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Abstract

We derive exact results for stress correlations in near-crystalline systems in two and three
dimensions. We study energy minimized configurations of particles interacting through
Harmonic as well as Lennard-Jones potentials, for varying degrees of microscopic dis-
order and quenched forces on grains. Our findings demonstrate that the macroscopic
elastic properties of such near-crystalline packings remain unchanged within a certain
disorder threshold, yet they can be influenced by various factors, including packing den-
sity, pressure, and the strength of inter-particle interactions. We show that the stress
correlations in such systems display anisotropic behavior at large lengthscales and are
significantly influenced by the pre-stress of the system. The anisotropic nature of these
correlations remains unaffected as we increase the strength of the disorder. Additionally,
we derive the large lengthscale behavior for the change in the local stress components
that shows a 1/rd radial decay for the case of particle size disorder and a 1/rd−1 be-
havior for quenched forces introduced into a crystalline network. Finally, we verify our
theoretical results numerically using energy-minimised static particle configurations.
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1 Introduction

Jammed athermal materials find relevance in various fields such as soft condensed matter
physics, material science, civil engineering and metallurgy [1,2]. Additionally, jammed pack-
ings also arise in fields such as biophysics, where cellular tissues are well described by soft
potential models [3,4]. They arise when it is not feasible to achieve true thermodynamic equi-
librium. The stability of athermal solids against mechanical disturbances can be attributed to
the macroscopic rigidity arising from the network of constituent particles [5–9]. This collec-
tive elasticity arises in any system of interacting particles at low temperatures and is observed
universally in both crystalline and amorphous structures of athermal solids [10–24]. The ref-
erence states that make up the collection of amorphous solids are highly dependent on the
preparation method, and each configuration satisfies the conditions of local equilibrium i.e.,
the force and torque balance of each constituent. Amorphous structures, while stable in a local
sense, are typically not the lowest energy states of their individual components [25–27]. Con-
sequently, jammed packings of soft particles can exhibit both amorphous as well as crystalline
structures.

Near-crystalline materials demonstrate a range of unique properties and serve as a bridge
between the physics of crystals and amorphous materials, providing valuable insights into the
behavior of athermal ensembles [28–36]. The large-scale elasticity properties exhibited in
both amorphous and crystalline solids link these two typically distinct branches of condensed
matter physics [30,37,38]. Recent studies on near-crystalline materials have revealed various
characteristics similar to those found in fully amorphous materials, including the presence of
quasi-localized modes [39–41]. Such near-crystalline materials therefore help in establishing
a connection between the well studied physics of crystals and that of amorphous solids by
introducing disorder gradually into athermal crystalline packings. On the one hand, while
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crystals have ordered structures, amorphous solids are characterized by random and inflexi-
ble structures that arise from the competing interactions between constituent particles. De-
spite their distinct local structures [42], crystalline and amorphous packings exhibit many
similar elastic properties [18, 43]. Given the long-range displacement correlations in these
systems [44, 45], one may reasonably question whether the microscopic structure affects the
large-scale elasticity properties [46]. Therefore a crucial question to address is how global
rigidity is manifested in distinct networks and whether this can be detected in the local stress
tensor fluctuations [47,48]. Although some properties of athermal ensembles can be described
by temperature-like variables [49,50], and despite several attempts at a unifying framework,
there is still a lack of understanding of these properties in non-isotropic materials and near-
crystalline systems. It is therefore of interest to generate ensembles that can be precisely
characterized theoretically. In this paper, we develop a microscopic theory for stress correla-
tions in near-crystalline systems arising from various types of disorders such as particle size
disorder or due to quenched forces.

Stress correlations are a key ingredient in understanding the physics of disordered sys-
tems, and there have been several recent studies that establish their importance in amorphous
materials [51, 52]. Such correlations provide valuable insights into the collective behavior of
interacting particles and are widely used in fields such as material science, fluid dynamics, and
geophysics [19,53–55]. Understanding stress correlations can help us predict the strength and
stability of materials under various external conditions [56, 57] as well as give insights into
the rheology of particulate packings, such as their ability to flow or resist deformation. Stress
correlations provide a deeper insight into the degree of rigidity or floppiness within particle
packings and how they react to external influences like shear or compression [17, 43]. Re-
cently, stress correlations have also been studied in various types of systems such as glasses,
granular packings, and gels amongst others, and has become a question that has attracted
considerable interest [17–23]. There have been several theoretical studies that use material
isotropy and homogeneity in amorphous materials to derive the large length scale anisotropic
behavior of the stress correlations [58–60]. Several numerical studies have also explored stress
correlations in computer-simulated disordered packings [22,23,61].

The main results of this paper can be summarized as follows. We derive the displacement
fields due to the introduction of particle size disorder or due to external quenched force in
a crystalline system through a microscopic disorder perturbation expansion. Using the linear
order displacement and force fields, we derive the components of the change in the local
stress tensor on each grain. At large lengthscales, the local stresses show anisotropic 1/rd

radial behavior for particle size disorder and 1/rd−1 behavior for external force quenching. We
analyze the local pressure fluctuation which shows similar radial behavior yet isotropic at large
lengthscales. We also measure the global bulk and shear modulus for such a near-crystalline
system which show excellent match with simulations for finite small disorder. We then derive
the configurational averaged correlations of the local stress fluctuations which are verified
through numerical simulations in two different models in both two and three dimensions. We
show that the stress correlations in disordered crystals show different behavior to that of an
isotropic amorphous material at a high packing fraction or high pressure limit.

The outline of the paper is as follows. In Section 2 we introduce the microscopic mod-
els, while in Section 3, we present the corresponding preparation protocols. In Section 4 we
employ the microscopic approach to derive macroscopic properties, specifically the bulk and
shear moduli of near-crystalline systems. In Section 5 we present a detailed derivation of the
displacement fields due to the introduction of microscopic disorder in the crystalline packing.
In section 6 we derive the change in the local stress tensor components and their correlations
through this microscopic approach and compare these predictions against direct numerical
simulations. Additionally, we draw parallels between these results and those obtained in the

3

https://scipost.org
https://scipost.org/SciPostPhys.17.1.012


SciPost Phys. 17, 012 (2024)

Figure 1: Schematic of particle arrangement in a hexagonal close packing for two
different models considered in this paper. (a) Soft repulsive interactions with a Har-
monic potential, where the neighboring particles overlap with the central particle.
(b) Lennard-Jones (LJ) interaction with a cutoff. Here, the outermost circle corre-
sponds to the interaction range with respect to the central particle (red).

recently developed VCTG framework for amorphous systems. In Section 6.5, we extend our
theory to three dimensional fcc arrangement of particles. In Section 7, we derive the displace-
ment and force fields due to point forces. In Section 8, we derive the distributions of change
in local stresses from the linear relations between the stress and microscopic disorder in a
near-crystalline system. Finally, we conclude and provide directions for future investigations
in section 9.

2 Models

We study two well-known canonical glass-forming model potentials that can be used to create
amorphous, as well as near-crystalline structures: short-ranged Harmonic interactions, and an
attractive Lennard Jones interaction with a cutoff. A schematic of the particle neighbourhoods
for both models are shown in Fig. 1.

2.1 Short-ranged repulsive harmonic interaction

For the case of the short-ranged Harmonic model, we examine systems consisting of fric-
tionless soft disks in two dimensions and spheres in three dimensions with different levels
of overcompression. These particles interact with one another through a one-sided pairwise
potential [14,31,62] which takes the following form:

Vai j

�

r⃗i j

�

=
K
α

�

1−

�

�r⃗i j

�

�

ai j

�α

Θ

�

1−

�

�r⃗i j

�

�

ai j

�

, (1)

where r⃗i j represents the displacement vector between particles i and j, situated at positions r⃗i
and r⃗ j , respectively. Here ai j are called the quenched interaction lengths that are defined as
the sum of individual radii, denoted as ai j = ai + a j . In this study, we select α= 2 to establish
a harmonic pairwise potential between the particles. The length parameters ai j are then set
as follows [32,35,36,44,45,63]

ai j = 2a0 +ηa0(ζi + ζ j) , (2)
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where a0 is the radius of each particle in the crystalline state. The variables ζi are indepen-
dent and identically distributed random numbers drawn from a uniform distribution ranging
between −1/2 and 1/2, that are individually assigned to each particle within the system. The
parameter η (polydispersity) controls the magnitude of the disorder.

2.2 Attractive Lennard-Jones interaction with cut-off

We investigate particles interacting via long-ranged power-law potentials, which are
smoothened up to the second order at a specified cutoff interaction length (r c

i j), set at 2.5ai j

[29,41]. This cut-off is set to speed up the numerical simulations and for most purposes, a cut-
off greater than 1.5 yields similar mechanical properties [64]. The smoothened LJ potential
for a cut-off interaction length 2.5ai j can be represented as

Vai j

�

r⃗i j

�

= 4K
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ai j
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�r⃗i j

�

�
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+
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�
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ai j

�2l


Θ

�

2.5−

�

�r⃗i j

�

�

ai j

�

, (3)

The disorder is introduced through the length parameters ai j and can be represented as [29,
41],

ai j =







λSS , both i, and j are unlabeled,
η (λSL −λSS) +λSS , either i or j is labeled,
η (λLL −λSS) +λSS , both i and j are labeled.

(4)

The exact magnitudes of λSS ,λSL ,λLL are given in Section 3.2. This model corresponds
to a bidisperse system where η controls the strength of the disorder. For theoretical simplicity,
instead of using length parameter ai j , we define an onsite parameter t i . The variable t i takes
a value of either 1 or 0, depending on whether the particle at position r⃗i is labeled or not.
Using t i we can express ai j as follows

ai j = λSS+η
�

(t i + t j) (λSL −λSS) + t i t j (λLL +λSS − 2λSL)
�

. (5)

3 Numerical simulations

To test our theoretical predictions, we conduct simulations of an athermal, over-compressed
triangular lattice (hcp) in two dimensions (2D) and a face-centered cubic (fcc) lattice in three
dimensions (3D) with soft, frictionless particles with varying levels of particle size disorder. We
employ periodic boundary conditions to account for boundary effects. Our focus is on states
in which every particle achieves force balance, i.e., configurations corresponding to energy
minima. To achieve this, we utilize the Fast Inertial Relaxation Engine (FIRE) algorithm as
described in Ref. [65] to minimize the energy of the system.

Here the inter-particle separation is kept fixed at R0 in the initial crystalline state. We ini-
tially consider a rectangular (2D) grid spacings of R0/2 and

p
3R0/2 along x and y directions

respectively and cubic (3D) lattice with a grid spacing of R0. To create a triangular/fcc ar-
rangement, particles are placed on alternate grid points that satisfy the respective conditions,
i.e., nx + ny = 2n for a triangular lattice and nx + ny + nz = 2n for an fcc lattice, where n is
an integer. This technique is an extension of the one used in reference [66] for generating a
hexagonal close packing in two dimensions. A square/cubic lattice has 4L2/8L3 grid points
in total (since there are 2L grid points along each coordinate axis), of which only half are
occupied by particles, yielding the total number of particles, N = 2L2 in 2D and 4L3 in 3D.
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3.1 Harmonic model

We first consider the Harmonic model, where particles experience exclusively repulsive in-
teractions and each grain interacts solely with its closest neighbors. In a two dimensional
triangular lattice, this corresponds to six neighboring grains, while in a three dimensional fcc
lattice, it corresponds to twelve neighboring grains. The degree of compression in the lattice
is indicated by the packing fraction, which is set to φ = 0.92/0.96/0.98 in 2D and φ = 0.80
in 3D. This is in comparison to the marginally jammed triangular/fcc lattice with a packing
fraction of φ0 ≈ 0.9069 in 2D and φ0 ≈ 0.74 in 3D. The interparticle spacing (R0) is defined
by the initial particle radius, which is set to a0 = 0.5, and the packing fraction, calculated
using the formula R0 = 2a0(φ0/φ)1/d , in the absence of any disorder. Here we have chosen
bond stiffness/interaction strength as K = 0.5. The numerical results presented in this study
are averaged over 200 different realizations of disordered states. These simulations were per-
formed for system sizes of N = 6400 and 10000 particles in two dimensions, and N = 32000
and 250000 in three dimensions, with different strengths of particle size disorder (η).

3.2 LJ model

For the case of Lennard-Jones (LJ) interactions, every particle interacts with its neighboring
particles located within a cutoff radius defined as

�

�r⃗i j

�

�/ai j ≤ 2.5. In the absence of perturba-
tion (η= 0), this condition implies that there are a total of 18 neighboring particles within the
interaction range corresponding to each grain in the triangular lattice. Here we have chosen
K = 0.5, with λSS = 1,λLL = 1.4λSS and λSL = 1.2λSS for the interaction potential. Similar
to the Harmonic model, we have performed simulations for systems of size N = 6400 in 2D.
Since the volume associated with each particle is not defined, we define a number density
(ρN ) as our initial parameter instead of a packing fraction. Each number density, ρN corre-
sponds to different values of initial pressure (P) in the system. Here the results are presented
for P = 0/0.27/4.24. To achieve the initial pressure we use a Berendsen barostat [67] which
is implemented in the FIRE algorithm during the energy minimisation.

4 Elastic properties of near-crystalline packings

In this section, we derive the results that can be used to compute the relevant macroscopic
elastic properties in a near-crystalline granular packing composed of soft particles. The fun-
damental property we are interested in is the global pressure, denoted by the symbol P which
can be written as

P = d−1
∑

µ

Σµµ = (dV )−1
∑

µ,〈i j〉

rµi j f µi j , (6)

where Σµµ are the diagonal components of the global stress tensor where d and V represent
the spatial dimension and total volume of the system respectively. Here rµi j and f µi j are the
µ− th component of the relative displacement and force between the particles i and j. The
configurational averaged total pressure can be defined as

〈P〉= d−1
∑

µ

〈Σµµ〉= d−1
∑

µ

〈Σ(0)µµ〉+ 〈δΣ
(0)
µµ〉 , (7)

where Σ0
αβ
= V−1

∑

〈i j〉 r
α(0)
i j f β(0)i j are the components of the global stress tensor of the crys-

talline system without the disorder. For a small magnitude of the disorder strength η, the
average change in the global pressure is zero (i.e., 〈δΣ(0)µµ〉 = 0), which we will show in the
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Figure 2: (a) Variation of configurational averaged bulk (〈B〉) and shear modulus
(〈G〉) with polydispersity for a near-crystalline packing of soft particles in a system
of size N = 256 with packing fraction, φ = 0.9269 in two dimensions. (b) Difference
between the elastic modulus of a crystal and that of a disordered crystal. The elastic
properties of disordered crystals remain unaffected by the disorder up to a critical
disorder strength (ηc ≈ 0.018 for this packing fraction). (c) Variation of 〈B〉 and 〈G〉
with initial packing fraction for a fixed polydispersity, η= 0.005.

following section. For any regular arrangement of particles in d-dimension, we can write the
relative distance between the neighboring particles and their corresponding forces as

r⃗(0)i j = R0 r̂0
i j , f⃗ (0)i j =

K
a0

�

1−
R0

2a0

�

r̂0
i j , (8)

where R0 is the relative distance between two neighboring particles in the crystalline arrange-
ment. Inserting these values, one can obtain the final form of the averaged net pressure as

〈P〉=
z0NKR0

2dVa0

�

1−
R0

2a0

�

=
z0Kρ0

N

d

�

φ0

φ

�−1+1/d �

1−
�

φ0

φ

�1/d�

. (9)

Here z0 is the coordination number of each grain and ρ0
N is the number density in the

marginally jammed crystal. We can also represent the number density of an over-compressed
crystal as, ρN = N/V = ρ0

N (φ/φ0)1/d . In the two dimensional triangular lattice, z0 = 6 and
ρ0

N = 1/2
p

3a2
0. The system is subjected to an isotropic strain, where the box dimensions

along all the Cartesian directions increase by a factor of (1 + ε). Consequently, the packing
fraction φ changes to φ/(1+ ε)d . The pressure P of this isotropically strained system can be
expressed as




P ′
�

=
z0NkR0

2dVa0

�

1−
R0

2a0

�

=
z0kρ0

N

d(1+ ε)d−1

�

φ0

φ

�−1+1/d �

1− (1+ ε)
�

φ0

φ

�1/d�

. (10)

Here, ε ∼ δV/2V is proportional to the volumetric strain applied to the system. The
average bulk modulus (〈B〉) for these near-crystalline systems can be obtained by finding the
ratio of change in bulk pressure to the volumetric strain,

〈B〉=
�

�

�

�

δ 〈P〉
δV/V

�

�

�

�

= lim
ε→0

�

�

�

�

�




P ′
�

− 〈P〉
2ε

�

�

�

�

�

=
z0kρ0

N

2d

�

φ0

φ

�−1+1/d �

(d − 2)
�

φ0

φ

�1/d

− (d − 1)

�

. (11)

In two dimensions, the average bulk modulus for a small magnitude of disorder in a crys-
talline packing can be written as 〈B〉=

p
3K

4a2
0
(φ/φ0)1/2, which we have also verified numerically

for φ = φ0 + 0.02 = 0.9269 as shown in Fig. 2. This demonstrates that the average elastic
moduli of near-crystalline packings remain independent of the strength of the disorder below
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a certain threshold, as indicated in previous studies [31]. This threshold coincides with the
transition from a crystalline to a disordered crystal phase.

We next examine a near crystalline system subjected to shear along the αβ-plane with
a shear amplitude denoted by γ. In response to this shear, particles undergo displacements,
which comprises both affine and non-affine contributions. These displacements can then be
used to compute the elastic moduli of the system. The major contribution from the non-affine
displacement arises from the lack of inversion symmetry [68, 69]. We measure the average
degree of centrosymmetry (FIS) (see Appendix D) in the configurations which give, FIS ∼ 1
i.e. (1 − FIS ∼ O(10−4)) for η ≤ 10−2. Therefore for such configurations, the contribution
of the non-affinity to the elasticity is negligible [70]. Hence we only consider the affine part
of the displacements for small shear amplitude, leading to the following expressions for the
relative displacement and force components

rαi j = R0(cosθ0
i j + γ sinθ0

i j) , rβi j = R0 sinθ0
i j , Ri j =

� d
∑

α=1

(rαi j)
2

�1/2

, (12)

where θi j is the angle made by the projection of ri j on the αβ-plane to the α-axis. Using the
above relations, we can write the αβ-component of the stress tensor as

〈Σαβ〉=
1

2V

∑

i

 

∑

j

rαi j f βi j

!

= kρ0
N

�

φ0

φ

�−1+1/d
 

z
∑

j=1

�

1−
Ri j

2a0

�

(cosθ0
i j sinθ0

i j + γ sin2 θ0
i j)

!

.

(13)
For a two dimensional triangular lattice (with αβ ≡ x y), the above equation simplifies to

〈Σx y〉=
3NkR0

2Va0

�

−
R0

2a0
γ+

1
p

3

�

γ− 1/
p

3
Æ

1+ (γ− 1/
p

3)2
+

γ+ 1/
p

3
Æ

1+ (γ+ 1/
p

3)2

��

. (14)

Considering a small shear amplitude, γ, we can do a linear approximation of the shear
stress and take the ratio of change in the shear-stress to shear-strain to obtain the shear-
modulus

G = lim
γ→0

〈Σx y〉
γ
∼

3NkR0

2Va0

�

R0

2a0
−

3
4

�

=
p

3k
2a2

0

�

1−
3
4

�

φ

φ0

�1/2�

. (15)

Both the expressions for bulk and shear modulus for various packing fractions and particle
size disorder are validated through numerical simulations in near-crystalline packings of soft
particles as shown in Fig. 2. Any local fluctuations of pressure and shear stresses giving rise
to local fluctuations in bulk and shear modulus are discussed in the later section. Given the
planar bulk and shear moduli, one can obtain the expressions for planar Young’s modulus and
Poisson’s ratio as

E =
4BG
B + G

=
p

3k
a2

0

�

φ

φ0

�1/2�4− 3 (φ/φ0)
1/2

4− (φ/φ0)
1/2

�

,

ν=
B − G
B + G

=
5 (φ/φ0)

1/2 − 4

4− (φ/φ0)
1/2

.

(16)

Similar techniques can be used in a system of particles interacting via long-ranged Lennard-
Jones interactions in a near-crystalline packing with average particle separation between the
nearest neighbor being R0. The bulk and shear modulus for such a system can be computed
as

B =
24
p

3k

R8
0

�

a−
4b

R6
0

�

,

G =
4
p

3k

R8
0

�

a−
5b

R6
0

�

,

(17)
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where

a =
N
∑

i=1

ni

m6
i

, and b =
N
∑

i=1

ni

m12
i

. (18)

Here ni is the number of particles on the i th spherical cell and mi is the ratio of the distance
of the i th cell from the central particle to R0, i.e., mi = Ri/R0. In the N →∞ limit, we arrive
at a = 6.37588 and b = 6.00981.

5 Displacement fields induced by microscopic disorder

In the previous section, we presented theoretical results related to the average stress tensor
components in a nearly crystalline arrangement of soft particles, where we made the assump-
tion that the average changes in local stress are negligible. The local stress components are
proportional to the square of the interparticle distances of all neighboring particles within the
cut-off distance. Consequently, in order to formulate the expressions for local stress, it is nec-
essary to derive the displacements of individual particles in a disordered configuration. Below,
we derive the displacement and force fields resulting from the introduction of disorder into a
crystalline network.

In both Harmonic and LJ model, we begin with a crystalline packing of monodisperse
particles in a fixed volume. In the short-ranged repulsive model we start with a finite over-
compression whereas in the attractive LJ interaction model, the initial volume is fixed such
that the initial pressure is set to P = 0. We then introduce disorder in the effective particle
sizes i.e., ai j as given in Eqs. (2), (5). As a response to this disorder, the particles are displaced
from their crystalline positions to maintain force balance, as

rµi = rµ(0)i +δrµi . (19)

Given that particle j is one of the neighboring particles of particle i in the initial crystalline
lattice, the relative displacement between their positions can be expressed using the basis
lattice vectors of the crystalline lattice as r⃗(0)i j = r⃗(0)j − r⃗(0)i = ∆⃗ j . The discrete Fourier transform

of the change in the relative displacement δrµi j can be expressed as:

F
�

δrµi j

�

=
∑

i

ei r⃗(0)i .k⃗δrµi j =
∑

i

ei r⃗(0)i .k⃗
�

δrµj −δrµi
�

=
�

e−i∆⃗ j .k⃗ − 1
�

δ r̃µ(k⃗) , (20)

where δ r̃µ(k⃗) = F [δrµ(r⃗)], corresponds to the discrete Fourier transform of particle displace-
ments from their crystalline positions. As a response to the disorder as well as the displace-
ments in the particle positions, the forces f⃗i j acting between adjacent particles i and j also
change. This variation can be expressed as a perturbation relative to the forces between these
particles in the initial crystalline state, represented as

f µi j = f µ(0)i j +δ f µi j . (21)

Every individual component of the excess force δ f µi j acting between particles i and j can
be Taylor expanded up to first order about its value in the crystalline ground state, in terms of
δrµi j (= δrµj −δrµi ) and δai j (= δai +δa j) as

δ f µi j =
∑

ν

Cµνi j δrνi j + Cµa
i j δai j , (22)

where the first-order Taylor coefficients Cµνi j , Cµa
i j depend only on the form of the potential

between the interacting particles and the initial crystalline arrangement. These coefficients can
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be represented as, Cµνi j =
�

∂ f µi j /∂ rνi j

�

�

�

�

{r⃗(0)i j ,a(0)i j }
and Cµa

i j =
�

∂ f µi j /∂ ai j

�

�

�

�

{r⃗(0)i j ,a(0)i j }
. For energy-

minimized configurations, the force balance condition dictates that the net force acting on
each particle i is zero. This means that for all interacting neighbors j, the sum of the force
deviations, denoted as δ f⃗i j , is equal to zero, expressed as

∑

j δ f⃗i j = 0. By applying this
condition in the linear order expression for forces as given in Eq. (22), we obtain d-equations,
where d represents the dimension of the system, for each particle i. These equations are given
as follows:

∑

j

∑

ν

Cµνi j δrνi j = −
∑

j

Cµa
i j δai j ,

P1 |δr〉= P2 |δa〉 .
(23)

P1 is a matrix of the Taylor coefficients Cµνi j and P2 is a matrix containing elements Cµa
i j .

Here, we have Nd such equations corresponding to Nd-variables (displacement components).
Since the system is translationally invariant, performing a discrete Fourier transform on the
equation can convert the Nd-equations of Nd-variables into d-equations of d variables. This
simplification reduces the complexity of the problem and diagonalizes the large matrices P1
and P2. So the Fourier transform of the Eq. (23) leads to

∑

ν

Aµν(k⃗)δ r̃ν(k⃗) = Bµ(k⃗) , (24)

where

Aµν(k⃗) =
∑

j

�

1− e−ik⃗.∆⃗ j
�

Cµνi j , Bµ(k⃗) = −F





∑

j

Cµa
i j δai j



 . (25)

In d-dimensions, Aµν would be a d × d symmetric matrix. Here the expression for Aµν and
Bµ have the same form for both short and long-range models where the only difference lies
in the number of interacting neighbor particles. Now we can obtain the displacement fields in
Fourier space by inverting Eq. (24),

δ r̃µ(k⃗) =
∑

ν

(A−1)µν(k⃗)Bν(k⃗) . (26)

Since δ r̃ is expressed as the product of A−1 and B, its inverse Fourier transform can be
written as a convolution resulting in the displacement fields in real space, as shown below:

δrµ(r⃗) = F−1
�

δ r̃µ(k⃗)
�

=
1
N

∑

k⃗

exp
�

−ik⃗.r⃗
�

δ r̃µ(k⃗) . (27)

Here Eqs. (27) and (26) correspond to the displacement fields and their Fourier transform
in the presence of particle size disorder. The exact expressions of these displacements are
model dependent, and we discuss the two different scenarios in detail below.

5.1 Short-ranged repulsive harmonic interaction

The displacement fields for the Harmonic model has been studied extensively [32,44,45,63]
where the disorder is introduced in the particle radius, δai j = ηa0(ζi +ζ j). Next, putting this
in Eq. (25) we get the expression for Bµ,

Bµ(k⃗) = −Dµ(k⃗)δã(k⃗) = −ηa0Dµ(k⃗)ζ̃(k⃗) ,

where Dµ(k⃗) =
∑

j

�

1+ e−ik⃗.∆⃗ j
�

Cµa
i j . (28)
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Here δã(k⃗) = F [δa(r⃗)] = ηa0ζ̃(k⃗), is the Fourier transform of δai . We have defined
|∆⃗ j| = R0 as the magnitude of the relative distance between grains in an over-compressed
crystalline system. Now putting the expression of Bν(k⃗) in the expression of δ r̃µ(k⃗) in Eq. (26),
we obtain

δ r̃µ(k⃗) =

�

−
∑

ν

(A−1)µν(k⃗)Dν(k⃗)

�

︸ ︷︷ ︸

G̃µ(k⃗)

δã(k⃗) = G̃µ(k⃗)δã(k⃗) . (29)

We can get the displacement fields by taking an inverse discrete Fourier transform as given
in Eq. (27) as

δrµ(r⃗) =
∑

r⃗ ′
Gµ(r⃗ − r⃗ ′)δa(r⃗ ′) ,

where Gµ(r⃗) = F−1
�

G̃µ(k⃗)
�

.
(30)

5.2 Attractive Lennard-Jones interaction with cut-off

The above-mentioned formulation for displacement fields can also be extended to any sort
of interaction where every grain can interact with 6 or more neighbors depending on the
interaction cut-off. For example, this cutoff is |r⃗i j|/ai j ≤ 2.5 for the LJ model, where the
microscopic disorders are incorporated into the bond distances as

δai j = η
�

(t i + t j) (λSL −λSS) + t i t j (λLL +λSS − 2λSL)
�

. (31)

Therefore, Bµ(k⃗) has the form

Bµ(k⃗) = η



(λSS −λSL) D̃
µ(k⃗) t̃(k⃗)−

(λLL +λSS − 2λSL)
N

∑

k⃗′

�

t̃(k⃗′) t̃(k⃗− k⃗′)D̃µ(k⃗− k⃗′)
�



 . (32)

In the above expression, D̃µ(k⃗) has the same expression as given in Eq. (28) with j go-
ing from 1 − 18 for all the interacting neighbors within the range |r⃗i j|/ai j ≤ 2.5. The only
difference in the expression of Bµ in LJ model to that of the Harmonic model is that the mag-
nitude of ∆⃗ js are not constant for all the interacting neighbors. In this study, we have chosen,
λSL = (λSS + λLL)/2 for numerical simulations, which simplifies the problem by removing
the nonlinear term in the above expression for Bµ(k⃗). In this approximation we can write,
δai = η(λSL−λSS)t i . Now the expressions for Bµ(k⃗) and δ r̃µ(k⃗) in Eq. (26) can be written as

Bµ(k⃗) = −Dµ(k⃗)δã(k⃗) = −η(λSL −λSS)D
µ(k⃗) t̃(k⃗) ,

δ r̃µ(k⃗) =

�

−
∑

ν

(A−1)µν(k⃗)Dν(k⃗)

�

︸ ︷︷ ︸

G̃µ(k⃗)

δã(k⃗) . (33)

where δã(k⃗) = η(λSL −λSS) t̃(k⃗).

6 Stress correlations induced by microscopic disorder

In this section, we focus on the fluctuations and correlations of the local stress tensor compo-
nents. Using the linear order displacement fields derived in the earlier section, we can compute
the stress correlations using a similar perturbation expansion for the minimally polydisperse
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system. For any athermal jammed system, the components of the global stress tensor can be
represented as

Σαβ = V−1
∑

〈i j〉

rαi j f βi j , (34)

where rαi j = rα(0)i j + δrαi j and f βi j = f β(0)i j + δ f βi j . Here rµ(0)i j refer to the µ-th component of the

interparticle distance whereas f µ(0)i j denote the µ-th component of the force acting between
particle i and j in the crystalline lattice without any microscopic disorder. In a system with
small particle size polydispersity (η), both the deviation of the particle positions (|δ r⃗|) from the
crystalline positions and the change in inter-particle forces (|δ f⃗ |) are in the order of δa ∼ η.
For small values of η, we can neglect higher-order terms in the expression for global stress
which leads to

Σαβ ∼ V−1
∑

〈i j〉

�

rα(0)i j f β(0)i j + rα(0)i j δ f βi j +δrαi j f β(0)i j

�

. (35)

Therefore the incremental change in the global stress (i.e δΣ= Σ−Σ(0)) due to the intro-
duction of disorder in the crystalline system can be written as

δΣαβ = V−1
∑

i





∑

j

(rα(0)i j δ f βi j +δrαi j f β(0)i j )





︸ ︷︷ ︸

δσαβ (r⃗i)

.
(36)

The above expression represents the net change in global stress as a linear combination of
δσ(r⃗0

i ), which we define as the change in local stress at the lattice position r⃗(0)i , and can be
expressed as follows:

δσαβ(r⃗
0
i ) =

∑

j

(rα(0)i j δ f βi j +δrαi j f β(0)i j ) =
∑

j

�

∆αj

∑

ν

Cβνi j δrνi j +∆
α
j Cβa

i j δai j +δrαi j f β(0)i j

�

. (37)

In the above expression, δσαβ(r⃗i) is a linear summation of particle displacements and
change in radii with coefficients. As we have demonstrated earlier, the Fourier transform of
δrαi j and δai j have simple relationships due to the translational invariance of the system, as
shown in Eqs. (29) and (33). Therefore, we can simplify the problem by performing a discrete
Fourier transform of Eq. (37) which leads to

δσ̃αβ(k⃗) = F
�

δσαβ(r⃗
0
i )
�

=
∑

i

ei r⃗0
i .k⃗δσαβ(r⃗

0
i )

=
∑

j

�

∆αj

∑

ν

Cβνj

�

−1+ F j(k⃗)
�

δ r̃ν(k⃗) +∆αj Cβa
j

�

1+ F j(k⃗)
�

δã(k⃗)

+
�

−1+ F j(k⃗)
�

δ r̃α(k⃗) f β(0)j

�

,

(38)

where F j(k⃗) = exp{−i∆⃗ j .k⃗}. We can further simplify the above expression by replacing δ r̃ν(k⃗)
by G̃ν(k⃗)δã(k⃗) as given in Eqs. (29) and (33), to arrive at

δσ̃αβ(k⃗) = Sαβ(k⃗)δã(k⃗) , where

Sαβ(k⃗) =
∑

j

�

�

1+ F j(k⃗)
�

Cβa
j ∆

α(0)
j +

�

−1+ F j(k⃗)
�

�

∑

ν

∆
α(0)
j Cβνj G̃ν(k⃗) + f β(0)j G̃α(k⃗)

��

.

(39)
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The sum over j pertains to all neighboring particles, i.e., all the particles that interact
with the central particle in the crystalline state without the disorder. Here, Sαβ represents the
Fourier transform of the Green’s function for the change in local stress components. Next, we
can obtain the change in local stresses in real space as a convolution by performing an inverse
Fourier transform of Eq. (39). This yields

δσαβ(r⃗) = F−1
�

δσ̃αβ(k⃗)
�

=
∑

r⃗ ′
Sαβ(r⃗ − r⃗ ′)δa(r⃗ ′) , (40)

where Sαβ is Green’s function for the change in local stresses. Next, we can write the form for
the Fourier transform of the change in the local pressure as

δP̃(k⃗) = d−1
d
∑

α=1

δσ̃αα(k⃗) = d−1δã(k⃗)
∑

α

Sαα(k⃗) . (41)

Since the Fourier transform of the change in the local stresses is linearly proportional to
δã(k⃗), we can also derive the configurational average of the local stress and pressure correla-
tions as

〈δσ̃αβ(k⃗)δσ̃µν(k⃗′)〉=



δã(k⃗).δã(k⃗′)
�

Sαβ(k⃗)Sµν(k⃗
′) ,

〈δP̃(k⃗)δP̃(k⃗′)〉=




δã(k⃗).δã(k⃗′)
�

d2

∑

α,β

Sαα(k⃗)Sββ(k⃗
′) .

(42)

Using the translational invariance of the system, the configurational average of the mi-
croscopic correlations of δã(k⃗) between two points k⃗ and k⃗′ in Fourier space can be written
as




δã(k⃗).δã(k⃗′)
�

=
Nη2

48
δk⃗,−k⃗′ (Harmonic)

=
Nη2(λSL −λSS)2

4
δk⃗,−k⃗′ (LJ) .

(43)

In the |k⃗| → 0 limit, 〈δσ̃αβ(k⃗)δσ̃µν(−k⃗)〉 becomes independent of the magnitude of |k⃗|
and only has an angular dependence which we represent as

Cαβµν(θ ) = lim
|k⃗|→0




δσ̃αβ(k⃗).δσ̃µν(−k⃗)
�

. (44)

The observed stress correlations are therefore anisotropic in the k → 0 limit, corresponding
to a pinch-point singularity at k = 0 [43]. Due to the finite system size, and to avoid effects
introduced by the periodic boundaries, we have integrated the stress correlations in Fourier
space in the narrow window of 0.5 ≤ |k⃗| ≤ 1.5. The integrated stress correlations in a small
window of k ∈ [kmin, kmax] near k→ 0 can be expressed as

C̄αβµν(θ ) =

∫ kmax

kmin

dk〈δσ̃αβ(k,θ )δσ̃µν(k,π+ θ )〉 . (45)

In real space, this translates to integrating the stress correlations at intermediate to large
lengthscales. The angular dependence of the integrated correlations are plotted in Fig. 5 for
both Harmonic and LJ model.

6.1 Local stress fluctuations

We can express the correlation of the excess local stress between two points r⃗ and r⃗ ′ in real
space using the expression for stress correlation in k-space given in Eq. (42) as

〈δσµν(r⃗)δσµν(r⃗ ′)〉=
∑

k⃗,k⃗′

〈δσ̃µν(k⃗)δσ̃µν(k⃗′)〉
N2

e−i(k⃗.r⃗+k⃗′.r⃗ ′) =
η2

48N

∑

k⃗

Sµν(k⃗)Sµν(−k⃗)e−i(r⃗−r⃗ ′).k⃗ .

(46)
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Figure 3: Local stress fluctuation with increasing polydispersity for (a) disordered
triangular lattice (2d) with repulsive harmonic particles of system size, N = 256 and
initial packing fraction, φ = 0.92 and (b) disordered fcc lattice (3d) with N = 4000
and φ = 0.80. Here all the numerical stress fluctuation varies as cαβη

2, where
cαβ =

1
48N

∑

k⃗ Sαβ(k⃗)Sαβ(−k⃗).

Therefore the local stress fluctuations at the same site can be written as

〈δσ2
µν(r⃗)〉=

η2

48N

∑

k⃗

Sαβ(k⃗)Sµν(−k⃗) . (47)

The theoretical prediction for local stress fluctuations as a function of increasing polydis-
persity is presented in Figure 3(a) and (b) for a two dimensional triangular lattice and a three
dimensional fcc lattice, respectively. These theoretical stress fluctuations align perfectly with
the numerical results.

6.2 Stress correlations in two dimensional systems

In the case of the two dimensional Harmonic model, every grain has six neighbors in the
near-crystalline system. The expressions for the Green’s functions Sαβ , as defined in Eq. (39),
depend solely on the nearest neighbor arrangement. Our analytic results demonstrate that
these Green’s functions in Fourier space have no radial dependence at small values of |k⃗|,
corresponding to larger lengthscales in real space. Keeping only the first term in the Taylor
expansion we can write these Green’s functions as

Sx x =
C(R0, K)

|k⃗|2

��

R0

a0
− 1

�

k2
y +

�

2−
R0

a0

�

k2
x

�

+O(k2) ,

Sy y =
C(R0, K)

|k⃗|2

��

R0

a0
− 1

�

k2
x +

�

2−
R0

a0

�

k2
y

�

+O(k2) ,

Sx y =
C(R0, K)

|k⃗|2

��

3−
2R0

a0

�

kx ky

�

+O(k2) ,

δP̃ =
C(R0, K)

2
δã(k⃗)

�

1+ f1|k⃗|2 + f2|k⃗|2 + . . .
�

,

(48)

where

C(R0, K) =
6KR0(R0 − a0)
(2R0 − a0)a2

0

, f1 = − (a0/3)
2 cos2 3θ , and f2 = f 2

1 . (49)
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Figure 4: Change in local stress due to the introduction of disorder in a single particle
(i.e., the Green’s function for change in the local stress) in a 2D near-crystalline
packing (HCP) of soft particles. Here figure (a), (b), and (c) correspond to δσx x(r⃗),
δσx y(r⃗) and δσy y(r⃗) for δa(r⃗ = 0) = 1 and δa(r⃗ ̸= 0) = 0 for every other grain.

Here the functions f1 and f2 in the expression for δP̃ are influenced by the initial pack-
ing fraction and the orientation of the reciprocal lattice vector k⃗. The above expressions for
Green’s functions can be reformulated in a polar coordinate system to describe behavior at
large lengthscales as follows.

lim
|k⃗|→0

Sx x(|k⃗|,θ )∼
C(R0, K)

2

�

1−
�

2R0

a0
− 3

�

cos(2θ )
�

,

lim
|k⃗|→0

Sy y(|k⃗|,θ )∼
C(R0, K)

2

�

1+
�

2R0

a0
− 3

�

cos(2θ )
�

,

lim
|k⃗|→0

Sx y(|k⃗|,θ )∼ −
C(R0, K)

2

�

2R0

a0
− 3

�

sin(2θ ) .

(50)

All the Green’s function above and their correlations show anisotropic behavior with an
angular periodicity of π. Performing an inverse Fourier transform on the above expression
yields the behavior of these Green’s functions at large lengthscales in real space, which is
presented below as

Sx x(r⃗) = −Sy y(r⃗)∼ −
C(R0, K)

2

�

2R0

a0
− 3

�

cos(2θ )
|r⃗|2

,

Sx y(r⃗) = Sy x(r⃗)∼ −
C(R0, K)

2

�

2R0

a0
− 3

�

sin(2θ )
|r⃗|2

.
(51)

Fig. 4 displays all the components of the Green’s functions at large lengthscales whose
functional forms are given in Eq. (51). The long-ranged two dimensional LJ model also exhibits
similar behavior at large lengthscales. The Green’s functions as well as stress correlations in LJ
model have equal angular behavior as that of the Harmonic model as plotted in Figs. 4 and 5,
only difference lying in the magnitude of the stress fluctuations which depends on the initial
macroscopic properties of these systems like global pressure, box size. In the two dimensional
Harmonic model, all six unique stress correlations as well as the pressure correlation in Fourier
space at small magnitudes of k⃗ can be represented using the expressions given in Eqs. (42)
and (48). For example, the correlation of change in local pressure at large lengthscales (k→ 0)
can be expressed as

P(R0,η) = lim
k→0




δP̃(k⃗).δP̃(−k⃗)
�

∼ N〈δa2〉
C2(R0, K)

4
, (52)

which is a constant for a given packing of particles. The higher-order terms in the Taylor
expansion of pressure correlation in Fourier space reveal the anisotropic crystalline nature
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Figure 5: Angular dependence of stress correlations in Fourier space integrated in

a small window of |k⃗| i.e C̄αβµν(θ ) =
∫ kmax

kmin
dk〈δσ̃αβ(k,θ )δσ̃µν(k,π + θ )〉 for dif-

ferent initial over-compression (Harmonic)/pressure (LJ) with disorder strength of
η= 0.005. The first row represents all the six distinct correlations for the Harmonic
model and the second row corresponds to the LJ model. Here the solid and dashed
lines correspond to the theoretical results where points correspond to the numerical
data for the two different models. Here we have chosen kmin = 0.1 and kmax = 1.0
and system size N = 6400 for both the models.

of the inherent lattice. However, the significance of higher-order terms becomes apparent at
smaller length scales, where lattice symmetry becomes a dominant factor.

In Fig. 5 we show an exact match between the stress correlations obtained from numerical
simulations and the predictions from the microscopic theory for both short-ranged Harmonic
and long-ranged LJ model in two dimensions. The aforementioned correlations are applicable
to systems that possess a finite average pressure (R0 < 2a0). However, in the limit where
the average pressure is zero (〈P〉 → 0), i.e., as R0 approaches 2a0, the results obtained from
the VCTG framework [18,43] for amorphous materials lacking any crystalline symmetries are
reproduced i.e.

lim
R0→2a0

�

lim
k→0

Sαβ
�

=
C(2a0, K)

(−1)1−δαβ k2

∏

i=α,β

�q

k2 − k2
i

�

, (53)

which can be used to write the correlations between the different components of the stresses
as

Cαβµν =
Nη2

48

�

lim
R0→2a0

�

lim
k→0

Sαβ(k⃗)Sµν(−k⃗)
�

�

=
4P(2a0,η)

(−1)2−δαβ−δµνk4

∏

i=α,β ,µ,ν

�q

k2 − k2
i

�

. (54)

where C(2a0, K) = 4K/a0 and P(2a0,η) = η2K2/12a2
0. In the same R0 → 2a0

limit, the functions in Eq. (48) for change in local pressure have the following form i.e.,
f1 = − (a0/3)

2 cos2 3θ , f2 = f 2
1 and so on. For a finite system with particle radius a0, the

maximum magnitude of k is π/a0. So
�

� f1k2
�

�≤ 1 for all values of k, except near the boundary
of the 1st Brillouin zone. So the change in the local pressure due to particle size defect for
k≪ π/a0 can be written as,

lim
R0→2a0

δP̃(k⃗) =
C(2a0, K)δã(k⃗)

2
(1− f1k2 + f 2

1 k4 + ...)

∼
C(2a0, K)δã(k⃗)

2(1+ f1k2)
=

C(2a0, K)δã(k⃗)

2
�

1+ (a0/3)
2 k2 cos2 3θ

� .
(55)
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Figure 6: Correlation in the change in local pressure in Fourier space
(〈δP̃(k⃗)δP̃(−k⃗)〉/〈δa2〉) due to introduction of a single particle disorder in a crys-
talline packing of soft particles with φ = 0.92.

Using the above approximation, we can calculate the correlation of local pressure which
have the sixfold symmetry (i.e cos2 3θ) for |k⃗|> 0, which we have shown in Fig. 6 for a single
particle disorder. In the zero average pressure limit, the findings for the stress correlations
exhibit unexpected universal behavior. This universal behavior is characterized by the obser-
vation of similar anisotropic stress correlations at large length scales across various jammed
athermal packings [17,18,43,58,59].

6.3 Comparision with amorphous systems at large lengthscales

Recently the stress correlations in fully amorphous packings have been successfully predicted
within a field-theoretic framework [18,43]. This Vector Charge Theory of “emergent” elasticity
is defined by the following equations:

∂iΣi j = f j , (56)

Ei j =
1
2
(δiψ j +δ jψi) , (57)

σi j = (δi jkl +χi jkl)Ekl = Λ
−1
i jkl Ekl . (58)

The stress tensor field is represented by σ, and in this context, E serves a role that is similar to
that of the strain field in canonical elasticity theory. The emergent elasticity modulus tensor
is defined as Λ, and the equations bear a notable resemblance to those of canonical linear
elasticity. The components of the Λ tensor can be interpreted as “emergent” elastic moduli.
By utilizing the tensor gauge theory for polarizable isotropic media, all 6 distinct stress cor-
relations at small magnitudes of k⃗ can be obtained which has the same form as the ones in
Eq. (54) for near-crystalline systems in the P → 0 limit with P(2a0,η) replaced by a constant
K2D that depends on the elastic properties of the system [18, 43]. So for the finite pressure,
the stress correlations for the near-crystalline systems can be represented as a summation of
the stress correlation for an isotropic amorphous system (from the VCTG framework) and the
non-isotropic part of the stress correlation which contains the information about the crystalline
symmetry i.e.

Cαβµν = C t
αβµν + dαβµν , (59)
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where C t
αβµν

, represents the stress correlations obtained from the VCTG framework. This
finite shift dαβµν, can also be seen from the numerically obtained correlations as plotted in
Fig. 5 which can not be explained in the VCTG framework. Therefore for an overcompressed
disordered crystal with finite average pressure, the angular behavior of stress correlations show
an additional anisotropic term which depend on the system pre-stress. For small pre-stress i.e.,
R0 → 2a0, we have |dαβµν/Cαβµν| → 0, and consequently numerically the stress correlations
are indistinguishable to that of the amorphous systems. The exact expressions for the angular
dependence of the above correlation functions are detailed in Appendix B.

6.4 Continuum limit

In the small |k⃗| limit, using the expression for Sαβ(k⃗) as given in Eq. (48) we can rewrite the
change in the local stresses in the Fourier space as

δσ̃αβ =
�

k2
yφαβ1 + k2

xφαβ2 − kx kyφαβ3

�

|k⃗|−2δã(k⃗) . (60)

Using Voigt notation [71], we can replace x x = 1, y y = 2, x y = 3. Since the stress tensor
has three independent components in two dimensions, we can represent the Fourier transform
of their change in the following matrix form,

lim
k→0





δσ̃1(k⃗)
δσ̃2(k⃗)
δσ̃3(k⃗)



=

�

δã(k⃗)

|k⃗|2

�

︸ ︷︷ ︸

Ψ̃(k⃗)





φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33





︸ ︷︷ ︸

Φ̂

.





k2
y

k2
x

−kx ky





︸ ︷︷ ︸

|A(k⃗)〉

,

�

�δσ̃(k⃗)
�

= Φ̂
�

Ψ̃(k⃗)
�

�A(k⃗)
��

,

(61)

where
φ11 = φ22 = C(R0, K) (R0/a0 − 1) ,

φ33 = C(R0, K) (2R0/a0 − 3) ,

φ12 = φ21 = C(R0, K) (2− R0/a0) ,

φ13 = φ23 = φ31 = φ32 = 0 .

(62)

Given that δσ̃i(k⃗) characterizes the Fourier transform of the change in local stresses as
|k⃗| → 0, its inverse-Fourier transform reveals the changes in local stresses at large lengthscales
due to the defect at the origin. Specifically, this pertains to the coarse-grained local stress
fluctuations in real space, which can be expressed as:

δσi(r⃗) =
�

φi1∂
2
y +φi2∂

2
x −φi3∂x∂y

�

Ψ(r⃗) , (63)

where

Ψ(r⃗) =
1

(2π)2

∫

d2kei r⃗.k⃗

�

δã(k⃗)

|k⃗|2

�

. (64)

The summation in the above equation is performed over reciprocal lattice points in a tri-
angular lattice configuration. The function Ψ(r⃗) is a non-isotropic field contingent upon the
symmetry of the lattice. In an isotropic system, the force balance criterion is:

∂iσi j(r⃗) = f j(r⃗) = 0 . (65)

In the case of an amorphous system, we can establish an isotropic field Ψ
′
(r⃗), which lacks

any lattice symmetry, yet meets the force balance condition as expressed in Eq. (65), in a
manner such that

δσ
′

i j(r⃗) = εiaε j b∂a∂bΨ
′
(r⃗) . (66)
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Figure 7: Angular variation of the change in local stress correlation in Fourier space
due to particle size disorder in a 3D near-crystalline (fcc) system as |k⃗| → 0. Here

Cαβµν(θ ,φ) = lim|k⃗|→0




δσ̃αβ(k⃗).δσ̃µν(−k⃗)
�

= Nη2

48 SαβSµν, where exact expressions
for Sαβ and its angular variations are given in Eqs. (A.4), (A.5) and (A.6). Here
we have plotted correlations the in Hammer projection as given in eq. (C.1) for
(Hx/2

p
2)2 + (H y/

p
2)2 ≤ 1.

In the Voigt notation [71],

δσ
′

i(r⃗) =
�

φ
′

i1∂
2
y +φ

′

i2∂
2
x −φ

′

i3∂x∂y

�

Ψ
′
(r⃗) ,

where φ
′

i j = lim
R0→2a0

φi j = C(2a0, K)δi j .
(67)

So in large length scales the Φ̂ tensor gives a difference between the coarse-grained local
stresses for an amorphous system and a disordered-crystal. For an amorphous system Φ̂ is an
identity matrix whereas in near-crystalline systems Φ̂ also contains off-diagonal elements. This
difference vanishes for a marginally jammed disordered crystal i.e., R0→ 2a0.

6.5 Stress correlations in three dimensions

In this section, we derive the stress correlations in a three dimensional system induced by mi-
croscopic disorder. The method developed earlier for the displacement fields and the change
in local stresses is still valid for the 3D fcc lattice with the only difference arising from the
number of nearest neighbors and their arrangement in space. We can also write the displace-
ment fields of the particles as, δ r̃α(k⃗) = Gα(k⃗)δã(k⃗) [35]. Using this we can write down
the expression for change in the local stress components in an fcc lattice in Fourier space as,
δσ̃αβ(k⃗) = Sαβ(k⃗)δã(k⃗). The exact expressions for Green’s functions for displacement fields
and the change in local stress components due to both particle size disorder and force pinning
in fcc lattice are detailed in the appendix A.1 and appendix A.2 respectively. At large length-
scales, the Green’s function in real space for change in local stress has the following radial
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behavior,

Sαβ(r⃗) = F
�

Sαβ(k⃗)
�

∼
Bαβ(θ ,φ)

r3
, ∀r ≫ R0 . (68)

Similar to two dimensional systems, we can write the correlation between different com-
ponents of stress using the Green’s functions defined above in |k⃗| → 0 limit as

Cαβµν(θ ,φ) = 〈δa2〉 lim
|k⃗|→0

Sαβ(k⃗)Sµν(−k⃗) . (69)

Here the preliminary theoretical results for the Green’s functions for local stress and the
stress correlations in Fourier space are given in the Appendix A.2 and all the distinct compo-
nents of these correlations are plotted in Figure. 7.

7 Response to a point force

Subsequently, we examine the change in the local stress components within a crystalline sys-
tem caused by finite quenched forces. We start by introducing finite external quenched forces,
represented as f⃗a(r⃗i), to each grain i in the crystalline system. The sum of these forces satisfies
the condition

∑

i f⃗a(r⃗i) = 0. To balance the forces on each grain in the system, particles shift
from their original lattice positions. In the case of an ideal crystalline system with forces at-
tached to particles, the force balance requirement for each grain i can be expressed as follows:

∑

j

�

f (0)µi j +δ f µi j

�

= −( fa)
µ
i , (70)

where f (0)i j are the forces along the bond between particle i and j in the initial crystalline
system whereas δ fi j correspond to the change in the bond forces due to the external pinning.
Here δ fi j can be approximated using their first-order Taylor series expansion, resulting in the
following linear expression:

∑

j

∑

ν

Cµνi j δrνi j = −( fa)
µ
i . (71)

The above expression is similar to the linear equation for the displacement fields due to
particle size disorder. By employing a similar approach as explained earlier for particle size
disorder, we can obtain the expression for displacement fields resulting from pinned forces,
which is presented as follows:

δ r̃µ(k⃗) = −
∑

ν

�

A−1
�µν
(k⃗)

︸ ︷︷ ︸

G̃µν(k⃗)

f̃ νa (k⃗) , (72)

whose inverse Fourier transform gives the displacement fields in real space due to force quench.
The large lengthscale behavior of these displacements has been studied thoroughly [32].
We have given a brief description of these above expressions in the Appendix A.1. Using
these displacement fields and the expression for the change in local stresses, one can write the
components of change in local stresses in Fourier space as,

δσ̃αβ(k⃗) =
∑

µ

Sµ
αβ
(k⃗) f̃ µa (k⃗) , (73)

where Sµ
αβ
(k⃗) =

∑

j

�

�

−1+ F j(k⃗)
�

�

∑

ν

∆
α(0)
j Cβνj G̃µν(k⃗) + f β(0)j G̃µα(k⃗)

��

. (74)
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Figure 8: Change in local stress components per unit force (δσαβ(r⃗)/ fa) applied at
the origin in 2D near-crystalline systems of N = 10000 particles with periodic bound-
ary conditions. Here the top panel (a) corresponds to direct numerical simulations
and (b) represents the theoretical results as given in Eq. (78).

We can connect the Green’s functions for the displacement and stress fields produced due
to force quench to that of the microscopic particle size disorder which can be represented as
follows,

G̃µ(k⃗) =
∑

ν

G̃µν(k⃗)

 

∑

j

Cνa
j

�

1+ F j(k⃗)
�

!

,

Sαβ(k⃗) =
∑

ν

Sναβ(k⃗)

 

∑

j

Cνa
j

�

1+ F j(k⃗)
�

!

.

(75)

In real space, the change in the local stress components can be represented as

δσαβ(r⃗) =
∑

r⃗ ′

∑

µ

Sµ
αβ
(r⃗ − r⃗ ′) f µa (r⃗

′) , (76)

where Sµ
αβ
(r⃗) corresponds to the Green’s function for the change in local stress components

due to pinned force in real space. These Green’s functions in the above expression can be
understood as the change in local stresses due to a unit force applied to a single particle at the
origin. The exact expressions for these Green’s functions in Fourier space (in k→ 0 limit) are
detailed in Appendix. A.2. We can perform Fourier transform to obtain the large lengthscale
behavior of these Green’s functions which shows 1/r radial behavior in two dimensions and
Sγ
αβ
∼ 1/r2 and Sααα ∼ 1/r in three dimensions. In two dimensions we can write these Green’s

functions explicitly as

S x
x x(r⃗) = (4 (R0 − a0) cosθ + a0 cos3θ )/(2R0 − a0)r ,

S x
x y(r⃗) = (2R0 − a0 + 2a0 cos2θ ) sinθ/(2R0 − a0)r ,

S x
y y(r⃗) = a0 cos 3θ/(2R0 − a0)r ,

S y
x x(r⃗) = a0 sin 3θ/(2R0 − a0)r ,

S y
x y(r⃗) = (2R0 − a0 − 2a0 cos2θ ) cosθ/(2R0 − a0)r ,

S y
y y(r⃗) = (4 (R0 − a0) sinθ − a0 sin 3θ )/(2R0 − a0)r .

(77)
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To verify our results we have taken a system of N = 10000 particles in a triangular lattice
arrangement and assigned a point force ( fa ŷ) directed along the y−axis to a particle located
at the origin (0, 0). To make the net force in the system zero we apply an additional − fa ŷ/N
to all the particles in the system. All the particles will rearrange to balance the point force,
which results in a change in the local stress profile. So the displacements and the change in
local stresses can be written as

δx(r⃗) = − faG x y(r⃗) , δ y(r⃗) = − faG y y(r⃗) ,

δσαβ(r⃗) = faS
y
αβ
(r⃗) .

(78)

The results above can be verified in Fig. 8 where we have shown the match between the an-
alytically and numerically obtained results for change in local stress profile due to a quenched
force along y-axis. We have also done a preliminary study on the effect of pinning in 3d
systems which we have detailed in the appendix A.2.

8 Distribution of stresses

Computations of stress correlations in athermal amorphous materials implicitly assume a par-
tition function description [18, 43, 59, 60]. We show below that such an ensemble indeed
emerges from the fluctuations of the individual radii. We obtain the joint probability distribu-
tion of changes in local stresses in Fourier space by utilizing the linear relationships between
the change in local stress and disorder, as described in equations (40) and (76).

P(δσ̃1(k⃗),δσ̃2(k⃗),δσ̃3(k⃗)) =
∫ ∞

−∞
d (δãk) p(δãk)

3
∏

i=1

δ
�

δσ̃R
i − Siδã(k⃗)R

�

δ
�

δσ̃I
i − Siδã(k⃗)I

�

=

∫ ∞

−∞

∫ ∞

−∞

3
∏

j=1

d f jd g je
i
�

f jδσ̃
R
j +g jδσ̃

I
j

�

∫ ∞

−∞
d (δãk) p(δãk)e

−i
�

∑3
m=1(δã(k⃗)R fm+δã(k⃗)I gm)Sm

�

︸ ︷︷ ︸

h({ f ,g,S})

.

(79)
In the above equation, the superscripts R and I correspond to the real and

imaginary parts respectively. Since the δas are drawn from a uniform distribu-
tion we can obtain the distribution of its Fourier transformed variable δã(k⃗) as
p(δãk) = (48/πNη2)1/2 exp

�

−48|δã(k⃗)|2/Nη2
	

. So using this distribution we can rewrite
the above equation as,

h ({ f , g, S}) = exp

(

−
Nη2

192

3
∑

m,n=1

( fm fn + gm gn) (SmSn)

)

= exp

�

−
Nη2

192
(〈 f | Ŝ | f 〉+ 〈g| Ŝ |g〉)

�

,

(80)
where 〈 f | = ( f1 f2 f3), 〈g| = (g1 g2 g3) and Ŝmn = SmSn. Therefore, using the above expres-
sion we can rewrite the joint probability distribution of the stress components in Fourier space
as

P(δσ̃x x(k⃗),δσ̃y y(k⃗),δσ̃x y(k⃗)) =

∫ ∞

−∞

∫ ∞

−∞

3
∏

j=1

d f jd g je
i(〈 f |δσ̃R〉+〈g|δσ̃I〉)e−

Nη2

192 (〈 f |Ŝ| f 〉+〈g|Ŝ|g〉)

=
�

48
πNη2

�1/2

exp
§

−
48

Nη2




δσ̃R
�

� Ŝ−1
�

�δσ̃R
�

ª

,

(81)

22

https://scipost.org
https://scipost.org/SciPostPhys.17.1.012


SciPost Phys. 17, 012 (2024)

where




δσ̃R
�

�=
�

δσ̃x x(k⃗) δσ̃y y(k⃗) δσ̃x y(k⃗)
�

, and Ŝ =





Sx xSx x Sx xSy y Sx xSx y
Sy ySx x Sy ySy y Sy ySx y
Sx ySx x Sx ySy y Sx ySx y



 , (82)

where the form of the Sαβ are model dependent and their exact forms are provided in the
appendix A.2.

Earlier studies [18, 43] have shown that the generalized elastic constants in amorphous
packings are directly related to the correlations in components of the stress tensor. This ex-
plicitly does not depend on the strength of the disorder in the system. However, as we have
shown, in near-crystalline packings the distributions depend on the strength of the disorder
but the elastic constants are independent of them. So it is not evident that the formulations de-
veloped earlier [18,43] for generalised elastic constants in amorphous systems can be directly
implemented in the context of near-crystalline packings.

9 Discussion and conclusion

In this study, we have examined the elastic properties, stress fluctuations as well as spatial
stress correlations in near-crystalline athermal systems. We have obtained exact theoretical
results for the macroscopic elastic properties by utilizing the fact that the average change in
local stresses due to microscopic disorder in crystalline athermal solids is negligible. Our find-
ings reveal that these elastic properties remain unaffected by the degree of disorder within a
crystalline packing but are influenced by various initial conditions, such as packing fraction,
pressure, and the strength of particle interactions. Furthermore, we have presented both nu-
merical and theoretical results for local stress fluctuations and their spatial correlations within
energy-minimized configurations of soft particles in both two and three dimensions. Notably,
all these fluctuations and correlations exhibit a quadratic variation with the strength of the
disorder. We have shown that the components of the stress tensor display anisotropic long
range decay in both two and three dimensional near-crystalline packings irrespective of the
interaction potential. For particle size disorder we observe a 1/rd radial decay of the change
in the stress-tensor components whereas for external quenched forces, we have established a
slower 1/rd−1 radial decay. The stress correlations in disordered crystals differ significantly
from those observed in isotropic amorphous materials at high packing fractions or under high-
pressure conditions [59, 60]. Notably, we have observed additional non-isotropic angular
behavior in the stress correlations, which becomes prominent at higher packing fractions.

Crucially, for the case of near-crystalline packings, we have found that the correlations de-
pend on the strength of the disorder (proportional to η2) introduced into the system, whereas
the macroscopic elastic coefficients are largely independent of disorder. This is in contrast
to stress correlations in amorphous materials, where the magnitude of the correlations have
been related to elastic constants which are independent of the degree of disorder [18, 43]. It
would therefore be very interesting to examine the crossover between this near-crystalline and
amorphous behaviour as the degree of disorder increased beyond a critical threshold.

Several interesting questions still remain for further research. For example, the behavior of
these stress correlations as we increase the disorder in the system may not vary quadratically
to the strength of the disorder as linear perturbation expansion is not valid at a high enough
disorder. It would therefore be interesting to study these properties across the crystalline to
amorphous transition. It would also be intriguing to extend our analysis to dynamical systems
where particles obey local force balance constraints only on average.
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Recent studies [72] have connected the fluctuating elastic constants to the quasilocalised
vibrational modes in amorphous materials. This hypothesis would be interesting to examine
microscopically within the context of near-crystalline materials. Our study also highlights the
importance of prestress in the stress correlations of athermal materials. Increasingly, studies
have shown that accounting for the impact of stresses or prestress is crucial in understanding
mechanical properties of amorphous materials [73, 74]. Our techniques could therefore be
used to test the impact of frozen-in stresses on the elasticity characteristics of both crystalline
and amorphous materials.
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A Green’s functions in the harmonic model

A.1 Green’s functions for displacement fields

The displacements of every grain (in Fourier space) due to pinned forces can be written using
the translational invariance of the system as detailed in the recent publications [32,63] which
have the form

δ r̃µ(k⃗) = −
∑

ν

�

A−1
�µν
(k⃗)

︸ ︷︷ ︸

G̃µν(k⃗)

f̃ νa (k⃗) . (A.1)

Similarly, the linear order displacement fields due to disorder in the particle sizes can be
expressed as

δ r̃α(k⃗) =
∑

ν

G̃α(k⃗)δãα(k⃗) . (A.2)

Below we have given the general form of these Green’s functions with various initial pack-
ing fractions, particle size disorder and random quenched forces for both two and three di-
mensional harmonic soft particle systems.
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Force pinning (2d)

G̃ x x(k⃗)
R0a2

0
K

m1

(m1m2−m2
3)

where,
m1 = −3(R0−a0)+(R0−2a0) cos 2kx +(2R0−a0) cos kx cos ky ,

G̃ y y(k⃗)
R0a2

0
K

m2

(m1m2−m2
3)

m2 = −3(R0 − a0) + R0 cos 2kx + (2R0 − 3a0) cos kx cos ky ,

G̃ x y(k⃗)
R0a2

0
K

m3

(m1m2−m2
3)

m3 =
p

3a0 sin kx sin ky .

Force pinning (3d)

G̃αα(k⃗) R0a2
0

K
pβ pγ−q2

α

h

where,
h= px py pz + 2qxqyqz − pxq2

x − pyq2
y − pzq2

z ,

G̃αβ(k⃗) R0a2
0

K
pγqγ−qαqβ

h

pα = (−3R0 + 4a0 + (R0 − 2a0) cos kβ cos kγ
+(R0 − a0) cos kα(cos kβ + cos kγ)) ,
qα = a0 sin kβ sin kγ , ∀α ̸= β ̸= γ ∈ {x , y, z} .

Particle size disorder (2d)

G̃α(k⃗)
∑

β G̃
αβ(k⃗)Dβ(k⃗)

where,
Dx(k⃗) = i K(R0−a0)

a3
0

�

2 cos kx + cos ky

�

sin kx ,

D y(k⃗) = i
p

3K(R0−a0)
a3

0
cos kx sin ky .

Particle size disorder (3d)

G̃α(k⃗)
∑

β G̃
αβ(k⃗)Dβ(k⃗)

where,
Dα(k⃗) = i K(R0−a0)p

2a3
0

�

cos kβ + cos kγ
�

sin kα, ∀α ̸=β ̸=γ ∈ {x , y, z} .

A.2 Green’s functions for change in local stresses in Fourier space

In the linear approximation, the change in the local stress due to external force pinning in both
two and three dimensional systems can be expressed in Fourier space as

δσ̃µν(k⃗) =
∑

ν

Sαµν(k⃗) f̃
α
a (k⃗) . (A.3)

For particle size disorder the expressions for Green’s functions Sαβ as given in Eq. (39)
which only depend on the nearest neighbor arrangement exhibit simple relationships at small
magnitudes of |k⃗| (corresponding to large lengthscales in real space), which are expressed
below as
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Force Pinning (2d)

Sααα(k⃗) −2ikα
�

k2
β
(4R0 − a0) + k2

α(4R0 − 5a0)
�

/
�

k4(2R0 − a0)
�

,

Sα
ββ
(k⃗) −2ikα(k2

α − 3k2
β
)a0/

�

k4(2R0 − a0)
�

,

Sα
αβ
(k⃗) = Sα

βα
(k⃗) −2ikβ

�

k2
α(2R0 − 5a0) + k2

β
(2R0 − a0)

�

/
�

k4(2R0 − a0)
�

.

Force Pinning (3d)

Sαµν(k⃗) i
p

2R0nαµν(k⃗)/d(k⃗) where,

d(k⃗) = c2
0(c0 − a0)k6 − 3a2

0
2 c0k2

∑

αβ∈{x ,y,z} k
2
αk2
β
+ 5a3

0(kx ky kz)2 ,

nααα(k⃗) = c0k2
�

c2
0 k2 + 2a0c1(k2 − k2

α)
�

− 3a2
0c2k2

β
k2
γ ,

nα
ββ
(k⃗) = a0kα

�

2c0c1k4 + 3a0(8c3 − a0)k2
β
(k2
α + k2

β
) + a0c0k2k2

α

−(16c2
3 + a0(2c2 + a0))k2k2

β

�

,

nα
αβ
(k⃗) = c0kβ

�

2c0c3k4 − 12R0a0k2k2
α

−3a2
0

�

(4k2
α − k2

β
)(k2

α + k2
β
)− k2(k2

α − k2
β
)
��

,

nα
βγ
(k⃗) = 2a0c0kαkβkγ

�

2c0k2
α + (2R0 + c0)(k2

β
+ k2

γ)
�

,
∀α ̸= β ̸= γ ∈ {x , y, z} .

with c0 = (2R0 − 3a0), c1 = (R0 − 2a0), c2 = (2R0 − a0), c3 = (R0 − a0) .

Particle size disorder (2d)

Sαα(k⃗)
C(R0,K)
|k⃗|2

��

R0
a0
− 1

�

k2
β
+
�

2− R0
a0

�

k2
α

�

,

Sαβ(k⃗)
C(R0,K)
|k⃗|2

��

3− 2R0
a0

�

kαkβ
�

, ∀α ̸= β ∈ {x , y} ,

with C(R0, K) = 6KR0(R0−a0)
(2R0−a0)a2

0
.

Particle size disorder (3d)

Sµν(k⃗)
�

2c3R0/a
3
0

� �

mµν(k⃗)/d(k⃗)
�

where,

d(k⃗) = c2
0(c0 − a0)k6 − 3a2

0
2 c0k2

∑

αβ∈{x ,y,z} k
2
αk2
β
+ 5a3

0(kx ky kz)2 ,

mαα(k⃗) = c3
0 k6 − a2

0(4c1 − a0)k2
αk2
β

k2
γ − c0a0k2

�

4c1k4
α + a2

0k2
β

k2
γ

�

+c0(8c2
1 + a0c0)k4k2

α ,

mαβ(k⃗) = c0kαkβ
�

2c0k2 − a0(k2
α + k2

β
)
��

2c1k2 + a0(k2
α + k2

β
)
�

,
∀α ̸= β ̸= γ ∈ {x , y, z} .

with c0 = (2R0 − 3a0), c1 = (R0 − 2a0), c2 = (2R0 − a0), c3 = (R0 − a0) .
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Figure 9: Green’s function for change in the local stress components in k → 0 limit
which only has anisotropic angular behavior. Here the Green’s functions are repre-
sented in Hammer projection i.e., {θ ,φ→ Hx(θ ,φ), H y(θ ,φ)} as given in Eq. (C.1)
for (Hx/2

p
2)2 + (H y/

p
2)2 ≤ 1.

In the 3D Harmonic model, when we approach the limit of |k⃗| → 0 and R0 → 2a0 with
a0 = 1/2, the components of Sαβ take on specific forms:

Sαα =
8(k2

β
+ k2

γ)
�

|k|4 − k2
β

k2
γ

�

|k|6 + (k6
x + k6

y + k6
z + 2k2

x k2
y k2

z )
,

and Sαβ =
−8(kαkβ)

�

|k|4 − k4
γ

�

|k|6 + (k6
x + k6

y + k6
z + 2k2

x k2
y k2

z )
, ∀α ̸= β ̸= γ ∈ {x , y, z} .

(A.4)

Now, in a spherical polar coordinate system, where kx = k sinθ cosφ, ky = k sinθ sinφ,
and kz = k cosθ , substituting these values into the equations above yields the angular behavior
of Sαβ(k⃗) as |k⃗| → 0,

lim
|k⃗|→0

Sαβ(|k⃗|,θ ,φ) =
gαβ(θ ,φ)

h(θ ,φ)
. (A.5)

The angular behaviour of these Green’s functions are represented in Fig. 9. In the specific
case of R0→ 2a0 with a0 = 1/2, the components of gαβ(θ ,φ) and h(θ ,φ) are given by,

gx x = 8(sin2 θ sin2φ + cos2 θ )
�

1− sin2 θ sin2φ cos2 θ
�

,

g y y = 8(sin2 θ cos2φ + cos2 θ )
�

1− sin2 θ cos2φ cos2 θ
�

,

gzz = 8 sin2 θ
�

1− sin4 θ sin2φ cos2φ
�

,

gx y = 2 sin4 θ sin2 2φ
�

1− cos2 θ
�

,

g yz = 2 sin2 2θ sin2φ
�

1− sin2 θ cos2φ
�

,

gzx = 2 sin2 2θ cos2φ
�

1− sin2 θ sin2φ
�

,

h(θ ,φ) = 1+ sin6 θ (sin6φ + cos6φ) + cos6 θ + 2sin4 θ sin2φ cos2φ .

(A.6)
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B Angular variation of stress correlations at large lengthscales

All the six distinct stress correlations in a two dimensional Harmonic soft particle system where
the underlying arrangement is a triangular lattice have the following forms,

Cx x x x = 4P(R0,η)
��

R0

a0
− 1

�

sin2 θ +
�

2−
R0

a0

�

cos2 θ

�2 R0→2a0−−−−→ 4P(2a0,η) sin4 θ ,

Cy y y y = 4P(R0,η)
��

R0

a0
− 1

�

cos2 θ +
�

2−
R0

a0

�

sin2 θ

�2 R0→2a0−−−−→ 4P(2a0,η) cos4 θ ,

Cx y x y = 4P(R0,η)
��

3−
2R0

a0

�

sinθ cosθ
�2 R0→2a0−−−−→ 4P(2a0,η) sin2 θ cos2 θ ,

Cy y x x = 4P(R0,η)
�

sin2 θ cos2 θ +
�

R0

a0
− 1

��

2−
R0

a0

�

(sin4 θ + cos4 θ )
�

R0→2a0−−−−→ 4P(2a0,η) sin2 θ cos2 θ ,

Cx x x y = 4P(R0,η)
�

3−
2R0

a0

���

R0

a0
− 1

�

sin3 θ cosθ +
�

2−
R0

a0

�

sinθ cos3 θ

�

R0→2a0−−−−→−4P(2a0,η) sin3 θ cosθ ,

Cy y y x = 4P(R0,η)
�

3−
2R0

a0

���

R0

a0
− 1

�

sinθ cos3 θ +
�

2−
R0

a0

�

sin3 θ cosθ
�

R0→2a0−−−−→−4P(2a0,η) sinθ cos3 θ .

(B.1)

The stress correlations shown above for marginally jammed crystals i.e., for R0 → 2a0
have similar angular behavior as that of an isotropic amorphous material which have been
shown earlier in several studies [18,43,58–60]. But for an overcompressed disordered crystal
with finite average pressure, the angular behavior of stress correlations show an additional
anisotropic term which depend on the system overcompression. Therefore for finite pres-
sure, we can rewrite the above stress correlations of a disordered crystal as a summation of
stress correlations of an isotropic amorphous material with the addition of a finite shift i.e.,
Cαβµν = C t

αβµν
+ dαβµν, with

C t
x x x x = 4K2D sin4 θ , dx x x x(θ ) = 4K2D t0

�

t0 + 2sin2 θ
�

,

C t
y y y y = 4K2D cos4 θ , dy y y y(θ ) = 4K2D t0

�

t0 + 2cos2 θ
�

,

C t
x x x y = −4K2D sin3 θ cosθ , dx x x y(θ ) = −4K2D t0 sin(θ ) cos(θ ) ,

C t
y y x y = −4K2D sinθ cos3 θ , dy y x y(θ ) = 4K2D t0 sin(θ ) cos(θ ) ,

C t
x y x y = 4K2D sin2 θ cos2 θ , dx y x y(θ ) = 0 ,

C t
y y x x = 4K2D sin2 θ cos2 θ , dy y x x(θ ) = 4K2D t0(1+ t0) ,

(B.2)

where

K2D = P(R0,η)
�

2R0

a0
− 3

�2

, and t0 =
2a0 − R0

2R0 − 3a0
∼ 2

�

1−
�

φ0

φ

�1/2�

. (B.3)

For an isotropic media with average pressure close to zero i.e R0→ 2a0 both the theories
for stress correlations dealing with two completely different scenarios give the same results as
dαβµν→ 0.
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C Hammer projection

The Hammer projection is a useful technique for visualizing functions that have a fixed radial
coordinate, meaning they depend only on angular variables. This projection is particularly
valuable in two dimensional visualizations. Any function with this characteristic can be ef-
fectively represented using Hammer projection. In Hammer projection, we transform from
spherical coordinates (θ ,φ) to Hammer coordinates (Hx , H y) using the following equations:

Hx =
2
p

2cos (θ −π/2) sin (φ/2)
p

1+ cos (θ −π/2) cos (φ/2)
, H y =

p
2sin (θ −π/2)

p

1+ cos (θ −π/2) cos (φ/2)
. (C.1)

These equations allow us to map spherical coordinates to Hammer coordinates, facilitating
the visualization of angular-dependent functions in a two dimensional space.

D Centrosymmetry order parmeter

The analytical expression for the local inversion symmetry order parameter can be represented
as

FIS = 1−

�

�Ξ
�

�

2

�

�Ξ
�

�

2
ISB

= 1−

∑N
i=1

∑

α=x ,y

�

∑

jnni nαi jn
x
i jn

y
i j

�2

∑

i, j

�

nx
i jn

y
i j

�2 , (D.1)

where
�

�Ξ
�

�

2
is the total affine force field of the disordered crystal for which FIS is being calcu-

lated and
�

�Ξ
�

�

2
ISB is the force field of the asymmetric configuration where the inversion symme-

try is completely broken. In Eq. (D.1), nαi j correspond to the α component of the unit vector
joining two neighbouring particles i and j. For any perfect crystal FIS = 1.
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