

f4, 1;q
�

− ζ2 I ( f2, f3; q)− I ( f2, f2, f2, f3; q)− I
�

f4, f2, 1, f3; q
�

−I
�

f2, f4, 1, f3; q
�

− I
�

f4, 1, f2, f3; q
�

�

ϵ4 +O
�

ϵ5
�

. (57)
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Let us also summarise the boundary values: From eq. (54) and eq. (55) we obtain

lim
q→0

Rln(q)J1 = e
2
∞
∑

n=2

(−1)n
n ζnϵ

n

,

lim
q→0

Rln(q)J2 = e
2
∞
∑

n=2

(−1)n
n ζnϵ

n ∞
∑

k=2

ϵkBk ,

lim
q→0

Rln(q)J3 = −
1
2

e
2
∞
∑

n=2

(−1)n
n ζnϵ

n ∞
∑

k=2

ϵkBk . (58)

In all three cases the right-hand sides are of uniform weight.
Given a solution in the basis J⃗ , we easily obtain a solution in the basis K⃗ . The two bases

are related by

K⃗ = UJ⃗ , (59)

with

U =





1 0 0
0 − (1+2ϵ)

2πiϵ − g2 ·τ τ

0 g2 −1



 , (60)

and

g2 =
1

24

�

�

3x2 − 10x − 9
� ψ1

π
+ 4x (1− x) (9− x)

∂xψ1

π

�

ψ1

π
. (61)

In the modular variable τ the quantity g2 is given by

g2 = f2 + 2
π

ψ1

1
2πi

d
dτ
ψ1

π

= 4
�

3b2
1 − 3b1 b2 − 6b2

2 − e2

�

. (62)

The modular forms b1 and b2 and the quasi-modular form e2 are defined in appendix A. The
quantity g2 is a quasi-modular form of modular weight 2 and depth 1. For γ ∈ Γ1(6) the
quantity g2 transforms as

(g2|2γ)(τ) = g2(τ) +
2

2πi
c

cτ+ d
, γ=

�

a b
c d

�

, (63)

where the operator |kγ is defined by

( f |kγ)(τ) = (cτ+ d)−k · f (γ(τ)) , γ(τ) =
aτ+ b
cτ+ d

. (64)

For the first few terms of ϵ-expansion we have

K2 =
1

2πi
[−B2 + I ( f3, 1;q)]ϵ +

1
2πi
[−B3 − 2B2 + B2 I ( f2; q)− I ( f2, f3, 1;q)− 2I (1, f3; q)

−2g2 I (1,1, f3; q)− g2 I (1, f3, 1; q)− g2B2 I (1; q)]ϵ2 +O
�

ϵ3
�

,

K3 = −I ( f3; q)ϵ +
�

1
2

B2 + I ( f2, f3; q) + g2B2 + g2 I (1, f3; q)
�

ϵ2 +O
�

ϵ3
�

. (65)
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Let us look at the boundary values of K2

lim
q→0

Rln(q)K2 = −
B2

2πi
ϵ −
(B3 + 2B2)

2πi
ϵ2 +O

�

ϵ3
�

. (66)

The term

−
2B2

2πi
ϵ2 , (67)

is of weight minus one and spoils the uniform weight property. Hence we conclude that the
basis K⃗ is not of uniform weight if we require that the notion of uniform weight is compatible
with restrictions in the kinematic space.

5 Purity and simple poles

In this section we address the second main question of this paper: The relation between purity
and simple poles in the elliptic case.

5.1 Definition of pure functions in the literature

We recapitulate the definitions of unipotent and pure function as given in ref. [19]:

Definition 1. A function is called unipotent, if it satisfies a differential equation without a ho-
mogeneous term.

To give an example, the functions ln(x) and Li2(x) are unipotent

d
d x

ln (x) =
1
x

,
d

d x
Li2 (x) = −

1
x

ln (1− x) , (68)

while ex is not

d
d x

ex = ex . (69)

Definition 2. Unipotent functions, whose total differential involves only pure functions and one-
forms with at most simple poles are called pure.

The standard example are multiple polylogarithms, whose total differential is given by

dG(z1, . . . , zr ; y) =
r
∑

j=1

G(z1, . . . , ẑ j , . . . , zr ; y)
�

d ln
�

z j−1 − z j

�

− d ln
�

z j+1 − z j

��

, (70)

where we set z0 = y and zr+1 = 0. A hat indicates that the corresponding variable is omitted.
In addition one uses the convention that for z j+1 = z j the one-form d ln(z j+1− z j) equals zero.
Clearly, the one forms

d ln
�

z j+1 − z j

�

=
dz j+1 − dz j

z j+1 − z j
, (71)

have only simple poles.
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5.2 Iterated integrals of modular forms

Let us now look at iterated integrals of modular forms, as defined in eq. (47). It is clear that
these iterated integrals are unipotent functions, as differentiation removes one integration.
We investigate the order of the poles of the total differential.

We denote by

H= { τ ∈ C | Im(τ)> 0 } , (72)

the complex upper half-plane and by

H=H∪ {i∞}∪Q , (73)

the extended complex upper half-plane. Under the map q = exp(2πiτ) the complex upper
half-plane H is mapped to the punctured open disk

D = { q ∈ C | 0< |q|< 1 } , (74)

and H is mapped to

D = D ∪ {0} ∪
�

e2πir | r ∈Q
	

. (75)

Let fk(τ) be a modular form of weight k for a congruence subgroup Γ and

ωmodular
k = 2πi fk (τ) dτ . (76)

For simplicity we assume that

�

1 1
0 1

�

∈ Γ . In this case fk has the q-expansion [25]

fk =
∞
∑

n=0

anqn . (77)

(In the general case fk will have an expansion in q
1

N ′ , where N ′ is the smallest positive integer
such that fk(τ + N ′) = fk(τ). The general case is only from a notational perspective more
elaborate.) In addition we will always assume that modular forms are normalised such that
the coefficients of their q-expansion are algebraic numbers. This is a convenient convention.1

We view ωmodular
k as a differential one-form on D. In the variable q we have

ωmodular
k =

∞
∑

n=0

anqn−1dq . (78)

This shows immediately that ωmodular
k is holomorphic on D and has a simple pole at q = 0

if a0 ̸= 0. Thus, in a neighbourhood of q = 0 the differential one-form ωmodular
k has at most

simple poles.
Let us now discuss if this extends globally to D. The answer will be no. We have to look

at the other cusps. We investigate the behaviour at

q0 = e2πi(− d
c ) , c, d ∈ Z , c ̸= 0 . (79)

1For the modular group SL2(Z) this implies that we work with the Eisenstein series 1
(2πi)k

∑

e
(n1 ,n2)∈Z2\(0,0)

1
(n1+n2τ)

k ,

which have rational q-expansion coefficients instead of
∑

e
(n1 ,n2)∈Z2\(0,0)

1
(n1+n2τ)

k , where every q-expansion coefficient

is a rational multiple of (2πi)k.
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We may derive the behaviour ofωmodular
k at q0 from the modular properties of fk. We consider

the modular transformation

γ=

�

a b
c d

�

∈ SL2 (Z) , γ−1 =

�

d −b
−c a

�

, (80)

and set

τ′ = γ (τ) =
aτ+ b
cτ+ d

, q′ = e2πiτ′ . (81)

This maps τ= − d
c to τ′ = i∞ and q0 to q′0 = 0. For the automorphic factor we have

cτ+ d =
c

2πi
(q− q0)

q0
+O

�

(q− q0)
2� . (82)

( fk|kγ−1)(τ′) has again a q′-expansion as in eq. (77)

�

fk|kγ−1
� �

τ′
�

=
∞
∑

n=0

a′n
�

q′
�n

. (83)

If fk is a modular form for the congruence subgroup Γ and γ ∈ Γ we have a′n = an, otherwise
the coefficients need not be the same. Usually we are interested in the cusps not equivalent to
τ= i∞, this implies γ ∈ SL2 (Z)\Γ . For a′0 ̸= 0 we have

ωmodular
k = a′0

� c
2πi

�−k
qk−1

0
dq

(q− q0)
k
+O

�

(q− q0)
−k+1� . (84)

Thus we see that whenever fk is non-vanishing at the cusp τ0 = −
d
c , the differential one-form

ωmodular
k has a pole of order k in the variable q at q = q0. Globally, ωmodular

k has poles up to
order k on D.

These poles do occur. Consider for example the modular form f3 from eq. (37). It is a
modular form of modular weight 3 for the congruence subgroup Γ1(6). The space of modular
forms M3(Γ1(6)) of modular weight 3 for Γ1(6) is four-dimensional and consists solely of the
Eisenstein subspace.2 There are no cusp forms in this space. Hence, f3 ∈M3(Γ1(6)) is an
Eisenstein series. From the q-expansion of eq. (A.5) one sees that f3 vanishes at the cusp
τ = i∞. As f3 is not a cusp form, there must be a cusp τ ∈ Q, where f3 is not vanishing.
Hence, ω3 = 2πi f3(τ)dτ has a pole of order three in the variable q there.

5.3 Elliptic polylogarithms

The discussion of the previous sub-section is not restricted to iterated integrals of modular
forms and carries over to elliptic polylogarithms eΓ .

Let g(k)(z,τ) denote the coefficients of the Kronecker function and set

ωKronecker
k (z,τ) = (2πi)2−k

�

g(k−1) (z,τ) dz + (k− 1) g(k) (z,τ)
dτ
2πi

�

. (85)

We may viewωKronecker
k as a differential one-form on the two-dimensional moduli space M1,2.

Coordinates on this moduli space are (z,τ). The elliptic polylogarithms eΓ are iterated integrals
of ωKronecker

k (z − c j ,τ) along z at constant τ. It is known that the functions g(k)(z,τ) have at

2The computer algebra system Sage can be used to obtain a basis of M3(Γ1(6)). The underlying mathematics
is explained in refs. [24,25].
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most simple poles in z and when restricted to τ= const the elliptic polylogarithms eΓ are pure
functions in the sense of definition 2. However in the applications towards Feynman integrals
it is usually the case that the assumption τ= const is not justified. A variation of the kinematic
variables of the Feynman integral will imply a variation of τ and we have to consider the τ-
dependence as well. For the argument we want to make it is sufficient to restrict to z = a+ bτ
with a, b ∈ Q and k ≥ 2. In this case the differential one-forms ωKronecker

k reduce to the form
of ωmodular

k [28] and the argument from the previous sub-section applies: In this case the
differential one-forms ωKronecker

k may have poles up to order k in the variable q (or τ).

5.4 Modular transformations

We have seen that locally in the coordinate chart D ∪ {0} the basis J⃗ satisfies the criteria of
definition 2. This coordinate chart includes the point x = 0. Let us now investigate the global
picture. For the sunrise integral we have four singular points x ∈ {0,1, 9,∞} and we may
cover the kinematic space with four charts, such that each chart includes exactly one singular
point [21,22,32]. Below we will follow the notation of ref. [22].

In each chart we may construct a basis, which satisfies the criteria of definition 2 locally. In
different charts we will have different coordinates τ and τ′, but also different bases of master
integrals J⃗ and J⃗ ′. The coordinates τ and τ′ will be related by a modular transformation. The
modular transformation induces also the transformation between J⃗ and J⃗ ′.

Let us discuss the behaviour near the cusp τ0 = −
d
c . The modular transformation γ defined

in eq. (80) maps τ0 = −
d
c to τ′0 = i∞. Let fk be a modular form for a congruence subgroup

Γ . Then by definition fk(τ) is holomorphic on H and ( fk|kγ−1)(τ′) has a q′-expansion as in
eq. (83) for any γ ∈ SL2(Z). This suggest to change in a neighbourhood of τ= − d

c coordinates
from q to q′. The differential one-form

2πi
�

fk|kγ−1
� �

τ′
�

dτ′ , (86)

has then a simple pole at q′ = 0 (corresponding to τ = − d
c ). However, ωmodular

k as defined in
eq. (76) does not transform under this coordinate change into eq. (86). Instead we find

ωmodular
k =

�

−cτ′ + a
�k−2 · 2πi

�

fk|kγ−1
� �

τ′
�

dτ′ . (87)

(−cτ′+ a) is the automorphic factor for γ−1. For k ̸= 2 this factor spoils that iterated integrals
of modular forms transform under modular transformations into iterated integrals of modular
forms. However, elliptic Feynman integrals transform nicely: Let us consider for

γ (τ) =
aτ+ b
cτ+ d

, γ ∈ SL2(Z) , (88)

the combined transformation

J⃗ ′ =





1 0 0
0 1

cτ+d 0
0 − c

2πiϵ cτ+ d



 J⃗ ,

τ′ =
aτ+ b
cτ+ d

. (89)

One obtains

dJ⃗ ′ = ϵB′ J⃗ ′ , (90)
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with

B′ = 2πi





0 0 0
0 −( f2|2γ−1)(τ′) 1

( f3|3γ−1)(τ′) ( f4|4γ−1)(τ′) −( f2|2γ−1)(τ′)



 dτ′ . (91)

As Γ (6) is a subgroup of Γ1(6) we have Mk(Γ1(6)) ⊂Mk(Γ (6)) and as Γ (6) is a normal sub-
group of SL2(Z) it follows that

fk|kγ−1 ∈Mk(Γ (6)) . (92)

We see that the entries of B′ are again differential one-forms of the form as in eq. (76). We may
express J⃗ ′ again in terms of iterated integrals of modular forms, this time in the variable q′. It
can be shown that the boundary constants are again of uniform weight. Hence it follows that
in the coordinate chart with coordinate q′ (or τ′) the basis J⃗ ′ satisfies the criteria of definition 2
locally.

Although the kinematic space of the sunrise family can be covered with four charts such
that in each chart the criteria of definition 2 holds locally, we do not advocate to define purity
by requiring that the kinematic space can be covered with local charts, such that in each chart
the criteria of definition 2 holds locally. The reason is given by the following counterexample:
Consider the functions f j(x) defined by the generating series

∞
∑

j=0

f j (x)ϵ
j = x−ϵe

ϵ
1−x (93)

= 1+
�

1
1− x

− ln (x)
�

ϵ +
1
2

�

1

(1− x)2
−

2 ln (x)
1− x

+ ln2 (x)

�

ϵ2 +O
�

ϵ3
�

.

Clearly, we would not like to call the functions f j for j ≥ 1 pure. The functions f j satisfy the
differential equations

d f j =

�

−
d x
x
+

d x

(1− x)2

�

f j−1 . (94)

The functions f j are clearly unipotent. In a neighbourhood of x = 0 the differential has a
simple pole at x = 0. In a neighbourhood of x = 1 the change of variables

x ′ = e
1

1−x , (95)

transforms the one-form with a double pole into a one-form with a simple pole:

d x

(1− x)2
=

d x ′

x ′
. (96)

Thus we see that modifying the definition of purity by requiring that definition 2 holds only
locally is too weak: It enlarges the function space too much.

Let us however point out a difference between the sunrise integral and the counterexample:
In the latter case the transformation in eq. (95) is a general ad-hoc coordinate transformation,
whereas in eq. (89) we only consider the smaller set of transformations induced by modular
transformations.
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6 Conclusions

For Feynman integrals which evaluate to multiple polylogarithms we have a clear understand-
ing of uniform weight and purity: These are Feynman integrals, whose term of order j in the
ϵ-expansion is pure of transcendental weight j. We are interested in extending this concept to
Feynman integrals beyond the ones which evaluate to multiple polylogarithms.

This is non-trivial and in this paper we discussed some subtleties: We showed that an
ϵ-factorised differential equation alone does not necessarily lead to a solution of uniform tran-
scendental weight. The boundary values have to be of uniform transcendental weight as well.
This applies in particular to a basis constructed by the requirement that the period matrix on
the maximal cut is proportional to the unit matrix. The argument we presented is agnostic to
the exact definition of weight beyond the case of multiple polylogarithms, we only assumed
that the definition of transcendental weight in the general case is compatible with the restric-
tion of the kinematic space to a sub-space.

In the second part of the paper we adopted a particular definition of purity from the litera-
ture. We showed that this definition works only locally – but not globally – for a particular basis
of the two-loop equal mass sunrise integral. Of course, it might well be that this particular
basis is not the optimal one, but another possibility is that the definition of purity needs a more
refined definition. The modular transformation properties, which we discussed in section 5.4,
point towards a possible modification.

We believe that the detailed analysis we carried out in this paper will be helpful for a
definition of purity which not only includes the elliptic case, but also Feynman integrals related
to Calabi-Yau geometries.
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A Modular forms

In this appendix we give the q-expansions of the modular forms f2, f3 and f4, appearing in
eq. (34) and the q-expansions of ψ1 (which is a modular form of modular weight 1). In
addition, we define the Eisenstein series e2, which appears in eq. (62).

We start by introducing a basis {b1, b2} for the modular forms of modular weight 1 for the
Eisenstein subspace E1(Γ1(6)):

b1 = E1 (τ;χ1,χ−3) , b2 = E1 (2τ;χ1,χ−3) , (A.1)

where χ1 and χ−3 denote primitive Dirichlet characters with conductors 1 and 3, respectively.
In terms of the coefficients g(k)(z,τ) of the Kronecker function we have

b1 =
p

3
6π

g(1)
�

1
3

,τ
�

, b2 = −
p

3
12π

�

g(1)
�

1
3

,τ
�

− g(1)
�

1
6

,τ
��

. (A.2)
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Then

f2 = −6
�

b2
1 + 6b1 b2 − 4b2

2

�

,

f3 = 36
p

3
�

b3
1 − b2

1 b2 − 4b1 b2
2 + 4b3

2

�

,

f4 = 324b4
1 . (A.3)

In terms of the coefficients g(k)(z,τ) of the Kronecker function we have

f2 =
1

2π2

�

3g(2)
�

1
2

,τ
�

− g(2)
�

1
3

,τ
�

+ g(2)
�

1
6

,τ
��

,

f3 =
1

4π3

�

15g(3)
�

1
3

,τ
�

− 12g(3)
�

1
6

,τ
��

,

f4 =
1

4π4

�

−18g(4)(0,τ)− 27g(4)
�

1
3

,τ
��

. (A.4)

The q-expansions are

f2 = −
1
2
− 8q− 4q2 − 44q3 + 4q4 − 48q5 − 40q6 +O

�

q7
�

,

f3 = −3
p

3
�

q− 5q2 + 9q3 − 11q4 + 24q5 − 45q6
�

+O
�

q7
�

,

f4 =
1
4
+ 6q+ 54q2 + 222q3 + 438q4 + 756q5 + 1998q6 +O

�

q7
�

. (A.5)

In addition we have

ψ1

π
= 2
p

3 (b1 + b2)

=
2
3

p
3
�

1+ 3q+ 3q2 + 3q3 + 3q4 + 3q6
�

+O
�

q7
�

. (A.6)

We define the Eisenstein series e2 by

e2 (τ) =
1

2 (2πi)2
∑′

(n1,n2)∈Z2\(0,0)

1

(n1 + n2τ)
2 . (A.7)

The prime at the summation sign denotes the Eisenstein summation prescription defined by

∑′

(n1,n2)∈Z2

f (z + n1 + n2τ) = lim
N2→∞

N2
∑

n2=−N2

 

lim
N1→∞

N1
∑

n1=−N1

f (z + n1 + n2τ)

!

. (A.8)

The q-expansion of e2 starts with

e2 (τ) = −
1
24
+ q+ 3q2 + 4q3 + 7q4 + 6q5 + 12q6 +O

�

q7
�

. (A.9)

The Eisenstein series e2 is a quasi-modular form.

B Boundary values

In this appendix we give the boundary values Bk. These are easily obtained from [10,33]. We
have

∞
∑

k=0

ϵkBk =
3
4

3−ϵ
�

h−
2πϵ

3
Γ (1+ 2ϵ)

Γ (1+ ϵ)2

�

, (B.1)
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where

h=
1
i

�

(−r3)
−ϵ

2F1 (−2ϵ,−ϵ; 1− ϵ; r3)−
�

−r−1
3

�−ϵ
2F1

�

−2ϵ,−ϵ; 1− ϵ; r−1
3

�

�

, (B.2)

and r3 = exp(2πi/3). The hypergeometric function can be expanded systematically in ϵ with
the methods of [34–37]. The first few terms are given by

2F1 (−2ϵ,−ϵ; 1− ϵ; x) = 1+ 2ϵ2Li2 (x) + ϵ
3 [2Li3 (x)− 4Li21 (x , 1)]

+ ϵ4
�

2Li4 (x)− 4Li31 (x , 1) + 8Li211 (x , 1, 1)
�

+O
�

ϵ5
�

. (B.3)

The first few boundary values are given by

B0 = 0 ,

B1 = 0 ,

B2 =
3
2i

�

Li2 (r3)− Li2
�

r−1
3

��

,

B3 =
3
2i

�

−2Li21 (r3, 1)− Li3 (r3) + 2Li21

�

r−1
3 , 1

�

+ Li3
�

r−1
3

�	

− ln (3)B2 ,

B4 =
3
2i

�

4Li211 (r3, 1, 1)− 2Li31 (r3, 1) + Li4 (r3)− 4Li211

�

r−1
3 , 1, 1

�

+2Li31

�

r−1
3 , 1

�

− Li4
�

r−1
3

�	

− ln (3)B3 −
1
2

ln2 (3)B2 +
1
3
ζ2B2 . (B.4)

These can be reduced to polylogarithms of depth 1 as follows [38,39]:

B2 = 3 Im Li2 (r3) ,

B3 =
24
5

Im Li3

�

i
p

3

�

−
17
90
π3 −

1
10
π (ln (3))2 ,

B4 = −
63
10

Im Li4 (r3) +
48
5

Im Li4

�

i
p

3

�

+
17
90
π3 ln(3) +

1
30
π (ln (3))3 . (B.5)
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