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Abstract

We show that time intervals of width∆τ in 3-dimensional conformal field theories (CFT3)
on the Lorentzian cylinder admit an infinite dimensional symmetry enhancement in the
limit ∆τ → 0. The associated vector fields are approximate solutions to the conformal
Killing equations in the strip labelled by a function and a conformal Killing vector on the
sphere. An Inonu-Wigner contraction yields a set of symmetry generators obeying the
extended BMS4 algebra. We analyze the shadow stress tensor Ward identities in CFTd
on the Lorentzian cylinder with all operator insertions in infinitesimal time intervals
separated by π. We demonstrate that both the leading and subleading conformally soft
graviton theorems in (d−1)-dimensional celestial CFT (CCFTd−1) can be recovered from
the transverse traceless components of these Ward identities in the limit ∆τ → 0. A
similar construction allows for the leading conformally soft gluon theorem in CCFTd−1
to be recovered from shadow current Ward identities in CFTd .
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1 Introduction

Celestial holography proposes a correspondence between theories of gravity in 4-dimensional
(4D) asymptotically flat spacetimes and conformal field theories (CFT) living on the 2D celes-
tial sphere at infinity [1,2]. In particular, scattering observables in the 4D theory are computed
by correlation functions in the 2D theory, also known as celestial amplitudes,1 and are subject
to a wide range of symmetries [3–10] (see also [11] for a recent review). This correspondence
appears to be very different from other instances of holography. Most notably, it relates a
bulk theory to a boundary theory in two lower dimensions, while the bulk soft theorems im-
ply the existence of towers of negative dimension operators in the celestial CFT [12], naively
rendering the boundary theory non-unitary.

On the other hand, for massless2 scattering, a simple flat space limit of holographic CFTd
correlators was found in [19] to yield (d − 1)-dimensional celestial amplitudes. This suggests
that at least some of the unique features of celestial CFT should arise in a certain limit of
conventional CFT in one higher dimension. The goal of this paper is to explain how leading
and subleading conformally soft symmetries [5–8] emerge precisely in this way.

Motivated by the configuration of boundary operators for which CFT3 correlators reduce
to celestial amplitudes, we first study the symmetries of an interval on the Lorentzian cylinder
of small width ∆τ∝ R−1 in global time. We show that in the limit R →∞, the conformal
isometries of this strip are enhanced to an infinite dimensional symmetry parameterized by a
function and a local conformal Killing vector on a two-sphere. For finite large R (corresponding
to a strip of small, but finite width), the infinite dimensional symmetry is broken by O

�

R−1
�

terms. We show explicitly via a procedure that mimics the Inonu-Wigner contraction [20] of the
conformal algebra to Poincaré, that the enhanced conformal isometries of the intervals around
τ= ±π2 generate an extended BMS4 algebra to leading order at large R. Moreover, under these
symmetries, CFT3 primary operators of dimension ∆ at τ = ±π2 +

u
R transform as 2D primary

operators of effective dimension ∆̂=∆+u∂u. ∆̂ can be diagonalized by an integral transform
with respect to u analogous to that relating Carrollian and celestial operators [21,22].

1Celestial amplitudes will be assumed to be defined in 2D whenever the dimension is not explicitly specified.
2It has been long known that massive and in some cases massless momentum space scattering amplitudes can

be extracted from correlation functions of unitary CFTd with holographic AdSd+1 duals in various flat space limits
[13–17]. Interestingly, it was recently shown that such CFTd 4-point correlators exhibit conjectured properties of
(d + 1)-dimensional scattering amplitudes, including dispersion relations, unitarity and the Froissart bound in a
flat-space limit [18].
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This analysis suggests that conformally soft symmetries in 2D CCFT are generated by cer-
tain modes of the 3D stress tensor in the strips. In the second part of the paper we show that
the shadow stress tensor Ward identities in CFTd allow one to extract both the leading and
subleading conformally soft graviton operators in CCFTd−1. We establish this by lifting the
method used in [23] to derive stress tensor Ward identities from the subleading soft graviton
theorem in arbitrary dimensions to the embedding space. This allows us to derive the shadow
stress tensor Ward identities on the Lorentzian cylinder R×Sd−1 and study their restriction to
an infinitesimal global time strip. Specifically, we find that

lim
u→0
∂ueTab , and lim

u→0
(1− u∂u)eTab , (1)

where eTab is the shadow transform of the CFTd stress tensor and a, b are indices on Sd−1

become respectively, upon subtracting the trace, the leading and subleading conformally soft
gravitons in CCFTd−1!

Our results are interesting for several reasons. Firstly, they demonstrate that celestial CFT
may not be as exotic of a theory as anticipated. On the contrary, the leading and sublead-
ing conformally soft symmetries arise universally in a simple limit of any CFT3, irrespective
of whether it is holographic or not. In this sense, our approach is complementary to that
in [24–26] which relies on the existence of an AdS bulk dual. More generally, we find that any
CFTd contains a (d −1)-dimensional “celestial” sector characterized by an emergent BMS-like
symmetry.3 Secondly, our results suggest that holographic CFTd correlators encode informa-
tion about gravity in (d + 1)-dimensional asymptotically flat spacetimes (AFS) that need not
be lost in the flat space limit. It would be extremely interesting to understand the further
implications, as well as the limitations of this approach.

This paper is organized as follows. In section 2 we review the relation between AdS Wit-
ten diagrams and celestial amplitudes at large AdS radius. We show how each operator in
an infinitesimal time interval around τ = ±π2 in a CFTd on the Lorentzian cylinder maps to
a continuum of operators in CCFTd−1 via an integral transform over the interval. In section
3 we generalize the relation between AdS Witten diagrams and celestial amplitudes to mass-
less spinning external states. In particular, we demonstrate that, at large AdS radius, spinning
bulk-to-boundary propagators in AdSd+1 with fixed dimensions become massless spinning con-
formal primary wavefunctions in R1,d . In section 4 we analyze the conformal Killing equations
in a global time strip of the 3D Lorentzian cylinder of infinitesimal width ∆τ ∼ R−1. We find
an emergent infinite dimensional symmetry in the limit R→∞ labelled by a function and a
vector field on the sphere. We show in section 4.1 that the associated vector fields reorganize
into the generators of an extended BMS4 algebra after an Inonu-Wigner-like contraction. In
section 4.2 we show that CFT3 operators in the strips around τ= ±π2 transform like conformal
primary operators in CCFT2 under these symmetries.

In section 5 we derive the conformally soft gluon and graviton theorems in CCFTd−1 as a
limit of the Ward identities of a shadow current and the stress tensor in CFTd . In sections 5.1,
5.2 we revisit the derivation of these Ward identities using the embedding space formalism.
The large-R limits of these identities are worked out in section 5.3. After projection to the
Lorentzian cylinder, we demonstrate in section 5.3.1 that the leading conformally soft gluon
is obtained from the components of the shadow current transverse to the Sd−1 at τ = π

2 . The
leading and subleading conformally soft gravitons are similarly extracted from an expansion
of the transverse traceless component of the shadow stress tensor around τ = π

2 in section
5.3.2. We collect various technical results in the appendices.

3In d > 3 the vector fields are parameterized by a function on the sphere and a CKV on Sd−1, in particular there
is no local enhancement of the latter like for d = 3.
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2 Preliminaries

In this section we review how, in the large AdS radius limit, scalar AdS Witten diagrams re-
duce to Feynman diagram constituents of celestial amplitudes. This result will be extended to
account for massless spinning external states, as well as exchanges of arbitrary mass and spin
in section 3. Importantly, we clarify the relation between insertions of CFT operators at differ-
ent global times τ0 in a strip of width ∆τ= O

�

R−1
�

and the continuum of celestial operators
corresponding to an asymptotic state in 4D AFS.

Conformal correlation functions in CFTd are obtained by summing over all possible AdSd+1
Witten diagrams [27]. The building blocks of the latter are bulk-to-boundary and bulk-to-bulk
propagators. It will be convenient to express the bulk-to-boundary propagators in the embed-
ding space formalism [28, 29]. We denote points or vectors in the embedding space R2,d by
capital letters X , P, · · · . Points in bulk AdSd+1 are constrained to obey X 2 := ηµνXµX ν = −R2,
where ηµν = (−,+, · · · ,+,−) and can be parameterized by global coordinates (τ,ρ, z⃗) as

X 0(τ,ρ, z⃗) = R
sinτ
cosρ

, X d+1(τ,ρ, z⃗) = R
cosτ
cosρ

, X i(τ,ρ, z⃗) = R tanρΩi(z⃗) . (2)

Here Ω(z⃗) ∈ Sd−1 are unit normals to the sphere parameterized by coordinates z⃗ with

Ω(z⃗) =

�

2z1

1+ |z⃗|2
, . . . ,

2zd−1

1+ |z⃗|2
,
1− |z⃗|2

1+ |z⃗|2

�

. (3)

In these coordinates the boundary is located at ρ = π
2 and boundary points correspond to null

vectors P2 = 0, where

P(τ, z⃗) = lim
ρ→π2

cosρ
R

X (τ,ρ, z⃗) , (4)

or equivalently

P0(τ, z⃗) = sinτ , Pd+1(τ, z⃗) = cosτ , P i(τ, z⃗) = Ωi(z⃗) . (5)

The correlation functions 〈O∆1
(P1) · · ·O∆n

(Pn)〉 of scalar operators O∆i
(Pi) in a holo-

graphic CFTd can be computed by summing over AdSd+1 Witten diagrams (see [30] for a
review). Motivated by the relation between scattering amplitudes and AdS/Witten diagrams
in the flat space limit [15,24,31], a limit was proposed in [19] in which AdS/Witten diagrams
reduce to celestial amplitudes. In this prescription, boundary operators are placed at

τi = ±
π

2
+

ui

R
, (6)

while bulk global coordinates are redefined as

τ=
t
R

, ρ =
r
R

, (7)

before taking R→∞ with (t, r) fixed. One of the main observations of [19] is that to leading
order at large R, scalar bulk to boundary propagators in AdSd+1

K∆(X , P) =
C∆

(−P · X + iε)∆
, (8)

with C∆ a normalization constant, become proportional to R1,d conformal primary wavefunc-
tions [1]

ϕ∆(x;ηq̂) =
(iη)∆Γ (∆)

(−q̂ · x + iηε)∆
. (9)
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Here η = ±1 depending on whether the boundary operators are placed around τ = ±π2 with
the spheres at τ = ±π2 assumed to be antipodally related, x is a point in (d + 1)-dimensional
flat space and

q̂(z⃗) = (1,Ω(z⃗)) . (10)

Analyzing the other elements of the AdS/Witten diagrams, one concludes that these reduce to
the building blocks of celestial amplitudes to leading order at large R.

The correspondence established in [19] left an important question open. A bulk scalar field
in AdS corresponds to an operator of definite dimension in CFT, while massless asymptotic
states in flat space should map to a continuum of operators of dimensions ∆ = d−1

2 + iλ in
CCFTd−1 [32]. In contrast, according to (8), (9) the celestial amplitudes appear to simply
inherit the dimension of the primary operator in the parent CFT. We conclude this section by
explaining how one can in fact extract a continuum of operators in CCFT from the large R
expansion of (8).

Recall that the conformal primary wavefunctions obtained from bulk-to-boundary propa-
gators in the large R limit depend on the position at which the CFTd operators are inserted
within the global time strip of infinitesimal width∝ R−1. In particular,

lim
R→∞

K∆(X , P)|τp=
π
2+

u0
R
∝

1
(t − u0 − rΩ ·Ωp + iε)∆

+O
�

R−1
�

. (11)

This result corresponds to an outgoing conformal primary wavefunction defined with respect
to a different origin in spacetime, namely

ϕ∆(x − x0; q̂)∝
1

(−q̂ · (x − x0) + iε)∆
, (12)

where x0 = (u0, 0, 0, 0). Now note that this shift in origin can be traded for a shift in the
conformal dimension ∆ by an integral transform on u0. Specifically,
∫ ∞

−∞
du0u−∆0

0
i∆

(t − u0 − rΩ ·Ωp + iε)∆

=
1
Γ (∆)

∫ ∞

−∞
du0u−∆0

0

∫ ∞

0

dωω∆−1eiω(t−u0−rΩ·Ωp+iε)

=
2i∆−1 sin(π∆0)B(∆+∆0 − 1,1−∆0)

(t − rΩ ·Ωp + iε)∆+∆0−1
, Re∆0 ∈ (0, 1) ,

(13)

where B(x , y) is the Euler beta function. Similar to calculations involving conformal primary
wavefunctions in CCFT, the integral formally converges only for ∆0 = c + iλ, with c ∈ (0, 1)
and λ ∈ R. Nevertheless the result may be analytically continued away from this line in the
complex ∆0 plane [10, 33, 34]. Following [32], these conformal primary wavefunctions can
then be shown to form a complete basis for asymptotic scattering states in R1,d provided that
∆0 takes the appropriate continuum of values.

We conclude that up to an interesting normalization,4 insertions of CFTd operators at dif-
ferent points in the infinitesimal global time intervals generate the expected continuum of
CCFTd−1 operators. The transformation (13) is the same that maps operators in a Carrollian

4In (13) we assumed that one can exchange the order of integrals over u0 and ω. It would be important,
yet beyond the scope of this paper, to study under what conditions this is allowed. It is possible that different
prescriptions will yield celestial amplitudes that differ by Poincaré invariant structures as observed for example
in [35, 36]. We thank Walker Melton and Sruthi Narayanan for a discussion on this point. It would also be
interesting to understand the precise relation between our prescription and those proposed in [37, 38] based on
an AdS/dS slicing of flat space.

5

https://scipost.org
https://scipost.org/SciPostPhys.17.1.002


SciPost Phys. 17, 002 (2024)

conformal field theory to celestial operators [21,22] and had also previously appeared in the
context of flat space holography in [39]. We will return to this in section 4.2. A complemen-
tary approach is to keep the u0 dependence and then relate the R→∞ limit of AdS Witten
diagrams to Carrollian correlators instead of celestial ones [40,41].

3 Spinning celestial amplitudes from flat space limit

We now discuss the extension of the result reviewed in the previous section to external spin-
ning operators. We analyze in turn the flat space limit of massless spinning bulk-to-boundary
propagators, spinning bulk-to-bulk propagators and vertices.

3.1 Bulk-to-boundary propagators

We start by considering the spinning bulk-to-boundary propagators for fields of dimension ∆
and spin J [29]

K∆,J
µ⃗;ν⃗ (X ; P) = C∆;J∂µ1

X A1 · · ·∂µJ
X AJ∂ν1

PB1 · · ·∂νJ
PBJ

I{A1;{B1
(X ; P) · · · IAJ };BJ }(X ; P)

(−P · X + iε)∆
, (14)

where

IA;B(X ; P) =
−P · XηAB + PAXB

−P · X + iε
. (15)

Here Ai , Bi are R2,d embedding space indices, µi run over the rescaled coordinates (t, r,Ω)
defined in (3), (7) and νi run over the boundary coordinates (u,Ω) in (6). ∂µi

X Ai , ∂νi
PBi

hence implement projections onto the corresponding bulk and boundary tensors respectively
and {·} denotes the symmetric traceless component. We collect some useful results on the
embedding space formalism in appendix A. C∆,J is a normalization constant [29]

C∆,J =
(J +∆− 1)Γ (∆)

2πd/2(∆− 1)Γ (∆+ 1− d
2 )R(d−1)/2−∆+J

. (16)

We see that spinning bulk-to-boundary propagators are obtained from the scalar ones defined
in (8) by dressing with the conformally covariant tensors in (15). It then suffices to analyze
the behavior of these tensors in the flat space limit.

Using the large R expansions

X (τ,ρ, z⃗) = (0, R) + (x , 0) +O
�

R−1
�

, (17)

P(τi , z⃗i) = ±(q̂(z⃗i), 0)∓
�

0,
ui

R

�

+O
�

R−2
�

, (18)

of the bulk and boundary embedding space vectors, where x = (t, rΩ(z⃗)) are Cartesian coor-
dinates and q̂ is defined in (10), one obtains the expansions of the projectors ∂µX A and ∂νPB.
From these expansions it immediately follows that

ηAB∂µX A∂νPB =

¨

O
�

R−2
�

, ν= u ,

±∂aq̂µ(z⃗) +O
�

R−1
�

, ν= za ,
(19)

PAXB∂µX A∂νPB =

¨

q̂µ(z⃗) +O
�

R−1
�

, ν= u ,

(∂aq̂(z⃗) · x) q̂µ(z⃗) +O
�

R−1
�

, ν= za .
(20)
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The expansion of the conformally covariant tensors (15) projected onto bulk and boundary
indices follows directly from these results. We distinguish between two cases. First, when the
boundary index is ν= u we have

Iµ,u(X , P) = ± lim
∆→0

1
∆

�

∂µ

�

1
(−q̂ · x ± iε)∆

�

+O
�

R−1
�

�

, (21)

which we recognize as the derivative of a scalar conformal primary wavefunction. Likewise,
if the boundary index is ν= za we have

Iµ,a(X , P) = ±
�

∂aq̂µ(z⃗) +
∂aq̂(z⃗) · x
(−q̂ · x ± iε)

q̂µ(z⃗) +O
�

R−1
�

�

. (22)

Hence, up to normalization and a phase, the flat space limit of Iµ,a(X , P) corresponds to the
conformally covariant tensor used in the construction of spinning conformal primary wave-
functions given in [42].5 Putting everything together, we conclude that general massless spin-
ning conformal primary wavefunctions are obtained from flat space limits of the spinning
bulk-to-boundary propagators (14) with transverse indices. Note however that the dimen-
sionally reduced bulk to boundary propagators have a non-vanishing trace. In order to obtain
conformal primary wavefunctions in CCFTd−1 the trace has to be subtracted. For example, in
the spin two case this is implemented by applying the projector [32]

P b1 b2
a1a2
≡ δb1
{a1
δ

b2
a2}
−

1
d − 1

δa1a2
δb1 b2 . (23)

Finally, (21) implies that bulk-to-boundary propagators with time indices on the boundary
result in pure gauge conformal primary wavefunctions. We leave a better understanding of
this, as well as additional data resulting from the dimensional reduction to future work.

3.2 Bulk-to-bulk propagators and vertices

The spin J bulk-to-bulk propagator in AdSd+1 obeys the equations [29]
�

□AdS −
∆(∆− d)

R2
+

J
R2

�

Πµ1...µJ ,ν1...νJ
(X , X̄ ) = −gµ1{ν1

· · · g|µJ |νJ }δAdS(X , X̄ ) , (24)

∇µ1Πµ1...µJ ,ν1...νJ
(X , X̄ ) = 0 . (25)

To take the flat space limit we assume that all of the components are in the chart (t, r,Ω), in
which the AdS metric gµν becomes the Minkowski metric ηµν to leading order at large R

gµν = ηµν +O
�

R−2
�

. (26)

On the other hand, the Laplace operator behaves as □AdS = □R1,d +O
�

R−2
�

and the Dirac delta
behaves as δAdS(X , X̄ ) = δR1,d (x , x̄)+O

�

R−2
�

[19]. Therefore the first equation turns into the
equation for the propagator of a spin J field of mass m = lim

R→∞
∆
R in flat space. The second

equation can be treated in the same way since gµν = ηµν + O
�

R−2
�

and the AdS covariant
derivative becomes the flat spacetime covariant derivative when R→∞.

As a result, the bulk-to-bulk propagator must have an expansion of the form

Πµ1...µJ ,ν1...νJ
(X , X̄ ) = Gµ1...µJ ,ν1...νJ

(x , x̄) +O
�

R−2
�

, (27)

where Gµ1...µJ ,ν1...νJ
(x1, x2) is the Feynman propagator for a symmetric traceless tensor of spin

J in R1,d .
Since vertices are simply integrals over AdS which become integrals over R1,d in the flat

space limit, we conclude that AdS-Witten diagrams for spinning particles reduce to CCFTd−1
amplitudes of spinning massless particles in the flat space configuration (6).

5The polarization vectors ∂aq̂ are gauge equivalent to the ones defined in [32].
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4 From conformal to infinite dimensional symmetry

Consider a d-dimensional CFT on the Lorentzian cylinder with metric

ds2 = gµνd xµd xν = −dτ2 + dΩ2
d−1 , (28)

where dΩ2
d−1 is the metric on the (d − 1)-sphere of unit radius. Conformal transformations

are coordinate transformations that preserve the metric up to a Weyl rescaling. Specifically,
infinitesimal conformal transformations are obtained by finding the diffeomorphisms

x
′µ = xµ + εµ(x) , (29)

under which the metric transforms as

g ′µν(x
′) = gµν(x) +δgµν , δgµν = σ(x)gµν(x) . (30)

Such diffemorphisms are subject to the conformal Killing equations

∇µεν +∇νεµ =
2
d
∇ · ε(x)gµν . (31)

The solutions to these equations generate the conformal algebra so(d, 2) for d ≥ 3, while for
d = 2 this algebra admits a Virasoro enhancement.

The relation between celestial amplitudes on the (d − 1)-dimensional celestial sphere and
conformal correlation functions of primary operators localized to strips of infinitesimal width
∆τ∝ 1

R as R→∞ suggests that, on short global time scales, d-dimensional conformal field
theories should develop an infinite dimensional symmetry. In this section we show that this is
indeed the case by analyzing the conformal Killing equations (31) in this limit. We specialize to
d = 3 in which case the emergent “celestial” CFT is 2-dimensional and expected to be governed
by the extended BMS symmetries of 4D asymptotically flat spacetimes (AFS) [43–46].

For d = 3, (28) reduces to

ds2 = −dτ2 + 2γzz̄dzdz̄ , γzz̄ =
2

(1+ zz̄)2
, (32)

where we introduced stereographic coordinates (z, z̄) on the unit 2-sphere with metric γzz̄ .
We would like to zoom into a region of the 3-dimensional Lorentzian cylinder of infinitesimal
width centered around a global time slice at τ0. To this end, we introduce the coordinate u
defined by

τ= τ0 +
u
R

, (33)

in which case the metric (32) becomes

ds2 = −R−2du2 + 2γzz̄dzdz̄ . (34)

The conformal Killing equations associated with (34) take the form

∂uε
u =

1
3
∇ · ε , (35)

∂uεz + ∂zεu = 0 , (36)

Dz̄εz + Dzεz̄ =
2
3
∇ · εγzz̄ , Dzεz = 0 , (37)

where DA is the covariant derivative on the sphere and we denote indices tangent to the sphere
by A.
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The last equation in (37) is solved by

γzz̄∂zε
z̄ = γzz̄∂z̄ε

z = 0 =⇒ εA = F(u)Y A(z, z̄) , (38)

where Y A are conformal Killing vectors on the sphere. Moreover (35) and the first equation
in (37) yield6

2∂uε
u = F(u)D · Y =⇒ εu =

1
2

∫ u

du′F(u′)D · Y + f (z, z̄) . (39)

Finally, F(u) is determined from (39) and (36). In the limit as R→∞we distinguish between
two cases. If D · Y = 0 we immediately find

∂uF(u) = O
�

R−2
�

=⇒ F(u) = c +O
�

R−2
�

, (40)

where c is a constant. For future convenience we chose c = 1 which reproduces the standard
Lie algebra of rotation generators to leading order at large R. On the other hand, if D · Y ̸= 0,
taking a u derivative of (36) we find

∂ 2
u F(u)YA−

F(u)∂AD · Y
2R2

= 0 , (41)

or upon taking the divergence on the sphere,7

�

∂ 2
u F(u) +

1
R2

F(u)
�

D · Y = 0 . (43)

(43) is solved by
F(u) = e±i(τ0+

u
R ) . (44)

Since we have taken a u derivative and a divergence on the sphere in order to arrive at (40)
and (44), it is important to verify whether these solutions also obey the original conformal
Killing equation (36). In fact (40), (44) fail to obey (36) away from the R →∞ limit. For
D · Y ̸= 0

δε± guA = ±
ie±i(τ0+

u
R )

R
αA(z, z̄)−

∂A f (z, z̄)
R2

, αA = YA+
1
2

DA(D · Y ) . (45)

Therefore the violation is O
�

R−1
�

for the local CKV on the sphere, while in the special case
D · Y = 0 the violation is O

�

R−2
�

. The enhanced conformal Killing symmetry in the strip
is therefore broken at O

�

R−1
�

. Singularities in the local CKVs on the sphere also lead to a
violation of the conformal Killing equations by contact terms.

The vector fields that preserve the metric of a 3D Lorentzian cylinder in an infinitesimal
time interval∝ R−1 in the limit R→∞ are hence

ε± =
�

∓
iR
2

F±(u)D · Y + f (z, z̄)
�

∂u + F±(u)Y
A∂A , (46)

6Note that f (z, z̄)may depend on R. As we show later, the global translations are obtained from an Inonu-Wigner
contraction of vector fields with f (z, z̄) = R. Supertranslations may also be obtained by allowing f (z, z̄) = Rf0(z, z̄)
and directly applying (57) to the local generators.

7Recall that conformal Killing vectors on the sphere obey

DADADBY B = −2D · Y . (42)
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where
¨

F±(u) = e±i(τ0+
u
R ) , D · Y ̸= 0 ,

F±(u) = 1 , D · Y = 0 .
(47)

It may be interesting, yet beyond the scope of this paper, to systematically understand whether
(34) and (46) admit subleading corrections8 at large R that allow for an enhancement of
conformal symmetry in a strip of small yet finite size.

A few comments are in order. Just like the generators of the extended BMS group in 4D
AFS, the vector fields (46) are labelled by a function f (z, z̄) and a local conformal Killing vector
Y A(z, z̄) on the sphere. The resulting symmetry group is infinite dimensional, in contrast to
the conformal group in 3 dimensions. At first glance this may seem surprising, however we
ought to keep in mind that (46) are not symmetries of full 3D CFT but only of infinitesimal
time intervals.

Moreover, note that in the R→∞ limit the metric (34) develops a “null direction” reflected
by the vanishing of the guu component. As such, the restriction to short global timescales shares
similarities with the Carrollian limit [47, 48]. In the next section we show how the extended
BMS4 algebra is recovered from the enhanced conformal symmetries (46) of the strip by an
Inonu-Wigner contraction [20].

4.1 Extended BMS4 algebra in CFT3

We now show that the extended BMS4 algebra can be extracted from the algebra generated
by the vector fields (46). This procedure is analogous to the Inonu-Wigner contraction of the
conformal algebra to Poincaré [20].

We start by noting that appropriate linear combinations of (46) generate an so(3, 2) algebra
for constant f (z, z̄) and Y = Y A∂A restricted to the global conformal Killing vectors of the
sphere [46],

Y12 = −i(z∂z − z̄∂z̄) , Y23 = −i
z2 − 1

2
∂z + i

z̄2 − 1
2
∂z̄ , Y31 = −

1+ z2

2
∂z −

1+ z̄2

2
∂z̄ ,

(48)

Y01 =
1− z2

2
∂z +

1− z̄2

2
∂z̄ , Y02 =

i(1+ z2)
2

∂z −
i(1+ z̄2)

2
∂z̄ , Y03 = −z∂z − z̄∂z̄ . (49)

(48) correspond to rotations of the 2-sphere and have vanishing divergence D · Yi j = 0 while
(49) have non-vanishing divergence

D · Y0i = −2Ωi , (50)

where Ω = 1
1+zz̄ (z + z̄,−i(z − z̄), 1− zz̄) is the unit normal to the sphere at (z, z̄). Specifically,

identifying

D = −iε f=R , Ji j = iεYi j
, (51)

Pi = iε+Y0i
, Ki = iε−Y0i

, (52)

we find the commutation relations [30]

[D, Ji j] = 0 , [D, Pi] = Pi , [D, Ki] = −Ki ,

[Ji j , Pk] = i(δikPj −δ jkPi) , [Ji j , Kk] = i(δikK j −δ jkKi) ,

[Pi , K j] = 2i(iδi j D− Ji j) , [Ji j , Jkℓ] = i
�

δikJ jℓ +δ jℓJik −δ jkJiℓ −δiℓJ jk

�

.

(53)

8Unfortunately this naively appears to require coupling the boundary CFT to gravity. We thank Jan de Boer for
a discussion on this point.
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These generators can be reorganized in terms of Lorentz generators MAB of the embedding
space R2,39

M40 = −D , Mi4 =
Pi + Ki

2
, (54)

Mi j = Ji j , Mi0 =
Pi − Ki

2i
, i = 1,2, 3 . (55)

Explicit computation shows that (53) imply that MAB obey the so(3,2) algebra

[MAB, MC D] = i (ηAC MBD +ηBDMAC −ηBC MAD −ηADMBC) , (56)

with η00 = η44 = −1,ηii = 1 and all other components vanishing. The Inonu-Wigner contrac-
tion is implemented by redefining

Pµ = 1
R

M4µ , µ= 0, · · · , 3 , (57)

and taking R → ∞ while keeping Pµ and Mµν fixed. It is straightforward to show that in
this limit, (53) reduce to the Poincaré algebra, with Pµ and Mµν the translation and Lorentz
generators in R1,3 respectively.

We now demonstrate that an analogous Inonu-Wigner contraction of the local vector fields
(46) leads to the extended BMS4 algebra ebms4. In analogy with (57) we define

TY = i
ε+Y + ε

−
Y

2R
, LY =

ε+Y − ε
−
Y

2
, (58)

for arbitrary conformal Killing vector fields Y 10 and take the limit R → ∞. Setting
τ0 =

π
2 +O
�

R−1
�

, we find from (46) and (58)

−iTY =
1
2

D · Y ∂u +O
�

R−2
�

, (59)

−i LY = Y A∂A+
u
2

D · Y ∂u +O
�

R−2
�

. (60)

Together with the vector fields with Y = 0, parametrized by an arbitrary function f on the
sphere

T f ≡ iε f = i f (z, z̄)∂u +O
�

R−2
�

, (61)

LY generate ebms4

[T f1 , T f2] = O
�

R−2
�

, (62)

[LY1
, LY2
] = i L[Y1,Y2] +O

�

R−2
�

, (63)

[T f , LY ] =
�

Y ( f )−
1
2
(D · Y ) f (z, z̄)
�

∂u +O
�

R−2
�

= iT f ′= 1
2 (D·Y ) f −Y ( f ) +O

�

R−2
�

. (64)

Note that

lim
R→∞

TY = lim
R→∞

T f= 1
2 D·Y , (65)

which means that TY correspond to a special class of supertranslation vector fields T f with
f = 1

2 D · Y and are hence redundant. Analogous results are obtained by expanding (58)

9Our conventions differ slightly from those in [15] and are simply related by exchanging the 0 and 4 directions
or equivalently shifting τ→ τ+ π

2 in (2).
10Note that the rotation generators with D ·Y = 0 are obtained directly as Mi j = Ji j , hence no linear combination

is necessary.
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so(3,2) generators local enhancement (46)

Poincaré ebms4

short times

Inonu−Wigner Inonu−Wigner

Figure 1: The metric of a CFTd on the Lorentzian cylinder develops an approximately
null direction over infinitesimal global time intervals∆τ∼ R−1. In the limit R→∞,
the conformal Killing equations admit an infinite dimensional set of solutions param-
eterized by a function on Sd−1 and a conformal Killing vector on Sd−1. In particular,
for d = 3, an Inonu-Wigner contraction in the intervals around τ= ±π2 leads to vec-
tor fields that obey the extended BMS4 algebra.

around τ0 = −
π
2 . The results of this section are summarized in Figure 1. In our analysis

we naturally recover ebms4 which follows directly from (38). In flat space it is known that
an appropriate choice of boundary conditions at null infinity leads to a further enhancement
of ebms4 to gbms4, the generalized BMS4 algebra [49]. In this case, the vector field on the
sphere Y A remains unconstrained and the local conformal algebra of S2 is enhanced to the full
diff(S2) algebra. In our analysis, the restriction to extended BMS4 can be traced back to the
use of standard Dirichlet boundary conditions for gravity in AdS, in which case the boundary
metric and hence also the metric of the cylinder cross sections are fixed. It would be interesting
to understand if different boundary conditions lead to gbms4 instead. Naively any other choice
would lead to a boundary theory with a dynamical metric.11

Finally, consider the shift τ0 → τ0 +π in ε±Y defined in (46). Under this transformation,
ε±Y →−ε

±
Y . The same transformation can be implemented for the globally defined vector fields

by keeping τ fixed and considering instead an antipodal map on S2. Therefore, the action of LY
and TY on S2 slices of the Lorentzian cylinder separated by π in global time becomes the same
provided the slices are antipodally related. This is compatible with the observation in [19]
that in order to respect Lorentz invariance in the flat space limit of AdS Witten diagrams it
is necessary to antipodally identify the time-slices corresponding to in/out states. It further
suggests that the antipodal matching condition between I+− and I−+ employed in AFS [44]
arises naturally in the flat space limit proposed in [19]. Note that similar arguments led to a
derivation of the matching conditions via a resolution of i0 with hyperbolic slices [51,52].

We close this section discussing the difference between the construction we have presented
and the connection between the conformal Carroll algebra and the BMS algebra presented in
[53] (see also [54]where this connection was conjectured). Let us briefly review the definition
of the conformal Carroll algebra following [53]. Firstly define a Carroll manifold to be a triplet
(M , g,ξ)where M is a smooth manifold, g ∈ Γ (T0

2 (M)) is a symmetric and positive tensor field,
and ξ ∈ Γ (T M) is a nowhere vanishing null vector field. In this setting, the conformal Carroll
group of level N ∈ N, CCarrN (M , g,ξ) is defined as the set of conformal transformations of
(M , g) preserving the tensor field g ⊗ ξ⊗N , i.e., diffeomorphisms f : M → M for which

f ∗g = Ω2 g , f ∗ξ= Ω−2/Nξ . (66)

Of particular interest is the case in which M = R×Σ where (Σ, ĝ) is a Riemannian manifold.
In this case, letting xA be coordinates on Σ, u be the standard coordinate on R and endowing

11It was argued in [50] that for Neumann boundary conditions one may nevertheless obtain a CFT (on a fixed
background). More precisely, the author argues that for Neumann boundary conditions there is a dual graviton
that is kept fixed. The stress tensor of the associated theory is then the Cotton stress tensor of the original Dirichlet
CFT.
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M with the product chart, the degenerate metric reads g = ĝABd xAd xB and the null vector
field is ξ = ∂u. For this case, the authors of [53] argue that the generators of the Lie algebra
ccarrN (M , g,ξ) are vector fields of the form

X = Y +
�

λ

N
u+ T (x)
�

∂u , (67)

where Y ∈ conf(Σ, ĝ) with LY ĝ = λ ĝ, in which L is the Lie derivative, and where T (x) is the
unconstrained supertranslation. It is immediate to observe that taking (Σ, ĝ) = (S2,γ) and
N = 2 this has exactly the form of bms4 generators pulled back to I±, the same being true in
higher dimensions.

With this short review completed we can compare to our setting. It is immediate to observe
that the two constructions are a priori distinct: we studied the standard conformal Killing
equation (31) in a Lorentzian manifold in a particular regime, whereas in the construction
of the conformal Carroll group one studies the equations (66) in a Carroll manifold. Note
however, that the infinitesimal strip around τ0 parameterized by τ = τ0 +

u
R can be seen as a

Carroll manifold in the strict R→∞ limit, being precisely of the form discussed above, with
(Σ, ĝ) = (S2,γ). Moreover, it is clear that the LY generators that we have obtained from the
conformal Killing equation in the strip have the form (67). That is to be expected: we have
shown that they are the bms4 generators obtained from the enhanced conformal symmetry of
the cylinder, and as argued in [53], bms4 = ccarr2(R× S2,γ,∂u).

Moreover, at the level of field theories defined on the manifold under consideration, our
construction applies to a standard CFT in a Lorentzian manifold, whereas the conformal Carroll
group analysis applies to a Carrollian CFT on a Carroll manifold. Finally we remark that it is
plausible that the theory we obtain by taking the limit we propose contains more information
than a Carrollian CFT. On the one hand, the antipodal matching condition between I+ and I−
appears naturally in our construction by studying the τ evolution of the symmetry generators.
On the other hand, as will be shown in section 5, both the leading and subleading soft theorems
can be recovered from the transverse traceless component of the (shadow) stress tensor Ward
identities. This is in contrast to the Carrollian setting where all components of the Carrollian
stress tensor Ward identities are used in order to establish and analogous relation [21,22,55].

4.2 Transformation of CFT3 primary operators in the strip

We now study the action of the conformal Killing vectors on CFT3 primary operators and show
that when restricted to global time slices, these operators transform as quasi-primary operators
in CCFT2. We work in Euclidean signature and Wick rotate at the end.

A primary operator O∆(x) of arbitrary spin transforms in some representation
D : SO(3) → GL(V ). The action action of a conformal Killing vector ε on such an operator
is [56]

δεO∆(x) = −
�

(∇ · ε)
∆

3
+ εµ∇µ +

i
2
∇µενSµν
�

O∆(x) , (68)

where ∇µ is the spin covariant derivative [57]12

∇µ = ∂µ +
i
2
ω ab
µ Sab . (69)

Here ω ab
µ is the torsion-free spin connection defined in terms of a vielbein ea

µ

gµν = ea
µeb
νδab , (70)

12This agrees with the definition involving Σ in [57] upon setting Σµν = iSµν, with Sµν obeying (56).
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where gµν is the 3-dimensional metric, Sab are the generators of the representation D and
Sµν = ea

µeb
νSab. Note that O∆(x) are defined to only carry internal indices. As an example,

in appendix B we demonstrate that (69) reduces to the standard Levi-Civita connection when
acting on Lorentz vectors. The (Wick rotated) metric (34) is recovered with the following
choice of vielbein ea

µ

e1 =
s

γzz̄

2
(dz + dz̄) , e2 = −i

s

γzz̄

2
(dz − dz̄) , e3 =

du
R

. (71)

Taking ε= LY , namely

LY ≡
ε+Y − ε

−
Y

2
(72)

=
i
2
(D · Y )u∂u + iY A∂A+O

�

R−1
�

, τ0 =
π

2
, (73)

we show in appendix C that (68) becomes

δLY
O∆(x) = −i
�

DzY zh+ Dz̄Y z̄ h̄+ Y z(∂z −ΩzJ3) + Y z̄(∂z̄ −Ωz̄J3) +O
�

R−1
��

O∆(x) , (74)

where we defined the operator-valued weights

h≡
∆̂+ J3

2
, h̄≡

∆̂− J3

2
, ∆̂≡∆+ u∂u . (75)

Finally given that J3 acts diagonally on a primary operator,

J3O∆ = sO∆ , (76)

the operator-valued weights simplify to

h=
∆̂+ s

2
, h̄=

∆̂− s
2

. (77)

On the other hand, note that the dilatation operator in the two-dimensional theory is not
diagonal in the basis of primary operators of the CFT3. Indeed, only operators placed at u= 0
diagonalize the two-dimensional weights (77). For this special case, one obtains operators
transforming like two-dimensional primary operators with respect to conformal transforma-
tions of the slices, whose dimensions agree with those of the corresponding CFT3 operators.
More generally ∆̂ can be diagonalized by the time Mellin-like transform discussed at the level
of the bulk-to-boundary propagators in section 2, namely

ÒO∆(z, z̄;∆0)≡ N(∆,∆0)

∫ ∞

−∞
du u−∆0O∆(u, z, z̄) , (78)

where N(∆,∆0) is chosen to reproduce the standard normalization of CCFT operators. Under
this transformation we have

u∂u → ∆0 − 1 , (79)

and therefore it follows that ÒO∆(z, z̄;∆0) transforms as a two-dimensional quasi-primary op-
erator with weights

h=
(∆+∆0 − 1) + s

2
, h̄=

(∆+∆0 − 1)− s
2

. (80)
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The transformation of ÒO∆ under LY is therefore

δLY
ÒO∆(z, z̄;∆0) = −i

�

DzY zh+ Dz̄Y z̄ h̄+ Y z(∂z − sΩz) + Y z̄(∂z̄ − sΩz̄) +O
�

R−1
��

ÒO∆ . (81)

As an example consider a CFT3 current Jµ of dimension∆= 2 and spin s = 1. According to
(81) its restriction to an equal time slice, (bJz , bJz̄), transforms under 2d conformal transforma-
tions of the slice as an operator of dimension∆CC F T = 1+∆0 and spin s = 1. Choosing∆0 = 0
then yields a 2D current. Likewise the stress tensor Tµν has ∆C F T = 3 and spin s = 2. In this
case its 2D counterpart bT has ∆CC F T = 2+∆0. Therefore choosing ∆0 = 0 again yields an
operator that transforms as the stress tensor in two-dimensions. Currents in the dimensionally
reduced theory can be equivalently obtained from currents in the parent CFT3 by performing
a 3D shadow transform followed by restriction to the u= 0 slice and a 2D shadow transform.
It can be easily checked that this prescription lowers the dimension of the operator by 1. This
is detailed in appendix D and motivates our calculations in the following section.

This discussion brings the proposed projection from CFTd to CCFTd−1 closer to the standard
dimensional reduction procedure. The starting point in dimensional reduction is a manifold
M × K , where K is usually taken to be compact. A field Φ in this higher-dimensional space
can be decomposed into modes that diagonalize a differential operator on K . The coefficients
in the expansion of Φ in terms of these modes are then a tower of fields Φm in M [58]. This
is analogous to what happens here. Explicitly, we start with a CFT3 on R× S2 and note that
the operator O∆(u, z, z̄) can be expanded in terms of eigenfunctions of the differential oper-
ator u∂u in R and a continuum of modes ÒO∆(z, z̄;∆0). In this case the role of K is played
by the non-compact R and therefore we obtain a continuum instead of a discrete set of fields
in the dimensionally-reduced theory on S2. Similar ideas applied to the distinct context of
relating celestial holography to holography for the continuum of AdS3/CFT2 slices of the fu-
ture/past Milne wedges of Minkowski spacetime have been put forward in [59,60]. It would
be interesting to establish a precise equivalence between these two approaches.

Finally, note that the transformation (78) is the same as the one recently employed in
[21, 22] to relate Carrollian and celestial holography. This transformation appears here in a
novel context and we believe it deserves further study. One difference here is that the effective
dimension of the CCFT operator is not simply ∆0, but instead ∆+∆0 − 1. One hence has to
account for the shift by the dimension ∆ of the operator in the parent CFT3 when taking
conformally soft limits for example. The additional shift by 1 is due to the fact the CFT3 vector
field (60) has no radial component. In the case of superrotation vector fields in AFS this is
known to induce a shift by 1 in the conformal primary dimension of on asymptotic field with
respect to its action [46]. It would be interesting to further explore how radial evolution in
AFS arises from the perspective of the flat space limit of CFT3.

We conclude this section by noting that in the case when Y is a globally defined CKV on
S2, the vector fields LY are also globally-defined on the cylinder and therefore must be linear
combinations of so(3, 2) generators. In this case, conformal symmetry of the CFT3 implies the
Ward identity

n
∑

i=1

δLYi
〈O1 · · ·On〉= 0 . (82)

In the large R limit this reduces to

n
∑

i=1

�

Dzi
Y zi hi + Dz̄i

Y z̄i h̄i + Y zi (∂zi
− siΩzi

) + Y z̄i (∂z̄i
− siΩz̄i

) +O
�

R−1
��

〈O1 · · ·On〉= 0 , (83)

which corresponds to the global SL(2,C)/Z2 symmetry of the CCFT2 as expected. When Y are
not globally defined, we expect the symmetry action on the correlator (82) to reduce in the
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large R limit to an insertion of the CCFT2 stress tensor. In the next section we will show that
the subleading conformally soft graviton theorem in CCFT and the associated stress tensor
Ward identity follow from the flat limit of the CFT3 shadow stress tensor Ward identities.
Remarkably, the large-R expansion of the shadow stress tensor Ward identity in CFT3 allows
us to also directly recover the leading conformally soft graviton theorem.

5 CCFTd−1 conformally soft theorems from CFTd

In this section we describe how soft symmetries in CCFTd−1 emerge from the higher-
dimensional CFTd upon dimensional reduction. As a first step, we identify the operators in
CFTd that become conformally soft operators. In particular, we show that the leading confor-
mally soft gluon in CCFTd−1 arises in the flat limit13 from a shadow-transformed conserved
current in CFTd . Similarly, the leading and subleading conformally soft gravitons are obtained
from the CFTd stress tensor.

The relation between soft theorems in R1,d+1 and shadow stress tensor Ward identities in
CFTd was first observed in [23] (see also [61,62]). Here we combine this general correspon-
dence with the flat space limit to derive CCFTd−1 conserved operators (associated instead with
soft theorems in R1,d) from CFTd ones.

Particularly relevant will be the shadow transform of a spin J tensor field in CFTd which
is defined in the embedding space (see appendix A) as

eΦA1···AJ (P)≡
∫

Dd Y

∏

i(η
Ai Bi (P · Y )− Y Ai PBi )
(−2P · Y )d−∆+J

ΦB1···BJ
(Y ) . (84)

The shadow transform squares to the identity up to normalization [63]. This integral trans-
form maps a primary of dimension and spin (∆, J) to another primary of dimension and spin
(d−∆, J). In the remainder of this section we lift the analysis of [23] to the embedding space
R1,d+1 and evaluate shadow current and shadow stress tensor insertions

〈eJA(P)O1(P1) · · ·On(Pn)〉 , 〈eTAB(P)O1(P1) · · ·On(Pn)〉 . (85)

Our approach is therefore independent on the choice of lightcone section or conformally flat
manifold (Σ, g). In order to take the flat space limit we project and analytically continue to
CFTd on the Lorentzian cylinder. To simplify formulas we introduce the notation X for a string
of primary field insertions in correlation functions

〈X〉 ≡ 〈O1(P1) · · ·On(Pn)〉 . (86)

Since the dimensions of the leading conformally soft gluon and subleading conformally
soft gravitons are ∆ = 1 and ∆ = 0 respectively in any number of dimensions, it is perhaps
to be expected that the flat limit will lead to the corresponding conformally soft theorems.
What we find remarkable is that this approach also allows us to easily recover the leading
conformally soft graviton! This can be obtained by acting on the CFTd shadow stress tensor
with ∂u in the strip. We will see that in the limit R→∞ this indeed precisely reproduces the
leading conformally soft graviton theorem in CCFTd−1.

13Defined here as the localization of the operator at u = 0 in a time strip τ = τ0 +
u
R of infinitesimal width. As

we show in appendix D one could also start from the time-Mellin transformed shadow current (78) in the strip and
take ∆0 = 1. In this paper, the flat space limit, while motivated by holography, doesn’t require the CFTd to have a
holographic dual.
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5.1 Shadow current

Using the defining relation (84), the shadow transform of a spin-1 field in the embedding space
can be written as

eJA(P) =
1
4

∫

Dd Y
∂PA∂Y B log(−2P · Y )
(−2P · Y )d−∆−1

JB(Y ) . (87)

Here we have used the following identities

∂

∂ PA
log(−2P · Y ) =

YA

P · Y
,

∂

∂ PA

∂

∂ Y B
log(−2P · Y ) =

ηAB(P · Y )− PBYA

(P · Y )2
. (88)

We now consider a g-valued current where g is the Lie algebra of a Lie group G which is
a global symmetry of the CFTd . Omitting color indices and recalling that the dimension of a
current is ∆= d − 1, (87) reduces to

eJA(P) =
1
4

∫

Dd Y ∂PA∂Y B log(−2P · Y )JB(Y ) (89)

= −
1
4

∫

Dd Y ∂PA log(−2P · Y )∂Y B JB(Y ) , (90)

where in the last line we have integrated by parts.14 We now invoke the Ward identity15 [28]

∂B〈JB(Y )X〉=
n
∑

i=1

δ(Y, Pi)Ti〈X〉 , (91)

where Ti are the generators of the representation of G in which Oi transforms. It follows
immediately that

〈eJA(P)X〉= −
1
4

n
∑

i=1

(Pi)A
P · Pi

Ti〈X〉 . (92)

Finally, we can project (92) to a particular section of the lightcone parameterized by PA(x).
In this case we find

〈eJµ(x)O1(x1) · · ·On(xn)〉= −
1
4

n
∑

i=1

∂µP(x) · P(x i)

P(x) · P(x i)
Ti〈O1(x1) · · ·On(xn)〉 . (93)

Equivalently, as described in appendix A we can choose a set of orthogonal polarization ten-
sors ϵA

a(x) (136) and project the components of the shadow current to an orthogonal basis
obtaining

〈eJa(x)O1(x1) · · ·On(xn)〉= −
1
4

n
∑

i=1

ϵa(x) · P(x i)
P(x) · P(x i)

Ti〈O1(x1) · · ·On(xn)〉 , (94)

which coincides with the leading soft gluon theorem in the embedding space R1,d+1 with the
soft gluon operator given by [23]16

Sa(x)≡ −4eJa(x) . (96)
14Recall that on the lightcone JB(Y )∼ JB(Y ) + Y B f (Y ).
15The embedding space delta function δ(Y, Pi) is defined by

∫

Dd Yδ(Y, Pi) = 1.
16Note that we normalize the shadow transform (84) according to [63]. This normalization differs from the one

in [23] by a factor of (−1/2)J . To see this, note that when contracted onto lightcone tensors,

1
4
ηAB(P · Y )− PBYA

(P · Y )
JB(Y ) =

1
4
ηAB(P · Y )− PBYA− YB PA

(P · Y )
JB(Y )

= −
1

2(P − Y )2

�

ηAB − 2
(P − Y )A(P − Y )B
(P − Y )2

�

JB(Y ) .
(95)
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Our main result will be to demonstrate that analytic continuation to Lorentzian signature
followed by the flat limit prescription of [19] will yield the leading conformally soft gluon.
The leading and subleading conformally soft gravitons in CCFTd−1 (or equivalently the soft
graviton in R1,d) can be recovered in a similar way from the CFTd stress tensor. To show this,
we first need to generalize the embedding space analysis herein to the shadow stress tensor.

5.2 Shadow stress tensor

For a spin two field the shadow transform takes the form

eTAB(P) =
1
16

∫

Dd Y
∂PA∂Y C log(−2P · Y )∂PB∂Y D log(−2P · Y )

(−2P · Y )d−∆−2
T C D(Y ) . (97)

For the stress tensor, ∆= d and so

eTAB(P) =
1

16

∫

Dd Y (−2P · Y )2∂PA∂Y C log(−2P · Y )∂PB∂Y D log(−2P · Y )T C D(Y ) . (98)

While the steps involved in the derivation of the relation between the shadow transform of the
stress tensor and the soft graviton theorem are similar to those in [23], we find it instructive to
repeat the significantly simpler calculation here in the embedding space. Integrating by parts
and using (88) this can be written as

eTAB(P) = −
1
8

∫

Dd Y
YA

P · Y
∂Y C

�

[ηBD(P · Y )− PDYB]T
C D(Y )
	

+ (A↔ B) , (99)

and further evaluating the derivative with respect to Y one finds

eTAB(P) =
1
4

∫

Dd Y
YA

P · Y
ηB[C PD]T

C D(Y )

−
1
8

∫

Dd Y
YA

P · Y
[ηBD(P · Y )− PDYB]∂Y C T C D(Y ) + (A↔ B) , (100)

where [., .] stands for antisymmetrization. We ensured that the manifest symmetry of (97)
under A↔ B is preserved upon integration by parts.

The insertions of both terms on the RHS of (100) in correlation functions are determined
by the uplift of the stress tensor Ward identities to the embedding space [28]. In particular,
the first line involves T [C D] whose insertions are related to the spin component SC D of the
Lorentz generators in the embedding space

〈T [C D](Y )X〉= −
i
2

n
∑

i=1

δ(Y, Pi)SC D
i 〈X〉 . (101)

We then find that inside correlation functions, the first line in (100) simplifies to

1
4

∫

Dd Y
YA

P · Y
ηB[C PD]〈T C D(Y )X〉= −

i
8

n
∑

i=1

(Pi)APD

P · Pi
ηBCSC D

i 〈X〉

=
i
8

n
∑

i=1

(Pi)APD

P · Pi
(Si)DB〈X〉 . (102)

On the other hand, the second term in (100) is determined by the stress tensor Ward identity

〈∂Y C T C D(Y )X〉= −ηDE
n
∑

i=1

δ(Y, Pi)∂PE
i
〈X〉 . (103)
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Using this Ward identity, insertions of the second term in (100) can then be shown to be related
to the orbital part of the embedding space Lorentz generators, LDB, namely

LDB ≡ −i(PD∂PB − PB∂PD) . (104)

Specifically, we find that inside correlation functions the second term in (100) reduces to

−
1
8

∫

Dd Y
YA

P · Y
[ηBD(P · Y )− PDYB]〈∂Y C T C D(Y )X〉=

i
8

n
∑

i=1

(Pi)APD

P · Pi
(Li)DB〈X〉 . (105)

Combining the two contributions from equation (100) we find the embedding space formula
for insertions of the stress tensor in CFTd

〈eTAB(P)X〉=
i
8

n
∑

i=1

(Pi)APD

P · Pi
[(Li)DB + (Si)DB]〈X〉+ (A↔ B)

≡
i
8

n
∑

i=1

(Pi)APD

P · Pi
(Ji)DB〈X〉+ (A↔ B) . (106)

As before, we can now project to a particular section parameterized by PA(x)

〈eTµν(x)X〉=
∂ PA

∂ xµ
∂ PB

∂ xν
〈eTAB(P(x))X〉

=
i
4

n
∑

i=1

∂{µPA(x)∂ν}PB(x)PA(x i)PD(x)

P(x) · P(x i)
(Ji)DB〈X〉 . (107)

Alternatively, using the orthogonal set of polarization vectors ϵA
a (136) to construct the spin

two tensors ϵAB
ab = ϵ

A
{aϵ

B
b} and projecting to the associated orthonormal basis, we find [23]

〈eTab(x)O1(x1) · · ·On(xn)〉=
i
4

n
∑

i=1

ϵAB
ab (x)PA(x i)PD(x)

P(x) · P(x i)
(Ji)DB〈O1(x1) · · ·On(xn)〉 , (108)

which upon defining17

Gab = −4eTab , (109)

we recognize as the formula for a subleading soft graviton insertion in the embedding space
R1,d+1.

5.3 Large R expansions

We now apply these results to a CFTd on the Lorentzian cylinder and show that the conformally
soft theorems in the dimensionally reduced CCFTd−1 arise naturally from the flat space limit
prescription proposed in [19]. We work with the analytic continuation to Lorentzian signature
of the Euclidean results derived in the previous sections.

Consider the embedding

P(τ, z⃗) = (sinτ,Ω(z⃗), cosτ) , (110)

of the d-dimensional Lorentzian cylinder in R2,d with metric ηAB = (−1, 1, · · · ,−1) introduced
in section 2. Here Ω2 = 1 are unit normals to Sd−1. We also consider the polarization tensors

ϵa(τ, z⃗) = (za sinτ,δb
a ,−za, za cosτ) , a = 1, . . . , d − 1 , (111)

ϵd(τ, z⃗) = (cosτ, 0⃗,− sinτ) , (112)

17Working in units where κ=
p

32πG = 2.
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where δb
a denotes a vector with vanishing components except for an entry equal to 1 at b = a.

These are such that ϵa · P = ϵd · P = 0 provided that

za =
Ωa

1+Ωd
, a = 1, · · · d − 1 . (113)

Moreover, ϵa · ϵb = ηab where ηdd = −1. They also enjoy the property that setting τ = π
2 +

u
R

and expanding at large R

ϵa = (za,δb
a ,−za, 0) +O
�

R−1
�

,

ϵd = (0, 0⃗,−1) +O
�

R−1
�

.
(114)

We therefore see that ϵa = (εa, 0) + O
�

R−1
�

where εa are polarization vectors in R1,d [23].
In the case of CFT3 (d = 3), it will be convenient to trade the coordinates (z1, z2) for com-
plex coordinates (z, z̄) ≡ (z1 + iz2, z1 − iz2), and ϵ1(τ, z⃗) and ϵ2(τ, z⃗) for the following linear
combinations

ϵz(τ, z, z̄) =
1
p

2
(z̄ sinτ, 1,−i,−z̄, z̄ cosτ) , ϵz̄(τ, z, z̄) =

1
p

2
(z sinτ, 1, i,−z, z cosτ) . (115)

In the flat space limit, (115) become ϵa = (εa, 0) + O
�

R−1
�

with εz and εz̄ the polarization
vectors associated respectively with positive and negative helicities in R1,3, namely

εz(z, z̄) =
1
p

2
(z̄, 1,−i,−z̄) , εz̄(z, z̄) =

1
p

2
(z, 1, i,−z) . (116)

For simplicity we will assume that all of the operators are placed at τ = π
2 , which holo-

graphically would amount to considering all bulk particles to be outgoing. If one of the parti-
cles is taken to be incoming, following [19] we insert the corresponding operator at (−π2 , z⃗A)
where z⃗A denotes the antipodal map. In that case we observe that P(−π2 , z⃗A) = −P(π2 , z⃗).
Taking this into account therefore produces the required sign difference in the corresponding
contribution to the leading soft graviton factor. Finally, recall that at large R and τ= π

2 +
u
R

P(τ, z⃗) = (q(z⃗), 0) +O
�

R−1
�

, (117)

where q(z⃗) = (1,Ω(z⃗)) is a null vector in R1,d .

5.3.1 Leading conformally soft gluon theorem

Equipped with these results, consider a g-valued conserved current J in a CFTd with global
symmetry group G. Insertions of the shadow transform of this current into correlation func-
tions on the Lorentzian cylinder are obtained from the embedding space formula (94) by pro-
jecting with the polarization tensors {ϵa,ϵd} in (111). Expanding at large R and using (114)
together with (117) we find

〈Sa(x)O1(x1) · · ·On(xn)〉=
n
∑

i=1

εa(x) · q(x i)
q(x) · q(x i)

Ti〈O1(x1) · · ·On(xn)〉+O
�

R−1
�

, (118)

which reproduces the leading conformally soft gluon theorem in CCFTd−1. Note that in the
limit u → 0 the large R corrections drop out. In the particular case of CFT3 using the set of
polarizations {ϵz ,ϵz̄ ,ϵ3} we find

εz(x) · q(x i)
q(x) · q(x i)

=
1
p

2

1+ zz̄
z − zi

,
εz̄(x) · q(x i)
q(x) · q(x i)

=
1
p

2

1+ zz̄
z̄ − z̄i

, (119)
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and therefore we recover

〈Sz(x)O1(x1) · · ·On(xn)〉=
1+ zz̄
p

2

n
∑

i=1

Ti

z − zi
〈O1(x1) · · ·On(xn)〉+O

�

R−1
�

, (120)

〈Sz̄(x)O1(x1) · · ·On(xn)〉=
1+ zz̄
p

2

n
∑

i=1

Ti

z̄ − z̄i
〈O1(x1) · · ·On(xn)〉+O

�

R−1
�

, (121)

which are the holomorphic and antiholomorphic g-Kac-Moody Ward identities [64].
The time component of the CFT3 shadow current leads to an identity that resembles a soft

scalar theorem [65]

〈eJu(x)O1(x1) · · ·On(xn)〉 ∼
u
R

n
∑

i=1

Ti

q(x) · q(x i)
〈O1(x1) · · ·On(xn)〉+O

�

R−3
�

. (122)

Note that the leading term in (122) is of a different order in a large R expansion compared
to (120), (121). Such soft theorems were argued in [66, 67] to arise from conservation laws
associated with higher form symmetries in 4D AFS. From a boundary perspective, we find that
they are a simple consequence of dimensional reduction. It would be interesting yet beyond
the scope of this paper to understand the relation between these different perspectives, as well
as the role of these additional symmetries in CCFTd−1.

5.3.2 Leading and subleading conformally soft graviton theorems

Next we consider the shadow stress tensor eTAB(P)whose insertions are given by (106) or, upon
projection to the Lorentzian cylinder, by (108). As we show in details in Appendix E restricting
to components on a constant time slice a, b ∈ {1, . . . , d − 1}, we find in the flat limit that

∂u〈G{ab}O1 · · ·On〉=
n
∑

i=1

εAB
ab(x)qA(x i)qB(x i)

q(x) · q(x i)
∂ui
〈O1 · · ·On〉+O

�

R−1
�

. (123)

Here εab is the transverse, traceless polarization tensor in R1,d . Upon switching to a basis that
diagonalizes the dilatation operator on Sd−1 via the transform (78), ∂ui

becomes the weight-
shifting operator e∂∆i . Note that in the limit u→ 0, the large R corrections to (123) drop out.
We hence see that insertions of lim

u→0
∂uG{ab} reproduce the leading conformally soft graviton

theorem in R1,d with N
(0)
ab ≡ lim

u→0
∂uG{ab} the leading soft graviton operator.

Moreover, we show in Appendix E, that

(1− u∂u)〈G{ab}O1 · · ·On〉= i
n
∑

i=1

εAB
ab(x)qA(x i)qC(x)

q(x) · q(x i)
(Ji)BC〈O1 · · ·On〉+O

�

R−1
�

, (124)

where (Ji)BC have indices restricted to B, C < d + 1 due to εd+1
a = qd+1 = 0. In this case,

(Ji)BC coincide with the so(d, 2) generators whose action on conformal primary operators re-
stricted to the strip (34) was worked out in section 4.2. Their action hence coincides with
that of the Lorentz generators in (d + 1)-dimensional AFS, or equivalently, conformal so(d, 1)
transformations. Therefore insertions of lim

u→0
(1− u∂u)G{ab} reproduce the subleading confor-

mally soft graviton theorem in R1,d and the subleading conformally soft graviton operator is
related to the CFTd shadow stress tensor via N

(1)
ab ≡ lim

u→0
(1− u∂u)G{ab}. The constructions of

the supertranslation current and the stress tensor from N
(0)
ab and N

(1)
ab then follow directly from

respectively [44,45] and [46,68] .

21

https://scipost.org
https://scipost.org/SciPostPhys.17.1.002


SciPost Phys. 17, 002 (2024)

We now specialize to CFT3. Using the large R expansions 114 of the polarization tensors
{ϵz ,ϵz̄ ,ϵ3} we construct the transverse traceless spin 2 polarization tensors εab = ε{aεb}. The
only non-vanishing components are εAB

zz = ε
A
zε

B
z and εAB

z̄z̄ = ε
A
z̄ε

B
z̄ . Therefore the expressions for

the leading soft factors reduce to those derived in [45],

εAB
zz (x)qA(x i)qB(x i)

q(x) · q(x i)
= −

z̄ − z̄i

z − zi

1+ zz̄
1+ zi z̄i

, (125)

εAB
z̄z̄ (x)qA(x i)qB(x i)

q(x) · q(x i)
= −

z − zi

z̄ − z̄i

1+ zz̄
1+ zi z̄i

, (126)

and consequently

〈N(0)zz O1 · · ·On〉= −
n
∑

i=1

z̄ − z̄i

z − zi

1+ zz̄
1+ zi z̄i

∂ui
〈O1 · · ·On〉 , (127)

〈N(0)z̄z̄ O1 · · ·On〉= −
n
∑

i=1

z − zi

z̄ − z̄i

1+ zz̄
1+ zi z̄i

∂ui
〈O1 · · ·On〉 . (128)

Insertions of N(1)zz and N
(1)
z̄z̄ can be treated similarly. Relegating the complete calculation to

Appendix F, we find that

〈N(1)zz O1 · · ·On〉=
n
∑

i=1

�

(z̄ − z̄i)(1+ z̄zi)
(z − zi)(1+ zi z̄i)

2h̄i −
(z̄ − z̄i)2

z − zi
(∂z̄i
−Ωz̄i

J3)

�

〈O1 · · ·On〉 ,

〈N(1)z̄z̄ O1 · · ·On〉=
n
∑

i=1

�

(z − zi)(1+ zz̄i)
(z̄ − z̄i)(1+ zi z̄i)

2hi −
(z − zi)2

z̄ − z̄i
(∂zi
−Ωzi

J3)

�

〈O1 · · ·On〉 ,
(129)

which agrees with the formula for the subleading soft factor [46, 68] with external weights
(hi ,hi) and helicities J3 as defined in (77). Taking a two-dimensional shadow transform of
N
(1)
ab as in [68] yields the CCFT2 stress tensor.

6 Discussion

In this paper we studied the symmetries of CFT3 on the Lorentzian cylinder over short time
intervals. We showed that strips of infinitesimal width∝ R−1 around any time-slice admit an
infinite-dimensional set of locally-defined solutions in the R→∞ limit. These can be reorga-
nized into vector fields obeying the ebms4 algebra. The extended BMS4 symmetry emerges via
an Inonu-Wigner contraction which for the global subalgebra reduces to the contraction of the
so(3,2) algebra to Poincaré. We studied the transformation properties of CFT3 primary opera-
tors in the strip under the superrotation subalgebra of ebms4 and found that they transform as
two-dimensional conformal primaries with operator-valued effective dimensions ∆̂=∆+u∂u.

The two-dimensional dilatation can be diagonalized by a time Mellin-like transform. Con-
sequently each CFT3 primary operator results in a continuum of CCFT2 primary operators of
the same spin and with dimensions∆CCFT =∆+∆0−1 where∆ is the CFT3 dimension and∆0
is the dual Mellin dimension. We showed that, inside the strip, the transverse components eTab

of the∆= 0 shadow stress tensor give rise to operatorsN(0)ab andN
(1)
ab whose insertions into cor-

relation functions reproduce the leading and subleading conformally soft graviton theorems.
Likewise, the transverse components eJa of the ∆ = 1 shadow current provide an operator Sa
whose insertions reproduce the leading soft gluon theorem. As such, conformally soft theo-
rems and the corresponding infinite-dimensional CCFTd−1 symmetries effectively emerge from
the dimensional reduction of the CFTd .
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There are several aspects of our dimensional reduction or flat space limit that we believe
deserve further investigation. The conformal Killing vectors (46) giving rise to the ebms4
algebra violate the conformal Killing equation at finite R. This appears to be in stark contrast
to the asymptotic symmetries of 4D AFS that are exact and can be extended into the bulk.
It would be interesting to understand whether the symmetries can be preserved in the strip
beyond the R→∞ limit and relate this to the emergence of a bulk radial direction from the
CFT. Interestingly, both large r corrections to the asymptotic charges in 4D AFS and corrections
away from the large AdS radius limit have been linked to loop corrections [26, 69]. This
resonates with the fact that in explicit examples of holography, the large AdS radius limit is
related to a large N limit in the CFT [70]. Furthermore, it is well known that 1/N corrections
to conformal correlators are dual to loop corrections in the bulk [71]. It will be important to
further study these corrections in order to clarify the relation between CFT3 correlators and
celestial amplitudes. It would also be interesting to connect our enhanced conformal Killing
symmetries (46) in the strip to the bulk Λ-BMS algebra [72] which similarly arises, subject to
certain boundary conditions, in the limit of infinite AdS radius.

More generally, our analysis provides motivation for looking for boundary conditions in
AdS that turn on shadow operators on the boundary. These operators are dual to modes in
AdS that are in general non-normalizable near the boundary, but normalizable deep inside the
bulk. This seems consistent with the flat space limit prescription which amounts to zooming in
close to the center of AdS [24,31], as well as proposals suggesting that flat space physics may
be obtained via a T T̄ deformation [73, 74]. It would also be interesting to understand if the
whole tower of w1+∞ currents in celestial CFT [75] can similarily arise from a limit of CFT3.
Perhaps relatedly, the role of the Tuz and Tuu Ward identities remains to be understood.

The approach we have adopted in this paper proposes a connection between CCFT and
standard CFT. In principle these ideas may allow for an understanding of how general features
of CFT, such as the existence of an associative OPE, are reflected in the dimensionally reduced
theory, potentially allowing for a better understanding of the corresponding features of CCFT.
In particular, our results suggest that the stress tensor of the reduced theory is closely related
to the stress tensor of the parent CFT, so that it may be possible to extract a CCFT central
charge from this procedure. This may shed light on previous proposals based on a hyperbolic
slicing of Minkowski spacetime [60,76,77].

Finally, the shadow transform played an important role in this analysis, since it allowed
for the construction of the soft operators from the stress tensor and current. In Lorentzian
signature, the shadow transform constructed by Wick rotating the Euclidean shadow is just one
member out of a group of transformations preserving the Casimirs of the conformal group [78].
It therefore seems plausible that the other transforms will also play meaningful roles in the
dimensionally reduced CCFT. We hope to address some of these issues in future work.
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A Embedding space primer

A Euclidean CFTd is defined on the projective null cone in the embedding space R1,d+1 with
metric ηAB.18 The projective null cone is parametrized by a vector P obeying

P2 = 0 , P ∼ λP , λ ̸= 0 . (130)

Choosing a representative from each equivalence class yields a section of the lightcone
Σ ⊂ R1,d+1 corresponding to a conformally flat manifold on which the CFTd is realized. The
non-linear action of the conformal group on Σ is realized through the combination of Lorentz
transformations SO(d+1,1) and rescalings of the null cone that preserves the chosen section.
Let P(x) be an embedding of Σ into R1,d+1. Then the metric it inherits from the ambient space
is

ds2
Σ = ηAB

∂ PA

∂ xµ
∂ PB

∂ xν
d xµd xν . (131)

A different section Σ′ embedded by P ′(x ′) is related to Σ by a rescaling

P ′(x ′) =ω(x)P(x) . (132)

The metrics on the two sections Σ,Σ′ can then be shown to be related by a Weyl rescaling

ds2
Σ′ =ω

2(x)ds2
Σ . (133)

We conclude that conformal maps between different conformally flat manifolds are repre-
sented in the embedding space by Weyl rescalings and Lorentz transformations of the embed-
dings of the corresponding lightcone sections (see [56] for a review).

A primary field of dimension ∆ and spin J in a CFTd on a given section can be lifted to
a field on the lightcone as follows. If φµ1···µJ

(x) is a spin J symmetric traceless tensor, its lift
to a tensor ΦA1···AJ

(P) defined on the embedding space lightcone has to obey the following
properties [28]:

1. ΦA1···AJ
(P) is symmetric, traceless and transverse PAiΦA1···AJ

(P) = 0.

2. ΦA1···AJ
(P) is defined up to terms PAi

ΛA1···Âi ···AJ
(P), where Âi denotes a missing index.

3. ΦA1···AJ
(P) is homogenous of degree −∆: ΦA1···AJ

(ωP) =ω−∆ΦA1···AJ
(P).

If Σ is parameterized by P(x), φµ1···µJ
(x) is then recovered by the projection [28]

φµ1···µJ
(x) =

∂ PA1

∂ xµ1
· · ·
∂ PAJ

∂ xµJ
ΦA1···AJ

(P(x)) . (134)

Projecting using the Jacobian of the embedding as done above reproduces the coordinate com-
ponents of the tensor field. Alternatively, we can introduce a set of polarization vectors ϵA

a(x)
in the embedding space obeying

ϵa · P = 0 , ϵa · ϵb = δab . (135)

The pullback of ϵa to the section (Σ, g) can then be shown to give rise to a vielbein in (Σ, g),
namely

ea
µ =
∂ PA

∂ xµ
ϵa

A , ϵA
a = eµa

∂ PA

∂ xµ
− (ϵa · q̄)qA , (136)

18Lorentzian CFTd are instead lifted to R2,d .
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where [56]

gµν
∂ PA

∂ xµ
∂ PB

∂ xν
= ηAB + qAq̄B + qBq̄A , (137)

with gµν = (P+)2ηµν, qA = PA/P+ and q̄A = −2δA
−.

As a result, the symmetric, traceless combination ϵA1···AJ
a1···aJ

= ϵA1
{a1
· · ·ϵA j

aJ }
can be used as pro-

jectors which allow us to recover the components of the tensor field with respect to the or-
thonormal basis

φa1···aJ
(x) = ϵA1···AJ

a1···aJ
(x)ΦA1···AJ

(P(x)) . (138)

Primary fields in more general representations of SO(d) can be handled in the same way. They
are lifted to fields in representations of SO(1, d+1) defined on the lightcone with homogeneity
of degree −∆ which are transverse in the appropriate sense and which can be projected back
to the original representation by introducing appropriate projection matrices. These fields
are again only defined modulo terms that lie in the kernel of the projection matrices. The
particular case of Dirac spinors in several dimensions is discussed for example in [56].

It will also be useful to recall the definition of conformal integrals on the space of homo-
geneous functions f (X ) of degree −d on the lightcone [63]

∫

Dd X f (X ) =
1

Vol(GL(1,R)+)

∫

dd+2Xδ(X 2) f (X ) . (139)

In practice such integrals are evaluated by gauge-fixing the rescaling freedom and introducing
an appropriate Faddeev-Popov determinant.

B Properties of the spin covariant derivative

In this section we show that the spin-covariant derivative (69) reduces to the Levi-Civita con-
nection when acting on fields transforming in the vector representation of SO(3), namely if

(Sab)
c
d = −i
�

δc
aδbd −δadδ

c
b

�

, (140)

then
∇µV ν = ∂µV ν + Γ νµσVσ . (141)

To see this we evaluate ∇µV a where V a are the vielbein components of the vector field, and
then transform to the coordinate components ∇µV ν. We start with

∇µV a = ∂µV a +ω a
µ bV b . (142)

The coordinate components are defined by

∇µV ν ≡ eνa∇µV a . (143)

Evaluating ∇µV ν,

∇µV ν = eνa∂µV a + eνaω
a
µ bV b. (144)

We now transform V a = ea
σVσ on the RHS

∇µV ν = eνa∂µ(e
a
σVσ) + eνa eb

σω
a
µ bVσ (145)

= (eνa∂µea
σ)V

σ + eνa ea
σ∂µVσ + eνa eb

σω
a
µ bVσ , (146)
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and recall that eνa ea
σ = δ

ν
σ and eνa eb

σω
a
µ b =ω

ν
µ σ, where ω ν

µ σ is given by (154). In this case

∇µV ν =
�

eνa∂µea
σ

�

Vσ + ∂µV ν +
�

Γ νµσ − eνa∂µea
σ

�

Vσ . (147)

The terms with eνa∂µea
σ cancel and we are left with

∇µV ν = ∂µV ν + Γ νµσVσ , (148)

which agrees with the Levi-Civita covariant derivative of the vector field with respect to the
coordinate components.

C Conformal Killing vector field action in the strip

The components of the rotation generators with respect to the vielbein

e1 =
s

γzz̄

2
(dz + dz̄) , e2 = −i

s

γzz̄

2
(dz − dz̄) , e3 =

du
R

, (149)

are Sµν = ea
µeb
νSab. Explicitly, we find

Suz =
i
R

s

γzz̄

2
J− , (150)

Suz̄ = −
i
R

s

γzz̄

2
J+ , (151)

Szz̄ = iγzz̄J3 , (152)

where
J− = S23 − iS31 , J+ = S23 + iS31 , J3 = S12 . (153)

The coordinate components of the torsion-free spin connection ω σ
µ ν are given by

ω σ
µ ν = Γ

σ
µν − eσa ∂µea

ν , (154)

and therefore, we see that its only non-vanishing components are

ω z
z z =−ω

z̄
z z̄ =

1
2
Γ z

zz , (155)

ω z̄
z̄ z̄ =−ω

z
z̄ z =

1
2
Γ z̄

z̄z̄ , (156)

where

Γ z
zz = −

2z̄
1+ zz̄

, Γ z̄
z̄z̄ = −

2z
1+ zz̄

. (157)

As a result, defining

Ωz ≡
1
2
Γ z

zz , Ωz̄ ≡ −
1
2
Γ z̄

z̄z̄ , (158)

we find that the spin covariant derivative of O∆ is given by

∇uO∆ = ∂uO∆ , (159)

∇zO∆ = ∂zO∆ −ΩzJ3O∆ , (160)

∇z̄O∆ = ∂z̄O∆ −Ωz̄J3O∆ . (161)
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Now fix τ0 =
π
2 and take ε= LY given by

LY ≡
ε+Y − ε

−
Y

2
(162)

=
i
2
(D · Y )u∂u + iY A∂A+O

�

R−1
�

. (163)

We will show that δLY
O∆ reproduces the action of Y on a 2D primary operator in the large R

limit. To this end observe from (159)-(161) and (150)-(152) that for this vector field we have

∇ · LY = i
3
2

D · Y +O
�

R−1
�

, (164)

LµY∇µO∆ = i
�

1
2

D · Yu∂u + Y z(∂z −ΩzJ3) + Y z̄(∂z̄ −Ωz̄J3) +O
�

R−1
�

�

O∆ , (165)

i
2
∇µ(LY )νS

µν =
i
2
(DzY z − Dz̄Y z̄)J3 +O

�

R−1
�

. (166)

From this we immediately see that the expansion of δLY
O∆(x) is

δLY
O∆(x) = −i
�

DzY zh+ Dz̄Y z̄ h̄+ Y z(∂z −ΩzJ3) + Y z̄(∂z̄ −Ωz̄J3) +O
�

R−1
��

O∆(x) . (167)

Here we have defined the operator-valued weights

h≡
∆̂+ J3

2
, h̄≡

∆̂− J3

2
, ∆̂≡∆+ u∂u . (168)

This agrees precisely with the transformation of a 2D primary operator, as given for example
in [68].

D Shadows and dimensional reduction

In this appendix we discuss the connection between the d-dimensional shadow transform on
the cylinder and the Mellin-like transform on an infinitesimal time strip that implements the
dimensional reduction to Sd−1. All embedding space fields are assumed to obey the properties
described in appendix A. We begin by projecting the embedding space formula for the shadow
transform to a particular section. Starting from (84), we find

eΦµ1···µJ
(x) =
∏

i

∂ PAi

∂ xµi
eΦA1···AJ

(P(x))

=
∏

i

∂ PAi

∂ xµi

∫

Dd P(y)

∏

i(ηAi Bi
P(x) · P(y)− PAi

(y)PBi
(x))

(−2P(x) · P(y))d−∆+J

∏

i

ηBi CiΦC1···CJ
(P(y)) ,

(169)
where the conformal integral is gauge-fixed to a particular section Y = P(y). We now use
(137) to eliminate ηBi Ci , noting that the q(Bi q̄Ci) contributions contract to zero, namely

eΦµ1···µJ
(x) =
∏

i

∂ PAi

∂ xµi

∫

Dd P(y)

∏

i(ηAi Bi
P(x) · P(y)− PAi

(y)PBi
(x))

(−2P(x) · P(y))d−∆+J

×
∏

i

gσiρi (y)
∂ PBi

∂ yσi

∂ PCi

∂ yρi
ΦC1···CJ

(P(y)) (170)

=

∫

Dd P(y)

∏

i
∂ PAi

∂ xµi
∂ PBi

∂ yνi (ηAi Bi
P(x) · P(y)− PAi

(y)PBi
(x))

(−2P(x) · P(y))d−∆+J
Φν1···νJ (y) . (171)
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We finally observe that owing to (88) we can write

eΦµ1···µJ
(x) =

∫

dd y
Æ

g(y)

∏

i ∂xµi ∂yνi log(−2P(x) · P(y))
(−2P(x) · P(y))d−∆

Φν1···νJ (y) , (172)

which is the shadow transform restricted to a section of lightcone [63].
Now we consider the particular case of the cylinder section parameterized by (110) and

expand at large R. In this case taking x = (τ,Ω) and y = (τ′,Ω′) we have

P(x) · P(y) = − cos
�

τ−τ′
�

+Ω ·Ω′. (173)

Setting τ = ±π2 +
u
R , expanding at large R and taking the time Mellin-like transform (78) we

find

Γ (∆0)

∫ ∞

−∞
duu−∆0
eΦ±µ1···µJ

(u,Ω) = Γ (∆0)

∫ ∞

−∞
duu−∆0

×
∫

dτ′dd−1z⃗
′

∏

i ∂xµi ∂yνi log
�

±2sinτ′ ∓ 2 u
R cosτ′ − 2Ω ·Ω′

�

(±2 sinτ′ ∓ 2 u
R cosτ′ − 2Ω ·Ω′)d−∆

Φν1···νJ (y)

= −i
Γ (∆0)
Γ (d −∆)

∫ ∞

−∞
duu−∆0

∫

dτ′dd−1z⃗
′
∫ ∞

0

dω(−iω)d−∆−1eiω(±2sinτ′∓2 u
R cosτ′−2Ω·Ω′)

× Fµ1···µi
(x , y) , (174)

where

Fµ1···µi
(x , y) =
∏

i

∂xµi ∂yνi log
�

±2sinτ′ − 2Ω ·Ω′
�

Φν1···νJ (y) +O
�

R−1
�

, (175)

and µi ,νi are restricted to Ω,Ω′. We also defined

Φ±(u,Ω)≡ Φ
�

±
π

2
+

u
R

,Ω
�

. (176)

In general,
∫

duu−∆0eΦ is an operator in CFTd with dimension d −∆+∆0 − 1 (see section 4).
Setting∆0 = 0 should then yield an operator of dimension d−∆−1 in CCFTd−1. Note that for
∆0 = 0, (174) is singular which suggests one should take a residue [5]. Indeed, the residue
of (174) at ∆0 = 0 reduces to
∫ ∞

−∞
dueΦ±µ1···µJ

(u,Ω) = −
1

Γ (d −∆)

∫

dτ′dd−1z⃗
′
∫ ∞

0

dω(−iω)d−1−∆−1 R
2

∑

τ0=±
π
2

δ(τ′ −τ0)

× eiω(±2 sinτ′−2Ω·Ω′)Fµ1···µi
(x , y)

= −
i
2

R
d − 1−∆

∫

dd−1z⃗
′
∑

α∈{0,1}

∏

i ∂xµi ∂yνi log
�

±eiπα2− 2Ω ·Ω′
�

(±eiπα2− 2Ω ·Ω′)d−1−∆

×Φν1···νJ (eiπαπ

2
,Ω′) +O
�

R0
�

, (177)

which we recognize as proportional to a linear combination of (d − 1)-dimensional shadow
transforms in the strips around ±π2 . Note the appearance of a linear combination of incoming
and outgoing insertions. It may be interesting to understand this better, perhaps in relation to
the proposal of [79].

On the other hand, taking the limit at ∆0 = 1 of (174) and using the identity [5]

lim
ε→0
ε|x |ε−1 = 2δ(x) , (178)
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we find19

Res
∆0=1

Γ (∆0)

∫ ∞

−∞
duu−∆0
eΦ±µ1···µJ

(u,Ω) = lim
ε→0
ε

∫ ∞

0

duuε−1
�

eΦ±µ1···µJ
(u,Ω)− eiπε
eΦ±µ1···µJ

(−u,Ω)
�

∝ DisceΦ±µ1···µJ
(0,Ω) . (179)

This is a linear combination of primary operators of dimension d −∆ with respect to both the
CFTd as the CCFTd−1. For d = 3, taking a 2D shadow then yields a combination of operators
of dimension ∆− 1, which in the special case of the CFT3 stress tensor should reduce to the
stress tensor in the CCFT2. This linear combination is reminiscent of the construction of soft
charges in 4D AFS which involves a linear combination of operators at I+ and I−, although
the precise relation, if any, remains to be understood.

More generally, given operators O±∆(u,Ω) in strips around ±π2 ,

Res
∆0=1

∫ ∞

−∞
duu−∆0O±∆(u,Ω)∝ DiscO±∆(0,Ω) . (180)

Since∆CCFT =∆+∆0−1 we get an operator of∆CCFT =∆. We conclude that placing operators
at u= 0 inside a small time interval results in CCFT operators that inherit the dimensions with
respect to the parent CFT, as found in [19]. The appearance of the discontinuity remains to be
understood.

E Derivation of CCFTd−1 conformally soft theorems from CFTd

In this appendix, we give the derivation of the leading and subleading conformally soft graviton
theorems from the higher dimensional shadow stress tensor correlator. We start by defining

S(d)ab =
n
∑

i=1

ϵA
aϵ

B
b (x)PA(x i)PC(x)

P(x) · P(x i)
(Ji)CB , (181)

so that the shadow stress tensor correlator in the CFTd becomes

〈GabO1 · · ·On〉= −iS(d){ab}〈O1 · · ·On〉 . (182)

To compute the flat space limit of S(d)ab we expand at large R keeping the first subleading con-
tributions. To keep track of them we introduce the following notation:

P = q+δq , ϵa = εa +δεa , a ∈ {1, . . . , d − 1} , (183)

where q = (q0, qi , 0) denotes the leading term in P and εa = (ε0
a,εi

a, 0) the leading term in ϵa.
These correspond to the flat space counterparts of P and ϵa. δq and δεa are the deviations
from the flat space limit and take the form

δq = (sinτ− 1, 0⃗, cosτ) , δεa = zaδq , a ∈ {1, · · · , d − 1} . (184)

We restrict our attention to the components of the shadow stress tensor tangent to the Sd−1

on which the CCFT is defined, namely with a ∈ {1, · · · , d − 1}.
We need to evaluate

ϵa(x) · P(x i)
P(x) · P(x i)

, PA(x)ϵB
b (x)(Ji)AB . (185)

19The normalization can be obtained by a careful consideration of the iε prescription.
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The first quantity is immediate to expand and yields

ϵa(x) · P(x i)
P(x) · P(x i)

=
εa(x) · q(x i)
q(x) · q(x i)

+O
�

R−1
�

. (186)

For the second one we have

PA(x)ϵB
b (x)(Ji)AB = qA(x)εB

b(x)(Ji)AB + zbqA(x)δqB(x)(Ji)AB +δqA(x)εB
b(x)(Ji)AB . (187)

We now study the second and third terms observing that for τ = π
2 +

u
R and large R,

(Ji)A,d+1 = iRqA(x i)∂ui
+O(1)

qA(x)δqB(x)(Ji)AB = −(sinτ− 1)q j(x)(Ji)0 j + cosτq(x) · q(x i)
�

iR∂ui
+O
�

R0
��

, (188)

δqA(x)εB
b(x)(Ji)AB = (sinτ− 1)ε j

b(x)(Ji)0 j − cosτεb(x) · q(x i)
�

iR∂ui
+O
�

R0
��

. (189)

As a result, we have

PA(x)ϵB
b (x)(Ji)AB = qA(x)εB

b(x)(Ji)AB − zb(sinτ− 1)q j(x)(Ji)0 j

+ zb cosτq(x) · q(x i)
�

iR∂ui
+O
�

R0
��

+ (sinτ− 1)ε j
b(x)(Ji)0 j

− cosτεb(x) · q(x i)
�

iR∂ui
+O
�

R0
��

. (190)

At this point, we can further expand at large R. In particular, we notice that the first term is
O(1) because A, B < d + 1. For the others we write τ= π

2 +
u
R and expand at large R to find

PA(x)ϵB
b (x)(Ji)AB = qA(x)εB

b(x)(Ji)AB − iuzbq(x) · q(x i)∂ui
+ iuεb(x) · q(x i)∂ui

+O
�

R−1
�

.
(191)

Combining with (186) we find

S(d)ab =
n
∑

i=1

ϵa(x) · P(x i)
P(x) · P(x i)

PA(x)ϵB
b (x)(Ji)AB

=
n
∑

i=1

�

εa(x) · q(x i)
q(x) · q(x i)

�

qA(x)εB
b(x)(Ji)AB − iuzbq(x) · q(x i)∂ui

+ iuεb(x) · q(x i)∂ui

�

+O
�

R−1
�

�

. (192)

Taking one derivative in u we get

∂uS(d)ab = i
n
∑

i=1

�

εa(x) · q(x i)
q(x) · q(x i)

�

− zbq(x) · q(x i)∂ui
+ εb(x) · q(x i)∂ui

�

+O
�

R−1
�

�

= i
n
∑

i=1

��

− zbεa(x) · q(x i)∂ui
+
εa(x) · q(x i)εb(x) · q(x i)

q(x) · q(x i)
∂ui

�

+O
�

R−1
�

�

. (193)

Now observe that the first term is proportional to the operator
∑

i qA(x i)∂ui
which annihilates

conformal correlators by the global conformal symmetry of the CFTd to leading order at large
R (or equivalently by momentum conservation in the flat limit). Specifically

n
∑

i=1

J j,d+1(x i)〈X〉=
n
∑

i=1

�

−iPj(x i)∂Pd+1(x i) + iPd+1(x i)∂P j(x i) +S j,d+1

�

〈X〉= 0 , j = 0, · · · d ,

(194)
and therefore

n
∑

i=1

iq j(x i)∂ui
〈X〉=

1
R

n
∑

i=1

�

−iPd+1(x i)∂P j(x i) −S j,d+1

�

〈X〉=O
�

R−1
�

, j = 0, · · · d . (195)
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As such, only the second term remains

∂uS(d)ab = i
n
∑

i=1

�

εa(x) · q(x i)εb(x) · q(x i)
q(x) · q(x i)

∂ui
+O
�

R−1
�

�

, (196)

which coincides with the leading soft factor. Moreover, it is also clear that

(1− u∂u)S
(d)
ab =

n
∑

i=1

εa(x) · q(x i)
q(x) · q(x i)

qA(x)εB
b(x)(Ji)AB +O

�

R−1
�

, (197)

where since a, b ∈ {1, . . . , d − 1} it follows that A, B ∈ {0, . . . , d} and in this range (Ji)AB act
as the R1,d Lorentz generators in the flat space limit. Finally we take the (d − 1)-dimensional
symmetric traceless component of S(d)ab with a, b ∈ {1, . . . , d−1} by applying the projector (23).
Then

εab ≡ εA
{aε

B
b} =

1
2

�

εA
aε

B
b + ε

B
aε

A
b

�

−
ηab

d − 1

�

ηcdεA
cε

B
d

�

. (198)

However, since εd+1
a = 0 it follows that ηcdεA

cε
B
d = δ

cdεA
cε

B
d and that εA

{aε
B
b} = 0 when either A

or B are d + 1. As a result, for a, b ∈ {1, . . . , d − 1},

εA
{aε

B
b} =

1
2

�

εA
aε

B
b + ε

B
aε

A
b

�

−
δab

d − 1

�

δcdεA
cε

B
d

�

, A, B < d + 1 , (199)

which coincide with the symmetric traceless polarizations in R1,d . As a result, the operators
N
(0)
ab = lim

u→0
∂uG{ab} and N

(1)
ab = lim

u→0
(1− u∂u)G{ab} play the role of leading and subleading con-

formally soft gravitons in R1,d . It is immediate to see that they have the expected dimensions
∆= 1 and ∆= 0 respectively.

We conclude this appendix with a comment on the timelike components of the shadow
stress tensor. For d = 3 one can construct from the u, A components of the shadow stress ten-
sor operators which coincide with the supertranslation currents in the dimensionally reduced
theory. This is perhaps to be expected, as conservation of the CFT3 stress tensor leads to re-
lations among its transverse and time components. It may be interesting to further explore
these constraints in relation to the asymptotic Einstein equations in 4D AFS.

F Subleading soft factor in CCFT2

In this appendix we calculate the subleading soft factor

(1− u∂u)S
(d)
ab =

n
∑

i=1

εa(x) · q(x i)
q(x) · q(x i)

qA(x)εB
b(x)(Ji)AB +O

�

R−1
�

, (200)

in the specific case of reduction from CFT3 to CCFT2. We need to evaluate qA(x)εB
b(x)(Ji)AB

using the complex polarization vectors {εz ,εz̄}. We recall that (Ji)AB are the so(3, 2) gener-
ators acting on the i-th primary operator. The actions of such conformal Killing vectors and
their large R expansion have been studied in section 4.2. In particular, we note that since
q4 = ε4

b = 0, only (Ji)AB with A, B < 4 appear. For this range of indices, we have20

JABOi = −δLYAB
Oi , A, B = 0, · · ·3 , (201)

20It is possible to check by explicit computation that JAB reproduces the conformal Killing vector action by
studying its action on lightcone fields in coordinates adapted to the cylinder section. Indeed, parameterizing the
lightcone as X = (r sinτ, rΩ, r cosτ), so that the cylinder section is obtained by gauge-fixing r = 1, and evaluating
JABO∆(X ), we find due to the homogeneity of O∆(X ) under rescalings that −r∂rO∆ =∆O∆. Then (201) follows
by straightforward computation.
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where LY has been defined in (60) and YAB are the S2 conformal Killing vectors (48) and (49).
We have computed the large R expansion of δLYAB

Oi in (74), which yields

(Ji)ABOi = i
�

Dzi
Y zi

ABhi + Dz̄i
Y z̄i

ABh̄i + Y zi
AB(∂zi

−Ωzi
J3) + Y z̄i

AB(∂z̄i
−Ωz̄i

J3) +O
�

R−1
�

�

Oi . (202)

Now using the explicit parametrization of q and {εz ,εz̄} it is straightforward to compute the
following contractions

qA(x)εB
z̄ (x)YAB(zi , z̄i) = −

(z − zi)2

1+ zz̄
∂zi

, (203)

qA(x)εB
z (x)YAB(zi , z̄i) = −

(z̄ − z̄i)2

1+ zz̄
∂z̄i

, (204)

from which we immediately obtain

−iqA(x)εB
z̄ (x)(Ji)ABOi =

�

(z − zi)(1+ zz̄i)
(1+ zz̄)(1+ zi z̄i)

2hi −
(z − zi)2

1+ zz̄
(∂zi
−Ωzi

J3) +O
�

R−1
�

�

Oi ,

−iqA(x)εB
z (x)(Ji)ABOi =

�

(z̄ − z̄i)(1+ z̄zi)
(1+ zz̄)(1+ zi z̄i)

2h̄i −
(z̄ − z̄i)2

1+ zz̄
(∂z̄i
−Ωz̄i

J3) +O
�

R−1
�

�

Oi .

(205)

In turn, this means that we have

(1− u∂u)S
(3)
z̄z̄ = i

n
∑

i=1

�

(z − zi)(1+ zz̄i)
(z̄ − z̄i)(1+ zi z̄i)

2hi −
(z − zi)2

z̄ − z̄i
(∂zi
−Ωzi

J3)

�

+O
�

R−1
�

, (206)

(1− u∂u)S
(3)
zz = i

n
∑

i=1

�

(z̄ − z̄i)(1+ z̄zi)
(z − zi)(1+ zi z̄i)

2h̄i −
(z̄ − z̄i)2

z − zi
(∂z̄i
−Ωz̄i

J3)

�

+O
�

R−1
�

, (207)

which take the form of the standard CCFT2 soft factors [46, 68] with the operator-valued
weights (h, h̄) in place of the standard weights.
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