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Abstract

Quantum sensors can show unprecedented sensitivities, provided they are controlled in
a very specific, optimal way. Here, we consider a spin sensor of time-varying fields in the
presence of dephasing noise, and we show that the problem of finding the pulsed control
field that optimizes the sensitivity (i.e., the smallest detectable signal) can be mapped
to the determination of the ground state of a spin chain. We find an approximate but
analytic solution of this problem, which provides a lower bound for the sensitivity and
a pulsed control very close to optimal, which we further use as initial guess for realiz-
ing a fast simulated annealing algorithm. We experimentally demonstrate the sensitivity
improvement for a spin-qubit magnetometer based on a nitrogen-vacancy center in dia-
mond.
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1 Introduction

Quantum systems are notoriously sensitive to external influences. This sensitivity is a core el-
ement in the development of quantum technologies, as is the case of quantum sensing, which
takes advantage of quantum coherence to detect weak or nanoscale signals. Quantum sensing
devices can in principle attain precision, accuracy, and repeatability reaching fundamental lim-
its [1,2]. However, the extreme sensitivity to external perturbations also causes the quantum
sensor to couple with detrimental noise sources that induce decoherence, therefore limiting
the interaction time with the target signal.

Here, we introduce a method to find optimal control protocols [3] for ac quantum sensing
in the presence of dephasing noise. The sensitivity, i.e., the smallest detectable signal, is the
figure of merit of the optimization, provided that the spectra of the target signal and of the
noise are known. Such optimization problem is in general a complex classical problem. Our
method, that draws an analogy between pulsed dynamical decoupling (DD) protocols [4—
8] and spin glass systems [9], maximizes the phase acquired by the quantum sensor due to
the target ac field while minimizing the noise detrimental effect. The optimal control fields
yield an improved sensitivity with respect to commonly used protocols, as we experimentally
demonstrate using a spin-qubit magnetometer based on a Nitrogen-Vacancy (NV) center in
diamond [10-14].

More in detail, we find that the problem of optimizing the control protocol for our quantum
sensor (i.e., optimizing its sensitivity) is homologous to that of finding the ground state of a
classical Ising spin Hamiltonian, as depicted in Fig. 1. The control 7-pulse times correspond
to the locations in the chain of the domain walls. The couplings between the model spins,
which encode the noise autocorrelation, are of both signs, and this is customary in optimization
problems. The antiferromagnetic couplings capture the frustration between the different terms
in the Hamiltonian, which then prima facie is that of a spin-glass model—which does not mean
that there is a spin-glass phase at low temperature (see later).

The study of optimization problems in statistical physics is a large field of research in
disordered systems, with far-reaching connections to the physics of spin glasses [15,16] and
other frustrated, classical and quantum models [17-23]. Optimization problems in quantum
control can show some degree of frustration, with terms that compete in a similar way in
which ferromagnetic and anti-ferromagnetic bonds compete in spin glasses [24]. We find,
however, that in the specific case of the optimal control of a qubit sensor, by trading the Ising
Z, spins for the continuous spins of a spherical model (SM) [25,26] one gets rid of frustration
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Figure 1: (a) A single spin sensor is used to detect an AC target magnetic field b(t).
(b) An optimal control field applied to the spin sensor increases its coherence, hence
improving its sensitivity. (c) The difficult problem of finding an optimal control
sequence can be mapped (upon time discretization) into a problem of finding the
ground state of a virtual spin chain.

altogether, and the model shows little signs of competing equilibria at low temperature, typical
of replica-symmetry-broken phases [9,27]. Since the ground state of the spherical model can
be found analytically if the spectra of the signal and of the noise are known, we obtain from
this both a lower bound for the sensitivity,' and a quasi-optimal controlled pulsed field. This
quasi-optimal sequence can then be fed to a simulated annealing (SA) algorithm [28-31],
in order to find the optimal one with little computational effort. Such annealed sequences
show, in agreement with the experiments, very good sensitivities (only about 20% worse than
the bound). Our method is thus superior to standard DD protocols as Carr-Purcell (CP), or
minimal generalizations of the latter to colored signals, as we discuss in detail. Finally, to
show the unparalleled performance of the algorithm, which can open the door to real-time
optimization in sensing, we run it on a Raspberry Pi microcomputer, where it takes milliseconds
to find the optimal solutions.

2 Optimized dynamical decoupling for sensing

We consider a single spin-qubit sensor of time-varying magnetic fields, in the presence of de-
phasing noise. This quantum sensing task can be described as a compromise between spin
phase accumulation due to the external target field to be measured b(t) = bh(t), and refo-
cusing of the non-Markovian noise, obtained via dynamical decoupling (DD) protocols [4-8].
Above, b is the magnetic field strength to be detected, and h(t) a known, dimensionless func-
tion specifying its time dependence. Notice that optimizing the sensor’s response to a target
field with a time dependence h(t) that is known beforehand has several applications, e.g.,
sensing spins ensembles or spins in molecules [1,32,33], or sensing weak signals coming from
biological samples— such as action potentials [34]. Moreover, our optimization method can
be part of a protocol where the time-dependence is first (sub-optimally) determined and then
then the amplitude detected optimally.

As in Hahn’s echo [35-37], a DD sequence is implemented by applying a series of n 7-
pulses that act as time reversal for the phase acquired by the qubit during its free evolution,
and can be described by a modulation function y:[0,T]> t — {—1,1} (see Fig. 1b). The DD
sequence is embedded within a Ramsey interferometer, hence the qubit coherence is mapped

!The lower bound is not related to the Cramér-Rao bound, since the latter is used to define the sensitivity itself
[see Appendix A].
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onto the probability of the qubit to stay its initial state |0):

1
P(T,b) =Tr[p|0)0|] = 5 (1 +e (M cos (T, b)) . D
Here, ¢ is the phase acquired by the qubit during the sensing time T
T
o(T,b) = be dth(t) y(t), (2)
0

with y the coupling to the field (e.g., the electronic gyromagnetic ratio of the spin sensor).
The noise-induced decoherence function

2(T)= 1f d—‘;’S(w)lY(T, w)?, (3)
T) w

is the convolution between the noise spectral density (NSD) S(w) and the filter function

Y(T,w)=iw f OT dte 'ty (t). Note that we neglect the effect of the target field on the noise

source [38] and we assume the noise to be a stationary Gaussian process.

Dynamical decoupling is a very versatile control technique, with a virtually infinite space of
degrees of freedom spanned by all the possible distributions of 7 pulses, even at finite sensing
time T. One of the most common DD sequences is the Carr-Purcell (CP) sequence [36, 37],
formed by a set of equidistant pulses. Non-equidistant sequences have been proposed and
experimentally tested, e.g. in Refs. [7,39-43]. Each of these sequences has internal degrees
of freedom, that can be tuned to increase the sensing capabilities for specific target fields. An-
other example is what we call the “generalized Carr-Purcell” (gCP) protocol, in which 7 pulses
are applied when the signal b(t) changes sign, i.e. in correspondence to its zeros. All these
DD sequences are already optimal for simple target fields that happen to be well off-resonance
with the noise, both for the fundamental frequencies and for all the higher harmonics. How-
ever, as the complexity of the target field increases, it increases also the difficulty to find a
pulse sequence that successfully filters out the noise components, while still maintaining the
sensitivity to the target field.

A possible approach is to use an optimization algorithm, to find a m-pulse sequence that
optimizes a desired figure of merit, for example the sensitivity, i.e. the smallest detectable
signal. Indeed, in a slope detection protocol [1] (suited for DD and Ramsey experiments), the
sensitivity 7 is the minimum variation of b that can be measured, and it is defined as [1,44]

ex(T)

EGDIDA
(see also Appendix A for a derivation). The sensitivity 7 is therefore a compromise between
noise cancellation (minimizing y (T)) and target ac field encoding (maximizing (T, b)), and
it is hard to optimize. This concept was proposed and demonstrated experimentally for an
NV center used as a quantum magnetometer [45]. Despite the achieved improvements, the
computational complexity of the above optimization problem limited its applicability.

In our approach, instead, we recast the cost function 7 as the Hamiltonian of a classical
Ising spin system. In this way, the continuous optimization problem for the minimization of
the sensitivity of a NV-center magnetometer is re-interpreted as a discrete energy minimization
problem. Specifically, we define the new cost function to be the (dimensionless) logarithmic
sensitivity

n= “4)

¢(T,b)

Tyb
and we show in Sec. 3 that upon time discretization ¢ becomes an Ising Hamiltonian, albeit
with sign-alternating, long-range interactions and a peculiar logarithmic field-spin coupling.
Before doing that, however, we show how the problem can be tackled in continuous time, and
by means of a reasonable approximation.

e=log(nyVT)= x(T)—log' , (5)
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3 A variational approach

Our task is to find the optimal function y(t) which minimizes the sensitivity 1, Eq. (4), or the
logarithmic sensitivity €, Eq. (5). First of all, we anticipate why simple choices for y(t) do not
yield good results for generic sensing tasks. Looking at Egs. (2)-(4), one understands that the
minimum detectable signal 1) is determined by a competition of the signal, through ¢, and the
noise, through y. Commonly used DD protocols, as CP sequences, focus only on the properties
of the signal, trying to amplify it irrespective of the noise (or assuming a zero-to-low-frequency
noise). So, either using a CP sequence to amplify one frequency the signal is composed of, or
taking y(t) o< h(t) to mimic as close possible the signal (the strategy dubbed gCP above), fail
when the noise and the signal share common frequencies. Nevertheless, with the procedure
outlined below, we show how it is possible to “orthogonalize” the DD sequence with respect
to the noise to minimize the overlap y, while keeping it “parallel” to the signal to maximize
. In passing, we obtain useful analytical results that allow us to assess the performance of
our method.
Let us rewrite € as [see Egs. (2),(3) and (5)]

T
e[y]z%J dedt’ y(t)J(t,t")y(t")—log %f dth(t)y(t)|, (6)
[0,T]2 0
with
J(tt) = %de cos(e(t’ — £))S(w), @)

the noise autocorrelation function, which depends only on the difference t — t’ by stationarity
of the noise. Notice also that J is a positive operator even though J(t’,t) can take up any
values in R. Then, in order to find y(t) that minimizes e, we start by imposing the constraint
y(t)? =1 for all t via a continuous set of Lagrange multipliers, i.e. via a function A(t):

T

Fly,Al= e[;v]+%J deA(t) (y(£)*—1). (8)

0

We need to find the stationary point of F[ y ] with respect to y(t) and A(t). Formally, the saddle
point equations are

5F (" i N h(t)

= dt’|J(t, t)+ A(t)o(t—t t)— =0, 9
5y(t) JO (603 + 208 =) ]y [ deh(en)y (e
0 =y%(t)—1=0. (10)

One can see that the extreme with respect to A simply gives the constraint. The formal solution
of the above equations is

1 (" 1

t)=— dt/(—) h(t), 11
¥(© DL o7, ) a

where A stands for the diagonal operator A(t)5(t —t’), and

! 1 (" 1

D= dth(t)y(t)== | dtdt'h(t (—) h(t), 12
JO (1) y(t) DL ()J+Ar,r'() (12)

T 1 1/2
— D= dtdt’ h(t (—) h(t’ ) 13
UO O u/()) (3)
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Above, with the notation (ﬁ) AL indicate the kernel of the operator inverse in the space of
linear operators acting on square-integrable functions, and the quantity D can be interpreted
as a self-consistent normalization for y(t). By plugging Eq. (11) in Eq. (8), one can express
the cost function at the saddle as

1 (" 1 ("
—f dth(t)y(t) +—f dea(t) (y(t)*—1)
T 0 2 0

1 (" 1
— dtdt'h (—) h(t’

F=11 dede’ youce ) y(t)—log
2 Jiop

1 dtdt’h(t)(L) h(t")—log
J t,t

2D2 )7y +A
T
—lf dt A(t)
2 0
T
1 D 1
=——log|=|—= | dtA(t). 14
5 ~log T’ 2J0 (t) (14)

The last expression is a function of A(t) only and one can, in principle, find its saddle point
and substitute it in Eq. (11) to obtain the optimum DD sequence.

Short of solving exactly the model in Eq. (8), we can get good results to guide the exper-
iment by simplifying the space in which we are searching for the minimum. We can do this
in two ways: either we keep y(t) defined on R (i.e. we keep the time continuum) and we
give more structure to A(t), or we discretize time and enforce the constraint y(t)? = 1 exactly
(therefore getting rid of A). These two approaches will be implemented in the following.

3.1 Spherical approximation

In order to make progress, we substitute for the moment the constraint y(t)? = 1, for all ¢,
with the constraint .
lf dty?(t)=1. (15)
T )o
This is equivalent to finding the stationary point of F[y, A], Eq. (8), in the subspace in which
A(t) = A = const. Inspired by the physics of spin glasses [25, 26], we call the resulting
approximation spherical model (SM).?
Spherical models are often good mean field models of spin glasses and of their dynam-
ics [25,26,46], and this case will prove to be of similar nature despite the unusual logarithmic
field coupling term. By setting A(t) = A we obtain a function of the single parameter

1 (" 1
— dtdt'h (—) h(t’
TZJO tat (t) J+A. t,t/ (t )

where J + A is the operator with integral kernel J(t,t) + A5(t’ — t), as above. Minimizing
with respect to A € R, one finds 1gy = e®™/y+/T. This is a lower bound for the sensitivity,
1 > mgy, because the minimum of egy,; is found by searching for a y(t) over a larger space
of functions (Eq. (15) is weaker than constraint y(t)2 = 1), as shown schematically in Fig. 2.
In principle the bound is not sharp, however it provides a quick and accurate measure of
the goodness of our results. Moreover, we have found by experience that it is in practice
pretty close to being sharp and that it can hardly be improved analytically by adding more
freedom to the function A(t) beyond the constant A(t) = A. For example the test function

1 T, 1
esu(A) =S —SA—7log

5 , (16)

2The name “spherical” comes from the fact that, after having discretized time into N equally spaced values
t; = iAt, the constraint in Eq. (15) puts the variable y(t) on a N-dimensional sphere, where N = T /At.
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Figure 2: (a) Sketch of the spherical model. The N-dimensional, hyper-spherical sur-
face (in blue) strictly contains the hypercube {+1,—1}" (black dots), each point of
which encodes the configuration of classical spins in the Ising model. Therefore, the
solution of the spherical model (red square) is, in general, not a point on the hyper-
cube, but it can be projected (arrow) onto the latter, giving a good value for the sen-
sitivity. (b) Comparison between solutions for 200 spins (T = 32 us, At = 0.16 us).
The continuous spins s; € R (blue line) can be converted into Ising spins s; = £1,
necessary for the m-pulses, by using the sign function (orange line): this step cor-
responds to the projection (arrow) in panel (a). The sensitivity can be improved
further with a few iterations of SA to get a close-by sequence (dashed black line). In

this example, the trichromatic target signal and the noise are equal to the ones used
in the experiment (see text).

1

A(t) = A1 x10,7/21() + Ao x17/2,77(t) (X[a,p] is the characteristic function of the interval [a, b]),
giving a two-parameters space (A, A,) for minimization, gives at most a few percent increase
on the bound on 7. We therefore use it as if it were sharp.

One can define for any DD sequence the dimensionless quantity ngy/m < 1. We will see
in the next section how different approximate solutions give different values of this quantity.
Moreover, we will see how the solution of the SM, although not per se a DD sequence, can
function as a starting point for finding an optimal DD sequence.

3.2 Time discretization and simulated annealing

Let us now focus on the second method: time discretization. We discretize the sensing time T
into small time intervals At, to obtain a sequence of times t; = iAt withi € 1,...,N = T/At.
The interval At is the smallest time we allow the 7t-pulses of the DD sequence to be separated
by. Apart from the physical limit given by the experimental apparatus, which sets a minimum
At, one does not expect to need in the optimal solution m-pulses separated by much less
than the minimum period of h(t), if it exists (the spectrum of h(t) can extend up to infinite
frequency). The modulation function at each of these times is y(t;) = £1, which dictates the
sign of the phase acquired by the spin qubit during the time interval [t; — At,t;]. We can
therefore write the modulation function as

N=T/At
y(t)= Z SiX[(i-1)at,ine](t) (17)
i=1

where s; = %1, and as before y[, ;7 is the characteristic function of an interval [a, b]. Writing
the modulation function in this way allows us to recast Egs. (2) and (3) respectively as

N
(T,b)=Tyb Y hys;, (18)

i=1
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2(T) = Z Jijsis; (19)
l] 1
where
1 iAt
h; = —J dth(t), (20)
(i—1)At

represents the interaction with a normalized target ac field, and

4 j [1—cos(wAt)]
wz

T

‘]ij =

cos(w(j—i)At)S(w), (21)
represents the interaction with the detrimental noise. We can now express the new cost func-

tion as
N

Z Jijsis; —log Zhisi . (22)

i,j=1 i=1

This closely resembles the Hamiltonian of the Ising spin glass problem for a set of N spins s;.
The ground state for this Hamiltonian can be used to obtain a modulation function, therefore
a DD sequence, that minimizes the sensitivity 7.

At first sight, minimizing e in Eq. (22) on the hypercube {s;} € {—1,1}" seems a difficult
problem, since the couplings J;; can be of both signs. Therefore, one is tempted to use a
simulated annealing (SA) minimization algorithm [28-30] to find the minimum of the energy
€. However, the starting configuration strongly affects the performance of SA, both its final
value and, at least as importantly, the time to reach it. With this in mind we turn to the SM
solved in the previous section but with our discretized time, in terms of which the spherical
constraint reads Zil yi2 = N. In the discretized form, the solution of the SM is (see Eq. (11))

N 2, 7
1 e’ hy
= = (23)
5= LR G
Above, we introduced the Fourier transform of the signal term f;, = 1/_ Z eI h and of
the noise term J;, = ﬁ > i i Ji,i_j: indeed, since A(t) is constant and J;; depends only

on the difference i — j, the matrix J + A is diagonal in Fourier space.® The value of A is chosen

to enforce the spherical constraint, and D = (Zk, |fzk/|2 /(U + k))l/z, see Eq. (12). One can
notice that in Fourier space the optimal solution is aligned with the field, and orthogonal to
the noise.

An example solution is shown in Fig. 2. The values of y; do not form a sequence of *1,
but the solution is reasonably close to the minimum of the exact functional, Eq. (22), over the
hypercube {—1,1}. We can now use the solution in Eq. (23) as a starting point to find the
optimal sequence. To do so, we first define s; = sign(y;) € {—1, 1} and then run few steps of SA
moving only the domain walls, i.e. flipping only spins which are on a sign change: s; = —s;,;.
The 7m-pulse sequence is, as before, the sequence of times where the spins change sign (the
position of the domain walls in the spin chain).

We test our procedure on an ensemble of test cases constructed as follows. The signal is

a superposition of monochromatic waves h(t) =, f'qu cos(w,t + ¢,): we fix Npq = 7 and
extract uniformly random frequencies in the interval [0, 1] MHz, uniformly random phases ¢,,,

3Strictly speaking, the noise term is represented by a Toeplitz matrix J;; j» which is diagonalized by the discrete
Fourier transform only in the limit N — oo. However, already at finite N plane waves constitute a reasonable
approximation for the eigenvectors [47]. For numerical purposes, any diagonalization routine will suffice.
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. . N . ..
and uniformly random amplitudes A,, s.t. ). nf:f A, = 1. The noise spectrum is instead a gaus-

sian centered at 0.4316 MHz, and with standard deviation 0.016 MHz: thus, it is close to (but
a little bit stronger than) the experimentally relevant situation discussed in the next section.
Interestingly, there is a strong overlap between the signal and noise frequency bandwidths.

First, we use the generalized Carr-Purcell (gCP) protocol introduced above. This procedure
is simple but not very effective: on average, it returns a sensitivity between 1.5 to 3 times as
large as the optimal one, monotonically increasing with the time of the sampling (see Fig. 3a).
The sensitivity degradation with time is caused by the fact that the gCP sequences do not take
into account the dephasing noise. Hence, as time increases the accumulation of noise by the
sensor degrades its sensitivity. Second, we use the solution of the SM, that is, s; = sign(y;),
as DD sequence: this gives a better solution, as the sequence attempts to partially filter out
the noise, but it is still not optimal. The best results, however, are obtained by running a fixed
number of steps of SA starting from either a random DD sequence (SA, more on this below),
from the gCP DD sequence (gCP+SA), or from the sign(SM) DD sequence (sign(SM)+SA). All
these three cases perform the best because the SA algorithm is able to find good local minima of
the optimization landscape. Asitis seen in Fig. 3a, the sign(SM)+SA sequence gives the overall
best result, with a solution close to the upper bound given by the SM itself (before projecting
on the hypercube). It is important to stress that, although the ratio ngy/n for sign(SM)+SA
is close to be constant as a function of time, eventually the sensor will not be able to detect
any signals due to decoherence beyond dephasing (not considered in our model), e.g., T is
limited by the spin-lattice relaxation time T;. For example, at room temperature T; ~ 1 ms
for NV spin sensors.

We can understand the comparative performance of the different control protocols as fol-
lows: The gCP case performs the worst because it ignores the noise, leading to dephasing as
time increases. This effect is mitigated by the sign(SM) case, that accounts for some effect
of the noise. The SA cases perform the best since by construction they represent good local
minima of the optimization landscape, found by the numerical sampling procedure.

We can finally compare sign(SM)+SA with the “unbiased” SA optimization, which starts
at infinite temperature from a uniformly random sequence of s; = +1. Not only it is out-
performed by sign(SM)+SA (especially in convergence time), but its solutions typically require
more 7 pulses than needed (see the following). In this case, to reduce the number of 7 pulses
it is possible to introduce by hand a ferromagnetic coupling term in the Hamiltonian:

N—1
e >e—K Z SiSit1 > (24)
i=1

with K > 0 to be tuned. One can see in Fig. 3b that the best sensitivity is however still obtained
with the combination of the SM solution and SA optimization. Additionally, from Fig. 3b one
can also understand that the optimal solution represents the best trade-off between number
of © pulses (which the experimenter would like to maintain low) and sensitivity.

To conclude, we stress that our optimization procedure is very fast, if compared to stan-
dard, general-purpose routines. In particular, we were able to run our codes on a Raspberry
Pi microcomputer, where the single instance takes ~ 0.5 s for the unbiased SA algorithm, and
~ 0.02 s for the solution of the SM and subsequent annealing (using N = 500 spins). Taking in
consideration that few instances of the sign(SM)+SA protocol are sufficient to obtain a good
result, while the optimization over the parameter K requires hundreds, if not thousands, of
separate SA runs, the gain provided by our method becomes apparent. This fact also opens
the door to the miniaturization of the control electronics, in view of possible technological
applications of quantum sensing.
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Figure 3: (a) Comparison of performances, over a broad ensemble of parameters,
for the DD sequences discussed in the main text: generalized Carr-Purcell (gCP),
spherical model projected with the sign function onto the hypercube (sign(SM)),
simulated annealing (SA), and SA optimization starting from gCP and sign(SM). One
can see that the best results are obtained for the SA optimization guided by the SM
solution. The data refer to the ensemble of random test signals described in the
main text: the dots are the average values, and the shaded area represents the 20-
80 percentile of the distribution of results. The discretization interval is At = 0.1
us. (b) Single instance of a random signal, corresponding to T = 100 us. We show
the average sensitivity and the number of 7 pulses (the error bars correspond to
one standard deviation over the ensemble of annealing realizations) of the solutions
coming from the unbiased SA, i.e. starting from infinite temperature (purple to green
circles), and from the SA guided by the SM solution (red square). The unbiased SA
needs a ferromagnetic term o<K, see Eq. (24), with K to be optimized over, in order
to keep under control the number of 7 pulses. From this plot, one learns that first,
the optimal solution represents also the best trade-off between number of 7 pulses
and sensitivity, and second, that the SA optimization guided from the SM performs
better, and with less fluctuations. Here, each unbiased SA procedure uses 10°> Monte
Carlo steps and a power-law temperature ramp, while only 10° steps are needed for
the SA from the SM solution.

4 Experiment

While our method is general and applicable to any spin-qubit sensor, we exemplify it through
experiments with a single NV center in bulk diamond with naturally abundant '*C nuclear
spins, at room temperature. The ground state electron spin of the NV center can be initialized
and measured by exploiting spin-dependent fluorescence, and can be coherently manipulated
by microwaves [14]. We consider the two ground-state spin levels, mg = 0 and mg = +1, to
form the computational basis of the qubit sensor {|0), |1)} (see Appendix B). The main source
of noise for the NV spin qubit derives from the collective effect of *C impurities randomly
oriented in the diamond lattice.

In the presence of a relatively high bias field (£ 150 G), the collective effect of the nuclear
spin bath on the NV spin is effectively described as a classical stochastic field, with gaussian
noise spectral density (NSD) centered at the '3C Larmor frequency v, = yB [48,49], where
y is the 13C gyromagnetic ratio. We preliminarily characterize the NSD of the NV spin sensor
as in Ref. [49]. The direct coupling between the target field and the nuclear spins is negli-
gible due to the small nuclear magnetic moment [38], and the indirect coupling via the NV
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Figure 4: (a) Dynamics of the NV spin qubit under a DD sequence with n = 16
equidistant pulses (CP) for a trichromatic signal (see text). The NV spin coherence is
mapped onto the probability of the NV spin to be in the state |0)), P(nt, b). Gray bul-
lets: experimental data. Black dashed line: simulated spin coherence in the presence
of noise, without any external target signals. Orange, red, and purple dashed lines:
simulated spin coherence in the presence of monochromatic target fields with w,
w,, and w3, respectively, with no noise. Gray solid line: simulated data combining
all of the above using Eq. (1). Residuals between gray experimental data and gray
solid line are shown in the bottom plot. (b) NSD given by the nuclear spin environ-
ment of the NV sensor (black line); fast Fourier transform (FFT) of the target signal
h(t) (gray line). Vertical dotted lines: frequency components of the target signal, and
center of the NSD. Orange, purple, and red lines: filter function for a CP sequence
with T = 2%_, for i = —1,0, and +1, respectively. Blue line: filter function of the
optimized se[quence. Inset: examples of time distribution of 7 pulses.

electronic spin is also negligible due to the presence of the strong bias field [49]. There-
fore, the NV spin dynamics is well described by Eq. (1). For the experiments we present
throughout this article we used a bias magnetic field of 403.2(2) G, for which the NSD is
S(w) = Sy+Aexp(—(w—wy )?/(202)), with Sg = 1.19(9) kHz, e, /271 = v; = 0.4316(2) MHz,
A=0.52(4) MHz, and o /27 = 4.2(2) kHz.

As a test case for our optimal control method versus standard control, we consider a three-
chromatic target signal, with h(t)=zz;1_1Ai cos(2mv;t), where v;={0.1150,0.2125,0.1450}
MHz are the frequency components, and A; = {0.288,0.335,0.377} are the relative ampli-
tudes, respectively for i = —1,0,+1.

In Fig. 4(a) we show the NV spin coherence P(nt,b) under Carr-Purcell (CP)-type DD
control, formed by n pulses with uniform interpulse spacing T = T /n, as a function of 7. The
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Figure 5: (a) Experimental values of the inverse sensitivity for the optimized se-
quences (blue circles; for At = 160 ns), and for the CP sequences (orange, red, and
purple triangles). The predicted values of 1/1) are represented by dotted lines. Black
dashed line: theoretical upper bound of 1/, obtained from the solution of the spher-
ical model in the continuum limit. Solid black line: predicted values of 1/7 for the
gCP sequence. Inset: Ratio ngy/m for the sign(SM)+SA and for the gCP sequences
(blue and black, respectively). (b) P(T,b) as a function of the amplitude of b, at
T ~ 152 us. Same color code as in (a). Lines are a cosine fit (see text).

value of b at the position of the NV defect inside the diamond is obtained from minimizing the
squared residuals between experiment (gray bullets) and simulation (gray line), for which b
is the only free parameter (see Appendix B.1 for more details).

The CP pulse sequence acts as a quasi-monochromatic filter centered at 1/, so that a single
component of b(t) can be sensed in each experimental realization. As a consequence, P(nt, b)
in Fig. 4(a) shows collapses occurring at T ~ 1/2v;. Notice that the collapse corresponding to
the frequency component v, ; (T =~ 3.448 us) cannot be resolved from noise since the first har-
monic of the filter function roughly coincides with the NSD peak (v,; ~ v;/3) [Fig. 4(b)]. To
detect the three components of the target signal and filter out the NSD, we need an optimized
sequence. We thus apply the optimization algorithm detailed before to solve this experimental
sensing problem.

In order to confirm the theoretical prediction on how the optimized DD sequence can
outperform the standard control in terms of sensitivity, we performed measurements of the
sensitivity itself. Specifically we used three different CP sequences, each with time between
pulses T = %, fori = —1,0,+1. Having a previous knowledge of the NSD allows us to
predict the seﬁsitivity of the the spin sensor using equations (3), (2), and (4), for any given
DD sequence, and for any target AC signal b(t). In Fig. 5a we show the estimated values for
the inverse of the sensitivity as a function of the sensing time T = nt. Since T = 5~ is fixed

2vi
for each of the CP sequences, the variation of T corresponds to a variation of the number
of pulses n. Notice how for T = 5——, the inverse of the sensitivity rapidly goes to zero.

2y
The estimated inverse sensitivity for the optimized sequence sign(SM)+SA is also shown in

Fig. 5a. The inverse sensitivity increases as a function of T, although we expect it to decrease
at longer times due to decoherence. In particular we know that for NV spin qubits the spin-
lattice relaxation time T, ultimately limits the sensing time T. However, even at shorter times
T < T, the sensitivity could be limited by other experimental factors, the most probable one
being m-pulse imperfections.

In the experiment, we measure P(T,b) as a function of the field amplitude b at a fixed
sensing time in order to determine the sensitivity. An example of this kind of measurements
is shown in Fig. 5b. From the analysis of the oscillation of P(nt, b), we can directly fit the
values of y and ¢/b (see Egs. (1) and (2)), and therefore we can obtain the values of 7
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using Eq. (4). The sensitivity measured experimentally shows an excellent agreement with
the expected simulated values (see Fig 5a). See Appendix C for two additional test cases: one
for a monochromatic target signal such that the fifth harmonic of the NSD coincides with the
frequency of the target signal; and one for a target signal with seven frequency components,
all close to the NSD peak. These two cases confirm the results of the experiments shown in
the main text.

The sensitivity reported in Fig. 5a is the result of the optimized DD control sequence as-
suming that the measurement of b follows a slope detection protocol [see Sec. IVE in Ref. [1]].
Therefore, to estimate the sensitivity it is sufficient to obtain the maximum slope of P(T, b)
as a function of b. In order to achieve a precise estimation of 1/7, we measured more than
one period of P(T, b) [Fig. 5b]. Notice that the same DD control sequence would be used to
measure the value of b. One just needs to measure P(T, b), in the range around P(T, b) ~ 0.5.
Outwardly, an improved sensitivity thus comes at the cost of a smaller bandwidth. Notice
though that the bandwidth can be effectively extended by changing the range around which
P(T, b) ~ 0.5, which is achieved by tuning the phase of the oscillations of P(T, b) as a function
of b (or, in practice, the phase of the final 7t/2 pulse).

5 Conclusion

We have shown that the problem of finding an optimal solution to quantum control a single
spin system for quantum sensing can be solved by first finding the ground state of a solvable
spherical model of classical spins, and then using this as a starting point for a simulated anneal-
ing algorithm. In this way, the optimization algorithm is able to find a control sequence that
shows a significant improvement to the sensitivity with respect to standard control sequences.
In addition, from the spherical model we found a theoretical bound on the sensitivity. Although
the spherical model can be mapped to a control sequence that gives relatively good results,
using the simulated annealing algorithm is necessary to improve even further the sensitivity,
approaching 80—85% of the bound. The fact that this result is consistent over the ensemble of
cases studied numerically leads us to believe that an empirical bound for the sensitivity occurs
at >~ 1.2ngy. Our experimental results confirm the theoretical predictions, hence validating
our algorithm as an optimization protocol applicable to single spin sensors.

The proposed algorithm can solve the problem of finding the optimal DD sequence of a
given signal b(t) in a few milliseconds on a Raspberry Pi, which opens the door to miniatur-
ization of the control electronics, using for example low-power processors. Fast optimization
would also enable the implementation of adaptive protocols for sensing and spectroscopy.
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A Definition of the sensitivity

In the main text, Eq. (4) introduced the sensitivity 11 as the minimum detectable signal for unit
time in our experimental platform. To justify this statement, here we sketch a brief derivation
using both a direct approach, and a more formal one through the Fisher information.

First, let us define 1) as the signal strength yielding a signal-to-noise ratio SRN = 1 for a

total experiment time of 1 s. Following Ref. [1], the SNR for N independent experiments can

be defined as
6P(T,b)

ON

SNR = (A.1)

where oy encompasses all the sources of error, and 6 P(T, b) is the spin population difference
between the cases with and without target signal: 6P(T,b) = P(T,b) — P(T,0). Now, the
error can be shown to be of the form oy ~ C~!/+/N, with a dimensionless constant C = O(1)
depending on the experimental platform [1]. Also, using Eq. (1) of the main text and assuming
slope detection, one gets to

d¢(T,b
5P(T, b) ~ e ¥ |sin (¢ (T, b)) %b = e *D|y(T, b)|. (A.2)
Thus, imposing SNR = 1 one finds
1
1=e*D|u(T, b)|—, (A.3)
l( )lcm

and finally, using that one performs N experiments in 1 s in total,

ex(T)

- T, A4
o (T, 5)/b] (A-4)

n

with T being the time for a single experiment, and C set to unity for simplicity (a C < 1 would
affect all measurements in the same fashion, and thus it would not modify our optimal control
technique). This is exactly Eq. (4) of the main text.

As anticipated above, the sensitivity can be defined also through the Fisher information
and the Cramér-Rao bound. Specifically, we define 1 to be the minimum signal that can be
distinguished from O in a total time of 1 s. Assuming that our estimator of the magnetic field
b is unbiased, from the Cramér-Rao bound it must be

1
Ab> ——, (A.5)
Fy
where Fy is the Fisher information associated with N measurements of the magnetic field
strength b from an estimator x [45,50]:

o 1 (apyIb)Y?
F”_Zx:pN(xw)( o ) (A.0)
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In our case, since we detect the |+) states in a Ramsey interferometry experiment, it holds
p(#[b) = Tr(p|+) (*|) with

1/2 e~ 2 (N—1e(T.b)/2 15
p= (e—x(T)+up(T,b)/z /2 1/2 ; (A7)
and thus ) 2y (1) i

8¢p“(T,b e i T,b

p_ 802(Tb) e Msin p(1,b) .
b2 1—e2x(T) cos2 ¢(T, b)
Assuming slope detection, and for N repeated measurements,
8¢2(T,b)e 241

p, =3¢ (LD) (A.9)

b2 ’

since the Fisher information is additive for independent trials. At this point, recalling that
the N experiments have to be done in a total time of 1 s, and using the Cramér-Rao bound
Eq. (A.5), one easily gets to Eq. (A.4), that is Eq. (4) of the main text.

B Details on the experimental platform

The ground state of an NV center is a spin triplet S = 1, naturally suited for sensing magnetic
fields via Zeeman effect. The NV electronic spin presents extremely long coherence times, of
the order of milliseconds at room temperature [13], due to the protective environment pro-
vided by the diamond itself. The S = 1 electronic spin can be initialized into the mg = O state
by addressing the NV center with green light (532 nm). This is due to an excitation—decay
process involving radiative (637 nm) and non-radiative decay routes, occurring with a prob-
ability that depends on the spin projection mg. This same mechanism implies that the red
photoluminescence intensity of the mg = 0 state is higher than the one of mg = £1, hence
enabling to optically readout the state of the system. In addition, the internal structure of
the NV center removes the degeneracy between the mg = %1 states and the mg = O state,
imposing a zero-field-splitting of D, ~ 2.87 GHz. An external bias field, aligned with the spin
quantization axis, removes the degeneracy between the mg = %1 states, allowing to individ-
ually address the mg = 0 «» mg = +1 transition using on-resonance microwave radiation.
By using microwave pulses with a appropriate duration, amplitude and phase, it is possible to
apply any kind of gate to the single two level system. Therefore, the two level system formed
by the mg = 0 (|0)) and mg = +1 (|1)) states fulfills the requirements to be used as a qubit
based magnetometer.

B.1 Characterization of the amplitude of the target signal

The target signal is delivered via a signal radio-frequency (RF) generator connected to the
same wire, placed close to the diamond, that delivers the MW control field. We can control
the amplitude of the target field by changing the output amplitude of the RF generator. How-
ever, the absolute value of the amplitude of the target field b has to be characterized in order
to take into account the attenuation of the circuit, the emission efficacy of the wire (which de-
pends on the RF frequency) and the distance between the wire and the NV defect. To achieve
such characterization, as explained in the main text, we measure the spin dynamics for a CP
sequence as a function of the sequence interpulse time, and we compare with the simulation
to minimize the residuals using b as the only free parameter. By performing this measure-
ments for different values of the RF generator output amplitude agp, we can extract a relation
between agp (in [Vpp]) and the amplitude of the target magnetic field b (in [T]).
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C Additional test cases

In order to reinforce our results, we repeated the analysis presented in the main text for two
different target signals. A monochromatic target signal that coincides with one of the NSD
harmonics, and a 7-chromatic target signal that accentuates the difference between the gen-
eralized CP and the optimal solution.

C.1 Second test case: Monochromatic target signal

If we want to detect a monochromatic target signal b(t), in most cases a Carr-Purcell CP
sequence of equidistant pulses is the best way to increase the sensor’s response to that target
signal and filter out the noise. This is due to the quasi-monochromatic filter function associated
with a CP sequence. Assuming that 7 is the time between pulses, the filter function shows a
peak centered at w/2m = % However, the filter function is not exactly monochromatic, it
shows harmonics at w /21 = m, with £ € {1, 2,...}. Therefore, if the frequency associated
with b(t) is close to w; /(2£ + 1), then a CP sequence will amplify the effect of both, the target
signal and the noise, leading to not-optimal sensitivities.

Here we used the optimization algorithm described in the main text in order to obtain
optimal sequences for this problem. In particular, we explored the case of a monochromatic
signal with frequency v, = 39.29 kHz, which is close enough to v; /11 so that the 5-th
harmonic of the CP sequence coincides with the noise components. We used the same NSD
S(w) as in the three-chromatic case. The experimental values of 1/7 are obtained from the
measurement of P(T, b) as a function of b. The results of P(T, b) for one value of the sensing
time T are shown in Fig. 6(a). The predicted values of the inverse sensitivity, together with

SA: T = 101.760 ps; n = 14 CP: T =101.808 yus; n = 8

0.0 * :
000 025 050 075 100 000 025 050 075 100 :
b [a.u] b a.u] :
(b) :
25() ........ SA :r *
t; = 6.636 s
’—2[)() ............................................
g R {
= 150 .
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0
0 50 100 150 200 250 300
T [us]

Figure 6: Results for the case of a monochromatic target signal. (a) Probability to
remain in the state |0) as a function of b, for fixed sensing times T for an optimal DD
sequence (blue), and for a CP sequence (orange). The values of the sensing time and
of the number of pulses for both sequences are shown as titles of the plots. A cosine
function is fitted (solid lines) to the experimental data (bullets with errorbars) in
order to obtain 1/7 (see main text). (b) Inverse sensitivity as a function of the sensing
time T. Blue data corresponds to the optimized sequences obtained with simulated
annealing (SA). Orange data corresponds to the CP sequences with 7 = 12.726 us.
We found a good agreement between the predicted values (dotted lines) and the
experimental values (bullets with errorbars).
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their experimental values are shown in Fig. 6(b). Similarly to the case detailed in the main
text, the optimal sequences improve the sensitivity of the quantum sensor, resulting in some
cases to an inverse sensitivity that is close to a twice the one from the CP sequence. In the
monochromatic case explored here, the sensitivity gets worse when increasing the sensing
time beyond 100 us. Instead the optimal solutions are able to improve the sensitivity even for
times T > 300 us. For T ~ 100 us, and longer sensing times, the optimized sequences achieve
higher values of 1/7 than the maximum value achieved by a CP sequence.

C.2 Third test case: 7-chromatic target signal

We have explored the case of a target signal with 7 frequency components, as specified in Fig. 7
(a-b). As in the main text, we used the optimization algorithm either to find the approximated
spherical solution, or the solution using simulated annealing (SA) in order to minimize the
sensitivity. The predicted values of the inverse sensitivity, together with their experimental
values are shown in Fig. 7(c). Similarly to the previous test cases, the optimal sequences
improve the sensitivity of our quantum sensor. In this case, the sensitivity obtained with the
optimal solutions almost 1/2, and 1/3 with respect to the generalized CP (gCP) sequence for
T =80 us, and T = 160 us, respectively.

(a)

i A; v; [MHz] ¢
0 0213919 0.420068 2.248311
1 0130194 0.564180 0.451269 (c) T =80 s T = 160 s
20141141 0.226517 2.531370
3 0.031116  0.900518 2.715790 _ $ : 1001 t
4 0.050013 0.756436  0.265970 507 =
5 0.320765 0.286164 5.786594 & a .
6 0.112853 0.366105 1.622823 N 401 B .
== = 504
() =301 + -
s 5 ?
=025 ol o’ 4 b« a o<
3 4 .3 2 2 & 2 2 &
& 0.00 K 2 &0 @
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Figure 7: Results for the case of a target signal with seven frequency components.
(a) Table to indicate the amplitude, frequency and phase of each component of the
target signal h(t) = Z?:()Ai cos(2mv;t + ¢;). (b) Fast Fourier transform (FFT) of
the target signal. (c) Inverse sensitivity for T = 80 us and 160 us. The predicted
values (squares) and the experimental values (bullets with errorbars) show that the
sequences obtained from the spherical solution (Sph.) or from the simulated anneal-
ing solution (SA) result in an improved sensitivity with respect to the generalized CP
(gCP) sequences.
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