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Abstract

We study the symmetry energy (SE), an important quantity in nuclear physics, in the
Witten-Sakai-Sugimoto model and in a much simpler hard-wall model of holographic
QCD. The SE is the energy contribution to the nucleus due to having an unequal number
of neutrons and protons. Using a homogeneous Ansatz representing smeared instantons
and quantizing their isospin, we extract the SE and the proton fraction assuming charge
neutrality and beta-equilibrium, using quantization of the isospin zeromode. We also
show the equivalence between our method adapted from solitons and the usual way of
the isospin controlled by a chemical potential at the holographic boundary. We find that
the SE can be well described in the WSS model if we allow for a larger ’t Hooft coupling
and lower Kaluza-Klein scale than is normally used in phenomenological fits.
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1 Introduction

The equation of state (EOS) of nuclear matter is central to nuclear physics from neutron stars
to heavy ion collisions, and an important feature is the symmetry energy (SE) as a function
of the density. The symmetry energy is the symmetric increase in energy as one moves away
from the isospin symmetric point, that is, the point where the number of protons equals that
of neutrons, i.e. E(ρ) = E0(ρ)+S(ρ)β2+ · · · , with β = N−Z

A being the difference between the
number of neutrons N and the number of protons Z , normalized by the atomic mass number,
A = Z + N — for a nice review see Ref. [1]. The symmetry energy is experimentally well
constrained around saturation density, ρ0 ∼ 0.16fm−3, to be near S(ρ0) ∼ 30 MeV – both
from astrophysical observations as well as heavy ion collision data – but much less so at larger
densities. The symmetry energy around saturation density is conventionally expanded as

S(ρ) = S0 +
1
3

Lε+
1
18

Ksymε
2 + · · · , (1)

with ε := (ρ−ρ0)/ρ0, whereas L and Ksym are proportional to the slope and second derivative
of the SE with respect to the density. Expectedly, the constraints on L and Ksym are less tight
than those on S0. Traditionally, the symmetry energy was defined for nuclear matter, which
can be thought of as an infinitely large nucleus at density ρ, and so surface effects are absent.
The symmetry energy can equally well be defined for a fixed, but finite, atomic number A.

Current experimental bounds on the first 3 observables of the symmetry energy as in the
expansion of the density come from mass, radius and tidal deformation of neutron stars, ex-
citation energies of isobaric analog states, neutron skin in Sn isotopes and 208Pb as well as
heavy ion collision data [2–5,5–9].

The equation of state in nuclear physics relates the energy density with the pressure and is
the main ingredient in the understanding of neutron stars as well as heavy ion collisions. The
problem with obtaining the equation of state for nuclei is that the strong nuclear force is gov-
erned by Quantum Chromodynamics (QCD), an inherently strongly coupled theory and hence
cannot be tackled by perturbation theory or first-principles calculations. Nuclear physics, in
particular, ab initio methods, like the no-core shell model [10], utilize pion scattering data
to reconstruct the interaction potential of nuclei and this approach leads to solid predictions
for the interaction potential and the chiral effective field theory can accurately determine the
EOS [11], albeit only at relatively small densities. QCD at high energies is perturbative due
to its asymptotically free nature, and hence can be used to make solid predictions for the
EOS [12], unfortunately at pressures far larger than those of a neutron star – the most com-
pact object known, not collapsed into a black hole (BH).

A new paradigm of studying QCD and attempting to extract observables for nuclear physics
and hadronic physics, was envisioned by Maldacena at the end of the ’90-ies [13] and further
elaborated by Witten [14]. After a couple of decades, the mentioned framework known as
holography or AdS/CFT, has been coined holographic QCD (HQCD) when applied to the strong
nuclear force [15–17]. There are two main approaches to HQCD, top-down and bottom-up; the
top-down approach is based on string-theory constructions and the most prominent example is
the Witten-Sakai-Sugimoto model (WSS) [14,18,19]. For the bottom-up construction, which
shares similar theoretical ingredients, two main types of models are known as soft-wall (SW)
(e.g. Improved HQCD [20, 21] and V-QCD [22–24]) and hard-wall (HW) models [25–33].
Especially, the top-down type of HQCD have quite some predictive power, in the sense that the
models have very few adjustable parameters [15–17]. For the WSS, there is the mass scale
and the ’t Hooft coupling, where the mass scale is normally fitted to the mass of the ρ meson
and the ’t Hooft coupling is determined from the pion decay constant [18].

Attempts have already been made at extracting the SE from various HQCD models, includ-
ing top-down approaches as in the D4/D6 model [34] and even the WSS model, see Ref. [35],
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and NSs have been constructed using the holographically extracted EOS to solve the govern-
ing Tolman-Oppenheimer-Volkov (TOV) equations [36, 37]. The SE, however, comes out too
large in the WSS [35]. In HQCD in contrast to traditional nuclear physics, the proton and the
neutron are not point particles, but are described by a topological soliton, the Sakai-Sugimoto
soliton [18, 38–40], which is initially isospin symmetric – that is, the proton is equal to the
neutron. In order to compute the SE, we must distinguish the proton from the neutron and
this can be done by the introduction of an isospin chemical potential [35].

HQCD at finite isospin chemical potential has been object of inspection in the context of
many models: top-down approaches include the D3/D7 model [41–43] and the WSS model
[44, 45] in the case of the DBI action and without employing the homogeneous Ansatz (see
below).

In this paper, we propose using the homogeneous Ansatz in the WSS, but quantizing the
isospin symmetry – a technique known from the Skyrme model [46–48], which is the leading-
order low-energy effective theory of the WSS model [18]. The homogeneous Ansatz repre-
sents an approximation to describe densely packed nucleons that form nuclear matter above
saturation density. It relies on the assumption that nuclear matter forms a spatially homoge-
neous distribution, in which nucleons lose their individual properties: despite being shown in
Ref. [49] that such a configuration is not admitted in holographic models under assumptions of
regularity of the gauge fields, the Ansatz can still be employed with modifications, such as for-
mulating it at the level of the field strengths [50] or (as we will do) introducing a discontinuity
that acts as a source of baryon number [51]. The quantization of the isospin symmetry intro-
duces the isospin quantum number, which makes it possible to extract the SE as the coefficient
of the square of the difference between the number of protons and neutrons. The quantization
method of introducing isospin is also shown to be equivalent to using a chemical potential,
see Appendix A. We find a lower SE compared to previous attempts in the WSS [35], since
we include all the needed fields in our Ansatz and because we choose a different Nc scaling
such that the nucleons are states with the minimal isospin quantum number; however, there
is no difference coming from using either the chemical potential or the quantization method
– they are equivalent as shown explicitly in Appendix A. In particular, we find a phenomeno-
logically viable value of the constant S(ρ0) at saturation density and the first two coefficients
L and Ksym are compatible with current experimental bounds from astrophysics and heavy ion
collision data for a certain choice of the model parameters.

2 Model

We will treat the WSS and the HW model on equal footing in the following. The model at low
energies is described by the Yang-Mills (YM) and Chern-Simons (CS) actions in 5-dimensional
AdS5 (or AdS5-like, for the WSS model) spacetime (M , g):

SYM = −κTr

∫

M
F ∧ ∗F ,

SCS =
Nc

24π2
Tr

∫

M

�

A∧F2 −
i
2
A3 ∧F + 1

10
A5
�

, (2)

with S = SYM + SCS being the total action, the constant κ = λNc
216π3 for the WSS model and

κ = M5 for the HW model, λ = g2
YMNc the ’t Hooft coupling, Nc the number of colors of QCD

(i.e. 3 in nature), the field strength 2-form is

F = 1
2(∂αAβ − ∂βAα + i[Aα,Aβ])dxα ∧ dxβ , (3)
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α,β = 0,1, 2,3, 4 with x4 = z the holographic coordinate, and the power of forms is under-
stood with the wedge product. The metric is

g = h(z)k(z)dxµdxµ + h2(z)dz2 , (4)

with h(z) = k−1/3(z) = (1+ z2)−1/3, z ∈ (−∞,∞) for WSS and h(z) = k(z) = L/z, z ∈ [0,L]
for the HW model, the index µ = 0, 1,2, 3 is summed over in the metric and µ is raised with
the Minkowski metric here. It is convenient to work in dimensionless units. Both models have
a free mass scale MKK (WSS) and L−1 (HW): the WSS model is already presented with the
choice MKK = 1, to which we add the choice L = 1 for the HW model. The correct powers of
the energy scales MKK, L−1 can then easily be restored via dimensional analysis.

The gauge field can be decomposed for later convenience in the Abelian and non-Abelian
parts as

Aα = Aa
αT a + bAα

1

2
, (5)

where the generators of SU(2) T a are chosen as T a = 1
2τ

a so that Tr T aT b = 1
2δ

ab, and the
spacetime indices follow the convention:

α,β , . . .= {0, M} , M , N , . . .= {i, z} , µ,ν, . . .= {0, i} . (6)

In writing Eq. (2), we performed dimensional reduction in the WSS, integrating out S4 from
the original nine-dimensional action for the stack of D8−Branes, while in the HW we do not
explicitly include an action for the scalar field encoding chiral symmetry breaking, since we
set the scalar field to zero, which is appropriate in the homogeneous baryonic phase, follow-
ing Ref. [37]. Despite not appearing explicitly in our computation, the scalar field plays an
important role: its vacuum energy, determines the density of nuclear matter at the baryonic
onset, hence defining saturation density within this model. For details on how the scalar field
defines the saturation density, but otherwise vanishes in the baryonic phase, see Appendix D.
Here we will utilize the fit found in Ref. [37] and only adjust the overall energy scale.

Two further steps were employed in order to write the action and equations of motion for
the two models in a compact way. For the HW model we assumed the symmetry properties for
the fundamental fields LM ,RM as follows:

Li = −Ri , L0 =R0 . (7)

For the WSS model, we similarly assumed parity properties of the fields with respect to z:

Ai(z) = −Ai(−z) , A0(z) = +A0(−z) . (8)

With these procedures, we halve the number of fields in the HW model (from L,R to A)
and the integration interval in the WSS model (from (−∞,+∞) to [0,+∞)) generating an
overall factor of 2 in the action in both cases.

As a last step, we introduce generic symbols zIR, zUV to indicate the infrared and ultraviolet
boundary values of the holographic coordinate,1 which in the two models assume the values

zIR =

¨

0 , WSS ,

1 , HW ,
zUV =

¨

+∞ , WSS ,

0 , HW.
(9)

1In the WSS model, the spatial manifold only has a UV boundary at z = ±∞. However, when we introduced
the “folding” of the coordinate z exploiting the assumptions (8), we effectively introduced an IR boundary at the
folding point zIR = 0. Moreover, the homogeneous Ansatz will introduce a discontinuity in the field Ai at that point.
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The classical homogeneous Ansatz for isospin-symmetric matter, reasonable for large-density
computations, is defined as

Acl
0 =

1
2ba0 , Acl

i = −
1
2 Hτi , Acl

z = 0 , (10)

where {ba0, H}= {ba0, H}(z) are functions of the holographic coordinate z. We have suppressed
the unit 2-by-2 matrices in the terms without a Pauli matrix τ.

The function H(z) encodes the baryonic density through its value at z = zIR: if either H(zIR)
or H ′(zIR) vanish, then the baryon number would also vanish as noted in Ref. [49], so we will
assume that H(z) obeys a Dirichlet boundary condition H(zIR) = H0, with the value of H0 to
be determined by minimization of the action. This defines the baryon density ρ (assuming
H(z)→ 0 for z→ zUV) as follows:

ρ =
1

16π2

∫

dz εMN PQ Tr FMN FPQ

= −
3

4π2

∫

dz H ′H2

= −ε
1

4π2

�

H3
�zUV

zIR
, (11)

so that the infrared boundary condition for the numerical integration of the function H(z) is
directly related to the baryon number density as:

H(zIR) = ε
�

4π2ρ
�

1
3 , (12)

where for convenience of putting the two models on same footing, we have defined the integral
in the holographic direction as

∫

dz f (z) := ε

∫ zUV

zIR

dz f (z) , (13)

which we will use throughout the paper and ε assumes a different sign depending on the
model:

ε=

¨

+1 , WSS ,

−1 , HW .
(14)

Thus the integral is defined in such a way to take into account the different orientation in
the integration along z, dictated by the choice of coordinates for the two models. Note that
this choice of boundary condition for H(zIR) means that in the WSS, once we restore the
full domain of integration z ∈ (−∞,∞), the function H(z) will be discontinuous. This still
leads to a continuous field strength, since both H ′ and H2 are continuous functions. For
the HW model instead, this choice just means that we cannot enforce the standard bound-
ary condition Lµ(zIR) − Rµ(zIR) = 0, which has to be replaced with the one above, implying
Lµ(zIR) = −Rµ(zIR).

3 Time-dependent configurations

We wish to include the effects of isospin asymmetry in the system. To do so, we follow a
method inspired by the single-soliton analysis: we know that for the single baryon, the proton
and the neutron are described as degenerate (in absence of quark mass terms2) quantum

2See Ref. [52] for the effect of breaking the degeneracy for the WSS model, when including the quark mass
terms. For some recent results regarding nuclear matter that include quark masses in the WSS model, see Refs. [53–
55]. For results on the phase diagram of a HW model including the effects of quark mass, see Ref. [56].
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states of the effective Hamiltonian obtained by considering a slow rotation in SU(2). The
homogeneous Ansatz shares a similar structure with the single-soliton configuration, made
easier by the absence of translational moduli3 XM and ρ (but with the minor complication
of not having an analytical configuration to approximate our static Ansatz (10)), so we can
attempt to follow steps similar to the ones in Refs. [38] and [39], in order to obtain a time-
dependent configuration – yet to be quantized.

We start by assuming a configuration of the form

A0 = 0 , (15)

Ai = VAcl
i V−1 − iV∂iV

−1 , (16)

Az = −iV∂zV−1 , (17)

which implies the following transformations in the field strengths:

FMN = V F cl
MN V−1 , (18)

F0z = −V Dcl
z ΦV−1 , (19)

F0i = 0 , (20)

where V (z, t) encodes the time-dependent rotation in SU(2), and Φ is defined as

Φ≡ −iV−1V̇ . (21)

Notice, this is not a gauge transformation since the field A0 is not transformed along with the
rest. The function V (z, t) needs to depend on z in order to allow us to satisfy the equation of
motion

−κ
�

h(z)Dj F
0 j + Dz

�

k(z)F0z
��

+
Nc

64π2
ε0α1α2α3α4 Fα1α2

bFα3α4
= 0 . (22)

The function V (z, t) is holographically dual to the SU(2)-valued collective coordinate a(t),
as we choose it such that

V (z→ zUV, t) = a(t) , (23)

which in turn implies

Φ(z→ zUV, t) = −ia−1ȧ ≡
1
2
χ ·τ , (24)

where χ is the boundary angular velocity. The presence of a nonvanishing F0z will also enable
a source term for the fields bAi via the Chern-Simons action, so we will have to complete the
field content by turning on bAi = −

1
2 Lχ i: here we already guessed that the vector field will be

proportional to the angular velocity χ i , and we can do so without loss of generality, since in
the homogeneous case this is the only three-vector available to the Abelian field.

At this stage the problem is well posed and the function Φ(z, t) can be found by solving
Eq. (22), but it is more convenient to perform a gauge transformation to make the system
easier to treat.

We perform the gauge SU(2) transformation

Aα→ AS
α = GAαG−1 − iG∂αG−1 , G ≡ aV−1 , α= 0,1, 2,3, 4 , (25)

where the superscript “S” stands for “singular”, because this is reminiscent of the transforma-
tion changing from the regular gauge to the singular gauge in the single-soliton case. With this

3The translational moduli X i are absent because of the assumption of homogeneity, while the pseudo-modulus
size ρ is fixed by the numerical solution so as to minimize energy. The pseudo-modulus Z describing the center
of the soliton in z is fixed by our Ansatz to be at the position of the discontinuity. This in principle can also be
determined by choosing Z = z0 that minimizes the free energy as opposed to our simpler choice z0 = 0 for all
densities. See Ref. [57] for the inclusion of this effect in the static approximation.

6

https://scipost.org
https://scipost.org/SciPostPhys.16.6.156


SciPost Phys. 16, 156 (2024)

choice (dropping the superscript “S” for convenience, since we will use this gauge henceforth)
the field content becomes

A0 = a
�

Φ−
1
2
τ ·χ
�

a−1 , (26)

Ai = aAcl
i a−1 , (27)

Az = 0 . (28)

Now we can factorize the function Φ(z, t) as

Φ= Φaχa ≡ eGχ ·τ , (29)

and since we imposed Eq. (24), we see that

eG(z→ zUV) =
1
2

. (30)

We then conclude that the field A0 in this gauge vanishes at the UV boundary, and can be
expressed as

A0 = G(z)aχ ·τa−1 , G(z→ zUV) = 0 . (31)

We notice that this result is exactly what one would expect by allowing for the most gen-
eral field configuration respecting spherical symmetry, homogeneity in three-dimensional flat
space, and the gauge choice Az = 0. Taking the functions H, ba0, G, L to be independent of χ
amounts to considering a slow rotation, thus including only linear terms in χ in the Ansatz.

Whereas 1
2χ ·τ is the matrix form of the boundary angular velocity, 1

2 aχ ·τa−1 = −iȧa−1

is the matrix form of the boundary angular isospin velocity (i.e. describing rotations in SU(2)
instead of in space). Thus, although one may think we are spinning the fields in space, this is
really an isospin action on the homogeneous fields.

The final form of our time-dependent homogeneous Ansatz is then summarized in compact
notation as:

A0 = Gaχ ·τa−1 + 1
2ba0 , Ai = −

1
2

�

Haτia−1 + Lχ i
�

, Az = 0 , (32)

with the mandatory boundary condition G(z→ zUV) = 0.
This Ansatz leads to the action

SYM = −κ
∫

d4 x

∫

dz
�

− 8hH2
�

G +
1
2

�2

χ ·χ + 3hH4

+ k
�

(L′)2 − 4(G′)2 + 8(KH)2
�

χ ·χ + 3k(H ′)2 − k(ba′0)
2
�

, (33)

SCS = −
Nc

8π2

∫

d4 x

∫

dz ba0H ′H2 +
Nc

4π2

∫

d4 x

∫

dz
�

LH ′ − L′GH
�

Hχ ·χ , (34)

which gives rise to the equations of motion

hH3 −
1
2
∂z(kH ′)−

Nc

32π2κ
H2
ba′0 = 0 , (35)

∂z(kba
′
0) +

3Nc

16π2κ
H2H ′ = 0 , (36)

∂z(kG′)− hH2(1+ 2G) +
Nc

32π2κ
H2 L′ = 0 , (37)

∂z(kL′) +
Nc

8π2κ
H
�

HG′ + (1+ 2G)H ′
�

= 0 , (38)
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where the first two equations of motion are truncated to order |χ |0, whereas the latter two only
appear at quadratic order in χ . Including the subleading |χ |2 corrections to the solutions of
H and ba0 has a negligible impact, which we checked explicitly. Moreover, in the limit of small
χ , quadratic corrections in χ to the functions H(z), ba0(z) would generate terms in the on-shell
action at order |χ |4, not contributing to the symmetry energy, and also being subleading in the
small χ expansion.

This set of equations is composed by ODEs in the holographic coordinate z and can be
solved with standard off-the-peg solvers in packages like MATHEMATICA or MATLAB, once we
specify all the boundary conditions:

G′(zIR) = −
Nc

32π2κ
H2(zIR)L(zIR) , ba

′
0(zIR) = L′(zIR) = 0 , H(zIR) = ε(4π

2ρ)
1
3 , (39)

and all fields are vanishing at z = zUV. These boundary conditions are obtained by imposing
the vanishing of also the total derivative that comes about when deriving the Euler-Lagrange
field equations; for more details, see Ref. [58].4 We recall that that in the chosen coordinates
zIR = 0 (zIR = 1), zUV =∞ (zUV = 0) and ε= +1 (ε= −1) for the WSS (HW) model.

Another possible approach would be to keep the fields in a static configuration, hence
keeping the freedom to set the standard orientation of Eq. (10), and introduce an external
isospin chemical potential, which holographically amounts to introducing a finite UV boundary
value for the field A0: in Appendix A we show that this approach is related to ours by a
gauge transformation, hence leading to the same physics. This formalism is the one employed
in [35, 55]: the two calculations, however, differ in that in the present work we have turned
on the Abelian field bAi , which turns out to be linear in χ , and we are effectively truncating
the χ dependence of the gauge fields at linear order. The inclusion of the Abelian component
is necessary to have a self-consistent Ansatz, as the equations of motion cannot be solved
by setting L(z) = 0 (the Chern-Simons term provides a source for L(z)). Moreover, it turns
out that the field L(z) dominates the small-λ behavior of the symmetry energy: despite the
holographic model being developed with the large-λ limit in mind, for the practical application
of extracting a value for the symmetry energy, we need to extrapolate to a finite-λ, and the
most popular fit of the model employs the value of λ = 16.63, which does not realize the
large-λ nor the small-λ regimes (see Appendix E). On top of the difference at the level of the
Ansatz, another difference with respect to Refs. [35, 55] lies in the implicit definition of the
isospin number of nucleon states in the large-Nc limit. We choose as proton (neutron) state
the lowest-lying isospin state, which can be thought of as being composed of 1

2 (Nc + 1) up
(down) and 1

2 (Nc − 1) down (up) quarks. With this definition, the angular velocity χ of a
nucleon state is of order N−1

c , and so are the isospin chemical potential and the symmetry
energy.5 A different choice that still reduces to the familiar Nc = 3 case is that in which the
proton (neutron) is composed of Nc−1 up (down) and one down (up) quarks: in this scenario
the isospin number is of order Nc , and so is the symmetry energy. We find appropriate the
former definition for nucleon states, in that it keeps the nucleons as the ground state baryons,
and preserves the familiar electric charge following the Gell-Mann-Nishijima formula

Q = I3 +
NB

2
, (40)

with Q, I3, NB being the electric charge, the third component of the isospin, and the baryon
number, respectively.

4Imposing the coupled Robin-type boundary condition for G′ as opposed to a Neumann boundary condition (a
naive but consistent choice based on the field’s parity if L(zIR) = 0) only leads to a decrease in the symmetry energy
of about 10-20%.

5Note that the symmetry energy is a 1/N 2
c correction to the leading O(Nc) baryon energy, while corrections

from the axial anomaly would be further suppressed as 1/Nc and can provide corrections to the symmetry energy
only at order O(N−2

c ), see Appendix C.
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The truncation of the χ dependence (and so of the dependence on µI) is an approximation
that does not affect the computation, since the symmetry energy is by definition obtained by
evaluating the first nonvanishing term in the expansion of the energy per nucleon around an
isospin symmetric configuration.

Despite this technique being equivalent to the usual introduction of a boundary chemical
potential µI , it has a series of advantages, particularly manifest in the small µI limit. In this
limit, the complicated picture of the isospin asymmetric homogeneous matter becomes similar
to the well understood one of a slowly rotating bulk instanton, and the problem of finding the
symmetry energy becomes the computation of a moment of inertia.

It is also built-in in this formalism what the smallest value of the isospin is. Identifying
this smallest unit of isospin with that of a single quark being flipped from down to up fixes the
isospin quantum number without Nc-scaling ambiguities.

On top of this simplification, our alternative technique also helps in identifying the solution
to the problem of the ambiguity of the Chern-Simons term when dealing with homogeneous
nuclear matter. As pointed out in Ref. [58], boundary terms arising from the Chern-Simons
term can contribute with an IR effective action because of the discontinuity of H(z). In this
case, different choices for the Chern-Simons action that differ by a boundary term are not
physically equivalent (as opposed to the case of a smooth instanton), as they enforce different
IR boundary conditions on the flavor fields, with the consistent case giving rise to the boundary
conditions (39).

A way of solving the ambiguity is to require that the holographic currents on the boundary
match with their sources in the bulk: in Ref. [58] this was done for the baryonic density ρ
(requiring that the topological charge matches with the baryonic current in the tail of ba0) and
for the isospin density ρI (requiring that the angular velocity description matches with the
isospin chemical potential one).

This kind of problem arises in every holographic model containing a Chern-Simons term
in the action, hence this result obtained with the aid of the new quantization technique is
very generalizable and will prove useful in identifying the correct Chern-Simons action for
future works exploring isospin asymmetry in holographic models. The correct choice of the
action is crucial to obtain the correct thermodynamic quantities, so an improvement in this
regard directly translates to a more precise equation of state, and more reliable predictions for
properties of neutron stars.

4 Symmetry energy

The terms quadratic in χ exactly produce the SE upon Hamiltonian quantization:

H =
1
2

VΛχ ·χ + V U

= 2VΛȧ2
m + V U

=
π2

m

8VΛ
+ V U

=
I(I + 1)

2VΛ
+ V U , (41)

where canonical quantization of am, m = 0, 1,2, 3, a coordinate on the 3-sphere (a2
m = 1),

leads to the momentum conjugate

πm =
∂ H
∂ ȧm

= 4VΛȧm , (42)
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and hence to π2
m = ℓ(ℓ + 2) being the spherical harmonics and ℓ = 2I , with I the isospin

quantum number [46].6 The identification of Vχ2 and I(I + 1)/V coming from Hamiltonian
quantization is also justified by the holographic dictionary, since it can be obtained by com-
puting the third component of the isovector charge density, see Appendix B for a detailed
computation. The functionals Λ and U are defined as

Λ= 2κ

∫

dz
�

2hH2(2G + 1)2 + k((L′)2 + 4(G′)2)
�

,

U = κ

∫

dz
�

3hH4 + 3k(H ′)2 + k(ba′0)
2
�

,

(43)

where V denotes the spatial 3-volume. Using now the relation between isospin and the number
of protons and neutrons:

2I = Z − N = −βA , (44)

with Z the proton number and N the neutron number, as well as the atomic number

A= Z + N = Vρ , (45)

being the product of the 3-volume and the baryonic density. β is defined as the normalized
difference between the number of neutrons and protons, β = (N − Z)/A, hence we have

H
A
=

U
ρ
+ S(ρ)β2 +O(V−1) , (46)

S(ρ) =
ρ

8Λ
, (47)

where S(ρ) is the symmetry energy as a function of the density.
Using the standard phenomenological fit for the WSS model of Ref. [19], we set λ= 16.63

and find the first SE expansion parameters as

S0 = 74.9
�

MKK

949MeV

�

MeV ,

L = 113.3
�

MKK

949MeV

�

MeV , (48)

Ksym = −35.9
�

MKK

949MeV

�

MeV ,

which are somewhat larger than values typically obtained from phenomenological models
[1], but much smaller than obtained in the WSS previously [35]. For the HW model, we fix
M5 =

Nc
12π2 using the leading OPE coefficient of the vector current correlator [30], for which

the first few SE expansion parameters are

S0 = 70.4

�

L−1

150MeV

�

MeV ,

L = 132.5

�

L−1

150 MeV

�

MeV , (49)

Ksym = −218.8

�

L−1

150MeV

�

MeV ,

6Due to the simplicity of the homogeneous Ansatz, the isospin quantum number is identical to the spin quantum
number in magnitude; this is an artifact of the Ansatz, but it does not increase the kinetic energy. In particular,
for reading off the coefficient of the symmetry energy at β = 0, this artifact of the approximation of using the
homogeneous Ansatz is irrelevant.
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Figure 1: The symmetry energy (SE) calculated in the WSS model with the phe-
nomenological value of the ’t Hooft coupling and in the HW model, both using quan-
tization of isospin as functions of the density. a) The red area corresponds to the WSS
model with MKK ranging from 300 MeV to 1200 MeV and the red line in the middle
is at 949MeV. The green area corresponds to the HW model with L−1 ranging from
110 MeV to 320 MeV and the green line in the middle is at 150 MeV. The constraints
from the PREX-II experiment using the neutron skin thickness of 208Pb [6] are shown
with a gray shaded area, while the extensive 2021 survey of constraints on the sym-
metry energy of Li et.al. [4] using neutron stars, are shown with a cyan shaded area.
Constraints from isobaric analog states below saturation density are shown with a
purple shaded area [2]. b) The SE calculated in the WSS model with the ’t Hooft
coupling λ = 60. The red shaded area corresponds to MKK ∈ [390, 949]MeV and
the red solid curve is the rescaled phenomenological mass scale, that keeps the pion
decay constant at 93MeV, corresponding to MKK = 500 MeV.

where L−1 is the mass scale of the HW model, which we set as L−1 = 150MeV following
Ref. [37], which provides phenomenologically good results for neutron stars in terms of mass-
radius data. The saturation density, ρ0, in HQCD is defined to be at the onset of baryonic
matter, obtained by minimization of the free energy with the baryonic chemical potential as
the boundary condition ba0(zUV) = µB. The value of ρ0 obtained this way in the WSS model
with λ= 16.63 is

ρ0 = 0.436
�

MKK

949MeV

�3

fm−3 , (50)

which is about 2.9 times too large with respect to the phenomenological value – an over-
estimate by the same order of magnitude as the other baryonic quantities. The HW model,
however, yields a more realistic saturation density

ρ0 = 0.183

�

L−1

150MeV

�3

fm−3 , (51)

which is only about 22% too large.
We explore a larger range of densities for both the WSS and the HW model in Fig. 1a).

For the WSS model, we have used the phenomenological value of the ’t Hooft coupling
(λ = 16.63) and shown the range of MKK ∈ [300, 1200]MeV with a red shaded area, which
includes MKK = 949MeV [19] (red solid line), whereas for the HW model the range of
L−1 ∈ [110, 320]MeV is shown with a green shaded area, which includes L−1 = 150MeV
(green solid line) that is chosen from neutron star phenomenology [37] and the highest mass
scale is from meson physics [31,59]. Up-to-date constraints from astrophysics and heavy-ion
collision data are shown with gray and cyan shaded areas near and above saturation density
and constraints using nuclear excitation energies from isobaric analog states (IAS) are shown
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with a purple shaded area below saturation density. As can be seen from the figure, the phe-
nomenologically fitted value of the mass scale MKK at 949 MeV [38] overestimates the SE with
about a factor of 2.4; however, the fit is made using mesonic observables and is known to
overestimate baryonic observables; for instance, the baryon mass is typically overestimated by
a factor of 1.7-1.8 [38,60,61] using the mesonic fit.

Although both models come in the ball park of the experimental constraints above satu-
ration density and nuclear physics predictions below saturation density if we allow ourselves
to adjust the energy scale (MKK or L−1), the shape of the SE does not quite satisfy all the
constraints. In the WSS model, however, we can dial the ’t Hooft coupling to see whether we
can fit in the allowed regions and indeed it is possible by raising both the ’t Hooft coupling
from the phenomenological value to λ = 60, as well as lowering the KK scale from 949 MeV
to 390MeV, see Fig. 1b); this corresponds to the lower black curve of the red shaded area.
With the larger ’t Hooft coupling, the SE of the WSS has a compatible shape to pass all the
constraints, but the ρ meson is too light and the baryon mass is too heavy – often a problem
in HQCD; the baryon mass is reduced from about 1600MeV to 1191 MeV. If we keep the pion
decay constant at its phenomenological value, the KK scale, however, is lowered too and is
shown in Fig. 1b) with a solid red curve – not too far from a viable solution. Recomputing the
symmetry energy expansion parameters, we obtain

S0 = 33.1
�

MKK

390MeV

�

MeV ,

L = 66.4
�

MKK

390MeV

�

MeV , (52)

Ksym = −34.3
�

MKK

390MeV

�

MeV ,

which are compatible with phenomenological constraints. The saturation density for this fit
now also has improved as

ρ0 = 0.166
�

MKK

390MeV

�3

fm−3 , (53)

which is only about 10% from the phenomenological value. Lowering the KK scale from 390
to 380 MeV will improve both S0 and ρ0 (S0 = 32.2 MeV and ρ0 = 0.153 fm−3), but will
create a bit more tension with the constraint coming from the neutron skin thickness of 208Pb,
shown with a gray-shaded area in Fig. 1b). A similar choice of fit is employed in Ref. [62],
where we choose MKK and λ in order to reproduce the correct saturation density and SE.
The resulting equation of state (hybridized with phenomenological low-density EOSs) then is
found to reproduce viable properties of neutron stars.

It is not surprising that a somewhat larger value of λ is needed in order to more reliably
reproduce the physics of baryonic matter. We can understand it by considering the single
baryon in the WSS model: with the BPST instanton approximation it is possible to compute
both the classical mass and its quantum corrections [38]. In particular, since we are interested
in the symmetry energy, we want to consider the (iso)spin quantum correction, given by integer
values of l in the formula [38]

M = 8π2κ+

√

√(l + 1)2

6
+

2
15

N2
c +

2(nρ + nZ + 1)
p

6
, (54)

where nρ, nZ are quantum numbers for the size and bulk position excitations.
It is well known that the usual mesonic fit with MKK = 949 MeV, λ= 16.63 largely overes-

timates the nucleon masses, but a major contribution in this result comes from the fact that the
quantum corrections are close in magnitude to the classical mass. We can see that the classical
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Figure 2: The symmetry energy (SE) calculated in the WSS model using quantization
of isospin as a function of the ’t Hooft coupling λ at saturation density. The red area
spans the mass scale MKK from 300MeV to 1200 MeV and the red line is at 949 MeV.
The gray, cyan and purple shaded areas are the same as in Fig. 1. The vertical gray
line marks the phenomenological ’t Hooft coupling λ= 16.63 [19].

mass is of order O(λ), while the quantum corrections are of order O(1). By increasing λ it is
then possible to reduce the relative magnitude of the quantum corrections as compared to the
classical result, and by reducing MKK it is possible to obtain an overall more realistic nucleon
mass.

The same kind of mechanism is inherited by the homogeneous system, where increasing
λ, the symmetry energy contribution becomes smaller, moving towards the real world value,
provided that we also adjust MKK accordingly. While it is fairly easy to expect that some values
of λ, MKK exist that both fit the phenomenology of saturation density and symmetry energy, it is
less trivial that once these values are employed, other baryonic observables are then improved,
as it happens in our case with the BPST instanton mass and with the expansion parameters
L, Ksym.

What this analysis suggests is that when describing baryons within the WSS model, the
errors introduced by the many approximations employed to make the system approachable
seems to be partially mitigated by an alternative choice of the values of the parameters λ, MKK.

The dependence on the ’t Hooft coupling for the WSS model is shown in Fig. 2 for the KK
scale in the interval 300-1200MeV at saturation density.

5 Proton fraction

We will now consider the proton fraction at β-equilibrium with charged leptons, imposing
charge neutrality. Using the Gell-Mann-Nishijima formula, we can relate the baryon density,
ρ, and isospin density, ρI , with the proton/neutron densities:

ρP,N =
1
2ρ ±ρI , (55)

where the upper sign is for protons and the lower for neutrons. Charge neutrality is imposed
by

1
2ρ +ρI =
∑

ℓρℓ , (56)

with ℓ = e,µ being a sum over the charged leptons and the β-equilibrium (from the decay
N → P + ℓ+ ν̄ℓ) amounts to

µℓ = µN −µP = −µI , ℓ= e,µ , (57)
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Figure 3: The proton fraction calculated in the WSS and HW model as functions
of the density. The red shaded area corresponds to the WSS model with the phe-
nomenological ’t Hooft coupling λ = 16.63 and MKK ∈ [300,1200]MeV, the red
line at MKK = 949 MeV and the red dashed line at MKK → 0. The green shaded
area corresponds to the HW model with L−1 ∈ [110,320]MeV, the green line at
L−1 = 150 MeV and the green dashed line is the limit L−1→ 0. The magenta shaded
area corresponds to the WSS model with the calibration of Fig. 1b), i.e. λ = 60 and
MKK ∈ [390, 949]MeV, the solid magenta curve corresponds to the phenomenolog-
ical pion decay constant, and the dashed magenta curve corresponds to MKK → 0,
thus eliminating the muons. The gray shaded area is the result from chiral EFT [63].

where µX is the chemical potential of the particle species X . The lepton density is calculated
assuming it to be a (massive) Fermi gas as [35]

ρℓ = ΘH(µℓ −mℓ)
(µ2
ℓ
−m2

ℓ
)

3
2

3π2
, (58)

with ΘH being the Heaviside step function, µℓ the chemical potential and mℓ being the mass
of the lepton ℓ. Using the definition of the isospin chemical potential as being the conjugate
variable of the isospin density, we get

µI =
1
V
∂ H
∂ ρI

=
ρI

Λ(ρ)
. (59)

Inserting Eq. (58) into the charge neutrality condition (56) and using the β-equilibrium con-
dition (57), we obtain an implicit solution for the isospin density, ρI , as a function of the
density ρ:

ρ3
I

3π2Λ3

�

ΘH(−ρI) + (1− R−2m2
µ)

3
2ΘH(−R−mµ)
�

+ρI +
1
2
ρ = 0 , R=

ρI

Λ
, (60)

where we have set the electron mass to zero and the dimensionless muon mass parameter is
the ratio of the physical mass (105.7MeV) to the mass scale MKK and L−1, for the WSS and
the HW models, respectively.

In Fig. 3 we show the numerical results for both the WSS and the HW model for the
proton fraction at various densities around saturation density. We find that the WSS model
phenomenologically fitted to mesons gives more realistic proton fractions (red shaded area)
than the HW model (green shaded area) and yields even better proton fractions below satura-
tion density if we use the calibration from Fig. 1b), i.e. λ= 60 and MKK = 390MeV. Since we
take the electrons to be massless, the mass scale of the model only enters in the muon mass
parameter. The dashed curves correspond to the muon being infinitely heavy (or the mass
scale of the model being sent to zero).
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6 Discussion and outlook

In this paper, we have computed the symmetry energy in two holographic QCD models using
the method of quantizing the isospin symmetry, namely in the top-down WSS model and the
bottom-up HW model. We find fairly good agreement between our model results for the SE
and proton fraction in both the HW model, using the fit from neutron stars and in the WSS
model with a new calibration (i.e. λ∼ 60 and MKK ∼ 390MeV).

We have also shown that the method known from Skyrmions of quantizing the isospin
zeromode is equivalent to introducing a chemical potential on the holographic boundary for
the gauge fields, see Appendix A. There is mathematically no difference between the two
methods.

It would be interesting in future work to take into account the strange quark (3 instead
of 2 flavors) or alternatively the kaons, to see at what densities it might have an impact on
the SE. Furthermore, there are certain transitions that happen at larger densities, for example
the Skyrmion-half-Skyrmion transition [64], which has an analog in holographic instantons
[65]. Although it is not directly observable in our homogeneous Ansatz, it may have some
effect on the SE and proton fractions at large densities. Another approximation we employed
in our calculations is that of keeping fixed the position of the discontinuity that sources the
baryonic charge. It is expected that the location of the baryon is dynamically determined,
moving towards the boundary as the density is increased: this behavior is the (homogeneous
version of) the so-called “popcorn transition” that is known to occur in HQCD [66]. However,
as shown in Ref. [37], the homogeneous Ansatz already reproduces features of the popcorn
transition even when keeping the position of the discontinuity fixed in the bulk: it does so by
having the baryonic holographic density form a peak at a location in the bulk that depends on
the boundary density ρ. Because of this, we expect corrections coming from the dynamical
determination of the discontinuity location to be particularly small.
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A Equivalence between rotation in SU(2) and external isospin
chemical potential

We start with our field configuration given by Eq. (32), of which we rewrite the non-Abelian
components:

A0 = Gaχ ·τa−1 , (A.1)

Ai = −
H
2

aτia−1 , (A.2)

Az = 0 . (A.3)
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We now perform a gauge transformation, with the aim of obtaining a static configuration in
the limit of constant χ: we choose a gauge function b(t) that only depends on time, so that
the fields transform as

A0→ eA0 = Gbaχ ·τa−1 b−1 − ib∂0 b−1 , (A.4)

Ai → eAi = −
H
2

baτia−1 b−1 , (A.5)

Az → eAz = 0 . (A.6)

Now we choose b = a−1, hence rotating the fields Ai back to the standard orientation, while
modifying the field A0 with an additional term:

eA0 = Gχ ·τ− ia−1ȧ , (A.7)

eAi = −
H
2
τi , (A.8)

eAz = 0 . (A.9)

We recognize the quantity of Eq. (24) in the last term of Eq. (A.7):

−ia−1ȧ =
1
2
χ ·τ , (A.10)

so that we are left with
eA0 =
�

G +
1
2

�

χ ·τ . (A.11)

We know that by construction the function G(z) vanishes at the boundary at zUV, so we con-
clude that this configuration behaves as:

eA0(z→ zUV) =
1
2
χ ·τ . (A.12)

The boundary value of the field A0 is dual to an isospin chemical potential in the holographic
dictionary. Since the orientation of the soliton is a zeromode, we can set χ to point in a chosen
direction for simplicity without loss of generality: we choose it to have only a nonvanishing
third component as χ = (0,0,µI), following the same convention of choosing the third compo-
nent of isospin as the operator to diagonalize simultaneously with the isospin squared (and the
isospin chemical potential to appear holographically as the boundary value of Aa=3

0 ). Shifting
G(z) as

eG(z) =
�

G(z) +
1
2

�

, (A.13)

we obtain the familiar expressions for the gauge field and its boundary condition

eA0 = eGτ
3µI , eA0(z→ zUV) =

1
2
µIτ

3 . (A.14)

We then conclude that a static system in the presence of an external isospin chemical poten-
tial µI is equivalently described as it rotating in isospin space with angular velocity χ i = µIδ

i3,
as observed in Ref. [67] in the non-holographic context of the Skyrme model.

We want to emphasize that, despite our solution to the system of coupled equations of
motion is performed in the limit of small angular velocity (small µI), the equivalence between
the two methods just shown holds true in general, since we made no assumptions on the χ
dependence of the functions H, ba0, G, L. The assumption of small χ will not affect in any way
the calculation of the symmetry energy, as it is the coefficient of a term of an expansion around
symmetric matter, hence all the functions would have to be evaluated at vanishing isospin
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density (and µI) anyway. For calculations at higher isospin chemical potential, the equivalence
still holds, but since the now large angular velocity χ backreacts every field, this framework
loses its main advantage of factorizing away the dependence on χ . Moreover, the isospin
symmetric Ansatz is not consistent anymore, and the function H(z) has to be substituted with
a set of functions Hi(z) [55]:

Ai = −
H
2
τi ⇒ Ai = −

Hi

2
τi , (A.15)

where i is not summed over. Then the problem to be solved is that of five (H1(z) = H2(z)
because of residual symmetry) coupled ODEs, with χ dependence in each of them, effectively
the same as we would have if we worked with a boundary chemical potential µI .

Despite this not being a necessity for the calculation of the symmetry energy (since by defi-
nition it is calculated at vanishingµI), when moving to finite isospin density (for example when
computing the full phase diagram or properties of neutron stars) the more rigorous approach
would be to include the effects above (and possibly non-diagonal terms for Aa

i when including
also quark masses, see Ref. [55] for the validity limits of the diagonal approximation), which
is equally difficult with both gauge choices.

B Isospin density from holographic current

In this section we want to prove that the isospin number density that we defined from the
quantized angular momentum coincides with the canonical one obtained through the holo-
graphic dictionary via the computation of the isovectorial current. For simplicity, we will show
the proof in the WSS model, so that zIR = 0, zUV = +∞, but it holds true in the HW model too,
after substitution of the appropriate quantities. As shown in Ref. [39], the vectorial current is
obtained as

JVµ = −κ
�

k(z)Fµz

�+∞
−∞ = −2κ
�

k(z)Fµz

�+∞
0 . (B.1)

With this quantity we can build the isovectorial charge QV of which we take the third compo-
nent to coincide with the isospin operator

Qa=3
V = I3 =

∫

d3 x Tr
�

J0
Vτ

3
�

= V Tr
�

J0
Vτ

3
�

. (B.2)

We plug in this formula the homogeneous Ansatz (32):

I3 = −2κV
�

G′k(z)
�+∞

0 χ i Tr
�

aτia−1τ3
�

(B.3)

= −2κV
�

G′k(z)
�

z=+∞χ
i Tr
�

aτia−1τ3
�

, (B.4)

where we used the fact that G′(0) = 0.
The angular velocity χ i is related to the angular momentum operator J i by the familiar

relation involving the moment of inertia Λ:

χ i =
1

VΛ
J i , (B.5)

and we can exploit the useful relationship between angular momentum and isospin operators
that holds due to the spherical symmetry of the system:

J i Tr
�

aτia−1τa
�

= −2Ia , (B.6)

so that we are left with:
I3 =

4κ
Λ

�

G′k(z)
�

z=+∞ I3 . (B.7)
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We see that the validity of this relationship depends on whether the following identification
holds true:

4κ
�

G′k(z)
�

z=+∞ = Λ . (B.8)

To prove this relationship, we first notice that the formula for the current is obtained by
differentiating the action with respect to the UV boundary value of the A0 field, following

δA0
S = (e.o.m. terms)+ 4κV Tr

�

k(z)A′0δA0

�

z=+∞ , (B.9)

where the first term means that we neglect contributions that vanish by the equations of
motion, we evaluate only boundary terms, and we made use of the boundary condition
A′0(z = 0) = 0. We decide to employ the gauge in which the field A0 has a finite bound-
ary value, dual to the isospin chemical potential, so we take the field to be as in Eq. (A.14).
With this configuration, the variation of the action assumes the shape

δA0
S = (e.o.m. terms)+ 2κV Tr

�

k(z)eG′τ3τ3
�

z=+∞µIδµI , (B.10)

and finally we can compute the derivative

∂ S
∂ µI

= 4κV
�

k(z)eG′
�

z=+∞µI . (B.11)

We can change this result to our usual “rotating” gauge by noting that we have to rename
µI → χ3, and that eG′ = G′, so that on-shell we obtain

∂ S
∂ χ3

= 4κV
�

k(z)G′
�

z=+∞χ3 . (B.12)

We now look at the definition of Λ: it is nothing but the part of the energy density that is
quadratic in the angular velocity, and there is no linear term. In this picture, the system is
rotating and there is no chemical potential, so the on-shell action gives the energy of the
system, so that we can write

∂ S
∂ χ3

= VΛχ3 . (B.13)

Comparing Eqs. (B.11) and (B.13), we finally prove Eq. (B.8).

C The subleading order in Nc of the chiral anomaly

Throughout the main body of this work, we have ignored the presence of the chiral anomaly
of QCD: we expect on general grounds that the currents dual to the holographic fields Aα are
conserved, with the exception of the axial U(1) current, since the corresponding symmetry is
broken by the chiral anomaly. Analogously, we expect the Goldstone boson associated to the
axial symmetry to acquire a finite mass as a consequence of the anomaly.

This holds true in the WSS model, where the mechanism is incorporated nontrivially from
the top-down construction in string theory. The model includes Ramond-Ramond forms Cn of
odd rank n: Among these is C7, whose action, inclusive of a coupling with the flavor branes,
reads

SC7
= −

1
4π
(2πℓs)

6

∫

dC7 ∧ ⋆dC7 +
1

2π

∫

C7 ∧ TrF ∧ωy , (C.1)

where a one-form ωy = δ(y)dy has been introduced to model the distribution of the stack of
branes in the y-direction (by definition transverse to z), extending the otherwise 9-dimensional
integral to the whole 10-dimensional spacetime.
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We can write the equation of motion as

d ⋆ dC7 = d ⋆ F8 =
1

(2πℓs)6
TrF ∧δ(y)dy , (C.2)

and then use Hodge duality ⋆F8 = (2πℓs)−6
eF2 to turn Eq. (C.2) into an anomalous Bianchi

identity:
deF2 = TrF ∧δ(y)dy . (C.3)

This form is gauge invariant if we allow C1 to transform with a U(1) transformation of the
flavor group:

δΛdC1 =

√

√N f

2
dΛ∧δ(y)dy , δΛbA= −dΛ . (C.4)

The implication of this fact is that dC1 is not a gauge invariant form, only eF2 is the correct
gauge invariant combination.

This is welcome, since in the model C1 is dual to the θ angle of QCD as

θ + 2πk =

∫

S4
UV

C1 . (C.5)

Let us now consider a zeromode for the field bAz , dual to the η′ meson, such that
∫

dzbAz =
2η′(x)

fπ
, (C.6)

and plug it into the action

S
eF2
= −

1
4π(2πℓs)6

∫

d10 x |eF2|2 . (C.7)

The result is an action that displays a mass term for the η′:

S
eF2
= −
χg

2

∫

d4 x

�

θ +

Æ

2N f

fπ
η′

�2

, (C.8)

with the η′ mass agreeing with the Witten-Veneziano formula

m2
η′ =

2N f

f 2
π

χg . (C.9)

The topological susceptibility χg and the pion decay constant are computed in the model (see
Ref. [18]):

χg =
λ3M4

KK

4(3π)6
, fπ = 2
s

κ

π
. (C.10)

We now recall that the parameter κ was defined to be κ ≡ λNc
216π3 : this means that the mass

term for the η′ meson is of order N−1
c (since f 2

π ∝O(Nc)), while the action for the flavor fields
that we employed in the main body of this work is of order Nc . While true that the angular
velocity χi itself is of order N−1

c , hence pushing the isospin asymmetric action (proportional
to χ2) to be of order N−1

c , we have to recall that eventual isospin asymmetric terms will carry
factors of N−1

c or higher also in the η′ mass term, pushing it to even higher order in the N−1
c

expansion. Hence it is formally safe to neglect the contribution from the axial anomaly in the
large-Nc scheme of approximation.
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D The vanishing of the hard-wall tachyon in the baryonic phase

Let us quickly review the setup of the hard-wall model of Ref. [37] that utilizes a scalar field
with an IR potential to dynamically stabilize it. The metric is given by

ds2 =
L2

z2

�

dxµdxµ − dz2
�

, (D.1)

where L := 1 is the curvature scale of AdS5 and set equal to one. Upon restoring units, energies
are multiplied by a physical scale.

For two flavors, we have left and right U(2) gauge fields, LM , RM and the minimal action
[37]:

S = Sg + SCS+ SΦ + SIR , (D.2)

Sg = −
M5

2

∫

d4 xdz a(z)Tr
�

LMNLMN +RMNRMN
�

, (D.3)

SCS =
Nc

16π2

∫

d4 xdz
1
4
εMNOPQ
�

bLM

�

Tr(LNO LPQ +
1
6
bLNObLPQ

�

− bRM

�

Tr(RNORPQ +
1
6
bRNObRPQ

��

, (D.4)

SΦ = M5

∫

d4 xdz a3(z)
�

Tr(DMΦ)
†(DMΦ)− a2(z)M2

Φ TrΦ†Φ
�

, (D.5)

SIR =
1
2

m2
bξ

2 −λbξ
4 , (D.6)

where a(z) = L/z, the U(2) gauge field LM is split into SU(2) and U(1) parts as

LM = La
M
τa

2
+ bLM

12

2
, (D.7)

and similarly for RM , the field strength for LM is

LMN = ∂MLN − ∂NLM + i[LM ,LN ] , (D.8)

and similarly for RMN , the covariant derivative for the scalar field is defined as

DMΦ= ∂MΦ+ iLMΦ− iΦRM , (D.9)

the boundary condition for the scalar field is

Φ(zIR) = ξ12 , (D.10)

which is stabilized by the boundary potential as the minimization of the vacuum solution and
is given by

ξ2 = ξ2
0 =

m2
b − 12M5/L

4λb
, (D.11)

the mass of the scalar is M2
ΦL

2 = −3, the would-be quark mass in the model is switched off,
the indices M , N = 0, 1,2, 3, z run over all AdS5, and finally Nc is the number of colors and
M5 is a coupling of the theory (playing the role of κ in the WSS model), which we have set as
M5L= Nc/(12π2) [37].

Chiral symmetry breaking is done in Ref. [37] following [68, 69] as (Lzµ + Rzµ)z=zIR
= 0,

and hence we choose Lz = Rz = 0 (gauge choice), Li = −Ri , bL0 = bR0 and Φ diagonal, which
means that the scalar field only couples to Li = −Ri via the covariant derivative

D0Φ= 0 , DiΦ= ∂iΦ+ 2iLiΦ , DzΦ= ∂zΦ . (D.12)
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(a) (b)

Figure 4: The action evaluated as a surface for densities ρ and scalar field with coef-
ficient ξ at (a) (for (b) twice) the chemical potential that corresponds to saturation
density. In this figure, the IR potential is chosen as mb = 0.657 and λb = 0.001,
giving λbξ

4
0 = 1.024.

Employing the homogeneous Ansatz

Li = −Ri = −H(z)
τi

2
, bL0 = bR0 = ba0(z) , Φ=ω0(z)

12

2
, (D.13)

and the coordinates zUV = 0, zIR = L = 1, we can write down the vacuum solution

Φ= ξz312 , (D.14)

which holds when H = 0 that corresponds to ρ = 0 – the vanishing baryonic density and
ξ= ξ0 of Eq. (D.11). Once the IR potential has been fixed by choosing the two parameters mb
and λb that correspond to a certain ξ0, the impact of the scalar is just to define the vacuum
value of the action in the mesonic phase of the theory. It can readily by computed to be

S = −λbξ
4
0 . (D.15)

The boundary conditions for the fields H(z) and ba0(z) are

H(0) = 0 , H(1) = −(4π2ρ)
1
3 , (D.16)

ba0(0) = µ , ba′0(1) = 0 , (D.17)

with µ being the (baryonic) chemical potential.
In the phase ρ > 0, the vacuum of the theory is still given by H = ba0 = 0 and Φ given

by the vacuum solution (D.14) until the baryonic onset, which corresponds to the nuclear
saturation density. At the onset, there are two vacua: a mesonic and baryonic one each with
the same value of the action (by definition), see Fig. 4(a). Once ρ > ρcrit one may ask at
what configuration the scalar field stabilizes at. It turns out by numerical computations that
the scalar turns off, which corresponds to ξ = 0 in the baryonic phase, see Fig. 4(b). This
corresponds to Φ = 0 and when studying only the baryonic phase, the impact of the scalar is
to set the saturation density of this simplistic hard-wall model.

E Comparison with large-λ approximation

In the large-λ limit, one may consider ignoring the inclusion of the Abelian field L (in Eq. (32)),
which however is not a consistent choice for finite values of λ, as the equation of motion for
L is not satisfied by L = 0 (it is sourced by H and G, see Eq. (38)).
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L = 0
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Figure 5: The symmetry energy calculated as function of λ at saturation density in
the WSS model with L taken into account (green solid line) and without L (i.e. L = 0
in the Ansatz) (red solid line). In this figure, we have used MKK = 949 MeV.

This approximation can be seen as consistent in the large-λ limit by considering that the
field L is only sourced by the Chern-Simons, which is indeed subleading in λ with respect to
the Yang-Mills terms. One may be led to believe that the same is true for the field G, and that
they have to appear at the same order in λ, but a closer look at its equation of motion (37)
shows that a source is present already in the Yang-Mills terms, coming from the time derivative
of the field Ai (in our time-dependent gauge, while the same contribution arises from the UV
boundary condition of eG in the static gauge).

Neglecting the Abelian field L was one of the approximations made in Ref. [35] in addi-
tion to choosing a different Nc-scaling of the isospin chemical potential (essentially defining
the large-Nc baryon’s proton and neutron by maximally flipping the down and up quarks, as
opposed to our definition where only one quark is flipped from down to up). In order to see
quantitatively how good the approximation of using L = 0 in the homogeneous Ansatz is,
we perform the numerical calculation corresponding to Fig. 2 with and without L taken into
account, see Fig. 5. From the figure, we can see that the large-λ approximation works in the
sense that the two results asymptote to the same curve for λ ≳ 200. At λ = 16.63 and for
MKK = 949 MeV the correct computation including L yields a symmetry energy of 74.9 MeV
compared to 109.1MeV when neglecting L in the Ansatz, which at the meson-fitted value of λ
gives an excess in the symmetry energy of 46%. The smaller λ is the worse it gets, as expected
from a large-λ approximation.
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