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Abstract

A bulge surface, on a time reflection-symmetric Cauchy slice of a holographic spacetime,
is a non-minimal extremal surface that occurs between two locally minimal surfaces
homologous to a given boundary region. According to the python’s lunch conjecture of
Brown et al., the bulge’s area controls the complexity of bulk reconstruction, in the sense
of the amount of post-selection that needs to be overcome for the reconstruction of the
entanglement wedge beyond the outermost extremal surface. We study the geometry of
bulges in a variety of classical spacetimes, and discover a number of surprising features
that distinguish them from more familiar extremal surfaces such as Ryu-Takayanagi sur-
faces: they spontaneously break spatial isometries, both continuous and discrete; they
are sensitive to the choice of boundary infrared regulator; they can self-intersect; and
they probe entanglement shadows, orbifold singularities, and compact spaces such as
the sphere in AdSp × Sq . These features imply, according to the python’s lunch conjec-
ture, novel qualitative differences between complexity and entanglement in the holo-
graphic context. We also find, surprisingly, that extended black brane interiors have a
non-extensive complexity; similarly, for multi-boundary wormhole states, the complexity
pleateaus after a certain number of boundaries have been included.
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1 Introduction

A central theme of the past decade and a half of work in holography has been that the emer-
gence of the bulk space is reflected in quantum information-theoretic properties of the bound-
ary system. The foundational result is the Ryu-Takayanagi (RT) formula for the spatial entan-
glement of the holographic state, which in its quantum-corrected form is [1,2]:

S(ρA)≈
Area(XA)

4G
+ S(ρa) . (1)

Here the holographic state is assumed to admit a semiclassical bulk description and to be
time reflection-symmetric. The semiclassical state lives at the time reflection-symmetric bulk
Cauchy slice Σ, A is a subregion of the conformal boundary ∂Σ of this slice, ρA is the re-
duced density matrix of the boundary quantum field theory to this subregion, and S(ρA) is
the corresponding von Neumann entropy. On the right-hand side of this equation, XA is the
minimal area surface on Σ which is homologous to A, ρa is the reduced density matrix of
the bulk quantum fields on the region bounded by A and XA, and S(ρa) is its von Neumann
entropy. The right-hand side of this equation defines the generalized entropy of XA in the cor-
responding bulk state, denoted by Sgen(XA). This geometric dictionary has provided a great
deal of insight into the emergence of bulk space from the spatial entanglement structure of
the boundary quantum field theory [1,3–5].
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In this correspondence, the boundary state ρA is conjectured to contain all of the quantum
information about the state ρa; and the bulk physics in the entanglement wedge of A, the bulk
domain of dependence Da, is conjectured to be holographically represented in the physics of
the boundary domain of dependence DA [5–7]. This statement is known as “entanglement
wedge reconstruction” and has been given a more precise formulation within the past several
years, in the language of quantum information theory. In this formulation, one first considers
the bulk-to-boundary map V : HΣ → HCFT, where HΣ is the Hilbert space of bulk effective
field theory excitations on Σ, commonly dubbed the code subspace, and HCFT is the CFT Hilbert
space defined on ∂Σ. This map consequently defines the encoding channel onto the subregion
A of the conformal boundary:1

N (ρa) = TrĀ(Vρa ⊗σāV †) = ρA . (2)

Here σā can be any reference full-rank density matrix on the bulk complement region ā. The
statement of entanglement wedge reconstruction is that N admits a recovery map R, i.e.
an inverse channel satisfying R ◦ N (ρa) ≈ ρa. The existence of such a recovery channel
R has been identified as an inevitable consequence of (1) holding within states of the code
subspace [8–12].

Moreover, the structure of entanglement wedges in hyperbolic space is very suggestive,
given that there are spatial regions b localized deep in AdS that are contained in the en-
tanglement wedge of the union of disjoint boundary subregions, A = ⊔iAi , while not being
contained on any of the individual entanglement wedges, b ∩ ai = ;. In this sense, the way
the bulk quantum information is distributed on the boundary is reminiscent of (operator alge-
bra) quantum error correcting codes, where the quantum information of the logical system is
distributed non-locally on the physical system [3,9,10,13]. Special “holographic codes” mod-
elling these features of V can be designed in qubit systems [14, 15], using tensor networks
that provide a discretization of the emergent hyperbolic space (see [16] for more realistic con-
structions). Tensor network models can also be used to qualitatively describe the map V for
time-reflection symmetric but otherwise general reference states, with associated bulk time
reflection-symmetric Cauchy slices Σ.

More generally, entanglement wedge reconstruction is expected to work in situations that
include non-trivial dynamical evolution of the bulk geometry, in which case XA is replaced by
the HRT surface [17] in (1), as well as in situations where the gradients of the bulk entangle-
ment S(ρa) and classical area term compete, in which case (1) is replaced by the full-fledged
quantum extremal surface (QES) prescription [18]. These extensions provide a new perspec-
tive on the way in which the information escapes from an evaporating black hole [19, 20].
Namely, the possibility of recovering the information from the Hawking radiation is mani-
fested semiclassically after the Page time in terms of a non-trivial minimal QES delimiting an
“island” in the entanglement wedge of the radiation [19–21].

In these situations, the statement of entanglement wedge reconstruction becomes particu-
larly surprising, since the entanglement wedge Da generally contains regions that are causally
inaccessible from A. That is, the causal wedge of A, the set of bulk points that are both in the fu-
ture and in the past of DA, is strictly contained in the entanglement wedge. The causal wedge
is accessible through correlators of appropriately smeared local operators on the boundary
through the bulk-to-boundary operator map [22–25]. In fact, larger regions have been identi-
fied to be accessible in a simple way, by being able to manipulate simple sources in the bound-
ary Hamiltonian [26]. These regions are delimited by the apparent horizon, or more precisely,
by the outermost QES. More complicated operators are expected to be needed to access the

1For ease of exposition, we are assuming that all of the Hilbert spaces factorize. Non-factorizability can be
treated in the language of von Neumann algebras.

3

https://scipost.org
https://scipost.org/SciPostPhys.16.6.152


SciPost Phys. 16, 152 (2024)

Figure 1: Structure of slice Σ containing a python: the globally minimal QES XA, the
bulge X b

A and the constriction X c
A. The python, shaded in blue, is delimited by XA

and X c
A. The entanglement wedge of A contains the python. Throughout this paper,

bulge surfaces will be consistently drawn in red.

region of the entanglement wedge that lies beyond this region. Characterizing these opera-
tors is a major open problem in holography and lies at the core of the black hole information
problem.

1.1 Python’s lunch conjectures

A step toward understanding bulk reconstruction beyond the outermost QES was given in [27],
based on the analogy with tensor network toy models of the bulk-to-boundary map V . In
the simplest case, illustrated in Fig. 1, the bulk Cauchy slice Σ contains two locally minimal
QESs: the outermost QES, X c

A, called the constriction, and the globally minimal QES XA, which
delimits the entanglement wedge a. The region between them is called a python’s lunch, or just
python for short. In the python, there exists a third QES homologous to A that is not locally
minimal, X b

A, called the bulge. In such a situation, the python’s lunch conjecture (PLC) [27]
(see also [26,28]) assigns a unitary complexity to R given at leading order by

C(R)∼ exp

�

Sgen(X b
A)− Sgen(X c

A)

2

�

, (3)

where we are omitting subexponential volume factors that become unimportant in most situ-
ations.

The motivation behind this proposal comes from tensor-network toy models of V , where
the geometry of Σ gets discretized in the form of a graph with local tensors at the vertices. The
task of reconstructing the entanglement wedge is to undo the part of the network representing
a, by acting with local unitaries on A. Consequently, the complexity to perform this operation
gets “geometrized” by the structure of the network. Namely, the reconstruction requires one
to undo the network locally, and to do that one needs to go from the locally minimal cut
representing X c

A to the locally maximal cut representing X b
A. Each of these cuts defines an

auxiliary Hilbert space, and the part of the network between the cuts defines an isometric
map between these Hilbert spaces. By construction of the network, the log bond dimension
of these cuts is Sgen(X c

A) and Sgen(X b
A) respectively. Since Sgen(X b

A) > Sgen(X c
A), the inverse

of this map post-selects (i.e. orthogonally projects out) a Hilbert subspace of log dimension
Sgen(X b

A) − Sgen(X c
A) of the X b

A cut. In quantum information, under genericity assumptions
for the local gates, the optimal way to overcome this post-selection unitarily is to introduce
ancilla qubits and perform a brute force Grover search, at the cost of an exponentially large
number of few-body unitary operations, parametrically given by exp 1

2(Sgen(X b
A)− Sgen(X c

A)).
This motivates the particular form of the exponent in (3), which is given in terms of generalized
entropies and can be directly translated to the semiclassical description of Σ in AdS/CFT.
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Figure 2: Schematic structure of a python with multiple lunches: between the
globally minimal QES XA and the constriction X c

A, there are locally minimal QESs
such as X2.

The PLC (3) is able to describe why, in some specific situations, the global bulk-to-boundary
map V remains “simple”, with unitary complexity scaling polynomially with some extensive
parameter of the boundary, like its thermodynamic entropy S, while, at the same time, the com-
plexity to reconstruct the entanglement wedge a for any proper subsystem A of the boundary
is exponentially large in S. This dichotomy is what originally motivated the conjecture in [27].
Examples of these situations arise when V is constructed dynamically from the unitary time-
evolution operator of the system, V = exp(−iH t), driven by a chaotic few-body Hamiltonian
H that couples A and Ā. Any initial information scrambles rapidly throughout the system,
which generically opens the possibility of recovering it from any subsystem A containing more
than half of the entropy of the full system. On the one hand, with access to the full system,
undoing the time-evolution V is by assumption “simple” for subexponential timescales. On
the other hand, the recovery from A typically requires exponentially many unitary operations,
with C(R) ∼ e(S−SA)/2, from the fact that there is a python for A. For specific models of black
hole evaporation, these features of the bulk-to-boundary map were studied in [29,30].

A generalization of the PLC to situations with multiple “lunches” on the same Cauchy slice
was given in [28]. We represent the situation with two lunches in Fig. 2. In general, one
considers n lunches, defined by a set of non-intersecting locally minimal homologous QESs
S = {X1, X2, ..., Xn} between the globally minimal QES X1 ≡ XA and the constriction Xn ≡ X c

A.

In between each pair of adjacent minimal QESs X i and X i+1, there will be a bulge, X b,i
A

, for
i = 1, ..., n−1. According to the generalized PLC, the complexity to reconstruct the lunch from
A is

C(R)∼max
i< j

¨

exp

�

Sgen(X b
j )− Sgen(X i)

2

�«

, (4)

where i < j means that the maximization is restricted to minimal QESs, labelled by i, that
lie between the bulge, labelled by j, and A. Intuitively, this expression simply represents that
the total amount of post-selection is largely dominated by the maximum generalized entropy
difference between any bulge and any minimal cut that lies closer to A.

1.2 This paper

The precise meaning of the complexity in Eqs. (3) and (4) is to date incomplete. The goal of
this paper is to provide additional data for sharpening these conjecture by more fully exploring
the properties of the bulge surface X b

A for the simplest species of python: geometric pythons
that arise already at the level of the classical bulk geometry dual to some reference holographic
state. For these pythons, all the different surfaces XA, X b

A, X c
A will be extremal area surfaces,

and their generalized entropies will all be given by the area term in (1), to leading order in
the semiclassical expansion.
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Furthermore, in this paper, we will work on a fixed partial Cauchy slice Σ of the bulk
spacetime and consider extremal surfaces for variations restricted to Σ. For time reflection-
symmetric states of the holographic system, we expect that, generally, the natural choice of
partial Cauchy slice consists of the bulk moment of time symmetry Σ. For instance, partial
maximin surfaces, like the constriction or the RT surface, must lie on Σ. Therefore, our def-
inition holds for the states for which this is true. However, it is important to note that, even
restricted to time-reflection symmetric states, this is not always true. Explicit states for which
time reflection symmetry is spontaneously broken by the bulge and other minimal surfaces
have been constructed recently, in near-extremal black hole interiors in [31].2 We do not be-
lieve that this phenomenon occurs in any of the spacetimes we study in this paper, although
we have not proven that this is the case.

In this context, we will point out several properties that X b
A fails to satisfy that are usually

taken for granted for the locally minimal surfaces X c
A and XA. Assuming these properties for a

general extremal surface leads to the incorrect identification of the bulge in many situations.
We will show that this has important physical consequences for the outcome of the python’s
lunch conjectures (3), (4). Throughout the paper, we will identify the true bulge surface
in different situations, study its topological and geometric properties, and comment on the
outcome of the conjecture given these properties.

The paper is organized as follows. We begin in section 2 by studying the implications of the
minimax definition of the bulge surface given in [27], and relating it to a branch of geometric
measure theory called Almgren-Pitts min-max theory, developed by mathematicians for the
purpose of proving the existence and properties of extremal surfaces. We also review the
motivation of the bulge as a minimax surface from tensor network heuristic models. With
these results in hand we proceed to explore a number of different examples of holographic
states with classical pythons:

• In section 3, we demonstrate that, unlike minimal surfaces, bulges can break continuous
and discrete spatial isometries of the slice Σ and region A. This effect has an immediate
consequence for generic states of black branes with semiclassical interiors, namely, ac-
cording to (3), the interiors are simple to reconstruct; specifically, the log-complexity is
not extensive in the boundary volume. Furthermore, in the planar limit, the bulge, and
hence according to the conjecture the complexity, are highly sensitive to the choice of
infrared regulator.

• In section 4, we explore examples of bulges that arise in vacuum anti-de Sitter (AdS)
space. We start by exploring some simple examples arising when A is comprised of dis-
connected boundary subregions in AdS3 and AdS4, including, for AdS3, where A covers
the entire boundary except a discrete set of points. This includes an example where
a python is present, yet the exponent in the complexity vanishes. We then show that,
in the presence of compact extra dimensions, even when the metric of Σ is of prod-
uct form, X b

A is generically not of product form. The generalized entropy of the bulge
Sgen(X b

A) thus contains dynamical information about the holographic system that goes
beyond the spatial correlations in the ground state of the holographic CFT. We find that
this effect resolves the singular bulges previously found in AdS3.

• In section 5, we describe bulges on excited states of the holographic CFT. We include
examples in which the dual geometry has no horizon, namely AdS3 orbifolds and Lin-
Lunin-Maldacena (LLM) geometries. Additionally, we describe bulges that form outside
of the horizon of an eternal black hole.

2Other states with time-reflection symmetric pythons in JT gravity and massless matter were constructed in [32].
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• In section 6, we explore microstates of multiple black holes with pythons occupying
their shared semiclassical interiors. For two-sided states, we show that the complexity
to reconstruct the interior with access to A is the same, whether A contains both bound-
aries or just the boundary that can access the interior. We show that this is a general
feature of multi-boundary wormhole microstates, namely, the complexity to reconstruct
the interior plateaus after a number of boundaries has been included in A. This effect
is essentially a discrete analogue of the non-extensivity of the log-complexity for black
branes mentioned above. We also provide a slight generalization of the second python’s
lunch conjecture (4) in section 6, where we point out that different choices might exist
for the set S of non-intersecting minimal surfaces defining the lunch. Different choices
of S cannot all be included on the same foliation, and therefore we must minimize the
complexity (4) over these choices.

We regard these examples as providing data against which to check the PLC, in the hope
that the complexity can be directly evaluated, or its properties studied, in the corresponding
situations. We close with a summary and discussion in section 7. Some technical details
concerning extremal surfaces in R3 are presented in the appendices.

2 Mathematical background

In [27], a bulge surface in a holographic spacetime was defined mathematically via a certain
maximinimax formula. The “minimax” part of the formula referred to operations on a Cauchy
slice, and the “maxi” to a maximization over Cauchy slices, rendering the formula covariant.
In this paper, we are focusing on surfaces lying on a constant-time slice of a static spacetime,
or more generally lying on the t = 0 slice of a time-reflection symmetric spacetime. Since we
are fixing a Cauchy slice, we will focus on the “minimax” part of the formula, and put aside
the “maxi” part.

In this section, we will review the minimax formula of [27], and argue that bulge surfaces
obeys certain properties that we will make use of in the rest of the paper. Our discussion
will be far from mathematically rigorous. However, we will also point out that the minimax
formula fits naturally within an existing body of mathematical work called “Almgren-Pitts min-
max theory”. This theory, a branch of geometric measure theory, has been developed since the
1960s as a set of techniques for proving the existence and properties of extremal submanifolds
in general Riemannian manifolds. We will give a very brief sketch of some of the ideas in
this theory, not because we will make use of them in this paper, but for completeness and to
reassure the reader that this work can be put on a rigorous foundation if desired. (See [33,34]
and references therein for additional details.)

2.1 Extremal surfaces & Morse index

We begin by recalling some basic facts about extremal hypersurfaces in Riemannian manifolds.
Let N be a compact Riemannian manifold, possibly with boundary. We will denote coordinates
on N by xµ and its metric by gµν. By a surface X we mean a compact orientable hypersurface
in N such that ∂ X ⊂ ∂ N and int X ⊂ int N (where int denotes the interior). We will denote
coordinates on X by ya, the induced metric by hab, a continuous unit normal vector field by
nµ, the extrinsic curvature (defined with respect to nµ) by Kab, and its trace by K .

We now want to study variations in the area of X under small deformations. Let η be a
smooth function on X that vanishes on ∂ X .3 The first variation of the area under deforming

3In subsection 3.2, we will also consider imposing a Neumann boundary condition on η, where the surface
meets an end-of-the-world brane. The formulas in this subsection remain correct, including the self-adjointness of
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X by applying the exponential map to each point of X by the vector εηnµ, is

δArea(X ) =

∫

X
dy
p

h Kη . (5)

The variation is therefore zero for any function η if and only if K = 0 everywhere. Again
following physicists’ conventions, we will call such a surface extremal. (Mathematicians use
the term minimal.)

Assume X is extremal. The second variation of its area is:

δ2 Area(X ) =
1
2

∫

X
dy
p

h
�

hab∂aη∂bη− (Rµνnµnν + KabKab)η2
�

=
1
2

∫

X
dy
p

hηJη , (6)

where J is the following Schrödinger-type operator on X , called the Jacobi operator:

J := −∇2 − Rµνnµnν − KabKab , (7)

with∇2 the Laplacian with respect to hab. From its definition, the Jacobi operator’s spectrum is
discrete (since X is compact), bounded below, and unbounded above. The number of negative
eigenvalues is called the (Morse) index of X , for the following reason. If we consider the space
of all surfaces in N with boundary equal to ∂ X , the area functional defines a Morse (or Morse-
Bott) function,4 of which X is a critical point; by (6), the number of negative eigenvalues of J is
then equal to the Morse index. (More precisely, for a generic metric on N , the area functional
is a Morse function; and for a metric that is generic subject to some isometry group, the area
functional is a Morse-Bott function.)

The following facts about the index will be relevant to us in the rest of the paper. First, if
the surface is a local minimum of the area, then the index vanishes; for a generic metric (or
generic subject to some isometries), the converse holds. Second, suppose that X is a disjoint
union, X = X1 ⊔ X2 ⊔ · · · . Then a basis of eigenfunctions of J can be chosen such that each
eigenfunction vanishes on all but one X i; therefore the index of X is simply the sum of the
indices of the X i . Third, suppose that X is connected and has index 1. It is a standard fact
from quantum mechanics that the ground state wave function of a Schrödinger operator has
no nodes; therefore the eigenfunction η has constant sign, in other words the unstable mode
moves all of X in the same direction.

2.2 Min-max theory

Now suppose that a subset Ñ of N is bounded by two locally minimal surfaces X0, X1; keeping
track of orientations, we have

∂ Ñ = X0 − X1 . (8)

Necessarily then X0 and X1 are homologous, and share the same boundary: ∂ X0 = ∂ X1.
(More precisely, they are homologous relative to that boundary.5) In the holographic setting,

the Jacobi operator, with this boundary condition.
4A Morse function on a manifold is a C2 real function whose Hessian, at each critical point, is non-degenerate.

The Morse index of a critical point x is the largest dimension of a subspace of the tangent space Tx on which
the Hessian is negative definite. A useful generalization is a Morse-Bott function, a function whose critical points
form submanifolds on which the normal Hessian is nondegenerate. Writing the Hessian as 〈·, J ·〉, where 〈·, ·〉 is a
positive-definite inner product on Tx and J is a symmetric operator, the Morse index equals the number of negative
eigenvalues of J .

5Here we work in homology relative to the codimension-2 boundary submanifold ∂ X0. In subsection 3.2, we
will consider a slightly more general situation, in which we work in homology relative to a codimension-1 part of
the boundary of Ñ , representing an end-of-the-world brane, and we require surfaces to end orthogonally on this
boundary, leading to the Neumann boundary condition mentioned in footnote 3. As far as we know, this extra
boundary does not affect the considerations of this section.
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Ñ is a “python”. We will denote by H̃ the homology class of X0,1. (One or both of X0,1 may
be empty, in which case the elements of H̃ are null-homologous.) By Almgren-Pitts min-max
theory, there exists a third extremal surface with index 1 in H̃.

The argument rests on the mountain-pass lemma, which is a general statement concerning
Morse functions that guarantees the existence of an index-1 critical point, given two local
minima x0,1 connected by a path x̄(t).6 This is proved by considering the following minimax
problem:

min
x(t)

max
t

f (x(t)) , (9)

where f is a Morse function, the minimum is over paths x(t) homotopic to x̄(t), and the
maximum is over points on x(t). The solution to this problem is an index-1 critical point.

In the case at hand, we are working in the homology class H̃.7 The initial path X̄ (t) is
given by the level sets of a Morse function ψ on Ñ that equals 0 on X0 and 1 on X1; we will
call such a path a level-set path. (This Morse function should not be confused with the Morse
function f appearing in the mountain-pass lemma, whose role is played here by the area
functional.) A path X (t) homotopic to X̄ (t) is called a sweep-out. Any two Morse functions
on Ñ define homotopic paths, so the definition of a sweep-out is independent of the choice of
Morse function.

2.3 Bulge surface: Definition & properties

The construction defining the bulge surface in [27] is similar to, but not exactly the same as,
the above Almgren-Pitts construction. Specifically, the minimization is over level-set paths,
rather than sweep-outs. Assuming, as we will, that the minimax exists and is an extremal
surface, it must have index 1. We will call this surface X b. For a generic metric, X b is unique;
for a metric that is generic up to isometries, X b is unique up to the action of the isometries.

Any level-set path is a sweep-out, but the converse does not hold; specifically, whereas the
level sets of a function cover each point of Ñ exactly once, a sweep-out may “back up” and cover
some part of Ñ more than once. This leads to the question of whether the two prescriptions
are equivalent. We believe they probably are equivalent, but do not have a proof. It is hard
to see how the freedom to “back up” afforded by the sweep-outs could allow one to achieve a
lower maximal area than the level-set paths; for this happen, the sweep-out would somehow
have to slip through the bulge surface using only smaller surfaces, which intuitively seems
impossible. However, we readily admit that this claim may simply reveal a lack of imagination
on our part. If the two prescriptions are not equivalent, then one would have to show that the
bulge prescription is actually well-defined and yields an extremal surface.

The rest of the paper is concerned with finding bulge surfaces in various holographic space-
times. Of course, literally following the minimax definition of the bulge surface involves mini-
mizing over an infinite-dimensional space of Morse functions, which is prohibitive, so instead
one simply looks for index-1 surfaces. If there are multiple index-1 surfaces, however, how
does one determine which one is the bulge? We will now prove a couple of lemmas that will
help with this task.

First, let X ∈ H̃ be an index-1 surface, and recall that the index is additive under disjoint
union. Therefore, if X is disconnected, then each component must be extremal, and exactly
one of them must have index 1, with the rest having index 0. The index-0 components may

6Either the index-0 critical points must be distinct (or, in the Morse-Bott setting, lie on distinct connected
components of the critical submanifold), or the path x̄(t) must be non-contractible.

7More accurately, in geometric measure theory one works with a generalization of the notion of submanifold
called a varifold. The space of varifolds admits a natural topology that allows splitting, joining, and other degener-
ations as continuous processes. The burden is then to show that the varifold returned by the mountain-pass lemma
is, under certain conditions actually a submanifold. In fact, as found in [27], there are generic situations where
the minimax surface is not a submanifold; we will return to this example in subsection 4.1.
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coincide with components of the surfaces X0,1 that bound Ñ . The index-1 component must lie
in the interior of Ñ .

For simplicity, from here on we will focus on connected surfaces; the disconnected case
can be handled using the above decomposition.

Lemma 1. If connected index-1 surfaces X2,3 ∈ H̃ do not intersect, then there exists an index-0
surface X4 ∈ H̃, not equal to X0 or X1.

Proof. X2 divides Ñ into two regions, one bounded by X0 and X2, the other bounded by X2

and X1. Since X3 is connected, it lies entirely in one of these regions. Define ˜̃N ⊂ Ñ as the
region lying between X2 and X3. Let ˜̃H be the set of surfaces in ˜̃N homologous to X2,3, and

define X4 as the least-area surface in ˜̃H. X4 cannot coincide with X2 or X3, since each of those
surfaces has a negative mode that moves the surface into ˜̃N . X4 also cannot partially coincide
with X2 or X3, since then its area could be reduced by rounding out the corner. Therefore X4

must lie entirely in the interior of ˜̃N , and must therefore be an index-0 surface.

If H̃ does not contain any index-0 surfaces aside from X0,1, then we say that X0,1 are
“adjacent”.

Lemma 2. If X0,1 are adjacent, and all index-1 surfaces in H̃ are connected, then X b is the least-
area one.

Proof. Let X be an index-1 surface in H̃. Consider a restricted minimax problem where we
minimize over level-set paths containing X , and for each path maximize the area. The solution
is some index-1 surface that either equals X or does not intersect X . The latter case is ruled
out by lemma 1 and the assumption that X0,1 are adjacent. Therefore X maximizes the area
on some level-set path.

X b is defined by minimizing, over level-set paths, the maximum on each path. We showed
in the previous paragraph that every index-1 surface is a candidate in this minimization. There-
fore X b is the one with the least area.

We close this section with a explanation of the motivation for the minimax definition of
the bulge surface in the setting of the python’s lunch conjecture (3). The heuristic identifica-
tion of Ñ with a tensor network requires us to view this partial Cauchy slice as a linear map
V : H0 ⊗HÑ →H1, between the Hilbert spaces associated to the cuts through the tensor net-
work at the respective minimal surfaces X0 and X1, and additionally, the bulk Hilbert space on
Ñ , where we assume that Area(X0)< Area(X1)without loss of generality. The above definition
guarantees that the generalized entropy difference, Sgen(X b)− Sgen(X1), controls the minimal
amount of post-selection necessary to undo this map from X1. To see this, one interprets the
level sets for a given Morse functionψ as providing a 1-parameter family of cuts of the putative
tensor network. Different choices of function ψ represent different cuts of the network, each
of which includes a constrained maximum of the generalized entropy — the area term in our
case — which we shall call Xψ. Assuming that the local tensors in the network are generic
enough,8 each ψ likewise represents a particular way of undoing the map V layer-by-layer, by
acting with few-body unitaries on each surface in the level set of ψ. The number of unitary
operations needed to perform this contraction is parametrically controlled by the amount of
post-selection present on the level set of ψ, which is given by Sgen(Xψ)− Sgen(X1). Thus, the
optimal way to undo the tensor network consists in minimizing over the choice of ψ, which
leads to the motivation to define the bulge X b as the minimax surface between X0 and X1.

8For the states considered in Ref. [27] this amounts to having to wait until all of the perturbations are scrambled
in the system.
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Figure 3: Bulges, unlike minimal surfaces, can break the isometries of the Cauchy
slice Σ. The naive bulge candidate X 0

A has additional negative modes, like the one
represented by the arrows. There is an infinite family of bulges X b

A, which have
Morse index 1 and, additionally, zero modes corresponding to the isometries of Σ
connecting them.

3 Bulges break spatial isometries

In this section we will explicitly show that the bulge can generally break the spatial isometries
in spatially homogeneous states of the holographic system. We will do so for the cases where
the bulges have spherical versus planar symmetry, and find that the latter indicates surpris-
ingly low values of the complexity to reconstruct the lunch. We will also show that the bulge
geometry, hence the complexity, is surprisingly sensitive to the choice of infrared regulator.

3.1 Spherical symmetry

To be concrete, consider a holographic CFT placed on a spatial Sd−1 (d > 1). Let |Ψ〉 be a
homogeneous state on the sphere, with semiclassical description given by the initial data

ds2
Σ = dρ2 + r2(ρ)dΩ2

d−1 , (10)

specified at a moment of time reflection-symmetry Σ. We take the slice to have the topology of
a D-dimensional ball, which implies r → 0 asρ→ 0; for smoothness, r/ρ→ 1. Asymptotically,
we demand that r(ρ) ∼ eρ/ℓAdS for ρ→∞, so that the spacetime is asymptotically AdS. The
RT surface for the full conformal boundary A is the empty set, XA = ;. As illustrated in Fig. 3,
in order to have a python, we require r(ρ) to possess a local minimum at some ρc > 0; this
defines the constriction X c

A. Note that these surfaces both respect the spherical symmetry.
From the considerations in section 2, there must exist a bulge surface X b

A between XA and
X c
A, in other words in the region ρ < ρc . Moreover, since r(ρ) has two local minima, at ρ = 0

and ρ = ρc , there must also exist a local maximum between them, at 0< ρ0 < ρc , with

r0 := r(ρ0) , r ′(ρ0) = 0 , r ′′0 := r ′′(ρ0)< 0 . (11)

We shall refer to this sphere as the “naive bulge candidate”, denoted by X 0
A.

The naive bulge candidate X 0
A is a totally geodesic surface, given that r ′(ρ0) = 0, and thus

it is extremal. The Jacobi operator (7), which determines its index, is easily computed:

J = −
1

r2
0

∇̄2 −α , (12)

where ∇̄2 is the Laplacian on the unit (d −1)-sphere and α is the following positive constant:

α= −(d − 1)
r ′′0
r0

. (13)
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The eigenfunctions of J are thus simply the spherical harmonics, and the eigenvalues are

λℓ =
ℓ(ℓ+ d − 2)

r2
0

−α , (14)

where ℓ= 0,1, . . ., with multiplicity 1 for ℓ= 0 and greater than 1 for ℓ > 0.
The ℓ = 0 eigenmode is always negative, λ0 = −α < 0, which simply corresponds to the

uniform radial deformation, which decreases the surface’s proper radius and therefore area.
This means that X 0

A has index at least 1.
However, X 0

A may have index larger than 1. The condition for the existence of additional
negative modes is α > (d − 1)/r2

0 , or

−r ′′0 >
1
r0

. (15)

The left-hand side in (15) controls the intrinsic curvature of X 0
A, while the right-hand side

determines the curvature of Σ along the orthogonal direction.9 In particular, if the lunch is
very prominent, then the latter will dominate and X 0

A will have index larger than 1. Since the
true bulge must have index 1, in such a case, it must not be the naive one, X b

A ̸= X 0
A.10

What then is the true bulge, X b
A? It must be a surface that spontaneously breaks the O(d)

symmetry of Σ, as illustrated in Fig. 3. Furthermore, there must exist a family of bulge sur-
faces related by this symmetry, and the Jacobi operator on the bulge must have a zero-mode
associated to the broken symmetry.

In d = 2, the metric reduces to ds2
Σ = dρ2 + r2(ρ)dϕ2, and the angular coordinate ϕ

has period 2π. For a parametrization given by the parameter σ, the embedding function
r = r(σ),ϕ = ϕ(σ) of a bulge can be found by extremizing the area functional

Area=

∫

dσ
Æ

ρ̇2 + r2ϕ̇2 , (16)

where the dot represents d/dσ. Taking σ to be the proper length of the bulge, the equation
of motion for ρ(σ) reduces to the equation of motion of a non-relativistic particle moving in
one dimension with zero total energy

ρ̇2 + Veff(ρ) = 0 , (17)

subject to the effective potential

Veff(ρ) =
r2

m

r2(ρ)
− 1 . (18)

The parameter rm = r2ϕ̇ is a constant of motion along the trajectory. The particle starts at
r = r0, moves towards smaller values of the radial coordinate r, and then bounces back at
r(ρ) = rm ≤ r0. The parameter rm is fixed from the condition that the bulge X b

A must be a
closed trajectory, so that ρ(ϕ) must be periodic. To select the minimal among all the possible
bulge candidates, we impose that X b

A wraps the circle once, so that ρ(ϕ) = ρ(ϕ + 2π). This
imposes the constraint

π=

∫ ρR
m

ρL
m

rmdρ

r2
p

−Veff(ρ)
, (19)

9The condition (15) is saturated if the metric on Σ is that of a round Sd in the neighborhood of X 0
A, i.e. the

profile function near ρ0 is given by r(ρ) = r0

Æ

1− (ρ −ρ0)2/ρ2
0 . In this example X 0

A is the equatorial Sd−1, which
has index 1. In this borderline case, X 0

A has additional zero modes, the ℓ= 1 spherical harmonics, which represent
the rotations of the Sd broken by the equator.

10Note that, even when (15) is false, so that X 0
A has index 1, it need not be the true bulge. Recall from subsection

2.3 that the bulge is the least-area index-1 surface in the relevant homology class. One can construct geometries
in which X 0

A has index 1 but there is another index-1 surface with lower area, which is therefore the true bulge.
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Figure 4: Specific example of a bulge which breaks spherical symmetry on a dust
shell microstate of a two-sided black hole. On the left, the Penrose diagram of the
geometry, where the trajectory of the dust shell is shown in blue. The semiclassical
state is defined on the time reflection-symmetric Cauchy slice Σ, consisting of two
exterior regionsΣoutL,R

delimited by the apparent horizons of the two black holes, and
a python’s lunch geometry Σin in the black hole interior. On the right, the geometry
of the python Σin. The naive bulge is the maximum sphere, which sits at the position
of the dust shell on Σ. The true bulge, in red, spontaneously breaks spherical and Z2
reflection symmetry of Σ.

where ρL,R
m are the roots of r(ρ) = rm closest to ρ0 with ρL

m < ρ0 < ρ
R
m < ρc . This constraint

determines the value of rm as a function of the profile r(ρ) of the geometry.
That a solution to (19) exists, subject to (15), can be shown as follows. The frequency of

small oscillations about ρ0 is

ω=

√

√V ′′eff

2
=

√

√

√

−
r ′′0
r0
>

1
r0

, (20)

since φ̇ = 1/r0 in this limit, the distance in φ traversed over a half-period is less than π.
On the other hand, as ρR

m approaches ρc , the potential near the turning point flattens out, so
the period goes to infinity. Between these two extremes, there therefore exists a value of rm
obeying (19). We can furthermore show that this solution has index 1. We first note that the
Jacobi operator has a zero-mode, corresponding to the broken rotational symmetry; this mode
has two nodes, at ρL,R

m , where the rotation acts tangent to the surface. Therefore this mode is
the “first excited state” (in quantum mechanics parlance), so there is exactly one eigenmode
with negative eigenvalue (the “ground state”). By the same logic, a solution that oscillates n
times, if it exists, will have a zero-mode with 2n nodes and index 2n−1. This guarantees that
the solution we found is the only one with index 1, hence it must be the bulge.

In higher dimensions, each bulge X b
A will be a deformed sphere that spontanteously breaks

the O(d) symmetry of Σ into some subgroup H. The bulges thus will have a number of zero
modes given by d(d−1)/2−dim(H), according to Goldstone’s theorem. What H is ultimately
will depend on the radial profile r(ρ) of the python. However in the scenario with mini-
mal but nonzero symmetry breaking, the negative modes of X 0

A will condense to preserve a
H = O(d − 1) subgroup, with d − 1 zero-modes. In this case the true bulge X b

A is a squashed
sphere along a particular axis, where the d−1 zero modes arise from the rotations of this axis.

Similarly, the bulge can break discrete isometries of the holographic state, such as Z2 re-
flection symmetry, or permutation symmetry in the case of multiple boundaries. In section 6
we will show this latter case explicitly for microstates of three dimensional black holes.

We close with a specific example of a symmetry-breaking bulge, name that associated with
semiclassical states of asymptotically AdSd+1 black holes with interior dust shells, described

13

https://scipost.org
https://scipost.org/SciPostPhys.16.6.152


SciPost Phys. 16, 152 (2024)

in [35, 36]. In these geometries, there is a “naive bulge” (incorrectly identified in [35] as the
true bulge) at the location of each spherical shell of dust, where the sphere carries the SO(d)
symmetry of the Cauchy slice. For the purposes of specificity and brevity, let us consider the
example of a single shell in the interior of a two-sided black hole, as described in [35], in the
case that the black hole on each side has the same temperature and the whole geometry has
a Z2 reflection symmetry across the shell. The geometry is built by starting with two copies of
the two-sided black hole, with the copies glued along the shell’s trajectory as in Fig. 4, using
the Israel junction conditions. The resulting background has time-reflection symmetry, and
the metric along the time-symmetric slice Σ corresponds to two copies of the metric on the
t = 0 slice of the black hole, glued together at some proper radius r0 in an exterior region
of each. Let the radial coordinate in AdS-Schwarzschild coordinates be y so that y →∞ is
the boundary, the radius of the Sd−1 factor scales as r(ρ) ∼ e y/RAdS , and the shell resides at
y = y0. If we choose a local radial coordinate ρ which is zero at the shell, and for which the
radial coordinate on each side of the shell is y ∼ y0 − |ρ|, then we have

r(ρ) = rshell − r ′0|ρ|+O(ρ2) , (21)

where r ′0 > 0. As the metric of the python is of the form (10), r ′′(ρ) has a delta-function
singularity with negative coefficient at the shell location ρ = 0, and the condition in (15) is
automatically satisfied. Using the formula 14, we can see that a surface coinciding with the
shell has infinite index. A natural candidate bulge arises from considering each side of the shell
to be the spatial slice of a cutoff AdS-Schwarschild geometry. One each side of the geometry,
consder the minimal “RT” surface ending on an equatorial Sd−2 of the dust shell; and glue
them together at the dust shell. There is a clear negative mode that arises from deforming
the intersection of this surface with the dust shell off of the equator. This solution will retain
an SO(d − 1) symmetry, and leave d − 1 zero modes behind, corresponding to the choice of
equator at which the bulge intersects the dust shell.

3.2 Planar symmetry & simple interiors

Planar-symmetric states can be obtained in the formal thermodynamic limit r0→∞ from the
spherical case. For the naive bulge candidate X 0

A, whose topology is now Rd−1, the spectrum
of J becomes continuous, and (15) is never satisfied, provided that r ′′(ρ0) is kept finite in the
scaling limit. In particular, this means that X 0

A for planar-symmetric states has index∞, and
is never the bulge surface.

If we regulate the transverse directions, unlike for minimal surfaces homologous to the
full boundary, the character of the bulge will depend on the value of the IR cutoff. Consider
for simplicity the d = 2 case presented above, and decompactify the spatial circle, so that the
geometry is

ds2
Σ = dρ2 + r2(ρ)dx2 , (22)

instead, for x ∈ R. The function r(ρ) is assumed to have a positive global minimum at ρ = 0,
a local maximum at ρb > 0, and a local minimum at ρc > ρb; this defines a python, as
above. (This is now a two-sided python, and the RT surface XA at ρ = 0 is no longer empty.
This will not affect our calculation.) Assume that we regularize the geometry by adding a
transverse IR cutoff at x± = ±Λ−1

IR /2, and requiring the bulge surface to meet the IR cutoff
surfaces orthogonally. This puts a Neumann boundary condition on the deformation function
η appearing in the second variation (6), ensuring that the Jacobi operator remains self-adjoint.

For the naive bulge candidate X 0
A, the Jacobi operator J will have a spectrum given by

λsr
2
0 = (2πsΛIR)2 + r0r ′′0 , for s = 0, 1,2, .... The eigenmodes correspond to the normal de-

formations ηs = cos(2πsΛIR x), which satisfy the boundary conditions set by the IR cutoff.
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Figure 5: As the IR cutoff Λ−1
IR is increased, the bulge undergoes a transition from the

naive symmetric bulge to an extremal surface which spontaneously breaks Z2 reflec-
tion symmetry. In the thermodynamic limit, the bulge aproaches the constriction at
any finite distance, and they only differ asymptotically in the transverse space direc-
tion. On the right figure, we include a minimax foliation of the lunch, in gray. For
the sake of ilustration, we have omitted the additional space beyond XA in case the
python is two-sided.

Therefore the index of X 0
A will be greater than 1 if the IR cutoff is large enough,

Λ−1
IR >

2π
Æ

−r0r ′′0
, (23)

and the naive bulge will not be the correct one in these cases.
The true bulge will locally satisfy the equation of motion (17) for the effective potential

(18), with the constant of motion rm = r2 ẋ . Accordingly, its endpoints will lie at the turning
points of Veff(ρ), which lie at the same value of the radial coordinate r(x±) = rm < r0. As
x goes from x− to x+, ρ will oscillate between the turning points, traversing that region n
times. From the properties of the minimax surface in section 2, assuming that there is no
other minimal surface homologous to A, the true bulge will be the minimal index-1 surface in
the lunch. The analysis of the index is most easily done by doubling the solution to obtain a
solution to the periodic problem of the previous subsection, and retaining the negative modes
of the latter solution that are invariant under a ϕ → 2π − ϕ reflection. This solution will
have n oscillations, hence (as argued there) 2n− 1 negative modes, of which n are reflection-
invariant. So the only solution with index 1, and therefore the bulge, is the n = 1 one. In
particular, this means that the endpoints will lie on different sides of this surface, as shown in
Fig. 5.

The endpoint radius rm is determined by the analog of (19) for the planar case, that is,

Λ−1
IR =

∫ ρR
m

ρL
m

rmdρ

r2
p

−Veff(ρ)
, (24)

where ρL,R
m are the two solutions to r(ρ) = rm closest to ρ0. From (24), it is easy to see that

the area of the bulge will satisfy

Area(X b
A)− rmΛ

−1
IR =

∫ ρR
m

ρL
m

dρ
Æ

−Veff(ρ) . (25)

In the thermodynamic limit ΛIR → 0, the endpoint asymptotes to the value of the radius
at the constriction, rm → rc . The right hand side of (25) remains finite, since the integrand
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is everywhere finite in the corresponding domain of integration. The left-hand side precisely
controls the exponent in the python’s lunch conjecture (3). The complexity to reconstruct the
black brane interior, according to the PLC (3), is

C(R)∼ expλc , (26)

where

λc =
1

8G

∫ ρR
m

ρL
m

dρ
Æ

−Veff(ρ)∼ O
�

N2Λ0
IR

�

, (27)

provides a finite complexity density in the thermodynamic limit.
We arrive at the conclusion that the symmetry breaking of the bulge in the planar case

makes the complexity to reconstruct the lunch not scale exponentially with the coarse-grained
entropy of the CFT system.11 The latter is determined by the generalized entropy of the con-
striction, Sgen(X c

A) ∼ O(N2Λ−1
IR ). In this naive sense, black brane interiors are “simple” to

reconstruct. The direct tensor-network interpretation is that there is an optimal way to undo
the tensor network from A, which uses unitary operators that break planar symmetry, follow-
ing an optimal foliation of the lunch which contains the bulge (see one such foliation in gray in
Fig. 5). This way, the amount of post-selection needed to undo the tensor network is drastically
reduced compared to the planar-symmetric foliation of the lunch.

We note, moreover, that the notion of bulge is somewhat ambiguous when we remove the
IR regulator of the transverse spatial directions. In the thermodynamic limit, the bulge sits on
top of the constriction except close to one of its endpoints, at x →−∞ (for the Z2 reflection
symmetric bulge the separation occurs at x → +∞). Furthermore, different IR regulators, e.g.
those defined by moving the branes around by a spatial translation x → x + a, will provide
different bulges in the thermodynamic limit. All of them will hug the constriction at finite
distance, since in the effective potential (18), the turning point is near a maximum of the
potential, which is where the particle is spending most of its time.12

4 Pythons in the vacuum

We now move into the study of classical bulges that arise from the spatial entanglement struc-
ture of the ground state of the holographic CFT. Our main goal in this section is twofold. First,
we provide an extensive study of the bulge for the entanglement wedge of two disks in AdS4 in
the connected phase. Second, we show that the bulge is significantly modified once a compact
dimension AdS×Y with product metric is added. This effect leads to the resolution of singular
bulges in AdS3.

11Although the exponent does not scale with the entropy and system size, the subexponential volume factor in
the complexity does scale; it may be estimated as follows:

CV =
Λ−1

IR

GℓAdS

∫ ρc

0

dρ r(ρ)∼ N 2Λ−1
IR . (28)

12Had we decided to regularize the transverse space using periodic boundary conditions, we would have found
a continuous family of bulges related by translational zero modes. As explained in section 3.1, in the 2+1 dimen-
sional case, these bulges cross the r = r0 surface twice. Still, when Λ−1

IR → 0 all of the bulges practically hug the
constriction except at a finite region, leading to a log-complexity, according to the python’s lunch conjecture (3),
which does not scale with the volume of the transverse space. This suggests that the effect of accumulation of the
bulge on the constriction (and thus non-extensive log-complexity) is also present for large spherical boundaries, in
the regime where the radial curvature of the lunch is much more prominent than the transverse curvature of the
sphere.
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Figure 6: The entanglement wedge a of two disjoint intervals A = A1 ∪ A2 in the
connected phase contains a python. The bulge X b

A is the red curve in the python,
consisting of two intersecting geodesics.

4.1 2+ 1 dimensions

The simplest example [27] of a classical python occurs in vacuum AdS3. Consider the entan-
glement wedge a of two intervals A = A1 ∪ A2 in the ground state of the CFT2 on a spatial
circle of radius ℓ. If |A| ≥ πℓ, the two intervals comprise more than half of the boundary space
and the RT surface XA is in the connected phase (see Fig. 6). The constriction consists of the
disconnected minimal surface, X c

A = XA1
∪ XA2

. The bulge consists of two geodesics which
cross each other, X b

A = XA1A3
∪ XA3A2

, and is therefore singular. Since this surface is singular,
the theory of small deformations reviewed in section 2 does not directly hold; in particular,
neither the normal vector nµ nor the extrinsic curvature K is well defined at the crossing point,
and deformations cannot in general be described in terms of a smooth function η.

Nonetheless, there is a sharp sense in which this surface has index 1. Its deformations
can be divided into three classes: (1) those that leave a neighborhood of the intersection
point unchanged; (2) those that move the intersection point, but leave the four segments
connecting it to the boundary as geodesics; and (3) those that desingularize the intersection
point. The first two kinds of deformations increase the total area of the surface, thus do not
contribute to the index. The third kind includes two deformation directions, which make
the surface homotopic to XA and to X c

A respectively. Both of these deformations decrease
the area, and they should be thought of as the two directions that a negative mode can be
turned on. Furthermore, since in both directions the area decreases already at first order in
the deformation, the second derivative (formally, the eigenvalue of the Jacobi operator) is
−∞.

One way to think about this situation is as follows. The surfaces homologous to A fall into
two homotopy classes, corresponding to the connected and disconnected phases. (There are
other homotopy classes, but these are the only ones that are relevant for defining the bulge.)
Each class contains a single extremum of the area, the RT and constriction respectively, which
are local minima. These two homotopy classes meet along a codimension-one locus, consisting
of surfaces with the cross topology. In terms of the area functional, this locus is a ridge, with
the area having a finite negative slope moving away from the ridge in either direction. The
minimal-area surface among the ones on the ridge is the cross consisting of two intersecting
geodesics. There are no other extremal surfaces in this homology class.
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Figure 7: On the left, we excise two points of the full boundary. One can get this
configuration as a limit from figure 6 where A3 and A4 have each been reduced to a
point. This configuration can be recognized as vacuum AdS3 in Rindler coordinates.
On the right, removing a point from an interval generates a constriction and a python
for the proper subregion A= A1 ∪A2. One can get this configuration as a limit from
figure 6 where A4 has been reduced to a point. The bulge hugs the constriction and
the difference in areas vanishes, giving no exponential complexity to reconstruct the
lunch.

The area of the bulge has a clear expression in terms of boundary entropies

Area(X b
A)

4G
= S(A1A3) + S(A2A3) = S(A1A4) + S(A2A4) , (29)

and thus the complexity according to (3), is

C(R)∼ exp
�

I(A3: A4|A1)
2

�

, (30)

where I(A3: A4|A1)≡ S(A1A3)+S(A1A4)−S(A1)−S(A1A3A4) is the the conditional mutual
information. The conditional mutual information is non-negative by virtue of strong subaddi-
tivity of the von Neumann entropy. In the holographic context, this was proven in [37].13

4.1.1 Excising boundary points

As an additional observation, we note that the appearance of a python in the vacuum can even
be sensitive to losing access to a measure-zero subset of the boundary Cauchy slice.

We first consider excising two points of the asymptotic boundary of AdS3 as illustrated in
the left of Fig. 7. We can think of removing such points as beginning with a cutoff entangling
surface and taking the cutoff to infinity. The situation is the same as describing AdS in Rindler
coordinates. The acceleration horizon leaves a measure-zero causal shadow on the constant
global time slice, granted that we can access to the rest of the boundary A1 ∪ A2. There is
no python in this case. As a check on this, we note that this is what we would get from the
two-interval case if we had shrunk A3,A4 to antipodal points.

If, instead, we shrink just A4 to a point, leaving A3 as a finite interval, we obtain the
situation shown on the right side of Fig. 7. The region A1∪A2 can be thought of as an interval
with a point removed from its interior. Removing this point has the effect of creating a python.

13The geometric volume of the python N is independent of the sizes of Ai , by virtue of the the Gauss-Bonnet
theorem. Namely, the python N is bounded by four geodesics which meet perpendicularly to the asymptotic
boundary, and thus the internal angles between them vanish, giving

∫

N
κ= −2π, where κ is the Gaussian curvature.
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Figure 8: Excising three or more points generates a python for the full boundary. On
the left, the case of three points, where the bulge is the union of the RT surfaces for
A1, A2, and A3. The bulge coincides with the constriction, giving no exponential
complexity to reconstruct the python. On the right, excising four points, the bulge is
the bulge for A1 ∪A2 plus the RT surface for A1 ∪A2.

However, the bulge coincides with the constriction, X b
A = X c

A = XA1
∪XA2

, implying a vanishing
exponent in the complexity (leaving only the subexponential volume factor).

We could also include A3 in the region, but still leave out its endpoints, so it now covers
the entire boundary save 3 points, as shown in the left part of Fig. 8. Again, there is a python,
and again the bulge coincides with the constriction, X b

A = X c
A = XA1

∪ XA2
∪ XA3

, leaving a
vanishing exponent in the complexity.

Finally, with four points excised, the situation is slightly more complicated, given that the
bulge for A will only partially coincide with the constriction, as shown in Fig. 8. Assuming
that A1 ∪ A2 is large enough to have a connected entanglement wedge, the bulge for A will
be the cross for A1 ∪A2 plus the RT for A1 ∪A2 (which is also the RT for A3 ∪A4), while the
constriction is the union of the RTs of the individual intervals:

X b
A = XA1∪A3

∪ XA1∪A4
∪ XA3

∪ XA4
, X c

A = XA1
∪ XA2

∪ XA3
∪ XA4

. (31)

This points to a very interesting property of the PLC: the log complexity to reconstruct the
python with access to A is the same as the log complexity to reconstruct python with only
A1∪A2. We will come back to this property when studying the black hole interior in section 6.

Thus, according to the PLC, in the vacuum of a 2d CFT, removing 4 or more points from
the boundary produces an exponential complexity, while removing fewer than 4 points does
not. This very specific prediction would seem to provide a useful target for testing the PLC, if
the complexity can somehow be independently estimated.

4.2 Higher dimensions

We will now move to the higher dimensional pythons in vacuum AdSd+1 for d > 2, for a
boundary subregion consisting of two disks A= A1∪A2 ⊂ Sd−1. Consider that the sizes of the
disks and their positions are such that the entanglement wedge corresponding to this subregion
is connected, as in the previous case. The constriction consists again of the disconnected
surface, X c

A = XA1
∪ XA2

. Our case study will be AdS4, where we will explicitly find the
bulge X b

A. As we will show, unlike in AdS3, X b
A is a smooth surface, a property that is expected

to hold for any dimension d > 2.
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Figure 9: On the left, the three extremal surfaces anchored to the two circles ∂A
consist of the disks themselves, A, and two catenoids X±, where X− is represented
in red. On the right, the phase diagram of ∆Area(X±) = Area(X±)−Area(A) for the
two catenoids, as a function of the disk radius ρ0. For ρ0 ≫ 1, this is a simplified
model of a python, where the RT is XA = X+, the constriction is X c

A = A, and the
bulge is X b

A = X−.

4.2.1 Warmup: Flat R3

The features of the bulge surface X b
A are qualitatively captured by the simpler model of two

parallel and coaxial disks A = A1 ∪A2, both of radius ρ0, in R3. The disks are separated by a
distance z0 = 1 which sets the scale of the system. It is convenient to use adapted cylindrical
coordinates,

ds2
Σ = dz2 + dρ2 +ρ2dϕ2 , (32)

where the disks lie at z = ±1
2 , respectively. For sufficiently large radius, ρ0 > ρc ≈ 0.754,

there are three extremal surfaces homologous to A: the disks themselves, and two catenoids,
which we call X±:

ρ = a± cosh
z

a±
, (33)

where the parameters a± are the larger and smaller solutions to the boundary condition

ρ0 = a cosh
1

2a
. (34)

These obey a− < ac < a+, where ac ≈ 0.417 is the solution to tanh(1/(2a)) = 2a. For ρ0 < ρc ,
there are no solutions to (34), and the disks are the only extremal surface, while for ρ0 = ρc
there is one solution. These solutions are illustrated in Fig. 9. In the limit in which the disks
are very large ρ0≫ 1, the catenoid X+ becomes approximately cylindrical, a+ ≈ ρ0, while X−
pinches off, a− ∼ (logρ0)−1.

The area of X± is given by

Area(X±) = πa±
�

1+ a± sinh
�

a−1
±

��

. (35)

The phase diagram is represented in Fig. 9. X− always has larger area that the other two
surfaces, while X+ and A switch, with X+ larger for ρ0 less than about 0.948.

Now let us consider the indices of these surfaces. Intuitively, it is clear that the flat surface
A is stable; this also follows from the fact that its Jacobi operator (7) is simply minus the
Laplacian, which clearly has no negative modes on the disk with Dirichlet boundary conditions.
Consider starting with ρ0 < ρc and continuously increasing ρ0. At ρ = ρc , a new critical point
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of the area functional appears and bifurcates. From a Morse theory perspective, we expect that
the smaller of the two, X+, should have index 0 (hence the analogue of the constriction) and
the larger one, X−, index 1 (the analogue of the bulge). This is supported by the fact that the
larger-area one sits geometrically between the two smaller-area ones. We will now show that
it is indeed the case that X+ has index 0 and X− has index 1.

The Jacobi operator (7) takes the following form on the catenoid, with a being either a+
or a−:

J = −
sech2(z/a)

a2

�

a2∂ 2
z + ∂

2
ϕ + 2sech2(z/a)

�

. (36)

Defining ζ= z/a (which ranges from −1/(2a) to 1/(2a)) and fixing a mode in the ϕ direction,
η(ζ,ϕ) = einϕ f (ζ), the eigenvalue equation becomes

Jn f := sech2 ζ
�

− f ′′ +
�

n2 − 2sech2 ζ
�

f
�

= a2λ f . (37)

The parameter a now enters only in setting the boundary condition and rescaling the eigen-
value. The operator Jn is self-adjoint with respect to the inner product

〈 f , g〉a :=

∫ 1/(2a)

−1/(2a)
dζ cosh2 ζ f ∗g (38)

(dζ cosh2 ζ being the area element on the catenoid), so it admits a negative eigenvalue if
and only if there exists a function f such that 〈 f , Jn f 〉a < 0. This implies that, if a negative
eigenmode f1 exists for some a = a1, then a negative eigenmode must also exist for any
a2 ≤ a1, since the function f2 which is equal to f1 on the interval [−1/(2a1), 1/(2a1)] and 0
outside of it, obeys 〈 f2, Jn f2〉a2

= 〈 f1, Jn f1〉a1
< 0. (Note that f2 is continuous by virtue of the

Dirichlet boundary condition on f1 at ±1/(2a1). Note also that f2 is not itself an eigenmode,
and this argument does not tell us the value of the negative eigenvalue, only its existence.)
This argument holds separately for each ζ-parity sector.

The quantity 〈 f , Jn f 〉a is the same as the energy expectation value (with respect to the
usual L2 norm) for a particle on the interval [−1/(2a), 1/(2a)] with wave function f , subject
to the potential

Vn(ζ) = n2 − 2sech2 ζ . (39)

So Jn has a negative mode if and only if the particle has at least one negative-energy state.
This potential is solvable in the a → 0 limit; the ground state wave function is sechζ, with
energy n2−1. For n≥ 1, this is non-negative, ruling out negative-energy states for any a. For
n = 0, the ground state is the only bound state. By continuity, this suggests the existence of
a negative mode for small a, which we will confirm below. On the other hand, the lack of an
odd negative-energy state rules out an odd negative mode at any a, limiting the index to at
most 1 (since the first excited state is odd).

Next, we note that for a = ac , J0 has a zero mode: fc = 1 − ζ tanhζ. This rules out
negative modes for a > ac , showing that X+ has index 0. For a < ac , fc can be smoothed
out near ζ = ±1/(2ac), decreasing 〈 fc , J0 fc〉a, proving the existence of a negative mode, and
confirming that X− has index 1.

If one is mainly interested in the limit a → 0, it turns out that there is a mathematically
elegant way to prove that X− has index 1. The trick is to conformally map X− to the Riemann
sphere using the Gauss map n : X−→ S2 \ {N,S}, where N,S denote the north and south pole,
respectively. We leave the details of this map for appendix A. The central property which makes
things simpler is that under this map, (6) acquires the following form on the sphere

δ(2)Area(S2 \ {N,S}, h̃) = −
1
2

∫

S2\{N,S}
dΩ
Æ

h̃η
�

∇̃2 + 2
�

η , (40)
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where h̃µν = (sin2 θ )hµν is the round metric on S2\{N,S}, for the polar angle θ . As noted in ap-
pendix A, we can extend the metric h̃i j smoothly to the two poles N,S and hence, the index(X−)
= index(S2) with the metric h̃i j and the quadratic form (40). It is straightforward to evaluate
the index of the second order differential operator (40) in L2

h̃
(S2). The eigenvectors corre-

spond to spherical harmonics (−∇̃2 − 2)Yℓ,n = λ̃ℓ,nYℓ,n , with eigenvalues λ̃ℓ,n = ℓ(ℓ+ 1)− 2.
Therefore, there is a single negative mode {Y0,0}, and three zero modes {Y1,0, Y1,±1}, making
the differential operator (40) of index 1 in L2

h̃
(S2).

A numerical analysis reveals that the negative eigenvalue of J0 on the line is λ0 ≈ −0.564.
The eigenfunction falls off quickly at large ζ, so the eigenvalue is essentially unchanged at
small a. According to (37), the eigenvalue of J is then λ≈ λ0/a

2.

4.2.2 Two disks in AdS4

We can now extend the previous analysis to full-fledged AdS4, where the bulk Cauchy slice is
H3, for two boundary disks A= A1∪A2 ⊂ S2 with an entanglement wedge a in the connected
phase. Following [38] (see also [39]) we begin in adapted cylindrical coordinates in H3 (and
set ℓAdS = 1)

ds2 =
1

1+ P2
dP2 + (1+ P2)dz2 + P2dϕ2 , (41)

where constant-z slices now corresponds to hyperbolic disks H2, with P a radial coordinate
on each disk. In the conformal frame adapted to these coordinates, the spatial boundary is
just the flat cylinder R× S1, and the subregion A corresponds to two semi-infinite cylinders,
A = {z ≤ z1} ∪ {z ≥ z2}. We shall consider the reflection-symmetric case z1 = −z2 =: z0
without loss of generality.

In this configuration, the constriction X c
A will correspond to the disconnected surface, con-

sisting of the two hyperbolic disks, X c
A = {z = z0} ∪ {z = −z0}. The rest of the extremal sur-

faces correspond to two connected “catenoids” X± with embedding functions (P, z±(P),ϕ) ∈ H3

given by (cf. [38])

z±(P) = α±F

�

arccos
a±
P

,
1+ a2

±

1+ 2a2
±

�

− β±Π
�

1

1+ a2
±

, arccos
a±
P

,
1+ a2

±

1+ 2a2
±

�

, (42)

where F(φ, m)=
∫ φ

0 (1−m sin2 θ )−1/2dθ , and Π(n,φ, m)=
∫ φ

0 (1− n sin2 θ )−1(1−m sin2 θ )−1/2dθ

are elliptic integrals of the first and third kind, respectively, and α± =
a±(1+a2

±)
q

(1+a2
±)(1+2a2

±)
and

β± =
a3
±

q

(1+a2
±)(1+2a2

±)
are two constants. Imposing the boundary condition z(∞) = z0, we can

numerically solve for the two values of the throat size a± as a function of the separation of
the two disks. The connected solutions X± exist as long as z0 ≤ zc ≈ 0.501. They satisfy
a− < ac < a+ for ac ≈ 0.538.

The area difference ∆Area(X±) = Area(X±)−Area(X c
A) is finite, and given by

∆Area(X±) = 4π

�

1+
a2
±
Æ

1+ 2a2
±

K

�

1+ a2
±

1+ 2a2
±

�

−
q

1+ 2a2
±E

�

1+ a2
±

1+ 2a2
±

�

�

, (43)

where K , E are complete elliptic integrals of the first and second kind, respectively. As we show
in Fig. 10, the RT surface XA for z0 less than about 0.438 corresponds to X+.

As in the flat space example of the previous subsubsection, X+ has index 0 while X− has
index 1; since this is the only index-1 surface, it must be the bulge. To show this, we will
employ the same technique in AdS4 as we did for finding the negative mode of the catenoid
in R3.
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Figure 10: On the left, the three extremal surfaces anchored to the two circles
∂ R consist of the disconnected minimal surface X c

A = XA1
∪ XA2

, the RT sur-
face XA = X+ and the bulge X b

A = X−. On the right, the phase diagram of
∆Area(X±) = Area(X±)−Area(X c

A) as a function of the boundary separation z0.

Evaluating the Jacobi operator in the coordinate system (41) for which the embedding
function of the catenoid is (42), leads to the eigenvalue equation

1
P2

�

(P4 + P2 − a2 − a4)
∂ 2

∂ P2
+ P(1+ 2P2)

∂

∂ P
+
∂ 2

∂ ϕ2
+

2a2(1+ a2)
P2

− 2P2

�

η= −λη , (44)

where we have set a± in (42) to a for brevity. Note that in this coordinate system, P ∈ [a,∞).
Using axial symmetry, we can assume the eigenfunctions to be of the formηn(P,ϕ) = einϕ fn(P).
We now perform the change of variables and rescaling

ρ =
1
2

log

�

1+ 2P2 + 2
p

P4 + P2 − a2 − a4

1+ 2a2

�

, (45)

fn(P) =

�

2a2

(1+ 2a2) cosh2ρ − 1

�1/4

gn(ρ) , (46)

to get a one-dimensional Schrödinger problem,
�

−
d2

dρ2
+ Veff(n,ρ)

�

gn(ρ) = λgn(ρ) , (47)

in terms of the effective potential

Veff(n,ρ) =
9
4
−

5(a2 + a4)
((1+ 2a2) cosh 2ρ − 1)2

−
1− 4n2

2((1+ 2a2) cosh 2ρ − 1)
. (48)

We can now solve for the smallest eigenvalue λ0 as a function of a numerically by a shoot-
ing method. For n = 0, there is a negative eigenvalue if a < ac ≈ 0.538, as illustrated in Fig.
11. This precisely corresponds to X−, and shows that it has Morse index larger than 0. For
n> 0 there are no negative eigenvalues. Therefore, X− has index 1 while X+ has index 0.

4.3 Compact dimensions

Top-down string theory constructions of duals of CFTs take the form AdSd × Y , where Y typ-
ically contains a factor whose size is of order the AdS scale. For example, the type IIB string
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Figure 11: Smallest eigenvalue λ0 of the Jacobi operator J as a function of throat size
a. The extremal surface X− with a < ac ≈ 0.538 always has one negative eigenvalue
and therefore has index 1. The extremal surface X+ with a > ac has no negative
eigenvalues and therefore has index 0, i.e. it is locally minimal.

dual to the D1-D5 system takes this form with d = 3 and Y = S3 × T4 (or S3×K3), where the
radius of the S3 is the AdS scale and the T4 or K3 are of order the string scale.

We would like to investigate how the extra dimensions affect the RT, constriction, and
bulge surfaces. For a product metric ds2 = ds2

M + ds2
Y on a product manifold M × Y , an

extremal surface X in M lifts to an extremal surface X×Y , since the components of the extrinsic
curvature in the Y directions vanish. However, since the Jacobi operator will have KK modes
on Y , the index of X and X × Y may be different. More precisely, the KK modes contribute
positively to the Jacobi operator; hence if the index of X is 0 then the index of X × Y is also
0. Therefore, the RT and constriction computed on M , and lifted to M × Y , are candidates for
the RT and constriction on the full space. For the RT, we can prove that this is correct surface.

Lemma 3. Let XA be the minimal-area surface in M homologous to the boundary region A. Then
XA × Y is the minimal-area surface in M × Y homologous to A× Y .

Proof. Let X̃ be a surface in M × Y homologous to A × Y . For each point y ∈ Y , define
X̃ (y) ∈ M as the intersection of X̃ with M × {y}, X̃ (y) := {x ∈ M : (x , y) ∈ X̃ }. X̃ (y) is
homologous to A (via the intersection of the homology region for X̃ with M ×{y}). Therefore
Area(X̃ (y))≥ Area(XA), so we have

Area(X̃ )≥
∫

Y
dy
p

gY Area(X̃ (y))≥ Vol(Y )Area(XA) = Area(XR × Y ) . (49)

Via maximin [6], this statement extends to the HRT formula. It therefore justifies the
standard practice in the holographic entanglement literature of ignoring the extra dimensions.
While we don’t have a proof, we suspect that the same holds for the constriction. In fact, we
conjecture that the only index-0 surfaces in M×Y are those of the form X ×Y for some index-0
surface X in M .

The situation is very different at index 1. If X is an index-1 surface in M , then X × Y
has index at least 1; but the KK modes may lead to several negative modes, hence an index
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Figure 12: The fundamental domain of the second Scherk surface S embedded in R3,
for the case of orthogonal planes. After the identification z ∼ z + 2π of the top and
bottom edges, the topology of S becomes that of a sphere with four punctures. The
cross gets resolved by a smooth transition in the internal space.

larger than 1. One therefore has to search for the bulge among surfaces that are not products,
but that genuinely probe the extra dimensions. Whether this happens depends on the ratio
between the negative eigenvalue of X and the KK scale, which in turn is determined by the
size of Y . Usually, the negative eigenvalue of X is roughly determined by the AdS radius; so if
Y is much smaller than the AdS scale then X × Y has index 1, but if it is AdS-sized (as in the
case of AdS3 × S3 and AdS5 × S5), its index may not be 1. However, our very first example,
treated in subsubsection 4.3.1 will be an exception, as the negative eigenvalue of X in that
case is −∞, leading to a non-trivial bulge for extra dimensions of any size.

4.3.1 Warmup: R2 × S1

As we discussed in subsection 4.1, the bulge for two boundary intervals in AdS3 is a cross, and
its negative eigenvalue is −∞. Therefore, for AdS3×S1, the cross times S1 is an extremal sur-
face with infinite index, hence cannot be the bulge. To simplify this situation, we approximate
it with R2 × S1 — appropriate for example if the S1 is much smaller than the AdS3.

Since the origin of the cross’s infinite negative mode is its singularity, we might guess that
the true bulge desingularizes the cross. In fact, there is a unique extremal surface in R2 × S1

that desingularizes the cross [40], and it is called the second Scherk surface S [41]; see Fig.
12.14 It can be implicitly defined by

cos z = cos2φ cosh
�

x
cosφ

�

− sin2φ cosh
�

y
sinφ

�

, (50)

where φ is the half angle between the asymptotic planes. We can also write a parametric form
for the Scherk surface using the Weierstrass–Enneper representation (see appendix B). The
topology of S is that of a sphere with four punctures, representing the four boundary points
delimiting the subregion A. The single scale in the problem is the radius of S1, and thus the
size of the domain of resolution of the cross is parametrically controlled by this scale.

We can again use the trick of the Gauss map n : S→ S2 to show that S has index 1. The
Gauss map conformally maps the induced metric hµν onto the round metric on the sphere,
h̃µν = e2ωhµν. In this case the Scherk surface is mapped to the sphere with four punctures on
the equator, n(S) = S2 \ {θ = π/2;ϕ = φ,π−φ,π+φ, 2π−φ}, where (θ ,ϕ) are the polar

14In the mathematics literature, the second Scherk surface is usually defined as a minimal surface in R3, periodic
in z, and hence the index is infinite. But in our case, we are compactifying the periodic direction and thus the
index is finite.
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Figure 13: The bulge X b
A in red is a ‘Scherk surface’ S ⊂ H2×S1 which does not wrap

the internal S1 and resolves the singular cross. The internal S1 is deconstructed in
the figure, where the top and bottom edges of the strip need to be identified. The
characteristic scale of resolution of the cross is set by the asymptotic size of S1, which
in top-down holographic constructions is of the order of the AdS3 scale.

and azimuthal angles respectively and φ is the half-angle between the asymptotic planes. We
can apply the argument outlined in appendix A to the Scherk surface and find that it is also
index 1.

Note that the radius R of the S1, as the only scale in the problem, determines the negative
eigenvalue, which is proportional to 1/R2. In the limit R → 0, the Scherk surface becomes
simply the cross in R2, which as we’ve noted has index 1 and negative eigenvalue −∞.

4.3.2 AdSd+1 × Y

The situation in AdS3 × S1 is expected to be qualitatively similar to the one presented above,
with the AdS3 cross resolved into a surface with the same topology as the Scherk surface; see
Fig. 13.

Consider now the more “realistic” case of AdS3 × S3 × T4, with the S3 having the same
radius as the AdS3 and the T4 being much smaller. The cross is certainly not the true bulge,
for the reasons given above. On AdS3×S3, it must get resolved into some non-singular surface
that is not a product. It would be a very interesting exercise to try to find this surface. Since its
characteristic scale and negative eigenvalue are set by the AdS radius, one could then safely
ignore the T4.

In higher-dimensional AdS spacetimes, the “naive bulge” computed ignoring the extra di-
mensions is not singular and has a finite negative eigenvalue. For example, the eigenvalue λ0
of the catenoid bulge in AdS4 is plotted, in units where ℓAdS = 1, in Fig. 11. If, in the presence
of extra dimensions, there is a KK mode such that the total eigenvalue of the Jacobi operator
is negative, then the naive bulge has index greater than 1 and is not the true bulge. No matter
the size of the compact space, this will happen for sufficiently large boundary regions, since
in the limit z0 → 0, a− goes to 0 and λ0 go to −∞. (Even if the naive bulge has index 1,
it may not be the true bulge, as there may exist an index-1 non-product surface with smaller
area.) It would be interesting to investigate this phenomenon quantitatively and attempt to
find the true bulge, for example in the paradigmatic case of the AdS5×S5 vacuum of the type
IIB string, dual to the ground state of four dimensional N = 4 SYM on a spatial S3.
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Figure 14: On the left, covering space of the Z2 orbifold. On the right, AdS3/Z2
orbifold. The entanglement wedge of A contains a python. The bulge X b

A is the pair
of red radial geodesics that intersect the conical defect.

Figure 15: On the left, covering space of the Z6 orbifold. On the right, AdS3/Z6. The
entanglement wedge of A contains a python. For n> 3, there are two geodesics with
exactly one self-intersecting point, and thus index 1. The bulge X b

A in red corresponds
to the smallest among these two geodesics.

5 Pythons in excited states

In this section, we qualitatively describe the features of classical pythons in excited states of the
holographic system. We discuss three main examples: orbifolds of AdS3, Lin-Lunin-Maldacena
(LLM) geometries, and exterior regions of black holes.

5.1 AdS3 orbifolds

We start by considering orbifolds of the form AdS3/Γ , where Γ is a finite subgroup of isometries
generated by an elliptic element g of the diagonal PSL(2,R) subgroup of isometries. The
elliptic element g has a fixed point in the bulk, which corresponds to a conical defect in the
orbifold, of defect angle 2π

n , where n= |Γ |.
Consider a boundary interval A comprising more than half of the asymptotic boundary of

the orbifolded space. In Fig. 14 we present the case n = 2, together with the covering space.
We see that the entanglement wedge of A in the orbifold contains a python. The bulge X b

A in
this case is somewhat peculiar since it consists of two radial geodesics that intersect the conical
defect. According to the python’s lunch conjecture, the conical defect can be reconstructed,
albeit with exponential complexity.
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For n≥ 3 the bulge becomes less singular. In Fig. 15 we present the case n= 6, together with
the covering space. Again, we see that the entanglement wedge of A in the orbifold contains
a python. The bulge X b

A is however smooth, and consists of a self-intersecting geodesic that
winds around the conical defect.

In general, for n ≥ 3, there will be n locally extremal surfaces anchored to the endpoints
of a boundary interval A. These correspond to geodesics in the covering AdS3 space, whose
endpoints are related by the action of Γ . In the orbifolded space, the extremal surfaces with one
self-intersecting point will have index 1 and will therefore be candidates to be the bulge. Given
an interval A of opening angle π < θ < 2π, the constriction, RT, and bulge will correspond to
the geodesics in the AdS3 covering space with opening angles θn , 2π−θ

n , and 2π+θ
n respectively.

The regularized lengths of these geodesics can be found in e.g. [42] and are given by15

L(X c
A) = 2ℓAdS log
�

2ℓAdS

ϵ
sin
�

θ

2n

��

, (51)

L(XA) = 2ℓAdS log
�

2ℓAdS

ϵ
sin
�

2π− θ
2n

��

, (52)

L(X b
A) = 2ℓAdS log
�

2ℓAdS

ϵ
sin
�

2π+ θ
2n

��

, (53)

where ϵ is a bulk IR regulator. As illustrated in Fig. 15, it is interesting to note that for n > 3
there is another index-1 extremal surface X index-1 (which as a consequence of Lemma 1 of Sec
2.3 must intersect X b

A), with opening angle 4π−θ
n in the covering space, and length correspond-

ing to

L(X index-1) = 2ℓAdS log
�

2ℓAdS

ϵ
sin
�

4π− θ
2n

��

. (54)

From Lemma 2 of section 2.3, the bulge is the minimal among the index-1 extremal surfaces.
For n > 3, and π < θ < 2π, sin

�4π−θ
2n

�

> sin
�2π+θ

2n

�

, and therefore this surface is never
the bulge, given that L(X index-1) > L(X b

A). For n > 4, there are additional self-intersecting
geodesics with index greater than 1 (due to multiple self-intersecting points) and are thus not
candidates to be the bulge.

According to the PLC (3), the complexity to reconstruct the lunch from A scales exponen-
tially with the exponent

logC(R)∼ 2c
3

log
sin
�2π+θ

2n

�

sin
�

θ
2n

� , (55)

where c = 3ℓ/2G is the Virasoro central charge of the dual CFT2.
It is interesting to note that if the region A is taken to be full boundary, there is no python,

given that there is no horizon in the bulk. However, by excising a single point from the bound-
ary (θ → 2π in the previous expressions), the entanglement wedge of A will now contain a
python, and the complexity to reconstruct the lunch will grow exponentially, with exponent

logC(R)∼ 2c
3

log
�

2 cos
π

n

�

. (56)

Note that for n = 3 the complexity is not exponential in c, since the exponent vanishes. This
can be related to the situation in which we excised three points in section 4.1 from the full
AdS3 boundary circle, where we found the same result (in fact, in the covering space the con-
figuration is precisely that of the right Fig. 7).16 For n> 3, the complexity scales exponentially.

15For n= 2, the length of the bulge is constant, L(X b
A) = 2ℓAdS log(2ℓAdS/ϵ).

16For n = 2, the complexity is also zero in this limit, but there is no causal shadow. This is easy to see from the
configuration in the covering space, where we excise two points (see the left case in Fig. 7).
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Figure 16: Structure of the python on the LLM geometry.

A possible interpretation is that, with access to the full boundary, information about the con-
ical defect, such as its deficit angle, can be reconstructed simple operators: these can involve
measuring the holonomy of a spatial Wilson loop operator along the boundary S1. Removing
a single point loses access to the loop operator, and thus to simple observables that have access
to the conical defect.

5.2 LLM geometries

The next class of states we consider are a subset of the the LLM geometries of [43]. LLM states
are of particular interest because there is a precise and one-to-one map between the boundary
states and the bulk geometries, and there is some hope of understanding the bulk-to-boundary
map quite explicitly.

The LLM spacetimes are a class of static, 1/2 BPS, asymptotically AdS5×S5 solutions of type
IIB supergravity. The metric of a constant-time slice can be described as a fibration of S3

α× S3
σ

over the upper half space of R3, where α and σ are simply labels for the two S3 factors. Let
z be one of the coordinates of R3, with the fibration defined on the z ≥ 0 half. A bounded
region of the z = 0 plane is painted “black”, with the rest painted “white”; different choices of
black region yield different LLM solutions. As we approach a point on that plane, one of the
three-spheres shrinks to zero size; at a black point, the S3

α shrinks, while at a white point, the
S3
σ shrinks. The upper half space is bounded asymptotically by a hemisphere, representing the

conformal boundary of the spacetime. The metric, and a description of the dual state, can be
found in [43].

The simplest example is AdS5×S5 itself, described by a black disc on the z = 0 plane. Here
the S5 is described as S3

σ fibered over a disk, and the spatial slice of AdS5 as S3
α fibered over a

half-line, with the disk and half-line together make up the upper half space.
The next simplest solution is described by a black annulus. A complete description is given

in [43, 44]. If the annulus is sufficiently large, the geometry can be shown to interpolate
between two versions of AdS5 × S5 with black and white regions (and thus the roles of the
S3s) exchanged, as shown in Fig. 16. We denote the “ultraviolet” (UV) and “infrared” (IR)
geometries, based on the relationship between the radial direction of AdS spaces and the
energy scale of the dual theory. In the IR, S3

σ is part of the AdS5 and S3
α is part of the S5, the

opposite of their roles in the UV part of the geometry.
Ref. [44] argued that such geometries have an entanglement shadow. In particular they

considered the RT surface for half the boundary. Due to the symmetry, there are two minimal
surfaces with equal area, passing on either side of the IR region; neither one enters it. In
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Figure 17: Structure of the python on a thermal (or grand-canonical) state of the
CFT. On the left, the structure of the python in 2+1 dimension, in which the bulge is
a self-intersecting geodesic. On the right, the cross section of the higher dimensional
python, in which the bulge is smooth and contains a catenoid-like neck.

this symmetric situation, it is ambiguous which surface is the RT surface and which one the
constriction. There is also an extremal surface that does penetrate this region, namely the
symmetric surface that bisects the S3

α and wraps the other dimensions. It seems likely that these
are the only extremal surfaces; if this is true, then Morse theory implies that the symmetric
one has index 1.

If we break the symmetry by taking the entangling surface slightly off the equator of the
boundary, so that the region A is slightly smaller than half the boundary, then the closer mini-
mal surface is the smaller one and is the RT surface. In this configuration, there is no python,
and the entanglement wedge does not include the IR region.

If we now expand A from slightly less than half the boundary to slightly more than half, the
farther minimal surface becomes the RT surface XA and the closer one becomes the constriction
X c
A. The region between them, which includes the entire IR region, is a python. Thus the

entanglement wedge jumps from not including the IR region to including all of it, reflecting
the ability to begin to recover information about a complex state when one has access to more
than half of the degrees of freedom of the theory [45,46]. The symmetric surface presumably
persists but is now slightly deformed; assuming again that there are no other extremal surfaces
lurking in this geometry, this surface is the bulge X b

A.
A cartoon of the background and relevant surfaces is shown in Fig. 16. The exterior region

represents the UV AdS5 × S5. The shaded region is the IR region encoding the excitation of
the vacuum. The extremal surfaces are shown. This situation appears highly reminiscent of
the situation for the AdS-Schwarzschild geometry, for which the true RT surfaces sit outside
the horizon and an additional surface enters the horizon. Indeed, the LLM geometries can be
considered as a model of black holes; in particular simple local operators give no information
as to the detailed structure of the state [47,48].

5.3 Eternal black holes

Another relevant situation arises in this context if we replace the dilute matter by an equi-
librium black hole in AdS. Microscopically, we can consider a high-temperature thermofield-
double state of two holographic CFTs, or a grand-canonical version of this state. Such a state
is semiclassically dual to an eternal black hole in AdS, connecting two different asymptotic
boundaries.

As illustrated in Fig. 17, we consider a disk subregion A of a single boundary component in
this setup. For such an A, there are two competing index-0 surfaces in the homology class of A:
the connected minimal surface X1 and the disconnected minimal surface X2∪Xh. The compact
surface Xh corresponds to the horizon of the black hole. For large enough A, there is a python:
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Figure 18: A two-sided black hole microstate with a python.

the RT surface is the disconnected surface, XA = X2∪Xh, and the constriction is X c
A = X1. As a

consequence, there is a bulge surface X b
A of index 1 in between them. In 2+1 dimensions the

bulge corresponds to a self-intersecting geodesic [27], while in higher dimensions, or when the
compact dimensions are considered, the bulge X b

A is a smooth surface; in higher dimensions it
has a catenoid-like neck [49]. As A is taken to be the entire boundary, the python dissapears.
In this limit, the entanglement wedge a becomes the exterior of the black hole, which can be
reconstructed in a simple way via appropriately smeared HKLL operators of the boundary.

6 Pythons in the black hole interior

In this section, we will study states of multiple black holes with shared geometric interiors.
In the holographic system, these correspond to entangled states of independent CFTs. For the
purpose of this section, we will restrict to subregions A made up of entire compact boundary
components.

6.1 Two-boundary wormhole

We start by considering a bipartite state |Ψ〉 ∈ H1 ⊗H2 whose bulk description contains the
conformal boundary A1 ⊔A2 and a two-sided python geometry on the time-symmetric slice,
shown in Fig. 18.17 Let us select the boundary component A2 as our subregion. We can assume
without loss of generality that A2 contains the black hole interior in its entanglement wedge,
as indicated in Fig. 18. The constriction X c

A2
is simply the apparent horizon of the right black

hole, while the RT surface XA2
= XA1

is the apparent horizon of the left black hole. In the
interior of the python region Ñ in between these two surfaces, there exists an index-1 bulge
surface X b

A2
.

According to the python’s lunch conjecture, the amount of post-selection required to access
the interior from A2 scales with the exponent

logC(R2)∼
1
2

�

Sgen(X
b
A2
)− Sgen(X

c
A2
)
�

. (57)

Next we consider applying the conjecture to the full boundary A= A1A2. The RT surface of
the full boundary is clearly empty, XA = ;, which represents the fact that the two-sided state is
pure. The constriction for A is simply the union of the two apparent horizons, X c

A = XA2
∪X c

A2
.

At first we might guess that the bulge is just twice the A2 bulge, 2X b
A2

; however, given that
the index is additive under disjoint union, this surface has index 2, and is therefore not a
candidate for the bulge. According to Lemma 2 of section 2.3, assuming that there is no other

17Explicit examples of such states include the so-called partially entangled thermal states (PETS) in holographic
CFTs [35,36,50–52].

31

https://scipost.org
https://scipost.org/SciPostPhys.16.6.152


SciPost Phys. 16, 152 (2024)

minimal surface in the interior, the true bulge is the minimal index-1 surface homologous
to the entire boundary (or, equivalently, null-homologous). This must include X b

A2
, the only

index-1 extremal surface; in order to obey the homology constraint, we must add another
index-0 surface, the smallest of which is the apparent horizon of the left black hole; in all, we
find X b

A = X b
A2
∪ XA2

. This implies

Sgen(X
b
A)− Sgen(X

c
A) = Sgen(X

b
A2
)− Sgen(X

c
A2
) . (58)

Therefore, according to the PLC (3), the complexities of reconstructing the interior region
using just A2 or all of A are the same:

C(R12) = C(R2) , (59)

where R12 is the recovery channel of the global bulk-to-boundary map N (ρa) = VρaV †, while
R2 is the recovery channel of the restricted map N ′(ρa′) = TrA1

(Vρa′ ⊗σā′V
†), which only

involves acting on A2. Both recovery channels in (59) need to be understood as restricted to
states that differ in the interior region Ñ ⊂ a∩a′, given that the entanglement wedge a strictly
contains a′.

As remarked in the introduction, we find that this behavior of the complexity is in contrast
to the one expected for the class of two-sided states motivating the PLC in [27]. The states
in [27] were by assumption obtained dynamically from the unitary time evolution coupling
the two subsystems, starting from a simple entangled state without a bulge and evolving it for
a relatively short time. For those states, with access to the full boundary, the reconstruction
was by assumption simple; one just needed to undo the unitary time-evolution. In that case,
the individual tensors of the tensor network modelling the semiclassical state are correlated
to produce the effect that, when A is taken to be the full boundary, the python effectively
dissapears.

In contrast, in this case of two-sided geometric states, using the PLC for the full boundary,
we find that the reconstruction using both sides is just as complex as the one restricted to
subsystem A2. Applying the conjecture to A1A2 amounts to the implicit assumption that the
tensor network structure modelling the geometry is generic, so different tensors at different
points appear uncorrelated, at least at leading order. This makes the bulge for two-sided geo-
metric microstates not go away even when the full system A1A2 is considered. The assumption
of uncorrelated tensors is reasonable since, after all, these states are not prepared unitarily by
the collapse of matter, and generic tensor networks with large bond dimension are successful
in capturing the RT formula [15].

What is really peculiar is that, according to the PLC (3), there is no computational advan-
tage at all in adding the second boundaryA1 in order to reconstruct the black hole interior. This
is certainly a non-trivial feature of the conjecture applied to these states, given that, with ac-
cess to both boundaries, there are known simple bi-local holographic probes that contain some
information about the interior. An example is the EPR correlation function 〈Ψ|OA1

OA2
|Ψ〉 of

heavy scalar primary O, which presumably contains information about the length of the worm-
hole. However, according to the tensor network/geometry intuition, these probes will not help
to decode the local physics of the lunch, at least deep in the black hole interior. The optimal
way to reconstruct the lunch is to follow a minimax level set path, which involves leaving
subsystem A1 intact, and overcoming the postselection solely acting on A2.

6.2 Multi-boundary wormhole

We will now show that this feature of the PLC extends to multi-boundary states with connected
wormholes. To be concrete, we consider time reflection-symmetric microstates of a family of
three dimensional black holes. Microscopically, the states in question live in the Hilbert space
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of n copies of a putative holographic two-dimensional CFT, |Ψ〉 ∈ H1 ⊗ . . . ⊗Hn. The states
possess a semiclassical description, with initial data specified at the moment of time-symmetry
of the spacetime, Σn

g , which consists of a Riemann surface of genus g and n boundaries. We
now give a brief summary of how these states are constructed (see e.g. [53–56] for details).18

The constraint equations of AdS3 gravity require the metric on Σn
g to be the unique con-

stant negative curvature metric on this Riemann surface. Mathematically, the standard way to
construct this metric is to uniformize the Riemann surface on the hyperbolic disk Σn

g = H2/Γ

via a discrete subgroup Γ of PSL(2,R) isometries, generated freely by hyperbolic elements,
which leads to a smooth bulk metric. The group Γ is known as a Fuchsian group of the second
kind (for n = 0 this reduces to the standard Fuchsian uniformization of compact Riemann
surfaces of genus g > 1).

The Lorentzian evolution of this initial data can be constructed as follows. Observe that
PSL(2,R) can be extended as the diagonal subgroup of SO(2,2)≃ SL(2,R)L×SL(2,R)R/Z2 of
simply connected isometries of AdS3. This is essentially the subgroup which commutes with
time-reflection symmetry and thus preserves the time reflection-symmetric hyperbolic slice
which uniformizes Σn

g . Therefore, a complete vacuum spacetime solution can be constructed

simply from the quotientÖAdS3/Γ , which respects the metric of Σn
g at the time-reflection sym-

metric slice. HereÖAdS3 represents the causal wedge in AdS3 of the time reflection-symmetric
boundary circle, where the fixed points of Γ have been removed. Specifically, the spacetime
metric can be written locally in FRLW coordinates, as

ds2 = −dt2 + cos2 (t/ℓAdS) (dΣ
n
g)

2 , (60)

where (dΣn
g)

2 is the constant negative curvature metric on Σn
g . For more details, we refer to

the reader to [42,53–58] and references therein.
The simplest family of states constructed this way is |Σ2

0〉, which are specified by a hyper-
bolic Riemann surface Σ2

0 with annulus topology. This surface is uniformized as Σ2
0 = H2/Γ by

a Fuchsian group Γ generated by a single hyperbolic element Γ = 〈g〉. The annulus Σ2
0 arises

naturally as the fundamental domain of Γ . The metric in this case can be written explicitly,

ds2|Σ2
0
= dρ2 +

L2

(2π)2
cosh2(ρ/ℓAdS)dφ

2 , (61)

for ρ ∈ R and φ ∈ [0,2π). This is simply the initial data of the BTZ black hole, obtained in a
different way. These states contain a single modulus, the length L of the horizon, which is the
minimal closed geodesic on Σ2

0.19 The length of the horizon L naturally determines the ADM
energies of the corresponding state. In this case, these states do not contain pythons — the
Einstein-Rosen bridge has vanishing volume on Σ2

0.
For n > 2 or g > 0, the rest of the states include pythons in the black hole interior. For

given values of (n, g) the states are parametrized by moduli in (discrete quotients of) the
Teichmüller space Tg,n of Riemann surfaces of genus g and n boundaries. The natural way to
parametrize the moduli space of Σn

g is to cut the python region bounded by closed geodesics
into pairs of pants, and use the so-called Fenchel-Nielsen coordinates to glue these pairs of
pants together. In this way, it is easy to see that total number of moduli is 6g − 6 + 3n. In
our case of concern, we will fix the length of each apparent horizon Li for i = 1, ..., n, and in
this way fix the coarse-grained entropy of each boundary. Moreover, for the purpose of this
discussion, we will restrict to g = 0 and n > 2, where the number of additional moduli is
2n− 6.

18Some of these states are prepared via suitable Euclidean CFT path integrals. However, we will not worry on
how they are prepared, simply we view them as valid state vectors in Hilbert space.

19Additionally, there is an infinite set of closed geodesics, of lengths Lk = |k|L, labelled by the winding number
around the horizon, which is in one-to-one correspondence with the conjugacy classes of Γ , that is, [gk] for k ∈ Z.
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Figure 19: On the left, fundamental domain of the Fuchsian group Γ generated by two
elements uniformizing the three-boundary wormhole Σ3

0 with equal horizon moduli,
L1 = L2 = L3. On the right, illustration of the three-boundary wormhole.

6.3 Three-boundary wormhole

We now consider three-boundary wormhole states |Σ3
0〉. In order to motivate the general

claim, let us set L1 = L2 = L3 for the time being. The corresponding states have discrete
Sym(3) permutation symmetry. Fixing the lengths of the horizons determines the moduli of
Σ3

0 completely. A representation of the fundamental domain of Γ is shown in Fig. 19.
Index-1 extremal surfaces on Σ3

0 consist of self-intersecting geodesics with exactly one
crossing point, where crossing is only permitted between neighbouring geodesic segments.
As for the case of vacuum AdS3 of section 4, it is only in this case that there are just two
deformations that resolve the cross and reduce the area of the surface, so the surface has
index 1. For multiple geodesic segments meeting at the same point, or for multiple crossing
points, there are more than two area-reducing deformations, so the index is always greater
than 1. This leaves little topological freedom to determine what the index-1 surfaces are in
Σ3

0. Namely, bulge candidates will necessarily wrap around two of the constrictions. In Fig.
19 we have represented X b

A1A2
, the extremal index-1 surface homologous to A1A2.

Given this, we consider different boundary subregions A, consisting of different numbers
of connected boundary components. We list all of the relevant extremal surfaces for the PLC in
table 1, which up to permutations, determine all the boundary-homologous pythons for these
states.

We observe that, in accordance with the discussion of section 3, the bulge for the full
boundary breaks the Sym(3) permutation symmetry of the state |Σ3

0〉 into a Sym(2) subgroup.
We also evaluated the complexity to reconstruct the lunch for each subregion in table 1. We
observe that the bulge for the three boundaries is the union of the bulge for the two boundaries
and the constriction of A3. This implies that the complexity of reconstructing the lunch is
independent of whether A3 is used or not,

C(R123) = C(R12) , (62)

where R123 is the global, unrestricted recovery map, while R12 is the map restricted to A1A2.
The minimax foliation indicates that the optimal way to reconstruct the lunch is to leave A3
intact, and to only act on A1A2.

We now want to study how this feature generalizes to the case in which L1, L2, L3 are three
general moduli. To do this we will use a one-to-one correspondence between closed geodesics
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Table 1: Relevant extremal surfaces in the python for each boundary region. For
A = A1A2 there are two additional bulge candidates: X b

A1A3
∪ XA1

and X b
A2A3
∪ XA2

.

Both of these surfaces have larger area than X b
A1A2

, and are therefore not the bulge
of the python according to Lemma 2 of section 2.3. For A = A1A2A3, there are five
additional candidate bulge surfaces: X b

A1A3
∪XA2

and X b
A2A3
∪XA1

, with the same area

as X b
A1A2
∪ XA3

, so any of these three surfaces can be considered equally. Moreover,

the index-1 surfaces X b
A1A2
∪XA1

∪XA2
, X b

A1A3
∪XA1

∪XA3
and X b

A2A3
∪XA2

∪XA3
have

larger area, and thence they do not correspond to the bulge.

A RT constriction bulge 8G logC(R)

A1 XA1
- - -

A1A2 XA3
XA1
∪ XA2

X b
A1A2

L12 − L3

A1A2A3 ; XA1
∪ XA2

∪ XA3
X b
A1A2
∪ XA3

L12 − L3

in Σn
g and conjugacy classes in Γ . The length of the geodesic associated to the conjugacy class

of the group element g is determined by

L = 2cosh−1

�

�

�

�

Trg
2

�

�

�

�

, (63)

in the representation g =
�

a b
c d

�

of the PSL(2,R) isometry, acting by fractional linear transfor-
mations z→ az+b

cz+d , of the Poincaré upper half plane model of H2. Namely, this is the geodesic
that connects the two fixed points of g at the Im(z) = 0 boundary, which becomes closed,
and stays smooth up to crossing points, by virtue of the fact that g acts freely and properly
discontinuously in H2, for any g ∈ Γ .

The group Γ for the three-boundary wormhole is freely generated by the elements

g1 =

�

cosh L1
2 sinh L1

2

sinh L1
2 cosh L1

2

�

, g2 =

�

cosh L2
2 eα sinh L2

2
e−α sinh L2

2 cosh L2
2

�

. (64)

The parameter α controls the separation between the g1 and g2 semicircles delimiting the
fundamental domain of Γ . For these circles not to intersect each other, we must impose the
constraint

eα > coth
L1

4
coth

L2

4
. (65)

Given this choice of generators, the third horizon is associated to the conjugacy class of
the group element g = g1 g−1

2 ∈ Γ . From (63) the length of the third horizon is determined in
terms of the previous three moduli,

L3 = 2 cosh−1
�

coshα sinh
L1

2
sinh

L2

2
− cosh

L1

2
cosh

L2

2

�

. (66)

It is possible to check that (65) is equivalent to the condition L3 > 0.
The index-1 surface X b

A1A2
will correspond to the closed (self-intersecting) geodesic asso-

ciated to the conjugacy class of the group element g = g1 g2 ∈ Γ . Using (63) again, we arrive
at the length of the index-1 surface

L12 = 2 cosh−1
�

coshα sinh
L1

2
sinh

L2

2
+ cosh

L1

2
cosh

L2

2

�

. (67)
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Table 2: Relevant extremal surfaces in the python for each boundary region for the
general case of different moduli with L3 > L+21. The complexity to reconstruct the
lunch is constant for any choice of A.

A RT constriction bulge 8G logC(R)

A3 XA1
∪ XA2

XA3
X b
A1A2

L12 − L3

A1A3 XA2
XA1
∪ XA3

X b
A1A2
∪ XA1

L12 − L3

A2A3 XA1
XA2
∪ XA3

X b
A1A2
∪ XA2

L12 − L3

A1A2A3 ; XA1
∪ XA2

∪ XA3
X b
A1A2
∪ XA1

∪ XA2
L12 − L3

Substituting coshα in terms of the length of the horizons from (66), we obtain the simple
relation for the length of X b

A1A2
in terms of the three horizon lengths

cosh
L12

2
= 2 cosh

L1

2
cosh

L2

2
+ cosh

L3

2
. (68)

The expressions for L13 and L23 follow from simple permutation of the indices in this formula.
It is easy to check that the length of the index-1 surfaces in the lunch is always larger than the
horizon lengths, Li j > Lk ∀ i, j, k ∈ {1, 2,3} with i < j.

Consider L1 ≤ L2 ≤ L3 without loss of generality. In this case, the three index-1 surfaces
satisfy

L12 ≤ L13 ≤ L23 . (69)

Moreover, assume that L3 > L1+ L2, so that A3 can itself access the interior.20 In this case
it is straightforward to verify the following relations

L13 ≥ L12 + L1⇔ L3 ≥ L+12 , (70)

L23 ≥ L12 + L2⇔ L3 ≥ L+21 , (71)

where

L+i j = 2 cosh−1

�

cosh
Li

2
cosh

L j

2

�

2cosh Li − 1+

√

√

coth2 Li

2
coth2

L j

2
+ 4 cosh Li(cosh Li − 1)

��

.

(72)
It is also easy to show that L1 + L2 ≤ L+12 ≤ L+21.

Assume that L3 ≥ L+21. Given (70) and (71), we can directly evaluate the bulge for all of
the boundary subregions. In table 2, we list all possible pythons, with their relevant extremal
surfaces and the complexity to reconstruct the lunch, for any choice of A. Again, we find that
when L3 ≥ L+21, the complexity to reconstruct the interior is independent of whether A1 or A2
is included in the reconstruction,

C(R123) = C(R13) = C(R23) = C(R3) , (73)

since the minimax foliation of the lunch leaves the horizons XA1
and XA2

intact. In the limit
L1, L2, L3→∞, formulated in terms of generalized entropies, the condition L3 ≥ L+21 becomes

Sgen(XA3
)≳ Sgen(XA1

) + 3Sgen(XA2
) . (74)

20In the opposite case where L3 < L1 + L2, the interior can only be accessed with two boundaries and the
complexity to reconstruct the lunch with the complete holographic system A1A2A3, C(R123), is simply the minimal
amongst the complexities of reconstructing it with two boundaries, i.e. C(R123) = min{C(R12),C(R13),C(R23)}.
Any of the three quantities can be minimal, depending on the moduli.

36

https://scipost.org
https://scipost.org/SciPostPhys.16.6.152


SciPost Phys. 16, 152 (2024)

Note that this means that the fraction of the coarse-grained entropy carried by A3 must be at
least 2

3 of the total entropy in order for this effect to take place. In that particular case A1 and
A2 each carry 1

6 of the total coarse grained entropy of the state.21

In general, for L3 ≤ L+21, the complexity will not completely plateau as a function of the
number of boundaries in A. This means that the reconstruction of the interior with three
boundaries will be strictly simpler than with A3, i.e. C(R123) < C(R3). However, due to the
topological constraints of the index-1 surfaces, it will always be true that the simplest way to
reconstruct the lunch with two boundaries will be the optimal way to reconstruct the lunch
with three,

C(R123) =min{C(R12),C(R13),C(R23)} . (75)

These results suggest the following generalization: for geometric black hole microstates,
the complexity to reconstruct the interior plateaus after a certain amount of entropy is in-
cluded, in the form of a single black hole. After this point, adding more black holes into the
boundary system in order to reconstruct their shared interior does not help — the optimal
reconstruction leaves these additional black holes intact. It is tempting to conjecture that, for
an n-boundary wormhole, the single black hole has an entropy at least a fraction n−1

n of the
total entropy in order for the complexity to plateau. This includes the case of the PETS for
n= 2. We shall not attempt to provide a proof of this in this paper.

The complexity plateau phenomenon discussed in this section is closely analogous to the
non-extensivity of the log-complexity for black branes discussed in subsection 3.2 above. In
both cases, the effect occurs because, for sufficiently large subsystems, the bulge coincides
(exactly or approximately) with the constriction. We expect this to be a general phenomenon,
and points to a surprising aspect of the complexity of reconstruction.

6.4 Generalization for n-boundary wormhole

For n > 3, the multi-boundary wormhole states |Σn
0〉 include a landscape of closed minimal

surfaces in the black hole interior. There are also additional index-1 surfaces that wrap more
than two horizons at the same time. This makes the situation vastly more complicated given
that the python includes multiple lunches. Moreover, in these cases, the minimal surfaces in
the interior generally intersect each other.

Therefore, we must generalize the procedure specified in (4) to determine the complexity
to reconstruct the lunch, to include situations where multiple choices of the set S of non-
intersecting adjacent minimal surfaces are possible. The proposed generalization is to find the
foliation with the least amount of postselection from the following steps:

1. Select a set S of non-interesecting homologous adjacent minimal surfaces in N such that
XA, X c

A ∈ S.

2. Find the bulges X b,i
A

as the maximin surfaces in between each pair of adjacent minimal
surfaces in S.

3. Compute the complexity of reconstructing the lunch given the discrete set of bulges and
minimal surfaces associated to this choice of S, namely using (4).

4. Minimize the complexity over the choice of S:

C(R)∼min
S

max
i< j

¨

exp

�

Sgen(X b
i )− Sgen(X j)

2

�«

. (76)

21In the pinching limit L1→ 0 one does not recover the result for the two-boundary lunch since all of the bulges
in table 2 wrap the horizon XA1

.
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Figure 20: The fundamental domain of the Fuchsian group Γ uniformizing the four-
boundary wormhole |Σ4

0〉. The additional two moduli can be taken as the length
and twist parameter of e.g. X in or X ′in. On the left, given this choice of interior
minimal surface, the python for A1A2, which includes two lunches. The assumption
is that Sgen(X in) > Sgen(XA1

) + Sgen(XA2
), so that the entanglement wedge of A1A2

contains the whole lunch. On the right, a different choice of closed geodesic X ′in
(which intersects X in) corresponds to a different python. The complexity will be
given by the minimal complexity amongst all the choices of minimal surfaces in the
interior.

This last step can be viewed as a slight generalization of the conjecture (4), for cases in which
multiple choices of S exist on N .

Consider the case n= 4 for concreteness, where the fundamental domain of Γ is presented
in Fig. 20. In this case, there are 2 additional moduli that determine the state, aside from
the horizon lengts Li , for i = 1, 2,3,4. Using Fenchel-Nielsen coordinates, these moduli can
be chosen to be the length and twist parameters of an additional closed minimal surface in
the black hole interior, such as e.g. X in or X ′in in Fig. 20. Note that these two locally minimal
surfaces intersect each other.

Following the steps of the general procedure, in Fig. 20 we represent two choices of S for
region A = A1A2, namely the two corresponding to X in or X ′in. Evaluating the reconstruction
complexity (76) requires minimizing over the choices of this minimal surface in the black
hole interior. The optimal choice of S and the complexity will depend on the moduli on a
complicated way, and we will not attempt to quantify the different regimes here.

7 Discussion & Outlook

In this paper we have provided an extensive study of bulges, extremal surfaces of Morse index
1, found in time reflection-symmetric python geometries. We have related the definition of the
bulge to Almgren-Pitts min-max theory, and studied its topological and geometric properties
for a variety of time reflection-symmetric states of the holographic system. Our results are
potentially useful for testing the python’s lunch conjecture, if properties of the complexity of
reconstruction can be independently studied. These results also generate some open questions
that we list here, in order to structure some possible avenues of future research:
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Are black brane interiors really simple? We have found that the bulge generally breaks the
spatial isometries of the python, and that among other examples, this is particularly relevant
for the reconstruction of extended boundary systems. In particular, for black brane interiors
the bulge approximately coincides with the constriction exept on a finite region, and the log-
complexity of reconstruction predicted by (3) is not extensive in the size of the system. At face
value, this seems to suggest that there exists a “simple” way to reconstruct these lunches with
all the accessible entropy of the boundary system. Following the tensor network/geometry
intuition, one such way would be to apply suitable unitaries which break planar symmetry,
following a minimax foliation of the python that contains the bulge.

Another situation where naively simple interiors were present was originally faced in [28]
when considering an equilibrated AdS black hole formed by the collapse of matter.22 In that
case, the reconstruction of the black hole interior seems simple a priori since the spacetime
lacks a non-minimal QES. The lesson of [28] is that there is an implicit choice of code subspace,
namely the bulk Hilbert space of the quantum fields, in the definition of the bulk-to-boundary
map V . Given a code subspace, to say that V is simple, one needs to make sure that there are
no pythons for any state of the code subspace. If one picks a late time slice Σt of the black hole
interior, the full “bulk effective field theory” code subspace on Σt is large, since the volume of
Σt scales with the black hole entropy S. Given a general excited state of this code subspace
on Σt , the state will backreact substantially a scrambling time towards the past, and generate
a past singularity. Moreover, the entanglement entropy of the bulk state might need to be
considered in the full-fledged QES prescription. In general, these effects create a non-minimal
QES in the backreacted spacetime. Therefore, reconstructing large code subspaces in Σt is
exponentially hard. Roughly speaking, the original reconstruction seemed simple because one
was implicitly restricting to a small code subspace of states in Σt , namely those that escape
the interior under time evolution towards the past.

With this in mind, we come back to our black brane system. The difference with the case
in [28] is that for the black brane there is already a classical python, but the complexity density
of reconstructing the lunch does not scale extensively with the entropy of the boundary system.
One might wonder whether there is an impicit choice of a small code subspace in our case as
well, that renders the interior reconstruction simple by the same reason as for the black hole.
However, it is possible to see that this is not the case. In our 2+1 dimensional example, we can
consider modest but large code subspaces with extensive entropy, consisting of a single degree
of freedom per position x = nx0, for n ∈ Z, at some fixed radial distance in the black brane
interior, where x0 ∼ O(ℓAdS). Consider a generic state of this code subspace. The dilute backre-
action of this state, together with its dilute entropy density, will modify the bulge locally. Since
the original bulge is a classically extremal surface, its total change in generalized entropy is
controlled by the entropy of the bulk state at leading order, δSgen(X b

A)∼ Sbulk(ρout)∼ O(Λ−1
IR ).

This provides a log-complexity that scales with the log dimension of the code subspace, which
by assumption is extensive in the size of the transverse dimension. Nevertheless, the dimen-
sion of the code subspace does not scale with N2, unlike the black brane entropy, which is
Sgen(X c

A) ∼ O(N2Λ−1
IR ). Thus, naively, the problem still remains to understand why, for ex-

tensive code subspaces, the log-complexity to reconstruct them seems not to scale with the
entropy of the system. Moreover, it is not obvious that there are simple states at all, given that
the states we consider are not formed by collapse. It would be interesting to understand these
issues better.

Bulges and compact dimensions Given that the bulge is sensitive to the internal manifold
Y , its generalized entropy will contain information of the specific holographic system (via e.g.
its internal global symmetries), which goes beyond purely spatial correlations of the ground

22We thank Netta Engelhardt for pointing out this similarity to us.
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state. From the analogy between geometry and tensor networks, the optimal way to decode
the local physics of the entanglement wedge from A will involve the higher-dimensional bulge
X b
A, and will thus necessarily include a non-trivial foliation of the internal manifold. This effect

is relevant in all known microscopic constructions of AdS/CFT due the lack of scale separation
between the scale of Y and the AdS scale. At the same time, such an observation poses a
challenge to the tensor network models of python geometries in the ground state, which are
constructed solely from the RT formula, with no specific dynamical input, which makes them
insensitive to the internal manifold. It would be interesting to see whether tensor network toy
models can incorporate this effect.

Relation to entwinement and matrix space entanglement In [59–62] the area of the bulge
X b
A in the orbiforld AdS3/Zn was interpreted as measuring “entwinement”, a quantity that

emerges from the orbifold description of the theory, with boundary interpretations offered
in [48, 62–65]. In section 5, we have pointed out that this same surface is associated with
the bulge of the python, which measures some notion of the complexity of reconstructing the
entanglement shadow with access only to A. It is possible that these two interpretations are
connected in some way.

On the other hand, in the context of LLM geometries, one motivation for [44]was to better
understand surfaces that bisected the S5 (or related interior geometries) in the AdS duals of
N = 4 U(N) super-Yang Mills theory on the Coulomb branch. These were studied in [66,67]
who argued compellingly that such surfaces meaured entanglement between matrix degrees
of freedom in the field theory. However, [44] showed that at the origin of the Coulomb branch,
the surface bisecting the S5 was not minimal; rather, if we cut off AdS5 at large radius, dual to
a UV cutoff in the field theory, the minimal surface hugs the cutoff. This points to the surfaces
studied in [66, 67] as having an intepretation as some kind of complexity, perhaps related to
the matrix degrees of freedom of the theory.

Multi-boundary wormhole states For multi-boundary wormhole states of the black hole
which include pythons, we have found that, considering regions A comprised of multiple
boundaries, the complexity of reconstructing the lunch plateaus after some number of con-
nected components have been included in A. This feature is closely related to the non-
extensivity of the log-complexity for extended systems such as black branes. In this case,
certain connected components of the bulge and constriction coincide exactly.

Given a multi-boundary wormhole state, this effect implies that all the quantum informa-
tion of the code subspace in the shared interior of the multiple black holes is encoded via V
in a subset of them; applying non-trivial unitaries to the rest results in a reconstruction which
is not optimal. We note that this feature, and the possibility of applying the geometric PLC
to multi-boundary regions A, should be captured by generic tensor network models of the
multi-boundary python, under the assumption that the individual tensors that constitute the
geometry appear uncorrelated, at least approximately. In fact, for the multi-boundary worm-
hole states |Σn

0〉 that we have analyzed, a Haar random state model was originally proposed
in [42], which captured the mutual information of these states. A finer model of the states
|Σn

0〉 is to consider a random tensor network model of the geometry, with tensors of large bond
dimension. Such a model directly captures the physics of the RT formula [15], and there-
fore the multipartite entanglement structure. Moreover, in random tensor network models
with uncorrelated local tensors, it seems reasonable to expect that the way to implement post-
selection unitarily is generically via brute-force Grover search locally, so they will satisfy the
assumptions of the PLC and will reproduce the geometric features that we have studied.

Without knowledge of how the multi-boundary states with shared interiors are prepared
unitarily, the genericity assumption seems reasonable. However, this feature is in contrast
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with “simple” tensor network states such as the ones motivating the conjecture [27], where
the bulge arises for proper subregions A as an artifact of the coupling of A to Ā in the unitary
time evolution that drives the full system together (in the case of [27] A is the early Hawking
radiation and Ā is the black hole). For such states, the tensors in the tensor network are corre-
lated and the bulge dissapears once A is taken to be the full system. It would be interesting to
test this prediction of the conjecture and understand if and why geometric bulges cannot form
dynamically in a simple way, when allowing operators which couple the different boundaries.

Time dependence In our analysis, we have restricted ourselves to time reflection-symmetric
states, where all of the extremal surfaces lie on the time reflection-symmetric Cauchy slice Σ.
Situations in which the time-reflection symmetry is spontaneously broken by the bulge and
other locally minimal surfaces have been reported in [31] for specific spherically symmetric
initial data in near-extremal black hole interiors. The specific data has been constructed using
the two-dimensional description of these systems given by JT gravity with additional matter
fields coupled to the metric. In all of the examples that we have analyzed in this paper, how-
ever, we do not expect such an effect. An interesting open problem that we leave for future
work is to investigate the nature of more general extremal surfaces, such as the surfaces called
bounces (cf. [31]), that are expected to arise in these situations.
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A Gauss map trick

It was noted in [68] that the index of a complete orientable extremal surface Σ in R3 is only
dependent on the Gauss map, n : Σ → S2 which is defined such that for each p ∈ Σ, n(p)
is the unit normal vector to Σ at p. We are interested in extremal surfaces of finite index
which is equivalent to the condition of finite total curvature,

∫

Σ
|κ1κ2| <∞ where κ1,2 are

principal curvatures of the extremal surface [68]. Further, every extremal surface of this type
is conformally equivalent to a compact Riemann surface with punctures, Σ̄ \ {p1, . . . , pk} [69]
and thus we can extend the Gauss map n to n̄ : Σ̄ \ {p1, . . . , pk} → S2.

The second order variation of area of Σ̄ is (we are going to omit writing the punctured
points explicitly)

δ(2)Area(Σ̄, h) =
1
2

∫

Σ̄

p

h
�

hi j∂iη∂ jη− Ki jK
i jη2
�

. (A.1)
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The quadratic form A.1 is invariant under conformal variations of the type h̃i j = e2ωhi j . We
get the following transformations under Weyl scaling:

Æ

h̃= e2ω
p

h , (A.2)

h̃i j = e−2ωhi j , (A.3)

K̃i j = eωKi j . (A.4)

Hence,
δ(2)Area(Σ̄, h̃) = δ(2)Area(Σ̄, h) . (A.5)

To illuminate the connection between the (extended) Gauss map and the index, we note
that

Ki jK
i j = Ki jh

ilh jmKlm

= Tr
�

P2
�

= −2κ ,

where P is the shape operator and κ is the Gaussian curvature. We also have a linear map
dn̄ : TpΣ̄→ Tn̄(p)S

2 with the property that its determinant is the Gaussian curvature, κ. There-
fore, we get

Ki jK
i j = −2κ= −2 det(dn̄) . (A.6)

Since the quadratic form A.1 is conformally invariant as demonstrated by A.5, we can
choose the rescaled metric h̃i j = −κhi j . Then A.1 simplifies to

δ(2)Area(Σ̄, h̃) = −
1
2

∫

Σ̄

Æ

h̃η
�

∇2 + 2
�

η . (A.7)

In fact, the metric h̃i j is the pullback under the Gauss map23 n̄ and hence, h̃i j = −det(dn̄)hi j .
We are interested in finding the number of negative modes of the quadratic form A.1. The

most natural vector space on which the quadratic form A can act is L2
h(Σ) with inner product

〈φ,ψ〉=
∫

Σ

p
hφ∗ψ. The index of A is defined as the dimensionality of the largest subspace of

L2
h(Σ) on which A is negative definite. Note that the inner product is not preserved under the

action of Gauss map but it is true that L2
h(Σ) ⊂ L2

h̃
(Σ̄) since the Gaussian curvature is bounded

from above. A rigorous proof of index(Σ) = index(Σ̄) involves constructing a basis of L2
h(Σ)

using a basis of L2
h̃
(Σ̄) and showing that the span of either set of basis vectors is the same.

This was shown in [68] with the assumption that h̃ is a smooth metric on Σ̄ (including the
punctures).

We will give a variant of the proof in [68] in case of a catenoid. We have Σ = catenoid,
Σ̄ = S2 \ {N,S} where N,S are the two poles, n̄ : S2 \ {N,S} → S2. The induced metric h̃i j
is smooth at punctures and hence the quadractic form A.7 can be analyzed on S2 with the
round metric. The eigenvalues are given by λl,n = l(l +1)−2 and therefore the index(Σ̄)= 1.
Since L2

h(Σ) ⊂ L2
h̃
(Σ̄), index(Σ) ≤ 1. To show that it is equal to 1, we need to find ψ ∈ L2

h(Σ)

such that δ(2)Area(Σ̄, h̃) < 0. To ensure that ψ is in L2
h(Σ), we need to put regularity con-

dition that ψ→ 0 as we approach the puncture. Let us consider the standard round metric,
ds̃2 = dθ2 + sin2 θdφ2 and a function ψ given by

ψ=

¨θ−θp

θ0
, θ − θp < θ0 ,

1 , θ − θp ≥ θ0 ,
(A.8)

23The linear map dn̄ : TpΣ̄→ Tn̄(p)S
2 can be extended to a Weingarten map W : TpΣ̄→ TpΣ̄ and technically, the

metric h̃i j is a pullback under the Weingarten map.
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near each puncture θp and θ0≪ 1. Then A.7 becomes

δ(2)Area=
π

2
p− 4π , (A.9)

where p is the total number of punctures. In case of a catenoid, p = 2 and hence δ(2)Area< 0.

B Weierstrass–Enneper representation

The Weierstrass–Enneper representation is a convenient way of parametrizing extremal sur-
faces in R3. Let f be an analytic function and g a meromorphic function on some domain
in C, such that f g2 is analytic. This will furnish an extremal surface in R3 with embedding
coordinates given by

x = Re

�∫ z

0

dz′(1− g(z′)2) f (z′)

�

, (B.1)

y = Re

�

i

∫ z

0

dz′(1+ g(z′)2) f (z′)

�

, (B.2)

z = Re

�

2

∫ z

0

dz′ f (z′)g(z′)

�

. (B.3)

In fact, any nonplanar extremal surface in R3 can be represented by the above parametrization.
For a singly periodic Scherk surface, the domain is the unit disk, and

f (z) =
4

(z2 − z2
0)(z2 − z̄2

0)
, g(z) = iz , (B.4)

where z0 = eiφ with φ being the half angle between the planes. Therefore, the parametric
form for the Scherk surface is:

x(r,θ ) =
1

2sinφ

�

ln

�

1+ r2 + 2r cos(θ +φ)
1+ r2 − 2r cos(θ +φ)

�

− ln

�

1+ r2 + 2r cos(θ −φ)
1+ r2 − 2r cos(θ −φ)

��

, (B.5)

y(r,θ ) =
1

2cosφ

�

ln

�

1+ r2 + 2r cos(θ +φ)
1+ r2 − 2r cos(θ +φ)

�

+ ln

�

1+ r2 + 2r cos(θ −φ)
1+ r2 − 2r cos(θ −φ)

��

, (B.6)

z(r,θ ) =
1

cosφ sinφ

�

arctan

�

sin4φ − 2r2 cos 2θ sin2φ
cos 4φ + r4 − 2r2 cos 2θ cos2φ

�

− 4φ

�

, (B.7)

where r ∈ (0,1) and θ ∈ [0,2π).
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