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Abstract

We consider the problem of the development of steady states in one-dimensional Bose
gas tubes that are weakly coupled to one another through a density-density interac-
tion. We analyze this development through a Boltzmann collision integral approach. We
argue that when the leading order of the collision integral, where single particle-hole
excitations are created in individual gases, is dominant, the state of the gas evolves first
to a non-thermal fixed point, i.e. a prethermalization plateau. This order is dominant
when a pair of tubes are inequivalent with, say, different temperatures or different effec-
tive interaction parameters, γ. When both tubes are in the strongly interacting regime
we additionally characterize this non-thermal prethermalization plateau by constructing
the quasi-conserved quantities that control the existence of this plateau as well as the
associated generalized Gibbs ensemble.
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1 Introduction

How to understand the dynamics of a quantum system after the injection of energy is a
paramount problem of modern many-body physics [1–3]. The injection of energy typically
leads a system to arrive at a new steady state that is thermal in nature. The process by which
this occurs in closed quantum systems is governed by the eigenstate thermalization hypothesis
(ETH) [4–8]. This hypothesis asserts that quantum eigenstates of similar energy behave sim-
ilarly with respect to all local observables, at least in the thermodynamic limit. However this
hypothesis is not inviolate and there are models where ETH does not hold. One such class of
ETH violating systems that has been extensively studied in the past few years support what are
known as quantum scar states [9–12]. Quantum scar states have expectation values relative
to some local observable that differs significantly from most other system eigenstates at the
same energy. When a system is then in a scar state, it will experience atypical time dynamics
relative to that observable and will not thermalize in the sense of ETH.

Another class of ETH violating systems are integrable models. Integrable models are char-
acterized by an infinite set of conservation laws. The presence of these conservation laws
means that their steady states are characterized by more complicated thermodynamic ensem-
bles than Gibbs that take into account the presence of conserved charges beyond energy [8,13]
Integrable models are ubiquitous in one-spatial dimension. Such models describe the dynamics
of cold atomic Bose gases via the Lieb-Liniger model [14,15], XXZ spin chains via the Heisen-
berg spin model [16], and itinerant interacting electron physics via the Hubbard model [17,18]
to name but a few.

Integrable models are to a certain degree platonic ideals. They only exist approximately
in nature. Experimental realizations of one-dimensional Bose gases modelled by a Lieb-Linger
(LL) model involve arrays of one-dimensional tubes of the gas which see both intra- and in-
tertube interactions beyond the interactions present in the LL Hamiltonian [19–21]. Simi-
larly, quantum material realizations of one-dimensional spin chains are always in fact one-
dimensional atomic chains embedded in a three dimensional matrix with interchain interac-
tions, perhaps small but nonetheless, present [22, 23]. Finally, also material realizations of
low-dimensional Hubbard models typically require the reduction of complicated multi-orbital
physics down to effective one-band models [24–27].

The interactions that go beyond those present in integrable Hamiltonians will almost al-
ways break integrability. While an integrable model will not thermalize, a quasi-integrable
model will (apart from cases when quantum scars are present). However it then becomes a
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question of timescales. Rather than a non-thermal steady state persisting for all time, it in-
stead picks up a finite, but perhaps long, lifetime. This persistent non-thermal steady state is
known as a prethermalization plateau [28,29]. This prethermalization plateau can usually be
characterized by conserved quantities other than energy. However these conserved quantities
are not necessarily the same as in the parent, unperturbed, integrable model.

It is the aim of this paper to present a scenario relevant to experiments in one-dimensional
cold atomic Bose gases where long-live prethermalization plateaus occur. In typical realiza-
tions of one-dimensional Bose gases, the atoms in the gas are placed in an laser-induced ar-
ray of quasi-one-dimensional transversal confining potentials, i.e. the gas forms of matrix of
tubes [19–21]. The atoms in each tube are typically confined to the lowest transverse level of
the tube but are free to move laterally along the tube. However the gas in each tube is not
entirely independent of its neighbours in the array. Typically intertube density-density interac-
tions are present. Such interactions in gases with dipolar couplings are tunable and can even
be made to be of the same order as intratube interactions [19].

In Ref. [30] a framework for analyzing the thermalizing effects of intertube interactions
was developed in the form of a Boltzmann collision integral. In Ref. [30], the tubes of gas were
considered to be identical. A key feature of this work was then that the thermalizing inter-
actions involve processes of the simultaneous creation of three particle-hole pairs in any two
tubes: one pair in one tube and two pairs in a second tube, so-called (2,1) or (1,2) processes.
Processes involving the production of a single pair in two identical tubes, (1,1) processes, led to
no change in the state of the tubes, a simple consequence of energy-momentum conservation.

If however the two tubes are inequivalent, either by virtue of having a different density of
atoms or a different effective interaction parameter, (1,1) processes are dominant at shorter
time scales and do lead to an evolution in the state of the gas in the tube. However here the
end point of this evolution is athermal. Because we cannot ignore (1,2)/(2,1) processes, this
athermal state arrived at by the creation of single particle-hole pairs is temporary – it is in fact
a prethermalization plateau. Nonetheless it is long-lived if the intertube interactions, which
set the scale of the evolution, are weak. It is the aim of this paper to describe in detail the
non-equilibrium evolution coming from tube heterogeneity and the resulting athermal state.

While the focus of this analysis takes place in the context of cold atomic systems, the analy-
sis has elements of universality. A very similar set of considerations, for example, would apply
to thermalizing SzSz interchain interactions in spin chain materials. The universality arises
because in the thermodynamic limit the matrix elements governing the creation of particle
hole pairs (and their spin chain equivalents) have the same low energy form [31,32].

The paper is organized as follows. In Section 2 we outline the basics of the Lieb-Liniger
model including how to describe its thermodynamic states and its conserved quantities. In the
next section, Section 3, we present the Boltzmann collision framework by which we analyze the
dynamics of two tubes of gas due to intertube interactions. As part of this we present a general
analysis of what constitutes a steady state in this framework and what are its conservation laws.
We do this in complete generality considering all orders of particle-hole creation (i.e. (n,m))
processes. As part of this, we show that only energy, momentum, and particle number survive
as conserved quantities and the resulting steady state is thermal.

In section 4 we perform the same analysis but only consider (1,1) processes. Here we show
that with only (1,1) processes taken into account, there exist stationary states there are ather-
mal. We then demonstrate by numerically solving the problem that indeed the system does
not thermalize when only (1,1) processes are operative. In Section 5 we offer an explanation
for the athermality by showing that the (1,1) dynamics has extra conserved charges beyond
the energy, momentum and particle number. The new conserved charges are combination of
the ultra-local charges of unperturbed Lieb-Liniger model from both tubes. We construct these
charges for systems with strong intra-tube interactions, dubbed deformed Tonks-Girardeau
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gas. We define it precisely in Section 5. We also formulate the Generalized Gibbs Ensemble
for the coupled system essentially extending its applicability to perturbed integrable models.
Finally, in Section 6, we provide a summary and concluding remarks.

More technical aspects of our work are relegated to the Appendices. Among them,
in Appendix E, we demonstrate that the construction of the charges from the deformed
Tonks-Girardeau gases does not extend to the full Lieb-Liniger model at arbitrary interaction
strengths. This leaves open a question about the precise characterisation of the mechanism by
which the system does not thermalize in the latter case.

2 Summary of the Lieb-Liniger model

We start with reviewing the relevant aspects of the Lieb-Liniger (LL) model [14, 15], which
corresponds to a single gas tube. The LL model describes N bosons on a ring with length L,
interacting with a repulsive contact potential. The Hamiltonian of the system reads

ĤLL =

∫ L

0

dx
�

− ψ̂†(x)∂ 2
x ψ̂(x) + cψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)

�

, (1)

where c ≥ 0 is the coupling constant and ψ̂(x) is the canonical bosonic field operator. The
model is exactly solvable with the standard Bethe ansatz technique [33–35]. Eigenstates of
(1) are parametrized by N real numbers, called quasimomenta, which are determined from
the Bethe equations. In the thermodynamic limit N , L→∞ with N/L = const, the system is
parametrized by the density of particles, ρp(λ), and the total density of states, ρt(λ), with λ
the quasi-momentum or rapidity. These functions are related through the following integral
equation [36],

ρt(λ) =
1

2π
+

∫

dλ′ T (λ−λ′)ρp(λ
′) , (2)

with the kernel given by function, T (λ):

T (λ) =
c
π

1
c2 +λ2

. (3)

In addition to ρt and ρp, we define the density of holes, ρh, as

ρh(λ) = ρt(λ)−ρp(λ) . (4)

It is sometimes convenient to express thermodynamic quantities in terms of ρh rather than ρp.
The LL model is integrable and so is characterized by an infinite number of conserved

charges, În, that commute with the Hamiltonian (1) and have the property
�

În, Îm

�

= 0 , n, m= 0, 1,2, . . . (5)

There are multiple bases of these charges, both ultra-local [37] and semi-local [38–40]. In this
work we will focus on the ultra-local representation despite their less than stellar behaviour in
the UV [41]. Expectation values of the ultra-local conserved charges on thermodynamic states
are functionals of the distribution, ρp(λ), and take the particularly simple form

〈 În〉= L

∫

dλρp(λ)λ
n . (6)
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The first operators in the sequence, În, correspond to particle number, total momentum and
total energy, n= 0, 1,2, respectively:

N = L

∫

dλρp(λ) , P = L

∫

dλλρp(λ) , E = L

∫

dλλ2ρp(λ) . (7)

The presence of conserved charges n > 2 beyond these basic three means that the model can
support non-thermal states.

We now turn to characterizing the thermodynamics and elementary excitations of the LL
model. The entropy of a thermodynamic state of the gas is given by the Yang-Yang formula [36]

S = L

∫

dλ
�

�

ρp(λ) +ρh(λ)
�

log
�

ρp(λ) +ρh(λ)
�

−ρp(λ) logρp(λ)−ρh(λ) logρh(λ)
�

. (8)

To describe the dynamics in the system we also need information about its elementary exci-
tations. The coupling between the tubes that we consider, conserves number of particles in
each tube. Therefore the relevant excitations takes form of particle-hole (ph) excitations in the
system [15,42]. The excitations are labelled by two quasimomenta p and h. The momentum
carried by an excitation is k = k(p)− k(h) and the corresponding energy is ω=ω(p)−ω(h).
Here, the functions k(p) andω(p) are the so-called dressed momentum and energy. These are
state-dependent functions and read

k(λ) = λ−
∫

dµn(µ)F(µ|λ) , (9a)

ω(λ) = λ2 − 2

∫

dµµn(µ)F(µ|λ) , (9b)

where n(λ) = ρp(λ)/ρt(λ) is the occupation function and F(µ|λ) is the backflow function [42]
satisfying the following integral equation,

F(λ|µ) =
θ (λ−µ)

2π
+

∫

dλ′T (λ−λ′)n(λ′)F(λ′|µ) , (10)

with θ (λ) = 2arctan(λ/c).
For later use, we introduce notation for two dressing operations, following the notation

of [43]. The first one, denoted Dr, is defined as

fDr(λ) = f (λ)−
∫

dµn(µ)F(µ|λ)n(µ) f ′(µ) . (11)

Therefore k(λ) = (λ)Dr and ω(λ) = (λ2)Dr . The second one, denoted dr, is defined as

fdr(λ) = f (λ) +

∫

dµ T (µ,λ)n(µ) fdr(µ) . (12)

The two dressing operations are related however through

( fDr)
′ = ( f ′)dr . (13)

3 Coupled Lieb-Liniger gases

In this section, we present a framework to study the dynamics of two coupled LL gases. The
system is governed by the following Hamiltonian,

Ĥ = ĤLL,1 + ĤLL,2 +

∫

dx1dx2 A(x1 − x2)ρ̂1(x1)ρ̂2(x2) . (14)
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The Hamiltonians ĤLL,i describe LL gases with couplings ci . The two gases are coupled by a
long-range interaction potential A(x1 − x2). By ρ̂i(x) = ψ̂

†
i (x)ψ̂i(x), we denote the density

operator in the i-th gas. The density-density interaction term δĤ breaks the integrability of the
system Ĥ = Ĥint +δĤ, where Ĥint = ĤLL,1 + ĤLL,2 is integrable. To describe its consequences
on the gases’ dynamics, we turn to an effective theory of relaxation developed in [30, 44].
Specifically in [30] the problem of the thermalization of two equivalent gases initialized in a
non-thermal state was analyzed in quantitative detail. On the level of Fermi’s golden rule ap-
proximation, the dynamics may be formulated in terms of Boltzmann-like equations governing
the evolution of the rapidity distributions:

∂tρp,1(λ) = τ
−1Q[ρp,1,ρp,2](λ) ,

∂tρp,2(λ) = τ
−1Q[ρp,2,ρp,1](λ) ,

(15)

where τ is the characteristic time scale for the evolution and Q[ρp,1;ρp,2,λ] is the dressed
scattering integral defined through

Q[ρp,1,ρp,2] = F1 ·Q0

�

ρp,1,ρp,2

�

,

Q[ρp,2,ρp,1] = F2 ·Q0

�

ρp,2,ρp,1

�

,
(16)

where Q0[ρp,1,ρp,2] is bare scattering integral defined below in Eq. (22) and Fi(λ,µ) reads

Fi(λ,µ) = δ(λ−µ) + ∂λ(ni(λ)Fi(λ|µ)) , (17)

and implements the dressing operation, Dr, defined in Eqn. (11). We also define

(F · f )(λ) =
∫

dµF(λ,µ) f (µ) . (18)

The first term in Eqn. (17) represents a direct scattering process while the second term gives
the so-called backflow, i.e., the effect, due to interactions, that the creation of a particle-hole
excitation has on the distribution of the remaining particles and holes in the gas.

The time scale, τ, appearing in (15) is determined by the parameters of the model [30]

τ−1 =
2A2

0m

ħh3 , (19)

where m is mass of the particles and A0 sets the strength of the inter-tube interaction,

A(x) = A0
a(x/xr)

xr
,

∫

dx
a(x/xr)

xr
= 1 . (20)

Here xr is the characteristic range of the potential. We will mostly work in momentum space,
and so we define the Fourier transform of the normalized part:

Ã(k) =

∫

dxeikx a(x/xr)
xr

= ã(k/kr) , ã(k) =

∫

dxeikx a(x) , (21)

where kr = x−1
r is the characteristic momentum exchanged between the tubes as a result of

the coupling between them.1

1For all the simulations in the paper, we use the Gaussian potential a(x) = 1/(
p
π)exp(−x2) with x r = 11.
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3.1 (n,m) ph processes

The bare collision integral Q0[ρp,1;ρp,2] contains contributions from processes involving n
particle-holes (ph) excitations in the first tube and m ph excitations in the second tube:

Q0[ρp,1,ρp,2] =
∑

n,m

Q(n,m)
0

�

ρp,1,ρp,2

�

. (22)

The (n, m) contribution takes the following form [30],

Q(n,m)
0 [ρp,1,ρp,2](λ) =

∫

dpndhn
n
∑

i=1

δ(λ− pi)Ã
2(k1(p,h)) |F1(p,h)|2

×
�

Jn
1 (p,h)Sm

2 (−k1(p,h),−ω1(p,h))− (h↔ p)
�

, (23)

where p = {pi}ni=1 and h = {hi}ni=1 denote rapidities of particles and holes, respectively. Here
we have introduced the notation

dpndhn =
1
(n!)2

n
∏

i=1

dpidhi , Jn
1 (p,h) =

n
∏

i=1

ρp,1(hi)ρh,1(pi) . (24)

Moreover by F(p,h) we denote the density operator form factor [45–48]

F(p,h) = 〈ρp|ρ̂(0)|ρp;p,h〉 , (25)

where the state |ρp;p,h〉 corresponds to the thermodynamic state |ρp〉 with ph excitations p
and h on top of it. Finally, Sm(k,ω) is the m-particle contribution to the dynamic structure
factor [46]. In Eqn. (23), we denote the total momentum and energy carried by excitations
h→ p in the first tube by k1(p,h) and ω1(p,h):

k1(p,h) =
n
∑

i=1

(k1(pi)− k1(hi)) , ω1(p,h) =
n
∑

i=1

(ω1(pi)−ω1(hi)) . (26)

For completeness, we also write down the bare collision integral for the second tube,

Q(n,m)
0 [ρp,2,ρp,1](λ) =

∫

dpndhn
n
∑

i=1

δ(λ− pi)Ã
2(k2(p,h)) |F2(p,h)|2

×
�

Jn
2 (p,h)Sm

1 (−k2(p,h),−ω2(p,h))− (h↔ p)
�

, (27)

which amounts to a permutation of tube indices.
The form of the collision integral presented in Eqn. (23) is not the most convenient for our

purposes. We thus derive now an alternative representation of it, expressing the dynamical
structure factor contributions in terms of quasi-particle densities. The m-particle contribution
to the dynamic structure factor reads

Sm(k,ω) = (2π)2
∫

dpmdpm
m
∏

i=1

ρp(hi)ρh(pi)|F(p,h)|2δ
�

k− k(p,h)
�

δ
�

ω−ω(p,h)
�

, (28)

with the understanding the integrals require, in general, regulation [48]. Plugging the above
representation into (23) leads to the desired formulation:

Q(n,m)
0 [ρp,1,ρp,2](λ) = (2π)

2

∫

dpn
1dhn

1dpm
2 dhm

2

n
∑

j=1

δ(λ− p j,1) Ã
2
�

k1(p1,h1)
�

|F1(p1,h1)|2

× |F2(p2,h2)|2δ
�

k1(p1,h1) + k2(p2,h2)
�

δ
�

ω1(p1,h1) +ω2(p2,h2)
�

×
�

Jn
1 (p1,h1) J

m
2 (p2,h2)− (h↔ p)

�

, (29)

7

https://scipost.org
https://scipost.org/SciPostPhys.17.1.007


SciPost Phys. 17, 007 (2024)

and similarly for the second tube,

Q(n,m)
0 [ρp,2,ρp,1](λ) = (2π)

2

∫

dpm
1 dhm

1 dpn
2dhn

2

n
∑

j=1

δ(λ− p j,2) Ã
2
�

k2(p2,h2)
�

|F1(p1,h1)|2

× |F2(p2,h2)|2δ
�

k1(p1,h1) + k2(p2,h2)
�

δ
�

ω1(p1,h1) +ω2(p2,h2)
�

×
�

Jm
1 (p1,h1) J

n
2 (p2,h2)− (h↔ p)

�

. (30)

This representation is the most explicit. It is convenient for the numerical evaluation of the
collision integral and for analyzing its small momentum limit. From the particle-hole symmetry
of density operator form factors [46] and Eqn. (29), it is easy to find yet another representation,

Q(n,m)
0 [ρp,1,ρp,2](λ) = (2π)

2

∫

dpn
1dhn

1dpm
2 dhm

2 Ã2
�

k1(p1,h1)
�

|F1(p1,h1)|2 |F2(p2,h2)|2

×δ
�

k1(p1,h1) + k2(p2,h2)
�

δ
�

ω1(p1,h1) +ω2(p2,h2)
�

Jn
1 (p1,h1)

× Jm
2 (p2,h2)

� n
∑

i=1

δ(λ− pi,1)−
n
∑

i=1

δ(λ− hi,1)

�

. (31)

Obviously, analogous formula for Q(n,m)
0 [ρp,2,ρp,1](λ)may be easily derived as well. This rep-

resentation is especially convenient for our discussion of the conservation laws in Section 3.3
below.

Crucially the (n, m) ph processes possess a hierarchy of importance. For the situations
considered here the most relevant contribution is due to (1,1) scattering. Processes involving
more ph pairs contribute much less significantly. In particular, let us note that in the extreme
limit of infinite interactions in both tubes c1,2 =∞ we have Q(n,m) = 0 for m, n > 1 and only
the (1,1) dynamics contributes. This can be seen on the level of the higher ph density form
factors which go as 1/cn+m−2 and so are zero when more than one ph pair is considered [46]
in the infinite interaction limit. The hierarchy between different contributions is also clearly
visible in the small momentum expansion of scattering integrals, which is explained in detail
in the Appendix A. Assuming that the dynamics is driven mainly by the processes involving
small momentum transfer between the tubes, we show there that

Q(n,m)
0 ∼ kn+m

r ×
�

1+O
�

k2
r

��

. (32)

Noting that kr is a small parameter (the case of long-range interactions) we clearly see that the
lowest processes are the most important ones. Furthermore because the subleading corrections
involve k2

r , the hierarchy of the importance is as following:

1. The leading order (1,1) processes going as k2
r .

2. The leading (2,1) and (1,2) processes, of order k3
r .

3. The subleading (1,1) processes and the leading order of higher processes like (3,1) or
(2,2), all of order k4

r .

As we have observed in [30] the processes (2,1) and (1,2) thermalize the system. There
we considered the situation of identical states in both tubes, and in such a case, the scattering
integral for (1,1) processes vanishes. But in the general case, the physics at short timescales
is determined by the leading (1,1) processes. We analyze these in Section 4. In the remainder
of this section, we discuss the properties of the dynamics generated by (15) for arbitrary pro-
cesses. We address specifically the character of stationary states and the existence of conserved
charges.
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3.2 Stationary states

In this subsection we look for stationary states satisfying

Q[ρp,1,ρp,2](λ) =Q[ρp,2,ρp,1](λ) = 0 . (33)

First, we note that when analyzing the equation above, we may simplify the problem and focus
on the bare collision integral Q0. This is because the invertible operation of dressing is linear
and the vanishing of Q0 implies the vanishing of Q. Let us start with the time evolution of
the first tube. The bare scattering integral can vanish as a whole or because the integrand is
identically zero. The second condition is stronger and implies cancellation of each excitation
contributing to the scattering integral with its particle-hole exchanged counterpart. From the
representation in Eqn. (29), we observe that the dynamics on the (n, m) level is proportional
to the following factor

J (n,m)(p1,h1,p2,h2) = Jn
1 (p1,h1) J

m
2 (p2,h2)− Jn

1 (h1,p1) J
m
2 (h2,p2) . (34)

The remaining factors under the integral are strictly positive, thus the state in the first tube is
stationary if

J (n,m)(p1,h1,p2,h2) = 0 , (35)

holds for all rapidities p1,h1,p2,h2 satisfying the momentum-energy conservation laws

n
∑

i=1

�

k1(pi,1)− k1(hi,1)
�

+
m
∑

j=1

�

k2(p j,2)− k2(h j,2)
�

= 0 , (36)

n
∑

i=1

�

ω1(pi,1)−ω1(hi,1)
�

+
m
∑

j=1

�

ω2(p j,2)−ω2(h j,2)
�

= 0 . (37)

For stationarity, Eqn. (35) needs to be fulfilled on all (n, m) levels. The same factors, J (n,m)

are present in the collision integral for the second tube and so stationarity in tube 1 implies
stationarity in tube 2.

To understand the relevant structure in Eqn. (35), it is useful to reparametrize the system
introducing the pseudo energy ε(λ) defined as [36,49]

eε(λ) =
ρh(λ)
ρp(λ)

. (38)

We may then rewrite J (n,m)(p1,h1,p2,h2) as

J (n,m)(p1,h1,p2,h2) = Jn
1 (h1,p1) J

m
2 (h2,p2)

�

exp[ε1(p1,h1) + ε2(p2,h2)]− 1
�

, (39)

and the condition in Eqn. (35) translates to

n
∑

i=1

�

ε1(pi,1)− ε1(hi,1)
�

+
m
∑

j=1

�

ε2(p j,2)− ε2(h j,2)
�

= 0 . (40)

Importantly, the state of the system with two tubes in thermal states [36] with the same in-
verse temperature β is stationary. This is because in such a case, the pseudo energies, here
generalized to boosted thermal states, read [36,42]

ε1(λ) = −βµ1 +κk1(λ) + βω1(λ) , ε2(λ) = −βµ2 + κk2(λ) + βω2(λ) , (41)

where µ1,2 are the chemical potentials. For ε1,2 as in Eqn. (41), Eqn. (40) follows directly
from the conservation of energy (37) and momentum (36). For all the numerical examples
considered later, we set κ= 0.
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The dynamics restricted to (1, 1) processes are special and feature stationary states that
are not necessarily thermal. This may happen when we consider two identical tubes (this case
was analyzed before in [30]), in the Tonks-Girardeau limit in both tubes (c1,2 =∞), or, finally
in the small momentum limit of the collision integral. This last scenario provides the setting
of our observed prethermalization plateaus is the central result of this work. We discuss that
case in Section 4 in detail.

In Appendix B we provide evidence that the three types of athermal stationary states of the
(1, 1) processes are the only ones. However we cannot assert that these are definitively the
only possibilities. Moreover for higher order (n, m) processes the condition for the stationarity
would seem to exclude any possibility of athermal states. We conjecture once all processes are
taken into account that the only stationary states are then in fact thermal.

3.3 Conservation laws

The evolution in Eqn. (15) is controlled by a presence of conservation laws. In particular the
particle number in each tube, the total momentum, and the total energy do not change in time.
In order to see this, let us consider the change in the particle number with respect to time

∂t N1/L =

∫

dλ∂tρp,i(λ) =

∫

dλQ[ρp,1,ρp,2](λ)

=

∫

dλQ0[ρp,1,ρp,2](λ) +

∫

dµdλ∂λ
�

n(λ)F(λ|µ)
�

Q0[ρp,1,ρp,2](µ) = 0 .

(42)

In the last step, we have used the explicit form of (23) together with ph symmetry of the form
factor to observe that the first integral vanishes. The second integral vanishes upon integration
by parts with the boundary terms vanishing as for physical states the filling function decays
to zero at large rapidities. Of course, similar arguments lead to ∂t N2 = 0. Note that this
conservation law holds at all levels (n, m).

Now, let us consider the total energy

Etot = E1 + E2 = L

∫

dλλ2
�

ρp,1(λ) +ρp,2(λ)
�

, (43)

and show that it is conserved in time. We consider its derivative with respect to time

∂t Etot/L =

∫

dλλ2
�

Q[ρp,1,ρp,2](λ) +Q[ρp,2,ρp,1](λ)
�

=

∫

dλdµλ2
�

F1(λ,µ)Q0[ρp,1,ρp,2](µ) + F2(λ,µ)Q0[ρp,2,ρp,1](µ)
�

.

(44)

We may shift the dressing operation from the collision integral Q to λ2. Integration over λ
then gives

∫

dλλ2Fi(λ,µ) =ωi(µ) . (45)

We thus get

∂t Etot/L =

∫

dµ
�

ω1(µ)Q0[ρp,1,ρp,2](µ) +ω2(µ)Q0[ρp,2,ρp,1](µ)
�

. (46)

We observe now that the following relation holds for arbitrary (n, m)
∫

dµ
�

ω1(µ)Q
(n,m)
0 [ρp,1,ρp,2](µ) +ω2(µ)Q

(m,n)
0 [ρp,2,ρp,1](µ)

�

= 0 . (47)
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One can establish this by employing the representation in Eqn. (31) into the equation above.
From the integration over µ, we find terms that exactly correspond to ω1(p1,h1)+ω2(p2,h2)
which is enforced to be zero by the Dirac delta inside Q(n,m)

0 . Finally, summing this relation
above over n and m gives ∂t Etot = 0. Similar arguments lead to the conclusion that the total
momentum

Ptot = P1 + P2 , (48)

is conserved as well.
In the remaining part of this section, we propose the following ansatz for additional con-

served quantities:

I = L

∫

dλ
�

ρp,1(λ) f1(λ) +ρp,2(λ) f2(λ)
�

, (49)

where we allowed fi(λ)’s, the single particle eigenvalues of the supposed charges, to be dif-
ferent in both tubes. We ask whether there exist functions f1(λ) and f2(λ) such that ∂tI = 0.
Explicitly, we write

∂tI/L =

∫

dλ∂tρp,1(λ) f1(λ) +

∫

dλ∂tρp,2(λ) f2(λ)

=

∫

dλ
�

f1(λ)Q[ρp,1,ρp,2](λ) + f2(λ)Q[ρp,2,ρp,1](λ)
�

=

∫

dλ
�

f1,Dr(λ)Q0[ρp,1,ρp,2](λ) + f2,Dr(λ)Q0[ρp,2,ρp,1](λ)
�

,

(50)

where we have shifted the dressing operation from Q to fi and used the Dressing operation
from Eqn. (11). Similarly to the condition for the stationarity, ∂tI = 0 either because the
expression vanishes as a whole or because the integrand is zero. In the latter case this leads
to a condition on functions fi(λ), similar to Eqn. (40) which we will now derive.

Analogously to the case of conserved energy, in order to have ∂tI = 0, we require that
∫

dλ
�

f1,Dr(λ)Q
(m,n)
0 [ρp,1,ρp,2](λ) + f2,Dr(λ)Q

(n,m)
0 [ρp,2,ρp,1](λ)

�

= 0 , (51)

should hold for all (n, m). To write the result in a compact form we parametrise Q(m,n)
0 as

Q(n,m)
0 (λ) =

∫

dpn
1dhn

1dpm
2 dhm

2 G(p1,h1,p2,h2)

×δ
�

k1 + k2

�

δ
�

ω1 +ω2

�

� n
∑

i=1

δ(λ− pi,1)−
n
∑

i=1

δ(λ− hi,1)

�

, (52)

where G(p1,h1,p2,h2) can be read off from Eqn. (31) but we do not need its explicit form.
We only need to know that it is strictly positive. The result is

∂tI =
∫

dpn
1dhn

1dpm
2 dhm

2 G(p1,h1,p2,h2)δ
�

k1 + k2

�

δ
�

ω1 +ω2

�

×

 

n
∑

i=1

f1,Dr(pi,1)− f1,Dr(hi,1) +
m
∑

j=1

f2,Dr(p j,2)− f2,Dr(h j,2)

!

= 0 . (53)

From this expression we can read off a necessary condition for an existence of a conserved
charge characterized locally in the rapidities. This translates to demanding that

n
∑

i=1

�

f1,Dr(pi,1)− f1,Dr(hi,1)
�

+
m
∑

j=1

�

f2,Dr(p j,2)− f2,Dr(h j,2)
�

= 0 , (54)
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is fulfilled for all p1,h1,p2,h2 satisfying the energy-momentum conservation laws (37) and
(36). We observe a similar structure as in Eqn. (40) for the stationary state.2 Therefore, by
exactly the same arguments, we find no conserved charges of the form (49) apart from total
momentum and energy. However, just as in the case of stationary state analysis, the situation
will be different for (1,1) processes which we discuss in details in the next two sections.

4 (1,1) dynamics in the small momentum limit

We have argued that due to the scaling with the characteristic momentum kr , the processes
involving small number of ph excitations are the most relevant. In this section, we study
in detail the dynamics generated by (1,1) processes solely. As we will show, in the small
momentum limit of collision integral, such restricted dynamics are qualitatively different. In
particular, the restricted dynamics feature non-thermal stationary states.

4.1 Stationary states

We start by reassessing the condition for the stationary state. In the small momentum limit it
is convenient to introduce a center-of-mass coordinates for the rapidities,

λi =
1
2
(pi + hi) , αi = pi − hi , i = 1,2 , (55)

with αi being small for small k = ki(pi)− ki(hi). We analyze now the condition (40) together
with the momentum-energy conservation laws (36) and (37) taking (n, m) = (1,1). After
expanding in α, the energy-momentum conservation laws give

v1(λ1) = v2(λ2) , v(λ)≡ω′(λ)/k′(λ) , (56)

α2 = −k′1(λ1)/k
′
2(λ2)α1 . (57)

On the other hand, expansion of (40) in small αi together with (56) and (57) yield the fol-
lowing condition for the stationary state:

ε′1(λ1)

k′1(λ1)
=
ε′2(λ2)

k′2(λ2)
, v1(λ1) = v2(λ2) . (58)

Eqn. (58) sets the relation between pseudo energies in both tubes in the stationary state. The
relation between velocities allows us to express λ2 in terms of λ1.3 Therefore, the equation
involving the pseudo energies has only one variable appearing and for any state ε2(λ) it can be
used to determine ε1(λ) (up to a constant value). One may readily check that a state in which
both tubes are in equally boosted thermal states with the same temperature, see eq. (41),
fulfills (58) and therefore is a stationary state in terms of the small momentum limit of the
(1, 1) dynamics. Note however, that in principle there might be other configurations, for which
(58) is satisfied. In the remaining part of the paper, we will show that this is the case and the
(1, 1) dynamics in the small momentum limit typically drive the system to such stationary
but non-thermal states. This feature is particular to (1,1) dynamics. The small momentum
expansion of processes involving more ph excitations does not lead to the appearance of non-
thermal stationary states.

2There is however a crucial difference between the two equations - the equation for the conserved charges
has to be fulfilled dynamically at each time t. We will see the consequences of this in the simplest case of (1,1)
processes in Section 5.

3We are assuming here that the effective velocity is a monotonic function in λ.
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It is difficult to write down a solution to Eqn. (58) for arbitrary interaction parameters as
this requires, for a given ε1(λ), solving a non-linear equation for ε2(λ2). The non-linearity
appears because the functions, k2(λ2) and v2(λ2), depend themselves on ε′2(λ2) through the
occupation function, n2(λ2). Therefore, instead of constructing the solution, we will verify
that the system, when evolved according to (1, 1) dynamics in the small momentum limit, is
described by the pseudo-energies εi(λi) obeying (58). We will also explicitly see that the state
is non-thermal. These results are presented in Section 4.2. But to gain some insight, we will
now study Eqn. (58) in two special cases where the analysis simplifies:

Tonks-Girardeau limit in both tubes

The Tonks-Girardeau limit is particularly simple as the dressings are then absent. From Eqn.
(58) we then find

ε′1(λ) = ε
′
2(λ) , (59)

where we used that k′(λ) = 1 and v(λ) = 2λ in the Tonks-Girardeau gas. This implies that
pseudo-energies of both tubes in the stationary states are equal up to the chemical potentials:
ε2(λ) = ε1(λ)+const. Such solution obviously allows for a much wider class of configurations
than (41).

Interestingly, this solution is valid also beyond the small momentum limit. This is a pe-
culiarity of the Tonks-Girardeau gas where the conservations laws (36) and (37) at arbitrary
momenta can be solved explicitly and yield p2 = h1 and h2 = p1. The condition (40) for the
stationary state simplifies then to

ε1(p)− ε2(p) = ε1(h)− ε2(h) , (60)

and has the same solution as in the small momentum limit.

Deformed Tonks-Girardeau gas

Assuming the presence in the two tubes large couplings c1 and c2, we may analyze (58) by
expanding in 1/ci . Details here are shifted to Appendix D. Summarizing this calculation, we
find that the allowed set of pseudo-energies implying stationarity extends beyond that corre-
sponding to boosted thermal states. Indeed, a stationary state is given by any pair of functions
(ε1λ),ε2(λ)) satisfying,

ξ−1
2 ε
′
2(ξ2λ) = ξ

−1
1 ε
′
1(ξ1λ)×

�

1+O
�

1/c3
i

��

, ξi = 1+
2ni

ci
, (61)

which is a simple modification of the stationarity condition (59) in the Tonks-Girardeau gas.
Here ni is the density of particles in the i-th tube.

4.2 Numerical results

We now numerically solve the Boltzmann equation to demonstrate the main findings of our
work. We study relaxation under dynamics restricted to (1,1) processes. We neglect the pro-
cesses involving more ph pairs effectively considering Eqns. (15) with Q0 ≡ Q(1,1)

0 . Moreover,

we consider potentials narrow in the momentum space such that Q(1,1)
0 is very well approx-

imated by its low-momentum limit. With this, we may expect both non-thermal stationary
states (58) as the final states of the evolution.

To display the athermal character of the stationary states we will compare them with the
predictions of the standard Gibbs ensemble (GE). The bare pseudoenergies are then

ε0,i(λ) = βi,0 + β2λ
2 , (62)

with β1,0,β2,0 and β2 fixed by the initial densities in both tubes and their total energy.
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Figure 1: Rate of change of quasi-momentum distributions as a function of time, with
Bragg-split states as initial states for the dynamics. Panel (a): intermediate regime,
panel (b): strongly interacting regime. In both cases the systems reach the stationary
state, with a different timescale for each tube. Insets: the same plots, but for longer
times and in logarithmic scale.

Table 1: Parameters of the initial states used for the two cases of Bragg-split states
explored in this paper.

case 1 (intermediate interactions) case 2 (strong interactions)
c1 c2 β1 β2 µ1 µ2 λ0 c1 c2 β1 β2 µ1 µ2 λ0

1.0 4.0 0.7 0.7 1.6 2.6 2.0 32.0 128.0 1.7 1.7 3.22 5.27 2.9

4.2.1 Bragg-split states

As initial states, we consider the experimentally relevant Bragg-split thermal distributions [19].
To probe both the intermediate and strong interaction regimes, we perform two computations:
one with c1 = 1 and c2 = 4, and one with c1 = 32, c2 = 128. Concretely, we consider initial
states of the following form:

ρini
p,i(λ) =

1
2

�

ρGibbs
βi ,µi
(λ−λ0) +ρ

Gibbs
βi ,µi
(λ+λ0)

�

, (63)

with the parameters used summarized in Table 1. As the first probe of the relaxation, we
investigate the rate of change of the quasiparticle distributions as a function of time defined
in the following way

ROC(t) =

∫

dλ|∂tρp(λ; t)|
∫

dλρp(λ; t)
. (64)

The results are shown at Fig. 1. We observe that the dynamics becomes gradually slower with
time and the system reaches a stationary state. The timescales of these processes are different
in each tube. This is expected, since couplings and densities differ between the tubes.

The final, stationary state reached in the course of (1,1) dynamics is presented in Fig. 2. We
compare in this figure the final quasiparticle densities ρp,i , i = 1, 2 to the initial distributions
as well as to the predictions of the GE ensemble. We observe that the final, stationary state still
resembles a Bragg-split distribution and is very far from the thermal GE state that one would
expect from unconstrained dynamics. This is further confirmed as one inspects the Yang-Yang
entropy as a function of time as shown in Fig. 3. The system relaxes to a state with a much
lower entropy in comparison to the prediction computed on the thermal GE state.

Finally, we verify explicitly that the final state fulfills the stationarity condition (58). To do
so, we define a function

H(λ1) = ρp,1(λ1)ρh,1(λ1)ρp,2(λ2)ρh,1(λ2)

�

ε′1(λ1)−
k′1(λ1)

k′2(λ2)
ε′2(λ2)

�

, (65)
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Figure 2: Initial, final and GE states for the dynamics with Bragg-split states as initial
states. Panels (a) and (b) present distributions for the simulation in the intermediate
regime, whereas in panels (c) and (d) we show the data for the strongly interacting
regime. The final states are far from their respective GE states expected to appear as
the final, thermal states in a full dynamics involving higher processes.

Table 2: Parameters used for the two cases of initial thermal states.

case 1 (intermediate interactions) case 2 (strong interactions)
c1 c2 β1 β2 µ1 µ2 c1 c2 β1 β2 µ1 µ2

2.0 4.0 0.4 0.7 2.7 4.2 32.0 128.0 0.4 0.7 9.0 9.6

where λ2 is given by a solution to v1(λ1) = v2(λ2) and plot it for several instances of time.
If our stationary state is indeed a solution to the Eqn. (58), we should see function H(λ1)
approaching zero at all λ for late times. We find that this is the case, see Fig. 4.

4.2.2 Two different thermal states

In the second scenario, to probe dynamics closer to an equilibrium state, we consider initial
configurations corresponding to thermal states in both tubes. Specifically, the tubes are taken
to have the same density n1,2 = 1 but different temperatures. The densities of the initial states
read

ρini
p,i(λ) = ρ

Gibbs
βi ,µi
(λ) , (66)

with the parameters used summarized in Table 2.
Despite the thermal starting point, the evolution for these states leads to final, non-thermal

states that are nonetheless close to thermal states. This is illustrated in Fig. 5 where we com-
pare the distributions ρp(λ) in the initial and final states and in putative thermal equilibrium
states consistent with the initial states. The lack of thermalization can be also witnessed in the
evolution of the entropy, see Fig. 6. Here we see that the entropy draws close to the equilibrium
thermal entropy but does not quite reach it.

The two kinds of initial states that we have considered show certain universal features of
the dynamics generated by the (1,1) processes for long range interactions. We observe that
these processes are not very efficient in redistributing the particles in the tubes. On a practical

15

https://scipost.org
https://scipost.org/SciPostPhys.17.1.007


SciPost Phys. 17, 007 (2024)

0 50 100 150 200
0.9150

0.9155

0.9160

0.9165

0.9170

0.9175

0.9180

(a)

0 50 100 150 200
0.780

0.785

0.790

0.795

0.800

0.805

0.810

(b)

Figure 3: Yang-Yang entropy as a function of time for the dynamics of Bragg-split
states. Panel (a): simulation in the intermediate regime, panel (b) dynamics in the
strongly interacting regime. The entropy is normalized by the GE prediction for the
final state. It reaches a value significantly smaller than 1, indicating that the dynamics
is strongly constrained.
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Figure 4: Function H(λ1) presented as a function of time. Panel (a): intermediate
interactions, panel (b) strong interactions. We see that the function approaches zero
for late times signalling that the state of the system in this limit fulfills (58).

level it results in small changes to the particles distributions with the stationary states very
similar to the initial states. This is true for both Bragg-split and the thermal initial states. On
the other hand, this raises a question on a mechanism behind this restricted dynamics. In the
next section we show that in the case of strong intra-tube interactions this is caused by the
existence of higher conserved charges.

5 Strongly interacting limit

In this section we consider the deformed Tonks-Girardeau gas. This is the strongly interacting
limit of large ci in which we keep corrections up to and including terms of order 1/c2

i . We
will show that in such system there is an infinite family of conserved charges. These charges
follow from solutions of eq. (54) and are linear combination of ultra-local charges (6) present
in uncoupled tubes. Whereas the uncoupled system possesses two infinite families of charges,
coupling the two tubes leads to halving the number of them. This leads to restricted (1, 1)
dynamics observed in the previous section.
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Figure 5: Initial, final and GE states for the dynamics with thermal states as initial
states. Panels (a) and (b) present distributions for the simulation in the intermediate
regime, whereas in panels (c) and (d) we show the data for strongly interacting
regime. Final distributions are very close to the predictions of the GE, indicating
that the system has almost thermalized. The small but real differences between the
final and putative thermal distributions are clearly seen in the insets, where we have
plotted the behavior of the distributions near λ= 0.

5.1 Conserved charges

We start by analyzing the sufficient condition (54) for an existence of a conserved charge. For
the (1,1) processes and in the small momentum limit it takes the form

( f ′1)dr,1(λ1)

ω′1(λ1)
−
( f ′2)dr,2(λ2)

ω′2(λ2)
= 0 , v1(λ1) = v2(λ2) , (67)

where we have used the equality in Eqn. (13) between the two dressing procedures. We see
that Eqn. (67) has exactly the same structure as Eqn. (58). Therefore, all solutions in the
previous section for ε1,2 may be adapted for the case considered here. However there is a
small caveat here that has far reaching consequences.

To illustrate the nature of the problem let us assume that we choose some function f1(λ)
and solve for f2(λ). Because of the dressing procedures it is reasonable to expect that the re-
sulting function depends on the distributions ρp,i(λ). However, those evolve in time, whereas
f2(λ) should be time-independent. Therefore, one possibility is that f2(λ) depends on the par-
ticles distributions through invariants of the evolution in each tube and the only such invariants
are the total densities ni of the particles.

This scenario is realized for the deformed Tonks-Girardeau gas. As we show in the Ap-
pendix D, Eq. (67) has a time independent solution only up to and including order 1/c2

i . The
solution takes the form

ξ−1
2 f ′2(ξ2λ) = ξ

−1
1 f ′1(ξ1λ) . (68)

Beyond that order it is impossible to find a pair of functions ( f1(λ), f2(λ)) such that they are
time independent and fulfil (67). Note that this solution has exactly the same structure as
Eq. (61) for the stationary state of the deformed Tonks-Girardeau gas.
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Figure 6: Yang-Yang entropy as a function of time, for the dynamics with initial ther-
mal states. Panel (a): simulation in the intermediate regime, panel (b) dynamics in
the strongly interacting regime. The entropy is normalized by the prediction of the
GE ensemble for the final state. The final, stationary state is close to a thermal one,
which is reflected in value of normalized entropy that is very close to 1.

From the solution in (68) we can construct a whole family of conserved charges based on
the ultra-local conserved charges (6) present in a single Lieb-Liniger model. This results in the
following conserved charges

I j = I1, j + I2, j , Ii, j = L

∫

dλ fi, j(λ)ρp,i(λ) , fi, j(λ) = ξ
2− j
i λ j . (69)

We see that, due to the ni dependent coefficients, the resulting expressions are in principle
non-linear functions of densities ρp,i. However, since we are working at fixed density they
are in fact linear. Even quantum mechanically, in a Hilbert space of fixed number of particles,
the corresponding conserved charges would be linear operators. Interestingly, the rescaling of
rapidities is the one found also in the 1/c expansion of ultra-local conserved charges [38].

The special feature of the dynamics of strongly interacting systems can be directly seen in
the collision integral. In Appendix C we show that the collision integral with Tonks-Girardeau
gas in both tubes obeys a symmetry relation

Q(1,1)
0 [ρp,1,ρp,2](λ) = −Q(1,1)

0 [ρp,2,ρp,1]((λ) . (70)

This relation immediately implies that any functional of the form (49) with f1 = f2 is a con-
served charge. In the deformed case this relation generalizes to

ξ3
1Q(1,1)

0 [ρp,1,ρp,2](ξ1λ) = −ξ3
2Q(1,1)

0 [ρp,2,ρp,1](ξ2λ) +O
�

1/c3
i

�

, (71)

and leads to conserved charges of the form (69) as shown in Appendix D.
The integral of motion shown in (69) is conserved only up to 1/c2, see Fig. 7. Furthermore,

as we show in Appendix E, equation (67) has no solutions that would allow us straightfor-
wardly to construct analytically conserved charges beyond that limit. However, the athermal
stationary states do exist for arbitrary values of interaction parameters. This leaves open the
question about the mechanism behind the lack of thermalization beyond the strongly interact-
ing limit.

5.2 Generalized Gibbs ensemble

In the previous section we have observed that (1, 1) dynamics in the small momentum limit
and for the deformed Tonks-Girardeau gases is characterized by additional conserved charges
I j . We address now the problem of the final state reached by the system initialized in some
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Figure 7: We display the first additional conserved charge I4 present for the de-
formed Tonks-Girardeau gas. It is conserved as well as the energies. Evaluating the
same functional but in the system with intermediate interactions reveals that it is not
anymore a conserved quantity. However the amplitude of its change is small, reflect-
ing again the restricted dynamics of the (1,1) processes. The results shown here are
for the Bragg-split states.

non-equilibrium configuration. One would expect relaxation to a Generalized Gibbs Ensemble
(GGE) consistent with the presence of non-trivial conservation laws. In this section, we con-
struct a GGE for our system and compare it with the properties of stationary state in Eqn. (58)
found from the analysis of the collision integral. The whole construction is a generalization of
Ref. [49,50], where a single LL tube was analyzed.

The partition function of our system can be written as a functional integral over the inverse
occupation [42],

Z = const.

∫

D
�

ρt,1(λ)

ρp,1(λ)

�

D
�

ρt,2(λ)

ρp,2(λ)

�

δ(Lρp,1(λ)− N1)δ(Lρp,2(λ)− N2)e
−F[ρp,i] , (72)

where

F = β2E +
∑

j>2

β jI j − S

= L

∫

dλ
�

β2λ
2
�

ρp,1(λ) +ρp,2(λ)
�

+
∑

j>2

β j

�

f1, j(λ)ρp,1(λ) + f2, j(λ)ρp,2(λ)
�

�

− L
∑

i=1,2

∫

dλ
�

ρt,i(λ) ln(ρt,i(λ))−ρp,i(λ) ln(ρp,i(λ))−ρh,i(λ) ln(ρh,i(λ))
�

. (73)

In the partition function we have introduced δ-functions that enforce that we are working at
constant particle number in each of the tubes. Here we also see the influence that the system’s
conserved quantities, the energy E and the additional charges, I j , j = 3,4, · · · , preserved under
the (1,1) dynamics, have on the partition function. The form of f1/2, j is not arbitrary but
assumed to satisfy Eqn. (68). β2 is the temperature for the combined system’s energy while
β j>2 are the generalized chemical potentials for the higher order charges. Note that the energy
and I j>2 are charges defined involving degrees of freedom for both tubes and so β j , with
j = 2, · · · do not differentiate between the tubes.

To evaluate the partition function in the thermodynamic limit we use the method of steep-
est descents [42]. The conserved charges are nonlinear functionals of ρp,i and their variation
with respect to ρp,i has two contributions

δIi, j

δρp,k(λ)
= δik L

�

fi, j(λ) + Ai, j

�

, Ai, j =

∫

dµ
δ fi, j(µ)

δρp,i(λ)
ρp,i(µ) = 2(2− j)

Ii, j

Lζici
. (74)
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Figure 8: The pseudo-energies for the initial, final and GE states for the Bragg-split
dynamics with c1 = 1, c2 = 4.

In writing this expression we have used eq. (69) for Ii, j for which fi, j(λ) = ξ
2− j
i λ j .

We introduce now chemical potentials βi,0 as Lagrange multipliers fixing the total densities
of particles in both tubes. Introducing εi(λ) = log(ρh,i(λ)/ρp,i(λ)), the extremum condition
for the generalized free energy is

εi(λ) = εi,0(λ)−
∫

dλ′Ti(λ−λ′) log
�

1+ e−ε(λ
′)
�

, (75)

εi,0(λ) = βi,0 +
∑

j>2

β jAi, j + β2λ
2 +

∑

j

β j fi, j(λ) , (76)

∫

dλρp,i = ni , (77)

which should be supplemented with the equation for ρt,i(λ),

ρt,i(λ) =
1

2π
+

∫

dλ′T (λ−λ′)ni(λ
′)ρt,i(λ

′) , (78)

which connects εi(λ) with ρp,i(λ). We observe that while formulas (75) and (76) bear struc-
tural similarity to the standard TBA equations, there exists a significant distinction. In a stan-
dard formulation, the TBA equations are explicit, meaning that given a set of the chemical
potentials, they directly yield ε(λ) from which expectation values of the conserved charges
can be computed. Here, the relation is implicit, because ε(λ) depends itself on the value of
the conserved charges through Ai, j . Nevertheless, the dependence on Ai, j enters with a factor
1/ci which allows for a consistent perturbative treatment. For instance, the 1/ci correction to
ε(λ) comes from the Tonks-Girardeau values of the conserved charges.

The implicit nature of the found GGE is also visible in the expectation values of the charges.
The formulas for the particle number and energy are standard and given by: [49]

〈Ni〉GGE =
L

2π

∫

dλ
1

1+ eεi(λ)

∂ εi(λ)
∂ βi,0

, 〈Etot〉GGE =
L

2π

∑

i=1,2

∫

dλ
1

1+ eεi(λ)

∂ εi(λ)
∂ β2

, (79)

whereas for the other charges,

〈I j〉GGE =
∑

i=1,2

�

L
2π

∫

dλ
1

1+ eεi(λ)

∂ εi(λ)
∂ β j

+ Ai, j〈Ni〉GGE

�

. (80)

The values of generalized chemical potentials in the final state are in principle determined
from the equations 〈·〉ini = 〈·〉GGE written for all conserved charges, where by 〈·〉ini we denoted
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Figure 9: Time evolution of the generalized chemical potentials for the Bragg initial
state with c1 = 32, c2 = 128. We plot the ratio β1, j/β2, j of the potentials in the two
tubes. The system equilibrates to β1, j = β2, j j ≥ 2 in agreement with the prediction
of the GGE.

the expectation value in the initial state [13]. Unfortunately, solving these non-linear equations
is a very difficult task. However, we can show that GGE states of the form (76) are stationary
states in our dynamics. The proof of this statement is as follows. We note that

ε′i = (ε
′
0,i)dr,i . (81)

Dressing is a linear operation and therefore we can express ε′i through the dressed single-
particle eigenvalues, namely

ε′i = β2(2λ)dr,i +
∑

j

β j( f
′
i, j)dr,i . (82)

In the stationary state the pseudo-energies obey relation (58)

ε′1(λ1)

k′1(λ1)
−
ε′2(λ2)

k′2(λ2)
=
∑

j

β j

�

( f ′1, j)dr,1(λ1)

k′1(λ1)
−
( f ′2, j)dr,2(λ2)

k′2(λ2)

�

= 0 , (83)

where in the last step we have used the conservation of the j-th conserved charged expressed
in Eqn. (67). The athermal character of the pseudo-energies of the stationary states is shown
in Fig. 8.

Finally, let us make the following observation. For a single tube Lieb-Liniger model there
is a one-to-one relation between the state of the system and chemical potentials (generalized
temperatures). We can now promote this relation to the two-tube case. The state of the system
is then described by pseudo-energies εi(λ) characterized by the generalized temperatures βi, j
which are potentially different for the two tubes, β1, j ̸= β2, j . When the system evolves accord-
ing to the Boltzmann equation this leads to a time dependence of the chemical potentials. The
stationary state can be then understood as equalization of temperatures and higher chemical
potentials, namely limt→∞

�

β1, j(t)− β2, j(t)
�

= 0 for j ≥ 2. We demonstrate it in Fig. 9.

6 Summary and conclusion

In this work we have studied the problem of the development of stationary states in a weakly
perturbed integrable model. Our approach relies on a microscopic scattering integral in the
framework of a Boltzmann equation. We applied this approach to the case of two weakly cou-
pled Lieb-Liniger models, with the coupling taking the form of the density-density interactions,
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a scenario relevant for the experiments with ultra-cold atomic gases. We found that for the
long-range intertube interactions the leading processes described by the scattering integral do
not thermalize the system, instead they lead to an athermal stationary state. To further un-
derstand the resulting time evolution we have solved numerically the Boltzmann equation for
two very different initial states: i) the highly non-equilibrium Bragg split states and i) tubes
characterized by thermal states at different temperatures. In both cases we have observed that
time evolution is greatly restricted. The final stationary states resemble the initial states and
do not evolve into thermal states. We also witnessed this arrested dynamics through studying
the entropy production. There we saw that the system’s entropy would evolve to a value lower
than that of a thermal ensemble.

For the deformed Tonks-Girardeau gas we have shown that the restricted dynamics is
caused by extra conserved charges beyond the particle number, momentum and energy. We
have also shown that the athermal stationary state can be then characterized by the general-
ized Gibbs Ensemble. Interestingly, our construction of the conserved charges does not extend
to the full Lieb-Liniger model.

In this work we have focused on revealing the structure of the athermal stationary states.
An interesting question would be to combine the leading (1, 1) with higher processes that do
thermalize the system. This would provide an access to the full time evolution from the initial
state, through the prethermalization plateau, all the way to the final thermal state. Numerical
implementation of this problem requires a substantial effort that we delegate to future work.

Our work leads also to a more fundamental question whether the extra conserved charges
exist at the quantum level, beyond the Boltzmann equation. Whereas their exact conservation
is unlikely, they might correspond to ’slow variables’ and therefore they remain important for
the dynamics at intermediate timescales. This scenario is realized in the spin ladder systems
as revealed recently [51].

Finally, the results for the case where the two tubes are initialized in thermal states at
different temperatures shows that the evolution occurs entirely in the vicinity of thermal states.
In such a situation it might be possible to develop an effective description of the dynamics
which instead of looking at the full distribution of the rapidities would involve only examining
the evolution of the temperatures and perhaps several of the higher chemical potentials. This
would then allow the development of a sort of Newton’s law of cooling for weakly perturbed
integrable systems.
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A Scaling of the collision integral in the small momentum limit

In this appendix we show that Q(m,n)
0 ∼ km+n

r with kr the characteristic momentum of the
intertube potential. From the symmetry of Eqn. (29), we can replace sum of delta functions
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by a single one, multiplied by n

Q(n,m)
0 [ρp,1,ρp,2](λ) = (2π)

2n

∫

dpn
1dhn

1dpm
2 dhm

2 δ(λ− p1,1) Ã
2
�

k1(p1,h1)
�

× |F1(p1,h1)|2|F2(p2,h2)|2J (n,m)(p1,h1,p2,h2)

×δ
�

k1(p1,h1) + k2(p2,h2)
�

δ
�

ω1(p1,h1) +ω2(p2,h2)
�

,

where we recall the definition of J (n,m)

J (n,m)(p1,h1,p2,h2) = Jn
1 (p1,h1) J

m
2 (p2,h2)− Jn

1 (h1,p1) J
m
2 (h2,p2) . (A.1)

We express the collision integrals in the center of mass variables, namely,

λi, j =
1
2
(pi, j + hi, j) , αi, j = pi, j − hi, j . (A.2)

We make now the following observations. The form-factors of the density operator, due to
their ph symmetry are even function of αi, j and their leading order is αi, j independent, i.e.,

F1(p1,h1) = F1(λ1,λ1) +O(α2
i ) . (A.3)

The difference of the density factors appearing through the J functions, see (24), is an odd
function upon changing the sign of all αi, j . At the same time, the product of the density
functions evaluated for a particle-hole excitation gives

ρp(λ−α/2)ρh(λ+α/2) = ρp(λ)ρh(λ)
�

1+ ε′(λ)α/2+O(α2)
�

. (A.4)

Therefore we get

J (n,m)(p1,h1,p2,h2) =
n
∏

i=1

ρp,1(λi,1)ρh,1(λi,1)
m
∏

j=1

ρp,2(λ j,2)ρh,2(λ j,2)

×

� n
∑

i=1

ε′1(λ1,i)α1,i +
m
∑

i=1

ε′2(λ2,i)α2,i +O(α3
i, j)

�

.

The scattering integral, up to the first two leading orders in αi, j , takes then the following form,

Q(n,m)
0 [ρp,1,ρp,2](µ) = (2π)

2n

∫

dλn
1dλm

2 G(λ1,λ2)H(λ1,λ2) , (A.5)

where

G(λ1,λ2) = |F1(λ1,λ1)|2|F2(λ2,λ2)|2
n
∏

i=1

ρp,1(λi,1)ρh,1(λi,1)
m
∏

j=1

ρp,2(λ j,2)ρh,2(λ j,2) , (A.6)

H(λ1,λ2) =

∫

dαn
1dαm

2 Ã2(k1(p1,h1))δ(µ−λ1,1 −α1,1/2)δ
�

k1(p1,h1) + k2(p2,h2)
�

×δ
�

ω1(p1,h1) +ω2(p2,h2)
�

� n
∑

i=1

ε′1(λ1,i)α1,i +
m
∑

i=1

ε′2(λ2,i)α2,i

�

. (A.7)

Consider first the simplest case of (1,1) processes. Then we have to perform the following
integral

H(λ1,λ2) =

∫

dα1dα2 Ã2(k1(λ1,α1))δ(µ−λ1 −α1/2)δ
�

k1(λ1,α1) + k2(λ2,α2)
�

×δ
�

ω1(λ1,α1) +ω2(λ2,α2

� �

ε′1(λ1)α1 + ε
′
2(λ2)α2

�

. (A.8)
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For the momentum energy constraints we find

k(λ,α) = αk′(λ) +O(α3) , ω(λ,α) = αω′(λ) +O(α3) . (A.9)

Thus we have

δ
�

k1(λ1,α1) + k2(λ2,α2)
�

= δ(α1k′1(λ1) +α2k′2(λ2)) , (A.10)

and similarly for the energy δ-function. Then we can write

δ
�

k1(λ1,α1) + k2(λ2,α2)
�

δ
�

ω1(λ1,α1) +ω2(λ2,α2

�

=
δ(α2 +α1k′1(λ1)/k′2(λ2))

|α1k′1(λ1)k′2(λ2)|
δ(v1(λ1)− v2(λ2)) , (A.11)

where v(λ) =ω′(λ)/k′(λ). We can perform now the integral over α2. The result is

H(λ1,λ2) =

∫

dα1 sgn(α1)Ã
2(k1(λ1,α1))δ(µ−λ1 −α1/2)

×
δ(v1(λ1)− v2(λ2))
|k′2(λ2)|

�

ε′1(λ1)

k′1(λ1)
−
ε′2(λ2)

k′2(λ2)

�

. (A.12)

The remaining integral over α1 can be now also performed. The result is

H(λ1,λ2) = sgn(µ−λ1)Ã
2(k1(λ1, 2(µ−λ1)))

δ(v1(λ1)− v2(λ2))
|k′2(λ2)|

�

ε′1(λ1)

k′1(λ1)
−
ε′2(λ2)

k′2(λ2)

�

.

(A.13)
The remaining δ-function fixes uniquely λ2 as a function of λ1. Therefore the scattering in-
tegral involves only one integral. The range of the integration over λ1 is constrained by the
function Ã(k1(λ1, 2(µ−λ1)) which is peaked around λ1 = µ. The structure of the expression
is then

Q(1,1)
0 [ρp,1,ρp,2](µ) =

∫

dλ1sgn(µ−λ1)Ã
2(2(µ−λ1)k

′(λ1)) f (λ1) , (A.14)

where in f (λ1) we have gathered all the remaining factors. Now we will take advantage of
properties of the interaction potential and use representation (21). We get

Q(1,1)
0 [ρp,1,ρp,2](µ)∼

∫

dλ1 sgn(µ−λ1)ã
2
�

2(µ−λ1)k′(λ1)
kr

�

f (λ1) . (A.15)

We assume now that function ã(k/kr) is centered around 0 and symmetric. In the leading
order in kr we can approximate this expression by replacing k′(λ1) by k′(µ). We then change
the variables to x = 2(µ−λ1)k′(µ)/kr . The result is

Q(1,1)
0 [ρp,1,ρp,2](µ)∼

kr

2k′(µ)

∫

dx sgn(x)ã2(x) f
�

µ− x
kr

2k′(µ)

�

. (A.16)

Expanding now in powers of x we find

Q(1,1)
0 [ρp,1,ρp,2](µ)∼

kr f (µ)
2k′(µ)

∫

dx sgn(x)ã2(x)+
k2

r f ′(µ)

(2k′(µ))2

∫

dx |x |ã(x)+O
�

k4
r

�

. (A.17)

The first integral vanishes and the leading contribution comes from the second term which
is proportional to the characteristic momentum kr . The answer involves the derivative of
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f (µ). This function involves all the density factors and form-factors. Its derivative is thus
quite complicated and not very practical for numerical computations. We also note that the
subleading corrections are of order k4

r and not k3
r which is important for the hierarchy of

processes contributing to the Boltzmann equation as discussed in the main text.
We generalize now the analysis to the (n, m) case. We start by considering H(λ1,λ2) and

use the energy-momentum constraints to solve for αm,2 and λm,2 and the third δ-function to
fix λ1,1 = µ−α1,1/2. To this end we introduce the following notation

k̄ =
n
∑

i=1

αi,1k′1(λi,1) +
m−1
∑

i=1

αi,2k′2(λi,2) , (A.18)

ω̄=
n
∑

i=1

αi,1ω
′
1(λi,1) +

m−1
∑

i=1

αi,2ω
′
2(λi,2) , (A.19)

ε̄=
n
∑

i=1

αi,1ε
′
1(λi,1) +

m−1
∑

i=1

αi,2ε
′
2(λi,2) , (A.20)

and v̄ = ω̄/k̄. Then

δ
�

k1(p1,h1) + k2(p2,h2)
�

δ
�

ω1(p1,h1) +ω2(p2,h2)
�

=
δ(αm,2 − ᾱm,2)δ(v2(λm,2)− v̄)

k′(λm,2)|k̄|
,

(A.21)
with ᾱm,2 = k̄/k′2(λm,2). This gives

H(λ1,λ2) =

∫

dαn
1dαm−1

2 Ã2(k1(p1,h1))
δ(v2(λ1,2)− v̄)

k′(λ1,2)

�

ε̄

k̄
−
ε′2(λ1,2)

k′2(λ1,2)

�

sgn(k̄) . (A.22)

We now introduce new variables x i, j = αi, jk
′(λi, j)/kr for all i, j except for i = j = 1 where we

write instead x1,1 = α1,1k′(µ))/kr . We now find for H(λ1,λ2),

H(λ1,λ2) = kn+m−1
r

δ(v2(λ1,2)− v̄)
∏

i, j k′(λi, j)

∫

dx n
1 dx m−1

2 sgn(
∑

i, j

x i, j)ã
2

�

∑

i

x i,1

�

�

ε̄

k̄
−
ε′2(λm,2)

k′2(λm,2)

�

.

(A.23)

In writing the argument of ã we have neglected contributions of order x2
1,1 as they do not

contribute to the integral in the first two leading orders. The ratio ε̄/k̄ is the following

ε̄

k̄
=

∑

x i, jε
′
j(λi, j)/k′j(λi, j) + x1,1ε

′
1(µ−α1,1/2)/k′1(µ))

∑

x i, j + x1,1k′1(µ−α1,1/2)/k′1(µ)
, (A.24)

with α1,1 = kr x1,1/k
′
1(µ). Thus, at the leading order in kr it is kr independent and invariant

under simultaneous change of sign of all the x i, j . As a result, the integral over all the x i, j ’s
vanishes. The leading contribution comes then from including the correction due to α1,1.
Therefore, the whole contribution to the scattering integral is of the order kn+m

r as stated in
the main text.

B Absence of non-thermal stationary states beyond the small mo-
mentum limit

In the main body of the text we demonstrated that if the dynamics of the two tubes of gas
are controlled by (1,1) processes in the small momentum limit, a prethermalization plateau
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is arrived at that is characterized by a set of non-trivial conservation laws. In this appendix,
we argue that this is in general a special case, that if we consider (1,1) processes outside a
small momentum approximation, thermalization occurs. We note up front that there are two
exceptions to this general rule:

• The Tonks-Girardeau (TG) limit. The thermalization that occurs due to the higher mo-
mentum (1,1) processes happens because of non-linearities in the dispersion relation
induced by interactions. But at c =∞ these interactions are absent and the argument
for a non-trivial prethermalization plateau continues to hold even if higher momentum
processes are accounted for. Moreover we can conclude that TG gases do not thermalize
at all as higher-order ph processes are absent. Though we have broken the integrabil-
ity at the level of a single tube, new exact integrals of motion have appeared for the
two-tube case.

• The two gases are identical. In this case the (1, 1) processes induces no dynamics what-
soever and the gas does not evolve. Thermalization however will still happen on account
of higher order (n, m) processes.

We will comment on these two special cases further.
So let us turn to (1,1) processes at arbitrary momentum. The condition for the stationary

state, Q(1,1)
0 = 0, translates to demanding that

ε1(p1)− ε1(h1) + ε2(p2)− ε2(h2) = 0 , (B.1)

for all p1, h1, p2, h2 fulfilling the momentum-energy constraints

k1(p1)− k1(h1) + k2(p2)− k2(h2) = 0 ,

ω1(p1)−ω1(h1) +ω2(p2)−ω2(h2) = 0 .
(B.2)

Here functions ki(λ) and ωi(λ) are determined from the εi(λ) through the TBA equations.
We start by analyzing the structure of Eqns. (B.1) and (B.2).

The constraints (B.2) can be solved for p1 and h1. We assume that the solution is unique
and takes the form p1 = f (p2, h2) and h1 = g(p2, h2) for two functions f and g. Because
of the symmetry of the constraints upon replacing particles with holes the two functions are
not independent and we have g(p2, h2) = f (h2, p2). Therefore, a generic solution to the
constraints can be written as

p1 = f (p2, h2) , h1 = f (h2, p2) . (B.3)

We define now a function F(p2, h2),

F(p2, h2)≡ ε1( f (p2, h2))− ε1( f (h2, p2)) . (B.4)

The condition (B.1) for the stationary state in these terms is simply

F(p2, h2) = ε2(p2)− ε2(h2) . (B.5)

To obtain a general solution here we assume that f (p2, h2) is independent of one of its vari-
ables, which we choose to be p2. This simplifies the structure of F to

F(p2, h2) = ε1( f (h2))− ε1( f (p2)) . (B.6)

The equation for the stationary states separates now in two parts depending only on p2 and
h2 respectively. This leads to two independent equations of the same form which fixes the
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relation between ε1 and ε2 up to an additive constant which is just a difference of chemical
potentials. The result is

ε1( f (λ)) = ε2(λ) +µ1 −µ2 . (B.7)

The function f (λ) by construction satisfies

k1( f (p2))− k1( f (h2)) + k2(p2)− k2(h2) = 0 , (B.8)

ω1( f (p2))−ω1( f (h2)) +ω2(p2)−ω2(h2) = 0 . (B.9)

Assuming the monotonicity of the dressed momenta ki , it is straightforward to solve the first
equation for f . The result is f = k−1

1 ◦ k2. The second equation provides now a constraint
between the functions ki and ωi themselves. It reads

ω2 ◦ k−1
2 =ω1 ◦ k−1

1 . (B.10)

Putting it all together we find the following set of equations

ε1 ◦ k−1
1 (p)−µ1 = ε2(p) ◦ k−1

2 (p)−µ2 ,

ω1 ◦ k−1
1 (p) =ω2 ◦ k−1

2 (p) .
(B.11)

This is a sought after rewriting of equations (B.1) and (B.2). For a given function ε2, the TBA
equations determine k2 and ω2. Thus the right hand sides of the above two equations are
known. The equations then have to be solved for ε1 such that TBA integral equations defining
k1 and ω1 in terms of ε1 are self-consistent.

We show now three special cases where we can solve the above:

• Thermal states: For a thermal state in the second tube, ε2(λ) = µ2+βω2(λ), we have a
chain of following transformations

ε1 ◦ k−1
1 (p)−µ1 = ε2 ◦ k−1

2 (p)−µ2 (B.12)

= βω2 ◦ k−1
2 (p) (B.13)

= βω1 ◦ k−1
1 (p) . (B.14)

Therefore the solution is ε1(λ) = µ1+βω1(λ) and we know that this choice is consistent
with the TBA integrals defining ω1 and k1.

• Identical gases in identical states: If the two tubes of gas are identical in all respects,
then any choice of ε1 = ε2 (both thermal and athermal) satisfies the above conditions.
Because k1 = k2 and ω1 = ω2, any scattering process must have p1 = h2 and p2 = h1.
By symmetry under exchange of particles and holes, Q1,1 vanishes identically and at this
order, the gas does not evolve from its initial state.

• Tonks-Girardeau gas: When both tubes are in the strongly interacting limit, ci =∞, then
there is no dressing and the second equality in (B.11) is trivially fulfilled. At the same
time the first equations simplifies to ε1(λ)− µ1 = ε2(λ)− µ2. Therefore the stationary
state is given by the pseudo-energies equal up to the chemical potentials which can be
different in both tubes.

We cannot prove that other solutions are impossible, but we were unable to find additional
possibilities. Therefore we expect that in general the higher momentum contributions to the
(1, 1) processes lead to the thermalization of the system.
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Further support of this contention is provided by considering an expansion of the stationary
state condition in the momentum transferred between the states. To this end we expand
eqs. (B.1) and (B.2) in αi = pi − hi . At leading order we obtain the following constraint:

v1(λ1) = v2(λ2) ,

ε′1(λ1) =
k′1(λ1)

k′2(λ2)
ε′2(λ2) ,

(B.15)

where λi =
1
2(pi +hi). We already know that these constraints admit solutions that are ather-

mal. This was our main result in the main body of the text. At next order in αi , O(α3
i ), we

obtain additional constraints that need to be satisfied for stationarity:

v2(λ1) =

�

1−
k′1(λ1)3

k′2(λ2)3
k′′′2 (λ2)

k′′′1 (λ1)

�−1�
ω′′′1 (λ1)

k′′′1 (λ1)
−

k′1(λ1)3

k′2(λ2)3
ω′′′2 (λ2)

k′′′1 (λ1)

�

,

ε′′′1 (λ1) =

�

k′′′1 (λ1)

k′2(λ2)
−

k′1(λ1)3

k′2(λ2)4
k′′′2 (λ2)

�

ε′2(λ2) +
k′1(λ1)3

k′2(λ2)3
ε′′′2 (λ2) .

(B.16)

It seems unlikely that both constraints (B.15) and (B.16) can be satisfied simultaneously,
beyond the specialized circumstances discussed above. A similar line of reasoning may be
straightforwardly extended to processes involving more ph pairs.

C Tonks-Girardeau gas

In this Appendix we study in details the Boltzmann equation for the Tonks-Girardeau gas,
c → ∞. In this limit the (1,1) processes are the only processes because the form-factors
with larger number of particle-hole pairs vanish. Also in this limit the dressings are absent
what significantly reduces the complexity of the problem and allows us to write the scattering
integral in a simple form.

We start with (29) adopted to (1,1) processes. Using that in the Tonks-Girardeau (TG) gas
the form-factors of single particle-hole excitations are identically 1 we obtain

Q(1,1)[12](λ) = (2π)2
∫

dp1dh1dp2dh2δ(λ− p1)Ã
2
�

k1(p1, h1)
�

×δ
�

k1(p1, h1) + k2(p2, h2)
�

δ
�

ω1(p1, h1) +ω2(p2, h2)
�

× (J1(p1, h1)J2(p2, h2)− J1(h1, p1)J2(h2, p2)) , (C.1)

In this and next Appendix we shorten the notation from Q(1,1)[ρp,1,ρp,2] to Q(1,1)[12]. The mo-
mentum and energy in TG gas are given by k(λ) = λ and ω(λ) = λ2 respectively. This allows
us to solve the kinematic constraint k(p1, h1)+ k(p2, h2) = 0 and ω(p1, h1)+ω(p2, h2) = 0. In
terms of the center-of-mass rapidities λi = (pi + hi)/2 and αi = pi − hi we find

δ(k(p1, h1) + k(p2, h2))δ(ω(p1, h1) +ω(p2, h2)) =
δ(α1 +α2)δ(λ1 −λ2)

2αi
. (C.2)

The Jacobian of transformation from (pi , hi) to (λi ,αi) is 1 and the collision integral, after
evaluating integrals over λ2 and α2 with the help of the Dirac δ-functions, becomes

Q(1,1)
0 [12](λ) = (2π)2

∫

dλ1dα1δ(λ−p1)
Ã2
�

α1

�

2|α1|
(J1(p1, h1)J2(p2, h2)−J1(h1, p1)J2(h2, p2)) .

(C.3)
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Evaluating now the integral over λ1 and dropping the index of α1 gives

Q(1,1)[12](λ) = (2π)2
∫

dα (J1(λ,λ−α)J2(λ−α,λ)− J1(λ+α,λ)J2(λ,λ+α))
Ã2
�

α
�

2|α|
.

(C.4)
This is the final expression for the collision integral in the TG gas. It shows that the dynamics
is driven by the difference in particles distributions with the rate controlled by the coupling
potential.

The collision integral Q(1,1)[21](λ) for the second tube comes from exchanging the indices
1 and 2 and Q(1,1)[21](λ) = −Q(1,1)[12](λ). This implies that the following combination

∫

dλ
�

ρp,1(λ) +ρp,2(λ)
�

f (λ) , (C.5)

is a conserved charge for any f (λ) such that the integral exists.
We can also find the stationary state. From Eqn. (C.3) the condition is

J1(λ,λ−α)J2(λ−α,λ)− J1(λ−α,λ)J2(λ,λ−α) = 0 , (C.6)

which gives ε1(λ) = ε2(λ) + const in agreement with Eqn. (59) from the main text.
In the limit of small momentum transfer between the tubes, the collision integral can be

further evaluated by expanding the integrand in α. The density factors have the following
small α expansion

Ji(λ+α,λ) = ρp,i(λ)ρh,i(λ)

�

1+
ρ′h,i(λ)

ρh,i(λ)
α+

1
2

ρ′′h,i(λ)

ρh,i(λ)
α2

�

, (C.7)

Ji(λ,λ+α) = ρp,i(λ)ρh,i(λ)

�

1+
ρ′p,i(λ)

ρp,i(λ)
α+

1
2

ρ′′p,i(λ)

ρp,i(λ)
α2

�

. (C.8)

After substituting these expansions, we find that the leading term vanishes identically under
the integral while the term linear in α vanishes after integrating over α (Ã(α) is an even
function). Therefore, the leading contribution comes from order α2 and is given by

Q(1,1)
0 [12](λ) = (2π)2

 

∏

i=1,2

ρp,i(λ)ρh,i(λ)

!

G1,2(λ)

∫

dα
|α|Ã2

�

α
�

4
, (C.9)

with

G1,2(λ) =
ρ′′p,1(λ)

ρp,1(λ)
−
ρ′′h,1(λ)

ρh,1(λ)
−
ρ′′p,2(λ)

ρp,2(λ)
+
ρ′′h,2(λ)

ρh,2(λ)
+ 2

�

ρ′p,1(λ)ρ
′
h,2(λ)

ρp,1(λ)ρh,2(λ)
−
ρ′h,1(λ)ρ

′
p,2(λ)

ρh,1(λ)ρp,2(λ)

�

.

(C.10)

We can now extract the kr dependence of the collision integral. We write Ã(α) = ã(α/kr)
according to Eqn. (21) and change the integration variable to find that Q(1,1)

0 [12](λ) ∼ k2
r in

agreement with the general result presented in Appendix A.

D Deformed Tonks-Girardeau gas

In this Appendix we consider the deformed Tonks-Girardeau, the c →∞ limit in which we
keep terms 1/c up to and including order 1/c2. In practice, we will keep also terms of higher
orders. This will be useful for Appendix E to illustrate a qualitative difference between the
deformed Tonks-Girardeau gas and systems with weaker interactions.
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TBA for the deformed Tonks-Girardeau gas

We start with the relation between the filling function n(θ ) and the particles’ density ρp(λ).
First, we use the defining relation (2) between ρp(λ) and ρt(λ),

ρt(λ) =
1

2π
+

∫

dµT (λ−µ)ρp(µ) . (D.1)

The kernel T (λ−µ), defined in Eqn. (3), in the large c limit expands to

T (λ−µ) =
1
πc

�

1−
�

λ−µ
c

�2

+
�

λ−µ
c

�4�

+O
�

1/c7
�

. (D.2)

Substituting this expansion in Eqn. (D.1) and integrating term by term gives

ρt(λ) =
1

2π

�

1+
2n
c
−

2
c3

�

λ2n+ e
�

+
2
c5

�

λ4n+ 6λ2e+ q4

�

+O
�

1/c7
�

�

, (D.3)

where we defined

qi =

∫

dµµiρp(µ) , (D.4)

with n= q0 and e = q2. The filling function then follows

n(λ) =
ρp(λ)

ρt(λ)
= 2πρp(λ)

�

1−
2n
c
+

4n2

c2
+

2(nλ2 + e− 4n3)
c3

+O
�

1/c4
�

�

. (D.5)

Consider now the back-flow function. It obeys the following equation (we reproduce here
Eqn. (10))

F(λ|µ) =
θ (λ−µ)

2π
+

∫

dλ′T (λ−λ′)n(λ′)F(λ′|µ) , (D.6)

and in the large c expansion can be solved iteratively. This procedure yields

F(λ|µ) =
λ−µ
πc
−
(λ−µ)3

3πc3
−

µ

(πc)2

∫

dλ′n(λ′)

�

1+
1
πc

∫

dλ′n(λ′)

�

+O
�

1/c4
�

. (D.7)

The integrals over the filling function can be evaluated. We will need only the first two leading
corrections

∫

dλn(λ) = 2πn

�

1−
2n
c
+

4n2

c2

�

+O
�

1/c3
�

. (D.8)

With this expression the back-flow function simplifies to

F(λ|µ) =
λ−µ
πc
−

2nµ
πc2
−
(λ−µ)3

3πc3
+O

�

1/c4
�

. (D.9)

With the knowledge of the back-flow function we can now compute the Dressed momen-
tum and energy. We recall the formulas (9a) and (9b) from which we obtain

k(λ) = λ
�

1+
2n
c

�

−
2λ
c3

�

λ2n
3
+ e

�

+O
�

1/c4
�

, (D.10)

ω(λ) = λ2
�

1+
4e
c3

�

+ const+O
�

1/c4
�

. (D.11)
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The final ingredient of the TBA that we need is the dressing operation. This is defined in
Eqn. (12). Expanding again the kernel produces

fdr(λ) = f (λ) +
1
πc

∫

dµ

�

1−
�

λ−µ
c

�2

+
�

λ−µ
c

�4

+ . . .

�

n(µ) fdr(µ) , (D.12)

which is solved by

fdr(λ) = f (λ) +
1
πc

∫

dµn(µ) f (µ)

1− 1
πc

∫

dµn(µ)
−

1
πc3

∫

dµ (λ−µ)2n(µ) f (µ) +O
�

1/c5
�

. (D.13)

Expressing now the filling function n(λ) by ρp(λ) using Eqn (D.5), we find the final formula

fdr(λ) = f (λ) +
2
c

∫

dµρp(µ) f (µ)−
2
c3

∫

dµ(λ−µ)2ρp(µ) f (µ) +O
�

1/c4
�

. (D.14)

This result implies the following expansions for k′ = (1)dr and ω′ = (2λ)dr,

k′(λ) = 1+
2n
c
−

2
c3

�

λ2n+ e
�

+O
�

1/c4
�

, (D.15)

ω′(λ) = 2λ
�

1+
4e
c3
+O

�

1/c4
�

�

, (D.16)

which are in agreement with (D.10) and (D.11). The effective velocity then follows

v(λ) =
ω′(λ)
k′(λ)

= 2λ

�

1−
2n
c
+

4n2

c2
+

2nλ2 + 6e− 8n3

c3
+O

�

1/c4
�

�

. (D.17)

Here, we summarize the formulas for the deformed Tonks-Girardeau gas which will be
important in the computation of the collision integral. For the deformed Tonks-Girardeau gas
(neglecting contributions of order 1/c3 and higher) we find

k(λ) = ξkTG(λ) , (D.18)

ω(λ) =ωTG(λ) + const, (D.19)

where we defined

ξ= 1+
2n
c

. (D.20)

We also note that the back-flow function of the deformed Tonks-Girardeau gas has a simple
form

F(λ|µ) =
λ− ξµ
πc

+O
�

1/c3
�

. (D.21)

Collision integral

We compute now the collision integral for (1,1) processes in the deformed Tonks-Girardeau
gas. This means including the corrections of order 1/c2

i . However, the computations simplify
and their structure is more apparent if we include also contributions of higher orders. Specif-
ically, we will often write ξ−1

i and not expand it. This results in expressions that formally
contain contributions of higher orders but are correct only up to and including orders 1/c2

i .
We define the rescaled center-of-mass coordinates

pi = ξiλi +αi/(2ξi) , hi = ξiλi −αi/(2ξi) . (D.22)

31

https://scipost.org
https://scipost.org/SciPostPhys.17.1.007


SciPost Phys. 17, 007 (2024)

The Jacobian of transformation from (pi , hi) to (λi ,αi) is 1. We express now the kinematic
constraint appearing in the collision integral in terms of these new coordinates. To this end,
we use (D.18) and (D.19) to find

δ
�

k1(p1, h1) + k2(p2, h2)
�

δ
�

ω1(p1, h1) +ω2(p2, h2)
�

=
δ(α1 +α2)δ(λ1 −λ2)

2|α1|
. (D.23)

We will use this expression in the formula for Q(1,1)
0 [12](λ) which for the convenience we

repeat here

Q(1,1)[12](λ) = (2π)2
∫

dp1dh1dp2dh2δ(λ− p1)Ã
2
�

k1(p1, h1)
�

|F(p1, h1)|2|F(p2, h2)|2

×δ
�

k1(p1, h1) + k2(p2, h2)
�

δ
�

ω1(p1, h1) +ω2(p2, h2)
�

× (J1(p1, h1)J2(p2, h2)− J1(h1, p1)J2(h2, p2)) . (D.24)

Changing the integration variables from (pi , hi) to (λi ,αi) and performing the integrals over
λ2 and α2, with the help of the δ-functions from the kinematic constraints, sets λ2 = λ1 and
α2 = −α1. The result is

Q(1,1)
0 [12](λ) = (2π)2

∫

dλ1dα1δ(λ− p1)
Ã2
�

α1

�

2|α1|
|F(p1, h1)|2|F(p2, h2)|2

× (J1(p1, h1)J2(p2, h2)− J1(h1, p1)J2(h2, p2)) +O
�

1/c3
i

�

, (D.25)

with
p1 = ξ1λ1 +α1/(2ξ1) , h1 = ξ1λ1 −α1/(2ξ1) ,

p2 = ξ2λ1 −α1/(2ξ2) , h2 = ξ2λ1 +α1/(2ξ2) .
(D.26)

The analysis simplifies if we evaluate the collision integral at ξ1λ instead of λ. We resolve
then the remaining Dirac δ-function with the result

Q(1,1)
0 [12](ξ1λ) = (2π)

2ξ−1
1

∫

dα
Ã2
�

α
�

2|α|
|F(p1, h1)|2|F(p2, h2)|2

× (J1(p1, h1)J2(p2, h2)− J1(h1, p1)J2(h2, p2)) +O
�

1/c3
i

�

,
(D.27)

where
p1 = ξ1λ , h1 = ξ1λ−α/ξ1 ,

p2 = ξ2λ−
�

ξ1

ξ2
+
ξ2

ξ1

�

α

2ξ1
, h2 = ξ2λ+

�

ξ1

ξ2
−
ξ2

ξ1

�

α

2ξ1
.

(D.28)

This is the final formula for the collision integral in the deformed Tonks-Girardeau gas valid
at any momentum transfer between the tubes.

We can compute now the approximated collision integral valid at small momenta trans-
fer between the tubes by expanding the integrand in small α. The computations are sim-
ilar to the ones in the Tonks-Girardeau gas. The extra ingredient is the form factor which
we first approximate in the small momentum limit by F(p, h) = k′(λ) +O(α2) and then use
k′(λ) = ξ+O

�

1/c3
�

. Thus, the only effect of the form-factor is in rescaling of Q(1,1)
0 [12](λ)

by factor ξ2
1ξ

2
2. The final answer is

Q(1,1)
0 [12](ξ1λ) = (2π)

2ξ−1
1 ξ

2
2

 

∏

i=1,2

ρp,i(ξiλ)ρh,i(ξiλ)

!

G1,2(ξ1λ)

∫

dα
|α|Ã2

�

α
�

4
+O

�

1/c3
i

�

,

(D.29)
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with

G1,2(ξ1λ) =
ρ′′p,1(ξ1λ)

ρp,1(ξ1λ)
−
ρ′′h,1(ξ1λ)

ρh,1(ξ1λ)
−
ρ′′p,2(ξ2λ)

ρp,2(ξ2λ)
+
ρ′′h,2(ξ2λ)

ρh,2(ξ2λ)

+
�

ξ1

ξ2
+
ξ2

ξ1

�

�

ρ′p,1(ξ1λ)ρ′h,2(ξ2λ)

ρp,1(ξ1λ)ρh,2(ξ2λ)
−
ρ′h,1(ξ1λ)ρ′p,2(ξ2λ)

ρh,1(ξ1λ)ρp,2(ξ2λ)

�

+
�

ξ1

ξ2
−
ξ2

ξ1

�

�

ρ′p,1(ξ1λ)ρ′p,2(ξ2λ)

ρp,1(ξ1λ)ρp,2(ξ2λ)
−
ρ′h,1(ξ1λ)ρ′h,2(ξ2λ)

ρh,1(ξ1λ)ρh,2(ξ2λ)

�

. (D.30)

We observe the symmetry G1,2(ξ1λ) = −G2,1(ξ2λ), which implies that

ξ3
1Q(1,1)

0 [12](ξ1λ) = −ξ3
2Q(1,1)

0 [21](ξ2λ) +O
�

1/c3
i

�

. (D.31)

In the deformed Tonks-Girardeau gas to compute the collision integral we need to include
the effect of the Dressing. The Dressing of the collision integral is given by the action of the
operator, see Eqn. (17),

Fi(λ,µ) = δ(λ−µ) + ∂λ(ni(λ)Fi(λ|µ)) . (D.32)

In the deformed Tonks-Girardeau gas it becomes

Fi(λ,µ) = δ(λ−µ) +
1
πc
∂λ(λni(λ))−

2µ
c
∂λρp(λ) +O

�

1/c3
�

. (D.33)

The dressed scattering integral is then

Q(1,1)[12](λ) = (F ·Q0)(λ) =Q(1,1)
0 [12](λ) +Q(1,1)

1 [12](λ) +O
�

1/c3
i

�

, (D.34)

with

Q(1,1)
1 [12](λ) =

1
πc
∂λ(λni(λ))

∫

dµQ(1,1)
0 [12](µ)− ∂λρp,1(λ)

2
c1

∫

dµµQ(1,1)
0 [12](µ) .

(D.35)
The first integral is 0 which reflects the conservation of the total particle number, see Eqn. (42).

Conserved charges

Consider now a candidate for an integral of motion,

I =
∫

dλ
�

f1(λ)ρp,1(λ) + f2(λ)ρp,2(λ)
�

, (D.36)

with fi(λ) an even function, otherwise the integral is identically zero. The time evolution of
I has two contributions. The contribution from the bare collision integral Q0 is

İdirect =

∫

dλ ( f1(λ)Q0[12](λ) + f2(λ)Q0[21](λ)) . (D.37)

We change the integration variable to λ = ξ1λ̄ in the contribution from the first tube and to
λ= ξ2λ̄ in the contribution from the second tube. We obtain

İdirect =

∫

dλ̄
�

ξ1 f1(ξ1λ̄)Q0[12](ξ1λ̄) + ξ2 f2(ξ2λ̄)Q0[21](ξ2λ̄)
�

. (D.38)
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Using the symmetry (D.31) of the collision integral we find the following condition for J̇0 = 0,

ξ−2
1 f1(ξ1λ̄) = ξ

−2
2 f2(ξ2λ̄) . (D.39)

This implies that for arbitrary n≥ 2

fi(λ) = ξ
−n+2
i λn , (D.40)

gives a quantity that does not evolve under the bare collision integral.
The second contribution to Q̇ comes from the indirect collision integral Q1[12],

İindirect =

∫

dλ

�

f ′1(λ)ρp,1(λ)
2
c1

∫

dµµQ0[12](µ) + f ′2(λ)ρp,2(λ)
2
c2

∫

dµµQ0[21](µ)

�

.

(D.41)
This contribution vanishes because ρp,i(λ) are even function whereas f ′i (λ) is odd.

Stationary state

We consider now the equation for the stationary state. It takes the universal form, valid for
any value of the interaction parameters,

ε′1(λ1)

ω′1(λ1)
−
ε′2(λ2)

ω′2(λ2)
= 0 , v1(λ1) = v2(λ2) . (D.42)

We start by solving v1(λ1) = v2(λ2).
We use the large c expansion of the effective velocity given in (D.17). This results in the

following equation
ξ−1

1 λ1 = ξ
−1
2 λ2 , (D.43)

We can now solve for ε′2(λ2). The result is

ε′2(λ2) = ε
′
1(ξ1ξ

−1
2 λ2)

ω′2(λ2)

ω′1(ξ1ξ
−1
2 λ2)

= ξ−1
1 ξ2ε

′
1(ξ1ξ

−1
2 λ2) , (D.44)

where in the second step we used that ω′(λ) = 2λ in the deformed Tonks-Girardeau gas. The
resulting equation can be presented in a more symmetric way as

ξ−1
2 ε
′
2(ξ2λ) = ξ

−1
1 ε
′
1 (ξ1λ) . (D.45)

E Stationary states and the possibility of conserved charges be-
yond the deformed Tonks-Girardeau gas

In this Appendix we construct solutions to the stationary state equation in the 1/c expansion
that go beyond the deformed Tonks-Girardeau limit by including corrections of order O

�

1/c3
�

.
We, similarly, attempt the construction of the conserved charges to order O

�

1/c3
�

. Here,
however, we show that it is not possible in our framework to find solutions to this order.

Stationary state

We start with the stationary state equation. We use the large c expansion of the effective
velocity given in (D.17). This results in the following equation

ξ−1
1 λ1(1+ 3A1 + B1λ

2
1) = ξ

−1
2 λ2

�

1+ 3A2 + B2λ
2
2

�

, (E.1)
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where

Ai =
2ei

c3
i

, Bi =
2ni

c3
i

. (E.2)

Its perturbative solution is

λ1 =
ξ1

ξ2
λ2

�

1+ 3(A2 − A1) +λ
2
2(B2 − B1)

�

+O
�

1/c4
i

�

. (E.3)

We can now solve for ε′2(λ2). The result is

ε′2(λ2) = ε
′
1(λ1(λ2))

ω′2(λ2)

ω′1(λ1(λ2))
. (E.4)

The ratio of the energies, using Eqn. (D.16), becomes

ω′2(λ2)

ω′1(λ1(λ2))
=
ξ2

ξ1

�

1+ A1 − A2 + (B1 − B2)λ
2
2

�

. (E.5)

We find

ε′2(λ2) =
ξ2

ξ1
ε′1

�

ξ1

ξ2
λ2

�

+ 2

�

e1

c3
1

−
e2

c3
2

+

�

n1

c3
1

−
n2

c3
2

�

λ2
2

�

�

ε′1(λ2)−λ2ε
′′
1 (λ2)

�

− 4

�

e1

c3
1

−
e2

c3
2

�

λ2ε
′′
1 (λ2) , (E.6)

where we kept the ratio ξ1/ξ2 to simplify the formula. This expression for ε′2(λ2) has to
be complemented with expressions for n2 and e2. Together with a chemical potential of the
second tube (which is a free parameter) they form a closed system that has to be solved.

Conserved charges

We turn now our attention to conserved charges. As discussed in the main text, the relevant
equation is

( f ′1)dr,1(λ1)

ω′1(λ1)
−
( f ′2)dr,2(λ2)

ω′2(λ2)
= 0 , v1(λ1) = v2(λ2) . (E.7)

This equation has the same structure as the stationary state equation. Therefore, we can
immediately write down the solution

( f ′2)dr,2(λ2) =
ξ2

ξ1
( f ′1)dr,1

�

ξ1

ξ2
λ2

�

+ 2

�

e1

c3
1

−
e2

c3
2

+

�

n1

c3
1

−
n2

c3
2

�

λ2
2

�

�

f ′1(λ2)−λ2 f ′′1 (λ2)
�

− 4

�

e1

c3
1

−
e2

c3
2

�

λ2 f ′′1 (λ2) +O
�

1/c4
i

�

. (E.8)

Note that in writing the terms of order 1/c3
i we have neglected the dressing as its effect for

those terms is of order 1/c4
i . Unlike for the stationary state, this equation has to be fulfilled

at every time. However while the state of the system evolves so do the densities ρp,i(λ) and
hence the dressings change. Therefore, it is not clear whether we can find time-independent
functions fi(λ) such that this equation holds. To verify this as a first step we rewrite it in terms
of the bare quantities. To simplify the considerations we assume that f1(λ) is an even function.
Then, according to Eqn. (D.14),

( f ′1)dr,1(λ) = f ′1(λ) +
4〈 f ′1〉1λ

c3
1

+O
�

1/c5
1

�

, 〈 f 〉i =
∫

dµρp,i(µ)µ f (µ) . (E.9)
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We note that the inverse operation is simply

f ′1(λ) = ( f
′

1)dr,1(λ)−
4〈( f ′1)dr,1〉1λ

c3
1

+O
�

1/c5
1

�

. (E.10)

We can now express ( f ′2)dr,2 in terms of bare f ′1 . The result is

( f ′2)dr,2(λ2) =
ξ2

ξ1
f ′1

�

ξ1

ξ2
λ2

�

+
4λ2〈 f ′1〉1

c3
1

− 4

�

e1

c3
1

−
e2

c3
2

�

λ2 f ′′1 (λ2)

+ 2

�

e1

c3
1

−
e2

c3
2

+

�

n1

c3
1

−
n2

c3
2

�

λ2
2

�

�

f ′1(λ2)−λ2 f ′′1 (λ2)
�

. (E.11)

We observe that ( f ′2)dr,2 is an odd function of λ2. Finally we need to undress it to find bare f ′2 .
To achieve this we use the inverse operation (E.10)

f ′2(λ2) =
ξ2

ξ1
f ′1

�

ξ1

ξ2
λ2

�

+ 4λ2

�

〈 f ′1〉1
c3
1

−
〈 f ′1〉2

c3
2

�

− 4

�

e1

c3
1

−
e2

c3
2

�

λ2 f ′′1 (λ2)

+ 2

�

e1

c3
1

−
e2

c3
2

+

�

n1

c3
1

−
n2

c3
2

�

λ2
2

�

�

f ′1(λ2)−λ2 f ′′1 (λ2)
�

. (E.12)

We can check whether this formula works for the total energy, which is always a conserved
charge. Choosing f1(λ) = λ2 we observe that the second line vanishes. In the same time
〈 f ′1〉1 = 2e1 and 〈 f ′1〉2 = 2e2. This makes the second and the third term of the first line cancel
out. We correctly find f ′2(λ2) = 2λ2.

For this equation to determine a conserved charge, the right hand side must be independent
of time when ρp,i evolves according to the Boltzmann equation. The densities ni are conserved
and therefore the time dependence enters only at order 1/c3

i through ei and 〈 f ′1〉i . The time
dependent part is

4λ2

�

〈 f ′1〉1
c3
1

−
〈 f ′1〉2

c3
2

�

+ 2

�

e1

c3
1

−
e2

c3
2

�

�

f ′1(λ2)− 3λ2 f ′′1 (λ2)
�

. (E.13)

It is a function of λ2 and t. The time dependence enters through the averages 〈·〉i and through
the ei which are not conserved individually (only the total energy e1 + e2 is conserved). For
this combination to vanish there are two options. First, fi(λ) are constant functions - this
corresponds to the total density which indeed is conserved. Second, f ′1(λ2)−3λ2 f ′′1 (λ2)must
be a linear function of λ2. This leads us again to the total energy. There are no other solutions
and we conclude that beyond order 1/c2 it is not possible to find solutions to (E.7).
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