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Abstract

We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models
on a tensor product Hilbert space of qubits. This symmetry is associated with a topo-
logical defect and a conserved operator, and the latter can be presented as a matrix
product operator. Importantly, unlike its continuum counterpart, the symmetry alge-
bra involves lattice translations. Consequently, it is not described by a fusion category.
In the presence of this defect, the symmetry algebra involving parity/time-reversal is
realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with
the same lattice non-invertible symmetry can flow in their continuum limits to infinitely
many different fusion categories (with different Frobenius-Schur indicators), including,
as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint simi-
lar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped
ground state. It is either in a gapless phase or in a gapped phase with three (or a mul-
tiple of three) ground states, associated with the spontaneous breaking of the lattice
non-invertible symmetry.
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1 Introduction

Symmetry plays a central role in our understanding of nature. In particular, it serves as a pow-
erful tool in analyzing strongly coupled quantum systems. The notion of global symmetry has
recently been generalized in several directions, leading to exciting results and developments.

In continuum quantum field theory, generalized global symmetries are defined by topolog-
ical operators/defects [1]. (See Section 1.5.) This definition has led to the notion of higher
group and non-invertible symmetries, together with many generalizations. See [2–8] for re-
cent reviews.

1.1 The lattice and the continuum symmetries

Given the rapid development of generalized symmetries in continuum field theories, it is nat-
ural to ask under what conditions they can also exist as exact symmetries on the lattice. In
particular, can models based on a tensor product Hilbert space have such symmetries? What
is the relation between these lattice symmetries and their continuum counterparts?

In this work, we focus on arguably the simplest possible non-invertible symmetry, often
known as the Kramers-Wannier duality symmetry in 1+1d [9–12]. Specifically, we consider
the lattice realization of this symmetry in quantum spin chains with L sites. We focus on 1+1d
lattice Hamiltonian systems, where the Hilbert space is a tensor product of two-dimensional
Hilbert spaces for each site of the chain.

Let X j and Z j denote the Pauli operators acting on the j-th site of the chain. (See Appendix
A, for our conventions.) The Hamiltonian is such that the theory is invariant under translation
T acting on local operators Oj as

TOj T
−1 = Oj+1 , j ∼ j + L . (1)

We also impose that the Hamiltonian is invariant under an ordinary Z2 global symmetry gen-
erated by

η=
L
∏

j=1

X j , (2)
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Table 1: The Kramers-Wannier symmetry operator algebra on the lattice and in the
continuum. The first column is the lattice operator algebra on a periodic chain with
L sites. The second column is the symmetry algebra in the continuum. N is the non-
invertible continuum symmetry and P is the momentum of the continuum theory.
The lattice operators commutes with the transverse-field Ising Hamiltonian at the
critical coupling and the continuum algebra is realized by the Ising CFT. As we discuss
in section 2.2.2, there is a similar algebra of defects both on the lattice and in the
continuum.

lattice operators continuum operators

η2 = 1 , ηD=Dη=D η2 = 1 , ηN =Nη=N

D2 = (1+η)T−1 N 2 = 1+η

TD=DT =D† N =N †

Tη= ηT , T L = 1 e2πiP = 1

with
η2 = 1 ,

ηX j = X jη , ηZ j = −Z jη .
(3)

Finally, we come to the non-invertible symmetry. It is implemented by a non-invertible
operator D that satisfies the algebra [13]1

lattice : D2 = (1+η)T−1 ,

ηD=Dη=D .
(4)

The algebra (4) (see also Table 1) implies that the operator D is not invertible (i.e., it has a
nontrivial kernel). Also, it is clear that D projects onto the Z2 even states. Its action on Z2
invariant operators is the standard Kramers-Wannier transformation

DX j = Z j−1Z jD ,

DZ j−1Z j = X j−1D .
(5)

(The action on Z2 odd operators, like Z j is more complicated.)
The transverse-field Ising Hamiltonian (10) is the prototypical example of a Hamiltonian

invariant under this symmetry. But we will also consider more general systems invariant under
this symmetry. We sometimes refer to this lattice realization of the Kramers-Wannier symmetry
as a non-invertible lattice translation since the transformation in (5) squares to lattice transla-
tion by one site T−1 on the Z2-even sector.

Comparing with the literature, there are at least two general approaches to construct the
non-invertible lattice operator D and the corresponding defect on the lattice:

• Kramers-Wannier duality, which is implemented by gauging theZ2 global symmetry [14–
18] (see Appendix B). The resulting non-invertible operator admits a presentation in
terms of a matrix product operator (MPO) [19,20] (see Section 2.3.2). See, for example,
[21,22] for reviews of MPOs.

• Bosonizing the Majorana chain [13] (see Appendix C). It is also related to a sequential
quantum circuit [23–25] (see Appendix D).

1Comparing with [13], our D corresponds to
p

2D†, where D is the non-invertible symmetry operator there (see
the discussion around equation (C.17)).
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Unlike some other references (such as [14–18,26–28]), we will insist that the operator D acts
as an operator on the Hilbert space of the theory, rather than being a map from one Hilbert
space to another. This will allow us to examine its algebra, and in particular, to compute D2,
as in (4).

We emphasize that the non-invertible lattice translation symmetry D forms a different
algebra than its continuum counterpart. The latter symmetry N satisfies [10–12]:

continuum : N 2 = 1+η ,

ηN =Nη=N .
(6)

See Table 1. Crucially, the algebra generated by D mixes with lattice translation and depends
on the number of lattice sites L, becoming infinite-dimensional on an infinite chain.

1.2 The lattice symmetry is not a fusion category

So far, we discussed the symmetry operators. Importantly, the symmetries are also related to
topological defects.

In relativistic continuum field theories, (non-invertible) global symmetries are defined by
topological operators and defects.2 They are topological in the sense that physical answers do
not depend on small changes of their locations. Symmetry operators act on the Hilbert space at
a given time. They are maps from the Hilbert space to itself. Symmetry defects are stretched
along the time direction and correspond to changes in the system. In Euclidean signature,
there is no distinction between operators and defects.

In Hamiltonian lattice models, we should distinguish between the symmetry operators
and the symmetry defects. A symmetry operator is associated with a conserved operator that
commutes with the Hamiltonian and acts within the same Hilbert space. However, not ev-
ery conserved operator qualifies as a global symmetry. The crucial property is locality. More
specifically, we focus on the symmetry operator that is associated with a defect, which is rep-
resented by a localized modification of the original Hamiltonian. Below, we will discuss the
precise relation between them. In particular, in Section 2, we will use a symmetry defect to
derive the corresponding symmetry operator.

Invertible internal symmetries are described by symmetry groups and their ’t Hooft anoma-
lies. This information is characterized by the symmetry operators, the defects, and their inter-
actions, which capture the anomalies.

Finite internal non-invertible symmetries are not captured by groups. In 1+1d, their sym-
metry operators and defects are described by fusion categories [29,30].3 (In the special case
of finite invertible symmetries in 1+1d, the description in terms of fusion categories is also
valid and it describes the symmetry group and its anomalies.) A typical example is the inter-
nal non-invertible symmetry of (6), which is described by the Tambara-Yamagami (TY) fusion
category [43].

However, all this does not apply to the translation symmetry. Although T generates a
symmetry of the problem, since it does not act internally, the corresponding defect is quite
subtle. As we review in Appendix E, there are two kinds of translation defects T + and T −.
T + adds a site to our chain and T − removes a site from our chain [44–53]. Consequently,
as emphasized in [53], the width of the defect T −n = (T −)⊗n, which removes n sites, is
proportional to n. Therefore, for large n (n ∼ L), such defects are nonlocal and hence they
cannot be described by a fusion category. Related to that, while we can add an arbitrary

2In some circles, the term “topological defect” refers to a defect that is associated with the topology of field
space. This is not the definition we will use here.

3This fact was first mentioned in the context of continuum field theory in [12, 31, 32]. See [10, 11, 33–42] for
earlier related works in the context of rational CFTs.
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number of T + defects, we cannot add an arbitrary number of T − defects. (See more about this
point in [52, 53].) Finally, in the presence of a defect associated with the symmetry operator
R, the group relation corresponding to periodic boundary conditions T L = 1 is modified to
T−L = R. Such modifications in the relations are not incorporated in the fusion category.

Now, our lattice symmetry (4) involves lattice translation T and therefore, it also cannot be
described by a standard fusion category. Instead, one should use a more general mathematical
setup. Although we do not yet have such a setup, we will present some preliminary step toward
finding it. In particular, in Appendix E, we will present a construction of the defects T ±. And
in section 2 we will discuss the symmetries in the presence of various defects.

Even though the lattice symmetry is not described by a fusion category, it flows in the
continuum to a fusion category. In section 3, we will examine what information about the
continuum fusion category can be obtained already on the lattice.

1.3 On anomalies of non-invertible symmetries

Standard (i.e., invertible, zero-form) internal symmetries are characterized by a group and
there is a clear understanding of their possible ’t Hooft anomalies [54]. For our purposes, we
need to extend this treatment:

• In the continuum, finite non-invertible symmetries in 1+1d are characterized by a fusion
category. Just as for ordinary symmetries, there is a notion of gauging the entire fusion
category [31,55–64]. The obstruction to that gauging can be interpreted as an anomaly.4

In particular, the fusion category of the Ising CFT has such an anomaly. It implies that its
long-distance behavior cannot be completely trivial even if we deform the system, while
preserving this symmetry. One topic we will address is how to treat such non-invertible
symmetries on the lattice.

• Spacetime symmetries appear on the lattice as crystalline symmetries. It is interesting
when these crystalline symmetries mix with internal symmetries, and in particular, when
they lead to new “emanant” internal symmetries in the continuum [52]. Then, anomalies
in crystalline symmetries [45, 46, 52, 65–69] are matched in the low-energy theory by
anomalies in that emanant internal symmetry.

• In our discussion below, we will face a combination of these issues. We will have a
non-invertible symmetry on the lattice, which mixes with the crystalline symmetry and
therefore it is not described by a fusion category. Related to that, its anomalies are
particularly subtle. Nevertheless, in Section 2.5, we will find that the symmetry algebra
in the presence of a non-invertible defect is realized projectively. This is reminiscent of
the consequence of an anomaly for ordinary symmetries.

1.4 LSM-type constraints

An important consequence of the symmetries of a system is possible Lieb-Schultz-Mattis (LSM)
constraints, which forbid a unique gapped ground state [44–46, 52, 70–97]. In that case, the
system is either gapless or some of its global symmetries (either internal or crystalline) are
spontaneously broken. One of our main results is a similar constraint following from the exact
non-invertible lattice translation symmetry (4):

4In the literature, a fusion category is sometimes referred to as anomaly-free if it admits a fiber functor, i.e., a
module category with one simple object. Physically, it means that the fusion category is compatible with a trivially
gapped phase. See [60–62] for the relation between this notion of anomalies and the obstruction to gauging. The
fusion category of the Ising CFT is anomalous in both senses.
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Figure 1: The phase diagram at the vicinity of the tricitical Ising CFT point (purple
point). The continuous black line is a second order line ending at the critical Ising
lattice model (red point). The black solid line flows to the Ising CFT. The black dashed
line is a first order transition. Along that line, the theory is gapped and has three low-
lying states.

Any system with a finite-range Hamiltonian preserving the non-invertible lattice translation sym-
metry D must either be gapless or gapped with its symmetry being spontaneously broken. In the
latter case, the number of superselection sectors must be a multiple of 3.
Unlike other LSM-type constraints, the way we will argue for that conclusion in Section 4
(which follows the continuum discussion in [98–100] closely) will be quite elementary and
will not use more abstract notions involving anomalies.

A characteristic example, which demonstrates this constraint is the phase diagram of the
tricritical Ising model. (See [101–104] for recent related studies.) Its phase diagram is pre-
sented in Figure 1. At βc the model is invariant under Kramers-Wannier duality and therefore
has the non-invertible symmetry D. For other values of β the symmetry is not present. For
β > βc the global Z2 symmetry is spontaneously broken and the model is ordered. In finite vol-
ume, the system has two nearly degenerate ground states with a gap above them. For β < βc
the global Z2 symmetry is unbroken and the model is disordered. The system has a unique
gapped ground state. The vertical line at β = βc corresponds to a phase transition between
these two phases. The solid line is a second order transition where the theory flows from the
tricitical Ising model to the critical Ising model. The dashed line is a first order line. In finite
volume, the theory along the dashed line has three low-lying states with a gap above them.
Two of them are the low-lying states for β > βc and the third is the ground state for β < βc .
In infinite volume, the theory has two superselection sectors for β > βc , one superselection
sector for β < βc , and three superselection sectors for β = βc . In the latter case, the non-
invertible symmetry D and the invertible Z2 symmetry η both act non-trivially on the three
superselection sectors, and we interpret it as the spontaneous breaking of D and η.

1.5 Topological defects

Let us elaborate more on the defect in a Hamiltonian lattice model. Consider the system on
a periodic chain of size L with Hamiltonian H. The insertion of a defect A in the system is
represented by modifying some terms in the Hamiltonian H near link ( j − 1, j).5 We denote

5There are two equivalent ways to represent a defect for an internal invertible symmetry on the lattice. First, we
use the same Hamiltonian, but impose twisted boundary conditions on the operators. Second, we keep the periodic
boundary conditions on the operators, but modify the Hamiltonian locally in some neighborhood. Throughout
this paper, we use the latter perspective to represent a (possibly non-invertible) defect. See [52, 53] for more
discussions.
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j − 1 j j + 1

A B

⊕

α Cα

(a) A⊗B = C1 ⊕ · · · ⊕ Cd

j − 1 j j + 1

A

B

=

j − 1 j j + 1

∑

αCα

(b) AB= C1 + · · ·+Cd

Figure 2: Fusion of topological defects vs. the algebra of conserved operators. In
these spacetime diagrams, time runs upward. Figure 2a on the left denotes a local
unitary operator λA⊗B implementing the fusion of A with B – it conjugates the defect
Hamiltonian HA;B to HC1⊕···⊕Cd

= HC1
⊗|1〉〈1|+ · · ·+HCd

⊗|d〉〈d|. In the special case
when B is the trivial defect, this fusion operation reduces to the movement operator
for A in (8). Figure 2b on the right indicates the fusion of the symmetry operators A
and B.

the modified Hamiltonian by H( j−1, j)
A which represents a A defect on link ( j−1, j), and refer to

it as the defect Hamiltonian. We will also often use the phrase “twisted theory” for the system
with a defect.6

The topological property of the defect means that the location of the defect is arbitrary and
can be changed by conjugating the defect Hamiltonian with local unitary operators. Specif-
ically, the defect Hamiltonians H( j−1, j)

A and H( j, j+1)
A are related by conjugation with a local

unitary operator:
H( j, j+1)
A = U j

A H( j−1, j)
A (U j

A)
−1 . (7)

We refer to such local unitary operators U j
A as the movement operator. Pictorially, it is repre-

sented as

U j
A =

j − 1 j j + 1

A

A

. (8)

Using the local unitary operators, we define the fusion of two topological defects A and B.
The fusion rule takes the form A⊗B =

⊕

α Cα, where ‘⊗’ represents fusion and ‘⊕’ represents
direct sum operation. They are defined as follows:

• Fusion: First, A⊗B represents the topological defect obtained by putting an A defect
and a B defect next to each other; say, respectively, on links ( j−1, j) and ( j, j+1) as in
Figure 2a. We denote the corresponding defect Hamiltonian by HA;B.

• Direct sum: The defect
⊕

α Cα = C1 ⊕ · · · ⊕ Cd corresponds to taking the direct sum
of systems with C1,C2, · · · ,Cd defects. A defect Hamiltonian for C1 ⊕ · · · ⊕ Cd is given
by HC1⊕···⊕Cd

= HC1
⊗ |1〉〈1|+ · · ·+ HCd

⊗ |d〉〈d|, where we have added an extra qudit,
associated with |1〉, |2〉, · · · , |d〉, to the Hilbert space.

6More precisely, a theory describes a system as a function of its background fields. In particular, different defect
configurations should be viewed as part of the same theory even though their Hamiltonians have different spectra.
Nevertheless, we will occasionally follow standard imprecise language and refer to the system with defects as
twisted theory.
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• Fusion operator: The fusion relation 2a is equivalent to a local unitary operator λA⊗B,
which we refer to as the fusion operator, satisfying7

λA⊗B HA;B (λA⊗B)
−1 = HC1⊕···⊕Cd

. (9)

In this paper we will focus on an example of such a fusion rule involving the non-invertible
Kramers-Wannier symmetry. From the topological defects A,B,Cα, we will construct the cor-
responding conserved operators8 A,B,Cα satisfying the operator algebra AB =

∑

αCα.9 See
Figure 2.

1.6 Outline

The paper is organized as follows.
Section 2 is devoted to the symmetries and defects of the lattice system with emphasis

on the Kramers-Wannier non-invertible symmetry. In particular, we derive the non-invertible
operator D from the corresponding defect D. Section 2.4 presents the algebra of symmetry
operators in the presence of various defects and Section 2.5 discusses a projective phase in the
symmetry algebra involving parity/time-reversal in the presence of the non-invertible defect.

Section 3 explores the relation between the lattice non-invertible symmetry and its contin-
uum counterpart. Section 3.1 reviews the fusion category symmetry of the continuum Ising
CFT, which emanates from the lattice non-invertible symmetry of the transverse-field Ising
model, and compares it with the lattice symmetry. The rest of Section 3 addresses more de-
tails of this comparison.

Section 4 discusses more general lattice models with the same symmetry including the non-
invertible symmetry D. These deformed models are presented in Section 4.1. Then, Section
4.2 argues for an LSM-type constraint that holds in all such D-preserving systems.

A series of appendices presents reviews of useful background material, more technical
details, and various extensions of our discussion.

Appendix A outlines our notations and conventions. Appendix B reviews the construction
of the lattice non-invertible symmetry operator D and the corresponding defect D via gauging
the Z2 symmetry generated by η. Appendices C and D review the construction of the non-
invertible symmetry from the Majorana chain and the sequential quantum circuit perspectives,
respectively. Appendix E provides an in-depth discussion of translation defects. Appendix F
contains detailed calculations of the fusion algebra involving the lattice non-invertible symme-
try operators. Appendix G reviews aspects of the Tambara-Yamagami fusion category describ-
ing the continuum non-invertible symmetry of the Ising CFT. Appendix H demonstrates that the
lattice non-invertible symmetry can lead to two different fusion category symmetries with dif-
ferent Frobenius-Schur indicators in the continuum. Appendix I discusses the non-invertible
symmetry in the continuum and its spontaneous breaking in infinite volume. Examples in
1+1d supersymmetric theories are discussed. Finally, Appendix J reviews the constraints due
to non-invertible symmetries on renormalization group flows of continuum theories.

7Here, we have not specified the location of the defects for simplicity. Later, we will incorporate the location of
the defects into our notations, and (9) will become λ j

A⊗B H ( j−1, j);( j, j+1)
A;B (λ j

A⊗B)
−1 = H ( j, j+1)

C1⊕···⊕Cd
.

8Unless otherwise stated, on the lattice, we will use different fonts for the operator and the corresponding
defect. For example, the defect A is associated with the symmetry operator A. Also, in the presence of the defect
A, the symmetry algebra could differ from the algebra without defects. First, some symmetry operators are no
longer conserved. Second, other symmetry operators B are not conserved but can be deformed to be conserved.
We denote the deformed operator by BA, which generally obeys a different fusion relation.

9While the coefficients in the fusion of defects must be non-negative integers, the coefficients in the opera-
tor algebra can take arbitrary values. Nevertheless, we normalize our conserved operators such that the fusion
coefficients for operators match with those of the defects.
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2 Non-invertible Kramers-Wannier symmetry on a tensor product
Hilbert space

Here we will study the global symmetries of the critical transverse-field Ising model. In partic-
ular, we will study its non-invertible symmetry operator and defect in detail. The Hamiltonian
of the theory on a finite periodic chain with L sites is given by

H = −
L
∑

j=1

�

Z j−1Z j + X j

�

, (10)

where X j = X j+L and Z j = Z j+L . The Hilbert space H = H1 ⊗ · · · ⊗HL is a tensor product of
two dimensional Hilbert spaces H j = C2 for each site j = 1, · · · , L.

While we will mostly focus on the Ising Hamiltonian (10), most of our conclusions apply to
more general Hamiltonians, gapped or gapless, with the non-invertible symmetry. In Section 4,
we will consider deformations away from the critical Ising Hamiltonian (10) while preserving
all the symmetries

Many of the results in this section were known in the literature, such as in [13, 14, 105].
Here we emphasize the role of the lattice translation, and provide a streamlined discussion
combining the operators and the defects in the setup of a Hamiltonian lattice model.

2.1 The invertible symmetries

Before discussing the non-invertible symmetry, we discuss some of the ordinary invertible sym-
metries of the model.

2.1.1 Z2 symmetry

The most obvious symmetry of the Ising model is its internal, on-site Z2 spin flip symmetry. It
is generated by

η=
L
∏

j=1

X j , (11)

which acts on the local operators as η : X j 7→ X j , Z j 7→ −Z j .
10

Associated with the Z2 symmetry operator (11) is the defect Hamiltonian

H(L,1)
η = −(−ZL Z1 + X1)−

L
∑

j=2

(Z j−1Z j + X j) , (12)

where the symmetry defect is at link (L, 1).
As in Section 1.5, this defect is topological in the sense that we can move it by conjugating

the Hamiltonian with a local unitary operator, the movement operator, U j
η = X j . For instance,

H(1,2)
η = U1

η H(L,1)
η (U1

η)
−1 , where H(1,2)

η = −(−Z1Z2 + X2)−
L
∑

j=1
j ̸=2

(Z j−1Z j + X j) . (13)

10In this paper, given an invertible operator U , ‘7→’ stands for conjugation, i.e. U : O 7→ UOU−1.
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More generally, we diagrammatically represent the movement of the defect as

U j
η = X j =

j − 1 j j + 1
η

η

, (14)

where the second equality also indicates H( j, j+1)
η = U j

ηH( j, j−1)
η (U j

η)−1.
We note that the symmetry operator (11) is constructed as a product of the movement

operators U j
η that move the defect around the chain. This is a general feature reflecting a

one-to-one correspondence between topological defects and symmetry operators; see [53] for
a general discussion.

As in the discussion around Figure 2, we now define the fusion of two Z2 defects η. We
start with the defect Hamiltonian with one η defect at the link (J − 1, J) and another one at
(J ′ − 1, J ′) with J < J ′. To fuse these two defects, we first apply a sequence of movement
operators U j

η to move the right defect to (J , J + 1) to find the following defect Hamiltonian:

H(J−1,J);(J ,J+1)
η;η = −(−ZJ−1ZJ + XJ )− (−ZJ ZJ+1 + XJ+1)−

L
∑

j=1
j ̸=J ,J+1

(Z j−1Z j + X j) . (15)

We follow the notation above where the subscripts denote the kind of defects and the super-
scripts denote their location on the lattice. Next, we apply a fusion operator λJ

η⊗η = XJ to pair
annihilate these two adjacent defects:11

λJ
η⊗ηH(J−1,J);(J ,J+1)

η;η (λJ
η⊗η)

−1 = H . (16)

We interpret this unitary transformation as the fusion between two Z2 defects:

η⊗η= 1 . (17)

The fusion operator in (16) can be diagrammatically represented as

λJ
η⊗η = XJ =

J − 1 J J + 1
η η

.
(18)

More generally, the fusion operation ‘⊗’ for two topological lattice defects A⊗B is defined
as follows. We first insert A and B away from each other, such that the corresponding defor-
mations of the Hamiltonian do not overlap. Next, we apply a sequence of movement operators
to bring them adjacent to each other. Finally, we apply a fusion operator to simplify the defect
Hamiltonian in terms of (simple) defects. Since each step is implemented by a local unitary
operator, this establishes the equivalence between the initial Hamiltonian of two separated
defects and the final Hamiltonian of defects at a single location.

11Note that even though the fusion operator λ j
η⊗η coincides with the movement operator U j

η
for the η defect,

these two unitary operators are generally different for other defects.
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2.1.2 Lattice translation symmetry

Another important symmetry is the lattice translation T acting as

T X j T
−1 = X j+1 , T Z j T

−1 = Z j+1 . (19)

We can write the translation symmetry operator T on a finite periodic chain as a product of
local swap operators. Namely,

T−1 = SL,L−1 SL−1,L−2 · · ·S4,3 S3,2 S2,1 , (20)

where S j,k =
1
2(1+ X jXk + YjYk + Z j Zk) is the swap operator that exchanges the j-th and k-th

qubits.
In Appendix E, we discuss topological defects for lattice translation symmetry and construct

the translation symmetry operator from those defects.

2.2 The non-invertible symmetry defects

Having discussed the operators and defects associated with the invertible symmetries, we now
move on to the non-invertible symmetry. To motivate this novel symmetry, we note that the
Ising Hamiltonian (10) is invariant under the Kramers-Wannier transformation12

X j ⇝ Z j−1Z j ,

Z j−1Z j ⇝ X j−1 .
(21)

Performing this transformation twice shifts these operators by one site to the left – it acts
on them as T−1. The above transformation defines an automorphism of the algebra of Z2
invariant operators.

However, (21) cannot possibly be implemented by a unitary operator on a finite periodic
chain (and hence the notation ‘⇝’). To see that, suppose it were implemented by a unitary op-
erator U , then UηU−1 = U

∏L
j=1 X jU

−1 =
∏L

j=1(Z j−1Z j) = 1, which leads to the contradiction
η= 1. Therefore, (21) cannot be an automorphism implemented by an invertible operator on
the entire algebra on a periodic chain.

As we will see later in this section, any Hamiltonian invariant under the Z2 symmetry η and
the transformation above enjoys a non-invertible symmetry. Similar to its invertible cousins,
the non-invertible symmetry is also associated with a conserved operator and a topological
defect. In this subsection we will first discuss the defect associated with this symmetry and
show that it obeys a non-invertible fusion rule. For this reason we refer to it as a non-invertible
defect. Later, we derive the corresponding conserved operator from fusion and movement of
the defects.

2.2.1 The non-invertible defect D

The non-invertible topological defect D corresponds to the Kramers-Wannier self-duality of the
theory at the critical temperature. The defect Hamiltonian is given by [9,13,14,105–107]13

H(L,1)
D = −

L
∑

j=2

�

Z j−1Z j + X j

�

− ZLX1 , (22)

12The transformation X j ⇝ Z j Z j+1, Z j Z j+1⇝ X j+1 can be obtained from composing (21) with the lattice transla-
tion by one-site to the right T .

13The defect Hamiltonian in (22) is related to the Hamiltonian HD of [13, (5.43)] as follows. The local change of
variable X1 7→ Z1 and Z1 7→ −Y1 maps the Hamiltonian H (L,1)

D into Y1Z2−
∑L

j=2(X j+Z j Z j+1). The latter Hamiltonian
is related to 2HD (with L = N + 1) by a lattice translation and changing X j ↔ Z j .

12
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which describes the insertion of a D defect on link (L, 1). The defect D is topological since
there is a movement operator U j

D that moves the defect from link ( j − 1, j) to link ( j, j + 1)

H( j, j+1)
D = U j

D H( j−1, j)
D (U j

D)
−1 . (23)

The movement operator is given by [14]

U j
D = CZ j+1, jH j =

j − 1 j j + 1

D

D

, (24)

where H j =
X j+Z jp

2
is the Hadamard gate and CZ j,k =

1
2(1+ Z j + Zk − Z j Zk) is the controlled-Z

gate. See Appendix A for more details. The movement operator acts on the local operators as

U j
D :

X j 7→ Z j , Z j 7→ X j Z j+1 ,

X j+1 7→ Z jX j+1 , Z j+1 7→ Z j+1 ,
(25)

which can be used to verify equation (23).

2.2.2 Defect fusion rules

In Section 2.1 we defined the fusion η⊗η= 1 between two invertible, Z2 defects η. We now
move on to the fusion rules involving the non-invertible defect D.

We start with the fusion between η and D. Consider the defect Hamiltonian of η at link
(L, 1) and D at link (1,2) (generalizations to other locations are straightforward):

H(L,1);(1,2)
η;D = −(−ZL Z1 + X1)− Z1X2 −

L
∑

j=3

(Z j−1Z j + X j) . (26)

Next, we apply the fusion operator λ1
η⊗D = X1Z2 to annihilate the η defect:

λ1
η⊗D H(L,1);(1,2)

η;D (λ1
η⊗D)

−1 = H(1,2)
D . (27)

We diagrammatically denote it by

λ1
η⊗D = X1Z2 =

L 1 2
η D

D

. (28)

Similarly, we can start with the defect Hamiltonian of D at (L, 1) and η at (1, 2):

H(L,1);(1,2)
D;η = −ZLX1 − (−Z1Z2 + X2)−

L
∑

j=3

(Z j−1Z j + X j) . (29)

The fusion operator is then λ1
D⊗η = U1

DX1:

λ1
D⊗ηH(L,1);(1,2)

D;η (λ1
D⊗η)

−1 = H(1,2)
D , (30)
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which is diagrammatically represented as

λ1
D⊗η = U1

DX1 =

L 1 2
D η

D

. (31)

As in Section 2.1, we interpret the above two unitary operations as the fusion

η⊗D =D⊗η=D . (32)

The notation ‘⊗’ corresponds to the fusion operation. Namely, we start with a defect Hamil-
tonian with the insertion of the η and D defects at two separate locations, and then apply a
unitary transformation, the fusion operator, to simplify it in terms of other defects.

Next, we move on to the more complicated fusion between two non-invertible defects D,
which was discussed in [105]. Consider the Hamiltonian for two D defects on links (L, 1) and
(1, 2), which we denote by

H(L,1);(1,2)
D;D = −

L
∑

j=3

�

Z j−1Z j + X j

�

− ZLX1 − Z1X2 . (33)

Conjugating this defect Hamiltonian with the fusion operator λ1
D⊗D = (U

1
D)
−1 we find

λ1
D⊗D H(L,1);(1,2)

D;D (λ1
D⊗D)

−1 = −
L
∑

j=3

�

Z j−1Z j + X j

�

− (Z1)ZL Z2 − X2 . (34)

We note that this defect Hamiltonian commutes with Z1 and the latter can be diagonalized.14

As we explain below, different eigenspaces of Z1 correspond to two different fusion channels.
Using the projection operators (1± Z1)/2, we rewrite the above defect Hamiltonian as a sum
of two terms

λ1
D⊗D H(L,1);(1,2)

D;D (λ1
D⊗D)

−1 = H1
T − ⊗ |0〉〈0|1 +H1

T −η ⊗ |1〉〈1|1 , (35)

where

H1
T − = −(ZL Z2 + X2)−

L
∑

j=3

(Z j−1Z j + X j) ,

H1
T −η = −(−ZL Z2 + X2)−

L
∑

j=3

(Z j−1Z j + X j) ,

(36)

act on the 2L−1-dimensional Hilbert space H2 ⊗ · · · ⊗HL . The defect Hamiltonian H1
T − corre-

sponds to removing site 1 from the chain and considering sites L and 2 to be nearest neighbors.
The defect Hamiltonian H1

T −η corresponds to removing site 1 and also inserting an η defect
on link (L, 2). (See Appendix E, for a more detailed discussion of these defect Hamiltonians.)

We interpret equation (35) as the non-invertible fusion rule

D⊗D = T − ⊕ T −η . (37)

14This means that this system has another Z2 symmetry generated by Z1. See the more general discussion about
it in footnote 25.
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The notation ‘⊕’ denotes a direct sum operation. This terminology reflects the fact that the
Hilbert space of the defect A⊕B is the direct sum of the Hilbert space with the defect A and
the Hilbert space with the defect B, i.e., HA⊕B =HA ⊕HB.

The fusion operator λ1
D⊗D, used in (35), is a unitary operator that implements the fusion

D⊗D = T − ⊕ T −η. We diagrammatically denote it by

λ1
D⊗D = H1CZ1,2 =

L 1 2
D D

T − ⊕ T −η

. (38)

Note that this fusion operator acts on the original Hilbert space H1 ⊗ · · · ⊗HL .15

We note that the topological defect T −, associated with removing a site, corresponds to the
lattice translation symmetry. We can see this in several ways. First, recall that on a periodic
chain with L sites, imposing a symmetry twist g corresponds to modifying the relation T L = 1
to T L

g = U−1
g where Tg is the translation symmetry of the system with a g-defect and Ug is the

symmetry operator. Inserting a T − defect corresponds to a system with L−1 sites which indeed
have a translation symmetry T satisfying T L = T . The latter equation can be interpreted as
the analog of T L

g = U−1
g , for Ug = T−1.

Another way to see this is to note that moving the translation defect around the chain
generates the translation symmetry operator. More precisely, we will construct the lattice
translation symmetry operator T in Appendix E as the unitary operator that implements the
following sequence of moves: We start with the untwisted Hamiltonian and pair create trans-
lation defects T − and its dual T +, then we move the T − defect around the chain and bring it
next to T + and fuse them together to get back to the untwisted Hamiltonian.

In summary we find the fusion rule D ⊗D = T − ⊕ T −η = (1 ⊕ η) ⊗ T − where T − is a
lattice translation symmetry defect associated with removing a site and

T −η= T − ⊗η= η⊗ T − , (40)

is a simple defect obtained by the fusion of T − with the Z2 defect η. We call a defect simple
(or irreducible) if it cannot be written as a direct sum of two topological defects. Equivalently,
a defect is simple if there is no non-trivial local operator that commutes with the defect Hamil-
tonian. For instance, the defect T −⊕T −η on the righthand side of (34) is not simple because
the local operator Z1 commutes with the defect Hamiltonian. We will explain the fusion (40)
in Appendix E in details.

The list of all simple defects obtained by fusing these defects are

T n , T nη= T n ⊗η= η⊗ T n , T nD = T n ⊗D =D⊗ T n . (41)

Here, T 0 = 1 is the trivial defect, T |n| = T + ⊗ · · · ⊗ T + (with |n| number of T +) is the defect
associated with adding |n| sites, and T −|n| = T − ⊗ · · · ⊗ T − is associated with removing |n|
sites for any integer n. The minimal list of fusion rules are:

η⊗η= 1 , η⊗D =D⊗η=D , D⊗D = T − ⊕ T −η , T n ⊗ T m = T n+m . (42)

15Alternatively, we can interpret the fusion operator λ1
D⊗D as a map

λ1
D⊗D : H1 ⊗ · · · ⊗HL → (H2 ⊗ · · · ⊗HL)⊕ (H2 ⊗ · · · ⊗HL) , (39)

reflecting the fusion relation D ⊗ D = T − ⊕ T −η. More generally, we denote the fusion operator λA⊗B that
implements the fusion A⊗B = C1 ⊕ · · · ⊕ Cd , as a map from HA;B to HC1

⊕ · · · ⊕HCd
.
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Note that in a system with L sites, T n exist only for n > −L. Therefore, the last fusion
relation in (42) is meaningful only when n, m, n+m> −L.

Finally, we define the dual defect of D,

D∗ = T + ⊗D . (43)

It is the dual of D in the sense that

D⊗D∗ =D∗ ⊗D = 1⊕η , (44)

contains the identity defect on the righthand side. While the defect D does not change the
Hilbert space, its dual defect D∗ adds one qubit to the Hilbert space since it involves the
translation defect T +. See Appendix E.3 for more discussions on D∗.

2.3 The non-invertible symmetry operators

In this section, we will present several different expressions for the non-invertible operator D.
The most elementary expression is [13]

D= e2πi L
8

1+η
p

2

1− iX Lp
2

1− iZL ZL−1p
2

1− iX L−1p
2

· · ·
1− iZ2Z1p

2

1− iX1p
2

. (45)

(The phase e2πi L/8 was added for convenience.) This operator does not appear to be transla-
tion invariant. Also, it is not manifest how it acts on local operators. This issue is related to
the projection operator on the left and the fact that the local unitary operators in this expres-
sion,

1−iX jp
2

and
1−iZ j Z j−1p

2
, do not commute with each other. Below, we will present equivalent

expressions for D that make it clear that it is translation invariant and its locality properties
will also be clarified.

In Section 2.3.1, we will derive an expression for D by manipulating the defect D.16 Later,
we will relate it to other perspectives. Specifically, in Section 2.3.2, we will provide a matrix
product operator expression for D. In Appendix B.3, it will be presented as implementing Z2
gauging in the future (or in the past). Appendix C will discuss its relation to the Majorana
lattice translation, and Appendix D will present its relation to the sequential quantum circuit
of [25].

2.3.1 Non-invertible operator D from the defect D

Here we construct the non-invertible conserved operator D from the symmetry defect D. To
construct the symmetry operator, we first construct a unitary operator D1⊕η that acts on the
extended Hilbert space

H1⊕η =H⊕H , (46)

where H is the Hilbert space of the chain with L sites. The first and second copy of H, respec-
tively, represent the problem without and with a Z2 defect. We restrict the action of D1⊕η to
the first (or second) copy of H to find the non-invertible symmetry operator D (or Dη) that
commutes with the original Hamiltonian H (or H(L,1)

η ). (Recall the discussion in Section 1.5
about our notation of operators in the presence of defects.)

The idea to construct the unitary operator D1⊕η is as follows. We start from a 1⊕η defect
and, using the fusion rule, we split it into a pair of D and D∗ defects, where D∗ = T + ⊗D.

16As always, we use different fonts for the non-invertible operator D and its corresponding defect D. Similar
distinctions are made for the lattice translation operator T n and its defect T n, and their counterparts with the
various defects. However, for the invertible Z2 symmetry, we use the same symbol η for both the operator and the
defect, since this is the least subtle symmetry of all.
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We then move the defect D around the chain and bring it near the other defect. Next, we fuse
these two defects to a 1 ⊕ η defect at its initial position. These moves are implemented by
conjugating the defect Hamiltonian with a series of local unitary operators. Since the initial
and final configurations are the same, the product of all these unitary operators define D1⊕η
which commutes with the defect Hamiltonian of 1⊕η. We will now go through this procedure
in detail.

To model the direct sum of the systems with and without the η defect, we add a qubit on
link (L, 1), between sites L and 1, and denote its Hilbert space by H1⊕η. Then, we consider
the Hamiltonian

H(L,1)
1⊕η = H ⊗ |0〉〈0|(L,1) +H(L,1)

η ⊗ |1〉〈1|(L,1) = −
L
∑

j=2

�

Z j−1Z j + X j

�

− (Z(L,1))ZL Z1 − X1 . (47)

It acts on the Hilbert space H1⊕η =H(L,1)⊗H1⊗· · ·⊗HL =H⊕H, where Z(L,1) is the Pauli-Z

operator acting on H1⊕η. The defect Hamiltonian H(L,1)
1⊕η describes a (non-simple) 1⊕η defect

on link (L, 1).
Using the fusion rule 1⊕ η = D ⊗ T + ⊗D, we can split the defect 1⊕ η into a pair of D

defects in a system with L + 1 sites. To do that, we first relabel the link (L, 1) as site number
L + 1 and make the identifications X L+1 = X(L,1) and ZL+1 = Z(L,1). Using the inverse of (34),
we find

(λL+1
D⊗D)

−1 H(L,1)
1⊕η λ

L+1
D⊗D = −

L
∑

j=2

(Z j−1Z j + X j)− ZLX L+1 − ZL+1X1 . (48)

This defect Hamiltonian describes a pair of D defects on links (L, L + 1) and (L + 1, 1). Using
the unitary operator U L−1

D · · ·U2
DU1

D, we move the defect on link (L + 1, 1) around the chain
and bring it to the left of the other defect on link (L, L + 1). Then, we use λL+1

D⊗DU L
DU L+1

D to
move both of the defects one site to the right and fuse them to a 1⊕ η defect on link (L, 1),
which is the initial configuration we started with. In the end, we find the unitary operator17

D1⊕η = λ
L+1
D⊗D U L

D U L+1
D U L−1

D · · · U2
D U1

D (λ
L+1
D⊗D)

−1 , (49)

that commutes with the defect Hamiltonian H(L,1)
1⊕η . See Figure 3 for a diagrammatic expression

of the operator.
The operator D1⊕η in terms of Hadamard and controlled gates is given by

D1⊕η = HL+1

�

CZL+1,LHL

� �

CZL,L−1HL−1

�

· · ·
�

CZ2,1H1

�

CNOT1,L+1

= (HL+1HL · · ·H1)
�

CNOTL+1,LCNOTL,L−1 · · ·CNOT2,1CNOT1,L+1

�

,
(50)

where we have used λ j
D⊗D = (U

j
D)
−1 = (CZ j+1, j H j)−1 and CNOT j+1, j = H jCZ j+1, jH j . See

Appendix A for details. The operator D1⊕η is a unitary operator acting on the extended Hilbert

space (46) and commutes with the Hamiltonian H(L,1)
1⊕η . It acts on local operators as

D1⊕η :

X j 7→ Z j−1Z j (for j ̸= 1) ,

X1 7→ ZL ZL+1Z1 ,

Z j 7→ X jX j+1 · · ·X L+1 (for j ̸= L + 1) ,

ZL+1 7→ X1 · · ·X L .

(51)

To find the symmetry operator that commutes with the untwisted Hamiltonian, we need to
project onto the original Hilbert space given by the eigenspace ZL+1 = 1. Taking the |0〉〈0|L+1

17This unitary operator D1⊕η is the counterpart of U of [108], but on a tensor product Hilbert space.
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1⊕η

1⊕η

L − 1 L 1 2

DD

D D

(λL+1
D⊗D)

−1

U1
D

U2
D

U L+1
D

U L
D

λL+1
D⊗D

Figure 3: Construction of symmetry operator D1⊕η from the symmetry defect D.
Recall from (38) that D⊗D = T −⊕T −η. In the first and the last row, we represent
T − ⊕ T −η by 1⊕η, but with one site less compared to the other rows.

matrix element of the equation D1⊕ηH(L,1)
1⊕η = H(L,1)

1⊕η D1⊕η, we find

DH = HD , where D=
p

2 L+1〈0|D1⊕η |0〉L+1 . (52)

Because of the projection, the symmetry operator D is not unitary. In fact it is not even invert-
ible. As a result, its normalization is not fixed. We added a factor of

p
2 in the definition of D

so that the formula for the fusion of operators matches with that of the defects. Furthermore,
this normalization is also natural from the point of the matrix product operator presentation
as we discuss below.

2.3.2 Matrix product operator expression for D

This non-invertible operator D admits a natural presentation in terms of a Matrix Product
Operator (MPO).18 The operator D is explicitly given by

D= HL

�

U L−1
D · · ·U2

DU1
D
�1+ Z1

2
+ ZLHL

�

U L−1
D · · ·U2

DU1
D
�1− Z1

2
. (53)

Recall that H j =
X j+Z jp

2
is the Hadamard gate. To proceed, we rewrite the movement operator

(23) as

U j
D =

�

1+Z j+1

2
1−Z j+1

2

�





H j

Z jH j



=
1+ Z j+1

2
H j +

1− Z j+1

2
Z jH j . (54)

18We thank Nathanan Tantivasadakarn for extensive discussions on this point.
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We can associate a 2× 2 operator-valued matrix to this movement operator [15]:19

U j
D =





H j

Z jH j





�

1+Z j
2

1−Z j
2

�

=





H j
1+Z j

2 H j
1−Z j

2

Z jH j
1+Z j

2 Z jH j
1−Z j

2



=





|+〉〈0| j |−〉〈1| j

|−〉〈0| j |+〉〈1| j



 . (55)

We can then write D as
D= Tr

�

UL
DU

L−1
D · · ·U1

D
�

, (56)

where the trace is taken over the auxiliary, or virtual, degrees of freedom associated with
indices of the 2×2 matrix U j

D. (We use blackboard-bold symbols for all quantities that involve
auxiliary/virtual degrees of freedom. In particular, X, Y, and Z are Pauli matrices acting
on the virtual degrees of freedom.) Since the auxiliary degrees of freedom are inside a two
dimensional space, the MPO is said to have bond dimension 2.

Using (53) we can also write the non-invertible operator as

D=
1
2
(1+η)HLU L−1

D · · ·U2
D U1

D(1+η) , (57)

which is closer to the original expression (45).
Let us compare the two expressions for the operator D, (56) and (57) (along with its close

cousin (45)) with each other. The MPO presentation (56) makes the locality of D manifest.
Furthermore, the cyclic property of the trace also makes the translation invariance manifest,
i.e., TD=DT . On the other hand, the expression (57) makes it clear that D annihilates all the
η-odd states and is therefore non-invertible. Its close cousin (45) also makes the connection
to the sequential quantum circuit (reviewed in Appendix D) manifest.

Using η=
∏L

j=1 X j and our conventions in Appendix A, we find how η acts on U j
D of (55)

η : U j
D =





|+〉〈0| j |−〉〈1| j

|−〉〈0| j |+〉〈1| j



 7→





|+〉〈1| j −|−〉〈0| j

−|−〉〈1| j |+〉〈0| j



= YU j
DY . (58)

More generally, we will consider operators made out of a string of U j
D ’s as in (56) and insert

at various places the bond operators X, Y, and Z. In this context, we see that η acts on the
bond degrees of freedom like Y. Therefore, the bond operators X and Z are odd under the
global Z2 symmetry generated by η.20

19Our MPO differs slightly from the gauging map in [15]. The authors of that paper have a map from the
Hilbert space on the sites to the Hilbert space on the links. More specifically, their tensor, up to adjoint, is
�

|+〉 j− 1
2
〈0| j |−〉 j− 1

2
〈1| j

|−〉 j− 1
2
〈0| j |+〉 j− 1

2
〈1| j

�

. See also [16,17,109]. In contrast, our MPO acts in the same 2L-dimensional Hilbert

space and every bra and ket in (55) is on the same site j. Here and below, whenever the bra and ket are on the
same site, we will write the subscript j only once. See also the discussion in Appendix B.3.

20Using conjugation, we can make the bond operators X, Y, and Z transform under η like the physical operators
X , Y , and Z . Specifically, conjugate (55) by the unitary matrix

V=
�

0 eiπ/4

e3iπ/4 0

�

, (59)

to find
VXV−1 = Y , VYV−1 = X , VZV−1 = −Z . (60)

In this basis, η acts as X, and therefore Y and Z are Z2 odd.
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Action of D on operators

Since the operator D is not invertible, it cannot act on operators by conjugation. Instead, we
can have expressions like DO = O′D for some operators O and O′. Here we will refer to that
expression as the action of D on O or O′. It is important to stress that such a relation does not
exist for every operator O and O′. In particular, it only exists for Z2-even operators.

Using the MPO presentation of the non-invertible lattice translation symmetry D, we now
find its action on local operators. In particular, we will verify the transformation (21), by
computing the commutation relation between D and Z2 invariant local operators.

The essential relations that we need are the following properties, which determine the
tensor U j

D uniquely up to an overall normalization,

X jU
j
D = ZU

j
D Z , U j

DX j = XU
j
DX ,

Z jU
j
D = XU

j
D , U j

DZ j = U
j
D Z .

(61)

As a check, these relations are compatible with the global Z2 symmetry under which Z , Y , X,
and Z are odd, while X and Y are even. Using these relations we find

X j U
j+1
D U

j
D = U

j+1
D X jU

j
D = U

j+1
D ZU

j
DZ= U

j+1
D Z j+1U

j
DZ j = U

j+1
D U

j
D Z j Z j+1 ,

Z j Z j−1U
j
DU

j−1
D = Z jU

j
DZ j−1U

j−1
D = XU j

DXU
j−1
D = U j

DX jU
j−1
D = U j

DU
j−1
D X j ,

(62)

which leads to the following commutation relations, implying the transformations (21),

X jD=DZ j Z j+1 , and Z j−1Z jD=DX j . (63)

The non-invertible symmetry operator D relates the correlation functions of the order op-
erator to those of the disorder operator. Suppose that we have a state |Ω〉 preserving the
non-invertible symmetry, say D|Ω〉 =

p
2|Ω〉, and therefore η|Ω〉 = |Ω〉 and T |Ω〉 = |Ω〉. Then

the two-point function of the order operator Z j equals that of the disorder operator:

〈Ω|Z j1 Z j2 |Ω〉= 〈Ω|X j1+1X j1+2 · · ·X j2 |Ω〉 , (64)

and depends only on j2 − j1 and not on j1 and j2 separately. In deriving this, use
〈Ω|D = (D†|Ω〉)† = (TD|Ω〉)† =

p
2〈Ω|. (Note that since η|Ω〉 = |Ω〉, the string of X ′s can

also run through the other direction of the chain.)

2.3.3 The duality operator Dη of the Z2-twisted Hamiltonian

In the previous section, we found the non-invertible symmetry D that acts on the periodic
chain. Here, we construct the non-invertible symmetry Dη that commutes with the Z2-twisted
Hamiltonian H(L,1)

η , by taking the |1〉〈1|L+1 matrix element of D1⊕η.

Recall that D1⊕η commutes with the defect Hamiltonian H(L,1)
1⊕η of equation (47). In the

2× 2 matrix presentation of the Pauli operator ZL+1 = Z(L,1), we have

H(L,1)
1⊕η =

�

H 0
0 H(L,1)

η

�

, and D1⊕η =
1
p

2

�

D Dη→1
D1→η Dη

�

. (65)

See (F.21) for the definition of the off-diagonal elements Dη→1 and D1→η, which intertwine H

with H(L,1)
η . Taking the |1〉〈1|L+1 matrix element of D1⊕ηH(L,1)

1⊕η = H(L,1)
1⊕η D1⊕η leads to

DηH(L,1)
η = H(L,1)

η Dη , where Dη =
p

2〈1|D1⊕η |1〉L+1 . (66)
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Using equation (50) and the results in Appendix F.3, the MPO presentation of the unitary
operator D1⊕η is given by

D1⊕η = Tr
�

DL+1
1⊕ηU

L
D · · ·U

1
D

�

, where DL+1
1⊕η =





|+〉〈0|L+1 |−〉〈1|L+1

|+〉〈1|L+1 |−〉〈0|L+1



 . (67)

To find the MPO presentation of Dη, we take the |1〉〈1|L+1 component of the tensor DL+1
1⊕η,

multiplied by
p

2, to find

Dη = Tr
�

XZUL
D · · ·U

1
D

�

, where XZ=
�

0 −1
1 0

�

. (68)

The insertion of XZ can be interpreted as due to the action of the symmetry operator η on the
bond variables (as in (58)).

In this presentation, it is straightforward to find the relation between Dη and D. Using the
relations in the second line of (61) and equation (57), we find

Dη = −ZLDZ1 =
1
2
(1−η)HLU L−1

D · · ·U2
D U1

D (1−η) . (69)

2.3.4 The duality operator DD of the duality-twisted Hamiltonian

Here, we consider the non-invertible symmetry operator of theD-twisted Hamiltonian H(L,1)
D of

equation (22). This case is simpler than the other cases discussed above. The duality operator
of the defect Hamiltonian H(L,1)

D is simply given by the product of the movement operators

DD = U L
D U L−1

D · · ·U2
D U1

D , (70)

which moves the defect around the periodic chain. Importantly, the duality operator DD in
the theory with a duality defect is unitary, and in particular, invertible. This is unlike its coun-
terparts D and Dη in the untwisted and Z2-twisted problems.

It will be useful, especially for the computation of the operator fusion algebra, to find the
MPO presentation of DD. Using equations (54) and (55), we rewrite (70) as

DD =
�1+Z1

2
1−Z1

2

�

UL
DU

L−1
D · · ·U2

D





H1

Z1H1





= Tr
�

UL
DU

L−1
D · · ·U2

DD
1
D
�

,

(71)

where

D1
D =





1+Z1
2 H1

1−Z1
2 H1

1+Z1
2 Z1H1

1−Z1
2 Z1H1



=





|0〉〈+|1 |1〉〈−|1

|0〉〈+|1 −|1〉〈−|1



 . (72)

2.4 The operator algebra

Here we present the operator fusion algebra of the invertible and non-invertible operators on
a closed chain with no defect, with a Z2 defect, and with a duality defect. We leave some of
the derivations to Appendix F.
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2.4.1 No defect

We begin with the symmetry operators that commute with the untwisted Hamiltonian H, given
in (10), defined on the periodic chain with L sites. These symmetries are generated by

η= X L · · ·X1 , T−1 = Tr
�

UL
T −U

L−1
T − · · ·U

1
T −
�

, D= Tr
�

UL
DU

L−1
D · · ·U1

D
�

, (73)

where the tensors U j
T − and U j

D are given by (E.18) and (55). Alternative presentations of T−1

are given in equations (20) and (E.16).
These operators satisfy the algebra [13]

η2 = 1 , Tη= ηT , T L = 1 ,

Dη= ηD=D , TD=DT =D† , D2 = (1+η)T−1 .
(74)

Here, D† = DT acts on our Hilbert space as the Hermitian conjugate of D.21 For the defects,
our notation is such that the dual of the defect D is D∗. The relations in the first line of (74)
are standard. The relation ηD = Dη = D follows from (45). The relation DT = TD follows
from the cyclic property of the trace and the fact that TU j

DT−1 = U j+1
D . Finally, see Appendices

F.2 and F.3 for the relations involving D2 and D†.22

Let us compare (74) with the continuum fusion algebra (6) reviewed in Appendix G. In
the continuum, the non-invertible Kramers-Wannier topological operator N is internal and
obeys N 2 = 1+ η. In contrast, the lattice non-invertible symmetry D mixes with the lattice
translation. For this reason, D is referred to as the non-invertible lattice translation in [13].
See Section 3.1, for more comparisons between the lattice and the continuum.

Finally, we can also consider the action of parity P and time-reversal K, which acts in our
basis as complex conjugation combined with reversing the time. As always

KT = TK , Kη= ηK ,

PT = T−1P , Pη= ηP .
(75)

Using the MPO expression (56) and (F.13), we find

KD=DK ,

PD=D†P .
(76)

2.4.2 With a Z2 defect

Here we discuss the symmetry operators of the problem with a Z2 defect, which is described
by the defect Hamiltonian H(L,1)

η of equation (12). The generating symmetry operators are

ηη = X L · · ·X1 , T−1
η = Tr

�

XUL
T − · · ·U

1
T −
�

, Dη = Tr
�

XZUL
D · · ·U

1
D
�

. (77)

21For unitary symmetry operators, such a Hermitian conjugate is the inverse of the operator. But recall that D is
not unitary.

22As far as the fusion algebra (74) is concerned, it is a subalgebra of the Ising algebra and a Z2L algebra. But as
we stressed in Section 1.2, it does not have the full-fledged structure of a fusion category because of the mixing
with the lattice translation. If we denote the non-trivial invertible and non-invertible elements of the Ising algebra
by η and D0, and the generator of Z2L by T0, then the relation is given by D=D0T−1

0 and T = T 2
0 . Intuitively, even

though T0 is not a symmetry of our problem, the relation T = T 2
0 identifies it as “half-translation”, in the spirit

of [110]. Then, the relation D=D0T−1
0 clarifies in what sense D is associated with “half-translation.”

In the special case of odd L, we can use the fact that Z2L = ZL×Z2 to find a stronger statement. Instead of writing
D=D0T−1

0 , we write D=D0T L−1
0 =D0T

L−1
2 . Then, the elements in (74) are expressed in terms of the generators

η,D0 and T = T 2
0 of the Ising algebra and a ZL algebra. However, these relations obscure the spatial locality of the

problem and we will not pursue them. We thank Eric Rowell and Zhenghan Wang for a useful discussion about
these facts.
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The relations between the symmetry operators with or without a Z2 defect are23

ηη = η , T−1
η = T−1X1 , Dη = −ZLDZ1 . (78)

The operator fusion algebra is given by

η2 = 1 , Tηη= η Tη , T L
η = η ,

Dηη= ηDη = −Dη , DηTη = TηDη = −D†
η , D2

η = −(1−η)T
−1
η .

(79)

The continuum counterpart of this operator algebra is Table 2. See Section 3.1 for more
comparisons between the lattice and the continuum.

The relation T L
η = η is generally expected to hold [14, 52].24 Using Dη = −ZLDZ1 and

(74), we find ηDη =Dηη= −Dη. Moreover, using equation (63) one can easily compute D2
η.

Finally, the fusion relation DηTη = TηDη = −D†
η is derived in Appendix F.3.

Parity P and time-reversal K are as in the untwisted theory and act as in (75) and (76)

KTη = TηK , Kη= ηK , KDη =DηK ,

PTη = T−1
η P , Pη= ηP , PDη =D†

ηP .
(81)

(As in footnote 23, we suppress a subscript η on η, K and P.)

2.4.3 With a duality defect

Finally, we consider the algebra involving the symmetry operators of the duality-twisted Hamil-
tonian H(L,1)

D . The operator algebra in the presence of a duality defect was derived in [14].
Below we reproduce the same algebra from our MPO presentation of the operators.

The symmetries are generated by25

ηD = X L · · ·X2 (Z1X1) , T−1
D = Tr

�

UL
T − · · ·U

2
T − (T

−1)1D
�

, DD = Tr
�

UL
D · · ·U

2
DD

1
D
�

, (85)

23Sinceηη = η=
∏L

j=1 X j , in the following we will sometime useη instead ofηη on the lattice to avoid cluttering.

24Given a topological defect A, the lattice translation in the presence of A, TA is given by TA = (U1
A)
−1T , which

commutes with the defect Hamiltonian H (L,1)
A . This is because T brings the defect to link (1,2) by conjugation and

(U1
A)
−1 brings it back on the original link. Using T L = 1, we find the general relation

T−L
A = (T−1 U1

A T )(T−2 U1
A T 2) · · · (T−L U1

A T L) = U L
AU L−1

A · · ·U1
A = AA , (80)

where AA is the operator corresponding to the defect A in the presence of an A defect. The convention here leads
to the relation between the operator/defect algebras A ⊗ B ↔ AB as in Figure 2. In contrast, the alternative
convention T L

A = AA, which was used in [52], leads to A⊗B↔ BA.
25The symmetry is larger when there are several D defects. For example, consider a system with two D defects,

located at two different links, say, (L, 1) and (J , J + 1) (with J ̸= L)

H (L,1);(J ,J+1)
D;D = −

∑

j ̸=1,J+1

�

Z j−1Z j + X j

�

− ZL X1 − ZJ X J+1 . (82)

(The Hamiltonian (33) corresponds to J = 1.) Unlike the system with no defect or with a single defect, here we
have two Z2 internal symmetries, generated by

η1,J
D;D = X1X2 · · ·X J ZJ+1 , and ηJ+1,L

D;D = X J+1X J+2 · · ·X L Z1 . (83)

(When we separate the two defects far away from each other, these two operators become the ones discussed
in [111].) The two D defects can be fused to find a direct sum of two systems and then these two Z2 symmetries
act in each of them. More generally, if there are M > 1 D defects, then we have M Z2 symmetries as in (83).
Similar reasoning applies to the symmetry operators of DD;D and TD;D.

This is a manifestation of a more general phenomenon. Whenever we have two defects A and B such that
A ⊗ B = B ⊕ · · · , then in the system with M B defects, we will have M conserved symmetry operators (which
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where the tensors (T−1)1D and D1
D are given in equations (F.38) and (72). The relations be-

tween these symmetry operators with or without a duality defect are

ηD = Z1η , T−1
D = T−1U1

D , DD = U L
D U L−1

D · · ·U2
D U1

D . (86)

Note that the duality operator DD in the duality-twisted problem is a product of the unitary
movement operators U j

D. It is obtained from moving the defect D around the entire spatial
circle. Therefore, DD is unitary, i.e., D−1

D = D†
D, and is, in particular, invertible. This is

a general fact: the symmetry operator in the Hamiltonian twisted by the said symmetry is
always invertible, even when the symmetry in the untwisted problem is non-invertible.

The operator fusion algebra of these operators is26

η2
D = −1 , TD ηD = ηD TD , T L

D =D−1
D =D†

D ,

DD ηD = ηDDD , DDTD = TDDD , D2
D =

1
p

2
(1+ηD)T

−1
D .

(87)

The continuum counterpart of this operator algebra is in Table 2. See Section 3.1 for more
comparisons between the lattice and the continuum.

The relation T L
D =D−1

D follows from the general relation in (80). All other fusion relations
follow from the last one, which is derived in equation (F.43) of Appendix F.4.

The entire operator algebra in the presence of a D defect is generated by TD. Indeed,
ηD,DD can be expressed in terms of TD:

DD = T−L
D , ηD = T−2(2L−1)

D . (88)

The translation operator TD obeys a single operator relation [14]:

T2(2L−1)
D =

p
2 T2L−1

D − 1 . (89)

The operator algebra in (87) follows (88) and (89).
The fact that we have

T4(2L−1)
D = −1 , (90)

means that the symmetry group is Z4(2L−1). Interestingly, the relation (89) restricts the oper-

ator algebra beyond Z4(2L−1). It means that the eigenvalues of T2L−1
D are e±

iπ
4 , but not e±

3πi
4 .

Such a restriction does not lead to a quotient of the symmetry algebra. Indeed, the operators
in the theory transform linearly and faithfully under Z4(2L−1). Instead, the relation (89) means
that the operator algebra does not have operators with all possible Z4(2L−1) representations.

Finally, we turn to the parity and time-reversal symmetries. Even though the Hamiltonian
(22) is not manifestly parity invariant, it is easy to check that the parity transformation

PD =
X1 + Z1p

2
P (91)

locally are identical to the symmetry operator of A), each stretching between two adjacent B defects:

B BB

B BB

A

A
. (84)

26Here we choose a phase for the lattice operator ηD so that η2
D = −1. This convention agrees with the one for

the continuum operator ηN in Appendix G.3.
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(where P is the naive parity transformation around site number 1), commutes with it. As
above, time-reversal K acts simply as complex conjugation. These operators satisfy

KTD = TDK , KηD = ηDK , KDD =DDK ,

PDTη = T−1
η PD , PDηD = −ηDPD , PDDD =D†

DPD .
(92)

Again, K commutes with all the symmetry operators. The only unusual point here is that
PD anticommutes with ηD (or equivalently, PDηD = η−1

D PD). This fact will be important in
Section 2.5.

2.5 Projective phases in algebras involving parity/time-reversal

As we mentioned above, the notion of anomalies in non-invertible symmetries that mix with
lattice translations is subtle, partly because it is not completely clear how to gauge them. Some
(or all) anomalies of invertible symmetries are associated with projective phases in the Hilbert
space or in the Hilbert space in the presence of defects. In this section, we are going to find
some projective phases in the Hilbert space with a non-invertible defect. This is reminiscent
of the consequence of an anomaly for ordinary symmetries.

Specifically, we now discuss the projective phases in the symmetry algebras involving
parity/time-reversal in the presence of a non-invertible defect in the critical Ising lattice model
(10), as well as its deformations preserving these symmetries (see Section 4.1).

We will consider the Hamiltonian twisted by the non-invertible defect D, such as (22).
In the D-twisted problem, we focus on the internal, invertible Z2 symmetry and the parity
symmetry. As discussed in Section 2.4.3, the invertible symmetries of the twisted Hamiltonian
are modified to ηD = Z1η and PD =

X1+Z1p
2

P. The crucial point is that these two symmetries
anti-commute (92):

ηD PD = −PD ηD . (93)

This is to be contrasted with the corresponding algebra in the untwisted problem (75) where
they commute, i.e., ηP = Pη. Note that the sign in (93) cannot be removed by any operator
redefinition. This projective sign is similar to the consequence of an anomaly. See Appendix
G.4 for the corresponding discussion in the continuum.

There is a similar projective phase involving the non-invertible symmetry and time-reversal.
The algebra of ηD and time-reversal K is (92)

η2
D = −1 , K2 = 1 , ηDK= KηD . (94)

We can try to remove the minus sign in the first equation by redefining η′D = iηD, but then
we generate a sign in the third equation:

(η′D)
2 = 1 , K2 = 1 , η′DK= −Kη′D . (95)

A related projective phase can be seen by analyzing the entire symmetry generated by TD
and parity in the D-twisted problem. We can try to remove the −1 in the symmetry group
relation (90) (and relatedly, in η2

D = −1) by redefining TD by a phase, T ′D = e
iπn
4 TD (and

therefore, η′D = (T
′
D)
−2(2L−1) = e−

iπn(2L−1)
2 ηD) with odd n. However, such a redefinition leads

to a phase in the relation between TD and the parity operator (91). Explicitly, TD andPD satisfy
TDPD = T−1

D PD and P2
D = 1. And after the redefinition, we have T ′DPD = e

iπn
2 (T ′D)

−1PD. As
a result, the symmetry involving parity and translation is realized projectively.27

27There are also related projective phases in the η-twisted problem. We can redefine D′
η
= iDη and η′ = −η
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3 The lattice symmetry vs. the continuum symmetry

We stressed in Section 1.2 that the lattice symmetry is not described by a fusion category,
while the continuum symmetry is. Therefore, it is natural to ask how they are related and how
much of the structure of the fusion category is captured by the lattice symmetry with its tensor
product Hilbert space.

3.1 Non-invertible emanant symmetries

Let us focus on the special case of the critical Ising Hamiltonian and compare the operator
algebras on the lattice (74), (79), (87) with those in the continuum Ising CFT in (G.1), (G.7),
(G.11). We have summarized these operator algebras in Table 2.

Brief review of the continuum symmetry

In the continuum Ising CFT, the non-invertible Kramers-Wannier duality symmetry, together
with the invertible Z2 symmetry, are described by a special case of the TY fusion category [43].
More generally, a TY fusion category, denoted as TY(G,χ,ε) depends on a choice of a finite
Abelian group G, a symmetric non-degenerate bicharacter χ, a choice of the sign ε = ±1
known as the Frobenius-Schur (FS) indicator.28

When G = Z2, the TY fusion category has three simple objects: the identity line 1, the
invertible Z2 line η, and the non-invertible duality line N . There is a unique symmetric
non-degenerate bicharacter χ(η,η) = −1, χ(1, 1) = χ(1,η) = χ(η, 1) = 1. There are two
TY fusion categories based on G = Z2 with different FS indicators. We denote them as
TY(Z2,ε = ±) suppressing the dependence on the bicharacter χ since the choice is unique.
Both TY(Z2,ε = ±) share the same fusion algebra. The Ising and the tricritical Ising CFTs
realize the ε = +1 case, while the SU(2)2 WZW model realizes the ε = −1 case (see for ex-
ample [115]). We review the TY(Z2,ε) fusion categories in Appendix G, and refer the readers
to [12,31,32,62–64,111,116] for more discussions in the CFT context.

No defect

We start with the problem without a defect, which was already discussed in [13]. At
finite L, we can identify unambiguously some of the low-lying states on the lattice
with the states in the Ising CFT. These states are in Virasoro representations labeled by
(h, h̄) = (0, 0), (1/2,1/2), (1/16,1/16). (See Table 3.) On these states, we can express the
lattice operators T,D in terms of the CFT operators:

T = e
2πiP

L , D=N e−
2πiP

2L , (98)

in (79) to remove various minus signs in the operator algebra to find

(η′)2 = 1 , Tηη
′ = η′ Tη , T L

η
= −η′ ,

D′
η
η′ = η′D′

η
= +D′

η
, D′

η
Tη = TηD

′
η
= +(D′

η
)† , (D′

η
)2 = (1+η′)T−1

η
.

(96)

This is very similar to the algebra without defects (73), with the only difference being T L
η
= −η′ (which does not

matter when we act on local operator). However, now the action of parity and time-reversal (81) become

KD′
η
= −D′

η
K ,

PD′
η
= −(D′

η
)†P .

(97)

28Given a simple object L in a fusion category, its dual object L∗ is another simple object such that
LL∗ = L∗L = 1 + · · · contains the identity. For a self-dual object, i.e., L = L∗, the FS indicator ε was first
defined in the context of Modular Tensor Categories (MTC) in [34, 112–114]. It can also be defined via a certain
topological move such as in Appendix E of [114]. This is analogous to a representation being real or pseudo-real.
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Table 2: The lattice and continuum operator algebras with various defects. The
lattice operator algebras (74), (79), (87) hold for any Hamiltonian with the non-
invertible symmetry, including the critical Ising Hamiltonian as a special case. The
continuum operator algebras (G.1), (G.7), (G.11) hold in any CFT with the fusion
category symmetry TY(Z2,ε), which is reviewed in Appendix G. The special case of
the Ising CFT realizes the ε = +1 case. As we discussed around equation (96), we
can redefine the phases of Dη and ηη and change their algebra. Similar redefinitions
can be done in the corresponding continuum elements Nη and ηη.

lattice continuum

η2 = 1, ηD=Dη=D η2 = 1, ηN =Nη=N
no defect D2 = (1+η)T−1 N 2 = 1+η

Tη= ηT, TD=DT =D† e2πiP = 1, N =N †

T L = 1 e2πiP = 1

η2
η = 1, ηηDη =Dηηη = −Dη η2

η = 1, ηηNη =Nηηη = −Nη
Z2 defect D2

η = −(1−ηη)T
−1
η N 2

η = −ε(1−ηη)
Tηηη = ηη Tη, TηDη =Dη Tη = −D†

η Nη = −N †
η

T L
η = ηη e2πiP = ηη
η2
D = −1 η2

N = −1

duality defect D2
D =

1p
2
(1+ηD)T−1

D N 2
N =

εp
2
(1+ηN )

DD = T−L
D , ηD = T−2(2L−1)

D NN = e−2πiP , ηN =N 4
N

T2(2L−1)
D =

p
2 T2L−1

D − 1 N 4
N =

p
2N 2

N − 1

where P is the momentum operator in the continuum. (In CFT, its eigenvalues h−h̄ are known
as the conformal spins.) Importantly, the relations between the lattice and the continuum
quantities (98) are exact on the low-lying states even for finite L [52] because of the operator
algebra T L = 1 and D2L = 2L−1(1+η) [13]. In the thermodynamic limit, T → 1 and D→N ,
and the lattice algebra (74) reduces to the continuum fusion rule in Table 2. The non-invertible
Kramers-Wannier symmetry N of the continuum Ising CFT is not emergent; rather, it emanates
from the non-invertible lattice translation D of the transverse-field Ising lattice model. In
particular, it is not violated by any irrelevant operator that preserves the exact lattice symmetry
D. In this sense, the continuum N is a non-invertible emanant symmetry [13,52].

With a Z2 defect

As in the problem with no defect, on the low-lying states, the lattice operators Tη,Dη can be
expressed in terms of the CFT operators as:

Tη = e
2πiP

L , Dη =Nη e−
2πiP

2L , (99)

where Nη is the Kramers-Wannier topological operator in the Z2-twisted Ising CFT (see Ap-
pendix G.2). As in [13, 52], these relations are exact on the low-lying states even for finite L

Table 3: The quantum numbers of the primary states of the untwisted Ising CFT.

(0,0) (1
2 , 1

2) ( 1
16 , 1

16)

η 1 1 −1

N
p

2 −
p

2 0
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Table 4: The quantum numbers of the primary states in the η-twisted Ising CFT.

( 1
16 , 1

16) (0, 1
2) (1

2 , 0)

ηη 1 −1 −1

Nη 0 i
p

2 −i
p

2

because T L
η = ηη and D2L

η = (−2)L−1(ηη − 1). In particular, the former relation reproduces
the spin selection rule in [12,14,117,118]:

h− h̄ ∈

¨

Z , if η= +1 ,

Z+ 1
2 , if η= −1 .

(100)

This is indeed consistent with the conformal weights of the Virasoro primaries
(h, h̄) = (1/16, 1/16), (0,1/2), (1/2, 0) of the Z2-twisted Hilbert space for the Ising CFT. The
(h, h̄) = (1/16,1/16) state is Z2-even and corresponds to the disorder operator, while the other
two states are Z2-odd and correspond to the right- and left-moving Majorana fermions.

In the thermodynamic limit, Tη→ 1,Dη→Nη, and the lattice algebra (79) reduces to the
continuum operator algebra of Table 2 with ε = +1.29 The quantum numbers of the primary
states under the symmetry operators in the η-twisted Ising CFT [119] appear in Table 4.

With a duality defect

The symmetry operators TD and DD act on the low-lying states as

TD = e2πiP 2
2L−1 , DD =NN e−

2πiP
2L−1 , (101)

where NN is the duality operator in the duality-twisted Hilbert space of the Ising CFT (see
Appendix G.3). Note that NN is invertible. Again, these relations are exact on the low-lying
states for finite L because of the operator algebra T4(2L−1)

D = −1 and DD = T−L
D . The operator

relation (89) implies that the eigenvalues of T2L−1
D are equal to e±2πi/8, which together with

(101) implies the spin selection rule on the low-lying states [12,14,115]:

h− h̄ ∈ ±
1
16
+
Z
2

. (102)

This is indeed consistent with the conformal weights of the Virasoro primaries
(h, h̄) = (1/16, 0), (1/16, 1/2), (0, 1/16), (1/2, 1/16) of the duality-twisted Hilbert space for
the Ising CFT.

The effective number of sites in (101) is L− 1
2 [14]. It is related to the fact that the duality-

twisted Hamiltonian on L Ising sites can be obtained from a Jordan-Wigner-like transformation
of 2L − 1 Majorana fermions [13].

In the thermodynamic limit for the critical Ising Hamiltonian, TD → 1, and the lattice
algebra (87) reduces to the continuum operator algebra in Table 2 with ε= +1. The quantum
numbers of the primary states under the symmetry operators in the N -twisted Ising CFT [119]
appear in Table 5. Note that parity PN , which acts as PN

�

�h, h̄
�

=
�

�h̄, h
�

, obeys the projective
algebra

PN ηN = −ηN PN . (103)

29Here we identify the lattice operator η of the Z2-twisted problem with the continuum operator ηη. On the

lattice, the Z2 operator is η=
∏L

j=1 X j for both the untwisted and the Z2-twisted Hamiltonians, so we use the same
symbol η for both of them. See footnote 23. In the continuum, the untwisted and the Z2-twisted Hilbert spaces
are different and we need to distinguish the Z2 symmetry operators, denoted as η and ηη, on these two Hilbert
spaces.
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Table 5: The quantum numbers of the primary states in the N -twisted Ising CFT.

( 1
16 , 0) ( 1

16 , 1
2) (0, 1

16) (1
2 , 1

16)

ηN −i −i i i

NN e−
2πi
16 −e−

2πi
16 e

2πi
16 −e

2πi
16

This matches with the algebra discussed in Section 2.5. See Appendix G.4 for a more general
derivation.

We emphasize that most of our discussion in this subsubsection is special to the critical
Ising Hamiltonian. In more general Hamiltonians flowing to a CFT, the relation between the
lattice and CFT operators might be different. In particular, later in Section 3.2 we will discuss
the sign ε in more details.

Different emanant symmetries

For more general Hamiltonians, it is possible that in the continuum, the lattice translation
symmetry leads to an emanant internal finite symmetry of order n. For instance, T can be
spontaneously broken in a gapped phase, and acts as an internal symmetry on the nearly
degenerate ground states in finite volume. In this case we have T = ge

2πiP
L with gn = 1. In

the L→∞ limit, for L a multiple of n, the lattice algebra (74) then becomes30

η2 = 1 , gη= ηg , gn = 1 ,

Nη= ηN =N , gN =N g =N † , N 2 = (1+η)g−1 .
(104)

In addition, we have e2πiP = 1. In this case, the symmetry generated by g is a Zn emanant
symmetry [52]. (The thermodynamic limit with L not a multiple of n corresponds to the
problem with a g-symmetry twist.)

We see that the single lattice operator algebra (74) can lead to infinitely many fusion
categories in the continuum depending on the choice of the Hamiltonian. When n= 1, which
is the case for the critical Ising Hamiltonian (10), this reduces to the fusion algebra of TY(Z2,ε).

Comparison with the anyonic chain and other works

It is interesting to compare our system with the anyonic chain [120–125]. The main difference
between them stems from the fact that unlike our system, the Hilbert space of the anyonic chain
is generally not a tensor product of local Hilbert spaces.

Unlike our case, where the lattice symmetry D mixes with lattice translation, in the anyonic
chain, the lattice fusion category symmetry operators (also known as the “topological symme-
tries”) are internal and do not mix with the lattice translation T . In the special case when the
fusion category is TY(Z2,+), the anyonic chain is also not a tensor product Hilbert space, but
is the direct sum of the Hilbert space on the sites and that on the links, Hsite ⊕Hlink.31

Comparing these two lattice constructions of the Kramers-Wannier duality symmetry, there
appears to be a tension between the tensor product Hilbert space and an internal non-invertible
symmetry that does not mix with the lattice translation. In the transverse-field Ising model, the

30Similar to footnote 22, this algebra can be realized in a subcategory of the fusion category TY(Z2,ε)⊠VecZ2n
.

(Let TY(Z2,ε) ⊠ VecZ2n
be generated by N0, η, and g0 and write N = N0 g−1

0 and g = g2
0 .) Unlike footnote 22,

which discusses a lattice symmetry, this comment is about the continuum symmetry. In particular, n is the order of
the emanant Zn internal symmetry of the continuum theory, a fixed positive integer that does not depend on the
lattice size L.

31Similar to the anyonic chain, in the model of [108], the Kramers-Wannier duality is viewed as an operator
acting on the direct sum of the original Hilbert space with another copy of it corresponding to a Z2 defect.
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Hilbert space is a tensor product of local Hilbert spaces but the non-invertible symmetry is not
internal. In the anyonic chain, the Hilbert space is not a tensor product, but the non-invertible
symmetry is internal.32

3.2 No Frobenius-Schur indicator on the lattice

In this subsection we will point out that for the lattice symmetry, there is no FS indicator and it
arises only in the continuum limit. In contrast, in Section 3.3, we will see that the bicharacter
can be defined on the lattice, where it is captured by a certain F-move.

On the lattice, the Kramers-Wannier symmetry element D is not self-dual. (See footnote
28.) We can see it either from the operator or the defect perspectives. As an operator, D is not
a self-adjoint operator, as can be seen using

lattice operator : D ̸=D† =DT , (105)

where the lattice translation operator T is nontrivial. As a defect, D is also different from its
dual:

lattice defect : D ̸=D∗ =D⊗ T + , (106)

where T + is the lattice translation defect. (See Appendix E.) In particular, D∗ involves adding
a qubit to the Hilbert space, while D does not.

Since the lattice non-invertible symmetry is not self-dual, one cannot define a FS indicator.
This is to be contrasted with the non-invertible symmetry in the continuum, which is self-dual,
i.e. N =N ∗.33

We conclude that the FS indicator of the continuum symmetry arises only in the contin-
uum limit.34 Indeed, in Appendix H, we will give an example of a continuous family of lattice
Hamiltonians, all with the same lattice non-invertible symmetry. Depending on the parame-
ters in the Hamiltonian, there are several low-energy continuum theories either with symmetry
TY(Z2,+) or TY(Z2,−). This demonstrates our conclusion that the FS indicator of the contin-
uum symmetry becomes meaningful only in the limit.

3.3 Bicharacter and F-symbols

We will now see that the lattice counterpart of the bicharacter is meaningful and is encoded
in the lattice F-symbols.

Here we study the associativity of the movement and fusion operators of the defects. We
start with a Hamiltonian with three defect insertions L1,L2,L3 and compare two sequences
of fusion operations. In the first sequence, we first fuse L1 ⊗L2, and then fuse the composite

32We stress that this observation is valid only for certain classes of lattice non-invertible symmetries such as the
one in the Ising model. It is possible to realize fusion categories with a fiber functor (which are sometimes referred
to as anomaly-free fusion categories [32,61,116]) on a tensor product Hilbert space without mixing with the lattice
translation [126,127].

33We can also see the ambiguity of the FS indicator from the operator algebra. In the continuum, the FS indicator
enters the operator algebra as in (G.11), N 2

N =
εp
2
(1+ηN ). The lattice counterpart is given in (87):

D2
D =

1
p

2
(1+ηD)T

−1
D . (107)

(We identify ηN in the continuum with its lattice counterpart ηD, both squaring to −1.) However, the overall sign
(which would have been the FS indicator) on the righthand side of (107) can be changed by redefining U j

D →−U j
D,

which changes TD →−TD and DD → (−1)LDD. Clearly, the fact that this redefinition changes the sign is related
to the fact that DD is not selfdual.

34Note that other lattice systems, e.g., the anyonic chain or other non-invertible symmetries on a tensor product
Hilbert space, can have non-invertible symmetries that do not involve translation and therefore they can be self-
dual. Such symmetries can have meaningful FS indicators.
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with L3. In the second sequence, we first fuse L2 ⊗L3, and then fuse L1 with the composite.
By comparing the two sequences of unitary operators that implement these fusion operations,
we can define a lattice counterpart of the F-symbols.

Unlike a fusion category in the continuum, the lattice symmetry mixes with translation.
Therefore the F-symbols can be more subtle than in the continuum. In particular, the number
of lattice defects can grow with L. In this paper we will focus on a particular F-move that
captures the bicharacter, but does not involve the lattice translation defect. A closely related
lattice F-move has been discussed in [111]. We leave a comprehensive study of the F-symbols
on the lattice for the future.

Specifically, consider the defect Hamiltonian with an η defect at the link (L, 1), a D defect
at link (1, 2), and another η defect at link (2,3).

H(L,1);(1,2);(2,3)
η;D;η = −(−ZL Z1 + X1)− Z1X2 − (−Z2Z3 + X3)−

L
∑

j=4

(Z j−1Z j + X j) . (108)

We will compare two sequences of fusion operations to bring this configuration to the defect
Hamiltonian of D at link (1,2). To this end, it will be more convenient to consider a slightly
different fusion operator h1

D⊗η defined by h1
D⊗ηH(L,1);(1,2)

D;η (h1
D⊗η)

−1 = H(L,1)
D . It differs from

λ1
D⊗η in (31) by a movement operator U1

D.35 Diagrammatically, it is

h1
D⊗η = X1 =

L 1 2
D η

D

. (109)

The two sequences that we study are

L 1 2 3

η D η

D

= −

L 1 2 3

η D η

D

. (110)

The first sequence, shown on the left of (110), is implemented by the unitary operator
λ1
η⊗D h2

D⊗η = (X1Z2)X2, while the second sequence, shown on the right, is implemented by

the unitary operator h2
D⊗ηλ

1
η⊗D = X2(X1Z2).

While both unitary operators map the defect Hamiltonian (108) to H(1,2)
D , they differ by a

minus sign:
λ1
η⊗Dh2

D⊗η = −h2
D⊗ηλ

1
η⊗D . (111)

Note that this relative sign is independent of the phase redefinition of the fusion operators
λ

j
η⊗D and h j

D⊗η. This minus sign corresponds to the following F-move in the TY(Z2,+) fusion

35Note that the symbols “λ” and “h” are chosen to resemble the fusion configurations in (31) and (109), respec-
tively.
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category:

= − , (112)

where the blue and red lines stand for the Z2 line and the non-invertible line, respectively. (See
Appendix G for the other F-symbols.) The above minus sign corresponds to χ(η,η) = −1. We
leave the other F-symbols for future investigations.

3.4 Lattice quantum dimension

We now define a lattice version of the quantum dimension of a defect, which is generally
different from the quantum dimension in fusion categories in the continuum.

We consider a translationally-invariant Hamiltonian H on a one-dimensional closed peri-
odic chain of a tensor product Hilbert space H =

⊗L
j=1 H j with each H j = C2, a qubit. A

lattice defect A is defined in terms of a defect Hamiltonian HA, which differs from H only lo-
cally around a particular site. We assume that the defect is topological in the sense that there
is a unitary movement operator that changes its location.

We further extend this discussion for the case where HA involves a translation defect. In
that case, we might have more or less qubits around the location of the defect, and the Hilbert
space HA differs from the original one H (see Appendix E). This motivates us to define the
lattice quantum dimension dimA of a defect A as

dimA=
dimHA
dimH

. (113)

Note that we study a finite lattice with fixed L, such that both the numerator and the denom-
inator in (113) are positive integers. Therefore, unlike the quantum dimension in a fusion
category, the lattice quantum dimension is always a positive rational number.

Since the fusion operation ⊗ between two defects is implemented by the unitary fusion
and movement operators, which do not change the dimension of the Hilbert space, we have
dim(A ⊗ B) = (dimA)(dimB). Similarly, since the Hilbert space for the direct sum defect
A ⊕ B is defined as taking the direct sum of the corresponding defect Hilbert spaces, i.e.,
HA⊕B =HA ⊕HB, we have dim(A⊕B) = dimA+ dimB. It follows that the lattice quantum
dimension gives a positive rational 1-dimensional representation for the lattice defect fusion
rule.

We can immediately read off the lattice quantum dimensions of the defects T n,ηT n,DT n

of the Ising model. Obviously, the trivial defect has unit quantum dimension, dim 1 = 1. The
Z2 defect η modifies one term in the Hamiltonian H(L,1)

η in (12) without changing the Hilbert
space, thus dimη= 1. The translation defects T n adds/removes |n| qubits, hence dimT n = 2n.
Since the non-invertible duality defect D does not change the Hilbert space as in (22), we have
dimD = 1. In contrast, the dual defect D∗ =D⊗T + adds one more qubit to the Hilbert space
(see (E.23)), hence dimD∗ = 2. To summarize, we have

dim 1= 1 , dimη= 1 ,

lattice : dimT n = 2n ,

dimD = 1 , dimD∗ = 2 ,

(114)

while the rest can be obtained by multiplication. Note that these lattice quantum dimensions
are compatible with the fusion rule of the defects D⊗D = (1⊕η)⊗ T − and D⊗D∗ = 1⊕η.
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Let us compare the lattice quantum dimensions with the continuum quantum dimensions.
For the TY(Z2,ε) fusion category in the continuum, the non-invertible defect N is self-dual
and the quantum dimension is

continuum : dimN = dimN ∗ =
p

2 . (115)

In contrast, on a tensor product lattice D ̸=D∗ and they have different quantum dimensions.
One application of the lattice quantum dimension is that it provides a no-go argument for

the realization of certain fusion rules of defects on a tensor product Hilbert space. For instance,
the continuum fusion rule N 2 = 1+η leads to an irrational quantum dimension for N . On the
other hand, the lattice quantum dimension is always a positive rational number. Therefore,
the fusion rule N 2 = 1+ η cannot be realized for lattice defects on a tensor product Hilbert
space.

The above no-go argument applies only to the defects. It does not rule out such an algebra
for the operators. For example, the operatorPD realizes this algebra, whereP is parity. Indeed,
using (76), we find

(PD)2 =D†D= 1+η . (116)

However, the operator PD does not act locally on the local operators — it maps a local operator
around site j to a local operator around site L − j. Therefore, there is no defect (i.e., local
modification of the Hamiltonian) associated with PD.

4 Deformations and an LSM-type constraint

4.1 D-preserving deformations

The lattice non-invertible symmetry is not special to the critical transverse-field Ising model
(10). There are infinitely many deformations of (10) preserving the non-invertible operator
D. More specifically, any Z2-invariant and translationally-invariant deformation that is also
invariant under (21)

X j ⇝ Z j−1Z j ,

Z j−1Z j ⇝ X j−1 ,
(117)

preserves the non-invertible symmetry.
Another perspective of the non-invertible symmetry D comes from the related Majorana

chain. Any D-preserving deformation of the Ising chain is mapped locally to a deformation
of the Majorana chain that preserves the translation by one Majorana site. Hence, imposing
this non-invertible symmetry locally is as natural as imposing an ordinary invertible symmetry.
Globally, the bosonic spin model and the Majorana fermion model are different. In particular,
they generally have a different number of ground states on a closed chain. See [13, 128] for
recent discussions on the lattice bosonization and Appendix C for a review.

For instance, one D-preserving deformation of (10) is:

λ1

L
∑

j=1

�

X jX j+1 + Z j Z j+2

�

. (118)

This deformation of the critical Ising model was briefly discussed in [101,102], where the em-
phasis was on the phase diagram of the fermionic model. Locally, this deformation is mapped
to
∑

ℓχℓχℓ+1χℓ+2χℓ+3 of the Majorana fermion under the Jordan-Wigner transformation (C.6).
Another interesting D-preserving deformation is [103]

λ2

L
∑

j=1

�

X j Z j+1Z j+2 + Z j Z j+1X j+2

�

. (119)
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Locally, it is mapped under the Jordan-Wigner transformation (C.6) to
∑

ℓχℓ−2χℓ−1χℓ+1χℓ+2.
(In Appendix B.2, we will present the non-invertible defects D for these deformed Hamiltoni-
ans.)

Although we will not discuss it in detail here, we can also consider deformations that
preserve all our symmetries except parity and time-reversal. For example, we can have

i
∑

j

�

X jX j+1Z j+1Z j+2 + Z j Z j+2X j+2

�

=
∑

j

�

X jYj+1Z j+2 − Z jYj+2

�

, (120)

which translates in the fermionic theory to
∑

ℓχℓχℓ+1χℓ+2χℓ+4.
See [104, 129, 130] for more examples of Hamiltonians with the non-invertible symme-

try D.
We comment that the continuum Ising CFT does not have any relevant deformation that

preserves the non-invertible symmetry N . The (h, h̄) = (1/2,1/2) and (h, h̄) = (1/16,1/16)
Virasoro primary operators transform under the non-invertible symmetry. The lowest dimen-
sion N -preserving operator is the T T̄ deformation [131]. Therefore, the above D-preserving
lattice deformations are irrelevant around the Ising CFT fixed point and there is a finite gap-
less region in the space of D-preserving deformation corresponding to the Ising CFT, such as
in Figure 1. As we increase these coupling constants, the deformations can become important
and can change the phase [101–103], again, as in Figure 1.

4.2 LSM-type constraint

The existence of the non-invertible lattice symmetry has consequences on the phase diagram.
We will argue that:
Any system with a finite-range Hamiltonian preserving D must either be gapless or gapped with
its symmetry being spontaneously broken. In the latter case, the number of superselection sectors
must be a multiple of 3.

Our argument follows closely the continuum discussion in [98–100]. As there, it is elemen-
tary and does not rely on intricacies of category theory or anomalies. We remind the readers
that any D-preserving Hamiltonian is necessarily invariant under the translation symmetry T
and the on-site Z2 symmetry η=

∏L
j=1 X j .

Well-known comments about the low-energy theory

In preparation for the discussion of the LSM-type constraint, we would like to make some
comments about the effective low-energy theory in a gapped phase. When discussing this
topic, we have in mind three distinct situations.

1. We consider the system with large but finite L. In a gapped phase, there are Nstates
low-lying states |I〉. Without loss of generality, we set the energy of the lowest energy
state |I = 1〉 to zero and then the other states |I〉 with I = 2, · · · , Nstates have energy of
or order e−aI L with some positive constants aI . The other states in the spectrum have
energy of order one. (In a gapless phase, there are also states with energy of order
1
L .) The low-energy theory focuses on the Nstates low-lying states and their effective
dynamics is obtained by integrating out the higher energy states.

2. We keep L large but finite and study the same Nstates states |I〉. However, now since
L is large, we neglect their exponentially small energies. As a result, we have Nstates
zero energy states. These states are described by a 1+1d TQFT.36 Since all the states

36In the Condensed Matter literature, it is common to define a TQFT as a theory where there are no local
operators acting in the space of ground states. This guarantees that the TQFT is robust against perturbation by
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are degenerate, the basis |I〉 is no longer preferred. Instead, there is another preferred
basis of states |i〉 with i = 1, · · · , Nstates in which all the local operators of the theory are
diagonal. See Appendix I.3, for additional discussion of this topic and specifically for
the Ising TQFT TY(Z2,+).

3. In the infinite volume limit, the full Hilbert space of the problem is split into Nstates
distinct superselection sectors, which are labeled by i = 1, · · · , Nstates. The ground state
in each of them are the states |i〉 mentioned above.

Often, people use imprecise language and say that the infinite volume theory has Nstates ground
states. More precisely, this statement applies to the second case above, or alternatively, it
means that the infinite volume theory has Nstates superselection sectors. Below, we will some-
time use this imprecise language.

The argument

We start by reviewing some basic facts about generic 1+1d gapped systems with a Z2 global
symmetry generated by η. If in the infinite volume system (third situation above) the Z2 sym-
metry is spontaneously broken (ordered phase), then in finite volume (first situation above),
the system has two low-lying states with η = ±1. The energy splitting between them is e−aL

(with a an order 1 positive number) and there is a finite gap above these two states. In the
picture of the second situation above, it is better to consider another basis with the two states
|i〉 that are exchanged by η. These two states lead to two distinct superselection sectors in the
infinite-volume theory (third situation above). If on the other hand the symmetry is unbroken
(disordered phase), then the finite-volume theory has a unique Z2-invariant ground state with
an order 1 gap above it.37 This state leads to a unique Z2 preserving superselection sector in
the infinite-volume theory.

Next, we use the non-invertible symmetry D. We show in Appendix B that a finite-range
Hamiltonian commutes with D if, and only if, it is invariant under gauging the on-site Z2 sym-
metry. It is well-known that gauging the Z2 symmetry exchanges the ordered and the disor-
dered phases. Therefore, a single ordered phase cannot be compatible with the non-invertible
symmetry D, nor is a single disordered phase. Instead, the minimal situation corresponds to
two ordered states (with η= ±1, or equivalently, two states |i〉 that are exchanged by η) and
a single disordered state.

Let us make some comments about this statement.

• Unlike the generic situation with a Z2 symmetry discussed above, here we also have
another symmetry, D and therefore we have a more special situation.

• If we slightly break the D symmetry, but preserve the Z2 symmetry, the ordered and the
disordered states are no longer degenerate. Then, it is clear that the D invariant theory
corresponds to a first order transition between an ordered and a disordered phases. And
the degeneracy that follows from D is the standard degeneracy of first order transitions.
(See Figure 1.) In other words, the D symmetry forces the co-existence of order and
disorder [103].

• In more special situations, we can have 2m ordered states (that are paired by η) and m
disordered states, such that the total number of low-lying states is a multiple of 3.

local operators. Following this definition, there are no TQFTs in 1+1d. Instead, in the mathematics and the
quantum field theory literature, it is common not to impose this additional requirement and then it is possible to
have TQFTs in quantum mechanics and in 1+1d. We will adopt this second definition.

37The classification of SPT phases in [132] further implies that such a Z2-preserving gapped phase in 1+1d is
unique since H2(Z2, U(1)) is trivial.
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• To avoid confusion, this discussion of the low-lying degenerate states corresponds to the
second situation above. The states are degenerate because we neglect the exponentially
small splitting, but we do not have the separation of the infinite-volume theory into
superselection sectors.

We conclude that the number of degenerate ground states in the large volume limit (the
second situation above) should be a multiple of 3 . This completes the argument for the LSM-
type constraint.38

Further comments

One crucial fact we used in this argument is that there is noZ2 SPT phase that is invariant under
gauging a Z2 global symmetry. When we generalize this argument to non-invertible duality
symmetries associated with gauging a more general finite Abelian group G, it is possible that
there exists a G-SPT phase that is invariant under gauging G [32,98]. In this case, the above
LSM obstruction disappears. Indeed, this is the case for G = Z2×Z2, and some of the associated
Z2 × Z2 TY fusion categories are compatible with a trivially gapped phase [133]. See [134]
for the corresponding lattice examples.

Another fact we used is that the Z2 gauging exchanges order and disorder. Let us argue for
this point by tracking states with various boundary conditions, and show algebraically how the
non-invertible symmetry exchanges order and disorder. We study the untwisted system with
Hamiltonian H and compare it with the twisted system, which is the same system with an η
defect H(L,1)

η . It is simple to compare these problems by remembering that the system with

H(L,1)
η is the same as the system with H, but with twisted boundary conditions. Consider first

the ordered states of the untwisted problem and use the basis |i〉 (that leads to superselection
sectors in the infinite volume theory). They are characterized by the expectation value of some
order parameter. Going to the twisted problem, this order parameter should be antiperiodic
as we go around the space and therefore there must be a domain wall. Since the domain wall
is associated with the higher energy states, the domain wall must have energy of order one.
We conclude that ordered states of the untwisted problem do not lead to low-energy states in
the twisted problem.

The situation is different for disordered states. Here, the twisted boundary conditions do
not imply the existence of a domain wall and therefore these states do lead to low-lying states
in the twisted theory. We conclude that every disordered low-lying state of the untwisted
problem leads to a single low-lying disordered state in the twisted theory.

Next, we follow Section 2.3.1 and consider a direct sum of two copies of the system, one
with H and the other with H(L,1)

η . We denote the Hamiltonian on this 2L+1-dimensional Hilbert

space by H(L,1)
1⊕η . We assign η̃ = +1 to the states in the untwisted problem and η̃ = −1 to the

states in the twisted problem. This enlarged system has a Z2×Z2 symmetry, which is generated
by η=

∏L
j=1 X j and η̃, where η̃ acts on the extra qubit that implements the direct sum.39 This

Z2 ×Z2 symmetry has been discussed in various places including [135].
The picture above about the ordered and the disordered states implies that in this larger

Hilbert space, the ordered phase corresponds to two ground states of H(L,1)
1⊕η with eigenvalues

η = ±1 and η̃ = 1, while a disordered phase leads to two ground states of H(L,1)
1⊕η with eigen-

38We stress that our LSM-type constraint, as stated, applies to the bosonic lattice model of Ising spins with peri-
odic boundary conditions. It does not apply to the Majorana chain with fixed boundary conditions, as bosonization
changes the number of ground states globally. For instance, the authors of [102] found 2 or 4 states in gapped
phases of the corresponding Majorana model of the deformation (118). See also the related discussion in Ap-
pendix I.

39In the particular case of the Ising Hamiltonian, it is given in (47), in which case η̃ = Z(L,1) = ZL+1. But here
we discussed a gapped system.
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Table 6: The quantum numbers for the ground states of the Hamiltonian H(L,1)
1⊕η on the

2L+1-dimensional Hilbert space for the direct sum of the untwisted (η̃= +1) and the
Z2-twisted (η̃ = −1) problems. Left: Z2-symmetry breaking phase (order). Right:
Z2-preserving phase (disorder). These tables reflect the fact that the Z2-gauging (or
equivalently, the operator D) exchanges order and disorder and η↔ η̃.

order η= +1 η= −1
η̃= +1 1 1
η̃= −1 0 0

disorder η= +1 η= −1
η̃= +1 1 0
η̃= −1 1 0

values η = 1 and η̃ = ±1. See Table 6. (In this discussion, we refer to these states as ground
states because we have in mind the picture of the finite-volume problem where we neglect the
exponentially small energy splitting.)

Now, we assume that there is also a noninvertible symmetry D and consider the operator
D1⊕η. It commutes with the Hamiltonian H(L,1)

1⊕η and acts as

D1⊕ηη (D1⊕η)
−1 = η̃ , and D1⊕η η̃ (D1⊕η)

−1 = η , (121)

where we used (51). (Note that as we said around (49), D1⊕η is invertible. This is also
manifest in the fermionic presentation (C.22)). This shows explicitly that D swaps the disorder
(η= 1, η̃= ±1) and the order (η= ±1, η̃= 1) phases.

Relation to prior works

Reference [103] discusses a lattice application of this LSM-type constraint. They consider
a one-parameter deformation (119) λ2

∑L
j=1

�

X j Z j+1Z j+2 + Z j Z j+1X j+2

�

of the critical Ising
Hamiltonian preserving the non-invertible symmetry D. Since this operator is irrelevant
around the Ising CFT fixed point, there is an open neighborhood around (10) that flows to
the Ising CFT. As we increase the coupling constant, there is a tricritical Ising CFT point, be-
yond which the phase is gapped with three nearly degenerate ground states, a consequence
of the non-invertible symmetry. (See Figure 1.) Similar results were proven on the anyonic
chain in [124].

In [136], it was proven rigorously that any Hamiltonian invariant under (117) must be
either gapless or have more than one superselection sector in the thermodynamic limit. Our
argument further implies that in the latter case the number of superselection sectors has to be
a multiple of 3.

There is a special point λ2 = 1/2 on the phase diagram in [103], where the three ground
states are exactly degenerate even in finite volume. The three ground states |I〉 that diagonalize
η,D are

1
p

2
(|++ ...+〉 ± |GHZ〉) , D= ±

p
2 , η= +1 ,

1
p

2
(|00...0〉 − |11...1〉) , D= 0, η= −1 ,

(122)

where |GHZ〉= 1p
2
|00...0〉+ 1p

2
|11...1〉. The inner products between the product states |00...0〉,

|11...1〉, |++ ...+〉 are nonzero, but they vanish in the large L limit. This is consistent with the
fact that for infinite volume, these three states belong to three different superselection sectors.
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The non-invertible symmetry D and the Z2 symmetry act on them as:

η|++ ...+〉= |++ ...+〉 , η|00...0〉= |11...1〉 , η|11...1〉= |00...0〉 ,
D|++ ...+〉= |00...0〉+ |11...1〉 , D|00...0〉=D|11...1〉= |++ ...+〉 .

(123)

The invertible Z2 symmetry η is spontaneously broken in the first two sectors and unbroken
in the last. The non-invertible symmetry D does not leave any of the sector invariant, and we
interpret that D is spontaneously broken. Finally the lattice translation T is preserved in all
three superselection sectors.40

This LSM-type constraint is the lattice counterpart of Section 7.2.3 of [12] in the con-
tinuum, where it was proved that any renormalization group flows preserving the TY(Z2,+)
fusion category symmetry must either flow to a CFT, or a 1+1d TQFT with at least 3 states.
This constraint was interpreted as a generalized ’t Hooft anomaly for the non-invertible global
symmetry. As an example, one can start with the tricritical Ising CFT of c = 7/10 and turn on a
relevant deformation φ1,3 = ϵ′ with (h, h̄) = (3/5,3/5). This subleading thermal deformation
ϵ′ preserves the TY(Z2,+) fusion category symmetry.41 For one sign of the relevant deforma-
tion, it flows to the Ising CFT (which is the famous Zamolodchikov flow [137]), while for the
other sign, it flows to a 1+1d TQFT with 3 ground states [138]. This is precisely the situation
in Figure 1. The deformation of λ from the critical point at (βc ,λc) is the deformation by the
operator ϵ′. See Appendix I for more discussions about this flow.

The LSM-type constraint also has a similar flavor as the more general statement proven in
Section 7.1 of [12]: Any renormalization group flow preserving a non-invertible topological
line whose quantum dimension is not a non-negative integer cannot be gapped with a non-
degenerate ground state. This was interpreted as a generalized ’t Hooft anomaly in the non-
invertible symmetry. We review this proof in the continuum in Appendix J.

5 Conclusions and outlook

We analyzed one of the simplest examples of non-invertible global symmetry associated with
the Kramers-Wannier transformation (21) on a tensor product Hilbert space of L qubits on a
periodic one-dimensional chain. The critical Ising Hamiltonian (10) serves as a prototypical
example. The non-invertible Kramers-Wannier symmetry of the continuum Ising CFT is not
emergent; rather, it is exact and emanates from this lattice symmetry [13]. We also discussed
deformations of the critical Ising Hamiltonian preserving this non-invertible symmetry (Section
4.1). The non-invertible symmetry manifests itself in two different ways, as an operator and
as a defect.

First, a symmetry leads to a conserved operator D, which commutes with the Hamiltonian
(Section 2.3). This operator has a kernel, and is therefore non-invertible. This operator admits
an MPO presentation (56), which makes it manifestly translation invariant and local.

The operator algebra (74) of D involves both the invertible Z2 spin-flip symmetry η and
the lattice translation operator T , i.e. D2 = (1 + η)T−1. This is to be contrasted with the
non-invertible symmetry on the anyonic chain [14, 16, 120–124], which does not mix with
the lattice translation, N 2 = 1+η. This suggests a tension between a tensor product Hilbert
space, and an internal non-invertible Kramers-Wannier symmetry that does not mix with the
lattice translation.

40For more general models, T might also be spontaneously broken. When this is the case, the number of nearly
degenerate ground states may depend on the number theoretic property of L, but it is always a multiple of 3.

41In contrast, the leading thermal operator ϵ with (h, h̄) = (1/10, 1/10) in the tricritical Ising CFT preserves
the Z2 symmetry η, but breaks the non-invertible Kramers-Wannier symmetry N . The deformation of β from the
critical point at (βc ,λc) in Figure 1 is the deformation by the operator ϵ.
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Not every operator that commutes with the Hamiltonian qualifies as a symmetry; a sym-
metry has to respect certain notions of locality. In particular, it has to lead to a defect, which
is localized in space and extends in the time direction. In Section 2.2, we discussed the non-
invertible defect D associated with the non-invertible symmetry D and represented it as a
modification of the Hamiltonian in a local region in space. Using the local unitary operator
that moves the position of the defect, we defined a lattice fusion rule for the defects, which
includes D⊗D = (1⊕η)⊗T −, where T − is a defect for the lattice translation that removes a
qubit (Appendix E). In Section 2.3.1, we related these two different aspects of the symmetry
by providing a derivation of the operator D from the defect D.

In Section 2.4, we studied the symmetry operators in the presence of various defects and
analyzed their algebras. Some of these algebras involving parity/time-reversal are realized
projectively (Section 2.5.)

In Section 3, we compared the lattice symmetry and the continuum symmetry described
by a fusion category. Since the lattice symmetry mixes with the lattice translation, it does not
form a fusion category (see Section 1.2). In fact, depending on the choice of the Hamiltonian,
the same lattice operator D (56) can lead to distinct fusion categories in the continuum limit
(Section 3.1). Also, the Frobenius-Schur indicator ε of the continuum fusion category is not
meaningful on the lattice (Section 3.2). We further discussed certain lattice F-moves (Section
3.3) and defined the lattice quantum dimensions (Section 3.4) and compared them with the
analogous continuum quantities.

In Section 4.1, we discussed more general Hamiltonians invariant under the non-invertible
symmetry. And Section 4.2 discussed an LSM-type constraint based on the non-invertible
lattice symmetry D. We argued that in the thermodynamic limit, a D-invariant Hamiltonian
is either gapless or gapped with the number of degenerate ground states being a multiple
of 3. In the latter scenario, we interpreted the lattice non-invertible symmetry D as being
spontaneously broken.

This work suggests a number of interesting questions for further study:

• What is the mathematical structure of these lattice defects that mix with the lattice trans-
lation? While we have performed some preliminary analyses of the lattice F-moves, we
leave a more systematic investigation (such as the modified pentagon identity) for the
future.

• Which fusion category symmetries in the continuum can be realized exactly on a tensor
product Hilbert space, possibly at the price of mixing with the lattice translation?

• Is there a deeper relation between MPOs and non-invertible symmetries on a one-
dimensional chain? There has been a lot of studies on the fusion category structure
of MPOs in [16, 17, 127, 139–143]. In contrast, as emphasized in Section 3, our MPO
(56) does not form a fusion category because of the mixing with the lattice translation.

• What are the more general LSM-type constraints?

• Are there interesting generalizations to higher spacetime dimensions?
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A Notations and conventions

Quantum gates

We use the following standard conventions for Pauli matrices

Z j = |0〉〈0| j − |1〉〈1| j , X j = |1〉〈0| j + |0〉〈1| j , Yj = i|1〉〈0| j − i|0〉〈1| j , (A.1)

and

|±〉 j =
1
p

2

�

|0〉 j ± |1〉 j
�

. (A.2)

We also use the following gates commonly used in the quantum information literature:

S j,k =
1+ X jXk + YjYk + Z j Zk

2
,

H j =
X j + Z j
p

2
= |+〉〈0| j + |−〉〈1| j = |0〉〈+| j + |1〉〈−| j ,

CZ j,k =
1+ Z j + Zk − Z j Zk

2
= |0〉〈0| j + |1〉〈1| j ⊗ Zk ,

CNOT j,k = CX j,k = HkCZ j,kHk =
1+ Z j + Xk − Z jXk

2
= |0〉〈0| j + |1〉〈1| j ⊗ Xk .

(A.3)

The swap operator acts on the local operators as

S j,k :
X j 7→ Xk , Xk 7→ X j ,

Z j 7→ Zk , Zk 7→ Z j .
(A.4)

This determines S j,k up to a phase. The phase choice in S j,k above is natural because our
Hilbert space is a tensor product Hilbert space H =H1⊗· · ·⊗HL and the map S j,k implements
a canonical isomorphism between the factors.

The Hadamard gate acts as

H j : X j 7→ Z j , Z j 7→ X j . (A.5)

Finally, CZ and CNOT act on the local operators as:

CZ j,k :
X j 7→ X j Zk , Z j 7→ Z j ,

Xk 7→ XkZ j , Zk 7→ Zk ,

CNOT j,k :
X j 7→ X jXk , Z j 7→ Z j ,

Xk 7→ Xk , Zk 7→ ZkZ j .

(A.6)
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B Gauging and non-invertible symmetries

In this appendix, we discuss the relation between gauging the Z2 symmetry generated by

η=
L
∏

j=1

X j , (B.1)

and the non-invertible symmetry.
After reviewing the gauging procedure in Appendix B.1, in Appendices B.2 and B.3 we

relate the defect D and the symmetry operator D to gauging in half of space or half of time
respectively. Then, in Appendix B.4, we argue that on a closed periodic chain, a translation-
invariant, finite-range Hamiltonian H commutes with the non-invertible operator D if, and
only if, the system based on H is invariant under gauging its global Z2 symmetry generated by
η.

B.1 Review of gauging the Z2 symmetry

In order to set the notation, we start by reviewing the gauging of the spin system.
Our space is a 1d closed, periodic chain of L qubits. The Hilbert space H is 2L-dimensional.

We consider the most general finite-range Hamiltonian, which is invariant under the on-site
Z2 global symmetry η=

∏L
j=1 X j and the lattice translation symmetry T : j→ j + 1.

A local term in the Hamiltonian takes the form
�

X j1 X j2 · · ·X jn

�

�

Zk1
Zk′1

��

Zk2
Zk′2

�

· · ·
�

Zkm
Zk′m

�

, (B.2)

where all the sites j1 < j2 < · · · < jn and k1 < k′1 < k2 < k′2 · · · < km < k′m are within some
finite region much smaller than L. (We allow some of the site indices jℓ, kℓ, k′

ℓ
to be negative,

so that the interaction covers a range around the link (L, 1).) Note that the Z2 symmetry
constrains the number of Z j ’s to be even. Invariance under T implies that we have to sum
terms like (B.2) over the value of one integer, say j1 or k1 keeping the differences between the
indices fixed.

A simple example is the transverse-field Ising model at a generic coupling g:

H(g) = −
L
∑

j=1

(g−1Z j−1Z j + gX j) , (B.3)

which is critical for g = 1.
We will refer to the theory based on the Hamiltonian H as a “matter theory.”
Next, we would like to gauge the global Z2 symmetry generated by η=

∏L
j=1 X j .

The first step involves adding a new qubit on every link ( j−1, j), corresponding to the Z2
gauge field. We denote the corresponding Pauli matrices on the links as X̃ j− 1

2
, Z̃ j− 1

2
. We couple

every local term of the form (B.2) in the original Hamiltonian to the Z2 gauge field as follows:

�

X j1 X j2 · · ·X jn

�

�

Zk1
X̃k1+

1
2
· · · X̃k′1−

1
2
Zk′1

�

· · ·
�

Zkm
X̃km+

1
2
· · · X̃k′m−

1
2
Zk′m

�

. (B.4)

At this point, we obtain a gauged Hamiltonian Hgauged acting on a 22L-dimensional Hilbert
space Hgauge, with a qubit at every site and link.

In the special case of the Ising Hamiltonian (B.3), we find

Hgauged(g) = −
L
∑

j=1

�

g−1Z j−1X̃ j− 1
2
Z j + gX j

�

. (B.5)
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This system with its 22L-dimensional Hilbert space Hgauge and Hamiltonian Hgauged has a
large ZL

2 symmetry generated by

G j = Z̃ j− 1
2
X j Z̃ j+ 1

2
, j = 1, · · · , L . (B.6)

One combination of these,
∏

j G j =
∏

j X j = η is the original Z2 global symmetry of the matter
theory.

In the second step of the gauging, we project the Hilbert space on states invariant under
this large ZL

2 symmetry by imposing the Gauss law constraint42

G j = 1 , j = 1, · · · , L . (B.7)

We end up with a physical Hilbert space of dimension 2L .
In this discussion, we consider what can be called “minimal coupling.” This means that in

the first step of the gauging, we do not add to the Hamiltonian of the gauged system additional
terms that depend on the gauge fields and commute with Gauss law (B.7). A subset of such
terms, like arbitrary local translation invariant terms that depend only on Z̃ j+ 1

2
, e.g.,

∑

j Z̃ j+ 1
2

can be excluded by imposing a “quantum Zη̃2 symmetry,” generated by η̃ =
∏

j X̃ j+ 1
2
. This

symmetry will be important below.

An effective description of the gauged system

The operators that commute with the Gauss law act within this new 2L-dimensional Hilbert
space. These gauge-invariant operators are generated by:

bZ j− 1
2
= Z̃ j− 1

2
,

bX j− 1
2
= Z j−1X̃ j− 1

2
Z j ,

(B.8)

with j = 1, · · · , L. Using the Gauss law, the local Hamiltonian term (B.4) is now written in
terms of these gauge-invariant operators as

�

bZ j1−
1
2
bZ j1+

1
2

�

· · ·
�

bZ jn−
1
2
bZ jn+

1
2

��

bXk1+
1
2
bXk1+

3
2
· · · bXk′1−

1
2

�

· · ·
�

bXkm+
1
2
bXkm+

3
2
· · · bXk′m−

1
2

�

. (B.9)

In the special case of the Ising Hamiltonian, the gauged Hamiltonian is

Hgauged(g) = −
L
∑

j=1

�

gbZ j− 1
2
bZ j+ 1

2
+ g−1

bX j− 1
2

�

. (B.10)

By comparing the terms (B.9) in the gauged Hamiltonian with the terms (B.2) in the orig-
inal matter Hamiltonian, we see the gauging maps

X j ⇝ bZ j− 1
2
bZ j+ 1

2
,

Z j−1Z j ⇝ bX j− 1
2

.
(B.11)

If we rename
bZ j− 1

2
→ Z j−1 , bX j− 1

2
→ X j−1 , (B.12)

then (B.11) coincides with the action of D on the Z2-even operators (63). The half translation
(B.12) provides an isomorphism between the initial and final 2L-dimensional Hilbert spaces.
We denote both of them as H.

42It is common to implement Gauss law energetically by adding to the Hamiltonian −Λ
∑

j G j with large positive
Λ, such that the low-lying states satisfy Gauss law, but higher energy states do not. Instead, we will be studying
the case Λ→∞, where Gauss law is satisfied on all the states in the Hilbert space.

42

https://scipost.org
https://scipost.org/SciPostPhys.16.6.154


SciPost Phys. 16, 154 (2024)

We conclude that everyD-invariant Hamiltonian is invariant under gauging theZ2 symmetry.
Note that invariance under D implies the invariance under the Z2 symmetry η and lattice

translation T since D2 involves both η and T .43 In the particular case of the Ising Hamiltonian
H(g), we have

DH(g) = H(1/g)D . (B.14)

Hence D is a symmetry only at g = 1. This is indeed the value that the Hamiltonian is invariant
under gauging. See Section 4.1 and references therein for more general Hamiltonians that
commute with D.

Another effective description

Instead of using the variables bZ j− 1
2

and bX j− 1
2

(B.8), we can consider

Z ′j = X̃ 1
2
X̃ 3

2
· · · X̃ j− 1

2
Z j ,

X ′j = X j .
(B.15)

In terms of these, the gauged Hamiltonian (B.5) becomes

Hgauged(g) = −
L
∑

j=2

�

g−1Z ′j−1Z ′j + gX ′j
�

− g−1η̃Z ′L Z ′1 − gX ′1 ,

η̃= X̃ 1
2
X̃ 3

2
· · · X̃ L− 1

2
.

(B.16)

Just like the original “matter variables” X and Z , the new variables X ′ and Z ′ satisfy stan-
dard commutation relations and we can think of them as new “matter variables.”

Next, we discuss the gauge fields X̃ and Z̃ . First, it seems that we need to tensor a 2L

dimensional Hilbert space for them, leading to a 22L-dimensional Hilbert space. However,
since they appear in the Hamiltonian (B.16) only through the dependence on η̃, it is enough
to tensor only a single qubit on which η̃= ±1. At this stage, we can restrict our Hilbert space
to be 2L+1-dimensional.44 We should also account for Gauss law (B.7) G j = Z̃ j− 1

2
X j Z̃ j+ 1

2
= 1.

It is easy to check that the new matter variables X ′ and Z ′ commute with all the Gauss law
constraints, except for GL = Z̃L− 1

2
X L Z̃ 1

2
. Equivalently, the L − 1 Gauss law operators G j with

j = 1, · · · , L − 1 act as 1 in the 2L+1-dimensional Hilbert space, and we only need to impose
one Gauss law constraint

G1G2 · · ·GL = X1X2 · · ·X L = X ′1X ′2 · · ·X
′
L = η= 1 . (B.17)

After this final Gauss law constraint is imposed, we end up with a 2L-dimensional Hilbert
space.

43In general, if a finite-range Hamiltonian is invariant under (1+h)g, for invertible symmetries g and h, it must
be invariant under g and h separately. To see this, we write H =

∑

j H j , where H j is localized around site j. Then,
the invariance under (1+ h)g implies

(1+ h)
∑

j

gH j g
−1 =

∑

j

H j (1+ h) . (B.13)

Now separating the sums on both sides into local terms and non-local terms acting on the whole chain we find that
the equation above implies gH g−1 = H and hgH g−1 = Hh separately.

For our discussion here, the D-invariance implies that the Hamiltonian is also invariant under D2 = T−1(1+η).
Setting g = T−1 and h = η in the general argument above then implies the Hamiltonian is also invariant under
T,η.

44At the critical point g = 1, the Hamiltonian on this 2L+1-dimensional Hilbert space is (47), with Z , X there
replaced by Z ′, X ′ here, and Z(L,1)→ η̃, X(L,1)→ Z̃L− 1

2
X L .
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In summary, the gauged Ising model can be written as the Hamiltonian (B.16), with η̃= ±1
and the Hilbert space should be subject to a single Gauss law constraint η= 1. In more detail,
this means that we have a direct sum of two copies of the original, matter Ising model, one
corresponding to η̃ = +1 and the other to η̃ = −1. The Hamiltonian in the first one, η̃ = +1,
is the standard Ising Hamiltonian. And the Hamiltonian acting on the second one, η̃ = −1,
is the Hamiltonian of the Z2 twisted Ising model. And in addition, we should impose that in
each of them we project on the η= +1 states.

This picture is similar to the way the gauging is described in the continuum field theory.
In that context, the two Hilbert spaces are referred to as the original and the twisted Hilbert
spaces and the projection on η = +1 is the projection on gauge invariant states. (See, for
example, [7,144] for reviews of orbifold in 1+1d continuum CFT.)

B.2 The non-invertible defect D from gauging in half of space

In Section B.1 we show that HD = DH implies that the Hamiltonian is invariant under Z2
gauging. Below, we discuss the converse. We will show that the invariance under gauging
the Z2 symmetry leads to the non-invertible defect D, which in turn gives the non-invertible
operator D by the construction in Section 2.3.1.

Non-invertible duality symmetries typically exist when the system is invariant under gaug-
ing a discrete (possibly higher-form) global symmetry. When this is the case, one can gauge
the global symmetry in half of the spacetime, and impose a topological Dirichlet boundary
condition for the discrete gauge fields at the interface. This generally gives rise to a non-
invertible topological defect. This procedure is known as half-gauging [98, 99] and has been
used to construct a large class of non-invertible symmetries in quantum systems in diverse
spacetime dimensions, including the 1+1d Ising CFT [98], the 3+1d Maxwell gauge the-
ory [98–100, 145, 146], axions [147], and QED [148]. In particular, lattice examples using
the Euclidean modified Villain formulation [149, 150] were provided in [98].45 See [7] for a
review.

Here we apply the half gauging construction to 1+1d lattice model on a tensor product
Hilbert space. For notational simplicity we focus on the transverse-field Ising model, but our
construction holds for more general Hamiltonians as we will discuss at the end of this subsec-
tion.46

We start with the transverse-field Ising model (B.3) at a generic coupling g on a closed
periodic chain of L sites, with a 2L-dimensional Hilbert space. Later, we will restrict to the
critical point g = 1. Half-gauging of the Ising lattice model on an open chain was recently
discussed in [152].

We gauge the Z2 symmetry in the segment 1 ≤ j ≤ J on the closed chain with some
1 < J < L. (In Section B.1, we reviewed the ordinary gauging of the Z2 global symmetry on
the entire lattice.) We introduce Z2 gauge fields X̃ j− 1

2
only on the links ( j−1, j) with 1≤ j ≤ J

to find the Hamiltonian

Hh.g.(g) = −
J
∑

j=1

(g−1Z j−1 X̃ j− 1
2

Z j + gX j)−
L
∑

j=J+1

(g−1Z j−1Z j + gX j) . (B.18)

The enlarged Hilbert space is now 2L+J -dimensional. Next, we impose Gauss law as a projec-
tion on this enlarged Hilbert space:

G j = Z̃ j− 1
2
X j Z̃ j+ 1

2
= 1 , j = 1,2, · · · , J − 1 . (B.19)

45It would also be interesting to realize non-invertible symmetries in the Hamiltonian formalism of the modified
Villain lattice model [52,151].

46See [13] and Appendix C for an alternative construction of the defect Hamiltonian for D of the critical
transverse-field Ising model from bosonization of the Majorana chain on odd number of sites.
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Importantly, since we only have J − 1 Gauss laws but J qubits from the Z2 gauge fields, the
projected Hilbert space is 2L+1-dimensional and has one more qubit than the initial Hilbert
space. (This is to be contrasted with the ordinary gauging on the entire closed chain, reviewed
in Section B.1, where the projected Hilbert space has the same dimension as the initial Hilbert
space.) Some of the original local operators (e.g., Z1) do not act within this 2L+1-dimensional
Hilbert space because they do not commute with the Gauss law constraints.

Next, we follow the strategy we used above to find an effective description of the 2L+1-
dimensional physical Hilbert space. In particular, we would like to find the operators acting in
that subspace. They are the operators that commute with all the Gauss law constraints. These
gauge-invariant operators are generated by the following list of local operators:

bX j− 1
2
, bZ j− 1

2
, j = 1, · · · J ,

X j , Z j , j = J , · · · L .
(B.20)

where
bZ j− 1

2
= Z̃ j− 1

2
, j = 1, 2, · · · , J ,

bX 1
2
= X̃ 1

2
Z1 ,

bX j− 1
2
= Z j−1X̃ j− 1

2
Z j , j = 2, 3, · · · , J − 1 ,

bXJ− 1
2
= ZJ−1X̃J− 1

2
.

(B.21)

These L+1 pairs of operators in (B.20) satisfy the standard algebra of Pauli matrices. Using the
Gauss law, the Hamiltonian can be written entirely in terms of these new set of local operators:

Hh.g.(g) =− g−1ZL bX 1
2
−

J−1
∑

j=2

�

gbZ j− 3
2
bZ j− 1

2
+ g−1

bX j− 1
2

�

− gbZJ− 3
2
bZJ− 1

2
− g−1

bXJ− 1
2
ZJ − gXJ −

L
∑

j=J+1

�

g−1Z j−1Z j + gX j

�

.

(B.22)

Finally, similar to (B.12), we relabel the hatted operators by a half translation and drop the
hats, bX j− 1

2
→ X j , bZ j− 1

2
→ Z j for j = 1,2, · · · , J − 1. For the last pair of hatted operators, we

rename bXJ− 1
2
, bZJ− 1

2
as X(J−1,J), Z(J−1,J). To simplify the expression, we further conjugate the

Hamiltonian Hh.g.(g) by the unitary operator CZ(J−1,J),J to obtain H(L,1);(J−1,J)
D;D∗ (g):

H(L,1);(J−1,J)
D;D∗ (g) =− g−1ZLX1 −

J−1
∑

j=2

�

gZ j−1Z j + g−1X j

�

−
�

gZJ−1Z(J−1,J) + g−1X(J−1,J)
�

− gZ(J−1,J)XJ −
L
∑

j=J+1

�

g−1Z j−1Z j + gX j

�

. (B.23)

In this final expression, we see the Ising model with coupling g in the segment J < j ≤ L,
and with coupling g−1 in the segment 1 < j < J . Around the link (L, 1), we find a Kramers-
Wannier interface between the high and low temperature phases of the Ising model, and we
find the dual interface around the link (J −1, J). We summarize these steps of half-gauging in
Figure 4.

Something special happens at the critical point g = 1. The local terms in the two regions
are now identical, and the interfaces become topological defects in a single system. More
specifically, the Hamiltonian H(L,1);(J−1,J)

D;D∗ (g = 1) has a D defect (22) at one end of the half
gauging segment near the link (L, 1):

D : · · · − (ZL−1ZL + X L)− ZLX1 − (Z1Z2 + X2)− · · · . (B.24)
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2
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(J -1, J)
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Figure 4: The Hilbert space in each step of the half-gauging between site 0 and
site J on a closed, periodic Ising chain with L sites. In the first line, the black dots
stand for the original qubits with Pauli operators X j , Z j on each site j = 1, 2, · · · , L.
The white dots stand for the qubits on the links with Pauli operators X̃ j− 1

2
, Z̃ j− 1

2
for

the Z2 gauge fields. In the second line we impose the Gauss law constraints, and
the local operators are now generated by X j , Z j for j = J , · · · , L (black dots) and
bX j− 1

2
, bZ j− 1

2
for j = 1, · · · , J (white dots). In the third line we rename the qubits on

the links to the sites by bX j− 1
2
→ X j , bZ j− 1

2
→ Z j for j = 1, 2, · · · , J−1 (black dots), and

bXJ− 1
2
→ X(J−1,J), bZJ− 1

2
→ Z(J−1,J) (white dot). In the end we find a duality defect

D on the link (L, 1) and its dual defect D∗ on the link (J − 1, J). The latter defect
involves an extra qubit labeled by the white dot.

At the other end, there is an additional site at the link (J − 1, J) with Pauli operators
X(J−1,J), Z(J−1,J). This is precisely the dual of the non-invertible defect, D∗ =D⊗ T +:

D∗ : · · · − (ZJ−2ZJ−1 + XJ−1)−
�

ZJ−1Z(J−1,J) + X(J−1,J)
�

− Z(J−1,J)XJ − (ZJ ZJ+1 + XJ+1)− · · · .
(B.25)

See Appendix E.3 for more discussions on this dual defect. We conclude that gauging in a
segment of the lattice yields the non-invertible duality defect D at one end and its dual D∗ at
the other end.

To demonstrate the generality of the half-gauging construction, we apply it to the defor-
mations in (118) and (119) and derive the corresponding defect. Locally, the non-invertible
duality defect D at the link (L, 1) for the deformation (118) is

· · ·+λ1 (X L−2X L−1 + ZL−2ZL)

+λ1 (X L−1X L + ZL−1X1 + X L Z1Z2 + ZLX1X2 + Z1Z3)

+λ1

�

X2X3 + Z2Z4

�

+ · · · ,
(B.26)

where the terms represented by the ellipses are of the form λ1(X jX j+1 + Z j Z j+2). Similarly,
the non-invertible defect D at the link (L, 1) for the deformation (119) is locally

· · ·+λ2 (X L−2ZL−1ZL + ZL−2ZL−1X L)

+λ2 (X L−1ZLX1 + ZL−1ZL Z1Z2 + X LX2 + ZLX1Z2Z3 + Z1Z2X3)

+λ2

�

X2Z3Z4 + Z2Z3X4

�

+ · · · .
(B.27)
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One can check that the same unitary movement operator U j
D = CZ j+1, jH j in (24) can be

applied to move these D defects in the deformed Hamiltonians. These deformed Hamiltonians
are also invariant under ηD and DD in (85).

To summarize, the invariance under gauging the Z2 global symmetry implies the existence of
a topological non-invertible defect D.

B.3 The non-invertible operator D as gauging in the future

Just as in Appendix B.2 we described the defect D as gauging in part of space, here we will
describe the symmetry operator D as gauging in part of time.

Closely related constructions have appeared in [14–16, 18, 26]. Here, we will emphasize
the interpretation in terms of gauging and will insist on D being a map from the Hilbert space
H to itself rather than to another Hilbert space.

The idea is to use the equivalence between the matter system with Hamiltonian terms like
(B.4) and the effective description of the gauged system with Hamiltonian term like (B.9).
We will describe the system as evolving in the past using the Hamiltonian H(X , Z) acting on
a 2L-dimensional Hilbert space H. Then, the operator D acts in the present. In the future,
we have the gauge theory, which we will describe using the effective variables bX and bZ . We
will shift the site indices by a half so that we can use the variables X and Z acting on the same
2L-dimensional Hilbert space H with the same Hamiltonian H(X , Z).

As explained in Appendix B.1, the invariance under D is the statement that the past and
the future Hamiltonians are the same, except that they are expressed in terms of different
variables. The operator D acts in the present and implements this change in the variables.

To make it more explicit, let us pick a basis of states in the past with diagonal Xk

⊗

j

�

�x j

�

∈H ,

Xk

⊗

j

�

�x j

�

= xk

⊗

j

�

�x j

�

,

x j = ± .

(B.28)

In the future, it is more convenient we pick a basis with diagonal Zk

⊗

j

�

�z j

�

∈H ,

Zk

⊗

j

�

�z j

�

= (−1)zk
⊗

j

�

�z j

�

,

z j = 0,1 .

(B.29)

(Recall our conventions, X |±〉= ±|±〉, Z |0〉= |0〉, Z |1〉= −|1〉.)
The operator D is then a map from H→H. To find this map, we should understand what

the gauging in the future does. Before going to the effective theory with bX and bZ (which we
identify with X and Z in the future, after shifting the indices), we have a 22L-dimensional
Hilbert space Hgauge with the operators X , Z , X̃ , and Z̃ . And the physical Hilbert space H
is the Gauss-law-invariant subspace of Hgauge. In order to follow the map, we identify the
22L-dimensional Hilbert space Hgauge with the Hilbert space in the present.

Our operator D will then be a composition of maps

D : H→Hgauge→H . (B.30)
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We find it convenient to pick a basis in the present with diagonal Xk and Z̃k+ 1
2

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

∈Hgauge ,

Xk

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

= xk

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

,

Z̃k+ 1
2

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

= (−1)
z̃

k+ 1
2

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

.

(B.31)

Then, we map a state in the past
⊗

j

�

�x j

�

as follows.
If η=

∏

j x j = −1, we map it to zero, i.e., the operator D annihilates the state.
If η=

∏

j x j = +1, we map

⊗

j

�

�x j

�

→

�

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

�

+

�

⊗

j

�

�x j

�
⊗

j

�

�

�1− z̃ j+ 1
2

¶

�

, (B.32)

where the values of z̃ j− 1
2

are determined by

(−1)
z̃

j− 1
2 x j(−1)

z̃
j+ 1

2 = 1 . (B.33)

Let us make some comments about this map.

• The equations (B.33) determine {z̃ j− 1
2
} in terms of {x j}. This is the statement that the

state in the present Hilbert space Hgauge satisfies Gauss law.

• The conditions (B.33) can be solved for {z̃ j− 1
2
} because we need to solve them only when

η=
∏

j x j = +1.

• Actually, for every {x j}, there are two solutions for {z̃ j− 1
2
}, differing by {z̃ j− 1

2
}→{1−z̃ j− 1

2
}.

This fact does not affect the right hand side of (B.32).

• The resulting states in Hgauge are eigenstate of η̃=
∏

j X̃ j+ 1
2

with eigenvalue +1.

To summarize, the states in H with η= −1 are mapped to zero and the states with η= +1
are mapped to physical states in Hgauge with η̃= +1.

Next, we map the states in the present to states in the future

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

→
⊗

j

�

�

�z j = z̃ j+ 1
2

¶

. (B.34)

Therefore, our total map from the past to the future is

D :
⊗

j

�

�x j

�

→ 0 , for η=
∏

j

x j = −1 ,

D :
⊗

j

�

�x j

�

→

�

⊗

j

�

�x j

�
⊗

j

�

�

�z̃ j+ 1
2

¶

�

+

�

⊗

j

�

�x j

�
⊗

j

�

�

�1− z̃ j+ 1
2

¶

�

→
⊗

j

�

�

�z j = z̃ j+ 1
2

¶

+
⊗

j

�

�

�z j = 1− z̃ j+ 1
2

¶

, for η=
∏

j

x j = +1 ,

(B.35)
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with (−1)
z̃

j− 1
2 x j(−1)

z̃
j+ 1

2 = 1. The normalization of this map can be checked by computing
D|++ ...+〉= |00...0〉+ |11...1〉, which is consistent with (123) and D2|++ ...+〉= 2|++ ...+〉.
This map is related to the one in [14,18,26].47

When we commute operators through D, the operators on the right act in the past and the
operators on the left act in the future. Let us consider some examples.

The past operator X j acts in the present like Z̃ j− 1
2
Z̃ j+ 1

2
and therefore, it acts in the future

like Z j−1Z j . Hence,
DX j = Z j−1Z jD . (B.38)

Similarly, the Z2 invariant past operator Z j Z j′ acts in the present like
Z j X̃ j+ 1

2
X̃ j+ 3

2
· · · X̃ j′− 1

2
Z j′ = bX j+ 1

2
bX j+ 3

2
· · · bX j′− 1

2
and therefore it acts in the future like

X jX j+1 · · ·X j′−1. Hence,
DZ j Z j′ = X jX j+1 · · ·X j′−1D . (B.39)

(Note that since D projects on states with
∏

j X̃ j+ 1
2
=
∏

X j = +1, it does not matter whether

the factors of X̃ in the present are inserted from j to j′ or the other way around.) In the special
case j′ = j + 1, this becomes

DZ j Z j+1 = X jD . (B.40)

These are consistent with the action (5).

B.4 The Hamiltonian is D-invariant iff it is invariant under gauging

We now assemble the results from this appendix to reach the statement that, HD = DH if,
and only if, the Hamiltonian H is invariant under gauging the Z2 symmetry on a closed periodic
chain.

The only if part already follows from the discussion in Appendix B.1.
The if part follows from Appendix B.2. Assuming that the Hamiltonian is invariant under

gauging the Z2 symmetry, we constructed the duality defect D by gauging in half of the space.
Next, following Section 2.3.1, the defect D leads to a conserved non-invertible operator D.
This completes the argument.

47In order to relate this D to the construction in [26], we need to make several changes. We should follow our
maps from the future to the past rather than the other way around. We should also shift the final result in [26]
from variables on the links to variables on the sites, so that we map the Hilbert space to itself. More importantly,
we should swap the vertices/sites and the edges/links in the present so that the matter fields are on the sites, the
gauge fields are on the links, and Gauss law is on the sites. Finally, we should change the overall normalization.

Specifically, we start with a Z2 invariant state in the future, say
⊗

j

�

�z j

�

+
⊗

j

�

�1− z j

�

. It corresponds to the gauge
part in the present

|ψ〉=
⊗

j

�

�

�z̃ j+ 1
2
= z j

¶

+
⊗

j

�

�

�z̃ j+ 1
2
= 1− z j

¶

. (B.36)

We add to it the matter part
⊗

j

�

�x j

�

such that Gauss law is satisfied. This leads to the state
∏

i

CZi− 1
2 ,iCZi+ 1

2 ,i

⊗

j

|+〉 j ⊗ |ψ〉 . (B.37)

In the product over i, every site j appears twice and it is acted upon only if the two links next to it have different
values of z̃ j± 1

2
. In that case, its x j changes from + to −. This guarantees that the whole state satisfies Gauss law.

(Note that this happens an even number of times and therefore the resulting state has
∏

j x j = +1.) Then, to
proceed to the past, we need to remove the gauge part on the links |ψ〉. We do that by multiplying the state in the
present by 2

L−2
2
⊗

j 〈+| j+ 1
2
. The resulting state is our state in the past

⊗

j

�

�x j

�

in (B.28).
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C Relation to the Majorana chain

Here we review the construction of the non-invertible operator D of the transverse-field Ising
model from the lattice translation of the Majorana chain [13]. We will relate the non-invertible
operator D in (53) to the one derived in [13].

Consider a closed Majorana chain of 2L sites indexed by ℓ = 1,2, · · · , 2L with ℓ ∼ ℓ+ 2L.
There is a Majorana fermion χℓ at every site ℓ obeying the algebra {χℓ,χℓ′}= 2δℓ,ℓ′ . We focus
on the following two Hamiltonians

H± = ±iχ1χ2L + i
2L−1
∑

ℓ=1

χℓ+1χℓ . (C.1)

The minus sign in the first term H− represents a (−1)F defect.48 We will focus on two invertible
symmetries of H±:

• Fermion parity (−1)F . It is a Z2 global symmetry given by

(−1)F = iLχ1χ2 · · ·χ2L , (C.2)

which acts on the fermions as (−1)F : χℓ → −χℓ. The phase iL is chosen so that
[(−1)F ]2 = 1.

• Majorana translations T±, which acts on the fermions as

T+χℓ(T+)
−1 = χℓ+1 , ∀ ℓ ,

T−χℓ(T−)
−1 =

¨

χℓ+1 , ℓ= 1,2, · · · , 2L − 1 ,

−χ1 , ℓ= 2L .

(C.3)

T+ (T−) is a symmetry of H+ (H−).49

Using (C.2) and (C.3), one immediately finds the algebra:

T+(−1)F = −T+(−1)F ,

T−(−1)F = T−(−1)F .
(C.4)

The minus sign in the first line was first pointed out in [81,101,102]. In [13], it was interpreted
as a mixed anomaly between the internal (−1)F symmetry and translation and was matched
with the ’t Hooft anomaly in the continuum Majorana CFT [153].

The explicit expressions for the Majorana lattice translation operators for H± are

T+ =
e2πi L−1

8

(
p

2)2L−1
χ1(1+χ1χ2)(1+χ2χ3) · · · (1+χ2L−1χ2L) ,

T− =
e−2πi L

8

(
p

2)2L−1
(1−χ1χ2)(1−χ2χ3) · · · (1−χ2L−1χ2L) .

(C.5)

The overall phases are chosen so that (T+)2L = 1 and (T−)2L = (−1)F . We can also deform the
Hamiltonians H±, while preserving the above two symmetries, but for simplicity we focus on
the simplest nearest-neighbor terms above.

48Equivalently, for the theory with H−, we can use the same Hamiltonian H+ and impose the anti-periodic
boundary conditions for the fermion operator. See footnote 5 for these two perspectives on the defect.

49In the continuum, the periodic and anti-periodic boundary conditions correspond to the Ramond-Ramond
(RR) and Neveu-Schwarz-Neveau-Schwarz (NSNS) boundary condition for a massless Majorana fermion in the
continuum. In [13], the translation operators T+ and T− were denoted as TRR and TNSNS, respectively.

50

https://scipost.org
https://scipost.org/SciPostPhys.16.6.154


SciPost Phys. 16, 154 (2024)

The Jordan-Wigner transformation pairs up two Majorana sites into an Ising site:

χ2 j−1 =

 

j−1
∏

k=1

σx
k

!

σz
j , χ2 j =

 

j−1
∏

k=1

σx
k

!

σ
y
j , (C.6)

with j = 1, 2, · · · , L labeling the Ising site. Here σx ,y,z
j are the Pauli matrices at site j. The

Majorana Hamiltonians H± written in terms of the new Pauli operators are

H± = −
L
∑

j=1

σx
j −

L−1
∑

j=1

σz
jσ

z
j+1 ± (−1)Fσz

Lσ
z
1 ,

(−1)F =
L
∏

j=1

σx
j .

(C.7)

Locally, these are the Hamiltonians for the transverse-field Ising model (10) and the same
system with a defect (12). However, the last term is non-local in terms of the Pauli operators
because of the factor of (−1)F . Indeed, the Majorana chain is not equivalent to the Ising model
globally.

To obtain the Ising model globally, we follow the bosonization in the continuum, which
can be understood as gauging (−1)F . See, for example, [119, 128, 154–160] for reviews of
bosonization in 1+1d continuum field theories, and Appendix I for related discussions. On the
lattice, we proceed as follows:

• First, we double the Hilbert space eH = H− ⊕H+, where each of H± is a copy the 2L-
dimensional Hilbert space for the Majorana Hamiltonian H±. We can implement this
doubling by adding an extra qubit and considering the Hamiltonian

eH = −ieZχ1χ2L + i
2L−1
∑

ℓ=1

χℓ+1χℓ =

�

H− 0
0 H+

�

= −
L
∑

j=1

σx
j −

L−1
∑

j=1

σz
jσ

z
j+1 − eZ(−1)Fσz

Lσ
z
1 ,

(C.8)

where eZ = diag(I ,−I) is the Pauli Z-operator acting on this qubit with I being the 2L×2L

identity matrix.

• Second, we project on states satisfying eZ(−1)F = 1.

To get the transverse-field Ising Hamiltonian (10), we define

X j = σ
x
j , X L+1 = eX ,

Z j = σ
z
j
eX , ZL+1 = eZ(−1)F ,

(C.9)

for j = 1, · · · , L to find

eH = −
L
∑

j=1

X j −
L−1
∑

j=1

Z j Z j+1 − ZL+1ZL Z1 , (C.10)

and

T+ =
e2πi L−1

8

(
p

2)2L−1
(Z1X L+1)(1− iX1)(1− iZ1Z2) · · · (1− iZL−1ZL)(1− iX L) ,

T− =
e−2πi L

8

(
p

2)2L−1
(1+ iX1)(1+ iZ1Z2) · · · (1+ iZL−1ZL)(1+ iX L) .

(C.11)
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Indeed, the Hamiltonian eH projected onto ZL+1 = 1, or equivalently onto eZ(−1)F = 1, be-
comes the untwisted Ising Hamiltonian (10). The Z2 symmetry of the Ising model is given by
η=

∏L
j=1 X j =

∏L
j=1σ

x
j = (−1)F .

What happens to the Majorana translation operator T± under the bosonization? The Ising
lattice translation T (which obeys T L = 1) is related to the square of the Majorana translation:

T =

�

T2
− 0
0 T2

+

�

�

�

�

Z̃(−1)F=1
. (C.12)

However, because of the minus sign in (C.4), the operator diag(T−, T+) does not commute
with the projection. Therefore, it does not act in the projected Hilbert space H for the Ising
model. What survives the projection is the operator [13]

D =

�

T− 0
0 0

�

�

�

�

Z̃(−1)F=1
= e−

2πi
8 d1d2 · · ·dL−1

1+ iX Lp
2

1+
∏L

j=1 X j

2
, (C.13)

where

d j = e−2πi/8
1+ iX j
p

2

1+ iZ j+1Z j
p

2
= e−2πi/8

�

1 j+1 ⊗
1+ iX j

2
+ Z j+1 ⊗ (iZ j)

1+ iX j

2

�

. (C.14)

D is the non-invertible operator of the Ising model, which is the Majorana translation in the
Z2 even sector η= +1 but 0 in the Z2 odd sector η= −1. Even though the second expression
in terms of X j , Z j in (C.13) is not manifestly invariant under the Ising lattice translation, the
first expression in terms of T− makes it clear that DT = T D.

We now relate the expression (C.13) to the operator D (56). The movement operator can
be written as

U j
D =

1+ iZ j+1
p

2
d†

j

1− iZ j
p

2
. (C.15)

Using the MPO presentation (56), we find that the unitary factors
1−iZ jp

2
cancel in the expression

for D and

D= e2πi/8 1− iX L

2
d†

L−1 · · ·d
†
2d

†
1 + e2πi/8(−iZL)

1− iX L

2
d†

L−1 · · ·d
†
2d

†
1 Z1

= e2πi/8
1+

∏L
j=1 X j
p

2

1− iX Lp
2

d†
L−1 · · ·d

†
2d

†
1 ,

(C.16)

which is related to the operator in (C.13) of [13] as

D=
p

2D† . (C.17)

The operator Dη

To obtain the Z2-twisted Ising Hamiltonian (12), we project the extended Hamiltonian eH onto
ZL+1 = −1, or equivalently onto eZ(−1)F = −1. The Z2 symmetry of the Z2-twisted Ising model
is given by η=

∏L
j=1 X j =

∏L
j=1σ

x
j = (−1)F = −Z̃ .

We now relate the symmetry operators Dη in the Z2 twisted Ising model to the Majorana
lattice translations operators. We first write the translation symmetry operator

eT =

�

T− 0
0 T+

�

=
1+ eZ

2
T− +

1− eZ
2

T+ , (C.18)
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in terms of the Pauli operators. Using (C.11), which implies

T+ = T−(e
2πi
8 X L+1ZL) = (e

−2πi
8 X L+1Z1η)T− , (C.19)

and (C.9), we find

eT =
1+ ZL+1η

2
T− +

1− ZL+1η

2
(e
−2πi

8 X L+1Z1η)T− . (C.20)

We now relate eT to the operator D1⊕η. Note that both of these operators commute with the
extended Hamiltonian eH.

The crucial relations are

(T−)
† = e2πi η−1

8
D+Dη
p

2
=

D− iDη
p

2
,

(T+)
† = e2πi η8

Dη→1 +D1→η
p

2
X L+1 .

(C.21)

(See Appendix F.3 for the definition of Dη→1 and D1→η.) This relations can be verified using
equations (57), (69), and (F.26). Using (C.21) we find50

D1⊕η = e
2πi
8 (1−η)

�

T− 0

0 e
2πi
8 T+

�†

. (C.22)

This leads to the expressions of D and Dη in terms of the Pauli operators:

D=
1+η
p

2
(T−)

† , and Dη = i
1−η
p

2
(T−)

† , (C.23)

where T− is given in (C.11). It is important that D and Dη act in the 2L-dimensional Hilbert
space of the Ising model and the Z2-twisted Ising model, rather than in the larger Hilbert
space eH.

The operator DD

We now discuss the operatorDD in the fermionic theory. Since in the fermionic theory, D corre-
sponds to translation, the defect D corresponds to removing a site from the system. Therefore,
the bosonic system with a D defect corresponds to the Majorana chains with an odd number
of sites [13].

We use the same Hilbert space eH and study the following Hamiltonian

eHodd = −ieZχ2χ2L + i
2L−1
∑

ℓ=2

χℓ+1χℓ =

�

HG 0
0 H

�

= −
L
∑

j=2

(σz
j−1σ

z
j +σ

x
j )− eZ(−1)Fσz

Lσ
y
1 .

(C.24)

Note that the above Hamiltonian does not involve χ1 and eZ =

�

1 0
0 −1

�

commutes with the

Majorana variables. Here (−1)F =
∏

j σ
x
j as before.

50Note that the 2×2 matrix presentation used here corresponds to diagonalizing the operator eZ = ZL+1η. This is
different from the 2×2 matrix presentation used in (F.26), which corresponds to diagonalizing the operator ZL+1.
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The lattice translation symmetry of this Hamiltonian can be taken to be

eTodd =

�

TG 0
0 T

�

, (C.25)

where

TG =
e2πi 2L−1

16

2L−1
(1+χ1χ2)(1+χ2χ3) · · · (1+χ2L−1χ2L) ,

T =
e−2πi 2L−1

16

2L−1
(1−χ1χ2)(1−χ2χ3) · · · (1−χ2L−1χ2L) .

(C.26)

The overall phases are chosen so that T2L−1 = e−
2πi
16 and (TG)2L−1 = e

2πi
16 .51 The fermion

parity symmetry (−1)F is still defined by (C.2). The Majorana translation operators act on the
fermions χ2, . . . ,χ2L as

T χℓ T−1 =

¨

χℓ+1 , ℓ= 2, · · · , 2L − 1 ,

χ2 , ℓ= 2L ,

TGχℓ (TG)
−1 =

¨

−χℓ+1 , ℓ= 2, · · · , 2L − 1 ,

χ2 , ℓ= 2L .

(C.27)

To find the relation with the Ising chain, we use the same Jordan-Wigner transformation
as in (C.6), but instead of (C.9) we define

X1 = σ
y
1 (−1)F eX eZ , X j = σ

x
j , X L+1 = σ

z
1 ,

Z1 = σ
z
1
eX , Z j = σ

z
j
eX , ZL+1 = eZ(−1)F ,

(C.28)

for j = 2, · · · , L. Using these new bosonic variables we find

eHodd = −
L
∑

j=2

(Z j−1Z j + X j)− ZLX1 , (C.29)

and

TG =
e2πi 2L−1

16

2L−1
(1− iZ1Z2) · · · (1− iZL−1ZL)(1− iX L) ,

T =
e−2πi 2L−1

16

2L−1
(1+ iZ1Z2) · · · (1+ iZL−1ZL)(1+ iX L) .

(C.30)

We see that the Hamiltonian eHodd becomes the duality-twisted Hamiltonian (22). The Z2
symmetry of the duality-twisted Ising chain is given by

ηD = Z1

L
∏

j=1

X j = −ieZ . (C.31)

Using the crucial relations

T † = e−
2πi
16

1+ iZ1ZLp
2

1− Z1ZLηDp
2

DD ,

TG = T e
2πi
8 Z1ZL ,

(C.32)

51These phases are chosen to match with the continuum symmetry operators. In particular, as stated in [13],
we find T = (−1)FL e

2πiP
2L−1 on the low-lying states – here P is the continuum momentum operator and (−1)FL is the

chiral fermion parity symmetry.
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we find the relation between DD and the Majorana translations as

DD = e
2π
16 ηD

�

1+ iηD
2

TG +
1− iηD

2
T
�†

= e
2π
16 ηD

�

TG 0
0 T

�†

.

(C.33)

Taking the square of this equation we find D2
D = e

2π
8 ηD(eTodd)−2. Comparing this with (87),

we conclude that
eT2

odd = TD . (C.34)

D Sequential quantum circuit and the non-invertible symmetry

Here we relate our non-invertible operator D to the sequential quantum circuit U of [25],
which was based on earlier works in [23,24]. We work on a closed periodic chain with L sites,
with j = 1, 2, · · · , L and j ∼ j + L. The sequential quantum circuit is defined as

U =
1− iZ1ZLp

2

1− iX Lp
2

1− iZL ZL−1p
2

· · ·
1− iX3p

2

1− iZ3Z2p
2

1− iX2p
2

1− iZ2Z1p
2

. (D.1)

From the Majorana presentation of the non-invertible operator (C.13), it is straightforward to
show that

D= e
2πi L

8
1+η
p

2
U . (D.2)

Let us compare these two operators. The non-invertible operator D implements the
Kramers-Wannier transformation at every site (63):

DX j = Z j−1Z jD , DZ j−1Z j = X j−1D , ∀ j . (D.3)

In contrast, U acts on the Z2-even local operators in the same way almost everywhere except
for one site/link:

U X1 U−1 =

 

L
∏

j=1

X j

!

ZL Z1 ,

U X j U−1 = Z j−1Z j , j ̸= 1 ,

U Z j−1Z j U−1 = X j−1 , j ̸= 2 ,

U Z1Z2 U−1 = X2X3 · · ·X L .

(D.4)

The non-invertible operator D is translationally invariant (i.e., TD=DT) and commutes with
the critical Ising Hamiltonian (10) (i.e., HD = DH), but it is non-invertible. In contrast, the
sequential quantum circuit U is unitary (and in particular invertible), but it is not translation-
ally invariant and does not commute with the Hamiltonian. Finally, both D and U swap the
product state |++ ...+〉 with the GHZ state.

E Translation symmetry and its defects

As we discussed in Section 1.2, adding translation T to the symmetry group cannot be incorpo-
rated simply in terms of a fusion category. In particular, while defects of an internal symmetry
correspond to localized changes in the Hamiltonian without changing the Hilbert space, this
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is not true for translation defects. Instead, we can think of translation defects as changing the
Hilbert space; T + adds a site and T − removes a site.

In this section we will examine such defects and their properties. In Section E.1, we will
construct the defects. In Section E.2 we will see how they are related to the translation oper-
ator. And in Section E.3, we will study their fusion.

E.1 Translation defect

Let us start with the translation defect T −. It corresponds to removing a site. Removing site
number L, we consider the defect Hamiltonian and Hilbert space

H L
T − = −(ZL−1Z1 + X1)−

L−1
∑

j=2

(Z j−1Z j + X j) , HL
T − =H1 ⊗H2 ⊗ · · · ⊗HL−1 . (E.1)

Note that this Hamiltonian is the standard one for L−1 sites.52 The superscript in the Hamil-
tonian (E.1) denotes the fact that we removed site number L and we interpret it to mean that
we have the original problem with L sites with the defect T − at position L. Diagrammatically,
we represent it as

L − 2 L − 1 L 1 2

T −

=
L − 2 L − 1 1 2 . (E.2)

As it stands, the system described by (E.1) is manifestly translation invariant. Following
[53], we would like to present it in a language similar to the one we used for defects of internal
symmetries.

In order to do that, we go back to the original Hilbert space with L sitesH=H1⊗H2⊗· · ·⊗HL
and consider a subspace HJ

T − where site J is missing. Then, translation in the original problem
T acts in the large Hilbert space H by mapping H j →H j+1 (with j ∼ j+ L). This action is not
meaningful in the smaller Hilbert space HJ

T − . Therefore, as with all our defects, we should
correct it by adding a movement operator.

In the presence of the defect, the original translation operator T is corrected to be

TT − = SJ ,J+1T , (E.3)

which acts on the original Hilbert space H and commutes with HJ
T − ⊗ 1J . Here SJ ,J+1 is the

swap operator acting as (A.4).
Motivated by (E.3), we would like to interpret SJ ,J+1 as a movement operator. However, it

acts in the large Hilbert space H. Therefore, we define the movement operator as the restric-
tion of the swap operator S j+1, j to the domain H j

T − and codomain H j+1
T − . Explicitly,

U J ,J+1
T − =

�

U J+1,J
T −

�−1
=
�

|0〉J+1 ⊗ 〈0|J + |1〉J+1 ⊗ 〈1|J
� ⊗

j ̸=J ,J+1

1 j ,

U J+1,J
T − : HJ

T − →HJ+1
T − .

(E.4)

It acts as

U J+1,J
T − :

XJ+1 7→ XJ ,

ZJ+1 7→ ZJ .
(E.5)

52Removing the degrees of freedom at site L can be implemented energetically. We can keep the Hilbert space
unchanged and instead add the term ZL with a very large negative coefficient to the defect Hamiltonian (E.1) to
freeze the spin at site L to |0〉L and effectively remove it from the system.
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From this equation, we can easily check that

HJ+1
T − = U J+1,J

T − HJ
T − U J ,J+1

T − . (E.6)

The defect T + corresponds to adding a site. We construct it by adding a qubit H(L,1) = C2

on link (L, 1), such that the defect Hilbert space is H(L,1)
T + =H(L,1)⊗H1⊗ · · · ⊗HL . The defect

Hamiltonian is

H(L,1)
T + = −(ZL Z(L,1) + X(L,1))− (Z(L,1)Z1 + X1)−

L
∑

j=2

(Z j−1Z j + X j) , (E.7)

where X(L,1) and Z(L,1) acts on the added qubit H(L,1) on link (L, 1). Diagrammatically, we
write

L − 1 L 1 2

T +

=
L − 1 L (L, 1) 1 2 . (E.8)

This defect is topological since the unitary operator53

U J
T + :

XJ 7→ X(J ,J+1) , X(J−1,J) 7→ XJ ,

ZJ 7→ Z(J ,J+1) , Z(J−1,J) 7→ ZJ ,

U J
T + : H(J−1,J)

T + →H(J ,J+1)
T + ,

(E.9)

moves the defect by conjugation:

H(J ,J+1)
T + = U J

T + H(J−1,J)
T +

�

U J
T +
�−1

. (E.10)

E.2 Translation operator

To relate the topological defects T ± to the translation symmetry operators, we note that mov-
ing the defects through a region in space acts on that region as lattice translation. Specifically,
consider the unitary operator

U J2,J2−1
T − U J2−1,J2−2

T − · · · U J1+2,J1+1
T − U J1+1,J1

T − : HJ1
T − 7→ HJ2

T − , (E.11)

which moves the defect T − from site J1 to site J2 for J1 < J2. This unitary operator acts as
T−1 on any local operator Oj that is supported between sites J1 and J2:

U J2,J2−1
T − U J2−1,J2−2

T − · · · U J1+2,J1+1
T − U J1+1,J1

T − : Oj 7→ Oj−1 , for J1 < j < J2 . (E.12)

Moving the defect T + from link (J1 − 1, J1) to (J2, J2 + 1) is implemented by

U J2
T + · · · U

J1+1
T + U J1

T + : Oj 7→ Oj+1 , for J1 < j < J2 , (E.13)

which indeed acts as the lattice translation symmetry T .
To establish this connection further, we will now use the defect T − to construct the lattice

translation operator T−1. As in section 2.3.1, we construct the translation symmetry operator
T−1 by first creating a pair of defects T + and T −, moving one of them around the chain, and
then fusing them. These moves are implemented by unitary operators. We will show that the
product of these unitary operators is the lattice translation operator.

53The unitary operator U J
T + is the restriction of SJ ,(J−1,J)S(J ,J+1),J to H(J−1,J)

T + .
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L − 1 L 1 2 3

T −T +

T − T +

(λ1
T +⊗T −)

−1

U2,1
T −

U3,2
T −

U L,L−1
T −

λL
T −⊗T +

Figure 5: Construction of the lattice translation symmetry operator T−1 from the
topological defect T −. The diagram represent T−1 as a sequence of unitary operators
implementing pair creation of T ± defects, moving T − around the chain and finally
the fusion of T − with T +.

Explicitly, creating a pair of defects is implemented by the splitting operator (the inverse
of the fusion operator)

(λ1
T +⊗T −)

−1 = |0〉(L,1)〈0|1 + |1〉(L,1)〈1|1 =

L 1 2

T + T −

,
(E.14)

where (λ1
T +⊗T −)

−1Hλ1
T +⊗T − = H(L,1);1

T +;T − . Note that this operator does not change the size of

the Hilbert space. In fact, it is even unitary. The sequence of unitary operators U L,L−1
T − · · ·U2,1

T −
moves the T − defect from site 1 to site L. Finally, we fuse the two defects using the fusion
operator

λL
T −⊗T + = |0〉L〈0|(L,1) + |1〉L〈1|(L,1) =

L − 1 L 1

T − T +

,
(E.15)

where λL
T −⊗T +(H

L;(L,1)
T −;T +)(λ

L
T −⊗T +)

−1 = H.
The product of all these unitary operators is indeed the lattice translation symmetry

T−1 = λL
T −⊗T + U L,L−1

T − · · · U3,2
T − U2,1

T − (λ
1
T +⊗T −)

−1

= |0〉L
�

U L,L−1
T − · · · U2,1

T −
�

〈0|1 + |1〉L
�

U L,L−1
T − · · · U2,1

T −
�

〈1|1 ,
(E.16)

which is similar to equation (49). See Figure 5 for a diagrammatic expression.
Finally, noting that

U j+1, j
T − =

�

〈0| j+1 〈1| j+1
�





|0〉 j

|1〉 j



= |0〉 j〈0| j+1 + |1〉 j〈1| j+1 , (E.17)

we can rewrite the second line of (E.16) as the following MPO

T−1 = Tr
�

UL
T −U

L−1
T − · · ·U

1
T −
�

, where U j
T − =





|0〉〈0| j |0〉〈1| j

|1〉〈0| j |1〉〈1| j



 . (E.18)
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E.3 Fusion involving the translation defects

Here we elaborate on some of the fusion rules involving the lattice translation defects.
We start with the fusion rule T −η= η⊗T − = T −⊗η in Section 2.2.2. Consider the defect

Hamiltonian with an η defect at link (L − 1, L) and a T − defect at site 1:

H(L−1,L);1
η;T − = −(−ZL−1ZL + X L)− (ZL Z2 + X2)−

L−1
∑

j=3

(Z j−1Z j + X j) . (E.19)

Note that the Hilbert space is H2 ⊗H3 ⊗ · · · ⊗HL with site 1 removed because of T −.
Next, we fuse the η defect with the T − defect using the fusion operator λL

η⊗T − = X L to
obtain the Hamiltonian for the composite defect T −η in (36):

H1
T −η = λ

L
η⊗T − H(L−1,L);1

η;T − (λL
η⊗T −)

−1 = −(−ZL Z2 + X2)−
L
∑

j=3

(Z j−1Z j + X j) . (E.20)

We interpret this equation as the fusion rule ηT − = η⊗ T −, which can be diagrammatically
represented as

λL
η⊗T − = X L =

L − 1 L 1 2
η T −

T −η

. (E.21)

The other fusion rule T −η= T −⊗η can be implemented similarly by another fusion operator.
Next, we discuss the dual D∗ of the non-invertible defect D. The dual defect D∗ is obtained

by starting with the Hamiltonian with a D defect at the link (L − 1, L) and a T + defect at the
link (L, 1):

H(L−1,L);(L,1)
D;T + = −ZL−1X L − (ZL Z(L,1) + X(L,1))− (Z(L,1)Z1 + X1)−

L−1
∑

j=2

(Z j−1Z j + X j) , (E.22)

which acts in the Hilbert space H(L,1) ⊗H1 ⊗ · · · ⊗HL with X(L,1), Z(L,1) acting on the added
qubit from T +. To fuse these two defects, we apply the fusion operator λL

D⊗T + = CZL,(L,1)HL:

H(L,1)
D∗ = λ

L
D⊗T + H(L−1,L);(L,1)

D;T + (λ1
D⊗T +)

−1

= −(ZL−1ZL + X L)− ZLX(L,1) − (Z(L,1)Z1 + X1)−
L−1
∑

j=2

(Z j−1Z j + X j) .
(E.23)

We interpret this unitary transformation as the fusion rule D∗ = D ⊗ T +, which can be dia-
grammatically represented as

λL
D⊗T + = CZL,(L,1)HL =

L − 1 L 1

D T +

D∗

. (E.24)

The fusion rule D∗ = T + ⊗D can be implemented similarly by another fusion operator.

59

https://scipost.org
https://scipost.org/SciPostPhys.16.6.154


SciPost Phys. 16, 154 (2024)

Finally, we demonstrate the fusion rule D ⊗D∗ = 1⊕ η. We start with a D defect at the
link (L − 1, L) and the dual defect D∗ at the link (L, 1):

H(L−1,L);(L,1)
D;D∗ = −ZL−1X L − ZLX(L,1) − (Z(L,1)Z1 + X1)−

L−1
∑

j=2

(Z j−1Z j + X j) , (E.25)

which acts in the Hilbert space H(L,1)⊗H1⊗· · ·HL. The fusion operator is λL
D⊗D∗=CNOTL,(L,1)HL:

H(L,1)
1⊕η = λ

L
D⊗D∗ H(L−1,L);(L,1)

D;D∗
�

λL
D⊗D∗

�−1

= −Z(L,1)ZL Z1 − X1 −
L
∑

j=2

(Z j−1Z j + X j) ,
(E.26)

which corresponds to inserting the non-simple defect 1⊕η on the link (L, 1). We diagrammat-
ically represent this fusion as

λL
D⊗D∗ = CNOTL,(L,1)HL =

L − 1 L 1

D D∗

1⊕η

. (E.27)

The fusion D∗ ⊗D = 1⊕η can be implemented similarly using another fusion operator.

F More on the operator algebra

In this appendix, we calculate the algebra between various symmetry operators using their
MPO presentations.

F.1 Preliminaries

Matrix product operators (MPOs)

To begin, let us summarize our conventions for MPOs.
A Matrix Product Operator [19, 20] is constructed out of a tensor, such as U j

A, which we

represent as a d × d operator-valued matrix. More precisely, (U j
A)aa′ is an operator acting on

site j and the indices a, a′ are called the virtual, or auxiliary, indices. The size of this matrix,
d, is called the bond dimension of the MPO. We mostly consider MPOs with bond dimension
d = 2, therefore we take a, a′ = 0, 1. The product of two MPOs have bond dimension d = 4,
and we represent them by (U j

A×B)ab,a′b′ where a, b, a′, b′ = 0, 1,

Some of the operators take the following form. Given a tensor U j
A (of bond dimension 2)

and a choice of boundary condition A, we construct the following MPO that acts on a chain
with L sites:

A= Tr
�

AUL
AU

L−1
A · · ·U1

A
�

=
∑

a0,a1,...,aL=0,1

Aa0aL

�

UL
A
�

aL aL−1

�

UL−1
A
�

aL−1aL−2
· · ·
�

U2
A
�

a2a1

�

U1
A
�

a1a0
. (F.1)

Imposing periodic boundary condition corresponds to taking A= 1.
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MPO presentations of η, D, and T−1

The MPO presentation of the symmetry operators with periodic boundary condition are

η= X L · · ·X1 , D= Tr
�

UL
DU

L−1
D · · ·U1

D
�

, T−1 = Tr
�

UL
T −U

L−1
T − · · ·U

1
T −
�

, (F.2)

where
�

U j
D

�

aa′
=
�

�(−1)a+a′
�


a′
�

�

j , and
�

U j
T −
�

aa′
= |a〉




a′
�

�

j . (F.3)

As usual, the virtual indices are denoted by a, b, a′, b′ ∈ {0, 1}. See [16,17,127,139–143] for
discussions of MPOs and their relations to fusion category.

General method

Let us first sketch the general strategy to compute the fusion algebra. Consider the MPOs
A= Tr

�

UL
AU

L−1
A · · ·U1

A
�

and B= Tr
�

UL
BU

L−1
B · · ·U1

B
�

. Their product is given by

A×B= Tr
�

UL
A×BU

L−1
A×B · · ·U

2
A×BU

1
A×B

�

, (F.4)

where
�

U j
A×B

�

ab,a′b′
=
�

U j
A

�

aa′

�

U j
B

�

bb′
. (F.5)

To establish a fusion relation of the form A×B = C1 + C2, we need to transform U j
A×B into

a block diagonal form where the blocks are U j
C1

and U j
C2

. More precisely, we need to find a
similarity transformation (S)ab,a′b′ , acting on the auxiliary degrees of freedom, such that

U j
A×B = S

�

U j
C1

0

0 U j
C2

�

S−1 . (F.6)

Such a relation clearly implies A×B= C1 +C2.

Defining properties of the MPOs

It will be useful to have a set of defining relations for the tensors U j
D and U j

T − . These relation
are

X jU
j
D = ZU

j
D Z , U j

DX j = XU
j
DX ,

Z jU
j
D = XU

j
D , U j

DZ j = U
j
D Z ,

(F.7)

and
X jU

j
T − = XU

j
T − , U j

T −X j = U
j
T −X ,

Z jU
j
T − = ZU

j
T − , U j

T −Z j = U
j
T −Z ,

(F.8)

which determine the tensors U j
D and U j

T − up to an overall normalization.

F.2 D2

Here we find the operator version of the defect fusion relation D⊗D = T −⊕T −η. Recall the
MPO presentations

T−1 = Tr
�

UL
T −U

L−1
T − · · ·U

1
T −
�

, and T−1η= Tr
�

UL
T −ηU

L−1
T −η · · ·U

1
T −η

�

, (F.9)

where
�

U j
T −
�

aa′
= |a〉




a′
�

�

j , and
�

U j
T −η

�

aa′
= |a+ 1〉




a′
�

�

j . (F.10)
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To compute the product of D with itself, it will be useful to use an alternative MPO pre-
sentation. We write the movement operator (54) as

U j
D =

�

1 Z j+1
�





1+Z j
2 H j

1−Z j
2 H j



=
1+ Z j

2
H j + Z j+1

1− Z j

2
H j , (F.11)

which leads to the MPO tensor

U′ jD =





1+Z j
2 H j

1−Z j
2 H j





�

1 Z j
�

=





|0〉〈+| j |0〉〈−| j

|1〉〈−| j |1〉〈+| j



 ,
�

U′ jD
�

aa′
=
�

�a
�


(−1)a+a′
�

�

j . (F.12)

The tensors U j
D of (F.3) and U′ jD are related by a similarity transformation that acts on the aux-

iliary degrees of freedom. More precisely, they are related by the Hadamard matrix; namely,

U′ jD =HU
j
DH , where (H)aa′ = (−1)aa′/

p
2 . (F.13)

Therefore, they are equivalent MPOs and lead to the same operator

D= Tr
�

UL
DU

L−1
D · · ·U1

D
�

= Tr
�

U′LDU
′L−1
D · · ·U′1D

�

.

Using both MPO presentations, we find

D2 = Tr
�

U′LD×DU
′L−1
D×D · · · U

′2
D×DU

′1
D×D

�

, (F.14)

where
�

U′ jD×D
�

ab,a′b′
=
�

U′ jD
�

aa′

�

U j
D

�

bb′
=
�

δa+a′,b+b′ (mod 2)
�

|a〉



b′
�

�

j , (F.15)

uses the two different presentations (F.3) and (F.12). Applying the

(CNOT)ab,a′b′ = δb,b′δa,a′+b′ (mod 2)

gate we find

�

CNOT U′ jD×D CNOT
�

ab,a′b′
= δa,a′ |b+ a〉




b′
�

�

j =





|b〉



b′
�

�

j 0

0 |b+ 1〉



b′
�

�

j





aa′

, (F.16)

which indeed gives

CNOT U′ jD×D CNOT=

�

U j
T − 0
0 U j

T −η

�

. (F.17)

Thus we have established the fusion relation

D2 = T−1(1+η) . (F.18)

Instead of using U′ jD×D, we can use the original MPO presentation U j
D×D and find the

similarity transformation S satisfying

SU j
D×D S

−1 =

�

U j
T − 0
0 U j

T −η

�

. (F.19)

This similarity transformation is given by S= CNOT(H⊗1) = (H⊗1)CZ, which follows from
U′ jD×D = (H⊗1)U

j
D×D(H⊗1) and (F.17). More explicitly, we have

Sab,a′b′ = ((H⊗1)CZ)ab,a′b′ = δb,b′
(−1)(a+b)a′

p
2

,

S−1
ab,a′b′ = (CZ(H⊗1))ab,a′b′ = δb,b′

(−1)a(a
′+b′)

p
2

.

(F.20)
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F.3 D2
1⊕η

Here we compute the operator productD2
1⊕η. As we will see below, this operator fusion leads to

the relation between D† and D, and similarly D†
η and Dη. We begin with the MPO presentation

of the operator D1⊕η : H⊕H→H⊕H, defined in (49), and its matrix elements.

MPO presentation of D1⊕η

Taking various matrix elements of D1⊕ηH(L,1)
1⊕η = H(L,1)

1⊕η D1⊕η, leads to symmetry operators

DH = H D , for D=
p

2 〈0|D1⊕η |0〉L+1 ,

DηH(L,1)
η = H(L,1)

η Dη , for Dη =
p

2 〈1|D1⊕η |1〉L+1 ,

D1→ηH = H(L,1)
η D1→η , for D1→η =

p
2 〈1|D1⊕η |0〉L+1 ,

Dη→1 H(L,1)
η = H Dη→1 , for Dη→1 =

p
2 〈0|D1⊕η |1〉L+1 .

(F.21)

In the 2× 2 matrix presentation of the Pauli operator ZL+1 = Z(L,1), we have

H(L,1)
1⊕η =

�

H 0
0 H(L,1)

η

�

, and D1⊕η =
1
p

2

�

D Dη→1
D1→η Dη

�

. (F.22)

We now provide an MPO presentation of the operator D1⊕η given in (50):

D1⊕η = HL+1 U L
DU L−1

D · · ·U1
DHL+1 U L+1

D

= HL+1

�1+ZL+1
2

1−ZL+1
2

�

UL
D · · ·U

1
DHL+1

�

HL+1
ZL+1HL+1

�

= Tr
�

DL+1
1⊕ηU

L
D · · ·U

1
D

�

,

(F.23)

where

DL+1
1⊕η =





HL+1
1+ZL+1

2 HL+1
1−ZL+1

2

HL+1
1+ZL+1

2 X L+1 HL+1
1−ZL+1

2 X L+1



=





|+〉〈0|L+1 |−〉〈1|L+1

|+〉〈1|L+1 |−〉〈0|L+1



 . (F.24)

This leads to

D= Tr
�

1UL
D · · ·U

1
D

�

, for 1=
p

2 〈0|DL+1
1⊕η|0〉L+1 =

�

1 0
0 1

�

,

Dη = Tr
�

XZUL
D · · ·U

1
D

�

, for XZ=
p

2 〈1|DL+1
1⊕η|1〉L+1 =

�

0 −1
1 0

�

,

Dη→1 = Tr
�

XUL
D · · ·U

1
D

�

, for X=
p

2 〈0|DL+1
1⊕η|1〉L+1 =

�

0 1
1 0

�

,

D1→η = Tr
�

ZUL
D · · ·U

1
D

�

, for Z=
p

2 〈1|DL+1
1⊕η|0〉L+1 =

�

1 0
0 −1

�

.

(F.25)

Using the second line of (F.7), we conclude

D1⊕η =
1
p

2

�

D Dη→1
D1→η Dη

�

=
1
p

2

�

D ZLD
DZ1 − ZLDZ1

�

. (F.26)
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The fusion

Using the MPO presentation of D1⊕η, we find

D2
1⊕η = Tr

�

(D2)L+1
1⊕ηU

L
D×DU

L−1
D×D · · · U

2
D×DU

1
D×D

�

, (F.27)

where

�

DL+1
1⊕η

�

aa′
=
�

�(−1)a
′�


a+ a′
�

�

L+1 ⇒
�

(D2)L+1
1⊕η

�

ab,a′b′
=
(−1)(a+a′)b′

p
2

�

�(−1)a
′�


b+ b′
�

�

L+1 .

(F.28)
To simplify the operator product, we use the similarity transformation (F.20) to find

�

S (D2)L+1
1⊕η S

−1
�

ab,a′b′
=

∑

a′′,a′′′=0,1

(−1)(a+b)a′′+(a′′+a′′′)b′+a′′′(a′+b′)

2
p

2

�

�(−1)a
′′′�


b+ b′
�

�

L+1

=
∑

a′′=0,1

(−1)a
′′(a+b+b′)

2

�

�a′
�


b+ b′
�

�

L+1 =
�

δa,b+b′ (mod 2)
� �

�a′
�

〈a|L+1

=





δb,b′ |0〉〈0|L+1 δb,b′ |1〉〈0|L+1

δ1−b,b′ |0〉〈1|L+1 δ1−b,b′ |1〉〈1|L+1





aa′

.

(F.29)
Using the MPO presentation (F.27) and the relations (F.19) and (F.29), we find

D2
1⊕η = |0〉〈0|L+1Tr

�

UL
T −U

L−1
T − · · ·U

1
T −
�

+ |1〉〈1|L+1Tr
�

XUL
T −ηU

L−1
T −η · · ·U

1
T −η

�

= |0〉〈0|L+1T−1 + |1〉〈1|L+1T−1
η η ,

(F.30)

where
T−1
η = T−1X1 = X L T−1 . (F.31)

In terms of the 2× 2 presentation (F.26), (F.30) becomes

D2
1⊕η =

�

T−1 0
0 T−1

η η

�

. (F.32)

Since D1⊕η is a unitary operator, we find

D†
1⊕η =

1
p

2

�

D† D†
1→η

D†
η→1 D†

η

�

=
1
p

2

�

D Dη→1
D1→η Dη

��

T 0
0 Tηη

�

=
1
p

2

�

T 0
0 Tηη

��

D Dη→1
D1→η Dη

�

.

(F.33)

Thus we find
D† =DT = TD , and D†

η = −DηTη = −TηDη , (F.34)

where above we have used the fusion relation Dηη= ηDη = −Dη.

F.4 D2
D

We begin with the MPO presentations of the symmetry operators ηD, T−1
D and DD that com-

mute with the defect Hamiltonian H(L,1)
D given in (22).

The D-twisted Z2 symmetry operator is denoted by

ηD = X LX L−1 · · ·X2 (Z1X1) . (F.35)
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It is straightforward to verify that it commutes with the defect Hamiltonian (22). Following the
discussion in footnote 24, the D-twisted lattice translation is given by T−1

D = T−1U1
D. Writing

the movement operator (24) as

U j
D = |0〉〈+| j + Z j+1 |1〉〈−| j , (F.36)

and using the MPO presentation of the translation operator we get

T−1
D = Tr



UL
T −U

L−1
T − · · ·U

3
T −U

2
T −





|0〉〈0|1 |0〉〈1|1

|1〉〈0|1 |1〉〈1|1







U1
D

= Tr



UL
T −U

L−1
T − · · ·U

3
T −





|0〉〈0|2 |0〉〈1|2

|1〉〈0|2 |1〉〈1|2









|0〉〈+|1 Z2 |0〉〈−|1

|1〉〈+|1 Z2 |1〉〈−|1









= Tr



UL
T −U

L−1
T − · · ·U

3
T −U

2
T −





|0〉〈+|1 |0〉〈−|1

|1〉〈+|1 −|1〉〈−|1







 .

(F.37)

In summary we find

T−1
D = Tr

�

UL
T − · · ·U

2
T −(T

−1)1D
�

, where
�

(T−1)1D
�

aa′ = (−1)aa′
�

�a
�


(−1)a
′�
�

1 . (F.38)

Finally, the MPO presentation of DD, as given in equations (71) and (72), is

DD = Tr
�

UL
D · · ·U

2
DD

1
D
�

, where
�

D1
D
�

aa′ = (−1)aa′
�

�a′
�


(−1)a
′�
�

1 . (F.39)

Using this expression we find

D2
D = Tr

�

UL
D×D · · · U

2
D×D (D

2)1D
�

, (F.40)

where
�

(D2)1D
�

ab,a′b′ =
�

D1
D
�

aa′
�

D1
D
�

bb′ =
(−1)aa′+bb′+a′b′

p
2

�

�a′
�


(−1)b
′�
�

1 . (F.41)

Using the similarity transformation (F.20), we get

�

S (D2)1D S
−1
�

ab,a′b′ =
∑

a′′,a′′′=0,1

(−1)(a+b)a′′+a′′a′′′+bb′+a′′′b′+a′′′(a′+b′)

2
p

2

�

�a′′′
�


(−1)b
′�
�

1

=
∑

a′′′=0,1

�

δa′′′,a+b (mod 2)
� (−1)bb′+a′′′a′

p
2

�

�a′′′
�


(−1)b
′�
�

1

=
(−1)bb′+(a+b)a′

p
2

�

�a+ b
�


(−1)b
′�
�

1

=
1
p

2
(Z1)

a′(X1)
a �(T−1)1D

�

bb′ ,

(F.42)

where in the last line we have used the expression for (T−1)1D given in (F.38). Using (F.19),
we further simplify the operator product to

D2
D =

1
p

2
Tr
�

UL
T − · · ·U

2
T −(T

−1)1D
�

+
1
p

2
Tr
�

UL
T −η · · ·U

2
T −η (Z1X1)(T−1)1D

�

=
1+ X L · · ·X2 (Z1X1)p

2
Tr
�

UL
T − · · ·U

2
T −(T

−1)1D
�

=
1
p

2
(1+ηD)T

−1
D ,

(F.43)

where we have used the relation U j
T −η = X jU

j
T −; see equation (F.10).
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G Tambara-Yamagami fusion categories

In this appendix, we review some aspects of the TY(Z2,ε) fusion categories. We present the
F-symbols and derive the operator algebras in the twisted Hilbert spaces. Mathematically,
the operator algebras on (and more generally, between) different twisted Hilbert spaces are
described by the tube algebra [124, 161, 162]. Finally, we compare these operator algebras
with their lattice counterparts and comment on the ambiguity of the FS indicator on the lattice.
Our discussion of the TY(Z2,ε) fusion categories follows [12,14,119,162] closely.

G.1 F-symbols of TY(Z2,ε)

The two TY fusion categories TY(Z2,ε= ±) share the same fusion algebra

N 2 = 1+η , Nη= ηN =N , η2 = 1 . (G.1)

The FS indicators ε enter the following two F-moves:54

=
ε
p

2
+

ε
p

2
,

=
ε
p

2
−

ε
p

2
.

(G.2)

Here the red and blue lines stand for non-invertible line N and the invertible Z2 line η, re-
spectively. The other F-symbols are (see Table 1 of [114]):

= − , = − , = ,

= , = ,

= , = ,

= , = , = .

(G.3)

54For readers who are more familiar with MTCs [34,113], the two fusion categories TY(Z2,ε) are obtained from
the MTCs associated with the 2+1d Spin(ν)1 Chern-Simons theory (also known as Kitaev’s 16-fold way [114])
with odd ν by forgetting the braiding structure (i.e., the complex phase in the R-symbols). The Spin(ν)1 MTCs
with ν = 1, 7,9, 15 mod 16 share the same F-symbols corresponding to TY(Z2,+), while the ν = 3,5, 11,13 mod
16 ones give rise to TY(Z2,−). This is correlated with the fact that for these values of ν, the spinor of Spin(ν) is
real and pseudoreal respectively.
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G.2 Operator algebra in the Z2-twisted Hilbert space

In the Z2-twisted Hilbert space, we define two operators as:

ηη = = , Nη = . (G.4)

The black square represents a cylinder with the two vertical sides identified. The vertical
direction stands for time, while the horizontal direction stands for space, which is a circle.
The vertical blue line represents the Z2 twist at a fixed position on the spatial circle. For the
Z2 operator ηη in the Z2-twisted Hilbert space, the two configurations are identical because
of the trivial F-move in the upper right corner in (G.3). This follows from the fact that this Z2
symmetry is free of ’t Hooft anomalies [117].

Since the F-move involving just the Z2 line is trivial, we have η2
η = 1. Next, by applying

the F-moves in (G.2), we compute ηη ×Nη:

ηη ×Nη = = − = − . (G.5)

The product Nη × ηη can be computed similarly and we find ηη ×Nη = Nη × ηη = −Nη.
Using the F-moves in (G.2) and (G.3), we compute Nη ×Nη [119]:

Nη ×Nη = = − = −
ε
p

2
+
ε
p

2

= −ε + ε .

(G.6)
We summarize the operator algebra in the Z2-twisted Hilbert space [119]:

η2
η = 1 ,

ηη ×Nη =Nη ×ηη = −Nη ,

Nη ×Nη = −ε(1−ηη) .
(G.7)

The lattice counterpart of this algebra is in (79).
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G.3 Operator algebra in the duality-twisted Hilbert space

In the duality-twisted Hilbert space, we define two operators as

ηN = , NN = . (G.8)

We show η2
N = −1 as follows:

ηN ×ηN = = − = − = − .

(G.9)
Next, by applying the F-moves in (G.2), we compute NN ×NN :

NN ×NN = =
ε
p

2
+

ε
p

2

=
ε
p

2
+
ε
p

2
.

(G.10)

We conclude that [12,14],
η2
N = −1,

NN ×NN =
ε
p

2
(1+ηN ) .

(G.11)

Note that ηN ×NN =NN ×ηN gives another independent operator. The lattice counterpart
of this algebra is in (87).

G.4 Projective phases in the action of the non-invertible symmetry and parity

In Section 2.5 we found that the lattice symmetry algebra involving parity/time-reversal in the
presence of a non-invertible defect is realized projectively. Here we derive the corresponding
algebra for the Z2 operator ηN and parity PN in the N -twisted Hilbert space in the continuum.
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We compute PNηNP−1
N as follows:

PNηNP−1
N = = − = −ηN , (G.12)

where in the second equality we have used the F-move in (G.3). This provides a more general
derivation of the projective algebra in (103) for the Ising CFT.55

H Lattice interpolation between TY(Z2,ε = ±)

In Section 3.2, we emphasized that our lattice symmetry does not have a FS indicator, while
the continuum symmetry does. In this Appendix, we demonstrate how the FS indicator of
the continuum theory can depend on the choice of the lattice Hamiltonian. We will present a
continuous family of lattice Hamiltonians enjoying the same lattice symmetry. The symmetry
of the continuum theory of some of them is TY(Z2,+), while for the others, it is TY(Z2,−).

Our example will make use of the following fact about the two TY(Z2,ε) categories
[12]. Consider a general CFT with a fusion category symmetry TY(Z2,ε) ⊠ VecωZ2

, with

ω ∈ H3(Z2, U(1)) being the nontrivial element. Here, VecωZ2
is the fusion category describing

an anomalous, invertible Z2 symmetry, whose generator we denote by C. In this big category,
one can consider a subcategory generated by 1,η,N ′ =N ⊗C. One can show that these three
simple lines generate a TY(Z2,−ε) fusion category, with the opposite FS indicator compared to
the one generated by 1,η,N . That is, the stacking with an anomalous Z2 line flips the sign of
the FS indicator of a non-invertible line. As an example, which will be used below, consider a
tensor product of the Ising fusing category TY(Z2,ε= +1) and the fusion category of SU(2)1.
The tensor product includes the fusion category of SU(2)2, which is TY(Z2,ε= −1).

We now proceed with our lattice discussion. We consider first the Heisenberg chain with
2L sites

HHeisenberg(t) = (1− t)Htrivial + tHXXX ,

Htrivial =
2L
∑

j=1

X j ,

HXXX =
2L
∑

j=1

(X jX j+1 + YjYj+1 + Z j Z j+1) .

(H.1)

For t = 1, this is the SO(3) invariant Heisenberg chain without an external magnetic field. In
the continuum limit, it leads to the SU(2)1 conformal field theory and the lattice translation
symmetry THeisenberg leads to an emanant internal ZC2 symmetry generated by C [46,52]. This
ZC2 symmetry has a self-anomaly (see, for example, [117, 164]). That anomaly has a lattice
precursor near the continuum limit [52], but it is not an exact property of the lattice system.
To see that, consider the background magnetic field deformation in (H.1). It breaks the SO(3)
symmetry, but preserves the Z2 symmetry that we are interested in. Now, it is clear that the
long-distance behavior can be different and in particular, for t = 0, it is trivial and does not
have the emanant symmetry with its self-anomaly.

Next, we tensor this model with our Ising chain with L sites and Hamiltonian H in (10).

55See [163] for more discussions of mixed anomalies between fusion categories and time-reversal/parity.
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This means that the total Hamiltonian is56

HTotal = H ⊗ 1+ 1⊗HHeisenberg(t) , (H.2)

and consider the symmetry operator

DTotal =D⊗ T−1
Heisenberg . (H.3)

This operator commutes with the total Hamiltonian HTotal and it satisfies

D2
Total = (1+ηTotal)T

−1
Total ,

TTotal = T ⊗ T2
Heisenberg ,

ηTotal = η⊗ 1 ,

(H.4)

which is the same algebra as the symmetry algebra of the Ising model without the Heisenberg
factor. (Recall that the number of sites in the added Heisenberg chain is 2L and number of
sites of the Ising chain is L, such that T L

Total = 1.)
For t = 0, the low energy phase of the combined system is described the Ising CFT and

DTotal flows to the non-invertible symmetry N of TY(Z2,+) with ε = +1. For t = 1, the low
energy phase is described by a tensor product of two CFTs, Ising and SU(2)1, and the operator
DTotal becomes the non-invertible symmetry N ′ = N ⊗ C. As discussed at the beginning of
this appendix, the FS indicator for N ′ is ε = −1, and 1,η,N ′ generate the TY(Z2,−) fusion
category.

In conclusion, this lattice model is invariant under our lattice symmetry operators. As we
vary its parameters, it has (at least) two phases both with the continuum symmetry TY(Z2,ε).
In one of them, the FS indicator ε is +1 and in the other, it is −1.

I Non-invertible symmetry of superconformal minimal models
and their deformations

I.1 The supersymmetric Ginzburg-Landau model

I.1.1 The model and its symmetries

Following [165], we consider a Ginzburg-Landau description of the unitary supersymmetric
minimal models. This is a continuum 1+1d theory with (1, 1) supersymmetry, based on a real
superfield

Φ(θL ,θR) = ϕ + θLψR + θRψL + iθLθRF , (I.1)

and the Lagrangian
∫

d2θ

�

1
2

DLΦDRΦ+W (Φ)
�

. (I.2)

This theory has a standard (−1)F symmetry under which θL and θR change sign. When the su-
perpotential W (Φ) is even, there is also aZ2 global symmetry acting asΦ(θL ,θR)→−Φ(θL ,θR).

We are interested in the case of odd W (Φ). Then, the theory has a (−1)FL symmetry acting
as

(−1)FL : Φ(θL ,θR)→−Φ(−θL ,θR) . (I.3)

Clearly, it is an R-symmetry. It is known to be related to Kramers-Wannier duality [165].

56Here ⊗ stands for the standard tensor product of two linear maps on two vector spaces. This is not to be
confused with the fusion operation for the defects.
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As in [153], when the fermions are periodic, i.e., in the RR theory, we have an anomaly

(−1)FL (−1)F = −(−1)F (−1)FL . (I.4)

This anomaly is at the root of the non-invertible symmetry of the bosonic theory, which we
will discuss soon.

Most of the literature about this theory focuses on its gapless phases. In particular, for
W (Φ)∝ Φm, the model flows to the (1,1) superconformal minimal model with central charge
c = 3

2 −
12

m(m+2) . We will consider its gapped phase. The simplest such case with odd W (Φ) has

W (Φ) = h
�

Φ−
1
3
Φ3
�

, (I.5)

and the corresponding potential is

V = h2(ϕ − 1)2(ϕ + 1)2 . (I.6)

I.1.2 Ignoring the fermions

For large h, we can use a semiclassical picture. Let us first ignore the fermions. The bosonic po-
tential has two minima ϕ = ±1 and correspondingly, the system has two approximate ground
states |ϕ = ±1〉. Instantons mix them and lead to two energy eigenstates

|±〉=
1
p

2

�

|ϕ = +1〉 ± |ϕ = −1〉
�

, (I.7)

which are (−1)FL eigenstates
(−1)FL |±〉= ±|±〉 . (I.8)

The true ground state is |+〉 and the state |−〉 has energy of order e−aL with some positive
constant a, where L is the spatial circumference of space.

I.1.3 The fermionic field theory

Next, we add the fermions. Now, ϕ and ψLψR can mix because they are both (−1)F even and
(−1)FL odd. Indeed, the component Lagrangian includes a term proportional to ϕψLψR. This
coupling means that the fermions are massive at the two states |ϕ = ±1〉 and one might want
to ignore them.

When the fermions are anti-periodic, i.e., in the NSNS theory, this reasoning is correct and
we can simply ignore the fermions. Therefore, the lowest energy states are |±〉NSNS of (I.7),
where we added the subscript NSNS to show that these are states in the NSNS theory. They
are eigenstates of (−1)F and (−1)FL

(−1)F |±〉NSNS = +|±〉NSNS ,

(−1)FL |±〉NSNS = ±|±〉NSNS .
(I.9)

As in the problem without the fermions, the true ground state is |+〉NSNS and the state |−〉NSNS
has slightly higher energy.

The situation is more interesting when the fermions are periodic, i.e., in the RR theory.
Now, the instanton that interpolates between the two states |ϕ = ±1〉 has a fermion zero
mode. Therefore, it does not split the degeneracy between them. Instead, we end up with two
degenerate states. We can take them to be |ϕ = ±1〉RR, where the subscript RR denotes that
they are the ground states in the RR theory. These states satisfy

(−1)F |ϕ = ±1〉RR = ±|ϕ = ±1〉RR ,

(−1)FL |ϕ = ±1〉RR = |ϕ = ∓1〉RR .
(I.10)
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This is consistent with the algebra (I.4), which does not have one-dimensional representations.
(Of course, we could have taken the basis |±〉RR.)

Clearly, the two states |ϕ = ±1〉RR are related by the action of supersymmetry. Therefore,
this model has vanishing Witten index (the contribution of these two states to the index cancel
each other because they have opposite (−1)F ) and supersymmetry is spontaneously broken.

I.1.4 Performing the GSO projection

So far, we discussed the Ginzburg-Landau model as a fermionic quantum field theory, which
depends on a choice of the spin structure. Let us consider the corresponding bosonic quantum
field theory (which does not require a choice of the spin structure) obtained by performing the
GSO projection.

In particular, as emphasized in [128], we should distinguish between two different gapless
theories corresponding to W (Φ)∝ Φ3. Its fermionic version is the first (1, 1) superconformal
minimal model and its bosonized version is the tricritical Ising CFT.

Following the standard bosonization procedure, reviewed in [119,128,154–160], we com-
bine the NSNS and the RR Hilbert spaces and assign a quantum Zη2 symmetry η = +1 to the
NSNS sector and η= −1 to the RR sector. Then, we project on (−1)F = +1.

After bosonization, the deformation Φ of the pure Φ3 superpotential is mapped to the
subleading thermal deformation ϵ′ of the tricritical Ising CFT discussed in Section 4.2 and
denoted by λ at the tricritical point in Figure 1.

Let us determine the low-lying states of this bosonic theory in its gapped phase. From the
NSNS sector, we get the states |±〉NSNS with η = +1 and (−1)FL = ±1. From the RR sector,
we have a single state |ϕ = +1〉RR with η= −1 and no well-defined (−1)FL . (Alternatively, we
could project in the RR sector on (−1)F = −1 and end up with |ϕ = −1〉RR also with η= −1.)

This picture fits with our general story. As in [154,157,160] , we identify N =
p

2(−1)FL

in the η= +1 sector and N = 0 in the η= −1 sector. They satisfy (G.1)

η2 = 1 , ηN =Nη=N , N 2 = 1+η , (I.11)

and we end up with three low-lying states:

|+〉NSNS , with η= +1 , N = +
p

2 ,

|−〉NSNS , with η= +1 , N = −
p

2 ,

|ϕ = +1〉RR , with η= −1 , N = 0 .

(I.12)

These three states are nearly degenerate – their energy differences are of order e−aL . This
energy difference between the two states from the NSNS sector is clear from the discussion
above. In order to see why the state from the RR sector is also close to these, we need to study
the large L theory and examine the action of the local operators there. We will do it now.

I.2 Spontaneous breaking of (non-)invertible symmetries in infinite volume

Let us discuss the infinite volume system and follow the steps above. Ignoring the fermions,
we have the two low-lying states |±〉 of (I.7). In the infinite volume limit, the Hilbert space
splits into two distinct superselection sectors where ϕ is diagonal. The ground states in these
sectors are |ϕ = ±1〉 andϕ = diag(+1,−1). We see that the (−1)FL symmetry is spontaneously
broken.

Adding the fermions, the same conclusion applies to the fermionic Ginzburg-Landau field
theory. The (−1)FL symmetry is spontaneously broken and the superselection sectors are
|ϕ = ±1〉NSNS in the NSNS theory, and |ϕ = ±1〉RR in the RR theory. Note that unlike the
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NSNS theory, where the two states have (−1)F = 1, in the RR theory these two states have
(−1)F = ±1.

The RR theory, but not the NSNS theory, is supersymmetric. In finite volume, this super-
symmetry was spontaneously broken. In the infinite volume limit, it is restored and the ground
states have vanishing energy. One way to see that is to note that the spectrum is gapped and
does not include a massless Goldstino.

Finally, we turn to the GSO-projected, bosonic field theory in infinite volume. Here, the
three low-lying states of the finite-volume theory (I.12) lead to three separate superselection
sectors with ground states

1
p

2

�

|ϕ = +1〉NSNS ± |ϕ = +1〉RR

�

, |ϕ = −1〉NSNS . (I.13)

One way to pick this basis is to diagonalize the local operators of the theory. The operator ϕ
and the spin field σ, which maps NSNS←→RR, act as

ϕ = diag(+1,+1,−1) ,

σ = diag(+1,−1,0) ,
(I.14)

where the last 0 in σ follows from the fact that there is no corresponding RR state.
This shows that in the infinite volume bosonic theory, the Zη2 symmetry is spontaneously

broken in the first two superselection sectors and it is unbroken in the third. N does not have
a simple action in any of them and we interpret it to mean that it is spontaneously broken.
More precisely, the symmetry operators η and N do not exist in the infinite volume theory.

I.3 Relation to the 1+1d Ising TQFT

Let us return to the finite-volume theory, focus on its three low-lying states (I.12), and try to
write an effective theory describing them. As we reviewed in Section 4.2, it is standard to
ignore their energy differences and then the low-energy theory is a 1+1d topological theory
with three states.

Since we neglect the energy differences, we can use either the basis (I.12), where the
line operators (1,N ,η) are diagonal: N = diag(+

p
2,−
p

2, 0), η = diag(+1,+1,−1), or
the basis (I.13), where the point operators (1,ϕ,σ) are diagonal: ϕ = diag(+1,+1,−1),
σ = diag(+1,−1,0) and the line operators are

η=





0 1 0
1 0 0
0 0 1



 , and N =





0 0 1
0 0 1
1 1 0



 . (I.15)

We emphasize that the operators (I.15) make sense in the finite-volume theory, but they are
meaningless in the infinite-volume theory, where the symmetry operators η and N do not
exist.

This TQFT is well studied. In this context, it is convenient to express the local opera-
tors 1, ϕ, σ as linear combinations of idempotent operators ϵ1,ϵ2,ϵ3 that satisfy the simple
projection operator algebra [166,167]

ϵiϵ j = δi jϵi . (I.16)

Specifically, consider the operators [60,168]

1= ϵ1 + ϵ2 + ϵ3 ,

vϕ = ϕ = ϵ1 + ϵ2 − ϵ3 ,

vσ =
p

2σ =
p

2ϵ1 −
p

2ϵ2 .

(I.17)
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The projection operators ϵi project onto the normalized states |i〉:

|1〉= ϵ1|HH〉 ,
|2〉= ϵ2|HH〉 ,

|3〉=
1
p

2
ϵ3|HH〉 ,

(I.18)

where |HH〉 is the “Hartle-Hawking” state corresponding to the identity operator. In our con-
ventions, we have

|HH〉= |1〉+ |2〉+
p

2|3〉 ,
�

�vϕ
�

= vϕ|HH〉= |1〉+ |2〉 −
p

2|3〉 ,

|vσ〉= vσ|HH〉=
p

2|1〉 −
p

2|2〉 ,

(I.19)

where 〈HH|HH〉 = 〈vϕ
�

�vϕ
�

= 〈vσ|vσ〉 = 4 . (We use vϕ and vσ both for the operators and the
label of the states.) They correspond to the states |I〉 in Section 4.2.

The basis of states |i〉 is natural from the point of view of the state/operator correspondence
of the operators ϵi . Furthermore, the local operators 1, ϕ, σ are diagonal in this basis (I.14).
Finally, as above, in this basis of states, the symmetry line operators are given by (I.15). These
matrices satisfy the fusion rule (I.11), and thus form a Nonnegative Integer-valued Matrix
representation (NIM-rep) of the algebra.

So far, we discussed the TQFT. As mentioned in [60], the states (I.18), where the local oper-
ators 1, ϕ, σ are diagonal, correspond to the superselection sectors of the infinite-volume the-
ory. This leads to the conclusion about spontaneous symmetry breaking we discussed above.

I.4 Generalizations

Clearly, this discussion is easily generalized to a more complicated odd superpotentials W (Φ)
and therefore it applies to all the gapped states obtained by appropriate supersymmetric de-
formations of the odd members of the supersymmetric discrete series.

Similarly, we can deform this model by adding a supersymmetry-breaking, but (−1)F and
(−1)FL -preserving deformations, like ϕ2, without a qualitative change in our conclusions.

J Constraints on renormalization group flows from non-invertible
symmetries

Here we review a statement proven in Section 7.1 of [12] for renormalization group flows
from a 1+1d CFT with a unique ground state in finite volume.57

Consider a 1+1d CFT deformed by a relevant operator preserving a non-invertible topological line
L with quantum dimension 〈L〉.58 Suppose 〈L〉 /∈ Z≥0, then the low-energy phase cannot be
gapped with a non-degenerate ground state.

This constraint on the renormalization group flow was interpreted as a generalized ’t Hooft
anomaly for the non-invertible symmetry.59 Recall that the quantum dimension 〈L〉 of a topo-
logical line L in a CFT with a unique ground state |1〉 is defined as L|1〉= 〈L〉|1〉. It is known
that 〈L〉 = 1, if and only if, the topological line L is associated with an invertible symmetry

57The standard definition of a CFT assumes that it has a unique ground state. Here we would like to exclude
more general situations where the theory is gapless and has several ground states, e.g., a tensor product of a CFT
and a TQFT.

58Note that the discussion here is about the quantum dimension of the continuum theory, rather than the lattice
quantum dimension of the lattice model we discussed in section 3.4.

59Anomalies in non-invertible global symmetries were discussed in [12,32,60,61,116,169–171].
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(see [12] for a physics argument). We stress that some topological lines with integral quan-
tum dimensions also forbid a trivially gapped phase. For example, an invertible line associated
with a finite, invertible global symmetry with an ’t Hooft anomaly has quantum dimension 1,
but it is incompatible with a trivially gapped phase.

We prove the assertion above by contradiction. We assume that the low-energy phase
is trivially gapped with a non-degenerate ground state. In the deep IR where all the massive
degrees of freedom have been integrated out, the continuum description of this trivially gapped
phase is a trivial 1+1d TQFT with a unique ground state. Its (untwisted) Hilbert space H on a
circle is one-dimensional, i.e., dimH = 1. (See [167,168], for reviews of 1+1d TQFTs.) In this
trivial TQFT, consider the torus partition function with a non-invertible operator L inserted at
a fixed time:

ZL = TrH[L] = 〈L〉 . (J.1)

Next, consider the partition function over the L-twisted Hilbert space, where L is now a defect
inserted at a fixed point in space:

ZL = TrHL
[1] = dimHL . (J.2)

The two partition functions ZL and ZL are related by a modular transformation exchanging
time with space:

ZL = ZL . (J.3)

Hence,60

〈L〉= dimHL . (J.4)

While a priori we do not know much about the twisted Hilbert space HL, its dimension is
necessarily a non-negative integer. We therefore have reached a contradiction if 〈L〉 /∈ Z≥0.
This completes the proof.

A renormalization group flow preserving a non-invertible symmetry with 〈L〉 /∈ Z≥0 can
flow in the low energy to either a gapless phase, or a gapped phase with multiple ground states
described by a 1+1d TQFT. In the latter case, the non-invertible symmetry acts nontrivially on
the ground states, which means that the symmetry is spontaneously broken.

See [12,31,32,60,126,163,168,172–174], for more discussions of non-invertible symme-
tries and their spontaneous breaking in gapped phases.
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