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Abstract

In 1994, Susskind and Uglum argued that it is possible to derive the Bekenstein-Hawking
entropy A/4GN from string theory. In this article we explain the conceptual underpin-
nings of this argument, while elucidating its relationship to induced gravity and ER=EPR.
Following an off-shell calculation by Tseytlin, we explicitly derive the classical closed
string effective action from sphere diagrams at leading order in α′. We then show how
to use this to obtain black hole entropy from the RG flow of the NLSM on conical man-
ifolds. (We also briefly discuss the more problematic “open string picture” of Susskind
and Uglum, in which strings end on the horizon.) We then compare these off-shell re-
sults with the rival “orbifold replica trick” using the on-shell C/ZN background, which
does not account for the leading order Bekenstein-Hawking entropy—unless perhaps
tachyons are allowed to condense on the orbifold. Possible connections to the ER=EPR
conjecture are explored. Finally, we discuss prospects for various extensions, including
prospects for deriving holographic entanglement entropy in the bulk of AdS.
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1 Introduction

As shown by Bekenstein and Hawking [1, 2], the black hole entropy in general relativity is
proportional to the area:

S = A/4GN , (1)

in units where ħh = c = k = 1. There are many famous derivations of (1) in string theory, the
most well-known of which is the one by Strominger and Vafa where explicit counting of the
microstates was done in terms of the BPS states of a supersymmetric black hole [3]. Among
them is a notorious 1994 article by Susskind and Uglum [4] (henceforth S&U), which claims
to derive (1) from the string theory worldsheet perspective, for black holes which are far from
extremal (in fact they take the infinite mass limit so as to calculate in Rindler spacetime). While
the S&U paper has over 600 citations, there is a surprising paucity of followup work related to
their string theory claims, perhaps because their central claims were widely misunderstood.
First of all, S&U contains, not one but (at least) 3 conceptually distinct derivations of black
hole entropy. These include:

1. A discussion of the UV divergent entanglement entropy contribution in semiclassical field
theory, and how it renormalizes 1/GN .

2. A cartoon picture of how, in string theory, the entropy comes from open strings ending
on the horizon. This picture can be used to argue that S/A= O(1/g2

s ) = O(1/GN ) in the
string coupling constant gs. However, this argument has not yet been made sufficiently
precise to calculate the numerical coefficient (except insofar as, at the level of picture-
thinking, it is equivalent to the next calculation).

3. A much more precisely defined calculation involving off-shell closed strings in the pres-
ence of a conical singularity. This calculation gets the factor of 1/4GN exactly correct.

Unfortunately, most of the details of calculation 3 are not visible in the S&U paper, since they
are “incorporated by reference” to the work of Tseytlin on off-shell string theory [5]. (This has
led some people to wrongly think the S&U derivation of 1/4 is essentially circular; when in
fact it has a sound basis, within an unfamiliar formalism.)

In S&U’s calculation, the black hole entropy comes from the following conical variation
formula [6]:

S = (1− β∂β)Z0

�

�

β=2π , (2)

where Z0 is the partition function of a single spherical (genus-0) worldsheet, and β is the total
angle around the horizon. (Since there can be multiple such spheres, we have to exponentiate
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to get the tree-level amplitude Ztarget = exp(Z0) = exp(−I0), where I0 is the tree level effective
action.)

The main conceptual subtlety of S&U arises because, on a conical manifold with β ̸= 2π,
the Einstein equations of motion are not satisfied. Hence, (2) requires a calculation in an
off-shell string theory, where conformal invariance on the worldsheet is explicitly broken. It
follows that the nonlinear sigma model (NLSM) living on the worldsheet is a QFT rather than
a CFT. This means that, in addition to the Lagrangian L, a UV cutoff ε with dimensions of
length must be specified. The UV cutoff ε on the worldsheet behaves as an IR regulator in
target space, so by adjusting ε one can make I0 either approximately local, or highly nonlocal.

In part I of this work [7], we addressed this conceptual difficulty associated with breaking
conformal invariance on the worldsheet using Tseytlin’s NLSM off-shell formalism. We gave
an accessible overview of his off-shell prescriptions, and provided a general abstract proof
(using conformal perturbation theory) they give the correct tree-level S-matrix and equations
of motion, at least to all orders in gs and α′.

Although taking the worldsheet QFT off-shell requires the arbitrary specification of a Weyl
frame ω on the worldsheet, we showed that at the end of the day this arbitrary choice does
not matter, because the effects of changing ω can be fully absorbed into field redefinitions of
the target space fields. This corresponds to renormalization of the worldsheet QFT.

In this paper (part II), we explain how Tseytlin’s off-shell formalism was used by S&U to
calculate black hole entropy. We will show how to explicitly use the formalism to compute the
the string partition function on off-shell backgrounds, e.g. on a conical manifold.

Plan of paper. The outline of this paper is as follows: In section 2, we describe Tseytlin’s
sphere prescription, and the results in part I of this work [7] justifying its validity.

In section 3 we give a more concrete derivation of the Einstein-Hilbert action from the
worldsheet theory, following the approach of [8]. It turns out that the Einstein-Hilbert term
arises from the zero mode sector of the worldsheet. Doing this covariantly requires a careful
accounting of path integral measure factors, as well as the definition of the zero mode of the
Xµ coordinate field. (This is a 2-loop calculation, but as a result of some Feynman graph
identities in the NLSM, it can be reduced to a 1-loop calculation, with no need to integrate
over multiple momenta.) We also work out the dilaton action to the same order in α′.

This allows us to arrive at the Susskind-Uglum calculation of black hole entropy from
off-shell closed string theory in section 4. In this section, we also discuss the relationship
between off-shell and on-shell black hole entropy calculations, and discuss the connection to
renormalization—how RG flow smooths out a conical manifold. (We also tentatively make
some first steps towards making sense of their open string picture.)

In section 5 we compare Susskind-Uglum to a rival method for calculating black hole en-
tropy by analytically continuing (on-shell) ZN orbifolds. However, the orbifold is fundamen-
tally different from the cone because it does not allow processes in which the string pinches
off at the orbifold singularity. As a result, this method does not give the correct black hole
entropy—unless perhaps (following Dabholkar [9]) we allow tachyons to condense on the
orbifold.

Finally, we wrap up in the Discussion 6 by suggesting possible avenues for further calcu-
lations of entropy in the off-shell formalism. We discuss the prospects for higher genus and
higher α′ calculations, as well as the bulk side of holographic AdS/CFT spacetimes, and the
exact “cigar” solution.
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2 Tseytlin’s sphere prescription

This section is a brief summary of Tseytlin’s sphere prescription, which we justified in the
previous installment [7].

Tseytlin’s off-shell NLSM formalism is a first quantized approach to string theory, in which
one takes the worldsheet field theory to be a non-conformally invariant QFT. (In our work
we do not need to assume that this QFT takes the form of a standard NLSM; so we can also
consider highly non-geometrical string compactifications.)

On the sphere Tseytlin does not deal with the SL(2,C) Möbius group by fixing 3 points, as
this prescription does not properly extend to the off-shell case. Instead, at the n-th order of
perturbation theory, he integrates all n vertex operators over the sphere to obtain a correlator
K0,n. This introduces log divergences as n− 1 points come together on the sphere. To obtain
the correct spherical string amplitude Z0 for a sphere, Tseytlin therefore differentiates by the
log of the UV cutoff ε, so that (up to a multiplicative factor we are not bothering with) we get:

Z0 =
∂

∂ logε
K0 , (T1)

where K0 =
∑

n K0,n. We call this T1 because it was Tseytlin’s first sphere prescription [5], and
also because it involves one derivative with respect to the RG flow.1

By taking the QFT to be a nonlinear sigma model, Tseytlin checked [10–13] that this pre-
scription gives good answers for the first few terms in the effective action I0, at least for mass-
less fields of super(string) theory in the long wavelength regime where the characteristic radius
of curvature of the target spacetime rc ≫ ls [14,15].

In [7], we justified these prescriptions with arguments that are more general than those
found in Tseytlin’s work. As a key lemma, we showed that when all insertions are marginal
primaries, the T1 prescription is equivalent to modding out by SL(2,C) gauge orbits. This al-
lowed us to recover standard string theory results from the sphere partition function, including
the tree-level S-matrix and the equations of motion to all orders in perturbation theory in n.

As needed to go off-shell, these equations of motion are valid even for perturbations to the
worldsheet action that are not marginal primaries. The precise range of validity was described
more carefully in part I, but at any finite order in n it includes arbitrary orders in perturbations
of the operator dimension about marginality, which suffices for purposes of calculating at all
orders in α′.

Since S&U’s formula for black hole entropy (2) only involves going off-shell at linear order
(n = 1), and we will work at leading order in α′, our results in part I are vastly more general
than what we needed for part II. However, when trying to understand S&U we had numerous
questions about what it means to take string theory off-shell, and why Tseytlin’s sphere pre-
scription T1 can be trusted. It was only by answering all of these questions in part I, that we
gained sufficient confidence that the off-shell formalism makes sense, to accept its assertions
about black hole entropy. We have tried to make part II mostly self-contained for those readers
who are willing to take the general validity of Tseytlin’s prescription on faith. But those who
wish to have the sphere prescription justified in more detail should read part I.

These results from part I provided a general abstract argument that we obtain the correct
string action. But in the next section of this paper, we will get our hands dirty and explain how

1There is also a more general T2 prescription needed to obtain the correct action for the bosonic string tachyon:

Z0 =
�

∂

∂ logε
+

1
2

∂ 2

(∂ logε)2

�

K0 , (T2)

but this prescription is not needed for the present paper as it is equivalent to T1 in the regimes of interest. See
part I [7] for more details.
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to derive the Einstein-Hilbert action directly from the worldsheet. This will allow us finally
arrive at the key result of this paper: the Susskind-Uglum calculation of black hole entropy
from off-shell closed string theory, in section 4.

3 The zero mode of a compact worldsheet

In this section we will derive the classical Einstein-Hilbert term in the bosonic string action
I0 from a worldsheet perspective. For this we must consider a nonlinear sigma model on a
noncompact target space manifold. In this section we calculate the target space action up to
2 derivatives, i.e. the leading order in α′—unlike the results in chapter VI of [7] which were
valid to all orders in α′. Our analysis closely follows Tseytlin [8,16]. In this section, we use ε
to refer to a heat kernel regulator rather than a hard disk cutoff.

In order to write the effective action as an integral over the D dimensions of spacetime, it
is necessary to decompose the coordinate Xµ into a zero mode Y µ and the nonzero modes ηµ.
That way, after integrating out the ηµ fields, the action takes the form of

∫

dDY L0(Y ) , (3)

where L0(Y ) is the spacetime Lagrangian for the light string fields.
We will then show that the target space Einstein-Hilbert term originates from the zero

mode on the worldsheet. More precisely, it comes from the fact that the zero modes Y µ be-
have differently than the nonzero modes ηµ, since only the latter are confined by a quadratic
potential.2

It is essential for this program that the nonlinear sigma model be defined in a way that
respects target space covariance. There are two main hazards making this tricky:

1. The most naive way of extracting Feynman rules from the action fails to be covariant
when there are dynamical fields multiplying propagator terms.3 This issue arises when-
ever the target space volume is not unimodular:

p
G ̸= 1.

2. The most obvious way to define the zero mode Y µ—just average the coordinate Xµ over
the worldsheet volume—fails to respect target space covariance, because it involves the
word “coordinate”.4

To deal with issue #1, we include in the partition function a measure factor which depends
explicitly on

p
G. This ensures that covariance remains manifest (at least up to a pure scheme

dependency).
With respect to issue #2, we note that (at least in the finite ε regime where the string

action is approximately local) the non-covariant term coming from the identification of the
zero mode is a pure boundary term. So it can be easily identified and dropped.

2This means that, in bosonic string theory, an analogue of this term appears at arbitrary genus g, but for the
classical black hole entropy we are interested in the genus-0 sphere case. For superstrings the higher genus (g≥ 1)
contribution to the Einstein Hilbert term vanishes due to a target space supersymmetric nonrenormalization theo-
rem.

3For example, if we have a single scalar field φ whose action is I =
∫

dd x (1+φ2)(∂ φ)2, naively this introduces
a 4-valent vertex which renormalizes other terms in the action, and yet that can’t be true because the action is field
redefinition equivalent to a free action. In this case we are missing a divergent measure factor which depends on
1+φ2. In other words, the principle of “democracy of paths”, whereby all histories are weighted equally in the
path integral up to phases, is valid only for theories with constant propagators.

4The standard method of dealing with this problem, the background field method [17–19], ensures covariant
answers but introduces some additional extra complications.
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To see why this is true, suppose we integrate the Lagrangian over some region R which is
large compared to the nonlocality scale:

I0[R] =

∫

R

dDYL0(Y ) . (4)

In the interior of R, we are now integrating over both the zero modes and nonzero modes,
without distinction. So in the deep interior, it doesn’t really matter how the zero mode is de-
fined. The only problem arises near the boundary ∂R, where there is an ambiguity concerning
which worldsheets—remember these are extended objects!—should be counted as being “in-
side” or “outside” of R. This is really a purely conventional question, not an objective physical
fact.

The zero mode Y µ as defined above answers this question, albeit in a non-covariant man-
ner that depends on the particular choice of coordinate system.5 Yet because the action is
approximately local, this problem can only affect the string worldsheets near the boundary.
So in an α′ expansion, the noncovariance must take the form of an integral over ∂R. Hence
it manifests as a total derivative in the spacetime Lagrangian L0(Y ).6

This means that the noncovariant terms will not affect the equations of motion. We do,
however, have to drop them in order to obtain the correct result for the conical entropy, since
it is difficult to find a coordinate system where their effects would cancel.

As for covariant boundary terms, we cannot determine them by our current formalism.
However, they cannot affect off-shell computations of black hole entropy, since any such bound-
ary terms will be linear in β and hence will cancel in the variation (2). This is true even at
higher orders in α′.7 (They would, however, play a crucial role in obtaining the correct black
hole entropy by an on-shell β variation, as we will discuss in section 4.2.)

Having provided these salutary warnings, we are now ready to proceed to compute the
worldsheet partition function.

3.1 Partition function

We now calculate the partition function on a compact 2-manifoldΣ. Although we are primarily
interested in the sphere, until the very end all our manipulations will also be valid for the torus,
as we will only use the fact that the metric gab on Σ is homogeneous and has a 180◦ rotational
isotropy.

We start with the following bare NLSM partition function:

Z (B) =

∫

[dX ]exp(−IQFT[X ]) , (5)

where
[dX ] =
∏

z

dX (z)
Æ

G(X (z)) , G = det Gµν ,

IQFT =
1

4πα′

∫

d2z
p

g
�

∂AXµ∂ AX νGµν(X ) +α
′R(2)Φ(X )
�

.
(6)

5More precisely, it depends on an affine structure on target space. So long as we remember which affine structure
we are using, we are free to pass to other coordinate systems. There are manifolds with no globally defined affine
structure (e.g. S2) and on such manifolds it would be necessary to divide the manifold into pieces include a
boundary term on the border between pieces. In this roundabout way one would recover the covariant action on
compact manifolds. But it is easier to just realize this could be done, and drop the offending terms.

6In at least some contexts, this noncovariant total derivative seems to be closely related to the Gibbons-Hawking
boundary term, but we are not sure how to make this idea precise.

7For a relevant discussion of the boundary term in the classical string field theory as well as low-energy effective
actions, see the nice discussion on p.7-8 in [20].
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In (5), Gµν(X ) is the spacetime background metric, Φ(X ) is the dilaton. For simplicity, we don’t
include the antisymmetric Bµν field.8 The form of the path integral measure guarantees the
path integral is spacetime reparametrization-invariant under the simultaneous transformation
of X and G:

Xµ→ X ′µ(Xµ) , G→ G′µν =
∂ Xα

∂ X ′µ
∂ X β

∂ X ′ν
Gαβ . (7)

To make the path integral well defined, we need a UV cutoff ε. In this section we use the
heat kernel regularization method to consistently cutoff the action and the measure. This is
done by inserting a factor of eε

2∆ into divergent expressions, with ∆= −∇2.
Let us first focus on the measure factor [dX ] in (5). We regulate this expression as follows:

ZM := [dX ] =
∏

z

dX (z) eM ,

M =
1
2

tr(ln G exp(−ε2∆))

=
1
2

∫

d2z
p

g ln G(X (z))K(z, z;ε)

=
1
2

N log G(X ) ,

(8)

where K(z, z;ε) is the trace of the heat kernel with an infinitesimal Schwinger proper time
ε2→ 0 (which is a regularization of the delta function δ(0))

K
�

z, z′;ε
�

=



z| exp(−ε2∆) |z′
�

,

lim
ε→0

K
�

z, z′;ε
�

= δ(2)
�

z, z′
�

= (1/
p

g)δ(2)
�

z − z′
�

.
(9)

The trace is given by the heat kernel asymptotic [21]:

K(z, z;ε) =
1

4πε2
+

1
24π

R(2) +O(ε2) , (10)

so that after regularization the effective number of modes N is given by

N =

∫

d2z
p

gK(z, z;ε) =
V

4πε2
+

1
6
χ +O(ε2) , (11)

where V is the volume of the worldsheet, and χ is its Euler characteristic.9

Now, ZM can be written as
ZM = (

p
G)N . (12)

This would certainly be a covariant measure for a lattice field theory with N points, since each
X variable would be integrated with the covariant measure dDX

p
G. As we are using the heat

kernel regulator, the covariance could potentially be disrupted by scheme dependencies, but
as we shall see in section 3.3, the fact that we are using ε to regulate both the action and the
measure, will result in the two terms combining to give a covariant final result.

8As pointed put in [8], a choice of a local path integral measure is equivalent to a choice of the bare values of
the tachyon and dilaton fields. In addition, the renormalized value of T (X ) may be consistently tuned to be zero
because it is associated with a power law divergence.

9We note in passing that this formula implies that the CFT operator conjugate to
p

G has an anomalous depen-
dence on the curvature R when acting with a conformal transformation. This operator is not simply :∂AX µ∂ AXµ:,
because G also appears in the measure. Both of these terms contribute to the aforementioned anomaly, in order
to give rise to the covariant answer required by section VII in [7].
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3.2 Mode decomposition

The eigenfunctions ϕm and eigenvalues λm of the Laplacian ∆ on a compact 2-surface of the
string worldsheet are defined by the following set of relations for modes on the worldsheet:

∆ϕm = λmϕm ,
∫

d2z
p

gϕmϕn = δmn ,

∫

d2z
p

gϕm(z) = 0 , m ̸= 0 ,

ϕ0 = 1/
p

V , λ0 = 0 .

(13)

We now consider the regularized Green’s function defined in terms of ϕn and λn as:

D
�

z, z′
�

=



z
�

�∆−1 exp(−ε2∆)
�

� z′
�

=
∑

m ̸=0

exp
�

−ε2λm

�

λm
ϕm(z)ϕm

�

z′
�

.
(14)

Here we have omitted the zero mode (φ0)—which is good because otherwise Gauss’ law pre-
vents us from inverting the propagator on a compact worldsheet! (This is justified by the fact
that we will be using this expression in Feynman diagrams that integrate over the nonzero
modes only.) From (14) we obtain the important relation:

∆D
�

z, z′
�

= δ(2)
�

z, z′
�

− 1/V . (15)

To compute the regulated partition function ZB, we now split Xµ into a constant part and a
non-constant part Xµ = Y µ+ηµ. To do this properly, and avoid over-counting of Y µ, following
the standard Fadeev-Popov (FP) procedure, we insert the following “1” factor into (5) [17].10

1=

∫

dDY

∫

∏

z

dη(z)δ(D)(X (z)− Y −η(z))δ(D)(Pµ[Y,η])Q[Y,η] ,

Q = det (∂ Pµ[Y − a,η+ a]/∂ aν)a=0 .

(16)

A canonical choice of Pµ and the FP factor Q is

Pµ =

∫

d2z
p

g ηµ(z) ,

Q = V D , V =

∫

d2z
p

g .

(17)

If we take the worldsheet to be a unit sphere, this just contributes a multiplicative constant to
the partition function.

3.3 Covariance of the measure

To ensure the manifest covariance of the path integral measure, the noncovariant terms
ln G(X (z)) in (8) must cancel with some term in the path integral over η in the action which
has the number of non-zero modes N ′. Let us how this happens.

10The Pµ = 0 gauge conditions guarantees that the integral over η is can be expressed only in terms of the
non-zero modes of ∆ by virtue of (13).
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If we substitute Xµ = Y µ +ηµ into (5) and (8) and expand, we obtain

IB =
1

4πα′

∫

d2z
p

g
�

∂ aηµ∂aη
νGµν(Y ) + ∂

aηµ∂aη
νηλ∂λGµν(Y )

+
1
2
∂ aηµ∂aη

νηληρ∂λ∂ρGµν(Y ) +O
�

η5
�

�

+χΦ+
1

8πα′

∫

d2z
p

g
�

ηµην∂µ∂νΦ(Y ) +O(η)
�

.

(18)

The leading order in α′ contribution to ZM (focusing only on the zero mode and ignoring the
O(η) perturbations) is:

Z (0)M =

∫

dDY exp (−χΦ)
p

G
(N)

. (19)

The leading order term from the path integral over η in (18) is

Z (0)η =
�

det′ Gµν(Y )∆
�−1/2

= exp
�

−
1
2

N ′ log G(Y )−
1
2

D ln det′∆
�

= Z (0)f exp
�

−
1
2

N ′ log G(Y )
�

= Z (0)f

Æ

G(Y )
−N ′

,

(20)

where Z (0)f is the l-loop free particle vacuum functional given by

Z (0)f = exp
�

−
D
2

log det′∆
�

, (21)

and det′∆ includes only the non-zero modes of ∆:

N ′ =

∫

d2z
p

gK ′(z, z,ε)

=

∫

d2z
p

gK(z, z,ε)− 1/V

= N − 1 .

(22)

Putting ZM and Zη together, we obtain a manifestly covariant measure:

Z (0)M Z (0)η = Z (0)f

∫

dDY exp(−χΦ)
Æ

G(Y )
(N−N ′)

= Z (0)f

∫

dDY
p

G exp(−χΦ) .
(23)

If we now include the O(η2) terms in the expansion of (8), then the O(α′) correction to
the target space Lagrangian from the measure factor is:

Z (1)M =
�

1+
1
2
πα′N D(z, z)
�

GµνGλρ∂λ∂ρGµν − GµαGνβGρλ∂ρGµν∂λGαβ
�

�

. (24)

The path integral can now expressed as the product of several factors:

Z (B) = Z (0)f

∫

dDY
p

G exp(−χΦ)Z (1)D Z (1)G Z (1)M (Y ) , (25)

where Z (1)D and Z (1)G are the 1-loop dilaton and 2-loop graviton multiplicative corrections, re-
spectively which we compute separately in the next two subsections.

9

https://scipost.org
https://scipost.org/SciPostPhys.17.1.006


SciPost Phys. 17, 006 (2024)

3.4 Dilaton contribution

Now we turn to the dilaton contribution. From (18), the dependence of the Lagrangian on the
dilaton, expanded to O(α′2) is given by

Z (1)D = 1−α′χ ηµην∂µ∂νΦ(Y )
= 1−α′χGµν∂µ∂νΦ(Y )D(z, z)

= 1+α′
χ

2
(logε+ h)Gµν∂µ∂νΦ ,

(26)

where in the second step, we used that the regularized propagator for ηµ given by



ηµ(z)ην
�

z′
��

= 2πα′Gµν(Y )D
�

z, z′
�

, (27)

and that in the limit z→ z′, (14) is given by

D(z, z) = −
1

2π
logε+ h , (28)

where on a homogeneous worldsheet (which is possible for either the sphere or the torus)
h = 1

2 log V +O(1) and is independent of position. Homogeneity also ensures that there can
be no tadpoles11 of the ηµ field; since by symmetry, any such tadpole would be proportional
to the nonexistent zero mode of ηµ. The O(1) parameter is just a constant which depends on
the finite part of the heat kernel—for a torus this is a function of the modular parameter τ.

3.5 Graviton contribution

We now turn our attention to the contribution ZG from the metric perturbation in (25). From
(5), we examine the two possible 2-loop diagrams in ZG expanded to O(α′2):

Z (1)G = 1+ J1GµνGλρ∂λ∂ρGµνJ2GµαGνβGρλ∂ρGµν∂λGαβ + J3GµλGνβGρα∂ρGµν∂λGαβ , (29)

where the corresponding Feynman diagrams (shown in Fig. 1) evaluate to:

J1 =
1
2
πα′
∫

d2z
p

g
��

∂A∂
AD (z, z)
�

z=z′D(z, z)
�

= −
1
2
πα′D(z, z)N ′

=
1
4
α′N ′(logε+ h) ,

(30)

J2 =
1
2
πα′
∫

d2z
p

g

∫

d2z′
p

g ′∂A∂
′
BD
�

z, z′
�

∂ AD
�

z, z′
�

∂ ′BD
�

z, z′
�

=
1
2
πα′D(z, z)N ′

= −
1
4
α′N ′(logε+ h) ,

(31)

and

J3 = πα
′
∫

d2z
p

g

∫

d2z′
p

g ′ ∂ A∂ ′BD(z, z′)∂A∂
′
BD
�

z, z′
�

D
�

z, z′
�

= −
1
2
πα′D(z, z)

=
1
4
α′(lnε+ h) .

(32)

11Here we mean the ordinary QFT tadpole diagrams like O— of the fundamental field of the NLSM, not the
string field tadpoles discussed in other parts of this article.
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Figure 1: The three 2-loop Feynman diagrams, J1, J2, and J3 which contribute to
ZG
(1). The edges are the propagator of the nonzero modes ηµ (contracted with the

metric Gµν) while the tick marks represent ∂A derivatives (always contracted with
another derivative on the same vertex). See Fig. 2 for their evaluation.

Happily, we didn’t actually have to do any 2-loop integrals, as all of these diagrams can be
reduced to 1-loop diagrams by integrating by parts, and (in the case of the oyster diagrams J2
and J3) using (15) to remove propagator edges (see Fig. 2). To evaluate the resulting 1 loop
expressions, we use (11), (22) and (28).

We have also used the existence of a 180◦ rotational symmetry on the sphere or torus to
discard any loop from a vertex to itself containing a single derivative:

∂AD(z, z′)
�

�

�

z=z′
= 0 , (33)

as this is odd with respect to the 180◦ rotation.

3.6 Target space effective action

Putting equations (24), (26), and (29) together, the bare path integral (25) of the nonlinear
sigma model action (5) comes to

Z (B) = Z (0)f

∫

dDY
p

G exp(−χΦ)
h

1+
χ

2
α′(logε+ h)Gµν∂µ∂νΦ

−
1
4
α′(N − N ′)(logε+ h)GµνGλρ∂λ∂ρGµν

+
1
8
α′(N − N ′)(logε+ h)GµαGνβGρλ∂ρGµν∂λGαβ

+
1
4
α′(logε+ h)GµλGνβGρα∂ρGµν∂λGαβ +O(α′

2
)
�

.

(34)

Using the following identity for the Ricci scalar R in (34):
∫

dDY
p

G exp(−χΦ)R=
1
4

∫

dDY
p

G exp(−χΦ)

× GµαGνβGρλ
�

∂ρGνβ∂λGµα − ∂ρGβα∂λGµν
− 2 (∂ρGνβ∂µGαλ − ∂ρGβα∂νGµλ)

�

,

(35)

and after accounting for total derivative terms which we show next, we obtain the following
string partition function for the sphere or torus:

Z0 = Z (0)f

∫

dDY
p

G exp(−χΦ)
�

1+
1
2
α′(log(ε) + h)(R+χ2∂µΦ∂

µΦ) +O(α′
2
)
�

. (36)

Some comments are in order. (1) The power law divergences in (18) canceled with the
choice of the local measure in (24) such that the final expression of the sphere partition func-
tion in (36) has only logarithmic divergences. The key observation however is that the origin
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(a) (b)

(c)

Figure 2: The evaluation of all Feynman diagrams required to determine the classical
action I0 at leading order in α′. We treat symmetry factors, and the −1 for each ver-
tex, as numerical coefficients rather than as part of the diagram values. (a) The basic
manipulation rules: integration by parts, the evaluation of edges involving the Lapla-
cian ∇2 using (15) or (11), the evaluation of a basic loop with no derivatives (28),
and integrating a vertex over the worldsheet volume V . The notation /•|\ represents
an arbitrary number of additional edges coming out of a vertex. (b) The evaluation
of 1-loop and figure 8 diagrams. (c) The evaluation of oyster diagrams.

of the logarithmic divergences in (36) is the zero mode of the Laplacian, coming from N−N ′ in
the measure and action. (2) In calculating (36), we used the non-explicitly covariant expan-
sion of the action (18). However, the explicitly covariant Riemann normal coordinates can be
used to obtain (36) [8]. The end result is the same except for the absence of the noncovariant
total derivative.

Total derivative terms. In order to obtain the integrand of (36), we needed to subtract off
two noncovariant and one covariant total derivative terms. The noncovariant terms are:

∫

dDY ∂λ
�p

G exp(−χΦ)GµνGλρ∂ρGµν
�

, (37)

and its cousin:
∫

dDY ∂λ
�p

G exp(−χΦ)GµνGλρ∂µGνρ
�

. (38)

The covariant total derivative term is
∫

dDY ∂µ
�p

G exp(−χΦ)Gµν∂νΦ
�

. (39)

This term allows us to express the dilaton kinetic term in the action either as χ∂µ∂
µΦ or

−χ2∂µΦ∂
µΦ; in Eq. (36) we chose the latter expression. Both terms vanish on the torus
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(χ = 0) since R = 0 in our flat choice of Weyl frame. (But as the ∂µ∂
µΦ term is a total

derivative term when χ = 0, its coefficient cannot actually be determined by this calculation.)

Genus-0 effective action. To obtain the tree-level (classical) finite effective action for closed
bosonic strings, we first note that the spherical worldsheet correlator K0 (defined in section
VII.A of [7] is exactly the same as the sphere partition function except for the inclusion of
ghosts:

K0 = Z0Zghosts . (40)

To get the classical string action, we now simply apply the T1 prescription—whose use we
have abundantly justified in sections V–VII of [7]—and obtain:

I0 = −
�

∂

∂ logε
K0

�

∝−
α′

g2

∫

d26Y
p

G exp(−2Φ)(R+ 2∇2Φ) .
(41)

In this equation, we have assumed D = 26 so that the ghosts cancel out the logε in Z (0)f
12 and

set χ = 2. Also note that (41) uses the covariant derivative for the kinetic term of the dilaton.
Note that there are no powers of logε remaining in (41), so our result for the sphere is

actually independent of the RG scale at this order in α′.13

Genus-1 effective action. If we instead consider the torus, we do not differentiate by logε,
so our result depends on the Weyl frame when the background is off-shell. This ambiguity
would need to be absorbed into an O(g2) field redefinition of the target space fields using the
tree-level equations of motion. For a classically on-shell background, and for order unity τ, the
genus-1 correction takes the very simple form of a volume integral:

K1(τ) ∼ α′
∫

d26Y
p

G . (42)

However, to obtain Z1 we also need to integrate over the modular parameter τ (divided by
Vol(CKG) = Re(τ)). If we allow large τ in this integral, our perturbation theory in η breaks
down. In this regime the torus needs to be treated as an extended worldline and so the effective
action Ieff

1 is no longer approximately local. In the case of bosonic strings Ieff
1 is also IR divergent

due to the tachyon.
On the other hand, in superstring theory, a target space nonrenormalization theorem [22]

(cf. subsection 12.6 in [23]) implies that Ag,n = 0 for g≥ 1, n≤ 3 when expanding around flat
space, so in this case there is no genus-1 correction to the target space Einstein-Hilbert term.

4 Susskind and Uglum revisited

4.1 The induced gravity scenario

Now that we have argued for the validity of Tseytlin’s off-shell prescriptions, in this section,
we explain how Tseytlin’s off-shell formalism was actually used by S&U [4] to calculate the

12Otherwise there would be a leading term proportional to D− 26 in the action.
13If we had considered higher orders in α′, there would remain powers of logε in I0, in which case the inter-

pretation would depend on the choice of renormalization regime as discussed in section IV.C of [7]. If we want an
approximately local effective action we can simply choose a finite value for ε (which is equivalent to removing the
divergences with counterterms), and different choices of ε or RG scheme will be equivalent via field redefinitions.
On the other hand, for want the S-matrix regime we would reinterpret these higher powers of logε as poles, as
discussed in section V of [7].
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tree-level BH entropy.
S&U [4] pointed out that string theory is actually an induced theory of gravity, in the sense

that the target space manifold M has no inherent action of its own, apart from the action
induced by the string worldsheets that propagate on M. That is, we do not couple strings to
gravity by writing down something like:

Itarget =

∫

M

dDX
p
−G

R
16πGN

+ Istrings , (43)

but rather the graviton and its gravitational action arise entirely from integrating out the string
worldsheets (as we did in section 3). In other words in the fundamental description there is
only Istrings and the bare value of 1/GN = 0, and it is only in the effective theory where there
is a nonzero 1/GN (and similarly various higher curvature terms in α′ expansion).

This is morally similar to Sakharov’s induced gravity proposal [24] in which 1/GN is in-
duced by 1-loop QFT diagrams which are assumed to be cut off by some unknown quantum
gravity physics at the scale of the Planck length lp. In fact string theory is even better, because it
is already finite, having an objective UV cutoff within it because the behavior of strings smooths
everything out at the scale of the string length ls. Even at weak coupling where ls ≫ lp, we
still obtain an effective Newton constant of size

GN ∼ (lp)
D−2 ∼ g2

s (ls)
D−2 , (44)

because the tree level sphere diagrams come with a large factor 1/g2
s in front. This is an effect

which has no analogue in ordinary QFT.
Now what are the implications of this for black hole thermodynamics? Recall that a black

hole coupled to a QFT has a generalized entropy [1,2] equal to

Sgen =
­

A
4GN

·

+ Sout , (45)

where A/4GN is the Bekenstein-Hawking horizon entropy,14 and Sout = Tr(ρ logρ−1) is the
von Neumann entropy of quantum fields outside of the horizon.

However, as pointed out by S&U and Jacobson [28], in an induced gravity scenario, there
is no bare 1/GN and hence no intrinsic horizon entropy. Instead, we have at the fundamental
level

Sgen = Sout . (46)

In other words, the Sakharov induced gravity hypothesis is equivalent to the statement that
black hole entropy is entirely due to the entanglement of matter fields. See [29–31] for further
discussion of this point.

In this section, we show that this is indeed true for string theory if we interpret Sout as
being

Sout = (1− β∂β)Z0 , (47)

where Z0 is the partition function of the sphere worldsheet on a cone with opening angle
β. In other words, SBH can be interpreted as Sout in the sense that the effective field theory
of classical strings which lives on the 2D cone in target space, induces the effective Newton
constant from the spherical worldsheet partition function.

There are, however, some significant caveats in the above statement. First of all, in order
to really interpret Sout as a manifestly statistical entanglement entropy, there would have to be
a way to factorize the Hilbert space of string theory, so as to count the states on just one side of

14We need the expectation value since the area is now an operator that depends on the gravitational backreaction
of the quantum fields [25–27].
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the horizon. S&U interpret these hypothetical states as being open strings which begin and end
on the horizon. (These are really closed strings on the full manifold M, but the horizon cuts
them off.) We will discuss this putative open string picture (and the problems with making it
precise) in section 4.5.

Secondly, although string theory is induced in the sense that there is no fundamental target
space Einstein-Hilbert term, there is still a fundamental Einstein-Hilbert term on the worldsheet.
It is this which produces the 1/g2

s factor in the string theory, which manifests in the open string
picture as a factor of 1/gs for each string endpoint (almost like a Chan-Patton factor but with
a continuous range of values). It is not yet clear whether this term can be given a statistical
interpretation even in the open string perspective.

In the remainder of this section, we first give an overview in 4.2 of the two equivalent
approaches (on-shell and off-shell) to computing black hole and entanglement entropy in QFT
and string theory. Then we present the S&U off-shell closed string entropy calculation in section
4.3, which implements the off-shell approach in string theory.

4.2 On-shell vs off-shell thermodynamics

Before we get to the S&U computation of the black hole entropy, we briefly discuss the two
different methods of calculating it in semiclassical gravity and string theory:15 (1) on-shell
and (2) off-shell. To make the discussion clear and simple, let us focus on the Einstein-Hilbert
(EH) action with the Gibbons-Hawking (GH) boundary term

S =
1

16πG

∫

M

R+
1

8πG

∫

∂M

K . (48)

Gravity on-shell. In this method, the EH term vanishes on-shell i.e. on a saddle point, and
hence the entire contribution to the classical BH entropy comes from the GH boundary term

ln Ztree = −IGH = βF(β) , (49)

where F(β) = − log Z(β)/β is the free energy of the canonical ensemble, in terms of which the
BH entropy is the computed by

SBH =
�

β∂β − 1
�

(βF) = β2∂βF . (50)

The on-shell method takes you to a new saddle point; in the context of black holes this means
that we move to a new mass M(β) thus changing the horizon area A to first order.

Gravity off-shell. Here, the first order variation ∂βF is independent of the mass M in the sense
that the black hole geometry does not react to the variation in β away from the equilibrium
βRindler = 2π. This introduces a conical singularity at the black hole horizon and leads to an
unstable vacuum. This is the main physical effect of introducing a conical singularity in a
thermodynamic background.16 In the off-shell method, the GH boundary term is proportional
to β and is thus irrelevant off-shell. Therefore, the entire contribution to SBH comes from IEH

ln Ztree = −IEH = β F(β) . (51)

In string theory, the on-shell approach corresponds to a worldsheet theory be a CFT (sup-
plemented with a Gibbons-Hawking like boundary term at infinity). On the other hand, the
off-shell approach corresponds to taking the worldsheet to be a QFT.

In section 5, we will discuss a different on-shell approach involving ZN orbifolds.
15The discussion in this section is largely based on Chapter 5 of [32]. See also [33].
16For the conical manifold to be a saddle point of IEH [4], there would have to be a codimension-2 membrane

source at the tip of the cone.
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4.3 Entropy of closed strings in Rindler

S&U compute the entropy associated with spherical worldsheets in the near-horizon region
of a D dimensional Schwarzschild black hole.17 In the limit of infinite mass M , this can be
approximated as Rindler spacetime:18

ds2 = −ρ2d t2 + dρ2 +
D−2
∑

i=1

(dX i)2 , (52)

which has topology R2×RD−2. In this limit we are neglecting subleading α′ corrections to the
black hole entropy A/4GN , which would otherwise be present in an infinite series of higher
curvature corrections [34,35].

After analytic continuation to Euclidean time τ= −i t, the metric (52) becomes

ds2 = ρ2dτ2 + dρ2 +
D−2
∑

i=1

(dX i)2 , (53)

which is just flat space in polar coordinates. To avoid a conical singularity at the horizon, the
τ-coordinate must be periodic with periodicity

τ∼ τ+ 2π . (54)

We can then replace the normal R2 with a conical manifold Mβ by simply replacing the peri-
odicity with

τ∼ τ+ β . (55)

Since at the conical tip, the Ricci scalar is given by
p

G(2)R(2) = 2(2π− β)δ(2)(X ) , (56)

and hence the EH action is
∫

M
(2)
β

R= 2A(2π− β) , (57)

the tree-level black hole entanglement entropy (2) can be expressed as

SBH = (1− β∂β)
�

∂

∂ logε
K0

�

�

�

�

�

β=2π

= (1− β∂β)Z0

�

�

β=2π

= (1− β∂β)(−IEH)
�

�

β=2π

= (1− β∂β)
2A⊥

16πGN
(2π− β)
�

�

�

�

β=2π

=
A⊥

4GN
.

(58)

Here K0 is the renormalized sphere partition function, which is however (at this order in α′)
independent of ε. We got the third line from 3, where we computed Z0 from the closed bosonic

17We could also consider, as S&U do, the case of a KK reduced product manifold M×K , where M is e.g. the four
dimensional Euclidean Rindler space and K is a (D−4)-dimensional compact CFT, in which case the 4 dimensional
Newton constant would be obtained from the D dimensional Newton constant by dividing by the generalized
volume V (K). Other than this factor, the compact dimensions play no role in the argument.

18While the S&U paper uses type II superstring worldsheet action in D = 10, in this paper, we work with the
bosonic string in D = 26. At genus-0, the Susskind-Uglum derivation is essentially identical in both cases.
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sphere string worldsheet action (and showed that that the origin of the logε in Z0 comes from
the zero mode of the heat kernel Laplacian on the sphere). As we showed in section V of [7]
that since Z0 also gives the correct S-matrix as ε → 0, this value of GN appearing in the
black hole entropy is necessarily consistent with the value of GN that would be deduced from
gravitational scattering processes [36].

A word is necessary about how to justify our use of the distributional curvature formula
(56) at the singular tip of the cone. Note that we cannot simply excise this singularity (re-
placing the topology of the target spacetime from Mβ to S1 ×R), because that would change
the physics even at β= 2π by preventing string worldsheets from crossing the codimension 2
surface. Hence we must have a way to deal with the singularity to make it regular.

In off-shell calculations of black hole entropy we usually slightly smooth out the tip over a
length scale r∗. It turns out however that the black hole entropy is not sensitive to the value
of r∗ because, at first order in 2π − β, the contribution of the tip converges in the r∗ → 0
limit [37], and so we recover the delta function (56). On the plane, this is relatively obvious
because translation symmetry of the planeR2 makes the position of the curvature unimportant,
allowing us to freely smear it out at first order. But it the result holds more generally even on
backgrounds with less symmetry.

On this smoothed out cone, we are now justified in using the target space effective ac-
tion I0 that was derived in section 3. We can ignore the higher α′ corrections because their
contribution to S involves higher powers of the curvature which vanish on the plane.

4.4 RG flow of the cone

While it should be obvious to see the relationship between the entropy and the graviton tad-
pole, we think it’s still enlightening to have it written down explicitly. Using that the graviton
beta function is given by [7]

β (G)µν = α
′Rµν + 2α′∇µ∇νΦ , (59)

and (57), there is a nonzero value of the 1-point string amplitude A0,1 due to the graviton
tadpole (for a constant Φ) , associated with the β function of the metric at the tip of the cone

β (G)µν = α
′Rµν =

δ(2)(X )
GN

(2π− β)Gµν . (60)

So, we see that the conical deficit in target spacetime is directly related to the nonzero graviton
tadpole. At βRindler = 2π, it vanishes.19 This is consistent with the fact that a non-zero tadpole
signals an unstable vacuum which emits strings, in this case, from the conical tip on the black
hole horizon.

While it would be interesting to explore the effects of this string emission from a real-time
perspective, in this section we instead explore the RG flow of the cone, due to the nonzero
β function at the tip when β ̸= 2π. On a smooth manifold increasing the size of the cutoff ε
corresponds to a Ricci flow process on the target space manifold. This statement holds only at
leading order in α′. The RG flow has additional corrections, beyond the usual notion of Ricci
flow, at higher order in α′, which can also involve the dilaton.

However, at leading order in α′, it happens to be the case that there are no R terms in the
dilaton β function βΦ; hence at this order, it is actually consistent to ignore the dilaton when
starting with a NLSM for which it is constant. As a result, the usual Ricci flow is valid at least
when working at linear order in the angle deficit β−2π. This is the case that matters for (60).

19Because βΦ has no dependence on curvature, there is no dilaton Φ tadpole, although there is a Φ̃ tadpole due
to the RG flow of the metric. See section VII in [7] for a discussion of the difference.
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Figure 3: The apex of the cone gets smoother and smoother as we flow to the IR.

Is there a Ricci flow from a conical manifold with an arbitrary β ̸= 2π to βRindler = 2π
through which the cone becomes flat? It turns out this type of flow is known as smoothening
Ricci flow.20

As usually defined, the Ricci flow describes the evolution of a smooth Riemannian metric
on a manifold. The Ricci flow equation is then expressed in terms of a time-dependent metric
G(t) as

∂

∂ t
Gµν = −2Rµν =: −2(∆G)µν , (61)

where Rµν is the Ricci tensor and ∆ is a spin-2 analogue of the Laplacian operator. On a 2-
dimensional conical manifold, however, it is not clear that Ricci flow even exists (in the sense
that manifold will uniformize) due to the infinite (delta function) curvature at the conical
singularity. Indeed, the Ricci flow equation (in the smooth part of the manifold not including
the puncture), in terms of the conformal metric on the cone becomes

∂

∂ t
ω= −2e−2ω∆ω= −

R
2

. (62)

In conformal coordinates, the metric on a cone can be expressed in terms of the conformal
factor as21

ds2 = e2(a(t)+β lnρ)
�

dρ2 +ρ2dθ2
�

, (63)

where here −1 < β ≤ 0 and a(t) is a finite and bounded function.22 Thus, (63) says that the
information about the conical singularity is encoded in the logarithmically-divergent β lnρ as
ρ→ 0 (the asymptote of ω i.e. as we go arbitrarily close to the puncture in the center of the
disk.

Including the metric asymptote ρ→ 0 in (62) gives an ill-defined flow equation due to the
unbounded curvature at the tip.23 Thus, to have a well-defined Ricci flow equation, the ρ→ 0
singular point must be truncated by putting consistent boundary and initial conditions. In this
case, it was in fact shown in [38, 40] that a unique smoothening Ricci flow, that satisfies the
flow equation for any time t ∈ (0, T] exists on this truncated, or blunt, cone. Importantly, the
curvature of the flow was found to be bounded at finite RG time so that the cone evolves into
a smooth manifold.24

This means that there is a sense in which string theory automatically smooths out the cone
for us. Suppose we introduce the conical singularity in target spacetime at some specific value
of the UV cutoff ε, and then we RG flow the worldsheet theory towards an IR, to a new length
scale µ > ε. (E.g. we could fix µ to be a dimensionless number times the worldsheet sphere
radius.) At the scale µ, the effective off-shell theory is now that of strings propagating on a

20The definitions and discussion in this section are largely drawn from chapters 4 and 5 in [38].
21A conical surface is homeomorphic to a punctured disc with the metric (63) in the neighborhood of the puncture

at the center.
22(63) is consistent with equation 4.5 in [39].
23Using (56) in (62), we get −2e−β logρ∆ω= 2(1+β)δ(2)(ρ), which shows the delta function singularity at the

right hand side is directly related to the metric asymptote ρ→ 0, which by definition, in not included in the disk
on the left hand side!

24It would be interesting to use these results to try to calculate the Rindler entropy S(β) for β ̸= 2π.
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smooth background. As the Euler characteristic guarantees that
∫

d2X
p

G(2)R(2) = 2(2π− β) = const. , (64)

in RG time, the black hole entropy S remains the same at all values of ε.25 Note that in (64) we
are defining β as the asymptotic periodicity as ρ→∞, which is unaffected by finite quantities
of RG flow.

If we take the limit that ε → 0 while holding µ fixed,26 the curvature R spreads out and
goes to 0 at every point in the manifold. So asymptotically the Rindler cone relaxes to flat
spacetime R2, in a process that takes us back to on-shell string theory asymptotically. However
this limit is quite subtle as (64) still holds at every point along the flow. What is happening is
that the curvature diffuses out to infinity. Hence, in order to successfully take the on-shell limit
without a discontinuous jump in the action, we will need to include a boundary contribution
to S out near infinity, as required by the on-shell black hole entropy calculation.

If, rather than having perfect Rindler spacetime, we instead started with a black hole space-
time as we did at the start of 4.3, then to take the IR limit we would need to do the Ricci flow
on the Euclidean black hole instead of the plane. We expect that in this case we would similarly
relax to an on-shell black hole, but at a new inverse temperature β. In this way, the off-shell
string calculation is presumably equivalent to an on-shell black hole string theory calculation.
But doing this calculation properly would require a better understanding than we currently
possess of how the GH boundary terms are produced at the level of the worldsheet theory.

4.5 Towards an open string picture?

So far we have shown how Tseytlin’s work on off-shell string theory was used to derive the
S&U closed string calculation. Explaining that result was the main point of this article.

In this section—which is far more speculative—we now turn to the less rigorously defined
open string picture, which in S&U paper was essentially based on cartoon drawings of how
string worldsheets might be embedded in a geometry (see Figures 1-5 of S&U [4], and also [41]
for the corresponding Feynman diagrams in the particle limit.)

The goal of the open string picture is to provide a manifestly statistical interpretation of
the string entanglement entropy. The existence of such a picture is strongly suggested by the
success of the closed string picture in calculating the A/4GN term even at weak coupling.

For a true statistical interpretation to exist, we need a tensor factorization of target space
into two Hilbert spaces, describing strings both inside and outside the horizon:27

H ⊆ Hout ⊗Hin . (65)

In Lorentzian signature, these would correspond to the left and right wedges around the bifur-
cation surface of the horizon. In Euclidean signature, the Hilbert space Hout would describe
the state on a ray in R2 of constant τ coming out from the bifurcation point.

Since strings can cross the horizon, the description of string states in just Hout would seem
to require open strings that end on the horizon, as shown in Fig. 4. This is why we wrote ⊆

25Or, in the case of black hole entropy at higher orders in α′, we would still have dS/dε= 0 since renormalization
preserves the effective action I0, but this would involve a more complicated computation between target space field
redefinitions and the effects of changing ε on the sphere.

26Note that we are holding the coupling constants fixed at ε. This differs from the more usual way of thinking
about renormalization where we hold the physics fixed at µ and adjust the couplings as ε→ 0. That would involve
inverse Ricci flow which seems to be ill-defined when applied to the conical singularity.

27Ref. [42, 43] attempted to calculate an entanglement entropy in string theory by assigning string fields a
position based on their center-of-mass only. This seems conceptually problematic, since the vibration of a string
can cause it to partially exit a region.
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Figure 4: A closed spherical worldsheet is sliced vertically along constant Euclidean
Rindler time. Each slice of the sphere appears to the Rindler observer as an open
string with its endpoints frozen on the codimension-2 entangling surface (horizon).
In this cartoon we assume the sphere intersects the horizon exactly twice—which is
not actually realistic!

rather than = in (65) because (at least in the low energy description) there seem to be edge
mode constraints relating the two sides, e.g. that the number and positions28 of the string
endpoints must agree on both sides.29 The positions of these string endpoints on the horizon
are frozen, due to the infinite gravitational time dilation. So the dynamical degrees of freedom
are those of an n-punctured sphere where n is the number of intersections with the horizon.

If such a description existed, one could then write the punctured sphere partition function
as a one-sided thermal ensemble:30

Z(β) = Trout exp(−βK) , (66)

where K is the Killing Hamiltonian acting on states in Hout, which looks like a boost at the
horizon. It might then be literally true31 that the black hole entropy is a von Neumann entropy:

S = Trout(ρ logρ−1) . (67)

In order to ensure that there is a literal state counting interpretation, one might want to
cut out a small disk D around every point p ∈ Σ∩H in which the string worldsheet Σ crosses
the codimension-2 bifurcation surface of the horizon H. For this to work, it is crucial that the
boundary conditions on ∂D be chosen so that the value of Z(β) is the same as on the original
closed string worldsheet before cutting out the disks. These boundary conditions would also
need to be local in the τ direction on ∂D, in order to ensure the validity of the Hamiltonian
formalism (66). Since, on a t = 0 slice, the two sides of the disk are related by entanglement
only, this would provide a concrete realization of the ER = EPR conjecture [45–48], in which
a geometric connection is equivalent to entanglement of disconnected systems. (See [49] for
other proposals for implementing ER = EPR on string theory backgrounds.)

28Although these positions fluctuate wildly so it is not totally clear how meaningful the position of a string
endpoint on a compact horizon is.

29But see Harlow [44] for (i) an argument that there can be no fundamental edge mode degrees of freedom in a
holographic theory of quantum gravity, and (ii) a toy model showing how it is possible for there to be edge modes
in an effective description even though they are not present in a more fundamental description.

30This presumes the horizon is thermodynamically stable in the canonical ensemble, as would be true e.g. for
large black holes in AdS.

31In the case of a black hole with finite horizon area. For a Rindler horizon there would still be annoying IR
issues requiring the use of type III von Neumann algebras.
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Varying β would now be associated with varying the total angle of each circle ∂D. Since
the Einstein-Hilbert action

∫p
gR on the worldsheet provides a term in the effective action

proportional to 2π− β for each disk of angle β on the worldsheet, it is necessary for each disk
to come with this factor. But, any local classical boundary term on ∂D will produce a term
linear in β [50]. The constant term 2π must therefore come from some quantum statistical
state counting. It seems to correspond to an O(1/gs) number of states associated with each
endpoint, so that a string with 2 endpoints on the horizon contributes a factor of 1/g2

s ∼ 1/GN
to the black hole entropy.32

This open string picture has already been realized in two-dimensional [51, 52] as well
as six-dimensional topological string theory [53]. Whether it can be concretely realized for
bosonic strings or superstrings is still an open and very challenging question.

In addition to the fact that the correct boundary conditions at ∂D are unknown,33 there is
a very serious problem with making sense of these open strings. The scariest problem is that
any given compact worldsheet Σ (e.g. a sphere) will actually intersect the horizon H infinitely
many times! This is because the Xµ field on the worldsheet is actually a quantum field which,
like every QFT, has violent fluctuations at short distances on the worldsheet [57,58]. Although
these divergences are merely logarithmic, they still ensure that the fluctuations at any point
p ∈ Σ of some specific coordinate X0 diverges:




(X0)
2(p)
�

=∞ . (68)

What’s more, since UV divergences are local, if we take two distinct points p and q even their
difference X0(p) − X0(q) diverges wildly. See the discussion in section IV of [7] where we
discuss how divergences are related to propagation of strings.

Therefore, if we are looking at the unregulated worldsheet theory ε = 0, we cannot con-
sistently suppose that a sphere intersects H at 2 points, or even Taylor expand in the number
of intersections |Σ∩H|. Fortunately, since we already needed to introduce a UV regulator ε to
make sense of off-shell string theory, we could choose our regulator so that it also solves this
intersection problem. One way to do this would be to add a new stiffness term to the string
worldsheet action which in flat spacetime would take the form:

ε2n−2pgXµ(∇2)nXµ . (69)

Since this term is quadratic in the X field, it can be viewed as a Pauli-Villars modification of
the X propagator:

1
p2
→

1
p2 + p2n

, (70)

where n = 1 is the standard propagator term, and n ≥ 3 suffices to regulate all logarithmic
and quadratic divergences on the worldsheet.

The stiffness term also ensures that the (n− 1)st derivative of the worldsheet Σ becomes
continuous because otherwise there is an infinite penalty in the action. This appears to be
strong enough to ensure that the set of intersections Σ ∩ H is finite, and that generically the
string intersections take a simple form that adds ±1 to the winding number (since these sum
to 0, the total number of intersections must be even.) We could then Taylor expand in the
number of intersections. But we leave a detailed calculation of this proposal to future work.

32As naively the endpoints of strings are integrated over the entire volume of the horizon, it seems that the effect
of finite string coupling is in some way to regulate or discretize the number of allowed string end states. However
the fact that 1/g varies continuously suggests that things are more subtle than a simple Chern-Paton factor with
N ∈ Z states running around ∂ D.

33A nonconformal boundary state representing a disk with boundary condition β ̸= 2π, could be described by
the insertion of a vortex state, a hole, on the worldsheet. In target spacetime, the vortex is a string winding
mode [54–56]. This picture seems to suggest there is an RG flow on ∂D that takes the vortex to a conformal state
β = 2π where the winding tachyon condenses on the horizon, at which point, the black hole entropy is entirely
the entropy of the condensate. For further discussion of this point, see section 5.2.
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Figure 5: (a) A Z3 orbifold geometry is shown, where the blue dot is the location of
the singularity and the dashed lines represent identified surfaces. A string with twist
k = 1 is depicted. Despite appearances, this string is closed because the two red points
are identified. Such twisted strings are confined near the singularity. These kinds of
twisted strings also exist on a cone with β = 2π/3, which has the same physics
except near the tip of the cone. (b) The same cone/orbifold geometry, but now the
extension into some 3rd dimension (perhaps time) is depicted. A twisted spherical
topology worldsheet is shown in front of the singularity (still blue). The black curves
represent time slices of the twisted string, with the red curves being identified. The
black dots represent a process in which the twisted string pinches off at the singularity.
This pinching process is allowed for a smoothed out cone, but it is not allowed on the
orbifold (prior to tachyon condensation) because the orbifold background conserves
twist mod N . The absence of this process explains why the analytic continuation of
the orbifold to arbitrary β doesn’t have a geometric interpretation, nor does it recover
the Bekenstein-Hawking entropy A/4GN . Tachyon condensation may alleviate this
problem, since now a string can pinch off by exchanging its twist with the condensate.

5 Comparison to the orbifold method

We now wish to contrast the Susskind-Ulgum approach to an alternative approach [9,59–63]
to calculating string entanglement entropy, involving orbifolds. These are on-shell Euclidean
string noncompact backgrounds of the form:

O =
C
ZN
×RD−2 , (71)

obtained by starting with Minkowski spaceRD and quotienting by rotations over angles that are
multiples of 2π/N .34 This introduces an orbifold singularity with opening angle β= 2π/N . (In
superstring theories, it is also necessary to take N = odd in order for the boundary conditions
for the fermions to be such thatψ→−ψ under a 2π rotation; the analytic continuation of the
N = even case does not recover the expected physics at N = 1.)

In addition to projecting out string states whose angular momentum is not a multiple of
N , orbifolding also introduces a new class of twisted states (see Fig. 5(a)), which have winding
numbers k ∈ {1, . . . , N − 1}, while the states inherited from the original theory have k = 0.
This quantum number is conserved mod N . The ground states of these twisted sectors are
twisted tachyons. Taking type II superstrings as an example,35 these twisted tachyons have a

34Of course, as in the case of Susskind-Ulgum the transverse directions RD−2 could be replaced by an arbitrary
string compactification.

35The lower bound on the tachyon dimension will be different from this in heterotic or bosonic string theories.
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mass:

M2
T T = −

4
α′

�

1−
k
N

�

, (72)

which corresponds to a dimension

∆T T ≥ 1+
k
N

, (73)

which is compatible with the∆> 1 bound on worldsheet supersymmetric operators mentioned
in section VI.H of [7], even though the background breaks target space supersymmetry. The
GSO projection then eliminates the tachyons with k = even, including the original k = 0 bulk
superstring tachyon [64].

These twisted tachyons are reminiscent of the winding tachyons that appear in flat space
compactified with a sufficiently small thermal circle S1 [54–56]. However, unlike the case of
RD−1×S1, these twisted tachyons are localized at the tip of the orbifold cone, because it is only
there that the radius of the winding circle becomes small. (A twisted string far from the origin
would have a very long length and hence a large energy.)

The orbifold construction only makes sense as a unitary string theory background for inte-
ger values of N . Nevertheless, because the orbifold looks awfully similar to a cone with angle
β = 2π/N , it is tempting to regard it as if it were a thermal background with inverse temper-
ature β, and analytically continue it towards N = 1, so that (analogously to (2)) the orbifold
replica entropy coming from all genera g is

S(ρ1)
?
=
∑

g

(1− N∂N )Zg(N)
�

�

�

N=1
, (74)

where ρ1 is the Rindler state defined by N = 1. This orbifold replica trick was inspired by
the standard replica trick [65,66], in which one analytically continues a Z(N ) with β = 2πN
(which can be done even in situations without a U(1) rotational symmetry). However, in the
orbifold case N comes into the numerator rather than the denominator.

The evaluation of (74) depends critically on our treatment of the twisted tachyons. Most
authors to propose the orbifold replica trick [61–63] take the original background before the
tachyons condense, and hope that in the N → 1 limit the tachyons don’t matter too much.
This approach suffers from a number of problems, and we believe it does not give the correct
entropy at N = 1. In particular, this method does not give the tree-level A/4GN contribution
to the entropy found by S&U.

On the other hand, in the version of the proposal defended by Dabholkar [9] (who was
inspired by [39]), the tachyons are allowed to condense, and one hopes there is a minimum of
the potential (which seems likely to be true by virtue of supersymmetry). We would then need
to calculate black hole entropy in the new background, that arises as the Euclidean spacetime
asymptotically settles to its new ground state under RG flow. This is a very interesting approach
which plausibly would give the correct entropy, and might even help to illuminate the open
string picture of Susskind and Ulgum.

We now describe these two approaches in more detail.

5.1 Without tachyon condensation

The first thing to note about (74) is that the integer N orbifold solutions are on-shell solutions,
and therefore, because the worldsheet is a CFT,36 the genus-0 diagrams vanish (modulo a
possible boundary term which will not contribute to the entropy due to being linear in β).

36Although the bulk geometry is not smooth, the worldsheet argument in section II.B of [7] will still apply. On
the worldsheet, the orbifold takes the form of a discrete ZN gauge field, and its sole effect on the sphere is to divide
the amplitude by N .
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In a perturbative expansion, this property will be inherited by the analytic continuation to
non-integer N , and hence the orbifold replica trick cannot give us the leading order A/4GN
contribution to black hole entropy. Instead, the first nontrivial closed string contribution starts
with the genus-1 torus diagrams.

This already implies that the orbifold O backgrounds must be fundamentally different from
off-shell conical backgrounds at the same value of β. The key difference between these two
backgrounds can be seen in Fig. 5(b): the orbifold conserves twist and hence does not allow
twisted strings to pinch off at the tip, while the off-shell NLSM of a slightly smoothed out cone
obviously does allow this process.

On a cone of angle β, the winding number k is quantized in units of k ∈ Z, but it is not
conserved (except mod 1 obviously). On the other hand, the orbifold conserves the twist k
mod N . When N is not an integer, this conservation law fails to align with the quantization
of winding modes, signalling that the analytically continued orbifold is a fundamentally non-
geometrical construction.

Put another way, it is implausible that O can be interpreted as the thermal partition function
of any unitary statistical mechanical system at inverse temperature β, since periodic partition
functions only have a thermal interpretation when they can be written in terms of a time-
independent Hamiltonian as

exp(−βH) = Trρ1/N
1 , (75)

which requires there to at least be some notion of geometrical locality in the time direction.37

An additional problem is that the torus diagrams with genus-1 suffer from IR issues as-
sociated with the tachyon. This makes the analytic continuation of the twisted tachyon quite
subtle.

For open strings on O , a better analytic continuation behavior of Trρ1/N
1 was found by

Witten [63], although divergences from the closed string tachyon exchange propagating down
the cylinder diagram (in the crossed channel) have to be carefully handled.38 Ref. [63] also
found evidence that the analytically continued orbifold, if interpreted as a thermal partition
function, does not correspond to a unitary theory.

5.2 After tachyon condensation

We now consider a distinct order of limits in which we first allows tachyons to condense at
finite N , and only then do we take the N → 1 limit.

One way to allow the tachyons to condense is to turn on a potential for twist terms in the
string worldsheet. Then one can RG flow this theory in order to seek out the ground state of
the system. In a supersymmetric theory one expects on positive-energy grounds that there is
a stable ground state.

Adams, Polchinski, and Silverstein [39] conjectured that after RG flowing all the way to
the IR limit, the orbifold relaxes to the usual flat spacetime C×RD−2 without the orbifolding.
Inspired by this conjecture, Dabholkar [9] then showed how it might be used to calculate black
hole entropy.

Specifically, [39] analyzed the RG flow in two regimes based on the relative size of the
smoothed region of the cone to the string scale. In the “substringy” regime, they used D-brane
probes and showed that the orbifold decays in a series of steps from ZN to ZN−2, for integer
N until it completely flattens out. The also used the NLSM regime to study the relaxation of
the cone, obtaining similar results to our section 4.4.

37However, it might still give the right answer if we restrict attention to the contribution from worldsheets which
always remain far from the horizon, which plausibly includes e.g. log M corrections to black hole entropy.

38The 1-loop partition was found to be holomorphic in a larger region N > 0 and a result, analytic continuation
to Re N > 1 was tachyon-free, where N = 1/N .
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In fact, in [40],39 an exact solution of the Ricci flow equation was found that studied the
decay of the orbifold (cone) C/ZN to another one C/ZN ′ with N ′ < N (including the plane).
This was done in the context of tachyon condensation. The solution exhibits the properties
discussed in 4.4.

In other words, the recovery of flat spacetime seems to involve two distinct physical effects.
First of all, (i) the tachyon condensation “heals” the orbifold singularity by allowing processes
in which twisted states pinch off at the singularity, putting one back in the same class of off-
shell backgrounds as the NLSM smoothed out cone backgrounds. But secondly, (ii), such vacua
are unstable under Ricci flow. And the end state of the conical RG is just the flat vacuum!

To describe the effects of the tachyon field, Dabholkar [9] considered the following action
with a twisted tachyon potential V(T ):

−I0 =
1

16πGN

∫

M

dDX
p

G e−2Φ
�

R+ 4(∇Φ)2 −δ(2)(X )V(T )
�

+
1

8πGN

∫

∂M

dD−1X
p

G(D−1) e−2ΦK . (76)

Here, Dabholkar is using a convention in which the potential V is positive when T = 0, be-
fore tachyon condensation, and zero for the minimum of V after condensation—assuming the
hypothesis is correct that the tachyon condensate is equivalent to flat space with no angle
deficit.40

To lowest order in α′, the equations of motion at the tip tell us that (assuming a constant
dilaton):

p

G(2)R(2) =
�

1
16πGN

�

V(T )δ(2)(X ) . (77)

Using the relation (56), we see that how the tachyon potential V(T ) acts an explicit source to
the conical deficit

δ = (2π− β) = 8πGNV(T ) . (78)

As discussed in section 4.2, we have a choice between an on-shell or an off-shell calculation
of black hole entropy. If we RG flow all the way to the IR, then that puts us back on-shell, so
the contribution to the entropy S would come entirely from the boundary GH term, hence we
recover the Bekenstein-Hawking entropy:

S = β2∂βF = −2π∂N F =
A

4GN
, (79)

where the free energy is F = (1− N)(A/8πGN ) after subtracting the flat spacetime divergent
contribution.

On the other hand, if we stop the flow at a finite but large value of RG time, then we
instead expect a large Gaussian-like spread of curvature.41 We could then calculate S by off-
shell methods. The Gauss-Bonnet theorem would guarantee that at large RG time, the total
action is linear in the asymptotic angle deficit 2π− β, so we would still recover the Susskind-
Uglum S = A/4GN answer.

Unlike the case where tachyons do not condense, it is expected that a sensible and well-
behaved analytic continuation exists for β, as needed for (79). In other words, it is the order

39It was also demonstrated in [40] demonstrated, in asymptotically flat target spaces, that the ADM energy of
target spaces with IR cutoff, is a monotonically decreasing function.

40If we used the opposite convention in which V(0) = 0, and hence V < 0 in the ground state, we would need
to attribute a positive tension to the orbifold itself, which would then be cancelled by the negative tension of the
tachyon condensate in its ground state.

41Unlike the case described in 4.4), there may also be a perturbation to the dilaton field which would similarly
spread out in a Gaussian-like manner. But this does not contribute to the action at late RG time.
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of analytic continuation and tachyon condensation that matters; while attempting the former
before the latter can be problematic, allowing the tachyons to first condense should avoid the
analytic continuation problems.

The idea of using tachyons as a cosmic brane source for the conical singularity is rather
nice, since their existence is of special significance to string theory. However, to the best of
our knowledge, the details of how to derive the twisted tachyon potential as well as the GH
boundary term in (76) from the worldsheet are not known although an attempt to calculate
V(T ) in closed string field theory [67] was promising. Using the on-shell string action in
trying to calculate V(T ) gave nonsensical results;42 going off-shell, on the other hand, gives
more promising answers. Specifically, when truncating the closed string field theory action
at cubic order, [67, 68] found a depth of the tachyon potential that was 35% of the expected
potential,43 and with recent developments in computing higher order corrections of the closed
string field theory action using machine learning in [69] (based on earlier work by [70]), it
may be possible to improve this result. Thus, although the tachyon potential forces the strings
to be on-shell, to actually compute V(T ) seems to require off-shell string theory.

We end by commenting on a partial relationship between the tachyon condensate and the
open string picture of S&U that we discussed in section 4.5. By open-closed string duality, any
process in which one absorbs a closed twisted string from the condensate, may be equivalently
described as allowing additional types of processes involving open strings on the horizon.
Thus, tachyon condensation on the orbifold gives a partial analogy for how the counting of
open string states may arise from a more fundamental statistical description.

However, this orbifold condensate does not count as a full implementation of ER = EPR
[45–49] in string theory. The reason is simply that the C/ZN orbifold already permits the
twist k to change by multiples of N even before the condensate forms.44 To obtain an ER
= EPR picture we would instead need to start on a background in which strings are never
allowed to cross the horizon, and then let tachyons condense on that background, so that all
twist-changing processes result from the tachyon condensate.

For example, to explicitly exclude all twist-changing processes, we might instead start with
a narrow wormhole connecting two asymptotic R2 regions, and then apply a Z2 orbifold so as
to produce a non-simply connected spacetime with only one asymptotic region. See Figure 6.
This would produce an off-shell spacetime with periodicity β = 2π (although, as the spacetime
is not simply connected, this could be adjusted to arbitrary values of β). For a sufficiently
narrow wormhole, one might then expect the tachyons to condense, allowing strings to pinch
off at the tip.

Although this construction is inherently off-shell, it might well RG flow to an on-shell con-
figuration after tachyons condense. If that on-shell configuration turns out to be equivalent to
the flat space string background, one would have a concrete situation in which all geometrical
connection effects emerge from the behavior of entangled strings. This would be a concrete
realization of ER = EPR in string theory.

The presence of tachyons should be related to a Hagedorn transition of strings in Rindler
spacetime; there is evidence in the literature that this occurs at a critical temperature, the
exact value of which, depends on whether the strings are bosonic, Type II or heterotic. For
earlier work, see [71] and the discussion in section 3 of [61]; for more recent work, see [72]

42The on-shell action predicted about 1241% of the expected depth of the conical orbifold! We believe this may
be because a proper on-shell calculation would need to drop the negative energy in the curvature/dilaton pulse
noted by [39] which goes off to spatial infinity.

43In [67], an agreement of 72% with the predicted minimum of the potential was reported but this large agree-
ment was found to be due to an error in identifying the orbifold gravitational coupling with the its flat space
counterpart.

44Unless perhaps we take an N →∞ limit?
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Off-shell Euclidean wormhole

  ℤ orbifold2

Manifestly statistical background (“EPR”)

    tachyon  
condensation

?

RG flow

 Entangling surface in
empty flat space (“ER”)

    Tachyon condensate:
strings can pinch off at tip

β

Figure 6: A proposed set of steps for implementing ER = EPR in string theory. Start
with an off-shell wormhole (upper left), and identify the two sides with a Z2 orbifold.
This gives an off-shell background (upper right) with the topology of a disk cut out
around a codimension-2 surface. This picture is manifestly statistical, as there is
locality around the thermal circle direction (labelled as β). Let us suppose that this
background has winding mode tachyons which condense to form a new background
(lower right), in which strings can pinch off at the tip. Plausibly, this background
would RG flow towards flat spacetime (lower left) in the case where β = 2π. If we
start with β ̸= 2π, we instead expect the RG flow to converge in the IR towards the
flowing cone trajectory, discussed in section 4.4.

and [32] for an extensive discussion and review of the matter.45

In support of the S&U open string picture, the contribution of a winding condensate to
the entropy is of order O(1/GN ) = 1/g2

s . Some evidence for this can be seen in the work of
Horowitz and Polchinski [73], based on earlier work in [74], who found a string background,
that involves a winding condensate near the Hagedorn inverse temperature βHag in the form of
highly excited self-gravitating oscillating strings. For recent work on this subject, see [75–77].

6 Discussion

6.1 Summary of results

The main result of this paper (part II) was to explain the underlying conceptual structure of
the S&U black hole entropy argument. We showed explicitly how the effective action I0 and
the entropy S = A/4GN may be calculated from the sphere diagrams, in sections 3 and 4.3. We
also discussed the behavior of the S&U entropy under RG flow. Although the conical manifold
smooths out under RG flow, moving towards an on-shell configuration, the entropy doesn’t
change.

45We did not observe any Hagedorn phase transition in β in the closed string calculation in section 4.3, but this
is presumably because the closed string picture is post-tachyon condensation and therefore is stable.
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We then compared these off-shell results with the (much more popular) orbifold method
for calculating entropy from the on-shell C/ZN background (5). By considering processes
involving twisted string states, we concluded that the orbifold method is physically incorrect—
unless one allows tachyons to condense on the orbifold, in which case it appears (though the
off-shell string field theory calculations are difficult and we did not attempt them ourselves)
that one probably ends up back in the flowing cone scenario. However, there may be some
important insights into the ER=EPR hypothesis that can be obtained from the fact that this
condensate at a codimension-2 surface is apparently equivalent to ordinary flat space.

6.2 Higher genus corrections

Next we discuss the prospects for extending S&U’s result to new settings. Unfortunately, it is
somewhat difficult to find situations in string theory where (i) we have full control over the
worldsheet theory, and (ii) there is a finite sized correction to A/4GN , that is neither zero nor
divergent.

The first obvious correction to consider is the effects of the higher genus corrections, start-
ing with the torus g = 1 contribution. Since the torus correction is analogous to the 1-loop
correction in field theory, one expects to obtain from it a quantum l-loop correction to the
black hole entropy. From a semiclassical perspective, the 1-loop correction would contribute
to the Sout term in the generalized entropy (45), and if one integrates out the leading order
area term in Sout, one would obtain an additive renormalization shift of the inverse Newton’s
constant 1/GN .46

Unfortunately, this effect cannot be easily seen in either bosonic or superstring theory (for
reasons mentioned briefly at the end of section 3). In the bosonic case, the IR problems asso-
ciated with the tachyon cause the torus diagram to diverge, so one gets∞ for the torus dia-
gram. On the other hand, for superstrings there is a target space nonrenormalization theorem
in D = 10 Minkowski which causes all higher genus diagrams with n ≤ 3 on-shell insertions
to vanish. Since GN can be measured from the graviton 3-point function, this means that it is
unrenormalized and so Storus = 0.

This is a little strange because one might have expected that the torus contribution to the
von Neumann entropy Sout is an inherently positive quantity. But negative contact terms can
appear in the black hole entropy under certain circumstances. For example, in the particle
(α′ → 0) limit of string theory, a negatively contributing “contact term” in the black hole
entropy was found by [79] for a U(1)Maxwell field. This was later resolved in [80,81] where
it realized that this term is fully explained by the entanglement entropy of edge modes, which
can be negative in certain continuum regulator schemes.47 Similar contact terms presumably
appear for higher spin fields [62,83], although there are additional subtleties in this case (cf.
[84] and references therein). It would be interesting to try to understand this cancellation from
a worldsheet perspective. (In particular, it is interesting that the torus nonrenormalization
theorems seem to be valid only when including edge modes and bulk entanglement terms
together.)

6.3 Other backgrounds

The other obvious direction to modify the S&U calculation is by going to other backgrounds
besides Rindler.

46See e.g. section 3.12 in [78].
47A similar contact term which appears for the non-minimal scalar should instead be thought of as a contribution

to a Wald entropy term 〈φ2〉 on the horizon [82], see [41] for an example of how such terms can arise from models
where the microscopic interpretation is still an entanglement entropy.
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The most straightforward extension is to consider the effects of α′ corrections, which in
general produce higher curvature corrections in the effective action I0. This could be done
along the same lines as section 3, but taking into account the effects of higher loop diagrams.

That being said, the effects of higher curvature entropy on the black hole entropy have
already been explored extensively. It is not totally clear what is gained thinking of such cal-
culations from a worldsheet perspective, once we know from S&U that it works at leading
order.

A more interesting result would be to calculate black hole entropy in a highly stringy regime
that is nonperturbative in α′ where one has no choice but to think of entropy from a worldsheet
perspective. It is, however, difficult to find a regime which would enable a nontrivial result.
For one thing, the worldsheet theory would probably need to be understood as an exact CFT,
which limits one to a very restricted class of backgrounds (in superstrings, all of them are
NS-NS).

One possibility is the two-dimensional black hole [85, 86] whose Lorentzian worldsheet
CFT is the group coset SL(2,R)/U(1). The Euclidean version is the cigar background with a
coset CFT given by H3/U(1). The cigar has an interesting set of dualities; by the FZZ corre-
spondence, the cigar is dual to 2d (c = 1) sine-Liouville string [87,88], which itself is dual to
a one-dimensional matrix quantum mechanics with a single matrix [89,90].

One of us (A.A.) was involved in a collaboration that identified the boundary microstates
of this two-dimensional black hole in the dual matrix quantum mechanics and reproduced one
of the two expressions for the free energy found in [90], at leading order in large N [91]. A
string theory interpretation and count of these microstates on the bulk side, specifically on the
cigar, would be a natural application of the off-shell formulation of string theory presented in
this paper.

6.4 Holographic entropy formula

Another interesting possibility is to consider a string background in a holographic AdS back-
ground. In this case, a S&U type calculation can be performed on the bulk side of the AdS/CFT
duality, to obtain a worldsheet derivation of the holographic entanglement entropy [92,93].

The simplest non-trivial example to consider is the pure NS-NS flux AdS3×S3×T4, which
is an exact string background with a worldsheet description in the bulk. It is equivalent to
an SL(2,R) WZW model, times the compact directions. This background has been studied
and analyzed extensively in the literature [94–102] shortly after the AdS/CFT duality was
proposed, with a plethora of recent amazing work on the tensionless limit of the string and
the symmetric product orbifold [103–112]. One can also compactify a spatial direction to
obtain a BTZ black hole.

If we treat the target space as a NLSM, and consider the simplest possible holographic
entropy surface (which in AdS3 is just a single geodesic γ) then in this case the derivation of
S = A/4GN is an almost trivial extension of the Susskind-Uglum calculation in section 4.3.
Since the Euclidean spacetime is U(1) symmetric around γ, this simply introduces a conical
singularity at the tip and one can go off-shell as before. The only new ingredient is the Kolb-
Raymond potential Bµν (which does not however contribute directly to the entropy).

Since the CFT is exactly known, it would be interesting to compute the operator of the
corresponding worldsheet WZW CFT that creates a conical singularity in target spacetime
(See [113, 114] for progress in this direction.) This would enable us to compute the holo-
graphic entanglement entropy nonperturbatively in α′, i.e. in a very stringy regime where we
cannot use bulk field theory, including cases where the dual CFT is weakly coupled. Unfortu-
nately this is not quite as exciting as it sounds, because in this case S is proportional to the
boundary central charge c, which is independent of α′ by virtue of the boundary c-theorem.
(To avoid this, one would need to find a stringy AdS which is not continuously connected to
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an AdS background with small α′, but then it is presumably difficult to have control over the
worldsheet theory.)

A closely related approach is to orbifold the AdS3 × S3 × T4 background in such a way as to
break supersymmetry and thus have twisted tachyons localized at the tip of the orbifold fixed
point (the cone) [115,116]—just as we discussed for Rindler in section 5.2. This can be done
by orbifolding only AdS3, i.e. AdS3/ZN . Here, tachyon condensation plays a major role. This
orbifold approach is similar to the one considered in [39] for C/ZN . In fact, the condensation
of these tip-localized closed string tachyons in AdS3/ZN was studied numerically in [117]
where they also was found that AdS3/ZN decays, by emitting a dilaton pulse that propagates
to the boundary, into to AdS3/ZK with K < N until it reaches the pure AdS3 vacuum.

Since the holographic entropy surface γ considered above has a U(1) symmetry, so far
this derivation is akin to the Casini-Huerta-Myers derivation of stationary holographic entropy
[118].

It would be very interesting however to try to extend the stringy calculation to the non-
U(1) symmetric case. In that case, to calculate the boundary von Neumann entropy, one has
to do a replica trick calculation of the boundary CFT:

S = (1−N ∂N )Z[N ]
�

�

�

N=1
. (80)

By a clever argument of Lewkowycz-Maldacena [119], on the bulk side of the duality, it is
still possible to perform this analytic continuation in a geometrical way using an orbifold of
the replicated background. (See [120, 121] for the extension of this argument to the 1-loop
quantum corrections to Sgen, and [122–124] for further extensions.)

It is natural to wonder whether these arguments can be extended to the case of worldsheet
string theory, perhaps using actual orbifolds. In that case, tachyon condensation at the tip may
play a significant role in proving the equivalence of the orbifold background with the original
replicated saddle.
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