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Abstract

We diagonalize the 8-band Kane Hamiltonian with a proper inclusion of the interband
matrix elements of the scalar and vector potentials. This leads, among other results, to
a modification of the conventional expression for the spin-orbit coupling (SOC) strength
in narrow-gap semiconductors with the zinc blende symmetry. We find that in GaAs, at
low temperatures, the correct expression for the SOC strength is actually twice as large
as usually considered. In InSb it is 1.76 times larger. We also provide a proper treatment
of the interband matrix elements of the position operator. We show that the velocity
operator in a crystal should be defined as a time-derivative of a fictitious position oper-
ator rather than the physical one. We compute the expressions for both these position
operators projected to the conduction band of the 8-band Kane model. We also derive
an expression for the projected velocity operator and demonstrate that the SOC strength
in it differs from the SOC strength in the Hamiltonian. The ratio between them is not
equal to 1, as it is often assumed for the Rashba model. It does not equal 2 either. The
correct result for this ratio is given by a rational function of the parameters of the model.
This function takes values between 4(23+ 3

p
2)/73 ≈ 1.49 and 2. Our findings modify

a vast number of research results obtained using the Rashba model and provide a path
for consistent treatment of the latter in future applications.
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1 Introduction

Using low-energy models that take into account just a few most relevant bands of a solid is
often sufficient to accurately describe transport, optical properties, and strain effects [1, 2].
Essential features of conceptually nontrivial systems such as topological insulators, are, in
principle, captured [3] by the 6-band Luttinger-Kohn Hamiltonian [4] and generalizations [5]
of the 8-band Kane model [6]. In graphene, only two bands are retained from the full band
structure [7].

One of the most widely used approaches to derive low-energy models for solids is the k · p
method [2,4,6,8,9] supplemented with the envelope function approximation (EFA) [2,4,10–
13]. The latter enables the inclusion of effects of external electric and magnetic fields that
break the translational symmetry of the crystal. The Luttinger-Kohn Hamiltonian, the 8-band
Kane model, and different extended versions of the latter are all obtained with this approach.
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In the k · p paradigm, bands of a solid are coupled for finite values of the quasimomen-
tum k.1 It is often convenient to decouple them from each other by a transformation that
eliminates the corresponding interband matrix elements of the Hamiltonian. In the 8-band
Kane model, this is done in order to derive an effective Hamiltonian for the conduction band.
The three closest valence bands of the same model can also be described by a similarly “de-
coupled” Hamiltonian, but one needs to additionally take into account effects of some distant
bands.2 This actually results in the Luttinger-Kohn Hamiltonian.

Such a decoupling of bands in solids is, in fact, very similar [14] to the decoupling of elec-
trons and positrons in the relativistic theory that one performs to derive the Pauli Hamiltonian
from the Dirac Hamiltonian in vacuum. Based on this similarity, analogs of fully relativistic
effects, such as the Zitterbewegung, have been predicted to occur also in semiconductors [15].
Likewise, spin-orbit coupling (SOC) in narrow-gap semiconductors emerges in the same way
as it does in vacuum when one removes positrons by a unitary transformation. [14].

There exists however an important difference between the decoupling of bands in crystals
and in the Dirac theory. In the latter, the spinor basis consists of four elements: two for elec-
trons, and two for positrons. To project an operator or a state to an element of this basis, only
the matrix product operation is required. In a crystal this is not the case because projection to
a particular band includes a real space integration over the unit cell. As a result of the integra-
tion, position-dependent operators, e.g. the position operator itself, acquire finite interband
matrix elements (dipole moments) [16,17]. In the Dirac theory, they do not.

One of the spatial-dependent objects with nonzero interband matrix elements of this origin
is the scalar potential V (r ). If we consider its matrix element between two cell-periodic func-
tions of the s and p atomic symmetry respectively, we will see that such an element is finite
and, moreover, that it is linearly dependent on the gradient of V (r ), e. g.

〈S | V | X 〉= (∂ V/∂ x)〈S | x | X 〉 ̸= 0 . (1)

Here the scalar product 〈. . . 〉 denotes an integral over the unit cell. In Eq. (1), we have disre-
garded higher derivatives of the potential. Thus, the first derivative can be computed at any
point within the cell. The gradient ∂ V/∂ r ≡∇V is a very important quantity, for example in
systems with structural inversion asymmetry, in which it determines the effective SOC of the
Rashba type [14,18]. The latter in turn contributes to the anomalous Hall effect, the spin Hall
effect, and other effects originating from SOC [19].

In the 8-band Kane model, the effective SOC contribution to the Hamiltonian is propor-
tional to the gradient∇V of the scalar potential and is commonly considered to originate solely
from its intraband matrix elements [20]. At the same time, the interband matrix elements of
V that, according to Eq. (1), are also proportional to∇V are completely ignored in most treat-
ments of the 8-band Kane model (see, e.g. Refs. [2, 14, 21]). In a recent work [22], effects
of the interband matrix elements on the effective SOC were studied using first principles for
valence bands in GaAs. Here, we develop an analytical theory for the effective SOC that in-
cludes contributions from both the intraband and the interband matrix elements of the scalar
potential. We use the 8-band Kane model as an example, but the idea is general and extends
to other models. In what follows, we refer to our example model as “the Kane model”.

We also derive an expression for the velocity operator v (c) of the conduction (c) band in
the Kane model, taking into account the interband matrix elements of the scalar potential in
addition to the usually considered intraband ones. We compare the SOC-induced contribution
to v (c) that is proportional to∇V with the similar contribution to the Hamiltonian. It turns out
that, because of the interband matrix elements of the scalar potential, these two contributions

1Or the envelope functions momentum.
2Otherwise the effective mass for the heavy-hole band has an incorrect sign.
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are determined by two different SOC strengths.3 Thus, for example, in the Rashba model [23]
one cannot quantify the Rashba contributions to the Hamiltonian and to the velocity operator
by a single constant αR.

Moreover, as we demonstrate in this paper, one cannot even define the velocity operator
as a commutator of the physical position operator and the Hamiltonian, once the full band
structure has been replaced by a finite number of bands. There is however a workaround to
this issue, at least in certain cases. By defining a fictitious position operator r as the one that
forms a canonical pair with the operator k in EFA, one can still define velocity by commuting
r with the Hamiltonian. This allows, in particular, to project the Kubo formula for the dc
conductivity tensor to single bands [24]. The need for two different position operators will be
explained later in the text with more details.

Another object, interband matrix elements of which are usually ignored, is the vector po-
tential. We take these matrix elements into account and find that they affect the magnetic field
dependent renormalization of the effective mass. The effective g-factor, however, remains in-
tact.

The analysis of the Kane model that we perform in this work is most easily formulated
in terms of operators in Hilbert space and unitary transformations applied to them. Such
an operator-type formulation for EFA is still missing in the literature, and in this work we
take the opportunity to present it. We note that effective Hamiltonians are often obtained
from symmetry considerations, and operators of other observables are then derived from these
Hamiltonians. In some cases this approach gives incorrect results [24]. We argue that treating
all observables on equal footing and applying the same operator transformations to all of them
is preferable. This paper, in particular, demonstrates how this is achieved in EFA.

The paper is organized as follows. In Sec. 2 we describe EFA and the Kane model. In
addition to the common ingredients of the latter, we consider the interband matrix elements
of the scalar and vector potentials. In Sec. 2.3, we demonstrate how they are computed in
the 8-band basis. Secs. 3.1, 3.2 present a general (perturbative) scheme that can be used to
diagonalize Hamiltonians with a block structure. The scheme employs the language of unitary
transformations and operator identities. We also show how the observables other than the
Hamiltonian are transformed in it. In Sec. 3.3, the diagonalization scheme is applied to the
Kane model with a focus on its conduction band. Secs. 4.1, 4.2 introduce the concept of the
fictitious position that should be used in crystals, instead of the physical position, to define
the velocity operator. We derive the expressions for the velocity operator and both position
operators in the conduction band of the diagonalized Kane model in Sec. 4.3. We compare
different SOC strengths that enter the expressions for all the computed operators in Table 2.
The role of the fictitious position operator in the Kubo formula for dc conductivity is explained
in Sec.4.4. We comment on the correct way of defining the velocity operator in the Rashba
model in Sec. 4.5. Possible connection with experiments is discussed in Sec. 4.6

2 Kane model in the envelope function approximation

2.1 8 bands and the envelope function approximation

The Kane model [6] describes materials with the zinc blende symmetry (e.g., GaAs, InSb) by
considering a single conduction band and three valence bands. Together with the spin degree
of freedom, this gives 8 bands. Each of them is determined by a solution of a Schrödinger

3The ratio between them is a rational function of the parameters of the model. It takes the value of 2 only in
the limit of vanishing band gap.
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equation for cell-periodic functions,

(−ħh2∇2/2m+W)Ui = EiUi , (2)

where W is the atomic periodic potential. We denote the 8 relevant solutions Ui by S↑, S↓, X↑,
X↓, Y↑, Y↓, Z↑, Z↓. The first two of them have the atomic s symmetry and describe the conduc-
tion band. The remaining six are of the p type and refer to the valence bands. The subscripts
↑,↓ correspond to spin up and spin down states, respectively. Each function Ui = Ui(r ,σ) is
a two-component spinor with the spatial periodicity of the crystal, and σ describes the spin
degree of freedom. In the presence of slowly varying external fields, it is assumed that each
electron state is expressed as

Ψ(r ,σ) =
∑

i

ψi(r )Ui(r ,σ) , (3)

where ψi(r ) are scalar envelope functions considered constant within each unit cell of the
crystal. This is the basis of EFA.

It is clear from Eq. (3) that a state Ψ is fully determined by a vector with the compo-
nents ψi(r ), which thus provides the EFA-representation of Ψ. For a given Ψ, the component
ψi(r ) is uniquely defined as a band projection:

ψi(r ) =

∫

unit cell
containing r

d3r ′
∑

σ=↑,↓

U∗i (r
′,σ)Ψ(r ′,σ)≡ 〈Ui|Ψ〉(r ) , (4)

where we use Eq. (3) and the fact that envelope functions do not vary within the cell. The
scalar product 〈. . . 〉(r ) in Eq. (4) is defined as an integral over the unit cell that contains r
augmented with a sum in the spin space. The argument of 〈. . . 〉(r ) refers to this particular
unit cell.

Now let us consider the action of an arbitrary operator F on Ψ. To express it in EFA at the
position r , one should project it to the i-th band in the unit cell that contains r . By analogy
with Eq. (4), we can write:

(FΨ)i (r ) =

∫

unit cell
containing r

d3r ′
∑

σ=↑,↓

U∗i (r
′,σ) FΨ(r ′,σ) =

∑

j

〈Ui|F |U j〉(r )ψ j(r ) . (5)

Thus, in EFA, F is represented by a matrix with the operator valued elements Fi j = 〈Ui|F |U j〉.
This matrix acts on a vector with the components ψ j . For brevity, we omit the spatial argu-
ments of states and operators in EFA here and below.

2.2 Kane Hamiltonian: Part I

The Kane Hamiltonian is the EFA representation of the Hamiltonian of Eq. (2) in the presence
of SOC and slowly varying scalar potential V and vector potential A. The basis for the repre-
sentation is provided by the 8 functions Ui , and SOC is taken into account perturbatively by
means of the matrix elements in this basis.

In order to derive the Kane Hamiltonian, we first need to expand V and A inside each unit
cell. For this, we introduce a notation slightly different from that of Eq. (1). For a particular
unit cell C and a fixed position r inside it, we write

V (r +ρ) = V (r ) +ρ∇V , (6)
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where ρ is a vector lying in the unit cell that contains the origin r = 0. In this work, we
neglect second (and higher) derivatives of both V and A, hence r in the cell C can be chosen
arbitrary. For example it can be at the cell center. For the vector potential, we write similarly,
employing the symmetric gauge,4

A(r +ρ) = A(r ) +
1
2
[B×ρ] , (7)

where B =∇×A is the external magnetic field. Consistent with the assumption above, we will
disregard all spatial derivatives of B throughout the paper. From now on, we will also omit
the argument in both V (r ) and A(r ).

Following the standard convention, we introduce the operator p = −iħh∇ that acts solely
on the cell functions Ui , and the operator ħhk = −iħh∇− eA/c that acts only on the envelope
functions ψi . Using these notations, one can express the total Hamiltonian as

H =
1

2m

�

p +ħhk −
e

2c
[B×ρ]

�2
+W + ħh

4m2c2
[∇W × p]σ + V +ρ∇V +µBσBeff , (8)

where µB = |e|ħh/2mc is the Bohr magneton, σ is the vector of Pauli matrices, Beff = B+ Bexc
is the effective magnetic field, and Bexc is the constant exchange field that we added for com-
pleteness. Bexc can originate, e.g. from doping of the material by magnetic impurities. For sim-
plicity, we assume that the electron g-factor equals 2. The SOC term in Eq. (8) largely exceeds
both the similar p-dependent contribution from ∇V and the vacuum k-dependent contribu-
tion from ∇W , which are therefore disregarded. The k-dependent vacuum SOC contribution
from∇V is omitted too because the k-dependent effective SOC (that is also proporional to∇V )
is usually much stronger.5 In GaAs, it is 106 times stronger [25,26], in InSb 108 times [27].

The EFA representation of H is an operator valued matrix with the elements Hi j=〈Ui|H|U j〉.
In order to compute them, we separate all terms in Eq. (8) into three groups,

H =
p2

2m
+W + ħh

4m2c2
[∇W × p]σ

︸ ︷︷ ︸

cell-periodic

+
ħh2k2

2m
+ V +µBσBeff

︸ ︷︷ ︸

envelopes

+
ħh
m

kp +ρ∇V −
eħh

2mc
[k × B]ρ

︸ ︷︷ ︸

“k dot p”

,

(9)
where we ignored the “quadrupole-like” terms ∝ ρiρ j and ∝ piρ j . The matrix elements
Hi j of the terms in the first and in the second groups are nonzero only between either the s
functions or the p functions. For the first group, these elements are just constant values. For
the second, they are represented by operators that act on the envelope functions. The third
group gives finite matrix elements between cell functions of different symmetry. Let us explain
how they are computed.

2.3 k dot p elements

The kp term in Eq. (9) is commonly expressed in EFA using the real-valued matrix elements

P =
ħh
im
〈S↑,↓|px |X↑,↓〉=

ħh
im
〈S↑,↓|py |Y↑,↓〉=

ħh
im
〈S↑,↓|pz|Z↑,↓〉 . (10)

The other two terms of the “k dot p” group in Eq. (9) depend on the coordinate ρ rather than
on the momentum. In our case, however, they can also be expressed by means of the matrix
elements of Eq. (10), as long as the system can be assumed infinite. This is achieved with the
help of the so-called p− r relation [28], which we will now implement.

4In which the vector potential for the constant magnetic field is expressed as A(r ) = [B× r ]/2.
5The omitted SOC terms: (λvac/ħh) [∇V × p]σ, λvac [∇W × k]σ, and λvac [∇V × k]σ, where λvac = ħh

2/4m2c2.
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We know that [p j ,ρl] = −iħhδ jl , where δ is the Kronecker delta. From this, we immediately
derive [p2,ρl] = −2iħhpl . Using the fact that (p2/2m+W)Ui = EiUi , one can find, e.g.

〈S↑,↓|ρl |X↑,↓〉=
〈S↑,↓|[p2,ρl]|X↑,↓〉

2m(Es − Ep)
=

1
Es − Ep

ħh
im
〈S↑,↓|pl |X↑,↓〉=

P
ξ
δx l , (11)

with ξ= Es − Ep > 0. For Y↑,↓ and Z↑,↓, the procedure is similar.
In practice the function iS↑,↓ is considered instead of S↑,↓. Using Eqs. (10), (11), it is

straightforward to observe that the entire “k dot p” group in Eq. (9) (the last three terms on
the right-hand side of it) produces the following matrix element between iS↑,↓ and X↑,↓:

­

iS↑,↓
�

�

�

ħh
m

kp +ρ∇V −
eħh

2mc
[k × B]ρ

�

�

�X↑,↓

·

= Pekx , (12)

where we introduced the notation

ek = k −
i
ξ
∇V −

iµB

ξ
[k × B] . (13)

When Y↑,↓ and Z↑,↓ are considered instead of X↑,↓ in Eq. (12), the result is the same with ekx

replaced by eky and ekz , respectively.
As we see, eki is different from ki due to the interband matrix elements of the scalar and

vector potentials. It is this difference that leads, in particular, to a modification of the standard
expression for the effective SOC strength in the conduction band of the Kane model, and thus
also in the Rashba model.

2.4 Kane Hamiltonian: Part II

In the Kane model, SOC is taken into account by means of the matrix elements of the third
term (of the first group) in Eq. (9) between the p functions. They are all expressed with the
help of a single parameter

∆=
3iħh

4m2c2

�

X↑,↓

�

�

�

�

�

∂W
∂ x

py −
∂W
∂ y

px

�

�

�

�

�

Y↑,↓

�

> 0 . (14)

When ∆ ̸= 0, it is convenient to use the basis

iS↑, iS↓,
X↑ + iY↑p

2
,

X↓ − iY↓p
2

,−
X↓ + iY↓ − 2Z↑p

6
,

X↑ − iY↑ + 2Z↓p
6

,−
X↑ − iY↑ − Z↓p

3
,

X↓ + iY↓ + Z↑p
3

,

(15)
which diagonalizes the valence bands if Beff = 0.

Employing Eqs. (12), (14), we compute the EFA representation of H of Eq. (9) in this basis.
This gives us the Kane (K) Hamiltonian

H(K) =

�

Hs h
h† Hg +Hp

�

, (16)

where Hs = Es + ħh2k2/2m+ V +µBσBeff and Hp = Es + ħh2k2/2m+ V + µBΣBeff act on the s
and p functions respectively,

h=
P
p

3

 q

3
2
ek+ 0

p
2ekz

1p
2
ek− −ek− ekz

0
q

3
2
ek− −

1p
2
ek+
p

2ekz
ekz

ek+

!

, (17)
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with ek± = ekx ± ieky , and

Hg = −diag
�

Eg, Eg, Eg, Eg, Eg +∆, Eg +∆
�

, (18)

is a diagonal matrix that quantifies the gap between the bands. Here Eg = Es − Ep −∆/3 and
Σ is a vector of the spin matrices for the p functions. Expressions for its components can be
found in Appendix A. Note also that Eg = ξ−∆/3.

3 Diagonalization of the Kane model

3.1 Unitary transformation: General formulation

We will now formulate a scheme that can be used to diagonalize (perturbatively) any Hamil-
tonian of the form of Eq. (16). For ordinary matrices, such a procedure is described in, e.g.,
Ref. [2]. We, on the other hand, are interested in diagonalizing operator valued matrices.
Then it is preferable to modify the approach of Ref. [2]. We do this using the language of uni-
tary transformations and operator identities. One of the advantages of this approach is that it
allows to transform operators of all observables in a unified fashion.

Let us split the Hamiltonian as H(K) = H(K)
d +H(K)

od , where

H(K)
d =

�

Hs 0
0 Hg +Hp

�

, H(K)
od =

�

0 h
h† 0

�

, (19)

are its diagonal (d) and off-diagonal (od) components, respectively. We want to diagonalize
H(K) by applying a unitary transformation. For this purpose, we define a unitary operator U as

U = eiW , W =

�

0 w
w† 0

�

. (20)

Diagonal and off-diagonal components of the unitary transformed Hamiltonian H(K)
U =U†H(K)U

are then represented by [2]

H(K)
U ,d = H(K)

d +
∞
∑

k=1





�

H(K)
od , iW

�(2k−1)

(2k− 1)!
+

�

H(K)
d , iW

�(2k)

(2k)!



 , (21a)

H(K)
U ,od = H(K)

od +
∞
∑

k=1





�

H(K)
d , iW

�(2k−1)

(2k− 1)!
+

�

H(K)
od , iW

�(2k)

(2k)!



 , (21b)

where the notation
[A, B](n) = [A, B], B], . . . B]

︸ ︷︷ ︸

n times

, (22)

is used.
We need to solve the equation H(K)

U ,od = 0 for w. The general perturbative solution can
be found from Eq. (21b) as an expansion with respect to the inverse powers of Hg. We will
consider only the terms up to the order H−2

g . With this accuracy,

H(K)
U ,od = 0 ⇔ H(K)

od + i
�

H(K)
d , W

�

= 0 . (23)

The last equation is equivalent to the equation w = −ihH−1
g + (Hsw− wHp)H−1

g . We solve it

8
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iteratively. The first iteration gives w= −ihH−1
g , whereas the second one leads to

w= −ihH−1
g + ihH−1

g HpH−1
g − iHshH−2

g . (24)

Next iterations produce contributions of the order H−3
g and higher. Hence, with w of Eq. (24),

the Hamiltonian H(K)
U can be assumed diagonal with the accuracy of up to the order H−2

g .
Consequently, we have determined the unitary transformation U that we were looking for.

3.2 Unitary transformed Hamiltonian and observables: General formulation

We will denote the diagonal components of H(K)
U by H(c) and H(v), keeping in mind the up-

coming application of this scheme to the description of the conduction (c) and the valence (v)
bands of the Kane model. From Eq. (21a), we find

H(K)
U =

�

H(c) 0
0 H(v)

�

=

�

Hs + i
�

hw† −wh†
�

/2 0
0 Hg +Hp + i

�

h†w−w†h
�

/2

�

. (25)

For the conduction band, one can derive from Eqs. (24) and (25)

H(c) = Hs − hH−1
g h† +

1
2

�

hH−1
g HpH−1

g h† −HshH−2
g h† + h.c.

�

, (26)

which, up to the order H−2
g , coincides with Eq. (8) of Ref. [20] formulated for time-

independent h.
It is important that operators of other observables, like velocity and position, should also

be transformed, on equal footing with the Hamiltonian. Otherwise important contributions
to, for example, transport effects can be overlooked [24]. For an arbitrary observable F and
its unitary transformed version FU = U†FU , we use the notations

F =

�

Fs f
f † Fp

�

, FU =

�

F (c) δ f
δ f † F (v)

�

, (27)

with the same subscripts and superscripts as for the Hamiltonian. Employing Eqs. (20) and
(27), one can expand the “conduction band projection” of the observable F as

F (c) = Fs −
1
2

�

Fs, ww†
	

+wFpw† + i
�

f w† −wf †
�

, (28)

where {·, ·} denotes the anticommutator. Substitution of Eq. (24) into Eq. (28) followed by an
expansion of the obtained expression up to H−2

g will give the desired result for F (c), general-
izing Eq. (11) of Ref. [20] to the situation when f ̸= 0.

In this work, we do not consider the remaining elements of FU . However, for completeness,
we present the expansions for F (v) and δ f in Appendix B. They can be used to analyze more
complex models than the Kane model.

3.3 Hamiltonian of the conduction band (in the Kane model)

Let us derive the expression for the conduction band Hamiltonian H(c) in the Kane model by
applying the general results of the previous sections to the Kane Hamiltonian H(K) given by
Eq. (16). For this, we can use the well-known parametrization [14,20]

hαH−n
g h†

β
= (−1)n

�

κnδαβ + iλn

∑

γ

εαβγσγ

�

, (29a)

κn =
P2

3

�

1
(Eg +∆)n

+
2
En

g

�

, λn =
P2

3

�

1
(Eg +∆)n

−
1
En

g

�

, (29b)
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which can be also obtained directly, employing the results of Sec. 2.4. Here δ is the Kronecker
delta, ε represents the Levi-Civita symbol, and hα = ∂ h/∂ekα. Note that h depends on the
components of ek linearly (see Eq. (17)).

To compute H(c), the expressions of Eqs. (29) should be substituted into Eq. (26). The
next steps mostly repeat those of Ref. [20]. The main difference with Ref. [20] is that
the correct expression for h, as we have shown in Sec. 2.3, depends on ek rather than
on k (see Eqs. (13), (17)). The difference between these two vectors is proportional to
ξ−1 = (Eg +∆/3)−1. We are interested in the accuracy of up to the order E−2

g . Hence, as-
suming that Eg and ∆ are comparable, we see that the second term on the right-hand side of

Eq. (26) should be computed using the full expressions for the components of ek. At the same
time, for the terms in the parenthesis there, the deviation of ek from k can be neglected.

We also note that, for finite B and Bexc, one more parameter is required to describe H(c),

λ= −
2P2

9

�

1
Eg +∆

−
1
Eg

�2

, (30)

in addition to those of Eq. (29b). It emerges from the Zeeman terms in Hs and Hp in the
parenthesis of Eq. (26). Lengthy but straightforward computation allows us to obtain the
following result,

H(c) = Es +
ħh2k2

2m∗
+λSOC [∇V × k]σ + V +µBσ

�

g∗

2
B+ Bexc

�

+µB

�

λ+k2 (σB) +
λ−
2

¦

(kB) , (kσ)
©

�

+λµB

�

k2 (σBexc) +
1
2

¦

(kBexc) , (kσ)
©

�

,

(31)

where we neglected terms quadratic with respect to µB and introduced the notations

λSOC = λ2 +
2λ1

ξ
, λ± = λ± 2λ2 ±

2λ1

ξ
,

g∗

2
= 1+

2mλ1

ħh2 ,
1

m∗
=

1
m
+

2κ1

ħh2 . (32)

Note that we do not consider any derivatives of V and A beyond the first in this work.
The last two expressions in Eq. (32) represent the effective g-factor and the effective mass

respectively. They are well-known [14, 20, 29]. The renormalization of mass due to the ex-
change field Bexc, which is given by the second square bracketed group of terms in Eq. (31) is,
as far as we know, derived here for the first time. The first square bracketed group in Eq. (31)
represents the renormalization of mass by the magnetic field B and is quantified by the pa-
rameters λ±. The full expressions for them, to the best of our knowledge, were also missing
so far. We note that the renormalization of mass by the magnetic field can be also interpreted
as a k-dependent renormalization of the spin g-factor.

The spin-orbit coupling constant λSOC, in the Kane model, is commonly assumed to be
equal to λ2 [2,14,18,20,25,27]. This result however misses the contributions from the inter-
band matrix elements of the scalar potential V , as we have just demonstrated. Proper consid-
eration of the latter leads to an additional contribution to λSOC provided by 2λ1/ξ. Similarly,
the interband matrix elements of the vector potential A contribute to the renormalization of
mass quantified by the parameters λ±.

Let us estimate the magnitude of the computed correction to λSOC. For InSb at zero tem-
perature, one can take ∆ = 0.8 eV and Eg = 0.23 eV [30]. This gives (2λ1/ξ)/λ2 ≈ 0.76,
which is a 76% change. For GaAs, again at zero temperature, the choice of ∆ = 0.34 eV and
Eg = 1.52 eV [30] leads to (2λ1/ξ)/λ2 ≈ 1.02. Hence, for GaAs the correct value of the SOC
constant at T = 0 is approximately twice larger than it is commonly assumed to be. In general,
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(2λ1/ξ)/λ2 varies from 0 to 18− 12
p

2 ≈ 1.03 (as a function of positive parameters Eg and
∆). Using data from Ref. [30], we tabulate this ratio for a set of materials in Table 1.

The obtained formula for λSOC of Eq. (32) and the performed numerical estimates based
on it provide the first main result of this paper.

Table 1: Zero temperature values of (2λ1/ξ)/λ2 for several materials.

InSb GaAs InAs InP

(2λ1/ξ)/λ2 0.76 1.02 1.01 1.01

3.4 Assumption of slow variation

On a technical level, the computed corrections to the SOC parameter and to the renormaliza-
tion of mass are nonzero because we use two different “slow variation” assumptions for the
envelope functions and for the scalar and vector potentials. Indeed, since the behaviour of
the wave functions of Eq. (3) on the atomic length scale is encoded solely by the cell-periodic
functions, one has to assume that the envelope functions are constant within each unit cell.
As a result, they are pulled out of all the integrals corresponding to averaging over the cells.

At the same time, when one uses the same assumption for the potentials, their interband
matrix elements are effectively disregarded and information about the related interband tran-
sitions is lost. This is why we use a different “slow variation” assumption for the potentials.
Namely we allow them to vary smoothly within the cells. Their matrix elements are then com-
puted as Taylor expansions. The interband matrix elements are proportional to the first spatial
derivatives of the potentials. In this work, all higher derivatives are assumed small, therefore
the expansions are well-defined.

4 Velocity and position in the Kane model

4.1 General relation between velocity and position in a crystal

Having derived and analyzed the conduction band Hamiltonian, we can now focus on the
velocity operator, which is an essential object in studying transport phenomena. In the stan-
dard formulation, the velocity operator is a time-derivative of the position operator. In the
Schrödinger picture, we have

v = [r , H]/iħh= (r H −Hr )/iħh . (33)

Any effective description of a crystal takes into account only a finite number of bands. This
means that instead of considering the entire Hilbert space (for single particle states), we have
to project all states and all operators onto a certain subspace. This is achieved with the help of a
projection operator which we can denote for example as P. Then, in this effective description,
an arbitrary observable F is approximated by PF P.

The velocity, position, and Hamiltonian are thus replaced by Pv P, Pr P, and PHP, respec-
tively. However, the relation of Eq. (33) is not valid for these projected operators, because
P2 ̸= 1 and we cannot insert P2 between r and H in

Pv P = P(r H −Hr )P/iħh ̸= P(r P2H −HP2r )P/iħh= [Pr P, PHP]/iħh . (34)

Therefore, the velocity operator in the “projected” theory should be defined as P[r , H]P/iħh
rather than as a commutator of the projected coordinate and Hamiltonian, [Pr P, PHP]/iħh.
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This simple idea was, in principle, formulated in 1973 by Noziéres and Lewiner in
Ref. [20].6 The authors explained that insertion of P2 between a pair of operators leads to
an incorrect exclusion of virtual processes associated with the remaining bands. At the same
time, Ref. [20] ignored the interband matrix elements of the position operator.7 In the absence
of such elements, it is actually allowed to put P2 between r and H in the definition of the veloc-
ity projection, and this is what Noziéres and Lewiner effectively did (to compute the velocity
operator of the conduction band of the diagonalized Kane model). The issue, however, is that
the underlying assumption of vanishing interband matrix elements of r is just incorrect.

Still, for some applications, it is strongly beneficial to represent the velocity as a commuta-
tor of a certain operator and the Hamiltonian. For example, one needs such a representation
to project the Kubo-Sťreda formula for dc conductivity [21, 31] to a subband [24]. It turns
out that, instead of using the physical position operator r for this purpose, one can employ
a fictitious position operator, which, upon commuting with the Hamiltonian, defines velocity.
Below, we consider both these position operators and the velocity operator in the Kane model
and derive the expressions for them in the conduction band of the diagonalized version of
the latter. These results can be used to formulate effective transport theories in narrow-gap
semiconductors.

4.2 Velocity and fictitious position operator

To analyze velocity in the Kane model, we first need to compute the velocity operator of the
original crystal Hamiltonian. This is carried out by differentiating either Eq. (8) or Eq. (9)
with respect to p and multiplying the SOC contribution to the result by the factor of 2 [24],8

v =
p
m
+
ħhk
m
−

e
2mc

[B×ρ]−
ħh

2m2c2
[∇W ×σ] . (35)

The last term here is a vacuum SOC correction to the first term and can be neglected. Once
this is done, the velocity operator becomes v = ħh−1∂ H/∂ k. To obtain its 8-band EFA repre-
sentation, which we denote by v (K), one should compute the elements 〈Ui|v |U j〉. Integration
over unit cells does not interfere with differentiating over k, and we thus infer that

v (K) =
1
ħh
∂ H(K)

∂ k
. (36)

We would like to express the right-hand side of the above as a commutator, in analogy with
the standard recipe used to define velocity. This can be achieved with the help of the fictitious
position operator r which is dual to the operator k in a sense that [kα, rβ] = −iδαβ . In the
8-band basis, we can understand r as a diagonal matrix with all elements being equal to the
physical coordinate r . The latter is also the argument of the envelope functionsψi(r ). We will
denote this operator by r(K). Clearly, r(K) is just a physical position operator with the nullified
interband matrix elements (see also Eq. (38) below). Using the commutation property, one
finds

v (K) = [r(K), H(K)]/iħh . (37)

We will use this relation to compute the conduction band velocity in the next Section.
Before we do this, let us highlight the difference between r(K) and the physical position

operator r (K). The two operators share the same diagonal elements, however the latter has

6The formulation can be found between Eq. (11) and Eq. (12) of that work.
7In fact, together with the interband matrix elements of the scalar and vector potentials.
8Note that we ignore other vacuum relativistic effects. The only remaining signature of such is the SOC-induced

splitting of the valence bands. Its effect on velocity however is negligible.
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also the interband ones. Employing the results of Sections 2.3, 2.4, we can write

r(K) =

�

r 0
0 r

�

, r (K) =

�

r −i(ξ)−1∂ h/∂ ek
i(ξ)−1∂ h†/∂ ek r

�

, (38)

where h is defined by Eq. (17).

4.3 Velocity operator and position operators in the conduction band

For the components of the unitary transformed velocity v (K)
U = U†v (K)U and fictitious position

r(K)
U = U†r(K)U , we use the notation

v (K)
U =

�

v (c) δv
δv† v (v)

�

, r(K)
U =

�

r(c) δr

δr† r(v)

�

. (39)

We are interested in computing v (c). Of course, this can be done directly, by substituting the
explicit expressions for the components of the velocity operator v (K) into Eq. (28). However, an
easier way is to make use of Eq. (37). Indeed, unitary transformations preserve commutators,
and H(K)

U is diagonal. Therefore from v (K)
U = [r(K)

U , H(K)
U ]/iħh one can derive a simple relation

that determines v (c),
v (c) = [r(c), H(c)]/iħh . (40)

For r(c), Eq. (28) takes a particularly concise form because r(K) is diagonal. Employing
Eq. (24), we find to the order E−2

g :

r(c) = r +
1
2

�

[h, r ]H−2
g h† + h.c.

�

= r +λ2[k ×σ] , (41)

where we made use of Eqs. (17) and (29). This result is Eq. (22) of Ref. [20]. In that work,
however, r(c) was understood as a physical position operator in the conduction band, which
is not correct. The correct expression for the physical position operator can be computed
similarly to the fictitious one,

r (c) = r +
1
2

�

[h, r ]H−2
g h† + h.c.

�

+
i
ξ

�

∂ h

∂ ek
H−1

g h† − h.c.
�

= r +λSOC[k ×σ] , (42)

where we used Eqs. (24), (28), (29), (38). Thus, in the conduction band, the two position
operators differ by the expressions for the SOC strength. One of them is quantified by the
constant λ2, while another depends on λSOC. Note that the difference between the two comes
solely from the interband matrix elements of r .

By commuting the right-hand side of Eq. (41) with H(c) given by Eq. (31), we arrive at

v (c) =
ħhk
m∗
−

1
ħh
(λSOC +λ2) [∇V ×σ] , (43)

where B = Bexc = 0 is assumed for simplicity. The full expression for the velocity operator v (c)

in the presence of the magnetic and exchange fields can be found in Appendix C.
The term [∇V ×σ] in the expression for v (c) is a SOC correction. It is instructive to trace

the origin of the contributions to the prefactor in front of it. The first one, proportional to
λSOC, comes from a commutator of r in Eq. (41) and the third term on the right-hand side of
Eq. (31). The second contribution originates from the commutator of λ2[k ×σ] in Eq. (41)
and V in Eq. (31). From Eqs. (31), (43), we see that the ratio between the SOC constant
of the velocity operator and the SOC constant of the Hamiltonian equals 1 + λ2/λSOC. In a
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system described by the Pauli Hamiltonian, λSOC = λ2
9 and thus this ratio is 2 (which is a

known result [24, 32–34]). In the Kane model, as it turns out, the situation is different. As a
function of the parameters Eg and ∆, the expression 1+λ2/λSOC can take any value between
4(23 + 3

p
2)/73 ≈ 1.49 and 2. For GaAs at zero temperature, it is very close to the lower

bound. In InSb, it is approximately 1.57.
In Table 2, we list the expressions for the SOC strengths in the Kane model and in the Pauli

system. Together with Eqs. (41), (42), (43), they constitute the second most important result
of this paper.

Table 2: SOC constants for a system described by the Pauli Hamiltonian, the Kane
model, InSb, and GaAs. In the three latter cases, we consider operators in the conduc-
tion band of the diagonalized Kane model. For InSb and GaAs, zero temperature is as-
sumed. We introduced the parameter λvac = ħh2/4m2c2, whereas λSOC = λ2+2λ1/ξ

and ξ = Eg + ∆/3 were already defined in the text. For the definition of λi see
Eq. (32).

Hamiltonian
ħh2k2

2m∗
+η1[∇V × k]σ

Velocity
ħhk
m∗
−
η2

ħh
[∇V ×σ]

Fictitious
position

r +η3[k ×σ]

Physical
position

r +η4[k ×σ]

Pauli system η1 = λvac η2 = 2λvac η3 = λvac η4 = λvac

Kane model η1 = λSOC η2 = λSOC +λ2 η3 = λ2 η4 = λSOC

InSb, T = 0 η1 = λSOC η2 ≈ 1.57λSOC η3 ≈ 0.57λSOC η4 = λSOC

GaAs, T = 0 η1 = λSOC η2 ≈ 1.49λSOC η3 ≈ 0.49λSOC η4 = λSOC

4.4 Kubo formula for dc conductivity

Recently we revised the Kubo formula for dc conductivity in systems with SOC. In particular
we found a novel contribution to the conductivity tensor that we suggested to denote byσIII

αβ
in

Eq. (24c) of Ref. [24]. There, this contribution was proportional to [rα, rβ], where r referred to
the operator that, upon commutation with the Hamiltonian, defined the velocity operator. In
vacuum, the role of r is played by the physical position operator. In the Kane model, as we have
demonstrated, r should be replaced by r. Therefore, in this case,σIII

αβ
is determined by [rα, rβ].

It is important not to confuse the fictitious position operator here with the physical one.

4.5 SOC constants in the Rashba model

Quantum well heterostructures with the structural inversion asymmetry are often described
by the two-dimensional (2D) Rashba model [23]. In such systems, electrons are confined by
an asymmetric scalar potential and experience the Rashba-type SOC splitting of the bands. In
general, the strength of this splitting is determined by both the well material and the barrier
penetration [35, 36]. In certain cases, however, the penetration is weak10 and the infinite
barrier approximation [37] can be used to compute the SOC splitting. In this approach, only
the well material is analyzed while the barriers are modeled as perfect insulators [35].

Let us assume that the heterostructure well material is described by the Kane model. As
our results suggest, the 2D Rashba (R) model derived for this heterostructure under the in-
finite barrier approximation will be such that the Hamiltonian and the velocity operator are

9We mean that in such systems the SOC constant that enters the expression for the position operator coincides
with the one that quantifies the SOC term in the Hamiltonian. Note that the physical position operator and the
fictitious position operator do not differ for such systems. See also Table 2.

10For example, the barrier penetration can be reduced by gating [36].

14

https://scipost.org
https://scipost.org/SciPostPhys.17.1.009


SciPost Phys. 17, 009 (2024)

written as

H(R) =
ħh2k2

2m∗
+αRħh [k ×σ]z , v (R) =

ħhk
m∗
+ γαR [σ × ez] , (44)

where γ ranges from 4(23 + 3
p

2)/73 ≈ 1.49 to 2 and αR is proportional to the average
gradient of the confining potential. We emphasize that γ ̸= 1 in Eq. (44). This important fact,
for example, prevents the famous cancellation of the anomalous Hall effect in the metallic
regime of the 2D Rashba model [24]. Other transport phenomena originating in the Rashba
coupling should be affected by this too.

Computation of the barrier penetration contributions to v (R) is a complex problem that
requires separate investigation. However, as a basis postulate, we suggest to assume that
there is no general relation between the SOC constants of the Hamiltonian and the velocity
operator.

Eq. (44) delivers our third main result.

4.6 Connection with experiments

It seems that the most realistic way of probing our results experimentally would be by mea-
suring the Rashba SOC strength in heterostructures. To date, multiple works have reported
significant discrepancies between the theoretically predicted values of the Rashba coupling
and the experimentally measured ones. The latter are often 2-3 times larger than the for-
mer [38–41]. For GaAs, InAs, and InP, our theory predicts a twofold increase of the spin-orbit
coupling parameter λSOC in the Hamiltonian (and a slightly smaller increase for InSb). It
seems plausible that this may resolve the disagreement between the theory and experiment.
To verify our prediction, one can use the results of Ref. [35], properly generalized to allow for
finite interband matrix elements of the scalar potential.

Another effect that might be measurable experimentally is the renormalization of the spin
g-factor by the first square bracketed group in Eq. (31). One can expect to observe the density
dependence of the g-factor, not related to electron-electron interactions [42,43] or the orbital
magnetism [44].

5 Conclusion

Using unitary transformations and operator identities, we formulated a scheme suitable for
a perturbative diagonalization of Hamiltonians with a block structure. We used it to analyze
the 8-band Kane model in the presence of the interband matrix elements of the scalar poten-
tial, vector potential, and position operator. We obtained expressions for the SOC constants
that quantify corrections to the operators in the conduction band of the diagonalized Kane
model. These expressions differ from those that can be found in the literature. For GaAs at
zero temperature, the SOC term in the Hamiltonian is parameterized by a constant that is
approximately twice larger than it is commonly assumed. We also explained why the velocity
operator in a crystal should not be computed as a commutator of the physical position oper-
ator and the Hamiltonian. However, often one can just replace the physical position operator
with a fictitious one in the corresponding definition. We also derived the expressions for the
magnetic field induced renormalization of mass. The theory developed here forms the basis
for study of transport phenomena in spin-orbit coupled systems, in particular using the Rashba
model.

15

https://scipost.org
https://scipost.org/SciPostPhys.17.1.009


SciPost Phys. 17, 009 (2024)

Acknowledgments

We are grateful to Sasha Rudenko and Misha Katsnelson for informative discussions. We
thank Bertrand Halperin and Dimitrie Culcer for thorough reviews that helped us improve
the manuscript.

Funding information I. A. A. and R. A. D. have received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant No. 725509). The Research Council of Norway (RCN) supported A. B. through
its Centres of Excellence funding scheme, project number 262633, “QuSpin”, and RCN project
number 323766. M. T. has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No 873028.

A Spin matrices for the valence bands

Spin matrices for the p functions, in the basis of Eq. (15), are

Σx =























0 0 − 1p
3

0 0
q

2
3

0 0 0 1p
3
−
q

2
3 0

− 1p
3

0 0 2
3

p
2

3 0

0 1p
3

2
3 0 0

p
2

3

0 −
q

2
3

p
2

3 0 0 1
3

q

2
3 0 0

p
2

3
1
3 0























, Σy = i























0 0 1p
3

0 0 −
q

2
3

0 0 0 1p
3
−
q

2
3 0

− 1p
3

0 0 −2
3 −

p
2

3 0

0 − 1p
3

2
3 0 0

p
2

3

0
q

2
3

p
2

3 0 0 1
3

q

2
3 0 0 −

p
2

3 −1
3 0























,

and Σz can be computed as Σz = −iΣxΣy .

B Components of observables in the diagonalized Kane model

The remaining components of the matrix on the right-hand side of Eq. (27) are determined by

F (v) = Fp −
1
2

�

Fp, w†w
	

+w†Fsw+ i
�

f †w−w† f
�

, (B.1a)

δ f = f −
1
2
( f w†w+ww† f ) +wf †w+ i

�

Fsw−wFp

�

, (B.1b)

where w is to be expanded in accordance with Eq. (24).

C Full expression for velocity

The full expression for the velocity operator in the conduction band of the diagonalized Kane
model reads

v (c) =
ħhk
m∗
−

1
ħh
(λSOC +λ2) [∇V ×σ] +

µB

ħh

�

2 (λ+ +λ2)k (σB) +λ−B (kσ)

+ (λ− − 2λ2)σ (kB) + 2λk (σBexc)

+ (λ+ 2λ2)Bexc (kσ) + (λ− 2λ2)σ (kBexc)
�

.

(C.1)
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