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Abstract

The 1/N expansion of matrix models is asymptotic, and it requires non-perturbative cor-
rections due to large N instantons. Explicit expressions for large N instanton amplitudes
are known in the case of Hermitian matrix models with one cut, but not in the multi-cut
case. We show that the recent exact results on topological string instanton amplitudes
provide the non-perturbative contributions of large N instantons in generic multi-cut,
Hermitian matrix models. We present a detailed test in the case of the cubic matrix
model by considering the asymptotics of its 1/N expansion, which we obtain at relatively
high genus for a generic two-cut background. These results can be extended to certain
non-conventional matrix models which admit a topological string theory description. As
an application, we determine the large N instanton corrections for the free energy of
ABJM theory on the three-sphere, which correspond to D-brane instanton corrections in
superstring theory. We also illustrate the applications of topological string instantons
in a more mathematical setting by considering orbifold Gromov–Witten invariants. By
focusing on the example of C3/Z3, we show that they grow doubly-factorially with the
genus and we obtain and test explicit asymptotic formulae for them.
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1 Introduction

In spite of its arcane nature, topological string theory on Calabi–Yau (CY) manifolds has been
extremely useful in addressing more mundane problems. Originally [1], topological strings
were constructed as physical counterparts of Gromov–Witten theory, and physics-inspired re-
sults in topological string theory have had an enormous impact on algebraic geometry. It was
later understood in [2] that matrix models are in a sense a special case of topological string
theory. This opened the way to solve some important but difficult matrix models by using
topological string ideas. A remarkable example is the matrix model describing the free energy
of ABJM theory [3] on the three-sphere [4], which was solved in the 1/N expansion in [5,6]
by using topological string theory on a non-compact CY manifold.

Perturbative topological string theory is relatively well understood, and it has provided
most of the applications that we have just mentioned. One of the most important tools in
formulating and calculating the perturbative expansion of topological string theory is the BCOV
holomorphic anomaly equations (HAE) [7, 8], which have been applied very successfully to
both toric [9] and compact [10] CY manifolds. When matrix models are realized as topological
strings, the perturbative string expansion corresponds to the 1/N expansion, which is governed
as well by the HAE. This was first pointed out in [11], and then proved in [12] as a consequence
of the topological recursion of [13].

The non-perturbative aspects of topological strings are less understood, and there are dif-
ferent schools of thought on how to deal with them. In [14] it was suggested to address
this problem in a conservative way, by exploiting the well-known connection between non-
perturbative sectors and the large order behavior of perturbation theory. This connection is
the basis of the theory of resurgence [15–19], and in recent years many interesting results on
topological string theory have been obtained by applying the tools and ideas of resurgence.
In the pioneering papers [20, 21] it was proposed to use trans-series solutions to the HAE in
order to obtain non-perturbative effects in topological string theory. This idea has been further
developed recently, and as consequence exact formulae for multi-instanton amplitudes have
been obtained both for local [22] and compact [23] CY manifolds.

It is natural to ask what are the implications of these new non-perturbative results for the
1/N expansion of matrix models. This expansion is known to be asymptotic, and therefore it
is expected to have exponentially small, non-perturbative corrections, due to so-called large N
instantons (see [18, 24] for a detailed introduction). In the case of one-cut Hermitian matrix
models, large N instantons take the form of eigenvalue tunneling [25, 26]. Although this
mechanism has been known for a long time, the first detailed calculation of multi-instanton
amplitudes in one-cut Hermitian matrix models with polynomial potentials was only done
in [27, 28] (see also [29] for a generalization to the two-matrix model case). The results
in [27,28] were tested by verifying that that the resulting amplitudes control the asymptotics
of the 1/N expansion. However, in the case of general multi-cut matrix models, large N

2

https://scipost.org
https://scipost.org/SciPostPhys.16.6.155


SciPost Phys. 16, 155 (2024)

instanton corrections are not fully understood. Naif expectations based on generalizations of
eigenvalue tunneling fail to capture the asymptotic behavior of the 1/N expansion, as shown
in [30].

In this paper we argue that the topological string instanton amplitudes obtained in [22,23]
provide the sought-for non-perturbative corrections due to large N instantons of Hermitian
multi-cut matrix models, at generic points in moduli space. This follows from the fact that the
1/N expansion is governed by the HAE of [8], and the instanton amplitudes of [22, 23] are
derived based only on these equations and on boundary conditions which are also satisfied by
matrix models. We test our claim in detail by considering the simplest two-cut matrix model,
based on a cubic potential, and we show that the asymptotics of the 1/N expansion around
generic two-cut saddle-points is controlled by the instanton amplitudes of [22,23].

There are matrix models which are not of the conventional form but are closely related to
topological string theory and governed by the HAE equations. These include Chern–Simons
type matrix models, like the ones considered in [31, 32]. An important related example, as
we mentioned above, is the ABJM matrix model, which was extensively studied in the context
of the AdS4/CFT3 correspondence. Non-perturbative aspects of this model were discussed
in [33], but precise large N instanton amplitudes were not known. This is a particularly
interesting issue since, as proposed in [33], some of these large N instantons correspond to
D-brane instantons in superstring theory. It is clear from the above that the large N instantons
of the ABJM matrix model should be also given by the topological string instanton amplitudes
of [22,23], and in this paper we test this in detail, completing in this way the picture developed
in [33].

This work is focused on the applications of topological string instantons to large N instan-
tons of matrix models, but there are more mathematical applications of the results in [22,23].
As an example of this type of applications, we also consider in this paper orbifold Gromov–
Witten invariants, which have been studied in both algebraic geometry and topological string
theory. We focus on the orbifold Gromov–Witten theory of C3/Z3, which is one of the most
famous examples, and we show that these invariants grow doubly factorially with the genus
at fixed degree, in contrast to conventional Gromov–Witten invariants [34]. In addition, we
obtain explicit and detailed formulae for their large genus asymptotics from the topological
string instanton amplitudes of [22,23].

This paper is organized as follows. In section 2 we briefly review the results on topological
string instantons obtained in [22,23], building on [20,21]. In section 3 we consider the appli-
cation to large N instantons in multi-cut, Hermitian matrix models, and we present detailed
tests in the two-cut, cubic matrix model. In section 4 we study large N instantons in the ABJM
matrix model. In section 5 we apply the results reviewed in section 2 to obtain the asymptotic
behavior of orbifold Gromov–Witten invariants, in the case of C3/Z3. Finally, in section 6 we
present our conclusions and some prospects for future developments. An Appendix includes
some details on the parametrization of the moduli space of the cubic matrix model, used in
section 3.

2 Instantons in topological string theory

In this section we briefly review the results on topological string instantons obtained in [22,23],
building on previous work in [20,21,35].

The basic quantities in topological string theory are the genus g free energiesFg(ta), where
ta, a = 1, · · · , n, are flat coordinates which parametrize the moduli space of a CY threefold. In
this paper we will restrict ourselves to non-compact CY threefolds, although as shown in [23]
the results in the compact case are very similar. The total free energy is given by the formal

3

https://scipost.org
https://scipost.org/SciPostPhys.16.6.155


SciPost Phys. 16, 155 (2024)

power series
F(ta, gs) =
∑

g≥0

Fg(ta)g
2g−2
s , (1)

where gs is the string coupling constant. It has been argued based on general arguments
[18,26] that this series is factorially divergent: for fixed ta, one has

Fg(ta)∼ (2g)! . (2)

We also recall that the free energies Fg(ta) depend in addition on a choice of electric-magnetic
frame, and the total free energies in different frames are related by generalized Fourier trans-
forms [36]. It is convenient to consider arbitrary coordinates in the CY moduli space, not
necessarily flat. These generic coordinates will be denoted as za, a = 1, · · · , n.

The asymptotics (2) indicates that the theory should contain non-perturbative amplitudes,
of the instanton type. In [22, 23], building on [20, 21], explicit results for these amplitudes
were obtained, as well as detailed conjectures on the so-called resurgent structure of the theory
[37]. The first conjecture concerns the possible singularities of the Borel transform ofF(ta, gs),
and it states that they occur at an integral lattice generated by the periods of the CY manifold,
with the appropriate normalization. This conjecture was stated in this general form in [23],
refining a previous statement [33]. To spell this out, we first recall that a choice of frame
induces a choice of so-called A- and B-periods. The A-periods are given by the flat coordinates
ta, while the B-periods are defined by

Fa =
∂F0

∂ ta
. (3)

Then, instanton actions are of the form

A=
n
∑

a=1

(caFa + da ta) + 4π2in , (4)

where n is an integer. With appropriate normalizations for the periods, ca and da can be also
taken to be integers. However, in this paper we will not exploit the integrality properties of
the actions.1

Our second conjecture concerns the trans-series associated to these instanton actions. If all
the ca vanish, the multi-instanton amplitudes have the form obtained for the resolved conifold
in [38],

F (ℓ)A =
1

2πgs

�A
ℓ
+

gs

ℓ2

�

e−ℓA/gs , (5)

where ℓ ∈ Z>0. If the ca are not all zero, we define a modified prepotential FA
0 by

A=
n
∑

a=1

ca
∂FA

0

∂ ta
. (6)

This prepotential differs from the one in (3) by a second order polynomial in the ta ’s. Then,
the one-instanton amplitude associated to the action A is given by

F (1) = 1
2π

�

1+ gs

n
∑

a=1

ca
∂F
∂ ta
(tb − cb gs, gs)

�

exp [F(tb − cb gs, gs)−F(tb, gs)] . (7)

1Integrality issues are subtler to address in the local case, due to the noncompactness of the CY manifold.
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Here, F is the total free energy (1), in which F0 has been replaced by the modified prepotential
FA

0 . In the one-modulus case n= 1 (the only one we will consider in this paper) we can write
the action as

A= c
∂F0

∂ t
+ d t + 4π2in , (8)

and we find, when c ̸= 0,

F (1) = 1
2π

�

1+ gsc
∂F
∂ t
(t − cgs, gs)
�

exp [F(t − cgs, gs)−F(t, gs)]

=
1

2πgs
e−A/gs exp

�

c2

2
∂ 2

t F0

��

A+ gs

�

1− c2∂ 2
t F0 −A
�

c∂tF1 +
c3

6
∂ 3

t F0

��

+O(g2
s )

�

.

(9)
We note that (7), (9) have to be regarded as formal trans-series, of the form

F (1) = e−A/gs

∑

n≥0

F (1)n gn−1
s , (10)

where the F (1)n can be read from (7), (9). In the one-modulus case we have, for the very first
coefficients,

F (1)0 =
A
2π

e
1
2 c2F ′′0 (t) ,

F (1)1 = −
6c2F ′′0 (t) +F ′0(t)

�

c4F ′′′0 (t) + 6c2F ′1(t)
�

− 6

12π
e

1
2 c2F ′′0 (t) .

(11)

There is a similar instanton amplitude with action −A, and they add together to give the
asymptotic behavior

Fg(t)∼
1
π
A−2g+1Γ (2g − 1)

∞
∑

n=0

AnF (1)n

Πn
k=1(2g − 1− k)

, g ≫ 1 . (12)

In practice, once the action has been identified, one considers the auxiliary sequence

πA2g−1

Γ (2g − 1)
Fg(t) = F (1)0 +

AF (1)1

2g − 2
+

A2F (1)2

(2g − 2)(2g − 3)
+O
�

1/g3
�

, (13)

from where we can extract the instanton coefficients F (1)n by using standard acceleration meth-
ods, like Richardson transforms.

The expression (9) corresponds to the one-instanton amplitude. Explicit multi-instanton
amplitudes were also determined in [22], where one can find additional information, including
conjectural expressions for alien derivatives.

3 Large N instantons in multi-cut matrix models

3.1 Multi-cut matrix models and their 1/N expansion

In this section we review some basic aspects of matrix models and their connection to topo-
logical string theory. For concreteness we will focus on Hermitian one-matrix models with a
polynomial potential, although many of the results below apply to more general cases. We
refer to e.g. [39] for a more detailed review. After reviewing these results, we will state our
general results for large N instantons in these matrix models.
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The partition function of the one-matrix model is defined by the matrix integral

ZN =
1

vol [U(N)]

∫

dM exp
�

−
1
gs

Tr V (M)
�

, (14)

where V (x) is a polynomial potential, and gs will be identified with the topological string
coupling constant. After reduction to eigenvalues we can write

ZN =
1
N !

∫ N
∏

i=1

dλi

2π
∆2(λ) exp

�

−
1
gs

N
∑

i=1

V (λi)

�

. (15)

Here, ∆(λ) is the Vandermonde determinant of the eigenvalues. We want to study the model
in the 1/N expansion, but keeping the total ’t Hooft coupling

T = N gs , (16)

fixed. Since the potential V (x) is a polynomial, it will have s critical points. The most general
saddle-point solution of the model, at large N , will be characterized by a density of eigenvalues
ρ(λ) supported on a disjoint union of s intervals or cuts,

AI = [x2I−1, x2I] , I = 1, · · · , s . (17)

If the endpoints are real we will order them in such a way that x1 < x2 < · · · < x2s, but in
general we can (and will) have complex cuts. When s > 1 this saddle-point is called an s-cut,
or multi-cut solution, of the Hermitian matrix model. We can define the multi-cut solution by
writing the corresponding partition function as a multiple integral over eigenvalues. To do
this, we note that in a s-cut configuration, the N eigenvalues split into s sets of NI eigenvalues,
I = 1, . . . , s, which can be written as

�

λ
(I)
kI

	

kI=1,...,NI
, I = 1, . . . , s . (18)

The eigenvalues in the I -th set are located in the interval AI , around the I -th extremum. We
can now choose s integration contours CI in the complex plane, I = 1, . . . , s. These contours
go to infinity along directions where the integrand decays exponentially, and they have the
property that each of them passes through one of the s critical points (see for example [40] for
a detailed argument for this). Due to this choice of integration contours, the resulting matrix
integral is now convergent, and the partition function can be written as

Z(N1, . . . , Ns) =
1

N1! · · ·Ns!

∫

λ
(1)
k1
∈C1

· · ·
∫

λ
(s)
ks
∈Cs

N
∏

i=1

dλi

2π
∆2(λ) exp

�

−
1
gs

N
∑

i=1

V (λi)

�

. (19)

In obtaining the overall factor in (19) we have taken into account that there are

N !
N1! · · ·Ns!

(20)

possibilities to choose the s sets of NI eigenvalues. We will assume that the so-called filling
fractions,

εI =
NI

N
, I = 1,2, . . . , s , (21)

or equivalently the partial ’t Hooft couplings

t I = tεI = gsNI , (22)
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are fixed in the large N limit. The free energy of the multi-cut matrix model at fixed filling
fractions or partial ’t Hooft parameters has an asymptotic 1/N expansion of the form

F(NI) = log Z(NI)∼
∞
∑

g=0

Fg(t I) g2g−2
s . (23)

An important result in the theory of matrix models is that the large N saddle point described
by the multi-cut solution above can be encoded in a hyperelliptic curve known as the spectral
curve of the model,

y2 = σ(x) , (24)

where

σ(x) =
2s
∏

i=1

(x − x i) , (25)

and x i are the endpoints of the cuts. The polynomial σ(x) is given by

σ(x) =
�

V ′(x)
�2
+ f (x) , (26)

where f (x) is a polynomial of degree s−1 that splits the s double zeroes of
�

V ′(x)
�2

. Note in
particular that the cuts appearing in the saddle-point solution correspond to A-periods of the
spectral curve, and one has

t I =
1

4πi

∮

aI

y(x)dx . (27)

Here, aI is a closed contour encircling the cut AI . Let us note that the total ’t Hooft coupling
(16)

T =
s
∑

I=1

t I , (28)

can be evaluated by residues as a polynomial in the parameters appearing in the spectral curve.
It is not really a modulus of the theory, but what is called in e.g. [41] a “mass parameter.” We
can then take n= s−1 partial ’t Hooft couplings as flat coordinates parametrizing the moduli
space of the theory.

The planar free energy F0(t I) can be computed as follows. Let us consider the cuts BI ,
I = 1, · · · , s − 1, going from the end of the AI cut to the beginning of the AI+1 cut. Then, the
dual periods

tD,I =

∫

BI

y(x)dx , I = 1, . . . , s− 1 , (29)

are related to the planar free energy as

tD,I =
∂F0

∂ t I
−
∂F0

∂ t I+1
. (30)

The higher genus free energies Fg(t I) appearing in the 1/N expansion (23) can also be ob-
tained in various ways. Perhaps the most powerful and deeper approach to this problem is
topological recursion [13,42], although we will not need this method in this paper.

The series (23) has the form of an asymptotic expansion in topological string theory, and
indeed it was argued in [2] that it can be regarded as the free energy of topological string
theory on a non-compact CY of the form

uv = y2 −σ(x) . (31)
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The connection to topological strings suggests that the Fg(t I) can also be computed by using
the HAE of [8]. This was first used in [11], and then proved in full generality in [12] as a
consequence of the topological recursion of [13]. In order to actually compute the Fgs of
multi-cut matrix models, the HAE turn out to be more efficient than topological recursion, and
this is the method we will use in this paper, as we explain below.

The moduli space of CY threefolds has singular loci which lead to a singular behavior in
the genus g free energies. In the case of the CY geometry associated to matrix models, these
are the loci where the discriminant ∆ of the spectral curve (24) vanishes, and at least two of
the roots x i , i = 1, · · · , 2s come together. The loci with smaller codimension correspond to
the case in which one ’t Hooft coupling tJ vanishes, and the corresponding A-cycle shrinks to
zero size, or to the case in which one dual period tD,J vanishes, and the dual cut BJ shrinks.
The effect of a vanishing A-period in the genus g free energies is well-known, and leads to a
singular behavior

Fg ∼
B2g

2g(2g − 2)
t2−2g
J +O(1) , (32)

where B2g are Bernoulli numbers. This is the famous gap condition for the free energies, which
was much exploited in [11]. In general CY manifolds, the gap condition is a deep statement
on the universal behavior at the conifold point [43]. In the case of matrix models, the gap
condition follows from conventional perturbation theory and the structure of the Gaussian
matrix model, see e.g. [44]. When there is a vanishing B-cycle, one has to perform a symplectic
transformation to a frame in which the dual vanishing cycle tD,J becomes a flat coordinate.
One then has the same behavior (32) for the dual free energies. This was exploited in [30] to
obtain free energies at large genus from the HAE in certain cases, as we will review below.

The series in the r.h.s. of (23) is factorially divergent, and one can ask what is its resurgent
structure, in the sense explained in [22,37]. This means that we would like to know what are
the possible actions characterizing multi-instantons, and what are the corresponding ampli-
tudes. Since the 1/N expansion (23) is a particular case of a topological string free energy, it
follows that the results of [20–23]must describe the resurgent structure of the 1/N expansion
in generic multi-cut matrix models. A basis for the periods of the underlying CY manifold can
be taken to be a subset of s − 1 partial ’t Hooft couplings, ta, a = 1, · · · , s − 1, and the dual
periods tD,a, a = 1, · · · , s − 1. The general action characterizing an instanton sector will be
given by

A=
s−1
∑

a=1

�

ca ta + da tD,a

�

+ 4π2iγ , (33)

and the corresponding instanton amplitudes are given by the general expression (7). This
is our proposal for large N instantons in generic matrix models. As we mentioned in the
introduction, the basis for this proposal is simply that the free energies appearing in the 1/N
expansion of the matrix model satisfy the HAE. The instanton amplitudes obtained in [22,23]
are trans-series solutions to the HAE, and therefore they should apply as well to the case of
matrix models. There is an additional ingredient in the derivation of [22,23], namely boundary
conditions fixing the holomorphic ambiguity in the trans-series. These boundary conditions
lead to the expression (5), and they are fixed, as first explained in [20, 21], by the behavior
of the free energies at singular loci. In the case of matrix models, this behavior is given by
(32), which is the conifold behavior of topological strings, and therefore it leads to the same
boundary conditions and to the behavior (5). In the remaining of this section, we will test our
proposal in the simplest multi-cut matrix model, namely the cubic, two-cut matrix model.
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N2

Figure 1: The potential (34) of the cubic matrix model, as a function of x . In the
two-cut configuration, N1 eigenvalues sit near the stable critical point at x = 1, and
N2 eigenvalues sit at the unstable critical point at x = −1.

3.2 Testing the large N instantons

3.2.1 The cubic matrix model and its 1/N expansion

The simplest two-cut matrix model has a cubic potential. The one-cut case of the cubic po-
tential was already considered in [45], and the two-cut case has been studied intensively. A
non-exhaustive list of references includes [11,46–49]. We will closely follow [30].

Without lack of generality, we can take the potential of the cubic matrix model to be

V (x) =
x3

3
− x , (34)

which is represented in Fig. 1. Therefore, the most general two-cut phase of the cubic matrix
model is described by the spectral curve (24), whereσ(x) is given by (26) and f (x) has degree
one. We write this curve as

y2 = (x2 − 1)2 +αx − z , (35)

where α and z are parameters. There are two cuts [x1, x2], [x3, x4] and two partial ’t Hooft
couplings, which we will denote as2

t2 =
1

2πi

∫ x2

x1

y(x)dx , t1 =
1

2πi

∫ x4

x3

y(x)dx . (36)

The dual period (29) is given by

tD =

∫ x3

x2

y(x)dx . (37)

It turns out that α and z have a very different geometric meaning. α is related to the total ’t
Hooft parameter, and one can easily show by a contour deformation argument that:

T = t1 + t2 = −
α

4
. (38)

As we mentioned before, α is a “mass parameter,” while z is a true modulus. We will denote
t = t1. Sometimes we we will only indicate the dependence of the free energies on the flat
coordinate corresponding to the true modulus, and we will write Fg(t).

2For convenience we have exchanged their labels w.r.t. what we have in (27).
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The large N expansion of the cubic matrix model in the general two-cut phase has been
considered in many papers. The genus zero free energy was studied in e.g. [46]. The genus one
free energy was first obtained for generic two-cut matrix models in [50] and further studied
e.g. in [48]. It is given by the formula

F1 = −
1
2

log
�

∂ t
∂ z

�

−
1

12
log∆ , (39)

where ∆ is the discriminant of the spectral curve. In our case it is easily computed to be

∆= 256z2(1− z) + 32α2(9z − 8)− 27α4 . (40)

In addition, we have
∂ t
∂ z
=

2
p

(x1 − x3)(x2 − x4)
K(k) , (41)

where K(k) is the elliptic function of the first kind with modulus

k2 =
(x1 − x2)(x3 − x4)
(x1 − x3)(x2 − x4)

. (42)

The higher genus corrections were obtained with the HAE of [8]. In [11] explicit results were
presented for F2, while in [30] results were obtained up to g = 4. Both references regarded
the geometry as a two-parameter problem. In order to explore the asymptotics of the 1/N
expansion we need more terms in the genus expansion than what was obtained in [11,30]. To
do this we will regard the geometry as a one-modulus problem with a mass parameter α. This
makes it possible to calculate the genus expansion up to g = 18, which is enough to clearly
see the asymptotics in various regions. Before presenting our results, let us quickly review the
formalism of the HAE, in the one-modulus case, following [22].

In the HAE, the genus g free energies are regarded as functions of a complex coordinate
z, which parametrizes the moduli space, and of a propagator function S, which is a non-
holomorphic function of z. They can also depend on global parameters, like α in our case, but
we will not always indicate this dependence explicitly. The non-holomorphic free energies will
then be denoted by Fg(S, z), g ≥ 2, as opposed to their holomorphic counterparts Fg . The
moduli space can also be parametrized by a so-called flat coordinate, denoted by t. It is given
by an appropriate period of the CY and related to z by a mirror map t(z). In the case of the
cubic matrix model, we will take as complex parameter the z entering in the spectral curve
(35), and as we mentioned above, t is just the partial ’t Hooft parameter t1.

The propagator S plays a central rôle in the theory of HAE. It is related to the non-
holomorphic genus one free energy through the equation

∂z F1 =
1
2

CzS + holomorphic. (43)

Here, Cz denotes the so-called Yukawa coupling in the z coordinate, which is defined by

∂ 3
t F0 = Ct =
�

dz
dt

�3

Cz . (44)

The holomorphic function in the r.h.s. of (43) can be regarded as a choice of “gauge” for
the propagator. The holomorphic free energies Fg(S, z) is obtained by taking the so-called
holomorphic limit of the propagator, which will be denoted by S. It is a holomorphic function
of z and the parameters. We then have

Fg(t) = Fg (S = S(z), z) , (45)
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after one expresses z as a function of t.
As we explained above, there are various choices of “frame” for the holomorphic free ener-

giesFg , which are characterized by different choices of flat coordinates t. Correspondingly, the
propagator S has different holomorphic limits depending on the frame one chooses. A conve-
nient aspect of the HAE is that the holomorphic free energies in a given frame can be obtained
from the same function Fg(S, z) by choosing different holomorphic limits for S and different
inverse mirror maps t(z). Of course, in the case of matrix models there is a preferred frame
corresponding to the large N expansion of the matrix integral, but there are other choices one
can consider. As we have mentioned, there are “dual” frames in which the flat coordinates
include dual periods like (37).

There is a very useful formula which expresses the holomorphic limit of S in terms of the
mirror map t(z) for the corresponding flat coordinate:

S = − 1
Cz

d2 t
dz2

dz
dt
− s(z) . (46)

Here, s(z) is a holomorphic function of z which is independent of the frame, and encodes the
choice of gauge for the propagator that we mentioned above. The propagator satisfies various
important properties. The first one, which follows from the so-called special geometry of the
CY moduli space, is that its derivative w.r.t. z can be written as a quadratic polynomial in S:

∂zS = S(2) , S(2) = Cz

�

S2 + 2s(z)S + f(z)
�

, (47)

where f(z) is again a universal, holomorphic function independent of the frame.
Let us now write down the HAE of BCOV, in the case at hand. These equations determine

the dependence of Fg(S, z) on the propagator, once the lower order functions Fg ′(S, z), g ′ < g,
are known. They read,

∂ Fg

∂ S
=

1
2

�

D2
z Fg−1 +

g−1
∑

m=1

Dz FmDz Fg−m

�

, g ≥ 2 . (48)

Here, Dz is the covariant derivative w.r.t. the metric on the Kähler moduli space. Its Christoffel
symbol is related to the propagator through

Γ z
zz = −Cz (S + s(z)) . (49)

In the case of the two-cut matrix model, a clever choice of the propagator simplifies the
tasks enormously. Such a choice is equivalent to a choice of function s in (46), which deter-
mines uniquely the function f in (47). It turns out that the values

s(z,α) = −
6
�

−16α2 + 16z2 + 3α2z
�

16z − 9α2
,

f(z,α) =
36
�

3α4 + 16z3 −α2z2 − 16α2z
�

16z − 9α2
,

(50)

are very convenient, and this is what we used in our calculations. In addition, the Yukawa
coupling reads

Cz =
16z − 9α2

2∆
. (51)

The HAE determines the Fg(S, z) as a polynomial in the propagator, but one has an inte-
gration constant fg(z) at every genus g ≥ 2 which is usually called the holomorphic ambiguity.
Determining fg(z) is a subtle task. One usually needs an ansatz for it, as a rational function
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on the moduli space with possible singularities at special points. In the case of the two-cut
matrix model, we expect the holomorphic ambiguity to be of the form

fg(z) =
1

∆2g−2
pg(z,α2) , (52)

where pg(z,α2) is a polynomial. We will assign the degrees 2 and 3 to z and α2. Then, ∆ has
degree 6, and the denominator appearing in (52) has degree 12(g − 1). We will assume that
the numerator is a polynomial of the same degree, i.e.

pg(z,α2) =
∑

i, j≥0

ai jz
iα2 j , 2i + 3 j ≤ 12(g − 1) . (53)

This will be our ansatz for the ambiguity. We now consider the simultaneous limit t1,2 → 0,
where due to (32) one has the gap condition

Fg(t1, t2)∼
B2g

2g(2g − 2)

�

1

t2g−2
1

+
1

t2g−2
2

�

+O(t1, t2) . (54)

It turns out that this behaviour fixes the ambiguity completely, as noted in [30]. In practice,
and in order to implement the gap condition (54), it is not convenient to use z and α, since
the expressions of t1,2 in terms of these parameters are complicated. There is a convenient
reparametrization, first introduced in [46] and reviewed in the Appendix, which uses two
complex parameters z1,2. The locus t1 = t2 = 0 corresponds to z1 = z2 = 0. By expanding
everything in power series in these two new parameters around z1 = z2 = 0, it is possible to
fix systematically the holomorphic ambiguities. One finds for example, for g = 2, and with
the above choice of the propagator,

p2(z,α2) = −
2322α6

5
−

32256α4

5
−

524288α2

15
+

27200z5

3
− 1704α2z4 − 50176z4

+
135α4z3

4
+

115008α2z3

5
+

229376z3

3
− 1728α4z2 −

1091072α2z2

15

−
524288z2

15
+

42816α4z
5

+
425984α2z

5
. (55)

The generic two-cut cubic matrix model is relatively involved, and this is the reason that
we can only obtain the genus expansion up to relatively low genus. It is therefore natural to
search for a simpler case which can be still regarded as a bona fide two-cut example. It turns
out that the theory simplifies enormously when α= 0. In this slice, the spectral curve becomes

y2 = (x2 − 1)2 − z , (56)

which as noted in [47], it is nothing but the Seiberg–Witten curve for pure N = 2 super Yang–
Mills theory [51]. It describes the cubic matrix model in which the partial ’t Hooft parameters
satisfy

t1 = −t2 . (57)

There are various manifestations of the underlying simplicity of the theory at α = 0. For
example, the period t = t1 and its dual tD can be written explicitly in terms of elliptic integrals
of the first and second kind as

t =

p

1+
p

z
3π

�

E
�

2
p

z
1+
p

z

�

+ (
p

z − 1)K
�

2
p

z
1+
p

z

��

,

tD =
1

2πi
4
p

1+
p

z
3

�

E
�

1−
p

z
p

z + 1

�

−
p

zK
�

1−
p

z
p

z + 1

��

.

(58)
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In addition, and most important to us, when α= 0 it is possible to solve the HAE to large genus.
This was already noted in [30]. As usual the key issue is to fix the holomorphic ambiguity, and
in this case this is done as follows. When α = 0 there are two singular points in the moduli
space parametrized by z. The point z = 0 corresponds to t = 0, and we can use the gap
condition (54), which on this slice reads

Fg(t)∼
B2g

g(2g − 2)
1

t2g−2
+O(t) . (59)

The other singular point occurs at z = 1, where the dual period vanishes: tD = 0. Let us
then consider the frame associated to the dual period tD, and let us denote by FD

g (tD) the
corresponding dual free energies. Then, near z = 1 the dual free energies have a singular
behavior, which is described by the dual gap condition [30]

FD
g (tD)∼

B2g

2g(2g − 2)
1

t2g−2
D

+O(1) . (60)

By using these two gap conditions, one can compute the Fg(t) up to very high genus, say
g ∼ 100. This is very useful to do precision tests of our results for large N instantons.

3.2.2 Asymptotics and large N instantons

We will now test that the topological string instanton amplitude given in (7), (9) provides the
appropriate large N instanton amplitude, in the case of the two-cut matrix model at generic
points in moduli space.

We first consider the slice where α = 0, since in this case we can compute many terms in
the 1/N expansion. As noted in [20, 21], the gap behavior (59) implies that there is a Borel
singularity with action given by

A= 2πit . (61)

This leads to “trivial” instanton amplitudes of the form (5). The effect of this singularity can
be completely subtracted by simply considering

Gg(t)≡ Fg(t)−
B2g

g(2g − 2)
1

t2g−2
. (62)

In order to look for Borel singularities of Fg(t) other than (61), one simply considers the Borel
singularities associated to the series of subtracted free energies Gg(t). An additional Borel
singularity is obtained by considering the behavior of the dual free energy (60). It occurs at

AD = 2πitD . (63)

This leads to a non-trivial instanton amplitude, since

AD = ∂tF0 , (64)

and we have c = 1 in (6). The amplitude is given by the general expression (9), and it leads to a
prediction for the large genus asymptotics of the Fgs which can be tested with high precision.
In practice, as in [27], we construct auxiliary sequences like (13) which asymptote to the
values F (1)n , for n = 0,1, · · · . After using standard acceleration methods we obtain numerical
estimates of the asymptotic values, which can then be compared with the instanton predictions
in e.g. (11). In Fig. 2 we make such a comparison, finding excellent agreement. The red line
is the theoretical prediction for F (1)n , n = 0,1, 2, as a function of the modulus z, while the
black dots are numerical estimates obtained from the perturbative series up to g = 135. The
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Figure 2: Coefficients F (1)n , for n = 0,1, 2, as a function of z, for the cubic matrix
model at the slice α = 0. The red line is the analytic result predicted from (9).
The black dots are the numerical approximations extracted from the large order be-
haviour of the sequence Fg , g = 2, · · · , 135.

error bars in the numerical results are estimated from the difference between two successive
Richardson transforms. To find the best asymptotic estimate for F (1)n , we perform a number
of Richardson transforms so that this error is minimized. We note that, for points sufficiently
close to z = 1, the relative error of our numerical asymptotic estimates is as small as 10−28,
but it increases as we approach the point z = 0. This is related to the fact that, near z = 0, the
action AD becomes larger.

Although the slice α= 0 is a generic submanifold of the moduli space of the two-cut matrix
model, it is important to make sure that the topological string instanton amplitudes describe
the appropriate large N instantons for arbitrary values of α. Fortunately, we have computed
the general Fg(t1, t2) up to g = 18, and this is enough to check quantitatively that its large
genus asymptotics is still controlled by (9). We note that the derivatives w.r.t. t in (9) are
computed at constant α, therefore t2 depends on t1, as follows from (38), and

∂tF(t1, t2)≡ ∂tF(t,−t −α/4) . (65)

Due to the gap condition (54), there are singularities at A1,2 = 2πit1,2. We can remove
their effect by considering the subtracted quantity

Gg(t1, t2) = Fg(t1, t2)−
B2g

2g(2g − 2)

�

1

t2g−2
1

+
1

t2g−2
2

�

. (66)

There will be a Borel singularity at the dual action (63), as in the case of α = 0 (although
tD will be given by a more complicated formula than the one in (58)). When comparing the
asymptotics with the instanton predictions there are two cases to consider. The simplest one is
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Figure 3: Coefficients F (1)n for n= 0,1 in the cubic matrix model, as a function of z2,
for fixed z1 = 2/5. The red line is the analytic result predicted from (9). The black
dots are the numerical approximations extracted from the large order behaviour of
the sequence Fg , for g = 2, · · · , 18.

when the action A is real. We can then extract numerical estimates for the coefficients F (1)n , for
different values of the moduli, and compare them to the prediction. It is useful to parametrize
the moduli space with the coordinates z1,2 introduced in the Appendix. For convenience, we

fix the value of z1 and we vary the value of z2. In Fig. 3 we plot F (1)0,1 as a function of z2, and we
indicate the numerical estimates obtained from the asymptotics. z1 is taken to be 2/5, while
the numerical estimates are made for values of z2 of the form

z2 =
3i

100
, i = 1, · · · , 20 . (67)

We note that these values of the parameters lead to t1 > 0, t2 < 0. As we can see, the
agreement between the prediction and the empirical data is excellent. With our data for the
Fgs, 0 ≤ g ≤ 18, we obtain estimates for F (1)n , n = 0,1 with a relative error not worse than
10−6.

The other case to consider is when the dual action is complex. This happens for example
when z1 > 0 and z2 < 0 and both are sufficiently small. It corresponds to the case in which
t1,2 > 0. As it is well-known, when the action is complex, both the action and its complex
conjugate A contribute to the asymptotics, which is oscillatory. Let us write

A= |A|eiθA , F (1)n =
�

�F (1)n

�

�e
iθ

F(1)n . (68)

When the asymptotics is oscillatory, it is more difficult to use acceleration methods. To perform
our tests, we consider the normalized free energies:

bGg(t1, t2) =
πGg(t1, t2)|A|2g−1

�

�F (1)0 (t1, t2)
�

�Γ (2g − 1)
. (69)

They have the asymptotic behavior

bGg(t1, t2)∼
∞
∑

n=0

|A|n
�

�F (1)n (t1, t2)
�

�

�

�F (1)0 (t1, t2)
�

�Πn
k=1(2g + b− k)

2 cos
�

−(2g − 1− n)θA + θF (1)n

�

∼ 2cos
�

−(2g − 1)θA + θF (1)0

�

+O(1/g) ,

(70)

so we simply compare the prediction obtained by truncating the r.h.s. of (70), to the sequence
in the l.h.s. This is done in Fig. 4 for two points in the moduli space, which we label by the
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Figure 4: Normalized free energies bGg(t) for the cubic matrix model (black dots) as
compared to the prediction (70) for the asymptotics (lines). In grey, we include the
leading term; in orange, the subleading term; and, in red, we include the subsub-
leading term.

parameters z1,2 introduced in the Appendix. We see that, as we add more terms in the sum of
the r.h.s. of (70), we find better approximations for bGg(t1, t2). This is specially clear for low
values of g, in which the corrections lead to a substantial improvement.

In this paper we have focused on one-instanton amplitudes, but there are Borel singular-
ities at e.g. integer multiples ℓAD, with ℓ ∈ Z>0, leading to ℓ-instanton amplitudes. Explicit
expressions for these amplitudes can be found in [22, 23]. In the case of the cubic matrix
model with α= 0, we have verified the expression for the two-instanton amplitude of [22,23]
by calculating numerically the Stokes discontinuity of the free energies.

3.2.3 On the one-cut limit

When there are no eigenvalues in the unstable critical point of the cubic matrix model, t2 = 0
and one recovers the one-cut matrix model studied in the seminal paper [45]. The one-cut
free energies are obtained as

Fg(t) = lim
t2→0

¨

Fg(t, t2)−
B2g

2g(2g − 2)

�

1
t2g−2

+
1

t2g−2
2

�«

, g ≥ 2 , (71)

and a similar formula holds for g = 0, 1, where one has to subtract logarithmic divergences.
The large genus asymptotics of the one-cut free energies was studied in [27], where one-
instanton amplitudes were studied by using eigenvalue tunneling. It is therefore natural to
try to obtain the one-instanton amplitudes of [27] as a limit of the generic multi-cut instanton
amplitude (7) studied in this paper. However, one should note that the instanton results of [27]
are qualitatively different from the ones found here for the generic two-cut case. For example,
the large genus asymptotics obtained in [27] in the one-cut case involves a factorial growth of
the form Γ (2g − 5/2), while in the two-cut case we find the growth Γ (2g − 1).

What one finds is that the one-cut limit of the generic two-cut instanton amplitude is sin-
gular. This is because it involves derivatives of the free energies Fg(t1, t2), which are singular
due precisely to the polar terms that are being subtracted in (71). In addition, we have evi-
dence that the large genus asymptotics of the free energies Fg(t1, t2) changes discontinuously
as we take the one-cut limit. Our results seem to indicate that, for any t2 ̸= 0, no matter how
small, the asymptotics is controlled by (9), and it is only when we set t2 = 0 and we sub-
tract the polar part as in (71) that the asymptotics is governed by the one-instanton amplitude
of [27]. In this sense, it does not seem possible (or at least, straightforward) to interpolate
smoothly between the generic two-cut case studied in this paper and the one-cut case of [27].
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4 Large N instantons in ABJM theory

4.1 The ABJM matrix model and its 1/N expansion

ABJM theory [3] is an important example of a large N duality, relating string/M-theory on an
AdS4 compactification to a superconformal Chern–Simons–matter theory. It turns out that the
free energy on the three-sphere of the field theory realization can be computed in terms of
a matrix model, by using localization [4] (see [52] and the collection of articles [53] for an
extensive discussion). It was found in [5, 6] that the resulting matrix model is equivalent to
topological string on a toric geometry, called the local F0 geometry, and this allows to deter-
mine its 1/N expansion at all orders by using the HAE. Non-perturbative aspects of the matrix
model of ABJM theory were addressed in [33], which studied in particular the large order
behavior of the 1/N expansion. However, a precise determination of the large N instantons of
this theory was not available in [33]. We will now show that the topological string instantons
of [22] describe the large N instantons of the ABJM matrix models. It was conjectured in [33]
that some of the large N instantons of the ABJM matrix model correspond to D2-branes in the
large N dual string background. Therefore, the instanton amplitude obtained in [22] should
provide a precise prediction for the D2-brane amplitude, at all orders in the string coupling
constant.

Let us first summarize some relevant facts on the ABJM matrix model and its 1/N expan-
sion, and refer to [5, 6, 33, 52–54] for more details. The partition function is given by the
matrix integral

Z(N , gs) =
1

(N !)2

∫ N
∏

i=1

dµidνi

(2π)2

∏

i< j

�

2sinh
�

µi−µ j
2

��2 �
2 sinh
�

νi−ν j
2

��2

∏

i, j

�

2 cosh
�

µi−ν j
2

��2 e−
1

2gs

∑

i

�

µ2
i −ν

2
j

�

. (72)

The string coupling constant gs is related to the Chern–Simons coupling k by

gs =
2πi
k

, (73)

and the ’t Hooft coupling is usually taken to be

λ=
N
k

. (74)

The matrix model free energy has a 1/N expansion of the form

F(λ, gs) =
∑

g≥0

Fg(λ)g
2g−2
s . (75)

It was found in [5] that this expansion corresponds to the topological string on the so-called
local F0 geometry, and in a special frame called the orbifold frame. The moduli space of this
geometry is parametrized by a complex coordinate that we will denote again by z (the local
F0 geometry also has a “mass parameter” m, but in order to obtain the ABJM theory we have
to set it to m = 1; more general values of m correspond to a generalization of ABJM theory
called ABJ theory [55], which we will not consider in this paper).

The geometric ingredients which are needed to obtain the 1/N expansion of the ABJM
matrix model from the HAE are the same ones introduced in the previous section on the cubic
matrix model. The discriminant and Yukawa coupling are given by

∆= 1− 16z , Cz =
1

4z3∆
. (76)
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The orbifold coordinate, appropriate for the ABJM matrix model, is given by

to =
1

4
p

z 3F2

�

1
2

,
1
2

,
1
2

; 1,
3
2

�

�

�

�

1
16z

�

, (77)

and it gives the ’t Hooft parameter as a function of the modulus z,

to = N gs =
λ

2πi
. (78)

Together with (44), the data above determine the large N free energy F0(λ) or prepotential
(up to a quadratic polynomial in λ). They also determine the genus one free energy through
the expression

F1(λ) = −
1
2

log
�

−
dto

dz

�

−
1

12
log
�

z7∆
�

. (79)

To obtain the higher genus free energies we have to solve the HAE. A convenient choice of
propagator is specified by the functions

s(z) = −
2
3

z2 (128z − 7) ,

f(z) =
4
9

z4
�

256z2 − 16z + 1
�

.
(80)

The holomorphic ambiguity is of the form

fg(z) =

∑3g−3
n=0 anzn

∆2g−2
, (81)

and to fix it we impose, as usual, gap conditions. The orbifold point, where to = 0, occurs at
z =∞, and we have [6,32]

Fg(to)∼
2B2g

2g(2g − 2)
1

t2g−2
o

+O(t2
o) . (82)

Since the expansion contains only even powers of to, this gives just g conditions. The remain-
ing conditions are obtained by going to the conifold point at z = 1/16 and the corresponding
conifold frame. The flat coordinate in this frame is given by

tc =
2
π

∫ ∆

0

K (y)
1− y

dy , (83)

The gap condition in this frame is

Fg(tc)∼
B2g

2g(2g − 2)

�

2i
tc

�2g−2

+O(1) . (84)

This gives 2g − 2 conditions. Combining the orbifold and the conifold conditions, we get
3g − 2 conditions in total, which completely fix the holomorphic ambiguity. By using the
above ingredients, one can easily compute the Fgs up to very high genus.
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4.2 Testing the large N instantons

As it was found in [33], in the study of the large order behavior of the genus expansion (75)
one finds three competing instanton actions. These are given by

Aw = −2πi to , (85)

Ac = −
1

4π
p

z
G2,3

3,3

�1
2 , 1

2 , 1
2

0, 0, −1
2

�

�

�

�

1
16z

�

+π2 , (86)

As =Ac + 2Aw , (87)

where Gm,n
p,q is the Meijer G-function. The first instanton trivially arises from the singular term

in (82), so we will subtract its effect by removing the polar part in (82), as we did in (62). The
resulting free energies will be denoted as Gg . When we write the instanton actions Ac and As
as in (8), in orbifold coordinates, we find c = 2. This gives all the ingredients that are needed
to compute the instanton amplitudes from (9).

We can now check that these instanton amplitudes provide the correct large order behavior
of the subtracted free energies Gg . We consider two different cases, z > 1/16 and z < 0, and
avoid the region 0< z < 1/16, in which the Fgs acquire an imaginary part. For z > 1/16, the
closest singularity to the origin of the Borel plane is Ac , which is real. In Fig. 5 we consider

z =
i

15
, i = 1, · · · , 20 , (88)

and compare the exact instanton coefficients F (1)n with the numerical value extracted from the
large order behavior.

Next we consider the case z < 0. Now the large order behavior is dominated by the
instanton action As, which is complex, so we will find an oscillatory asymptotics. In Fig. 6 we
plot the coefficients bGg(t), normalized as in (69), as a function of g, for different values of
z. We compare the result to the asymptotic approximation at large g, including one, two and
three cosine terms of the asymptotic expansion (70). We see that, as more terms are included,
the approximation becomes better.

In [33], the action As was identified with a D2-brane wrapping a three-cycle in the type IIA
string compactification. The expression (9), applied to this action, and which we have used
to obtain the large genus behavior of the 1/N expansion, gives the full quantum amplitude
due to this D2-instanton in type IIA theory. It might be possible to test some aspects of this
prediction directly in string theory.

We should point out that the approach to non-perturbative corrections followed in this
paper is different from the results obtained on the ABJM matrix model by using the Fermi gas
approach of [56] (see e.g. [57, 58] for reviews). In the Fermi gas approach, the perturbative
gs expansion is resummed order by order in an exponentiated ’t Hooft parameter, akin to the
Gopakumar–Vafa resummation of the genus expansion in topological string theory [59]. One
has to add to this resummed perturbative part the contribution of non-perturbative effects.
These can be explicitly obtained as a resummation of the WKB expansion of the Fermi gas [56],
where the ħh parameter is identified with k, and therefore with the inverse coupling constant
gs. As a result, the non-perturbative contribution in the Fermi gas picture is rather a strong
coupling expansion of the problem. It involves terms of the form e−A/gs , but also terms of the
form sin(a/gs), for example, therefore it does not have the form of a conventional trans-series,
as the ones considered in this paper.
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Figure 5: Coefficients F (1)n , n = 0, 1,2, 3 in the ABJM matrix model, as a function
of z. The red line is the analytic result extracted from (9). The black dots are the
numerical approximations extracted from the large order behaviour of the subtracted
free energies. For n = 0, the relative errors are at most of order 10−24. For n = 1,
the relative error is at most of order 10−21.

5 Asymptotics of orbifold Gromov–Witten invariants

5.1 Orbifold Gromov–Witten invariants

In topological string theory on a CY manifold, the holomorphic free energies Fg(t) are gen-
erating functions of enumerative invariants. When computed in the large radius frame, they
provide conventional Gromov–Witten invariants. If the underlying CY geometry has an orb-
ifold point, there is a corresponding orbifold frame, and the genus g free energies in that frame
are generating functionals of orbifold Gromov–Witten invariants. In this section we will focus
on a particular example: the CY given by the local P2 geometry, which can be understood as a
resolution of the C3/Z3 orbifold. We will now summarize some basic facts about local P2 and
its orbifold limit, and refer to e.g. [36,60] for more details.

The moduli space of local P2 is parametrized by a complex coordinate z. The point z = 0
is the large radius point, while at z =∞ one has the orbifold C3/Z3. To parametrize the
neighbourhood of the orbifold point it is useful to consider the coordinate ψ defined by

ψ3 = −
1

27z
. (89)

The flat coordinate corresponding to the orbifold frame is given by [36,61]

σ(z) = 3ψ 3F2

�

1
3

,
1
3

,
1
3

;
2
3

,
4
3

�

�

�

�

ψ3

�

. (90)
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Figure 6: Normalized free energies bGg(t) for the ABJM matrix model (black dots) as
compared to the prediction (70) for the asymptotics (lines). In grey, we include the
leading term; in orange, the subleading term; and, in red, we include the subsub-
leading term.

The dual coordinate is

σD(z) = −
9
2
ψ2

3F2

�

2
3

,
2
3

,
2
3

;
4
3

,
5
3

�

�

�

�

ψ3

�

, (91)

and it defines a genus zero orbifold free energy, or prepotential, through the relation

σD = 3
∂F0(σ)
∂ σ

. (92)

The higher genus orbifold free energies Fg can be computed by using the HAE, since as shown
in [9] there are gap conditions which fix the holomorphic ambiguities uniquely. As noted
in [36], the Fgs have a series expansion around σ = 0 in integer powers of

τ= σ3 , (93)

of the form

Fg(τ) =
∑

d≥0

Ng,d

(3d)!
τd . (94)

We have, for example,

F0(τ) = −
τ

18
−

τ2

19440
−

τ3

3265920
−

1093τ4

349192166400
−

119401τ5

2859883842816000
+O
�

τ6
�

. (95)

The coefficients Ng,d appearing in this expansion are the orbifold Gromov–Witten invariants of
C3/Z3 at genus g and “degree” d. In the orbifold theory, d does not refer to a homology class
of a curve in the CY target, but indicates that the invariant calculates a correlator of 3d twisted
fields in the orbifold 2d CFT coupled to gravity. The orbifold Gromov–Witten invariants can be
defined independently in algebraic geometry, as integrals over appropriate moduli spaces, and
it has been verified that they agree with the results obtained from (94) in topological string
theory. We refer to [61,62] for a review and references to the literature.

We note that, in our conventions, we do not include the contribution of constant maps in
Fg(τ). In particular, the degree zero orbifold GW invariants Ng,0 are given by

−
1

2160
,

1
544320

, −
7

41990400
, · · · , (96)
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for g = 2,3, 4, · · · . In contrast, the degree zero invariants calculated in [36,62] are given by

Ng,0 + 3
(−1)g−1B2g B2g−2

4g(2g − 2)(2g − 2)!
, (97)

where the second term is the contribution of constant maps. For our asymptotic considerations
it is reasonable to define Ng,0 as we have done, since the large genus asymptotics of the
constant map contributions can be easily worked out in closed form and it is very different
from the large genus asymptotics of Ng,0.

5.2 Asymptotics from instantons

Since the spacetime instantons considered in [20–23] provide the precise large genus asymp-
totics of the free energies Fg , one could think that they also lead to precise formulae for
the asymptotics of the corresponding Gromov–Witten invariants. In the case of conventional
Gromov–Witten invariants, this issue was studied in some detail in [34]. The results turn out
to be more subtle than expected, however. One finds, for example, that at fixed degree, the
conventional Gromov–Witten invariants only grow exponentially with the genus, and precise
formulae for this growth can be obtained from the Gopakumar–Vafa invariants [59], without
using the asymptotic formulae (9), (12). This is probably related to the fact that, near the
large radius point, the leading Borel singularity is the flat coordinate in the large radius frame,
the instanton amplitude is of the form (5), and the asymptotics is typically oscillatory [23,35].

However, in the case of orbifold Gromov–Witten invariants, the spacetime instanton am-
plitudes (9), (12) give precise predictions for the behavior of Ng,d at fixed d and large g. The
reason is that, in this case, both the free energies and the instanton amplitudes have a regular
expansion around the orbifold point σ = 0, and one can reorganize the full trans-series in
powers of τ. Let us see in detail how this goes.

In order to understand the relevant instantons in the theory, we have to find which are the
Borel singularities which are closest to the origin as we approach ψ→ 0. To do this, we have
generated many Fgs in the orbifold frame and studied numerically the singularities of their
Borel transform, by using standard techniques of Padé approximants. For simplicity, we have
worked with real negative values of z. As a result of this analysis, one finds six singularities,
related by conjugation and reflection. The first one occurs at

A0 = α
∂F0

∂ σ
+
αβ

3
σ+ iγ , (98)

where3

α= −
4π2i
Γ 3(1/3)

, β =
�

Γ (1/3)
Γ (2/3)

�3

, γ=
4π2

3
. (99)

We note that A0 is proportional to the period vanishing at the conifold point at z = −1/27,
and it is equal to the action Ac which appeared in the analysis of local P2 in [22]. As noted in
section 2, since α ̸= 0, the relation (98) defines a modified prepotential

FA0
0 = F0 +

β

6
σ2 + i

γ

α
, (100)

so that

A0 = α
∂FA0

0

∂ σ
. (101)

3This α should not be confused with the one appearing in (35).
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Figure 7: Singularities in the Borel plane for z = −2, as obtained from the poles of
the Borel–Padé transform. The black dot in the positive imaginary axis is A0, while
the two other black dots are A1 and A2.

The other singularities occur at

A1 = αe−2πi/3 ∂F0

∂ σ
+
αβ

3
e−4πi/3σ+ iγ ,

A2 = αe2πi/3 ∂F0

∂ σ
+
αβ

3
e4πi/3σ+ iγ,

(102)

and we note that
A2 = −A1 . (103)

We also have singularities at −Aℓ, ℓ= 0, 1,2. A plot of the singularities for z = −2 is shown in
Fig. 7. We note that, as we go to the orbifold point σ = 0, the three singularities in the upper
half plane coalesce at the value

A0(σ = 0) =
4π2i

3
. (104)

The singularities in the lower half plane coalesce at the conjugate point. In contrast, the large
genus asymptotics of the constant map contribution in (97) is controlled by an action at±4π2i,
which is subleading w.r.t. the singularities ±Aℓ(σ = 0) considered above. Therefore, although
the quantities Ng,0 are often combined with the constant map contribution as in (97), they
have a very different asymptotics at large g.

An important symmetry is that

A1(σ) =A0

�

e2πi/3σ
�

, A2(σ) =A0

�

e4πi/3σ
�

. (105)

This says that A0,1,2 form an orbit under the orbifold group Z3. A similar observation has been
made in [23] in the case of the Borel singularities near the orbifold point of the quintic CY. It
follows from (105) that any symmetric function in the Aℓ, ℓ= 0, 1,2, will only contain integer
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powers of τ= σ3. This will be useful in the following. We also define

FA1
0 = F0 +

β

6
e−2πi/3σ2 + i

γ

α
,

FA2
0 = F0 +

β

6
e2πi/3σ2 + i

γ

α
.

(106)

The corresponding instanton amplitudes, obtained from (9), will be denoted by FAℓ,(1)
n . In

order to obtain the asymptotics of Fg(σ), we have to consider the contributions of the three
different Borel singularities. Each of them is given by the expression (12), and we find in total

Fg(σ)∼
1
π

2
∑

ℓ=0

∑

k≥0

A−2g+1+k
ℓ

FAℓ,(1)
k Γ (2g − 1− k) . (107)

Due to the Z3 symmetry, the r.h.s. has a regular expansion in powers of τ = σ3, and by
comparing powers of τ in both sides we can obtain the large genus asymptotics of the orbifold
Gromov–Witten invariants at fixed d. For example, for the degree zero invariants we find

Ng,0 ∼
3

2π2
(−1)g−1γ−2g+2Γ (2g − 1)exp

�

α2β

6

��

1+
18− 6α2β + iα3γ

18
1

2g
+ · · ·
�

, (108)

while for the degree one invariants we obtain

Ng,1

3!
∼

3
2π2
(−1)gγ−2g(2g)3Γ (2g − 1)

iα3β3

162γ
exp

�

α2β

6

�

�

1+O
�

g−1
�	

. (109)

Note that, since α is purely imaginary, the r.h.s of the above asymptotic equalities is real,
as it should be. It is straightforward to extend these formulae to all orders in 1/g, by simply
considering higher order corrections in gs in the instanton amplitudes. Similarly, we can obtain
results for all degrees d by simply expanding the r.h.s. of (107) in powers of τ.

We have explicitly verified many of these instanton predictions by studying the large genus
asymptotics of the invariants Ng,d , for different values of d. Let us mention two of these two
checks, for d = 0 and d = 1. The sequence

2g

� Ng,0

(−1)g−1γ−2g+2Γ (2g − 1)
−

3
2π2

exp

�

α2β

6

��

, (110)

should asymptote the number

3
2π2

exp

�

α2β

6

�

18− 6α2β + iα3γ

18
=

3
2π2

e−
p

3π

�

1+ 2
p

3π−
128π8

27Γ 9(1/3)

�

≈ 0.0036573 . . .

(111)
Similarly, the sequence

Ng,1

(−1)g−1γ−2g+2(2g)3Γ (2g − 1)
, (112)

should asymptote the number

3
2π2

iα3β3

162γ
exp

�

α2β

6

�

=
3

2π2
e−
p

3π 5832π4

Γ 9(−1/3)
≈ −0.00124176 . . . (113)

We plot these sequences, up to g = 39, together with their second Richardson transform, in
Fig. 8. By using further transforms we can match the theoretical predictions with a relative
error of 10−11.
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Figure 8: On the left, the sequence (110) and its second Richardson transform (black
and red dots, respectively), as compared to its predicted asymptotic limit (111) (blue
line). On the right, the sequence (112) and its second Richardson transform (black
and red dots, respectively), as compare to its asymptotic limit (113) (blue line).

6 Conclusions

In this paper we have shown that the instanton amplitudes for topological strings obtained
in [20–23] give the correct non-perturbative corrections due to large N instantons in Hermitian
matrix models. Our results solve in part the puzzle raised in [30]. In that paper it was checked
that, in the two-cut cubic matrix model with α= 0, the large genus asymptotics of the Fgs was
controlled by the dual instanton action (63). However, the subleading coefficients appearing
in the asymptotic formula (12) were not known explicitly. A naif eigenvalue tunneling analysis
suggests that the instanton amplitude is given, in the one-modulus case, by an expression of
the form (see e.g. [28])

exp [F(t − cgs, gs)−F(t, gs)] . (114)

This does not lead to the correct asymptotics, as it was noted in [30]. In view of the results of
this paper, it is clear that the expression (114) is missing the non-trivial prefactor appearing
in (9). From the point of view of [20–23], the problem with (114) is that it does not satisfy
the appropriate boundary conditions due to the gap behavior (32).

What we are still lacking is a microscopic derivation of (7) and (9) from the dynamics of the
matrix model eigenvalues, in the same way that (114) is explained by eigenvalue tunneling.
In [30] it was suggested, based on the results of [63], that to go beyond (114) one has to take
into account a new type of instanton. This new instanton has found an eigenvalue description
very recently [64] in terms of super matrix models (see [65] for its applications), and this
makes it possible to provide a rationale for (9) in terms of eigenvalue instantons and “anti-
eigenvalue” instantons [66].

In this paper we have addressed very simple aspects of the full resurgent structure of the
1/N expansion of matrix models. The conjectures of [22, 23] give information about e.g.
multi-instanton amplitudes, and we have verified some of them, but more work remains to
be done in this direction. We also note that the conjectures of [22, 23] do not give detailed
information on the structure of Borel singularities and on the Stokes constants. We expect
the resurgent structure of matrix models with polynomial potentials to be simpler than in the
case of topological string theory on toric or compact CY threefolds, and perhaps one can find
a complete description of these missing ingredients.

As we have seen in this work, the large N instantons of the ABJM matrix model are also de-
scribed by the topological string instanton amplitudes. This is perhaps not so surprising, since
the 1/N expansion of the ABJM matrix model coincides with the genus expansion of topolog-
ical string theory on the local F0 geometry [5, 6]. There is another class of non-conventional
matrix models, associated to quantum mirror curves [54, 67], whose large N instantons are
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described by (7), due essentially the same reasons; namely, their 1/N expansion is conjectured
to be given by the genus expansion of a topological string. In all these cases, we are lacking
a microscopic picture of the large N instantons in the matrix models themselves. It would be
also interesting to see whether the large N instantons of the matrix models appearing more
generally in the localization of Chern–Simons–matter theories are also described by (7).

Another interesting question is the following. It was found in [68] that the Borel resum-
mation of the 1/N expansion of the ABJM matrix model is not enough to reproduce its exact
value, and non-perturbative corrections are needed. It is likely that the large N instantons
of the ABJM matrix model described in this paper provide the sought-for non-perturbative
corrections. Eventually, one would like to have a complete “semiclassical decoding” of the ex-
act matrix model in terms of a Borel resummed trans-series. Some first steps in this decoding
were achieved in [35] for a close cousin of the ABJM matrix model, namely the local P2 matrix
model introduced in [67], but much remains to be understood. Let us note that this decoding
would be very different from the Fermi gas representation of the ABJM matrix model, which
involves partial resummations of the weak and strong coupling expansions (in particular, the
Fermi gas picture does not require Borel resummations).

Finally, we note that the results we have obtained for the asymptotics of orbifold Gromov–
Witten invariants in C3/Z3 are perhaps the simplest ones that can be derived from the topo-
logical string instanton amplitudes (7). They give new results in Gromov–Witten theory and
provide at the same time precision tests of the instanton amplitudes. It would be interesting to
generalize these results to other Calabi–Yau orbifold points, both in the toric and the compact
cases.
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A A useful parametrization of the cubic matrix model

In this Appendix we review the parametrization of the two-cut cubic matrix model which we
use to fix the holomorphic ambiguities.

One problem of the parameters z, α appearing in the spectral curve (35) is that the roots
x i have very complicated expressions in terms of them. It is therefore useful to introduce some
intermediate parameters z1,2, first considered in [46]. They are defined by

1
4
(x2 − x1)

2 = z2 ,

1
4
(x4 − x3)

2 = z1 ,

x1 + x2 + x3 + x4 = 0 ,
1
4

�

(x3 + x4)− (x1 + x2)
�2
= 4− 2(z1 + z2) .

(A.1)
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The modulus z and parameter α are then given by:

z =
1
4

�

8(z1 + z2)− 3(z2
1 + z2

2)− 10z1z2

�

,

α= 2(z2 − z1)

√

√

1−
z1 + z2

2
.

(A.2)

The periods t1,2 can be calculated in a power series around z1 = z2 = 0 [46], and one finds

t1 =
z1 I
4
−

z1z2

2I
K(z1, z2, I) ,

t2 = −
z2 I
4
+

z1z2

2I
K(z1, z2, I) ,

(A.3)

where [49]

K(z1, z2, I) =
∑

m,n≥0

2−2m−2n−1(m+ n)Γ (2m+ 2n)
Γ (m+ 1)Γ (m+ 2)Γ (n+ 1)Γ (n+ 2)

zn
1zm

2

I2(n+m)
, (A.4)

and

I = 2

√

√

1−
z1 + z2

2
. (A.5)

We note that the point t1 = t2 = 0 where we implement the gap condition (54) corresponds
to z1 = z2 = 0.

It is convenient to find a formula for the holomorphic propagator as a function of z1,2 which
allows us to make fast expansions around z1 = z2 = 0. Let us introduce the functions

λ= 4z1z2 , a = 4− 3(z1 + z2) , (A.6)

as well as the elliptic modulus

k2
1 =

λ
�

a+
p

a2 −λ
�2 , (A.7)

which is analytic at z1 = z2 = 0. Then, one finds

S = σ(z1, z2)−δ(z1, z2)

�

a+
p

a2 −λ
a2 −λ

E(k2
1)

K(k2
1)
−

1
p

a2 −λ

�

, (A.8)

where

σ(z1, z2) =
1
2

�

32− 24(z1 + z2) + 3(z2
1 + z2

2) + 10z1z2

�

, (A.9)

and
δ(z1, z2) = 4(a2 −λ) . (A.10)
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