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Abstract

Unitarity of time evolution is one of the basic principles constraining physical processes.
Its consequences in the perturbative Bunch-Davies wavefunction in cosmology have been
formulated in terms of the cosmological optical theorem. In this paper, we re-analyse
perturbative unitarity for the Bunch-Davies wavefunction, focusing on: i) the role of
the iε-prescription and its compatibility with the requirement of unitarity; i i) the ori-
gin of the different “cutting rules”; i i i) the emergence of the flat-space optical theorem
from the cosmological one. We take the combinatorial point of view of the cosmological
polytopes, which provide a first-principle description for a large class of scalar graphs
contributing to the wavefunctional. The requirement of the positivity of the geometry
together with the preservation of its orientation determine the iε-prescription. In kine-
matic space it translates into giving a small negative imaginary part to all the energies,
making the wavefunction coefficients well-defined for any value of their real part along
the real axis. Unitarity is instead encoded into a non-convex part of the cosmological
polytope, which we name optical polytope. The cosmological optical theorem emerges
as the equivalence between a specific polytope subdivision of the optical polytope and
its triangulations, each of which provides different cutting rules. The flat-space optical
theorem instead emerges from the non-convexity of the optical polytope. On the more
mathematical side, we provide two definitions of this non-convex geometry, none of them
based on the idea of the non-convex geometry as a union of convex ones.
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1 Introduction

Our understanding of physical phenomena relies on the fundamental principles of locality
of the interactions as well as causality and unitarity of time evolution. In particle physics,
they fix all the possible three-particle couplings [1,2], the consistent interacting theories with
a finite number of particles [1–5], charge conservation and the equivalence principle [1, 6]
among other fundamental results. All these theorems manifest themselves as consequences
of constraints on the structure of the S-matrix elements: locality fixes both the source of the
singularities and their type [7]; unitarity is reflected into the factorisation properties as well
as the positivity of their coefficients [8–10]; finally, causality is the principle whose imprint
is probably the least understood, but yet it reflects itself in their analytic structure [11] and,
in particular, in terms of the Steinmann relations which require that double discontinuities in
partially overlapping channels vanish in the physical region [12–20].

That level of understanding is not yet available in expanding universes, and just recently
we have begun to get insights on how these fundamental principles are encoded into cosmo-
logical processes. In this context, the relevant observable is the wavefunction of the universe,1

whose squared modulus provides the probability distribution of field configurations at the
late-time boundary that allows to compute any type of correlation of operators built out of
such fields. Considering states with a flat-space counterpart, the perturbative wavefunction
turns out to reduce to (the high energy limit of) the flat-space scattering amplitude as the
sheet in kinematic space identified by the vanishing locus Etot :=

∑n
j=1 |p⃗ j| is approached, p⃗ j

being the momentum of the external j-th state [21–23].2 Also, there are other vanishing loci
Eg :=

∑

s∈Vg
|p⃗s|+

∑

e∈Eext
g
|p⃗e|, involving the total energy of a subprocess, where the perturba-

tive wavefunction factorises into a lower-point scattering amplitude and a linear combination
of the same lower-point wavefunction computed for negative and positive energy of the inter-
nal state [24, 25] – see Figure 1. Despite these properties have been used to reconstruct the
wavefunction in a graph-by-graph fashion [25,26] and to recover some known theorems [25],
their origins in terms of fundamental principles still remain obscure. This is also the case for
the recently proven Steinmann-like relations [27], whose potential connection to causality
has not been demonstrated yet. Only recently, inspired by [28, 29], a non-relativistic notion
of causality and its relation to the analytic structure of the flat-space wavefunction has been
explored [30].

1The wavefunction of the universe can be considered as an observable in the same, loose, way as the S-matrix:
none of them are quantities which can actually be detected in an observation or measured in an experiment;
nevertheless, they share the very same physical properties, such as gauge invariance, as the actual observable; and,
they turn out to be simpler, more primitive quantities that allow to extract a great deal of physical information as
well as to compute the observables themselves.

2Importantly, notice that all the moduli |p⃗ j |, which with an abuse of language we will refer to as energies, are
positive; hence, the locus Etot = 0 can be reached only via analytic continuation outside of the physical region.
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Figure 1: Singular loci in kinematic space for the Bunch-Davies wavefunction. As the
total energy of the process or of any subprocess vanishes the Bunch-Davies wavefunc-
tion becomes singular. The singularities can be understood as the sheets in kinematic
space where the wavefunction does not vanish as the center-of-mass time of the full
process (left) and subprocess (right) are taken to early times. These loci live outside
of the physical sheet and the coefficients of the singularities respectively correspond
to the high-energy limit of the flat-space scattering amplitude for the full process
and a factorisation into the scattering amplitude for the subprocess and a lower-
point/lower-loop wavefunction associated to the complementary subprocess [31].

In recent years, the first steps have been taken towards the understanding of the im-
print of unitarity into the wavefunction and correlators, both perturbatively [32–38] and non-
perturbatively [39,40].3 For the perturbative wavefunction, a cosmological optical theorem has
been formulated [32], providing constraints on the wavefunction from the unitarity require-
ment for the evolution operator, as well as sets of cutting rules [35–38]. Such cutting rules
can be schematically written as

∆ψn := ψn(|p⃗ j|, p̂ j · p̂k) +ψ
⋆
n(−|p⃗ j|, p̂ j · p̂k) = −

∑

“cuts”

ψn , (1)

where p̂ j := p⃗ j/|p⃗ j| is the unit momentum vector for the j-th state and p̂ j · p̂k parametrise the
angles between the momenta of the j-th and k-th states.

Despite the fact that the equation (1) is reminiscent of the cutting rules for flat-space scat-
tering amplitudes, there is a very important difference: while in flat-space the cuts are directly
related to the discontinuities along the scattering amplitudes’ branch cuts, the left-hand-side
of (1) is not a discontinuity, and the cosmological cutting rules (1) represent a functional iden-
tity for the wavefunction instead. Interestingly, this important difference can be explained
with the fact that, contrarily to the flat-space scattering amplitude case, all the wavefunction
branch cuts live outside of the physical region: because of the Bunch-Davies condition, the
physical region is defined by the energies to be positive and the location of the wavefunction
singularities is identified by the vanishing of certain sums of such positive energies, which can
never occur in the physical region for non-trivial processes.

More than providing us information about the singularity structure of the wavefunction
and its physical content, as it is the case for the optical theorem for flat-space scattering am-
plitudes, the relation (1) provides a representation for the wavefunction of the universe in
terms of lower-point wavefunctions as well as an auxiliary quantity, ψ†

n(−|p⃗ j|, p̂ j · p̂k), all of
them containing folded singularities. Different representations make different features of the

3As far as locality is concerned, the so called manifestly local test has been formulated to provide constraints
on the perturbative wavefunction involving massless scalars, spin-2 state, and manifestly local interactions, i.e.
interactions that are either polynomial or have (positive) derivatives [34]. In flat-space, the notion of locality is
intimately related to the cluster decomposition principle [7]; however, it is known that massless and light states do
not satisfy such a principle in expanding universes: the wavefunction undergoes a branched diffusion process [41]
with cluster decomposition just on the separate branches, and an avatar of such a structure is given by the property
of ultrametricity [42–45].
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wavefunction manifest [46]: as old-fashioned-perturbation theory exposes both its physical
singularities and its underlying combinatorial structure [24] and the frequency representation
shows a recursive structure at tree level [24], this new representation makes unitarity man-
ifest at the expense of introducing spurious singularities. Because the r.h.s. of (1) encodes
both ψn(|p⃗ j|, p̂ j · p̂k) and ψ†

n(−|p⃗ j|, p̂ j · p̂k), which contain different types of singularities, the
cosmological cutting rules can allow to compute the perturbative wavefunction only if they
are supplemented by the additional requirement of the absence of such folded singularities.4

In addition, the r.h.s. of (1) is not unique, i.e. there exist several equivalent ways to perform
the cuts [37]. Said differently, ∆ψn can be decomposed as different but equivalent sums of
terms, all of which are interpretable as “cut” diagrams. It is therefore desirable to have an
invariant way to describe and understand the imprint of unitarity in the wavefunction.

Finally, the cosmological optical theorem in (1) understood as functional identity does not
reproduce the flat-space cutting rules on the total energy conservation sheet: the “cuts” do not
show any total energy singularity and hence the r.h.s. of (1) vanishes as the total energy is
going to zero. Another way to understand this fact is that the coefficient of the total energy
singularity in ψn(|p⃗ j|) and ψ†

n(−|p⃗ j|) is the same up to a sign and, therefore, the flat-space
limit of their sum looks trivial. As we will show, this issue is related to the subtleties in the
iε-prescription or, in other words, with the distributional interpretation of (1).

A framework that allows to address both issues is provided by the so-called cosmological
polytopes [24,26]. They are a special class of positive geometries5 defined in projective space
which has its own intrinsic definition, with no reference to neither space-time nor Hilbert
space, and provides a first-principle combinatorial definition for the wavefunction. They are
characterised by a canonical form with logarithmic singularities on, and only on, the bound-
aries of the polytopes. Such singularities are in 1 − 1 correspondence with the singularities
of the wavefunction, with the canonical form – modulo the standard measure of the pro-
jective space where the cosmological polytope lives – providing a Feynman graph G contri-
bution to the wavefunction. Such singularities are in correspondence to the vanishing loci
Etot :=

∑

j |p⃗ j| and Eg :=
∑

s∈Vg
|p⃗s|+

∑

e∈Eext
g
|p⃗e|, which identify the facets of the cosmological

polytopes. The total energy singularity identifies the scattering facet, which is a polytope living
on a codimension-one boundary of the cosmological polytope and whose canonical form re-
turns the relevant scattering amplitude. Interestingly, its vertex structure makes the flat-space
unitarity manifest, as the facets of such a polytope factorise into two lower dimensional scat-
tering facets and a simplex encoding the Lorentz invariant phase-space measure: this is the
combinatorial formulation of the cutting rules, which encode flat-space unitarity [48].

What is then the combinatorial statement for cosmological unitarity? Is it possible to un-
derstand it prescinding of the several ways in which the cuts can be performed? And how is it
related to the flat-space one?

As observed earlier, the cosmological cutting rules (1) provide a class of novel represen-
tations for the wavefunction, all of them involving the auxiliary quantity ψ†

n(−|p⃗ j|, p̂ j · p̂k).
As the wavefunction contribution ψG of a graph G is related to the canonical form of the cos-
mological polytope PG , as well as to the volume of the dual polytope ePG , any representation
for ψG can be obtained from the signed triangulations of PG and ePG: the canonical form of
ω(Y ,PG) is then given as the sum of the canonical forms of the collection of polytopes which
signed-triangulate PG , consequently providing a decomposition for the wavefunction.

The previous questions can then be reformulated by asking whether there exists the possi-
bility of canonically identifying all those triangulations of PG such that the canonical form of
one of the elements returns ψ†

G(−|p⃗ j|, p̂ j · p̂k), or equivalently, if there is an intrinsic definition
for a polytope whose canonical form encodes ∆ψG and whose triangulations return all the

4We thank Austin Joyce for discussions about this point.
5For a general discussion of positive geometries which prescinds of any physical interpretation, see [47].
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possible ways to perform the cuts of the wavefunction.
In this paper, we provide a positive answer to such a question. Surprisingly enough, the

polytopes encoding ∆ψG are non-convex. Nevertheless, they also have an intrinsic definition
and can be obtained from a related convex polytope by smoothly moving a set of its vertices
inside PG . Geometrically, the absence of a total energy singularity for the cosmological optical
theorem is reflected by the fact that the scattering facet of PG is not a facet of the optical poly-
tope OG . However, despite not being a facet, the intersection between OG and the hyperplane
W (G) defined by Etot = 0 turns out not to be empty in higher codimensions. This suggests that
the flat space optical theorem is encoded in the cosmological one, and therefore the total en-
ergy limit presents some subtlety. As we will show, the flat-space cutting rules are beautifully
encoded into the structure of OG ∩W (G).

The paper is organized as follows. In Section 2, we review the current understanding
of perturbative unitarity for cosmological processes and the associated cutting rules, comple-
menting it with an extensive discussion of the iε-prescription. We also provide novel, holomor-
phic, cutting rules. In Section 3, we switch gears by reviewing the combinatorial description
of the Bunch-Davies wavefunction in terms of cosmological polytopes, and in Section 4 we dis-
cuss how the iε-prescriptions emerge in this context along with their relation to the positivity
of the geometry. Section 5 discusses the combinatorial formulation of the cosmological optical
theorem. It turns out to be encoded into non-convex polytopes, the optical polytopes OG , con-
tained into the cosmological polytope associated to the same graph. We provide two invariant
definitions for it: one as a limit of a convex polytope, and the other as a result of compatibility
conditions. The cosmological optical theorem then arises as the equivalence between a certain
polytope subdivision of OG and the triangulations of OG . We show how the flat-space cutting
rules emerge from the cosmological ones, as a special codimension-2 boundary of OG . Section
6 is devoted to the conclusion and outlook.

Summary of results

As the paper presents some proofs which are somehow technical, we consider useful, for the
sake of clarity, to highlight here the main results, organised conceptually.

The iε-prescription. The wavefunctional of the universe shows divergences in the infinite
past, both perturbatively and non-perturbatively, and they need to be regularised. The usual
regularisation prescription deforms the contour of the time integration around infinity by a
small negative imaginary part: −∞ −→ −∞(1 − iε), ε > 0. This makes the expression
convergent for positive external energies but turns out to break unitarity. We describe a class
of iε prescriptions obtained by analytically continuing the energies to become complex with
a negative imaginary part. This prescription does not break unitarity and the wavefunctional
becomes convergent for the real part of the energies running along the full real axis, making
the analytic continuation of the energies outside the physical region well defined. We also
show that the energies associated to internal propagators have a natural iε-prescription. All
of them come naturally in the combinatorial language of the cosmological polytopes from the
requirement of positivity of the geometry and agreement with its orientation. See Sections 2
and 4.

An invariant formulation of perturbative unitarity. Perturbative unitarity manifests itself
in the cosmological optical theorem, which relates the wavefunctional to its complex conju-
gate evaluated at negative external energies. In the combinatorial language of the cosmolog-
ical polytope, this information is encoded in a non-convex part of the cosmological polytope:
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the optical polytope. We provide a characterisation for it in terms of compatibility conditions,
which translate into conditions on the multiple discontinuities. The left-hand-side of the cos-
mological optical theorem emerges as a specific polytope subdivision, via the hyperplane that
contains the scattering facet of the cosmological polytope (which is not a facet of the optical
polytope). The right-hand-side of the cosmological optical theorem, instead, is obtained as
triangulations of the optical polytope. This provides a combinatorial-geometric origin for the
plethora of “cutting rules” that can be written, going beyond the ones proposed in the original
cosmological optical theorem [32], the ones obtained exploiting the properties of the bulk-to-
bulk propagators [35,37], and the holomorphic ones formulated in Section 2 of this paper by
writing the hermitian conjugate of the transfer operator as a perturbative series in the transfer
operator itself – see Section 5.3. The optical polytope provides a description for a universal
integrand which needs to be integrated over the external energies in order to inform about
the actual wavefunction coefficients. We provide evidences of how the cutting rules obtained
from all the triangulations map once the integration is performed: the physical singularities
and zeroes appear to be mapped into physical singularities and zeroes of the integrated func-
tions, while the spurious singularities get mapped into spurious singularities. The cutting
rules assume the form (124) of the sum of products of functions of the physical singularities,
with spurious singularities appearing to make the arguments of these functions dimensionless,
and are associated to the specific triangulation. Triangulations with no spurious singularities
translate into a dependence on a scale which signals the appearance of a spurious infra-red
singularity – see Section 5.4.

The emergence of the flat-space optical theorem. We spell out how the flat-space optical
theorem emerges from the cosmological one, i.e. how the latter encodes the imaginary part of
the flat-space scattering amplitudes, and its equivalence to the flat-space cutting rules. After a
little algebra, it can be obtained via the careful implementation of the iε-prescription that we
describe in this paper. However, it is more transparently encoded into the non-convex structure
of the optical polytope, in particular in its codimension-2 intersection with the hyperplane
containing the scattering facet of the cosmological polytope. The flat-space cutting rules than
can be written in terms of the canonical form of this intersection (132) – see Section 5.5.

The mathematical side: non-convex polytopes. Non-convex polytopes are usually defined
as union of convex polytopes, and their triangulations require the use of either new vertices
or overlapping simplices [49,50]. We provide two alternative, invariant, definitions. The first
one is as a smooth limit of a convex polytope: it comes equipped with a canonical form which
is the limit of the canonical form of the convex polytope. The second definition is in terms of
compatibility conditions, which identify all the higher-codimension boundaries and hence also
its adjoint surface, which now can intersect the non-convex polytope in its interior and inside
its boundaries – see Section 5.2. To our knowledge, such definitions and characterisations are
not known in the, however not extensive, literature on non-convex polytopes.

2 Unitarity and the iε-prescription

In this section, we re-examine unitarity in cosmology and its consequences on the structure of
the Bunch-Davies wavefunction of the universe.

The wavefunction of the universe and the evolution operator. Let us begin with consid-
ering a system described by a certain time-dependent Hamiltonian Ĥ(η). Its evolution from
early times to the space-like boundary at η◦ is then described by the operator Û(η◦,−∞)

6

https://scipost.org
https://scipost.org/SciPostPhys.16.6.157


SciPost Phys. 16, 157 (2024)

which satisfies the first order differential equation

i∂η◦ Û(η◦,−∞) = Ĥ(η◦)Û(η◦,−∞) . (2)

Formally, its solution can be written as

Û(η◦,−∞) = ÒT
�

exp

�

−i

∫ η◦

−∞
dη Ĥ(η)

��

, (3)

where ÒT is the time-ordering operator. In cosmology, we are interested in the evolution of
our universe from its early stages at η −→ −∞ to the space-like boundary at the end of
inflation at η = η◦ −→ 0−. The probability distribution P[Φ] for the state 〈Φ| at such space-
like boundary is given by the squared modulus |Ψ[Φ]|2 of the wavefunctional of the universe
Ψ[Φ], which is defined as the transition amplitude between the vacuum |0〉 at early-times and
|Φ〉 at η = η◦:

Ψ[Φ] := lim
η◦−→0−

〈Φ|Û(η◦,−∞)|0〉 = lim
η◦−→0−

N

φ(η◦)=Φ
∫

φ(−∞)=0

Dφ eiS[φ] , (4)

with the second equality representing the path-integral formulation of such a transition am-
plitude, where φ collectively indicates all the modes in the system described by the action
S[φ], and N is a normalisation constant. As boundary condition at early times, we consider
the Bunch-Davies vacuum, which selects the positive energy modes in that limit.

In perturbation theory, the Hamiltonian Ĥ(η) can be split as Ĥ(η) := Ĥfree(η)+ Ĥint(η) into
its free and interaction parts. Then, (4) can be formally written as

Ψ[Φ] = Ψfree[Φ]×

(

1+
∑

n≥2

∫ n
∏

j=1

�

dd p j

(2π)d
Φ(p⃗ j)

�

∑

L≥0

ψ
′(L)
n (p⃗1, . . . , p⃗n)

)

, (5)

where Ψfree[Φ] is the wavefunction(al) for the free system, which is computed using the evolu-
tion operator Ûfree defined via the free Hamiltonian Ĥfree(η) and is given by a Gaussian in the
fields Φ(p⃗) at the boundary

Ψfree[Φ] := 〈Φ|Ûfree|0〉 = eiS(cl)
free[Φ] = exp

(

−
∫ 2
∏

j=1

�

dd p j

(2π)d
Φ(p⃗ j)

�

ψ(0)2 (p⃗1, p⃗2)

)

, (6)

while Φ(p⃗ j) := 〈Φ|p⃗ j〉, and ψ
′(L)
n (p⃗1, . . . , p⃗n) is given by the sum of all the n-point Feynman

graphs in momentum space at L-loops and its connected part, which we will indicate as
ψ(L)n (p⃗1, . . . , p⃗n), are the so-called wavefunction coefficients and have support on the total spa-
tial momentum-conserving δ-function which arises as a consequence of spatial translation
invariance at the space-like boundary. The term of (5) in curly brackets is obtained as a se-
ries expansion of the interaction part of the evolution operator Ûint, which is defined via the
interaction Hamiltonian Ĥint(η) and is required to be unitary:

ÛintÛ
†
int
= Î = Û†

int
Ûint . (7)

The choice of the Bunch-Davies vacuum implies that the modes behave as plane waves
with positive frequencies only as the past infinity is approached

φ(p⃗,η)
η−→−∞
−−−−−−→ f (η) eiEη , (8)
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where E := |p⃗| > 0 indicates the modulus of the momentum, which, with an abuse of lan-
guage, we will refer to as energy; the function f (η) is determined by the cosmology. However,
as early times are approached, η −→−∞, the infinite oscillations in (8) make the wavefunc-
tion ill-defined and an appropriate regularisation becomes necessary. The usual regularisation
prescription is to deform the contour of the time integration at early times, η −→−∞(1− iε)
with ε > 0. It indeed makes the infinitely oscillating phase (8) decay exponentially in the
infinite past and regularises the wavefunction (4). However, it has an important drawback as
the regulated evolution operator Ûint(0,−∞(1− iε)) is no longer unitary.

The iε-prescription. Let us consider the operator Û (ε)
int

defined on a generic iε-deformed
contour γε, as well as its Hermitian conjugate

Û (ε)
int

:= ÒT
¨

exp

�

−i

∫

γε

dη Ĥint(η)

�«

, Û†(ε)
int

:= ÒT
¨

exp

�

+i

∫

γ⋆ε

dη Ĥint(η)

�«

, (9)

ÒT being the anti time-ordering operator. Note that the Hermitian conjugate Û†(ε)
int

is instead
defined via the contour γ⋆ϵ. In order for Û (ε)

int
to be unitary, its Hermitian conjugate should

coincide with its inverse. This holds if and only if γ⋆ε = γε. Taking γε =] −∞(1 − iε), 0],
this condition in fact does not hold: such a choice for the deformed contour is not consistent
with unitarity. It is interesting to observe that this is a direct consequence of the lack of time-
reversal invariance of the physics in cosmology or, more generally, of any process in a space
with a space-like boundary.6 In particular, the inverse of the evolution operator integrated
over the path γε =] −∞(1 − iε), 0] coincides with the Hermitian of the evolution operator
integrated over the contour [0,+∞(1+ iε)[:

[Û (ε)
int
(0,−∞(1− iε))]−1 = [Û (ε)

int
(+∞(1+ iε), 0)]† . (12)

In order to draw any conclusion about the imprint of unitarity in the wavefunction, it
is necessary to have a regularisation of the evolution operator which preserves the unitarity
condition Û (ε)

int
Û† (ε)

int
= Î = Û† (ε)

int
Û (ε)

int
. Such a problem can be bypassed by regularising the

Hamiltonian Ĥint(η) rather than the integration contour, in such a way that the Hermiticity of
the Ĥint(η) is preserved [51]:

Û (ε)
int

:= lim
η◦−→0−

ÒT
�

exp

�

−i

∫ η◦

−∞
dη eεηĤint(η)

��

, (13)

which is manifestly unitary. However, an iε-prescription which both provides well-defined ex-
pressions and is compatible with unitarity is not unique. Requiring causality in the processes
should restrict further the space of possible iε-prescriptions.7 Despite a full-fledge discussion

6It is straightforward to understand this if we consider the operator Ûint for flat-space without fixed-time bound-
aries and regularised by deforming the integration contour at both past and future infinity

Û (ε)int (+∞,−∞) := T̂







exp



−i

+∞(1+iε)
∫

−∞(1−iε)

dη Ĥint(η)











. (10)

Its Hermitian conjugate Û†(ε)
int is then given by

Û†(ε)
int (+∞,−∞) := T̂







exp



+i

+∞(1−iε)
∫

−∞(1+iε)

dη Ĥint(η)











= T̂







exp



+i

+∞(1+iε)
∫

−∞(1−iε)

dη Ĥint(−η)











. (11)

It coincides with the inverse Û−1(ε)
int provided that the Hamiltonian is invariant under time-reversal:

Ĥint(−η) = Ĥint(η). In the cosmological case, the presence of a space-like boundary at a finite time η = 0 makes
the contour deformation ]−∞(1− iε), 0] inconsistent with unitarity.

7For a discussion of the iε-prescription for the flat-space S-matrix, see [52].
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of causality is beyond the scope of the present work, it is important to bear in mind that, among
all the possible iε-prescriptions, a subset of them is compatible with physical principles. Here
we will be concerned with the ones which are compatible with unitarity. As a final remark,
the basic requirement for the introduction of the iε-prescription at this stage is to have a well-
defined convergent expression for the wavefunction of the universe. Meanwhile, the Feynman
iε-prescription we are accustomed to for the S-matrix, despite not yet having a physical mean-
ing and being also required for having well-defined expressions in the physical region, allows
to choose the correct, causal, integration contour for the Feynman propagator. As we will see
shortly, the contour deformations which allow to have a well-defined wavefunction of the uni-
verse can be thought of as kinematic iε-prescriptions, that are obtained by simply deforming
the external kinematics. In the context of the S-matrix, there are not known arguments re-
lating this class of prescriptions to causality nor to the Feynman-iε [52]. However, a class of
unitary cosmological iε-prescriptions turn out to reduce to the Feynman-iε for the S-matrix
on the total energy conservation sheet [48].

Unitarity and the wavefunction of the universe. Let Û (ε)
int

be a deformation of Ûint which
preserves unitarity. It defines a regularisation for the contribution of the interactions to the
wavefunction of the universe:

Ψ (ε)
int
[Φ] = lim

η◦−→0−
〈Φ|Û (ε)

int
(η◦,−∞)|0〉 . (14)

For a free theory Û (ε)
int

is the identity operator 1̂. We can therefore split it into the identity and
a transfer operator, as it is customary for the S-matrix

Û (ε)
int
(0,−∞) = 1̂+ V̂ (ε)(0,−∞) , (15)

where V̂ (ε)(0,−∞) is the (regularised) transfer operator encoding the non-trivial interactions.
The unitarity of Û (ε)

int
(0,−∞) then translates into the following condition for V̂ (ε)(0,−∞):

V̂ (ε)(0,−∞) + V̂ †(ε)(0,−∞) = −V̂ †(ε)(0,−∞)V̂ (ε)(0,−∞) . (16)

In terms of the transition amplitudes from the vacuum |0〉 to some momentum state
〈[p⃗]| := 〈p⃗1 . . . p⃗n|, the unitarity condition becomes

〈[p⃗]|V̂ (ε)|0〉+ 〈[p⃗]|V̂ †(ε)|0〉 = −〈[p⃗]|V̂ †(ε)V̂ (ε)|0〉

= −
∫ �

ddq
(2π)d

1

2Re{ψ(0)2 (q⃗)}

�

〈[p⃗]|V̂ †(ε)|[q⃗]〉〈[q⃗]|V̂ (ε)|0〉 , (17)

and can be further written as

〈[p⃗]|V̂ (ε)(0,−∞)|0〉+ 〈0|V̂ (ε)(+∞, 0)|[p⃗]〉

= −
∫ �

ddq
(2π)d

1

2Re{ψ(0)2 (q⃗)}

�

〈[q⃗]|V̂ (ε)(+∞, 0)|[p⃗]〉〈[q⃗]|V̂ (ε)(0,−∞)|0〉 . (18)

The left-hand-side of (18) involves a transition amplitude 〈[p⃗]|V̂ (ε)(0,−∞)|0〉 from the vac-
uum at past infinity |0〉 to the state 〈[p⃗]| labelled by the set of momenta [p⃗] at the boundary
as well as the complex conjugate of the transition amplitude 〈0|V̂ (ε)(+∞, 0)|[p⃗]〉 from the
|[p⃗]〉 at the boundary to the vacuum 〈0| at some future infinity. The former can be related to
the wavefunction coefficient ψn([p⃗], [E]); the latter can be interpreted as the complex conju-
gate of the transition amplitude 〈[−p⃗]|V̂ (ε)(0,−∞)|0〉 from the vacuum |0〉 to the state 〈[−p⃗]|
identified by the very same momenta but with opposite direction (implying also opposite signs
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p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

+

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

= −

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

−

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

Figure 2: Cutting rules corresponding to the unitarity condition
V̂ (ε) + V̂ †(ε) = −V̂ †(ε)V̂ (ε). The quantities ψ(E) and ψ†(−E) are identified by
the graphs with black and white sites respectively. The red dashed line indicates
an external state with energy σ y̸e and each factor in each term in the rhs has to be
summed over σ = ±.

for the energies: [E] −→ [−E]) for real fields. Hence it can be related to the wavefunction
coefficient ψ†

n([−p⃗], [−E]) and (18) acquires the form

〈[p⃗]|V̂ (ε)(0,−∞)|0〉+ 〈[−p⃗]|V̂ (ε)(0,−∞)|0〉

= −
∫ �

ddq
(2π)d

1

2Re{ψ(0)s (q⃗)}

�

〈[−p⃗|V̂ (ε)(0,−∞)|[−q⃗]]〉〈[q⃗]|V̂ (ε)(0,−∞)|0〉 . (19)

Despite the unitarity condition (19) is formally generically valid, so far it has a clear and
useful interpretation just in perturbation theory. Expanding V̂ (ε)

V̂ (ε)(0,−∞) = −i

∫ 0

−∞
dη Ĥ (ε)

int
(η) +

(−i)2

2!
T
¨

∫ 0

−∞
dη1

∫ 0

−∞
dη2 Ĥ (ε)

int
(η1)Ĥ

(ε)
int
(η2)

«

+ . . . ,

and recollecting the terms of both sides with the same number of Hamiltonian insertions con-
tributing to the same perturbative order, equation (19) can be written directly in terms of the
wavefunction coefficients. Let N := {1, . . . , n} be the set of external states, with L ∪ R = N
be a partition of N , with nL = dim{L} and nR = dim{R}. Let also ̸E k be a set of k “cut”
edges, while ̸E be the set of edges between the subprocesses containing L and R. Then

ψ(L)n (E j , ye) +ψ
†(L)
n (−E j , ye)

= −
L
∑

k=1

∑

{̸Ek}

∫





∏

̸ e∉Ek

dd q̸e

(2π)d
1

2Re{ψ2( y̸e)}





�

ψ(L − k)

n+2k(E j , y̸e; ye′) +ψ
†(L − k)

n+2k (−E j , y̸e; ye′)
�

−
∑

{L}{R}

∫





∏

̸ e∉E

dd q̸e

(2π)d
1

2Re{ψ2( y̸e)}





∑

σ=±

�

σψ
†(LL)
nL+n̸E

(−EL,−σ y̸e; yeL)
�

×
∑

σ=±

�

σψ
(LR)
nR+n̸E

(ER,−σ y̸e; yeR)
�

, (20)

where y̸e := |q̸⃗e|, EL/R are the energies of the external states in L/R, and LL/R is the loop
order for the wavefunction at the left/right of the “cut” – see Figure 2 for an illustration. Notice
that an equivalent rule can be obtained from (20) by having ψ and ψ† on the left/right side
of the “cut”, which is equivalent to the unitarity condition ÛintÛ

†
int
= 1̂.

Holomorphic cutting rules. Notice also that there is a different type of relation which can be
extracted and, in the case of the S-matrix leads to the holomorphic cutting rules [52]. We can
formally solve (16) in terms of V̂ †(ε), V̂ †(ε) = −V̂ (ε)(1̂+ V̂ (ε))−1, insert it in the right-hand-side
of (16) and expand it perturbatively

V̂ (ε) + V̂ †(ε) = −V̂ (ε)(1̂+ V̂ (ε))−1V̂ (ε) = −
∑

c≥1

(−1)c+1
�

V̂ (ε)
�c+1

, (21)
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p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

+

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

= −

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

−

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

p⃗1 p⃗2 p⃗3 p⃗4 p⃗5

+

Figure 3: Holomorphic cutting rules. They are realised just in terms of ψ(E), iden-
tified by graphs with black dots, when the “cuts” divide the graph into disconnected
subgraphs.

which, in terms of the matrix elements, becomes

〈[p⃗]|V̂ (ε)|0〉+ 〈0|V̂ (ε)|[p⃗]〉 = −
∑

c≥1

(−1)c+1

∫ c
∏

j=1

�

ddq j

(2π)d
1

2Re{ψ(0)2 (q⃗ j)}

�

〈[p⃗]|V̂ (ε)|[q⃗c]〉

×
c−1
∏

j=1

〈[q⃗ j+1]|V̂ (ε)|[q⃗ j]〉〈[q⃗1]|V̂ (ε)|0〉 . (22)

Proceeding in a similar fashion as in the previous section, the relation (17) can be rewritten
in terms of the wavefunction coefficients

ψ(L)n (E j , ye) +ψ
†(L)
n (−E j , ye)

= −
L
∑

k=1

∑

{̸Ek}

∫





∏

̸ e∉Ek

dd q̸e

(2π)d
1

2Re{ψ2( y̸e)}





�

ψ(L − k)

n+2k(E j , y̸e; ye′) +ψ
†(L − k)

n+2k (−E j , y̸e; ye′)
�

−
∑

c≥1

(−1)c+1

∫





∏

̸ e∉E

dd q̸e

(2π)d
1

2Re{ψq̸e
}





c+1
∏

j=1

∑

σ=±
σψ

(LN j )

nN j
+n̸E j

�

EN j
,−σ y̸e; yeN j

�

, (23)

where {N j}c+1
j=1 is a partition of the set N of external states, while ̸E j ⊆ ̸E is the subset of cut

edges incident on the subgraphN j belongs to. One feature of the right-hand-side of (23) is that
the terms that correspond to disconnected subgraphs represent the wavefunction coefficients
ψ(E) and do not depend on the hermitian conjugates.

3 Cosmological polytopes: A crash course

Let us consider a scalar with a time dependent mass and time-dependent polynomial interac-
tions in a (d + 1)-dimensional flat space-time:

S[φ] = −
∫

dd x

∫ 0

−∞
dη

�

1
2
(∂ φ)2 −

1
2

m2(η)φ2 −
∑

k≥3

λk(η)
k!

φk

�

. (24)

This action describes a class of toy models which contain conformally-coupled and states with
general masses in Friedmann-Robertson-Walker (FRW) cosmologies, upon the identification
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η

η = 0

η = −∞

−→p 1
−→p 2

−→p 3
−→p 4

−→p 5

x1 x3x2 x1 x3x2

Figure 4: From Feynman graphs to reduced graphs. A Feynman graph contribution
to the wavefunction (on the left) is characterised by the external lines reaching the
late-time boundary, sites, and edges connecting the sites, respectively representing
external states, interactions, and internal states. On the left, we show a Feynman
graph that contributes to the wavefunction of the universe. On the right, we depict
the associated reduced graph, which is obtained from the Feynman graph by sup-
pressing the external lines [27].

of the functions m2(η) and λk(η) with

m2(η) = m2a2(η) + 2d
�

ξ−
d − 1
4d

�

�

∂η

�

ȧ
a

�

+
d − 1

2

�

ȧ
a

�2
�

,

λk(η) = λk ϑ(−η) [a(η)]
2+(2−k)(d−1)/2 ,

(25)

where m2 and λk appearing in the right-hand-sides are constants, ξ is a parameter which can
be either zero or (d − 1)/4d depending on whether the scalar is respectively minimally or
conformally coupled, “˙” is the derivative with respect to the conformal time η and a(η) is the
time-dependent warp factor for the conformally-flat metric

ds2 = a2(η)
�

−dη2 + δi jd x id x j
�

, i, j = 1, . . . , d , (26)

with η ∈ ] − ∞, 0] – see [24, 31, 53]. The perturbative wavefunction coefficients
ψ(L)n (p⃗1, . . . , p⃗n) introduced in (5) can be computed via Feynman graphs. Given a graph G,
defined by the sets V and E of sites8 and edges, then the wavefunction coefficient eψG associ-
ated to G is given by

eψG =

0
∫

−∞

∏

s∈V

�

dηs iλk(ηs)φ
(s)
◦ (ηs)

�

∏

e∈E

eG(ye,ηse
,ηs′e
) , (27)

where φ(s)◦ (ηs) is the product of the bulk-to-boundary propagators stretching from the site s
to the boundary, while eG(ye,ηse

,ηs′e
) is the bulk-to-bulk propagator with internal energy ye

connecting the sites se and s′e. We will be interested in FRW space-times with warp factors of
the form a(η) = (−ℓ/η)γ, for which the bulk-to-boundary propagators are given in terms of
Hankel functions of the second type if γ = 1, as well as for generic γ and the bare parameter
m equal zero [31,53].

For light-states, the mode functions can be obtained as differential operators in energy
space acting on the flat-space massless mode functions, i.e. exponentials of the type ei|p⃗|η.
Using the integral representation for the time-dependent coupling λk(η)

λk(η) =

∫ +∞

−∞
dz eizη λ̃k(z) , (28)

8As the word vertex can refer both to an element of a graph and to the highest codimension boundary of a
polytope, we reserve it for the latter while for the former we use site in order to avoid any language clash.

12

https://scipost.org
https://scipost.org/SciPostPhys.16.6.157


SciPost Phys. 16, 157 (2024)

x1 x2 x ′1 x ′2

y y ′

x1

y

x2 x′1

y′

x′2

x1 x2

y

y ′

x1 x2

y

y′

Figure 5: Graphs and cosmological polytopes. Each graph G can be seen as a collec-
tion of 2-site line graphs merged in a subset of their sites. As each two-site line graph
is in one-to-one correspondence with a triangle, a general graph G is associated to
a polytope defined as a suitable intersection of such triangles in the midpoints of a
subset of their edges. Here we show a collection of two two-site line graphs and
the associated triangles as well as the two-site one-loop graph obtained by merging
their sites in pairs and the associated cosmological polytope. The dashed lines show
the convex hull obtained by intersecting the two triangles, while the coloured areas
represent the defining triangles themselves.

the wavefunction eψG for light-states can be written in terms of integro-differential operators
acting on a universal integrand ψG(xs, ye) [53]9

ψG(xs, ye) =

0
∫

−∞

∏

s∈V

�

dηs i ei xsηs
�

∏

e∈E
G(ye,ηse

,ηs′e
) , (29)

where now xs is the sum of the energies of the external states at the site s, while G(ye,ηse
,ηs′e
)

is given by

G(ye,ηse
,ηs′e
) =

1
2ye

�

e−ye(ηse−ηs′e
)
ϑ(ηse

−ηs′e
) + e+ye(ηse−ηs′e

)
ϑ(ηs′e

−ηse
)− e+ye(ηse+ηs′e

)
�

,

(30)
where the first two terms represent the time-ordered part of the propagator (retarded and
advanced, respectively), while the last term is fixed by the boundary condition that the fluc-
tuations vanish at the boundary η = 0. The wavefunction integrand ψG(xs, ye) is universal
as it is common to any conformally-flat cosmology, whose details are encoded into the func-
tions λ̃k(z) which play the role of a measure of integration in the space of external energies.
The differential operators mentioned earlier change the type of scalar states involved into the
process – for further details see [24,31,53].

The universal integrand ψG(xs, ye) depends on the sum of the energies at each site
{xs, s ∈ V}. Consequently, it can be represented as a reduced graph by suppressing the lines
associated to bulk-to-boundary propagators. Hence a reduced graph is a collection of ns sites
V and ne edges E connecting them and respectively weighed by the sets of labels {xs, s ∈ V}
and {ye, e ∈ E} – see Figure 4.

A reduced graph G turns out to be in one-to-one correspondence with a cosmological poly-
tope, whose associated canonical form provides the universal integrandψG(xs, ye) [24]. Given
a reduced graph G with ns sites and ne edges, it can be thought of as a collection of ne 2-site
and 1-edge graphs in which some of the sites have been identified. Each of the 2-site 1-edge
graphs can be associated to a triangle living in P3ne−1 identified by its midpoints given by

9In a similar fashion, the universal integrand (29) serves as a seed for a differential representation for the
wavefunction in de Sitter space involving massless scalars and gravitons [54].
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the triple of vectors {xse
, ye, xs′e

}. The collection {xse
, ye, xs′e

}e∈E of all such triples provides the
canonical basis of P3ne−1. Equivalently, each of these triangles is the convex hull of the vertices
{xse
−ye+xs′e

, xse
+ye−xs′e

, −xse
+ye+xs′e

}. A graph G with ns sites and ne edges is then obtained
by identifying r = 2ne − ns sites of the collection of 2-site 1-edge graphs. This corresponds
to intersecting the associated triangles in the midpoints xse

, xse′
, . . . and projecting it down to

P3ne−r−1 := Pns+ne−1. The cosmological polytope PG associated to the graph G is thus given
by the convex hull of the vertices of the triangles {xse

−ye+xs′e
, xse
+ye−xs′e

, −xse
+ye+xs′e

}e∈E
suitably intersected – see Figure 5.

Given a cosmological polytope PG ⊂ Pns+ne−1 and given a point Y ∈ Pns+ne−1, it is
equipped with a unique10 canonical form

ω(Y ,PG) = Ω(Y ,PG)〈Ydns+ne−1Y〉 , (31)

defined such that it only has logarithmic singularities on the boundaries of PG . The coefficient
Ω(Y ,PG), obtained from (31) by stripping off the measure on Pns+ne−1, is named canonical
function and is precisely the universal wavefunction integrand ψG(xs, ye) associated to the
graph G:

Ω(Y ,PG) = ψG(xs, ye) , (32)

with the labels {xs, s ∈ V} and {ye, e ∈ E}, respectively associated to the sites and edges of G,
i.e. to the energies, being a system of local coordinates in Pns+ne−1.

The canonical function Ω(Y ,PG) has just simple poles, all of them along the boundary of
PG . Because of the equivalence (32) between Ω(Y ,PG) and ψG(xs, ye), the boundaries of PG
capture the residues of ψG(xs, ye). Furthermore, the codimension-1 boundaries, called facets,
are in one-to-one correspondence with the connected subgraphs of G [24] and are identified by
the intersectionPG∩W (g) between the cosmological polytope and the hyperplane characterised
by the dual vector11

W (g) =
∑

s∈Vg

x̃s +
∑

e∈Eext
g

ỹe , (33)

with g ⊆ G being a connected subgraph and E ext
g the set of edges departing from g, while x̃s and

ỹe are dual vectors of xs and ye, i.e. they satisfy x̃s ·xs′ = δss′ , ỹe ·y′e = δee′ , and x̃s ·ye = ỹe ·xs = 0.
A point Y ∈ Pns+ne−1 belongs to PG if Y ·W (g) ≥ 0 for all g ⊆ G, with the equality satisfied
when it is on the boundary identified by W (g). The quantity Y ·W (g) is just the total energy
associated to the subgraph g

Eg = Y ·W (g) =
∑

s∈Vg

xs +
∑

e∈Eext
g

ye , (34)

and hence the boundary PG ∩W (g) is approached as Eg −→ 0.
In order to characterise a facet PG ∩W (g), we need to determine which vertices Z of PG

are on it, i.e. which vertices satisfy the condition Z ·W (g) = 0. The one-to-one correspondence
between graphs and cosmological polytopes, and between subgraphs and facets, allows to
provide such a characterisation in a very simple and graphical way via the introduction of a
marking that identifies those vertices which are not on the facet:

x i x ′i
ye

W · (xi − ye + x′i)> 0 ,
x i x ′i

ye

W · (xi + ye − x′i)> 0 ,
x i x ′i

ye

W · (−xi + ye + x′i)> 0 .

10The canonical form is unique up to an overall constant, which can be chosen to be 1.
11Vectors and dual vectors respectively carry an upper and a lower index I = 1, . . . , ns + ne, which can be

suppressed for notational convenience if such a suppression does not generate any confusion, as in (33).
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Hence, given a subgraph g ⊆ G, the vertex structure of the associated facet is identified by
marking all the internal edges of g in the middle, as well as the edges departing from g close
to the sites in g [24]: this marking excludes all the vertices of PG which are not on PG ∩W (g).
This association fully characterises the facets of PG .

The one-to-one correspondence between markings on G and the vertex structure of facets
PG ∩W (g) (g⊆ G) allows to fully characterise the faces of PG of arbitrary codimension [27,
31, 46] in terms of compatibility conditions among the facets, i.e. conditions which allow to
identify when PG∩W (g1)∩· · ·∩W (gk), with {g j⊆G, j=1, . . . , k}, is non-empty in codimension-k.
They also allow to fully fix the canonical function, and consequently the wavefunction of the
universe, in an invariant way: the canonical function is a rational function whose denominator
is identified by the facets {Y ·W (g), g⊆G}, while the numerator, which provides the zeroes of the
Ω(Y ,PG), is encoded in the locus of the points where {PG ∩W (g1)∩· · ·∩W (gk)=∅, g j⊆G, ∀ j}
– i.e. the surface identified by the intersections of the facets outside of PG in codimension-
k12 [56]. Alternatively, in order to compute the canonical function, it is possible to resort to
canonical form triangulations.13 Given a cosmological polytope PG in Pns+ne−1 and a collection
{P ( j)

G ⊂ P
ns+ne−1}nj=1 of polytopes, then PG is canonical-form triangulated by the elements P ( j)

G
of our collection if

ω(Y , PG) =
n
∑

j=1

ω
�

Y , P ( j)

G
�

. (35)

Such a notion generalises the one of regular triangulations: despite (35) also holds for them,
they involve only the vertices of the polytope which gets triangulated. Interestingly, all the
regular triangulations of a cosmological polytope PG generate spurious poles in the decompo-
sition (35) of the canonical form as a consequence of the introduction of spurious boundaries,
while all the signed triangulations through the adjoint surface return a decomposition (35)
with physical poles only14 [46].

4 Cosmological polytopes and the iε-prescription

The combinatorial-geometrical picture of the cosmological polytope provides a natural and
explicit way to introduce a full class of iε-prescriptions. As for any projective polytope, the
canonical function Ω(Y ,PG) has the following contour integral representation [31,47]

Ω(Y ,PG) =
1

(ne + ns − 1)!(2πi)2ne−ns

∫

R3ne

ne
∏

k=1

3
∏

j=1

dc( j)k

c( j)k − iε( j)k

δ(ne + ns)

 

Y −
ne
∑

k=1

3
∑

j=1

c( j)k Z ( j)

k

!

,

(36)
where {Z ( j)

k , k = 1, . . . , ne, j = 1,2, 3} is the set of vertices of PG , with the index k running
over the edges of the associated graph G while j labels the three vertices associated to each
edge k. The δ-function fully localises the integrand if and only if the number of vertices of
the polytope is equal to the number of dimensions of the affine space in which the polytope
lives, i.e. if the polytope is a simplex – this occurs just when PG is the triangle in P2 associated
to the two-site line graph and for all the scattering facets SG := PG ∩W (G) associated to any
tree-level graph. In all the other cases, just a subset of the integration variables are localised:

12In the mathematics literature, the locus of the intersections of the facets outside of a polytope is called adjoint
surface [55].

13This is a specific case of a more general notion of signed triangulations, none of which is specific to the cosmo-
logical polytopes. Rather, they are defined for any positive geometry [47].

14The triangulations through the adjoint surface correspond to the regular triangulations of the dual polytope P̃G
obtained by mapping codimension-k faces into codimension-(ns+ne−k) ones. As the canonical function Ω(Y ,PG)
coincides with the volume of P̃G , the singularities are now encoded into the vertices of P̃G .
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for all the rest one must perform contour integrals, and the inequivalent contours that can be
chosen correspond to all possible regular triangulations of PG through its vertices. Finally, the
overall constant ensures the correct normalisation.

Note that the iε-prescription in (36) is needed to make the integral well-defined as, oth-
erwise, the integrand would have poles at {c( j)k = 0, j = 1,2, 3, k = 1, . . . , ne} lying on the
integration path. Importantly, the precise prescription in (36) ensures that Y is an (arbi-
trary) internal point of PG while preserving the orientation of PG . As already mentioned, the
δ-function localises ne + ns of the integration variables. The choice of the variables to be lo-
calised is not unique: let C := {c( j)k , j = 1, 2,3, k = 1, . . . , ne} be the set of all the integration
variables, then any subset c ⊂ C can be localised by the (ne+ ns)-dimensional delta-function if
and only if all the elements of c are associated to vertices of PG that are linearly independent
among each other and, thus, form a basis of the affine space Rns+ne . Let ĉ be the chosen subset,
then the integral (36) acquires the form

Ω(Y ,PG) =
1

(ne + ns − 1)!(2πi)2ne−ns

∫

R2ne−ns

∏

cb∈C\ĉ

dcb

cb − iεb

∏

ĉ∈ĉ

1
ĉ(cb)− iε̂

|J |−1 , (37)

with J the Jacobian obtained from the δ-function, which is given by the contraction of the
vertices of PG associated to the elements of ĉ via the Levi-Civita tensor in Rns+ne

J = 〈a1 . . . ans+ne
〉 := εI1 . . . Ins+ne

Z I1
(a1)
· · ·Z Ins+ne

(ans+ne )
, (38)

where the I ’s are Rns+ne indices, while each label (a) is a short-hand notation for the pair of
indices k, j associated to the elements of ĉ. Each ĉ(cb) ∈ ĉ is now a linear inhomogeneous
polynomial in the unfixed variables cb ∈ C \ ĉ. The remaining integrations can be viewed as
contour integrations and can be performed one at the time. Let cb̂ be the variable that we
chose to integrate out first. As the coefficients of the polynomials ĉ(cb̂) can be either positive
or negative, when we look at the location of the poles in the complex plane of cb̂, some of
the poles lie in the upper-half plane (UHP) and others in the lower-half one (LHP). Such
integration can therefore be performed by equivalently closing the integration contour in the
UHP or in the LHP, each choice providing a different representation for the integrated function

Ω(Y ,PG) ∼
∫

R2ne−ne−1

∏

cb∈C\(ĉ∪{cb̂}

dcb

cb − iεb
|J |−1

∑

ĉb̂∈UHP

Rescb̂=ĉb̂

¨

∏

ĉ∈ĉ

1
ĉ(cb)− iε̂b

«

= −
∫

R2ne−ne−1

∏

cb∈C\(c̃∪{cb̂})

dcb

cb − iεb
|J |−1

∑

ĉb̂∈LHP

Rescb̂=ĉb̂

¨

∏

ĉ∈ĉ

1
ĉ(cb)− iε̂b

«

,

(39)

where ∼ indicates the omission of an overall constant factor which is irrelevant to our discus-
sion. This integration provides two inequivalent polytope subdivisions of PG , depending on
whether the integration is performed in the UHP or LHP,

PG =
⋃

a∈u
P (a) =

⋃

a∈l
P (a) , (40)

where u and l are the sets of polytopes forming the subdivision associated to the poles in the
UHP and LHP, respectively. If we perform all the integrations, all the inequivalent integration
paths will return the regular triangulations of PG . However, in order to understand the role of
the iε-prescription in (36), we can focus our discussion on the single integration we already
performed and, consequently, just on the integrand of (39),

∑

ĉb̂∈UHP

Rescb̂=ĉb̂

¨

∏

ĉ∈ĉ

1
ĉ(cb̂)− iε̂b̂

«

= −
∑

ĉb̂∈LHP

Rescb̂=ĉb̂

¨

∏

ĉ∈ĉ

1
ĉ(cb̂)− iε̂b̂

«

. (41)
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First, all ĉb̂, representing the location of the poles in the cb̂-plane, have a term±iε̂b̂, whose sign
depends on whether the contour of integration is closed in the upper half plane. Secondly, the
denominators in (41) now show a linear combination of different ε’s which can either have the
same sign or different sign. In the former case, the location of the pole in the complex plane of
any of the other integration variables is fixed, while in the latter in principle a hierarchy among
the ε’s should be arbitrarily chosen in order to determine their precise location. It turns out
that such poles correspond to the facets of the elements of the subdivision which are shared
among them and are not facets of PG , i.e. they are spurious poles.

Let us now change the iε-prescription in (36) such that we have poles of both types:
c( j)k − iε( j)k and c( j)k + iε( j)k . When we analyse the location of the poles in the c̃( j)k -plane, some
of them will be shifted from the UHP to the LHP and vice-versa, returning a different result
than (39) and hence no longer computing the canonical function of PG . The change of the
location of some of the poles is equivalent to changing the orientation of the corresponding
elements of the subdivision (40), returning a polytope P ′ ⊂ PG . Said differently, changing the
location of some of the poles is equivalent to moving some of the vertices inside the convex
hull of the others. Finally, choosing the iε-prescription such that c( j)k + iε( j)k is equivalent to
swapping all the poles from one half-plane to the other changing the orientation of the full
polytope at each integration.

It is useful to illustrate this phenomenon with a toy, but nevertheless explicit, example.

An illustrative example. Let us consider a square P ⊂ P2 given by the convex hull of the
vertices {Z( j) ∈ P2, j = 1, 2,3, 4} or equivalently by the inequalities

〈Y12〉 > 0 , 〈Y23〉 > 0 , 〈Y34〉 > 0 , 〈Y41〉 > 0 ,

〈123〉 > 0 , 〈234〉 > 0 , 〈341〉 > 0 , 〈412〉 > 0 .
(42)

Each inequality 〈i jk〉 > 0 indicates that the point Z(i) lies in the positive half-plane identified
by the line W ( jk)

I
:= εI JKZ J

( j)
ZK
(k)

. Consequently, the four conditions in the first line ensure that
an arbitrary point Y of the square P lies in the region of P2 defined by the four positive half-
spaces determined by the lines W (i, i + 1) (i = 1, . . . , 4), while the four conditions in the second
line guarantee that no vertex {Z(i), i = 1, . . . , 4} is inside the triangle identified by the other
three.

The contour integral representation (36) for this square is then given by

Ω(Y , P) ∼ 1
2πi

∫

R4

4
∏

j=1

dc j

c j − iε j
δ(3)

 

Y −
4
∑

j=1

c jZ( j)

!

. (43)

We can choose the vertices {Z ( j), j = 1, 2,3} as the basis for the affine space R3 and fix the
coefficients {c j , j = 1, 2,3} as functions of c4 via the δ-function in (43):

Y I =
4
∑

j=1

c jZ I
( j)

=⇒







〈Y23〉 = 〈123〉c1 + 〈234〉c4 ,
〈Y31〉 = 〈123〉c2 − 〈341〉c4 ,
〈Y12〉 = 〈123〉c3 + 〈412〉c4 ,

(44)

where the coefficients 〈· · · 〉 have been arranged to be all positive. Hence

Ω(Y ,PG)∼
1

2πi

∫

R

dc4

c4−iε4

1/〈123〉
�

〈Y23〉
〈123〉 −

〈234〉
〈123〉 c4−iε1

��

〈Y31〉
〈123〉 +

〈341〉
〈123〉 c4−iε2

��

〈Y12〉
〈123〉 −

〈412〉
〈123〉 c4−iε3

� .

(45)
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In the c4-plane, two poles turn out to be in the UHP, c4 = iε4 and c2(c4) = iε2, while the other
two lie in the LHP – see Figure 6. Let I be the integrand, then the contour integration yields

Ω(Y ,P) ∼ Resc4=iε4
I +Resc2(c4)=iε2

I = −Resc1(c4)=iε1
I −Resc3(c4)=iε3

I
= Ω(Y ,P (123)) +Ω(Y ,P (341)) = Ω(Y ,P (234)) +Ω(Y ,P (412)) ,

(46)

where the two sides of the equality in the first line represent the result of the UHP- and LHP-
integration respectively, which correspond to the two possible regular triangulations of the
square P , P (123) ∪ P (341) and P (234) ∪ P (412), as emphasised in the second line and pictorially
showed here:

1
2

3
4

1
2

3
4

The arrows in the picture above represent the orientation of P and of the triangulating sim-
plices, which ought to agree with each other. As mentioned above, the boundaries of the
simplices which are not boundaries of P , i.e. the segments (31) and (24), have different ori-
entations and they turn out to receive an ambiguous iε deformation. Explicitly:

Ω(Y ,PG) ∼
1

〈Y31〉 − i(〈123〉ε2 − 〈341〉ε4)

�

〈123〉2
�

〈Y12〉 − i(〈412〉ε4 + 〈123〉ε3)
� �

〈Y23〉 − i(〈234〉ε4 + 〈123〉ε1)
�

−
〈341〉2

[〈Y34〉 − i(〈234〉ε2 + 〈341〉ε1)] [〈Y41〉 − i(〈412〉ε2 + 〈341〉ε3)]

�

= 1
〈Y24〉 − i(〈234〉ε3 − 〈412〉ε1)

�

〈412〉2

[〈Y41〉 − i(〈341〉ε3 + 〈412〉ε2)]
�

〈Y12〉 − i(〈123〉ε3 + 〈412〉ε4)
�

−
〈234〉2

�

〈Y23〉 − i(〈123〉ε1 + 〈234〉ε4)
�

[〈Y34〉 − i(〈341〉ε1 + 〈234〉ε2)]

�

, (47)

where the first two lines in the r.h.s. represent the integration in the UHP and hence the
triangulation P = P (123) ∪P (341), while the last two are the result of the integration in the LHP
and provide the triangulation P = P (412) ∪ P (234). However, the ambiguity in the sign of iε
in the overall term in both triangulations is the manifestation of the fact that this common
boundary has opposite orientation in the two simplices and it is resolved by the fact that its
residue is zero: considering the relation (x ∓ iε)−1 = P.V.{x−1} ± iπδ(x), the contribution
from the δ-function is identically zero.

Let us now go back to the contour integral (43) and change the iε-prescription for one of
the c j ’s, namely c2, which now appears as c2 + iε2. The poles are now splitted in such a way
that one, corresponding to the solution c4 = iε4 is on the UHP, while the other three lie in
the LHP. Integrating over the real axis and closing the contour in the UHP and in the LHP we
obtain

Resc4=iε4
I = −Resc2(c4)=iε2

I −Resc1(c4)=iε1
I −Resc3(c4)=iε3

I . (48)

With this second prescription, the integral in the UHP returns simply the canonical function
for the triangle P (123), while the contour in the LHP returns a triangulation of P (123) through
the point Z(4):

1
2

3
4

1
2

3
4
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Re{c4}

Im{c4}

iε4

−
〈Y31〉
〈341〉

+ i
〈123〉
〈341〉

ε2

〈Y23〉
〈234〉

− i
〈123〉
〈234〉

ε1

〈Y12〉
〈412〉

− i
〈123〉
〈412〉

ε3

Re{c4}

Im{c4}

iε4

−
〈Y31〉
〈341〉

− i
〈123〉
〈341〉

ε2

〈Y23〉
〈234〉

− i
〈123〉
〈234〉

ε1

〈Y12〉
〈412〉

− i
〈123〉
〈412〉

ε3

Figure 6: Poles location in the c4-plane for the contour integral representation
of the canonical function of a square in P2. On the left. The prescription
{c j −→ c j − iε j , j = 1, . . . , 4} moves a subset of the poles to the UHP and the
complementary subset into the LHP. The integrations in the UHP and LHP pro-
vide different representation of the canonical function corresponding to the two
different regular triangulations of the square. On the right. The prescription
{c j −→ c j − iε j , j = 3,4, 1} and c2 −→ c2 + iε2 moves 1 pole to the UHP and
three into the LHP. Closing the contour of the integration in the UHP or LHP provide
two different representation for the canonical form of the triangle P (123) by changing
the orientation of some boundaries. This is equivalent to considering the vertex Z(4)
as inside the triangle P (123).

This is equivalent to keeping the prescription c2 − iε2 in the original integral and taking
〈431〉 > 0, i.e. the vertex Z(4) lies now in the positive half-plane identified by the line
W (31)

I
= εI JKZ J

(3)
ZK
(1)

. As 〈412〉 and 〈423〉 are kept positive, the vertex Z(4) is also in the half-
planes identified by the lines W (12)

I
and W (23)

I
, so Z(4) lies inside the triangle P (123):

1
2

3

4

4.1 From the geometry to kinematic space

The iε-prescription in the context of cosmological polytopes arises from the requirement of
having a well-defined integral representation, as otherwise the latter would have poles lying
along the integration contour. This is similar to what happens in the standard definition of the
wavefunction of the universe in terms of a time integration, where all the singularities arise
from the infinitely oscillating behaviour of the integrand as the early time region is approached.

In the time integral picture, the regularisation associated to a deformation of the Hamil-
tonian operator occurs by taking the external energies to be complex and requiring that
their imaginary part is negative. This can be implemented, compatibly with unitarity, via
x j −→ x j − iε j (ε j > 0). With such a deformation, the wavefunction shows singularities of
the form

∑

s∈Vg
(xs − iεs) +

∑

e∈Eext
g

ye.

Something similar happens when we look at the contour integral representation (36) for
the canonical function of a cosmological polytope. The integration produces two classes of
poles: one class corresponds to facets of the simplices P ( j)’s which are also facets of the cos-
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mological polytope PG , while the second one identifies facets of P ( j)’s that are internal to PG
and hence are spurious.

Let us consider the contour integral (36) and fix the set c of ns + ne integration vari-
ables via the δ-function so that it acquires the form (37). The solution for each element
of c is just given by the projection of the space Ỹ := Y −

∑

cb∈c cbZ(b) onto the hyperplane

W (a1 · · · ans+ne−1)
I := εI J1 · · · Jns+ne−1

Z J1
(a1)
· · ·Z Jns+ne−1

(ans+ne−1)
15 defined by all the vertices associated to c but the

one associated to the variable which we are fixing:

0 = 〈Ỹ a1 . . . ans+ne−1〉 − câ〈â a1 . . . ans+ne−1〉

= 〈Y a1 . . . ans+ne−1〉 −
∑

cb∈c

cb〈b a1 . . . ans+ne−1〉 − câ〈â a1 . . . ans+ne−1〉 , (49)

∀ â ∈ c, {a j ∈ c\{â}, j = 1, . . . , n+ne−1} and with c∪ c= C= {c( j)k , j = 1,2, 3, k = 1, . . . , ne}.
Let us consider now the integration over one of the remaining variables, namely cb̂:

Ω(Y ,PG) ∼
∫

Rñ−1

∏

cb∈c\{cb̂}

dcb

cb − iεb

∫

R

dcb̂

cb̂ − iεb̂

∏

â,a j∈ac
a j ̸=â

1
〈Y ′a1...ans+ne−1〉
〈âa1...ans+ne−1〉

− cb̂
〈b̂a1...ans+ne−1〉
〈âa1...ans+ne−1〉

− iεâ

, (50)

where ñ= 2ne−ns and Y ′ := Y−
∑

cb∈c\{cb̂}
cbZ(b̂). Whether the poles in the cb̃-plane lie in the

UHP or LHP depends on whether the vertices Z(b̂) and Z(â) lie in the same half-space identified
by the hyperplane W (a1 . . . ans+ne−1) or not: in the first case, the relative sign is positive and the sign
of cb̂ stays unchanged, while in the second one, the relative sign is negative and the sign in
front of cb̂ changes. If W (a1 . . . ans+ne−1) is such that PG ∩W (a1 . . . ans+ne−1) ̸= ∅ and coincides with a
facet, then both Z(b̂) and Z(â) lie on the positive half-space16 and the associated pole is in the
LHP. If W (a1 . . . ans+ne−1) is such that PG ∩W (a1 . . . ans+ne−1) ̸= ∅ and intersects PG also in its interior,
then some of the vertices will lie in its positive half-space and some others in the negative one.
In this case PG ∩W (a1 . . . ans+ne−1) represents a spurious boundary and it can give rise to a change
in the sign of the coefficient of cb̂ placing the associated pole in the UHP – see Figure 7.

The integration contour in the UHP then picks poles corresponding to hyperplanes con-
taining spurious boundaries, together with cb̂ = iεb̂. Closing the integration path in the UHP,
the spurious poles of the canonical form arise from the denominators giving rise to the poles in
the UHP computed at the location of any other pole in the UHP. Notice that such poles depend
on αεb̂ − βεâ with α, β being positive constants, which seem to signal an ambiguity for the
other integration – it could lie in the UHP or LHP depending on whether αεb̂ − βεâ is posi-
tive or negative – or even for the final result if no further integration has to be carried out.
However, precisely because these poles are associated to hyperplanes which contain spurious
boundaries, the residues of the canonical form with respect to them are zero no matter the
ambiguity in the associated iε. The other poles after the cb̂ integration have all the following
structure

1

〈Y ′a1 . . . ans+ne−1〉
〈âa1 . . . ans+ne−1〉

− ĉb̂

〈b̂a1 . . . ans+ne−1〉
〈âa1 . . . ans+ne−1〉

− i (εâ +αâ′εâ′)

, (51)

where ĉb̂ is computed at the location of the pole câ′(cb̂) = iεâ′ , without the iε-part which
is made explicit as iαâ′εâ′ , αâ′ being a positive constant. In this case the sign of the iε is
unambiguous. If there are further integrations to be performed, one can iterate the very same

15The notation Z(a) is a shorthand for Z ( j)k .
16While it is never the case that Zâ lies on the hyperplane W (a1 . . . ans+ne−1) as such a vertex, together with

the ones defining W (a1 . . . ans+ne−1) are chosen to span Rns+ne , it can occur that Zb̂ does. However in this case
〈b̂ a1 . . . ans+ne−1〉 = 0 and the denominator where this occurs does not show any pole in the complex cb̂-plane.
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32

4

65

1

32

4

65

1

Figure 7: Contour integration, PG vertex structure and iε-prescription. The picture
represents the cosmological polytope associated with the 2-site 1-loop graph, whose
contour integral representation has six integration variables C := {c j , j = 1, . . . , 6}
and has support on δ(4)(

∑6
j=1 c jZ( j)). Let us fix c := {c j , j = 1, . . . 4}, and analyse the

pole structure in the variables c̄ = {c5, c6}. On the left. One pole is determined by a
hyperplane containing one of the facets, e.g. W (143). Then all the vertices which are
not on it satisfy 〈 j143〉 > 0, e.g. {Z( j), j = 2,5}: the coefficient 〈5413〉/〈2413〉 in
front of the c5 keeps the same sign as iε2 and the pole at ĉ2(c5)− iε2 = 0 lies in the
LHP. On the right. Another class of poles is associated to a hyperplane intersecting
the polytope in its interior, namely W (123). Then, {Z( j), j = 5,6} lie on the positive
half-space and Z(4) in the negative one: the coefficient 〈5123〉/〈4123〉 changes sign
with respect to iε4 and the pole ĉ4(c5)− iε4 = 0 lies in the UHP.

analysis until there is no other integration to be carried out. The final result will be a sum of
terms with two classes of poles: one spurious, characterised by an ambiguous sign for the iε,
and the other of the form (51), but now dependent on the actual point Y ∈ Pns+ne−1 rather
than Y ′ = Y ′(Y , c)

1

〈Ya1 . . . ans+ne−1〉
〈âa1 . . . ans+ne−1〉

− i

�

εb̂ +
∑

â′
αâ′εâ′

� , (52)

where αâ′ are all positive coefficients and W (a1 . . . ans+ne−1) is a hyperplane containing one of the
facets of PG . As the first term is positive, in the local coordinates of the projective space
associated to the weights of the graph (52) acquires the explicit form

1

〈Ya1 . . . ans+ne−1〉
〈âa1 . . . ans+ne−1〉

− i

�

εb̂ +
∑

â′
αâ′εâ

� =
1

βg





∑

s∈Vg

xs +
∑

e∈Eext
g

ye



− i

�

εb̂ +
∑

â′
αâ′εâ

�

, (53)

g ⊆ G being the subgraph associated to the hyperplane W (a1 . . . ans+ne−1), while βg is a positive
constant.

From a kinematic space viewpoint, it is straightforward to see that the iε-prescription in
the canonical function induced by its contour integral representation is equivalent to giving a
negative imaginary part to all energies

xs −→ xs − iεxs
, ye −→ ye − iεye

, (54)

∀ s ∈ V , e ∈ E , with the {εxs
, s ∈ V} and {εye

, e ∈ E} a linear combination of those in the
prescription of (53).
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While the iε-prescription for the external energies at each vertex is associated to the con-
vergence of the time integral definition of the evolution operator, the iε-prescription on the
internal energies can be understood as associated to the distributional nature of the bulk-to-
bulk propagator

G(ye, ηse
, ηs′e
) =

+∞
∫

−∞

dω
2πi

eiω(ηse−ηs′e
) − eiω(ηse+ηs′e

)

ω2 − y2
e + iε̃

=
1

2(ye − iεye
)

�

e−i(ye−iεye )(ηse−ηs′e
)
ϑ(ηse
−ηs′e

) + e+i(ye−iεye )(ηse−ηs′e
)
ϑ(ηs′e
−ηse

)

−e+i(ye−iεye )(ηse+ηs′e
)
�

, (55)

where ε̃ and εye
are related to each other via a rescaling.

Hence, the iε-prescription induced by the contour integral representation of the canonical
function and determined by the positivity requirement on the geometry of the cosmological
polytope, not only contains the prescription that guarantees the well-definiteness of the evo-
lution operator compatibly with unitarity, but also gives rise to a prescription a la Feynman for
the propagators. Finally, note that the deformations (54) implemented in the time-integral
representation make the time integral converge for x ∈ R rather than x ∈ R+, as it would be
the case using the (non-unitary) deformation of the contour integral around −∞.17

In the next sections we will see how the effects of this iε-prescription are encoded in
the geometry of the cosmological polytope without having to resort to the contour integral
representation (36). We will also explore its consequences providing a geometrical formulation
of the cosmological optical theorem and the cutting rules for the perturbative wavefunction
as well as a complete discussion of the emergence of the flat-space optical theorem and the
associated Cutkosky rules.

5 The geometry of perturbative unitarity: The optical polytope

Cosmological polytopes provide an invariant definition of the wavefunction coefficients ψG
associated to any graph G in which the wavefunction of the universe can be organised pertur-
batively: as discussed in Section 3, they have their own first principles definition independent
of any physical assumption, they are in one-to-one correspondence with graphs, and they are
endowed with a unique canonical form which encodes the wavefunction which can be directly
determined through their face structure via the compatibility conditions in [46].

The cosmological optical theorem provides a representation for the wavefunction as a sum
of terms which show folded singularities, which are spurious. As the wavefunction is given by
the canonical function and the different representations of the former correspond to the differ-
ent polytope subdivisions of the latter, the cosmological optical theorem has to be associated
to a specific polytope subdivision PG =

⋃n
j=1 P

( j), such that the facets of {P ( j), j = 1, . . . , n}
which are not facets of PG are associated to folded singularities and one of the P ( j) encodes
ψ†

G(−|p⃗k|, p̂k · p̂l).
Equivalently, as the statement of the optical theorem for the perturbative wavefunction

can be schematically written as

∆ψG := ψG(|p⃗k|, p̂k · p̂l) +ψ
†
G(−|p⃗k|, p̂k · p̂l) = −

∑

̸ e∈E
ψ̸e , (56)

17Said differently, the time integrals can be made convergent as η −→ −∞ by complexifying the external
energies xs with the condition that its imaginary part is negative.
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x1 x2

y12

x1 x2
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x1 x2

y12

x1 + y12 + x2

x1 x2

y12

x1 + y12 + x2

x1 x2

y12

x1 + y12 + x2

Figure 8: Triangulations of the triangle via special points. The first two triangulations
use one of the midpoints of the triangle intersectable edges: they correspond to the
recursion relations obtained from the frequency representation. The third triangu-
lation, which makes use of the centroid only, as well as the last two, which instead
make use of all the special points, are related to different cuts.

we can look for a geometry directly encoding ∆ψG and whose two sides are just different
polytope subdivisions.

Finally, let cW (g) be the hyperplane associated to the subgraph g such that

Y · cW (g) =
∑

s∈Vg

xs −
∑

e∈Eext
g

ye , (57)

then PG ∩ cW (g) ̸= ∅ and the hyperplane cW (g) intersects PG inside: it intersect the facet
PG ∩W (g) in all the vertices {xs + ye − xs′ , s ∈ Vg, e ∈ E ext

g , s′ ∈ Vg}, while it intersects the
other facets in the {xs, s /∈ Vg} and {ye, e /∈ E ext

g }. This implies that some of the vertices of PG

lie on the positive half-space identified by cW (g), while others on the negative half-space. As
these hyperplanes intersect a cosmological polytope PG in its interior, they allow for a poly-
tope subdivision of PG via internal points. Consequently, ∆ψG is described by a non-convex
polytope.

5.1 Unitarity and non-convexity

Let us begin with considering the projective space P2 with local coordinates Y = (x1, y12, x2)
and the cosmological polytope defined as the convex-hull of the vertices

{x1 − y12 + x2, x1 + y12 − x2, −x1 + y12 + x2} .

Let us ask the following question: is there any sense in which we can triangulate such a
triangle? Being a simplex, there is just one regular triangulation which corresponds to the
triangle itself. Resorting to the notion of canonical-form triangulation, is there any way in
which we can canonically select them? At the end of the day we could define the collection
of polytopes which canonical-form triangulate our triangle by introducing arbitrary vertices.
However, there are special points we can resort to and we can use to identify specific triangu-
lations. Such points are the midpoints {x1, x2} of its intersectable sides, as well as its centroid
x1 + y12 + x2.

The two triangulations through one of the midpoints xi introduces a spurious boundary
given by the segment {xi , −xi+y12+x j}, which is identified by the line Y ·cW (g j ) ∼ x j− y12 = 0,
g j being the subgraph containing only the vertex labelled by x j , and reproduces the recursion
relation derived from the frequency representation [24,26]. They make manifest the isomor-
phism among all the facets of the triangle, i.e. all its facets are given by the same type of
polytope and are mapped into each other via combinatorial automorphisms, the latter being
the combinatorial manifestation of the Bunch-Davies condition [26].

Here we will be focusing on those triangulations involving either the centroid
x12 := x1 + y12 + x2 only or all the special points. While the former is unique, there are var-
ious triangulations through both the centroid as well as the other two special points {x1, x2}
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x1 − y12 + x2

x1 + y12 − x2 −x1 + y12 + x2

−ax1 + y12 − ax2

x1 − y12 + x2

x1 + y12 − x2 −x1 + y12 + x2y12

x1 − y12 + x12

x1 + y12 − x12 −x1 + y12 + x12

x1 x2x1 + y12 + x12

Figure 9: Transitioning from a convex to a non-convex geometry. The first picture
represents the quadrilateral QG(a), with the red line being the locus of zeroes of
the associated canonical form. For QG(a) is defined for a ∈ ]0,1[, which guaran-
tees convexity. For a = 0, QG(0) degenerates into a triangle, while for a = −1
QG(−1) = OG and the locus of the zeroes of the canonical form coincides with the
line passing through the midpoints x1 and x2.

– see Figure 8. All such triangulations of PG have in common one element of the collec-
tions of the triangles triangulating PG: it is given by the triangle identified as convex hull of
{x1 + y12 + x2, x1 + y12 − x2,−x1 + y12 + x2}. Notice that its boundaries are identified by the
scattering facet as well as the two medians passing through the special points {x1, x2}, i.e.
W (G) = x̃1 + x̃2, cW (g1) = x̃1 − ỹ12 and cW (g2) = x̃2 − ỹ12, and its canonical function is given by

Ω(Y , P ′G) =
〈x1x2x12〉2

(Y ·W (G))(Y · cW (g1))(Y · cW (g2))

=
1

(x1 + x2)(x1 − y12)(−y12 + x2)
:= −ψ†

G(−x1, y12,−x2) ,
(58)

which is precisely the function appearing in the definition of ∆ψG . Consequently, the non-
convex quadrilateral OG identified by the vertices:

{x1 − y12 + x2, x1 + y12 − x2, x1 + y12 + x2, −x1 + y12 + x2}
x1 − y12 + x12

x1 + y12 − x12 −x1 + y12 + x12

x1 x2x1 + y12 + x12

provides an invariant formulation for ∆ψG , and the triangulations of such an object would be
expected to provide all the possible cutting rules. This is the simplest example of optical poly-
tope. Before discussing the triangulations of the optical polytope OG and their relation to cuts,
it is important to make some general considerations. For any polytope in Pns+ne−1, its canonical
function is a rational function with the denominator fixed by its facets, while the numerator
is a polynomial of degree δ = F − ns − ne, F being the number of its facets, which provides
the locus of the intersections of the facets outside the polytope itself [56]. In the non-convex
case, pairs of facets intersect inside one of them without generating a boundary of higher codi-
mension: the locus identified by such points fixes the numerator of the canonical function –
we will further discuss this point in the next subsection. For the quadrilateral OG , such points
are precisely the midpoints {x1, x2}, which define the line W (0) = −2ỹ12. Said differently, the
canonical function Ω(Y ,OG) has to satisfy the following codimension-2 constraints

ResW(g j )Res
cW(g j )Ω(Y ,OG) = 0 , ∀ j = 1, 2 , (59)

which precisely fix W (0) to be

W (0)
I
= εI JK Z J

(A)
Z K
(B)

, with

�

Z I
(A)
= εI JKW (g1)

J
cW (g1)

K
,

Z I
(B)
= εI JKW (g2)

J
cW (g2)

K
.

(60)
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Hence, the canonical function Ω(Y , OG) of OG can be directly written as

Ω(Y , OG) =
〈YAB〉

(Y ·W (g1))(Y ·W (g2))(Y · cW (g1))(Y · cW (g2))

=
−2y12

(x1 − y12)(x1 + y12)(y12 + x2)(−y12 + x2)
.

(61)

It is important to remark that while in general a non-convex polytope is defined as a spe-
cific union of convex ones, i.e. through a specific triangulation, the knowledge of the facets,
which are identified by the hyperplanes {W (g j ), cW (g j ), j = 1, 2}, together with the compatibil-
ity conditions on the facets given by the constraints (59), provide an invariant definition and
characterisation for the non-convex quadrilateral OG .

Alternatively, OG can be also defined as the deformation of the convex square QG(a) de-
fined as the convex hull of the vertices

{x1 − y12 + x2, x1 + y12 − x2, −ax1 + (2+ a)y12 − ax2, −x1 + y12 + x2} ,

where a is an arbitrary positive parameter. Then, the non-convex square is recovered in the
limit a −→ −1. Importantly, the compatibility conditions (59) are deformed accordingly: for
a>0, the vertex which is inside the triangle defined by {x1−y12+x2, x1+y12−x2, −x1+y12+x2}
is moved outside, accordingly with the two facets defining it, and the adjoint surface, which
in the non-convex square intersects the square inside in the midpoints {x1, x2}, is also moved
outside – see Figure 9.

In the next section we will see how the non-convex polytope associated to an arbitrary
graph can be generally defined in an invariant way via both compatibility conditions and as
a deformation of a convex polytope. This formulation has the virtue of being independent
of triangulations and, hence, it allows to ask general questions on the polytope subdivisions,
that, as we will show, are associated to the cosmological optical theorem and make manifest
the relation between the latter and the optical theorem in flat-space.

Before closing this subsection, let us observe that another characterisation of the non-
convex polytope OG can be given in terms of inequalities. Given the four hyperplanes
{W (g j ), cW (g j ), j = 1, 2}, the non-convex polytope OG is identified by the union of the fol-
lowing sets of inequalities

�

Y ·W (g1) > 0 , Y ·W (g2) > 0 , Y · cW (g1) > 0 , Y · cW (g2) > 0
	

,
�

Y ·W (g1) > 0 , Y ·W (g2) > 0 , Y · cW (g1) < 0 , Y · cW (g2) > 0
	

,
�

Y ·W (g1) > 0 , Y ·W (g2) > 0 , Y · cW (g1) > 0 , Y · cW (g2) < 0
	

,

(62)

i.e. considering both the region determined by the overlap of four positive half-planes and the
two regions obtained by alternatively considering the negative half-plane identified by the two
lines {cW (g j ), j = 1, 2} passing through {x1+y12+x2}. However, such a definition constitutes a
triangulation of OG into the quadrilateral {x1−y12−x2, x1, x1+y12+x2, x2}, which is identified
by the first set of inequalities in (62), and the two triangles {x1, x1 + y12 − x2, x1 + y12 + x2}
and x1+y12+x2, −x1+y12+x2, x2 respectively identified instead by the second and third sets
of inequalities in (62).

5.2 An invariant definition for the optical polytope

Let us consider a graph G with weights on both its sites, {xs, s ∈ V}, and its edges, {ye, e ∈ E}.
Then the optical polytope OG associated to the graph G is a polytope living in Pns+ne−1 with a
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local patch given by the weights of G, and defined as the non-convex limit of the convex hull
QG(a) of the following set of 4ne vertices

OG := lim
a−→−1

QG(a)

= lim
a−→−1

convex
hull

�

xse
− ye + xs′e

, xse
+ ye − xs′e

, −xse
+ ye + xs′e

,

−axse
+ (2+ a)ye +

∑

e′∈E\{e}
2(1+ a)ye′ − axs′e

)

e∈E

,

(63)

with Q(a) defined for a > 0. The canonical form of OG is then obtained as

ω(Y , OG) = lim
a−→−1

ω(Y , QG(a)) . (64)

Indeed the limit and convex-hull operations do not commute: for each edge, the vertex
parametrised by a lies in the interior of the triangle defined by the other three vertices as
a becomes negative, and the convex hull of all the vertices is just the cosmological polytope
PG itself.

We can therefore analyse the combinatorial and geometric structure of QG(a) using all
our knowledge on convex polytopes and finally take the limit a −→ −1 in order to extract
information about OG .

Graphs and optical polytopes. As for the cosmological polytope PG , a correspondence be-
tween graphs and the optical polytope can be established. As we showed in the previous
section, it is possible to associate a square in P2 with vertices

{xse
− ye + xs′e

, xse
+ ye − xs′e

, −xse
+ ye + xs′e

, −axse
+ (2+ a)ye − axs′e

} ,

(a > 0) to a two-site line graph. Let us now consider a collection of ne two-site line graphs
and the corresponding squares:

¦

xse
− ye + xs′e

, xse
+ ye − xs′e

, −xse
+ ye + xs′e

, −axse
+ (2+ a)ye − axs′e

©

e∈E
.

They can be embedded in the same space Pne(2+ne)−1 with local coordinates
Y := ({xse

, ye, y (2)e , . . . , y (ne)
e xs′e

}e∈E), given by the weights of the two-line graphs,
by mapping them in disconnected tetrahedrons, each of which living in a subspace
P3 ⊂ P2+ne−1 ⊂ Pne(2+ne)−1:

(

xse
− ye + xs′e

, xse
+ ye − xs′e

, −xse
+ ye + xs′e

, −axse
+ (2+ a)ye + 2(1+ a)

ne
∑

j=2

y( j)e − axs′e

)

e∈E

.

For future reference, let us indicate these four vertices for fixed e ∈ E as {Z ( j)
e }

4
j=1 following

the ordering of appearance in the list above.
Note that, given any tetrahedron from this collection, i.e. for fixed e ∈ E , the triangu-

lar facet identified by the vertices {Z ( j)
e }

3
j=1 identifies the cosmological polytope associated to

one of the two-site graphs from the collection. As a generic connected graph G with ns sites
and ne edges can be obtained from the collection of the ne two-site line graphs by suitably
identifying r1 := 2ne − ns sites, the corresponding polytope QG(a) is obtained by first pro-
jecting the tetrahedrons down to a codimension r2 := ne(ne − 1) space via the identification
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x1 x2 x ′1 x ′2

y y ′
x1 x2

y

y ′

Figure 10: Graphs and QG(a). Each graph G can be seen as a collection of 2-site
line graphs merged in a subset of their sites. As each two-site line graph can be
put in correspondence to a square and these squares can be mapped to tetrahedra
once they are embedded into the same space, a general graph G can be associated
to a polytope defined as a suitable intersection of such tetrahedra. Here we show
a collection of two two-site line graphs and the associated tetrahedra as well as the
two-site one-loop graph obtained by merging their sites in pairs and the associated
polytope QG(a). The dashed lines show the convex hull obtained by intersecting
the two tetrahedra, with the intersection points marked, while the coloured areas
represent the defining tetrahedra themselves.

{y ( j)e = ye j
, e j ∈ E \ {e}, j = 2, . . . , ne} and then intersecting them in the relevant midpoints

xse
, xs′e

, . . . of these triangular facets. The projection maps the vertices to

(

xse
− ye + xs′e

, xse
+ ye − xs′e

, −xse
+ ye + xs′e

, −axse
+ (2+ a)ye + 2(1+ a)

∑

e′∈E\{e}
ye′ − axs′e

)

e∈E

,

imposing the constraints

Z (4)
e + aZ (1)

e ∼ Z (2)
e +Z (3)

e + (1+ a)
∑

e′∈E\{e}

�

Z (2)
e +Z (3)

e

�

, ∀ e ∈ E , (65)

while the intersection imposes pairs of constraints on the vertices of the intersected tetrahedra
– for example, let us imagine to identify the midpoints xse

= xse′
, then

Z (1)
e +Z (2)

e ∼ Z (1)

e′ +Z (2)

e′ ,

Z (4)
e + aZ (3)

e ∼ Z (4)

e′ + aZ (3)

e′ .
(66)

With such identifications, the polytope QG(a) associated to a graph G lives in
Pne(2+ne)−r1−r2−1 = Pns+ne−1 and is given by the convex hull of the vertices as in (63) – see
Figure 10.

Facet structure of the optical polytope. As we already saw for the cosmological polytope,
and generally holds for any convex polytope, a facet is given by the hyperplane identified
by a covector W such that QG(a) ∩W ̸= ∅ and Z ( j)

e ·W ≥ 0 ∀ e ∈ E , ∀ j = 1, . . . , 4, with
the equality satisfied if and only if the vertex Z ( j)

e is on the hyperplane. Consider a generic
hyperplane expanded in the basis of covectors {x̃s, ỹe, s ∈ V , e ∈ E},

W =
∑

s∈V
x̃sx̃s +

∑

e∈E
ỹeỹe , (67)
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where { x̃s, ỹe, s ∈ V , e ∈ E} are arbitrary coefficients. Then, the conditions
Z ( j)

e ·W ≥ 0 ∀ e ∈ E , ∀ j = 1, . . . , 4 can be rewritten as

α(e,e) := Z (1)
e ·W = x̃se

− ỹe + x̃s′e
≥ 0 ,

α(e,se) := Z (2)
e ·W = x̃se

+ ỹe − x̃s′e
≥ 0 ,

α(e,s′e)
:= Z (3)

e ·W = − x̃se
+ ỹe + x̃s′e

≥ 0 ,

bα(e,e) := Z (4)
e ·W = −ax̃se

+ (2+ a) ỹe + 2(1+ a)
∑

e′∈E\{e}
ỹe′ − ax̃s′e

≥ 0 ,

(68)

with the α’s satisfying the very same linear relations (66) as the vertices

α(e,e) +α(e,se) = α(e′,e′) +α(e′,se′ ) ,

bα(e,e) + a ·α(e,s′e)
= bα(e′,e′) + a ·α(e′,s′′

e′ )
,

(69)

Hence, a vertex of QG(a) is on a facet if the associated α is zero, and the hyperplane contain-
ing a facet is identified by the non-trivial maximal set of vanishing α’s compatible with the
conditions (69), where by non-trivial we mean that not all the α’s should be set to zero. It is
convenient to introduce a marking on the graph for identifying the positive α’s

xse
xs′eye

α(e,e) > 0 ,
xse

xs′eye
α(e,se) > 0 ,

xs xs′eye
α(e,s′e)

> 0 ,
xs xs′eye

bα(e,e) > 0 .

Importantly, as the relations (69) are sums of non-negative quantities in both sides of the
equations, if both α’s are zero on one side then they ought to be zero also on the other side.
This implies that there a facet cannot be identified by a hyperplane such that just one of the
sides of any of the equations (69) has all the α’s set to zero. Consequently, the following
markings are not allowed

(70)

These are obtained by setting to zero all the α’s in the second and first equation in (69) respec-
tively, i.e. each line in (70) is implied by just one of the linear relation (69). In particular, note
that the first three conditions in (68) and the first line in (69) are the very same satisfied by
the cosmological polytope PG associated to G: the polytope QG(a) contains PG and displays
(some of) its facets.

A general question now is whether there are further restrictions on setting the α’s to zero,
and hence further forbidden markings. From the set of constraints in (65), it can be noticed
that each bα satisfies also the following relation

bα(e,e) + aα(e,e) = α(e,se) +α(e,s′e)
+ (1+ a)

∑

ê∈E\{e}
(α(ê,sê) +α(ê,s′ê)

) , ∀ e ∈ E . (71)

If we set both α(e,e) and bα(e,e) to zero for a fixed e ∈ E , then (71) forces to set all the α’s
on its right-hand-side to zero, given that it is just a sum of non-negative terms. However,
all the relations (71) involve the sum of the same non-negative terms with different positive
coefficients. Thus, the validity of (71) for any e ∈ E implies that also α(e,e) = 0 and bα(e,e) = 0
for any e ∈ E . Requiring that two vertices of the Z (1)

e and Z (4)
e are on the same hyperplane

automatically implies that all the vertices of QG(a) ought to be on the same hyperplane, so
that the only solution on the constraints on the α’s is the trivial solution: only the whole
space can contain such vertices, and its intersection with QG(a) is the whole polytope. This
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implies that at least one of the markings and should always appear
on every edge. Notice also that setting all the α’s to zero on the right-hand-side of (71), while
keeping α(e,e) > 0 ∀ e ∈ E identifies the scattering facet of the cosmological polytope PG .
However, as just emphasised, such a solution is not compatible with the constraints on QG(a)
and, consequently, the scattering facet of PG is not a facet of QG(a).18

Hence, also the following markings are not allowed

(72)

as they show at least one of the edges unmarked in the middle. Let us now consider the
hyperplanes containing the two vertices Z (1)

e and Z (4)

e′ , e and e′ being two edges with a common
site. Hence, α(e,e) = 0 and bα(e′,e′) = 0. The linear relations (69) then become

α(e,se) = α(e′,e′) +α(e′,se′ ) ,

bα(e,e) + a ·α(e,s′e)
= a ·α(e′,s′e) .

(73)

The previous analysis showed that requiring both α(e,e) and bα(e,e), associated to the same edge
e, to vanish, implies the trivial solution only. Consequently, as we are considering α(e,e) = 0
and bα(e′,e′) = 0, bα(e,e) and α(e′,e′) ought to be positive, and hence, we can just set α(e,se) and
α(e′,se′ ) to zero in order to have (73) satisfied. The relations (71) then write

0 = aα(e′,e′) + bα(e,e) +
∑

ê∈E\{e,e′}

�

α(ê,sê) +α(ê,s′ê)

�

,

0 = α(e′,e′) + abα(e,e) +
∑

ê∈E\{e,e′}

�

α(ê,sê) +α(ê,s′ê)

�

.
(74)

As their right-hand-sides are just sums of non-negative terms, they can be satisfied if and only
if each term is individually zero: the only solution compatible with the linear constraints (73)
is the trivial solution. Thus, there is no facet of QG(a) which can contain the vertices Z (1)

e and
Z (4)

e′ , and hence the following marking is also not allowed

(75)

Now, given an arbitrary graph G, a facet of QG(a) is identified by a hyperplane W contain-
ing as many vertices of QG(a) as possible (without containing the full polytope). In terms of
the markings, this corresponds to mark G in such a way that no configuration (70), (72) and
(75) is present, and that removing any of the markings either forces to remove all of them or
yields one of the non-allowed configurations.

This can be translated into the following graphical rule. Given an arbitrary graph G, we
can associate a pair of facets (W (g), cW (g)

a
) to each subgraph g ⊂ G.19 The vertex structure of

QG ∩W (g) is obtained by marking the cut edges close to the sites in g, the edges in g in the
middle with both and , and all the edges outside of g with . The vertex structure of

18This statement can be checked directly by considering the hyperplane W (G) =
∑

s∈G x̃s, which identifies the
scattering facet and is compatible with the relation in the first line of (66). From (68), the α’s satisfy the following
relations

α(e,e) > 0 , α(e,se) = 0 , α(s,s′e) = 0 , bα(e,e) < 0 , ∀ e ∈ E ,

and consequently the hyperplane W (G) intersects the polytope QG(a) in its interior, with the vertices {Z (2)e ,Z (3)e }e∈E
on QG ∩W (G) but with {Z (1)e }e∈E and {Z (4)e }e∈E in the positive and negative half space identified by W (G), respec-
tively.

19Note that, as it is not possible to mark only all the edges in the middle because of the relation (71), then no
hyperplane is associated to the g= G.
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QG ∩cW (g)
a

is instead given by marking the cut edges away from the sites in g, double-marking
all the edges in g, and marking the edges outside of g with :

x1

x2 x3 x4

x5

x6x7

g

QG ∩W (g)

g

x1

x2 x3 x4

x5

x6x7

g

QG ∩ cW (g)
a

g

For the sake of concreteness, let us focus on the markings above. It is easy to see that if we
remove any of the markings outside of g in the left picture, then we land on a configuration
of the type (72), with an edge having both the associated α and bα set to zero, which is not
allowed. Similarly, for the picture on the right, removing any of the middle markings outside
of g produces the similar type of non-allowed configurations. If instead any of the markings

is removed in the left picture, then the linear relation in the first line of (66) is no longer
satisfied, while if inside of g is removed, the linear relation in the second line of (66) is
violated. A similar reasoning applies also to the right picture. Removing any of the markings
in the left picture, which is equivalent to requiring that more vertices of QG(a) belong to the
pair of hyperplanes (W (g), cW (g)

a
), results into the appearance of inconsistent markings and,

consequently, the violations of the relations (66) and (71): the graphical rule above defined
provides the facets {QG(a)∪W (g) ̸= ∅, QG(a)∪ cW (g)

a
̸= ∅, ∀g ⊂ G}. This also implies that if

ν̃ is the number of subgraphs g ⊆ G, then the polytope QG(a) has 2(ν̃− 1) facets.
The vertex configurations of the two hyperplanes W (g) and cW (g)

a
differ by containing the

vertices {Z (1)
e , e ∈ Eg ∪ ̸E} and excluding {Z (4)

e , e ∈ Eg ∪ ̸E} (the former) and vice versa (the
latter). The hyperplanes W (g) and cW (g)

a
associated to these facets can easily be seen to be

W (g) =
∑

s∈Vg

x̃s +
∑

e∈Eext
g

ỹe ,

cW (g)
a =

∑

s∈Vg

[1+ (next − 1)(1+ a)]x̃s +
∑

s∈Vg

next(1+ a)x̃s + a
∑

e∈Eext
g

ỹe ,
(76)

with Vg ∪ Vg = V and next the number of edges departing from g, i.e. next := dim{E ext
g
}. It is

useful to also introduce a marking for the vertices which are on a facet via

xse
xs′eye

α(e,e) =W ·Z (1)
e = 0 ,

xse
xs′eye

α(e,se) =W ·Z (2)
e = 0 ,

xs xs′eye

α(e,s′e)
=W ·Z (3)

e = 0 ,
xs xs′eye
⋄

bα(e,e) =W ·Z (4)
e = 0 ,

and, hence, the vertex configuration of the facets QG ∩W (g) and QG ∩cW (g)
a

can be represented
alternatively as

x1

x2 x3 x4

x5

x6x7

g

QG ∩W (g)

g

x1

x2 x3 x4

x5

x6x7

g

QG ∩ cW (g)
a

g

⋄

⋄
⋄
⋄⋄

⋄
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Note that this marking makes manifest the peculiar vertex structure associated to the edges
in g, that characterises a (lower-dimensional) scattering facet Sg [24] – with each vertex on
it indicated via , as well as the factorisation of the canonical function of these facets in the
form

Ω(Y ,QG ∩W (g)) = Ω(Yg,Sg)×Ω(Ygc
,Pgc
) ,

Ω(Y ,QG ∩ cW (g)
a ) = Ω(Yg,Sg)×Ω(Ygc

, ÒPgc
) ,

(77)

where gc := g ∪ ̸E indicates the union20 between the complementary graph g and the set of cut
edges ̸E , while Pgc

and ÒPgc
are the associated polytopes contained in QG ∩W (g) and QG ∩cW (g)

a

respectively.
The knowledge of the facet structure of QG(a) allows to write its canonical form as

ω
�

Y ,QG(a)
�

=
nδ(Y; a)〈Ydns+ne−1Y〉
∏

g⊂G

�

Y ·W (g)
��

Y · cW (g)
a

� , (78)

with the numerator nδ(Y; a) being a polynomial of degree δ = 2(ν̃ − 1) − ns − ne which
is fixed by the compatibility conditions among the facets and, therefore, by the structure of
higher codimension faces of QG(a).

Let us now consider the canonical form (78) in the limit a −→−1. It provides the canonical
form for the optical polytope OG :=QG(−1):

ω(Y ,OG) := ω(Y ,QG(−1)) =
nδ(Y;−1)〈Ydns+ne−1Y〉
∏

g⊂G

�

Y ·W (g)
��

Y · cW (g)
−1

� . (79)

In this limit, each vertex Z (4)
e becomes a linear combination of the other three vertices associ-

ated to the same edge. This is reflected into the fact that the relation (71) can be recast in this
limit into

bα(e,e)

�

�

a=−1 = α(e,e) +α(e,se) +α(e,s′e)
, (80)

which also implies that Z (4)
e is the centroid of the triangle identified by the vertices

{Z (1)
e , Z (2)

e , Z (3)
e } if all the α’s on the right-hand-side are positive. The linear dependence (80)

makes the two linear relations (69) equivalent for a = −1. Because of (80), whenever the
three vertices {Z (1)

e , Z (2)
e , Z (3)

e } associated to a given edge e are on a facet, also Z (4)
e is on the

same facet, while it is enough that one of them is not on the facet for Z (4)
e to also not be.

Note also that the expressions for the hyperplanes (W (g), cW (g)
−1

) in terms of the canonical
basis of Rns+ne represented by the covectors {x̃s, s ∈ V} and {ỹe, e ∈ E} can be obtained from
(76). They are

W (g) =
∑

s∈Vg

x̃s +
∑

e∈Eext
g

ỹe , cW (g)
−1
=
∑

s∈Vg

x̃s −
∑

e∈Eext
g

ỹe . (81)

Let us consider the edges e ∈ E ext
g and the sites se ∈ Vg from which they depart. Then, for each

of them, OG ∩W (g) ̸= ∅ with α(e,e) = 0, α(e,s′e)
= 0, α(e,se) > 0 and, consequently, bα(e,e) > 0.

Similarly, it is easy to see that when we consider OG ∩ cW (g)
−1
̸= ∅, α(e,se) = 0 and bα(e,e) = 0

with α(e,e) > 0 while α(e,s′e)
< 0 which signals that the canonical form (79) is associated to a

geometry which is not positive. If instead e ∈ Eg, then α(e,se) = 0, α(e,s′e)
= 0 with α(e,e) > 0

and bα(e,e) > 0 for both OG ∩W (g) ̸= ∅ and OG ∩ cW (g)
−1
̸= ∅.

20This is an abuse of notation since gc := g ∪ ̸E is not a graph in the ordinary sense: gc includes g and all the
edges in ̸E , but not those sites outside of g on which these edges end.
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The graphical rules which associate a subgraph g ⊂ G to a pair of facets of QG(a), can
be generalised to OG . For each g ⊂ G, the vertex structure of OG ∩W (g) can be obtained by
marking the cut edge close to the sites in g via , as well as marking the edges inside g with
both and . The vertex structure of OG ∩W (g)

−1
is instead obtained by double marking the

edges inside g in the middle, as for the previous case, as well as by marking the cut edges close
to the site in g as well as in the middle with

x1

x2 x3 x4

x5

x6x7

g

OG ∩W (g)

g

x1

x2 x3 x4

x5

x6x7

g

OG ∩ cW (g)
−1

g

It is important to notice that OG ∩cW (g)
−1

allows for markings such as as now
α(e,e) > 0 and α(e,se) < 0.

We are now left to discuss the adjoint surface of QG(a) and OG , which fixes the numerator
of the canonical form and is fixed by the compatibility conditions among the facets. As QG(a)
is a positive geometry, the adjoint is the locus of the intersections among all the hyperplanes
{W (g), cW (g)

−1
, ∀g ⊂ G}, outside of QG(a). For the non-positive geometry OG , the adjoint is the

locus of such intersections inside OG and on its boundaries.
The compatibility conditions among the intersections of the facets, are of extreme impor-

tance as they provide a different characterisation of a polyope and hence, a further invariant
definition: if both the facets and the compatibility conditions are given, then the polytope
is determined. As the optical polytope OG we are actually interested in has been defined as
the non-convex limit a −→ −1 of QG(a), the compatibility conditions for the facets of QG(a)
map into compatibility conditions for the facets of the optical polytope OG . Turning the ta-
ble around, the set of such compatibility conditions, together with the set of facets of OG ,
{W (g), cW (g)

−1
, g ⊂ G}, provide a novel definition of a non-convex polytope, independent of a

previous notion of a convex polytope QG(a), or of polytope subdivision in terms of convex
polytope (which is their usual definition), putting them on the same footing.

Higher codimension faces and compatibility conditions. A face of codimension k of the
polytope QG(a) ⊂ Pns+ne−1 is a polytope QG(a)∩W (g1 · · ·gk)

a
̸= ∅ living in Pns+ne−k−1 identified

by the codimension-k hyperplane W (g1 · · ·gk)
a

:= ∩k
j=1
fW (g j )

a
, where each fW (g j )

a
( j = 1, . . . , k) is a

hyperplane containing a facet and, hence, it can either be W (gj) or cW (gj)
a

. Turning the table
around, given a codimension-k hyperplane W (g1 · · ·gk)

a
, if QG(a)∩W (g1 · · ·gk)

a
= ∅ in codimension-

k, then W (g1 · · ·gk)
a

lies outside QG(a). The locus of the intersections of hyperplanes containing
the facets outside of QG(a) determines the numerator of the canonical form and the conditions
which determine such intersections is what we refer to as compatibility conditions—they pro-
vide the information about the vanishing multiple residues of the canonical form and, hence,
∆ψG .

The general logic for unveiling the face structure in arbitrary codimension is the very same
used in [27,46]: the intersection QG(a)∩W (g1 · · ·gk)

a factorises into 2k subspaces and, in order to
occur in codimension k, the sum of the dimensionalities of such subspaces ought to be equal
to the dimensionality of Pns+ne−k−1. Because of the correspondence between subgraphs and
hyperplanes {W (g), cW (g)

a
, g ⊂ G}, when considering the intersections W (g1 · · ·gk), the graph G is
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decomposed into 2k subgraphs which are identified by the intersection among the different
{g j ⊂ G, j = 1, . . . , k}, their complementaries {g j ⊂ G, j = 1, . . . , k} and the elements of these
two subsets

G|QG∩W(g1 · · ·gk) =
k
⋃

j=1

⋃

σ( j)∈eSk

gσ(1) ∩ gσ( j) ∩ gσ( j+1) ∩ . . .∩ gσ(k) :=
k
⋃

j=1

⋃

σ( j)∈eSk

g(∩)
σ( j) , (82)

where eSk = {1, . . . , k |σ(r) < σ(r + 1), r = 1, . . . , j − 1, &σ(s) < σ(s + 1), s = j, . . . , k}.
Importantly, it is not necessary that all the intersections in (82) are non-empty, rather there
should be a sufficient number of them which are. It is straightforward to see that, as it happens
for the cosmological polytope, for 2k − 1 of them the corresponding polytope in principle has
the vertex structure of a low-dimensional scattering facet, i.e. it corresponds to a polytope
given by the vertices {xse

+ ye − xs′e
, −xse

+ ye + xs′e
, ∀ e ∈ E

g
(∩)
σ( j)
} – E

g
(∩)
σ( j)

is the set of edges

associated to the intersection g(∩)
σ( j). The intersection of all the complementary graphs is the

only one which does not have such a structure. Following the same counting as in [31, 46],
the dimension of QG(a)∩W (g1 · · ·gk) is given by

dim{QG(a)∩W (g1 · · ·gk)} = ns + ne −
∑

Sg

1− ̸n ̸E − 1 , (83)

with Sg indicating the scattering facets, and ̸n ̸E being the number of cut edges whose associ-
ated vertices are not in the subspace QG(a)∩W (g1 · · ·gk). Hence, in order for QG(a)∩W (g1 · · ·gk)

to be non-empty in codimension-k, the following condition needs to be satisfied
∑

Sg

1+ ̸n ̸E = k , (84)

i.e. there should be k− ̸n ̸E non-empty intersections g(∩)
σ( j) (excluding g1∩ . . .∩gk which can be

equivalently empty or non-empty). If the hyperplane W (g1 · · ·gk) is such that the compatibility
condition is not satisfied, then

ResW(g1 · · ·gk){ω
�

Y , QG
�

} := Res
fW(g1) . . . Res

fW(gk)ω(Y , QG) = 0 . (85)

Note that

1. ifW (g1 · · ·gk) is defined through {fW (g j ) = W (g j ), j = 1, . . . , k}, then we recover both a subset
of the Steinmann-like relations [27] and a subset of the higher-codimension conditions
for k > 2 [46] for the wavefunction of the universe, as QG ∩W (g j ) = PG ∩W (g j ) for each
j = 1, . . . , k;

2. if W (g1 · · ·gk) is instead defined through {fW (g j ) = cW (g j ), j = 1, . . . , k}, then (85) gives a set
of conditions which turns out to also constrain ψ†;

3. if finally W (g1 · · ·gk) is defined via both types of hyperplanes, then the conditions (85) are
truly compatibility conditions between Bunch-Davies singularities and folded ones. In
particular, in codimension two

ResW(g)Res
cW(g)Ω(Y ,OG) = 0 ,

ResW(g)Res
cW(g)Ω(Y ,OG) ∼ Ω(Yg,Sg)×Ω(Y̸E , Σ̸E)×Ω(Yg,Sg) ,

ResW(g)Res
cW(g)Ω(Y ,OG) ∼ Ω(Yg,Sg)×Ω(Y̸E ,Σ′̸E)×Ω(Yg,Sg) .

(86)

The first line holds for all g ⊂ G except those defined by all sites of G and all edges but
one, for which (84) is satisfied. The other two are proven by considering that ̸n ̸E = 0
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x1

x2 x3 x4

x5

x6x7

g

QG ∩W (g) ∩ cW (g)

g

x1

x2 x3 x4

x5

x6x7

g

QG ∩W (g) ∩ cW (g)

g

x1

x2 x3 x4

x5

x6x7

g

QG ∩ cW (g) ∩W (g)

g

Figure 11: Codimension-2 faces of the optical polytope. The intersection of the two
hyperplanes W (g) and cW (g) associated to the same subgraph g ⊂ G (picture on the
left) is not a face of the optical polytope: it should be a k = 2 boundary but it has
two lower-dimensional scattering facets, identified by the open circles contained in g

and g respectively, and it has no vertices on the three cut edges, i.e. ̸n ̸E = 3. Hence,
the condition (84) is not satisfied (2 + 3 ̸= 2). The other two intersections have a
similar structure, which differ by the presence of a vertex from each cut edge whose
convex hull defines a lower-dimensional simplex: now ̸n ̸E = 0 in both cases and
the condition (84) is satisfied. The vertices organise themselves into two scattering
facets and a simplex which translates into the factorisation of the canonical function
(86) and, hence, of ∆ψG in (87).

and g∩ g = ∅, so that (84) is fulfilled, as well as that the vertex structure associated to
each of the two subgraphs is precisely the one characterising a low-dimensional scatter-
ing facet, Sg and Sg, and a simplex associated to the cut edge, Σ̸E and Σ′̸E in the second
and third lines respectively—the two simplices differ from one another by the fact that
Σ̸E (Σ′̸E) is the convex hull of the vertices marked by an open circle close to g (g)—,
see Figure 11.

In terms of ∆ψG , the conditions (86) translate into

ResEg
Res

bEg
∆ψG = 0 ,

ResEg
Res

bEg
∆ψG = Ag ×

 

∏

e∉E

1
2ye

!

×Ag ,

Res
bEg

ResEg
∆ψG = Ag ×

 

∏

e∉E

1
2ye

!

×Ag ,

(87)

for subgraphs g ⊂ G satisfying the properties mentioned above, with

Eg :=
∑

s∈Vg

xs +
∑

e∉E
ye , and bEg :=

∑

s∈Vg

xs −
∑

e∉E
ye .

The second and third lines in (87) differ from each other by the energy flux in the cut
edges ̸E only, which are geometrically identified by the different simplices Σ̸E and Σ′̸E
respectively.

5.3 Triangulations and cutting rules

The optical polytope OG provides an invariant definition for ∆ψG , and ultimately is a non-
positive part of the cosmological polytope PG sharing the very same boundaries except one,
the scattering facet.
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Let us begin by considering the polytope QG(a). As it has been shown in the previous
section, the hyperplane W (G) :=

∑

s∈V x̃s, intersects QG(a) in its interior, with the vertices
{Z (2)

e , Z (3)
e , e ∈ E} on QG(a)∪W (G), while the two sets of vertices {Z (1)

e , e ∈ E} and {Z (4)
e , e ∈ E}

lie on the two different half-spaces identified by W (G). A polytope subdivision of QG(a) is then
given by the union of the two polytopes PG and P†

G(a) with vertices {Z (1)e , Z (2)e , Z (3)e }e∈E and
{Z (2)e , Z (3)e , Z (4)e }e∈E , respectively. The canonical form of QG(a) can then be written as

ω
�

Y , QG(a)
�

= ω
�

Y , PG
�

+ ω
�

Y , P†
G(a)

�

. (88)

The two sides of the cosmological optical theorem can then be seen as different polytope
subdivisions of the optical polytope. The left-hand-side is given by the polytope subdivision
of OG via the hyperplane containing the scattering facet, W (G), which can be obtained as the
a −→ −1 limit of (88). The optical polytope OG gets then divided into the cosmolological
polytope PG and another polytope P†

G := P†
G(−1) which is isomorphic to PG:

ω
�

Y , OG
�

= ω
�

Y , PG
�

+ ω
�

Y , P†
G
�

, (89)

with P†
G defined as the convex hull of the vertices

{xse
+ ye − xs′e

, −xse
+ ye + xs′e

, xse
+ ye + xs′e

}e∈E . (90)

Importantly, the subdivision given by (89) can be obtained directly without making any refer-
ence to the convex polytope QG(a).

The canonical form of PG provides the wavefunction coefficient ψG(xs, ye) associated to
the graph G. The canonical form of P†

G contains folded singularities only, with the excep-

tion of the total energy singularity: it describes ψ†
G(−xs, ye). Besides (89), there are several

other polytope subdivisions, or even triangulations. Let {P ( j), j = 1, . . . , n} be a collection of
polytopes in Pns+ne−1 such that their union returns OG , provided that the elements of such a
collection have compatible orientations. Then, its canonical form can be written as

ω
�

Y , OG
�

=
n
∑

j=1

ω
�

Y , P ( j)
�

, (91)

for any collection {P ( j), j = 1, . . . , n} satisfying the conditions specified above. Note that (89)
is a special case of (91), with the chosen collection being {PG, P†

G}. The equivalence among
all these representations for the canonical form of the optical polytope provides in particular
the following equality

ω
�

Y , PG
�

+ ω
�

Y , P†
G
�

=
n
∑

j=1

ω
�

Y , P ( j)
�

, (92)

for any collection {P ( j), j = 1, . . . , n} ≠ {PG, P†
G}.

21 The relation (92) is the geometric-
combinatorial statement, and extension, of the cosmological cutting rules.

A triangulation is usually obtained by dividing a polytope in simplices via hyperplanes
which intersect the polytope passing through a subset of its vertices and being distinct from
its facets. These hyperplanes introduce spurious boundaries and translate, at the level of the
canonical form, into spurious singularities which cancel upon summation. A systematic study
of these triangulations is beyond the scope of the present paper. It would be interesting to
apply the algebraic approach used in [57] for the triangulations of cosmological polytopes.

21The equality would just provide a completely trivial statement.
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Another class of triangulations can be obtained by using points in the adjoint surface of OG .
Note that while for the convex polytope QG(a) (with a > 0) the adjoint surface is identified by
the intersections of the hyperplanes containing the facets of QG(a) outside of QG(a) itself, the
adjoint surface for the non-positive geometry OG intersects OG in its interior, and it is identified
by the intersections of the hyperplanes containing the facets of OG inside its facets themselves.
Irrespectively of whether we are in presence of a positive or non-positive geometry, the adjoint
surface encodes the zeroes of its canonical form and it is determined by the multiple residues
(85), each of which identifies a zero of the canonical form which can be used to triangulate
our polytope. These triangulations use the very same hyperplanes containing the facets of
QG(a)/OG: as no spurious boundaries are introduced, no spurious pole appears when the
canonical form is decomposed into the sum of the canonical forms of simplices.

As discussed in Section 5.2, a given subgraph g ⊂ G is associated to a pair of hyperplanes
(W (g), cW (g)

a
) such that QG(a) ∩W (g) and QG(a) ∩ cW (g)

a
are facets of QG(a) – similarly for OG

when a = −1. Each of these two facets is identfied by a marking. Let mg and bmg be the
markings associated to QG(a) ∩W (g) and QG(a) ∩ cW (g)

a
respectively. Let M◦ be the set of

markings – which can contain either or both the type of markings mg and bmg – identifying
the hyperplane W (g1 · · ·gk)

a
such that QG(a) ∩W (g1 · · ·gk)

a
= ∅ – recall that W (g1 · · ·gk)

a
:= ∩k

j=1
fW (g j )

where fW (g j ) can be either W (g j ) or cW (g j )
a

. By definition, W (g1 · · ·gk)
a

is a subspace of the adjoint
surface of QG(a). Let us assume that we can perform a triangulation of QG(a) through it: the
simplices involved are given by k inequalities associate to M◦ together with (ns+ne−k)more

inequalities associated to the hyperplane W (gσ(1) · · ·gσ(ns+ne−k))
a

:=
ns+ne−k
⋂

j=1

fW (gσ( j))

(a) identified by the

markings m /∈M◦ such that they identify an (ns + ne − k)-dimensional face of QG(a), i.e.

Res
fW(gσ(1))Res

fW(gσ(2)) . . . Res
fW(gσ(ns+ne−k))ω(Y ,QG(a)) ̸= 0 , (93)

where the gσ( j)’s can identify all the subgraphs strictly contained in G exept {g j , j = 1, . . . , k}.
Hence, given M◦, each possible set Mc of markings with (ns + ne − k) elements m /∈M◦ such
that (86) is satisfied, defines the collection of simplices triangulating QG(a). The canonical
form of QG(a) can thus be written as

ω(Y ,QG(a)) =
∑

{Mc}

∏

m′∈Mc

1
qm′(Y)

〈Ydns+ne−1Y〉
∏

m∈M◦

qm(Y)
, (94)

where qm(Y) := Y · fW (g)
a

, and the sum runs over all the possible sets Mc . Importantly, (94)
represents all the possible ways in which the canonical form ω(Y ,QG(a)) can be triangulated
without introducing spurious poles. These representations are identified by the choice of M◦.
Subspaces of the adjoint surface are determined by those markings covering completely the
graph G. As a further comment, the canonical form triangulation (94) is valid also directly for
the optical polytope OG: this can be seen by either taking the limit a −→−1 in (94) or, more
invariantly, by using the compatibility conditions for OG .

Finally, note that both (20) and the holomorphic cutting rules (23) can be associated to
triangulations that do not fall in any of the two classes just described. Rather, they are ob-
tained via the special points {xs, s ∈ V}: they introduce spurious boundaries identified by
the hyperplanes {W (e) := ỹe, e ∈ E} – each of these hyperplanes contains the vertices of OG
{Z (1)

e′ , Z (2)

e′ , Z (3)

e′ , Z (4)

e′ , e′ ∈ E \ {e}} as well as all the special points {xs, s ∈ V}.
For the sake of clarity and concreteness let us analyse some simple examples.
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The optical polytope and the two-site line graph. Let us begin with considering the optical
polytope associate to the two-site line graph, which is a non-convex quadrilateral with vertices

{x1 − y12 + x2, x1 + y12 − x2, −x1 + y12 + x2, x1 + y12 + x2 } .

A first class of triangulations can be obtained via a line passing through its non-adjacient
vertices:

x1 − y12 + x2

x1 + y12 − x2 −x1 + y12 + x2

x1 x2x1 + y12 + x2

x1 − y12 + x2

x1 + y12 − x2 −x1 + y12 + x2

x1 x2x1 + y12 + x2

where the spurious boundary is depicted with a dashed line. In the first picture, the spurious
boundary intersects the optical polytope in its vertices {x1+y12−x2, −x1+y12+x2} only, and
triangulates the optical polytope into the two triangles

{x1 − y12 + x2, x1 + y12 − x2, −x1 + y12 + x2} ,

and
{x1 + y12 − x2, −x1 + y12 + x2, x1 + y12 + x2} .

Such triangles correspond respectively to the cosmological polytope and P†
G(−1), pro-

viding the left-hand-side of (92). Note that these two triangles share the segment
{x1 + y12 + x2, −x1 + y12 + x2} but with different orientation. Such a segment is nothing
but the scattering facet of PG which is a spurious boundary for OG . The second picture above
is the triangulation of OG via the line passing through the vertices {x1−y12+x2, x1+y12+x2},
i.e. W (14) := x̃1 − x̃2.

The equivalence between these two triangulations can be interpreted diagrammatically as

x1 x2

y12

−x1 −x2

y12
+

x1 − y12

y12 + x2

x1 + y12

−y12 + x2
−=

1
x1 − x2

�

�

, (95)

where the one-site graphs in which∆ψG factorises involve the energy of the sites ofψG shifted
by −y12 (white site) and +y12 (black site) on the sides of the cut, with a contribution from
both possible shifts. Interestingly, the terms in the right-hand-side of (95) have a directed
energy flow along the erased edge.

A second class of triangulations can be obtained via the adjoint surface. First, the adjoint
surface is determined by the combination of markings which cover completely the graph [46]

x1 x2y12 x1 x2y12
= ,

x1 x2y12 x1 x2y12
= ,

x1 x2y12
. (96)

The markings in the curly brackets identify the points Z I
A

:= εI JKW (g1)
J
cW (g1)

K
∼ x2 and

Z I
B

:= εI JKW (g2)
J
cW (g2)

K
∼ x1. The adjoint surface is then a line characterised by the co-vector

CI = εIJKZ J
A
ZK

B
. It is possible to triangulate our quadrilateral either via ZA or ZB. From (94),

we respectively obtain

ω(Y ,OG) =

�

1
qmg2

+
1

q
bmg2

�

〈Yd2Y〉
qmg1

q
bmg1

=
1

x2
1 − y2

12

�

1
x2 + y12

−
1

x2 − y12

�

d x1 ∧ d y12 ∧ d x2

Vol{GL(1)}
,

(97)
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x1 x2 x1 x2 x1 x2

Figure 12: Triangulations of the OG associated to the two-site line graph via its ad-
joint surface. On the left: The adjoint surface for OG is represented via the red line.
The two intersections between the hyperplanes containing non-adjacent facets are
ZA ∼ x2 and ZB ∼ x1.The center and right pictures are the triangualtions using the
two special points on the adjoint surface and respectively represent (97) and (98).

and

ω(Y ,OG) =

�

1
qmg1

+
1

q
bmg1

�

〈Yd2Y〉
qmg2

q
bmg2

=
1

x2
2 − y2

12

�

1
x1 + y12

−
1

x1 − y12

�

d x1 ∧ d y12 ∧ d x2

Vol{GL(1)}
.

(98)
What about the (holomorphic) cutting rules? For this specific graph, the standard and

holomorphic cutting rules turn out to coincide. Notice that the adjoint surface is identified by
the linear polynomial n1(Y) = Y ·C = −2y12 which constitutes the numerator of the canonical
form. It is possible to triangulate OG requiring that the adjoint is an actual boundary for all
the simplices, i.e.

(Z1Z2Z4Z3) = (Z1x1x2) + (x1Z2x2) + (x1Z3x2) + (x1x2Z4) ,

where each round bracket contains a sequence of vertices which represent the polygon (a
quadrilateral on the left-hand-side and triangles on the right-hand one) and their order indi-
cates the orientation. The canonical form of OG can then be written as

ω(Y , OG) =

�

〈1x1x2〉2

〈Y1x1〉〈Yx1x2〉〈Yx21〉
+

〈x12x2〉2

〈Yx12〉〈Y2x2〉〈Yx2x1〉

+
〈x13x2〉2

〈Yx13〉〈Y3x2〉〈Yx2x1〉
+

〈x1x24〉2

〈Yx1x2〉〈Yx24〉〈Y4x1〉

�

〈Yd2Y〉 ,
(99)

which is the r.h.s. of the cutting rules of [32,35,37].
As a final comment, it is worth noticing that our quadrilateral OG has further triangulations

using the two special points which identify its adjoint surface:

x1 x2 x1 x2

They correspond to two new four-term decompositions of the canonical form of OG , namely

ω(Y ,OG) =

�

〈1x1x2〉2

〈Y1x1〉〈Yx1x2〉〈Yx21〉
+

〈x14x2〉2

〈Yx14〉〈Y4x2〉〈Yx2x1〉

+
〈x124〉2

〈Yx12〉〈Y24〉〈Y4x1〉
+

〈43x2〉2

〈Y43〉〈Y3x2〉〈Yx24〉

�

〈Yd2Y〉 ,
(100)

and

ω(Y ,OG) =

�

〈1x14〉2

〈Y1x1〉〈Yx14〉〈Y41〉
+

〈4x21〉2

〈Y4x2〉〈Yx21〉〈Y14〉

+
〈x124〉2

〈Yx12〉〈Y24〉〈Y4x1〉
+

〈43x2〉2

〈Y43〉〈Y3x2〉〈Yx24〉

�

〈Yd2Y〉 ,
(101)
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which differ from each other in how the convex quadrilateral (Z1x1Z4x2) is triangulated.

The optical polytope and the three-site line graph. Let us now consider the opti-
cal polytope OG ∈ P4 associated to the three-site line graph, which is characterised
by 8 vertices and 10 facets. This is the simplest case in which the standard and
holomorphic cutting rules differ from each other, as depicted in Figures 2 and 3, and
both show spurious singularities, {y12 = 0, y23 = 0, −y12 + x2 + y23 = 0} and
{y12 = 0, y23 = 0, −y12 + x2 + y23 = 0, y12 + x2 − y23 = 0} respectively – note that the
last set contains the same spurious singularities as the first set, plus an additional one. In the
optical polytope picture, the spurious poles correspond to hyperplanes which are not actually
boundaries of the geometry.

Let us consider the hyperplanes W (y12) := ỹ12, W (y23) := ỹ23, W (2∓) := −ỹ12 + x̃2 + ỹ23 and
W (2±) := +ỹ12+x̃2−ỹ23, where the indices i j label the edge between the i-th and j-th site. They
turn out to intersect OG in its interior and each of them contains a subset of the vertices of OG
and intersects the boundaries of OG in at least one of the special points x1 and x3. Concretely

W (y12) : {x1, Z (1)
(23)

, Z (2)
(23)

, Z (3)
(23)

, Z (4)
(23)

, x3} , W (y23) : {x1, Z (1)
(12)

, Z (2)
(12)

, Z (3)
(12)

, Z (4)
(12)

, x3} ,
W (2∓) : {x1, Z (3)

(12)
, Z (4)

(12)
, Z (1)

(23)
, Z (3)

(23)
, x3} , W (2±) : {x1, Z (1)

(12)
, Z (2)

(12)
, Z (2)

(23)
, Z (4)

(23)
, x3} .

(102)

We can triangulate OG using the special points {x1, x3} as vertices, and having the hyperplanes
in (102) as spurious boundaries. One of the possible triangulations is given by the collection
of simplices in P4 {P( j), j = 1, . . . , 8} defined as convex hull of the vertices

P (1) : {x1, Z (3)
(12), Z

(1)
(23), Z

(2)
(23), Z

(3)
(23)} , P (2) : {x1, Z (4)

(12), Z
(1)
(23), Z

(2)
(23), Z

(3)
(23)} ,

P (3) : {x1, Z (1)
(12), Z

(1)
(23), Z

(2)
(23), Z

(3)
(23)} , P (4) : {x1, Z (2)

(12), Z
(1)
(23), Z

(2)
(23), Z

(3)
(23)} ,

P (5) : {Z (2)
(12), Z

(3)
(12), Z

(4)
(12), Z

(3)
(23), x3} , P (6) : {x1, Z (4)

(12), Z
(1)
(23), Z

(2)
(23), Z

(3)
(23)} ,

P (7) : {x1, Z (1)
(12), Z

(1)
(23), Z

(2)
(23), Z

(3)
(23)} , P (8) : {x1, Z (2)

(12), Z
(1)
(23), Z

(2)
(23), Z

(3)
(23)} ,

(103)

which makes use of the hyperplanes {W (y12), W (y23), W (2∓)} and decomposes the canonical form
ofω(Y , OG) into the cutting rules in Figure 2. Another triangulation through the special points
{x1, x3} makes use of all the four hyperplanes (102) and decomposes OG in 16 simplices: this
triangulation decomposes the canonical form ofOG into the holomorphic cutting rules depicted
in Figure 3.

Let us now turn to the class of triangulations which do not introduce spurious boundaries.
Let us list here some of the subspaces of the adjoint surface of OG , namely the ones identified
by the markings {mg1

, bmg1
, mg3

, bmg3
, } and {mg2

, bmg2
}:22

x1 x2 x3y12 y23 x1 x2 x3y12 y23
= ,

x1 x2 x3y12 y23

,

x1 x2 x3y12 y23

,
x1 x2 x3y12 y23

x1 x2 x3y12 y23
= ,

x1 x2 x3y12 y23
. (104)

22Note that the equalities in (104) just mean that the vertex configuration on the left-hand side, i.e. with no
vertices, can be obtained as on the two right-hand sides. However, they identify different subspaces of the adjoint
surface: the first line identifies a subspace of codimension-4, while the last line a subspace of codimension-2.
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The canonical form triangulation of OG via the subspace identified by the first two lines above
is given by

ω(Y ,OG) =

�

1
qmg2

+
1

q
bmg2

+
1

qmg12

+
1

q
bmg12

+
1

qmg23

+
1

q
bmg23

�

〈Yd4Y〉
qmg1

q
bmg1

qmg3
q
bmg3

, (105)

which is equivalent to what we would obtain were we to apply the tree-level recursion relation
in [24]. The subspace identified by the second set of markings in (104) instead provides the
following canonical form triangulation

ω(Y ,OG) =

¨

1
qmg12

qmg23

�

1
q
bmg1

+
1

q
bmg3

�

+
1

q
bmg12

q
bmg23

�

1
qmg1

+
1

qmg3

�

+
1

qmg12
q
bmg23

�

1
qmg1

+
1

q
bmg3

�

+
1

q
bmg12

qmg23

�

1
q
bmg1

+
1

qmg3

�

+

�

1
qmg12

+
1

q
bmg12

+
1

qmg23

+
1

q
bmg23

�

×

�

1
qmg1

qmg3

+
1

qmg1
q
bmg3

+
1

q
bmg1

qmg3

+
1

q
bmg1

q
bmg3

�«

.
〈Yd4Y〉
qmg2

q
bmg2

. (106)

From the cutting rules to unitarity and the wavefunction. Let us now briefly comment on
the following question. Imagine that we are given ∆ψG via any of the cutting rules, which
information about the wavefunction and the unitarity of the processes it describes can we
infer?

As pointed out in [37], in a non-unitary theory it is still possible to arrange a quantity ψ′G
such that ψG +ψ′G satisfies the (holomorphic) cutting rules as well as any other coming from
OG . However, in order for the theory to be unitary, it is necessary that ψ′G can be identified

with ψ†
G(−xs, ye). Said differently, the peculiarity of a unitary theory is that the quantity

which, combined with ψG , gives rise to the cuts, is ψ†
G(−xs, ye). The “cutting rules” can be

derived algebraically via partial fraction identities in the integrand and, thus, they do not
require unitarity. Unitary relates ψ′g to ψ†

g for all g ⊆ G.
Finally, note that ∆ψG has singularities both of the Bunch-Davies and folded types. As

such, irrespectively of which cutting rules are used to compute ∆ψG , it is necessary to impose
the absence of folded singularities to extract the Bunch-Davies wavefunction – in the optical
polytope picture, this is equivalent to choosing the polytope subdivision which separates the
vertices {Z (1)

e , e ∈ E} from the vertices {Z (4)
e , e ∈ E}.

5.4 From the universal integrand to the integrated cutting rules

The triangulations of the optical polytope provide different decomposition of the universal
wavefunction integrand for ∆ψG . In some cases they precisely represent the decomposition
of the actual ∆ψ̃G , e.g. when the interactions are conformal as for φ3 interactions in d = 5
and φ4 interactions in d = 3.

Also, as they provide a decomposition of the universal wavefunction integrand, they induce
a decomposition of the integrals, which can be written schematically as

∏

s∈V

�

∫ +∞

Xs

d xs µ̃(xs − Xs)

�

Ω(Y , OG) =
∑

{ΣG}

�

∫ +∞

Xs

d xs µ̃(xs − Xs)

�

Ω(Y , ΣG) , (107)

where the integration is over all the weights associated to the sites of the graph G with mea-
sure µ̃(xs − Xs), encoding the effects of the expanding background and of the specific states
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involved.23 The dependence of the site weights {xs, s ∈ V} is encoded in Y , forming, together
with the edge weights {ye, e ∈ E} the local homogeneous coordinates for the projective space
Pns+ne−1 where OG lives. The sum runs over the elements of the set {ΣG} which identifies
a triangulation into the simplices ΣG . However, what happens at the level of the integrated
functions?

Firstly, it is important to keep in mind that in principle the integrals over the site weights
could individually be divergent as xs −→ +∞, which is a manifestation of certain infra-red
divergences [58]. One example is given by the wavefunction coefficients associated to a single
site for a cubic interaction in (1+3)-dimensional de Sitter space (dS1+ 3) with measure µ= ℓ1

ψ̃G(X ) = ℓ1

∫ +∞

X
d xψG(x) = ℓ1

∫ +∞

X

d x
x

, (108)

which has a logarithmic divergence at infinity – ℓ1 is the chacteristic length of dS1+ 3. As we will
see, such logarithmic singularities cancel in (107) when present. In any case, despite possible
cancellations, these divergences might appear in a decomposition we consider and they need
to be taken care of by either utilizing the usual hard cut-off or via analytic regularisation –
for the latter, see [58]. Said differently, a given decomposition (107) can introduce not only
spurious singularities at a finite location in kinematic space, but also spurious/more severe
infra-red singularities.

For measures of the type µ̃(xs−Xs) ∼ (xs−Xs)αs−1 (αs ∈ Z+), the geometry fixes the sym-
bols for each integral – see [24,59]. A detailed account of the integrations is outside the scope
of the present work, as it involves both taking care of the appearance of infra-red divergences
and generalising the treatment for non-integer αs ’s. Here, we will inspect in a simple case the
map between the integrand and integrated structures as different triangulations of the rele-
vant optical polytope are taken, to illustrate: 1. that spurious singularities in the integrand
are mapped into spurious singularities of the integrated function and 2. the appearance of
spurious infra-red singularities.

The simplest example is given by the optical polytope associated to the two-site line graph.
It lives in P2 and its canonical function is given by (61), which we rewrite here for convenience:

Ω(Y , OG) =
〈YAB〉

(Y ·W (g1))(Y ·W (g2))(Y · cW (g1))(Y · cW (g2))
=

−2y12

(x2
1 − y2

12)(x
2
2 − y2

12)
. (109)

Let us integrate over the site weights with the measure µ̃ = ℓ2
1. The two integrals turn out

to factorise completely and they are well-behaved as x j −→ +∞ ( j = 1, 2). The canonical
function (109) integrates to a simple product of logarithms

eΩ(Ỹ ,OG}) = ℓ2
1

2
∏

j=1





∫ +∞

X j

d x j



Ω(Y ,OG) = −
ℓ2

1

2y12

log
X1 + y12

X1 − y12

× log
X2 + y12

X2 − y12

, (110)

where eΩ(Ỹ ,OG}) = ∆ψ̃G . Note that despite (110) shows a possible singularity in y12 = 0,
such singularity not only is spurious but the line y12 = 0 is still a zero:

eΩ(Ỹ ,OG})
y12 −→ 0∼ ℓ2

1
−2y12

X1X2
[1+ . . .] . (111)

The singularities and zeroes of Ω(Y ,OG) turn out to be respectively mapped into singularities
and zeroes of eΩ(Ỹ ,OG).

23Recall that for conformally coupled scalars µ̃(z) coincides with the function λ̃(z) in (28), while when other
states are involved there are extra contributions due to the factors of (−ηs)1/2−ν associated to each bulk-to-boundary
and bulk-to-bulk propagator at the site s. See [31,53].
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Let us now consider the triangulation of the optical polytope which returns the left-hand-
side of the cosmological optical theorem. In this case

eΩ(Ỹ ,OG) =
2
∏

j=1





∫ +∞

X j

d x j





�

Ω(Y ,PG) +Ω(Y ,P†
G(−1))

�

. (112)

The symbols for the first integral were extracted in [24,59] and the constant ambiguity fixed
in [59]:24

2
∏

j=1





∫ +∞

X j

d x j



Ω(Y ,PG) =
ℓ2

1

2y12

�

Li2

�

X1 − y12

X1 + X2

�

+ Li2

�

X2 − y12

X1 + X2

�

+ log
�

X1 + y12

X1 + X2

�

log
�

X2 + y12

X1 + X2

�

−
π2

6

�

, (113)

which shows logarithmic branch points as X1 + y12 −→ 0, X2 + y12 −→ 0 and X1 + X2 −→ 0 as
expected from the analytic structure ofΩ(Y ,PG). The second integral in (112) can be obtained
from (113) via X j −→−X j ( j = 1,2):

2
∏

j=1





∫ +∞

X j

d x j



Ω(Y ,P†
G(−1)) =

ℓ2
1

2y12

�

Li2

�

X1 + y12

X1 + X2

�

+ Li2

�

X2 + y12

X1 + X2

�

+ log
�

X1 − y12

X1 + X2

�

log
�

X2 − y12

X1 + X2

�

−
π2

6

�

, (114)

which has the expected logarithmic branch points as X1 − y12 −→ 0, X2 − y12 −→ 0 and
X1+X2 −→ 0 as expected from the analytic structure of Ω(Y ,P†

G(−1). Let z1 and z2 be respec-
tively the arguments of the dilogarithms in (113). Then, the arguments in the dilogarithms in
(114) can be respectively written as 1− z2 and 1− z1. Upon summation of (113) and (114),
the right-hand-side of (112) can be rewritten as25

eΩ(Ỹ ,OG) =
ℓ2

1

2y12

�

− log
�

X1 − y12

X1 + X2

�

× log
�

X2 + y12

X1 + X2

�

− log
�

X2 − y12

X1 + X2

�

× log
�

X1 + y12

X1 + X2

�

+ log
�

X1 − y12

X1 + X2

�

× log
�

X2 − y12

X1 + X2

�

+ log
�

X1 + y12

X1 + X2

�

× log
�

X2 + y12

X1 + X2

��

,

(115)

which can be straightforwardly recast into (110).
A similar structure appears when we consider the other trangulation via the line passing

through the non-adjacient vertices Z (1) and Z (4), which is diagrammatically expressed via (95):

eΩ(Ỹ ,OG) =
2
∏

j=1





∫ +∞

X j

d x j





�

Ω(Y ,Σ124) +Ω(Y ,Σ431)
�

, (116)

24Note that this result appears also as contribution to the in-in correlator from part of the integration path in [23].
25Here, just the following identity between dilogarithms is used:

Li2(z) + Li2(1− z) =
π2

6
− log z × log(1− z) .
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where Σi jk represents the simplex identified by the vertices Z (i), Z ( j) and Z (k). Concretely:

2
∏

j=1





∫ +∞

X j

d x j



Ω(Y ,Σ124) =
ℓ2

1

2y12

�

Li2

�

X1 + y12

X1 − X2

�

+ Li2

�

−
X2 − y12

X1 − X2

�

+ log
�

X1 − y12

X1 − X2

�

log
�

−
X2 + y12

X1 − X2

�

−
π2

6

�

, (117)

and

2
∏

j=1





∫ +∞

X j

d x j



Ω(Y ,Σ431) =
ℓ2

1

2y12

�

Li2

�

X1 − y12

X1 − X2

�

+ Li2

�

−
X2 + y12

X1 − X2

�

+ log
�

X1 + y12

X1 − X2

�

log
�

−
X2 − y12

X1 − X2

�

−
π2

6

�

. (118)

Let us analyse the triangulations of the optical polytope via points in its adjoint surface.
These two triangulations are given in (97) and (98). Both of them are two-term triangulations
for which the two integrations factorise. Let us consider for concreteness (97):

eΩ( eY , OG) =
2
∏

j=1





∫ +∞

X j

d x j





�

Ω(Y ,Σ12x2
) +Ω(Y ,Σ43x2

)
�

= ℓ2
1

∫ +∞

X1

d x1

x2
1 − y2

12

∫ +∞

X2

d x2

x2 + y12

− ℓ2
1

∫ +∞

X1

d x1

x2
1 − y2

12

∫ +∞

X2

d x2

x2 − y12

.

(119)

Note that in both terms, the integration in x2 shows a logarithmic branch point as the re-
gion around infinity is approached, while the integration in x1 turns to be well-defined in
this region. It is possible to regulate such an integration via a hard cut-off or via analytic
regularisation. Let us consider the latter [58]. Then

eΩ(ε)( eY , OG) = ℓ
2−ε
1

∫ +∞

X1

d x1

x2
1 − y2

12

�

∫ +∞

X2

d x2
(x2 − X2)−ε

x2 + y12

−
∫ +∞

X2

d x2
(x2 − X2)−ε

x2 − y12

�

=
ℓ2−ε

1

2y12

Γ (1− ε)Γ (−ε) log
�

X1 + y12

X1 − y12

�

�

(X2 + y12)
−ε − (X2 − y12)

−ε� ,

(120)

ε being the regulator. In analytic regularisation, the logarithmic singularity in the infra-red
is mapped into a pole, which manifests in the Γ -functions. While in the previous cases the
structure of the triangulations reflects into the introduction of a spurious singularity at finite
location, i.e. X1± X2 = 0, in this case there is also a spurious singularity which is introduced,
but as x2 −→ +∞ – indeed, such a singularity has the same coefficient but with different sign
between the two terms. Expanding in the small regulator

eΩ(ε)( eY , OG) =
ℓ2

1

2y12

log
�

X1 + y12

X1 − y12

��

−
1
ε
+ log (ℓ(X2 + y12))− 2γEM

+
1
ε
− log (ℓ(X2 − y12)) + 2γEM +O (ε)

�

, (121)

with γEM the Euler-Mascheroni constant. Note that triangulations of this class completely fac-
torise the two interaction sites, at the price of introducing a spurious singularity in the infra-
red.

43

https://scipost.org
https://scipost.org/SciPostPhys.16.6.157


SciPost Phys. 16, 157 (2024)

Let us finally consider the triangulation corresponing to the original “cutting” rules. Such
a triangulation shows the part of the adjoint surface contained inside of the optical polytope
as the only spurious boundary. As we already discussed, the canonical function of the optical
polytope gets divided into four terms

eΩ( eY , OG) = −
ℓ2

1

2y12

∑

σ1,σ2={±}

σ1σ2

∫ +∞

X1

d x1

x1 +σ1 y12

∫ +∞

X2

d x2

x2 +σ2 y12

, (122)

each of which is a product of two decoupled integrals with logarithmic singularities at infinity.
Proceeding as in the previous case

eΩ(ε)( eY , OG) = −
ℓ2−ε

1

2y12

∑

σ1,σ2={±}

σ1σ2

∫ +∞

X1

d x1
(x1 − X1)−ε

x1 +σ1 y12

∫ +∞

X2

d x2
(x2 − X2)−ε

x2 +σ2 y12

= −ℓ2−ε
1 [Γ (−ε)Γ (1− ε)]2

∑

σ1,σ2={±}

σ1σ2(X1 +σ1 y12)
−ε(X2 +σ1 y12)

−ε

= −
ℓ2

1

2y12

∑

σ1,σ2={±}

σ1σ2

�

−
1
ε
+ log (ℓ1(X1 +σ1 y12))− 2γEM +O(ε)

�

×
�

−
1
ε
+ log (ℓ1(X2 +σ1 y12))− 2γEM +O(ε)

�

.

(123)

A comment is now in order. A superficial analysis would suggest that just when resorting
to canonical form triangulations of the optical polytope associated to boundaries intersecting
or containing its adjoint surface, the factorised structure at integrand level translates into a
factorised structure for the integrated canonical function. However, when we talk about a
factorised structure, we should think about sums of terms each of which can be thought of as
a product between the physical singularities (X j +σ j y12) ( j = 1,2, σ j = ±) associated to the
two different interaction sites, up to spurious singularities. Note that any expression for an
integrated simplex in any of the triangulations has the form

−
2y12

ℓ2
1

eΩ( eY , OG) =
∑

{ΣG}

�

f (2)1 ⊗ I2 + I1 ⊗ f (2)2 + f (1)1 ⊗ f (1)2

�

= f (1)1

�

X1 + y12

X1 − y12

�

⊗ f (1)2

�

X2 + y12

X2 − y12

�

,

(124)
here f (k)j is a trascendental function of trascendental degree (k)with singularities X j+σ j y12 and,
eventually, with an extra (spurious) singularity, while I j is just the identity associated to the
variable X j +σ j y12. In the example just inspected, f (2)j (z j):=Li2(1− z j) and f (1)j (z j):= log(z j),
and the spurious singularities appeared at X1 ± X2 and at infinity, the latter signaled by the
presence of ℓ1 in the trascendental functions to form dimensionless arguments. The choice
of triangulation of the optical polytope OG determines the detailed form of the sum with a
“choice” of spurious singularity. Notice that the actual integrated function eΩ(Ỹ , OG) has the
simple structure f (1)1 ⊗ f (1)2 : spurious boundaries in the triangulation of OG map into spu-
rious singularities that depend on both {X j , j = 1,2} and the appearence of the structure
f (2)1 ⊗ I2+ I1⊗ f (2)2 ; the absence of spurious boundaries in the triangulation of OG or the spuri-
ous boundary associated to the full adjoint surface of OG , instead, map into a dependence of
f (k)j (z j) on z j = ℓ1(X j +σ j y12).

Despite these considerations seem to extend also to more complicated graphs G, at least
in the cases which have been checked explicitly, it would be interesting to apply the methods
in [24,54,59] to the optical polytope OG and its triangulations. We leave this to future work.

On a similar line, the class of wavefunctions we studied allow to extract the information
about wavefunction coefficients with the exchange of other scalar or spinning states via dif-
ferential operators [53,60,61]. It would be interesting to systematically see how the structure
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of the triangulations of the optical polytopes is mapped into the functional structure of the
cutting rules for the wavefunction of such propagating states. We also leave this investigation
for future work.

5.5 From cosmological to flat-space cutting rules

In the previous subsection we have just seen how the cosmological optical theorem straight-
forwardly emerges from the geometrical structure of the optical polytope as the equivalence
among different polytope subdivisions/triangulations.

An important question that needs to be addressed is whether flat-space unitarity can
emerge from cosmological unitarity and, if so, how. The usual formulation of the cosmological
optical theorem in terms of “cutting rules” (56) does not make it obvious – on the one hand,
approaching the total energy singularity, ψG(xs, ye) reduces to the (high energy limit of the)
flat-space scattering amplitude, while ψ†

G(−xs, ye) should reduce to its complex conjugate, up
to a sign. On the other hand, the right-hand-side of (56) does not show the total energy singu-
larity at all. Therefore, the flat-space limit of the usual formulation of the cosmological optical
theorem seems to return the identity 0= 0 rather than the Cutkosky cutting rules.

A careful implementation of the iε-prescription allows to identify the left-hand-side of
(56) as the total energy singularity is approached with the imaginary part of the flat-space
scattering amplitude, and its right-hand-side with the Cutkosky cutting rules. However, the
combinatorial-geometrical picture in terms of the optical polytope provides a more transparent
way not only of obtaining the flat-space optical theorem but also of relating it to the cosmo-
logical one, so in this section we will attack the problem from that point of view.

Before going into the details, one comment is in order. Flat-space unitarity is already en-
coded into the cosmological polytope PG , concretely into the vertex structure of its scattering
facet SG [48]: at any of its facets SG ∩W (g), with G and g satisfying the codimension-2 com-
patibility conditions [27, 31, 46], the vertices span three factorised subspaces in Pns+ne−3 –
two lower dimensional scattering facets (corresponding to G ∩ g = g and G ∩ g = g), and a
simplex Σ̸E formed by the vertices of the edges ̸E connecting g and g identified by a marking
close to g. The canonical function on each facet SG ∩W (g) is therefore given by the product of
the canonical functions of these three lower-dimensional polytopes, with the ones of the two
scattering facets returning the flat-space amplitudes Ag and Ag associated to g and g, and the
canonical function of Σ̸E giving the measure of the Lorentz invariant phase-space (the loca-
tion of the vertices, all close to g, specifies the direction of the energy flow, which is incoming
for g and outgoing for g). From the cosmological polytope perspective, flat-space unitarity
arises on the boundaries of its scattering facet, where δ(Eg) is enforced on the total energy
conservation sheet and contributes to the imaginary part of the flat-space amplitude, since
π−1Im{1/(Eg − iεg)} = δ(Eg).

From the perspective of the optical polytope OG , the story has one similarity and
one fundamental difference. The former is that the flat-space cutting rules are ex-
pected to emerge in codimension-2 as a constraint on the energy conservation sheet: as
Ω(Y ,OG) = ∆ψG = ψG(xs, ye) + ψ

†
G(−xs, ye), the expectation is that on the total energy

conservation sheet ψG(xs, ye) and ψ†
G(−xs, ye) reduce to AG and −AG respectively, return-

ing directly the discontinuities across the singularities of AG provided that AG and −AG are
equipped with the correct iε-prescription. The fundamentally different aspect is that, contrar-
ily to what happens for the cosmological polytope, the scattering facet is not a boundary of
OG . If the scattering facet is not a boundary of the optical polytope, how can we expect to
take the intersection OG ∩W (G) and see a codimension-2 boundary on it? As we will see, the
solution to this puzzle will come from the non-convexity of OG .
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Flat-space unitarity from the geometry of OG . Let us begin with considering the convex
polytope QG(a) (a > 0) and its intersection QG(a)∩W (G) with the hyperplane W (G) =

∑

s∈V x̃s.
As we showed in Section 5.2, such hyperplane intersects the polytope QG inside, with the
vertices {Z (2)

e , Z (3)
e , ∀ e ∈ E} on QG(a) ∩WG, and the vertices {Z (1)

e , e ∈ E} and {Z (4)
e , e ∈ E}

on the positive and negative half spaces identified by W (G) respectively. As a consequence: i)
QG(a)∩W (G) is not a facet of QG(a); ii) this intersection is inside QG(a) and, thus, it is given
by a polytope of codimension-1 defined by the convex hull of the vertices {Z (2)

e , Z (3)
e , e ∈ E}.

Let us now consider OG . The intersection OG ∩W (G) is still characterised by the vertices
{Z (2)

e , Z (3)
e , e ∈ E}, but now the other vertices {Z (1)

e , Z (4)
e , e ∈ E} are all on the positive half-

space identified by W (G). Consequently, not only OG ∩W (G) is not a facet of OG , as we showed
in Section 5.2, but also this intersection does not lie inside OG . This implies that such an inter-
section is of codimension higher than 1. In order to understand the codimension of OG∩W (G),
we need to understand how the vertices {Z (2)

e ,Z (3)
e } organize in the hyperplane W (G). This

translates into the identification of the higher codimension hyperplanes W (G)∩fW (g1 . . .gk) which
have non-vanishing intersection with OG – as usual fW (g1 . . .gk) := fW (g1)∩· · ·∩fW (gk), where fW (g j )

can be either W (g j ) or cW (g j ).
We can begin the analysis with codimension-2 hyperplanes W (G)∩fW (g) and check which of

them are such that OG∩
�

W (G) ∩ fW (g)
�

̸= ∅.26 First, notice that the codimension-2 hyperplane
W (G) ∩ fW (g) is equivalently identified by fW ′(G) ∩ fW (g):

W (G) ∩ fW (g) ∼ fW
′(G) ∩ fW (g) , (125)

where

for fW (g) =W (g) , then fW ′(G) =

�

cW (g) , if g ∈ Gind ,
cW (g) , if g ∈ G̸k , ̸k∈ Z+ ,

for fW (g) = cW (g) , then fW ′(G) =

�

W (g) , if g ∈ Gind ,
W (g) , if g ∈ G̸k , ̸k∈ Z+ ,

(126)

with Gind the set of induced subgraphs of G – i.e. subgraphs of G whose sites Vg ⊂ G are
connected with each other as in G – and G̸k the subsets of subgraphs with the same sites as G
but ̸k∈ Z+ edges removed keeping the subgraph connected. For reasons that will become clear,
the subgraphs g which do not belong to either of these classes do not need to be considered.

The projective equivalence (125) can be easily understood by considering the explicit form
of the hyperplanes W (g) and cW (g) as given in (81), as well as the form of W (G):

W (G) =
∑

s∈V
x̃s , W (g) =

∑

s∈Vg

x̃s +
∑

e∈Eext
g

ỹe , cW (g) =
∑

s∈Vg

x̃s −
∑

e∈Eext
g

ỹe . (127)

The intersectionW (G)∩W (g) identifies the codimension-2 hyperplane whose defining conditions
can be written in local cordinates as the pair of homogeneous equations

Y ·W (G) =
∑

s∈V
xs = 0 , Y ·W (g) =

∑

s∈Vg

xs +
∑

e∈Eext
g

ye = 0 . (128)

However, the same codimension-2 hyperplane is identified by any pair of homoegenous equa-
tions obtained as a linear combination of (128), in particular by

Y · fW
′(G) =

∑

s∈Vg

xs −
∑

e∈Eext
g

ye = 0 , Y ·W (g) =
∑

s∈Vg

xs +
∑

e∈Eext
g

ye = 0 , (129)

26Here we want to emphasize that it is important to first identify a codimension-2 hyperplane and then intersect it
with the polytopeOG . This avoids the amibiguity associated to the order with which the hyperplanes are intersected
with the polytope, which, from the perspective of the canonical function, is given by the non commutativity in
taking two residues.
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Figure 13: Subgraphs and codimension-2 boundaries. We depict subgraphs whose
associated hyperplane, together with W (G), identifies a codimension-2 face of OG .
The subgraph g1 on the left is induced and has a connected g1, so g1 ∈ Gc

ind
. The

subgraph g2 in the center comprises all vertices of G and all edges but one, so
g2 ∈ G̸e. The subgraph g3 on the right does not belong to either of the previous
classes, g3 /∈ {Gc

ind
, G̸e}.

with the latter associated to the hyperplane W (g), and the former to fW ′(G), this is, cW (g) for
g ∈Gind or cW (g) for g ∈ G̸k. An analogous reasoning applies when we consider W (G) ∩ cW (g).

The projective equivalence (125) allows us to formulate our problem in terms of
codimension-2 hyperplanes formed as intersections of the codimension-1 hyperplanes that
contain the facets of OG . The intersection between such hyperplanes and OG is non empty in
codimension-2 if and only if the compatibility condition (84) is satified:

∑

Sg

1+ ̸n ̸E = 2 . (130)

This condition selects those hyperplanes among (126) such that if g ∈ Gind then g is connected,
and if g ∈ G̸k then ̸k= 1 (see Figure 13). Let us refer to these two set of subgraphs as Gc

ind
and

G̸e respectively:

Gc
ind

:=
�

g ⊂ G |g= G[Vg], g connected
	

,

G̸e := {g ⊂ G |g = G \ {e}, g connected, ∀ e ∈ E} ,
(131)

with G[Vg] being the subgraph induced in G by the set of sites Vg. Any subgraph that does not
belong to either of these classes does not satisfy (130). Summing up, we have a non-empty
intersection OG ∩W (G) ∩ fW (g) ̸= ∅ if g ∈ Gc

ind
or g ∈ G̸e. Importantly, as shown in Section

5.2, these are nothing but all the codimension-2 boundaries of the scattering facet! Since, as
we argued, OG ∩W (G) = ∅ in codimension-1, this implies that OG ∩W (G) is a codimension-2
object constituted by the union of all the facets of the scattering facet. Hence, its canonical
function can be written distributionally as

Ω(OG ∩W (G)) = δ
�

Y ·W (G)
�





∑

g∈Gc
ind

�

δ
�

Y ·W (g)
�

Ω(SG ∩W (g)) +δ
�

Y · cW (g)
�

Ω(SG ∩ cW (g))
�

+
∑

g∈G̸e

�

δ
�

Y ·W (g)
�

Ω(SG ∩W (g)) +δ
�

Y · cW (g)
�

Ω(SG ∩ cW (g))
�



 ,

(132)

where SG is the scattering facet, and we use this notation in the argument of the canonical
functions to emphasize that they are canonical functions of the boundaries SG ∩W (g). The
canonical functions in the right-hand-side of (132) are associated to lower point scattering
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amplitudes [48] – see also Section 5.2. In particular

Ω(SG ∩W (g)) =

 

∏

e∉E

1
2ye

!

A[g]×A[g] , for g ∈Gc
ind

,

Ω(SG ∩W (g)) = A[g] , for g ∈ G̸e ,

(133)

where ̸E is the set of edges between g and g, which get cut, and the energy flows along ̸E from
g to g. Recall that cW (g) ∼ W (g) if g ∈Gc

ind
, and then the canonical function Ω(SG ∩cW (g)) is the

same as the first line in (133) but now with energies flowing from g to g, which means that it
can acquire a minus sign.

The first line in (132) precisely corresponds to the flat-space cutting rules! However, there
is a second line so the expression (132) seems to contain more information than just the usual
Cutkosky rules. It is important to note that the terms in the second line are present if and
only if we are considering a loop diagram – recall that G̸e is the set of connected subgraphs
obtained from G by just deleting one edge, which cannot exist at tree level as the deletion
of one edge would map the graph into a disconnected subgraph. For such terms the delta
functions in the second line of (132) force

∑

s∈V xs ± 2ye to vanish. On the intersection with
the total energy hyperplane W (G), this is just δ(ye). Indeed, this is not a cut of an amplitude.
Let us now show that these terms do not play any important role, as they vanish when the
loop integral is performed. To see this it is important to take into account the measure in loop
momentum space; in the edge-weight variables it acquires the schematic form [58]

dd l =
∏

e∈E ′
d ye ye µ(y) , E ′ =

¨

E , if d ≥ ne ,

Ed ⊂ E , if d < ne ,
(134)

Ed and µ(y) being respectively a d-dimensional subset of E chosen to parametrise the loop
momentum when the number of spatial dimension is less than the number of edges of the
graph, and a function which can be a ration containing either polynomial or square-roots of
polynomial, depending on the dimensions – see [58]. We can see then that when we consider
the measure (134) together with the canonical function (132), the second line of (132) shows
factors of the type ye δ(ye), which vanish! The intersection of the optical polytope with the
total energy conserving hyperplane gives rise to the flat-space cutting rules with additional
terms that vanish when the loop integration measure is taken into account.

6 Conclusion and outlook

Unitarity is one of the fundamental principles that govern the time evolution of physical pro-
cesses. In the context of scattering amplitudes its implications are understood both in per-
turbation theory and for the non-perturbative S-matrix, as the optical theorem is generally
valid.

In this paper, we have re-examined perturbative unitarity for the Bunch-Davies wavefunc-
tion of the universe, under the loupe of the combinatorics of the cosmological polytopes and
with a more extensive, but not yet comprehensive, analysis of the iε-prescription. Interest-
ingly, the iε-prescription is encoded into the geometry of the boundaries of the cosmological
polytope and can be made explicit via a contour integral representation of its canonical form,
where it is fixed by the requirement of the positivity of the geometry and the preservation of
the overall orientation. These requirements also imply an analytic continuation of the internal
energies, which reminds of the Feynman iε. The information about the cosmological optical
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theorem is encoded into a non-convex part of the cosmological polytopes and its triangula-
tions result in the different cutting rules. This formulation also provides a transparent way to
see the flat-space optical theorem emerge from the cosmological one. Our work represents a
step forward in understanding how fundamental principles are encoded into the Bunch-Davies
wavefunctional in perturbation theory, but we are still at the beginning of the road towards
a satisfactory understanding. Let us summarise here the main future directions, organising
them in a similar way as our main results in the introduction.

The iε-prescription. In this paper we emphasised how a correct way to simultaneously ob-
tain convergence of the time integrals and compatibility with unitarity is by analytically con-
tinuing the energies to be complex with a small negative imaginary part. This also makes the
time-integrals convergent for any real value of the real part of the energies. The geometrical
analysis also enforces such an analytic continuation for both external and internal energies.
The first one is related to the convergence of the time integral, and assigning a small imaginary
part to the external energies only recalls the kinematic iε discussed in [52] in the context of
the flat-space S-matrix. The second one instead is tied to the distributional nature of the bulk-
to-bulk propagator and provides a iε-prescription also for the loop propagators, in a similar
fashion as the Feynman iε. In flat-space scattering amplitudes, the Feynman iε implements
the notion of causality. It would be interesting to analyse the relation between the class of
iε-prescriptions suggested by our analysis and causality. This also implies the necessity of ac-
quiring a deeper understanding of the analytic structure of the wavefunction, a goal towards
which the first systematic steps were made in [30]. It is useful to make a parallel with scatter-
ing amplitudes. In that context the Feynman iε is an unphysical parameter which selects the
right contour for the propagator consistent with causality, and can be introduced as long as
the kinematics is taken to be in the physical region. Said differently, the Feynman iε deforms
the analytic structure of the scattering amplitudes and causality dictates how to approach the
branch cuts when the ε is taken to zero and, consequently, how to access the physical region
from the correct side (see [52] and references therein). In the wavefunction case, all the poles
and branch cuts lie outside of the physical region, so from this perspective it is not clear how
the requirement of causality can select a correct way to approach a branch cut. Also, the
cosmological optical theorem does not relate, at least naively, the discontinuities along the
singular points of the wavefunction to unitarity. So it does not seem obvious how to relate
the analytic structure to any of these two fundamental principles. However, as emphasised
earlier, the iε-prescription suggested by the cosmological polytope description makes the time
integrals well defined for energies running along all the real axis; therefore, the Bunch-Davies
wavefunctional can be safely extended outside the physical region (as long as the energies
stay real) without modifying its analytic structure. With such an extension, the singularities
become accessible in any of these new regions if some of the energies stay positive and others
become negative. In this case, the problem becomes similar to the one for scattering ampli-
tudes, and how to approach the branch cut could be dictated by the requirement of causality
in these regions.

Perturbative unitarity and the analytic structure of the wavefunction. The cosmological
optical theorem relates the wavefunction coefficients to their hermitian conjugates with the
external energies taken to be negative. It was pointed out in Section 5.3 that if we begin with
the “cutting rules” and no additional information, they alone do not imply unitarity and they
do not even provide us with information about the analytic structure (they do not compute dis-
continuities across singularities). The first point is also true for flat-space scattering amplitudes
– see [20]. However, in that case the cutting rules come equipped with positivity conditions
once we consider all the graphs contributing to the same cut and we sum over all the states
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propagating along the cut edges. An issue that, to our knowledge, is not yet understood is
whether the positivity condition associated to flat-space unitarity translates into any condition
on the wavefunction coefficients. As mentioned in the previous paragraph, the iε-prescription
we propose allows to safely extend the wavefunction coefficients to regions were some of the
energies become negative. In these regions, the singularities can be accessed and, for states
with a flat-space counter-part, their coefficient is related to a flat-space process. Then, the
positivity conditions for the flat-space unitary evolution need to reflect into these coefficients.
It is important to recall that, for these states, the coefficients of all the singularities are related
to flat-space scattering and, consequently, these positivities are not associated just to the total
energy singularities.

The integrated wavefunctional. The combinatorial description in terms of cosmological
polytopes (and optical polytopes as far as the cosmological optical theorem is concerned)
provides a transparent picture of the analytic properties of the universal wavefunction inte-
grand (29). The wavefunction coefficients are then obtained by integrating this integrand
over the external energies with an appropriate measure that encodes the cosmology and, for
loop graphs, over the loop momenta too. For conformally-flat cosmologies with warp fac-
tor a(η) = [ℓ/(−η)]γ, the measure is a polynomial of degree one in the external energies
with a power which depends on the space-time dimensions, the points of the interaction, and
the parameter γ appearing in the warp factor. The integration over the external energies for
such cosmologies produces polylogarithms and combinations of polylogarithms and polyno-
mial [24,59], as long as the power in the measure is an integer. In these cases, the singularity
structure of the integrand maps to the singularity structure of the integrated wavefunction. We
see this at work in Section 5.4, when we discussed the integration of the cutting rules coming
from the triangulation of the optical polytope associated to the two-site line graph. However,
a systematic analysis of such integrations has been done just for the cases in which the mea-
sure is polynomial of degree zero (i.e. a constant) – which is precisely the case we inspected.
As for the integration of the cutting rules, we have been cautious in the claim about how the
integrand structure extends to integrated functions. It would be interesting to perform a more
systematic analysis using the methods discussed in [24, 59]: it would allow us to predict, on
one side, the result of the integration of the canonical form of the optical polytope, and on the
other the integrated cutting rules from the integrand ones. The loop integration, meanwhile,
is a territory which has not been much explored. In this case, it is not even clear what the space
of functions is that one should expect once both the external energy and the loop integrations
have been performed.

Causality and the analytic structure. As mentioned in the first paragraph of this section,
flat-space causality prescribes how to approach the branch-cuts and, ultimately, the physical
region of the S-matrix. Another avatar of causality is provided by the Steinmann relations,
which constrain the double discontinuities in the physical region. Similar relations are also
valid for the wavefunction universal integrand, and extend to discontinuities of the integrated
wavefuction when the external energies are integrated [27]. Understanding the loop integra-
tion or at least being able to predict the function that the loop integration produces would
allow to extend these Steinmann-like relations to the full, integrated wavefunction. Further-
more, it would be interesting to understand whether they can be related to causality, as it
happens in flat-space.
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