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Abstract

Symmetry protected topological (SPT) phases are one of the simplest, yet nontrivial,
gapped systems that go beyond the Landau paradigm. In this work, we study an ex-
tension of the notion of SPT for gapless systems, namely, gapless symmetry protected
topological states. We construct several simple gapless-SPT models using the decorated
defect construction, which allow analytical understanding of non-trivial topological fea-
tures including the symmetry charge under twisted boundary conditions, and boundary
(quasi)-degeneracy under open boundary conditions. We also comment on the stability
of the gapless-SPT models under symmetric perturbations, and apply small-scale exact
diagonalization when direct analytic understanding is not available.
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1 Introduction and summary

1.1 Gapped quantum matter

The study of topological phases of quantum matter has led to tremendous progress in under-
standing quantum many body systems beyond the Landau paradigm. The gapped phases are
so far relatively well understood. Based on their symmetry and entanglement properties, the
gapped phases can be classified into the following categories [1]:

1. Trivially gapped phase: There is a single ground state on an arbitrary spatial manifold,
and a finite energy gap from the first excited state in the thermodynamic limit. The
ground state preserves the global symmetry, and can be deformed to the trivial product
state through finite depth locally-symmetric unitary transformation without closing the
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energy gap. Its entanglement entropy obeys area law while the subleading contributions
vanish in the thermodynamic limit. The ground state is short range entangled [1].

2. Symmetry protected topological (SPT) phase: Similarly to the trivially gapped phase,
there is still a single ground state on an arbitrary closed spatial manifold and a finite
energy gap from the first excited state in the thermodynamic limit. The ground state
preserves the symmetry and is short-range entangled. The global symmetry should be
anomaly free. However, unlike in the trivially gapped phase, when placing the system on
a spatial manifold with nontrivial boundaries, due to the nontrivial physics appearing at
the boundaries, there are either multiple ground states, or the energy spectrum becomes
gapless in the thermodynamic limit. There is no finite depth locally-symmetric unitary
transformation that maps the ground state to a trivial product state.1 A systematic con-
struction of gapped SPT phases is the decorated defect construction [7–9].

3. Topological ordered (TO) phases and symmetry enriched topological (SET) phases:
The low energy is described by a symmetric topological quantum field theory (TQFT).
The number of ground states depends on the topology of the spatial manifold. In partic-
ular when the spatial manifold is Sd there is only one ground state. The ground states
also have a finite energy gap from the first excited states in the thermodynamic limit. The
entanglement entropy of the ground state has a constant contribution besides the area
law part, which survives in the thermodynamic limit. This is termed topological entan-
glement entropy [10–13]. There are also nontrivial physics (e.g. gapless edge modes,
spontaneous symmetry breaking or gapped TQFT) on the boundary when the spatial
manifold is open. Finally, as the line operators (worldlines of anyons) are topological,
they do not obey area law, and the theory is deconfined.

4. Symmetry breaking phases: There are multiple ground states even when the spatial
manifold is Sd , due to spontaneous breaking of the global symmetry. These phases are
within the Landau paradigm. There are also phases where the Landau symmetry break-
ing order and SPT/TO/SET orders coexist.

From the description above, it is clear that the SPT phase is the simplest, yet nontrivial, gen-
eralization of trivially gapped phase that goes beyond the Landau paradigm. We use gapped
SPT phases to emphasize that the conventional SPT phases are for gapped systems.

1.2 Properties of gapless SPT states

In contrast to the gapped topological phases of quantum matter which are relatively well-
understood, a systematic understanding of gapless quantum systems is still under develop-
ment. See [14–26] for recent developments. The simplest type of gapless systems with non-
trivial topological features are the so-called gapless symmetry protected topological states,
studied in [14–16,27,28]. Let’s summarize their common properties:

1. The gapless system has the global symmetry Γ . Γ should be anomaly free and is not
spontaneously broken by the ground state under periodic boundary conditions.

2. When placing the system on an arbitrary spatial manifold with periodic boundary condi-
tions, the system should have a non-degenerate ground state with a finite size bulk gap
which decays polynomially with respect to the system size.

1There are also exotic phases that do not require onsite unitary symmetries, but still satisfy the above properties,
i.e. no degeneracy on closed manifolds and nontrivial boundary physics. They include Kitaev’s E8 state in 2+ 1d
[2,3] and w2w3 theory in 4+1d [4–6]. We also consider them as SPT phases where the symmetry is the spacetime
diffeomorphism.
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Table 1: Classification of gapless SPTs by whether they are purely gapless (horizontal
direction) and intrinsically gapless (vertical direction).

Contains gapped sector No gapped sector

Non-intrinsic gapless SPT [14,15,30] purely gapless SPT [15]

Intrinsic intrinsically gapless SPT [16,30,31] intrinsically purely gapless SPT

3. When placing the system on a spatial manifold with nontrivial boundaries, there are
degenerate ground states with a finite size splitting decaying qualitatively faster (e.g.
exponentially, or polynomially with a larger decaying constant) with respect to the sys-
tem size.

4. When placing the system on a closed spatial manifold where the boundary conditions
are twisted by the global symmetry Γ , a.k.a. twisted boundary conditions, the ground
state carries nontrivial Γ symmetry charge.

5. The criticality is confined. In particular, if the criticality has a 1-form symmetry, it should
not be spontaneously broken.

The above properties are similar to those of the gapped SPT states, but there are major dif-
ferences. For instance, the gap of gapless-SPT vanishes in the thermodynamical limit, while
it remains open for the gapped-SPT. Moreover, the number of nearly degenerate states under
OBC may differ from that of the gapped SPT. 2

The examples of gapless-SPT states studied so far can be schematically organized by two
features, as shown in Table 1.

• The vertical direction is distinguished by whether the gapless-SPT is intrinsic or non-
intrinsic. If the topological features mentioned in the previous paragraph is can be re-
alized by a gapped-SPT, then the gapless-SPT is non-intrinsic. Otherwise, it is intrin-
sic [16].

• The horizontal direction is distinguished by whether the gapless-SPT has a gapped sec-
tor. When there is a gapped sector, the degeneracy under OBC has at most exponential
splitting decay. Otherwise, the splitting can be polynomial decaying, and was named as
purely gapless-SPT.

The first example of gapless-SPT, which is non-intrinsic and contains a gapped sector, was first
studied in [14]. The intrinsic gapless-SPT with a gapped sector was first studied in [16]. The
gapless-SPT states without gapped sector (i.e. purely gapless SPT) was much less studied.
The first example was found in [15] involving the time reversal symmetry and an on-site Z2
symmetry, and the terminology “purely” was proposed in [32], and examples with only on-
site symmetries are demanding. A more systematic treatment of purely gapless-SPT states,
both non-intrinsic and intrinsic, with on-site symmetries will be discussed in an upcoming

2We would like to comment that the fifth property is not implied by the first four. One example is the second
order phase transition between a (2 + 1)d topological order and a trivially gapped phase. This system does not
have any 0-form global symmetry and thus trivially satisfies the first four properties. Yet, as discussed in [29], this
model has an emergent 1-form symmetry which is numerically demonstrated to be spontaneously broken, hence
is deconfined. The fifth property is introduced to exclude this possibility.
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For simplicity, we will use the following short hand notations to label the four classes of gapless-
SPTs respectively:

• gSPT = gapless-SPT,

• igSPT = intrinsically gapless-SPT,

• pgSPT = purely gapless-SPT,

• ipgSPT = intrinsically purely gapless-SPT .

This work will focus on systems with a gapped sector, i.e. gSPT and igSPT.3

1.3 Decorated defect construction

A useful method to construct the gSPT and igSPT with a gapped sector is the decorated defect
construction (DDC). The DDC was first used to construct gapped SPT states [7–9]. Apply-
ing the same construction to gapless system inspired the discovery of the first examples of
gapless-SPT [14]. Later, by incorporating the symmetry extension method [34], the DDC also
inspired the discovery of first examples of intrinsic gapless-SPT [16]. Our goal of this paper
is to review this construction, and apply it to constructing bosonic spin models with on-site
symmetries. Such models are simple, from which certain analytic results concerning their
symmetry properties can be achieved. These models will also play an important role in our
upcoming works [33,35].

1.3.1 Constructing gapped SPT

The decorated defect construction was first devised to systematically construct gapped SPT
phases, starting from the known lower dimensional gapped SPTs [7–9]. Suppose one would
like to construct a gapped SPT system with global symmetry Γ . Assume Γ fits into the symmetry
extension

1→ A→ Γ → G→ 1 , (1)

where A is the normal subgroup of Γ , and G := Γ/A. For simplicity, we assume that the
extension is central, i.e. G does not act on A.4 One starts with a phase where G is spontaneously
broken, and on each codimension p G-defect one decorates a (d + 1− p) dimensional gapped
SPT protected by symmetry A (i.e. A gapped SPT). As we would like to eventually proliferate
the G-defect network to restore the entire Γ symmetry, the decorations should be consistent
such that G-defect of each codimension should be free of A-anomaly, and in particular, there
are no gapless modes localized on G-defects. Otherwise, if there are nontrivial gapless degrees
of freedom localized on the G-defects, proliferation would not yield a gapped phase with one
ground state. After defect proliferation, the resulting theory is a gapped SPT protected by the
Γ symmetry. The topological action of Γ gapped SPT is given by the Γ cocycle F Γd+1 which is a
representative element in the cohomology group [36]5

[F Γd+1] ∈ Hd+1(Γ , U(1)) . (2)

3Throughout this paper, “gSPT” specifically refers to non-intrinsic and not purely gapless-SPT. When we don’t
want to specify whether it is intrinsic or not, and would like to emphasize its gaplessness (to contrast with the
gapped systems), we will use “gapless-SPT”.

4The decorated defect construction of gapped SPTs was first discussed [7] in the special situation where the
extension (1) is trivial, i.e. Γ = A× G. The construction was later generalized to non-trivial extension (1) in [9].

5If Γ is a continuous symmetry, the cohomology group should be Hd+1(BΓ , U(1)) where BΓ is the classifying
space of Γ .
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We remark that a given Γ can fit into multiple symmetry extensions with different pairs
(A, G). For a given extension (A, G), as long as we exhaust all possible ways of decorating
A gapped SPT on G-defects, proliferating the G-defects exhausts all possible Γ gapped SPTs.
Hence different choices of (A, G) yield the same set of Γ gapped SPTs, and one can choose the
most convenient pair (A, G).

1.3.2 Constructing gapless-SPT

Let us proceed to construct the Γ symmetric gapless-SPT states by modifying the decorated
defect construction reviewed in section 1.3.1. We still assume that the global symmetry Γ fits
into the symmetry extension (1), and start with a gapped phase where G is spontaneously
broken. On each codimension p G-defect, one decorates a (d + 1− p) dimensional A gapped
SPT. We finally fluctuate the G-defect network to the critical point, and define the critical point
to be the gapless-SPT.

Comparing with the decorated defect construction of the gapped-SPT, the construction of
the gapless-SPT has several important new features. As one no longer demands that fully
proliferating the G-defect network leads to a gapped SPT phase, the consistency condition for
the decoration can be relaxed. Depending on whether the consistency condition is preserved
or relaxed, the resulting gapless-SPT are non-intrinsic and intrinsic respectively.

1. gSPT: The A gapped SPTs decorated on the G-defects satisfy the same consistency condi-
tion as those for constructing the gapped SPT. Concretely, the G-defect of each codimen-
sion is free of A anomaly. This means that further increasing the G-defect fluctuating
strength leads to a Γ gapped SPT, and gSPT is the phase transition between G sponta-
neously broken phase and Γ gapped SPT. In particular, when the extension (1) is trivial,
i.e. Γ = A× G, the construction was discussed in [14,15]. See the left panel of figure 1
for the schematic phase diagram of gSPT.

2. igSPT: The A gapped SPT decorated on the G-defects satisfies only a weaker, modified
consistency condition. Concretely, the symmetry breaking phase we started with has a
particular anomaly of a particular quotient group bΓ of Γ , where G ⊂ bΓ . The choice of
bΓ and its anomaly should be considered as part of input data of the construction. The
defect decoration is constrained such that the anomaly of bΓ in the G symmetry breaking
phase is precisely cancelled against the anomaly induced by the defect decoration.6 After
decoration, the total symmetry group Γ is anomaly free, and fluctuating the G-defect
network to the critical point yields a Γ anomaly free igSPT [16] . See the right panel of
figure 1 for the schematic phase diagram of igSPT

It is natural to assume that the process of defect decoration and the process of G-defect
fluctuation commute with each other. Then we may simplify the decorated defect construction
by directly starting with a gapless critical system and decorating its G-defects. The gapless crit-
ical system is obtained by fluctuating the G-defects of the G symmetry breaking phase before
decorating the A gapped SPTs, and from section 1.2 we require such critical system before dec-
oration should have a non-degenerate ground state under periodic boundary condition, and
is confined.7 For the gSPT, we need to start with a critical point without any anomaly. While
for the igSPT, we need to start with a critical point with a particular bΓ anomaly.

As commented in section 1.3.1, for a given Γ , there can be multiple choices of the symmetry
extension (1). We noticed that the gapped SPT can be constructed using arbitrary (A, G).

6The phenomenon of induced anomaly also appear in the discussion of anomalous-SPT [9, 37] and symmetry
extended boundary of gapped SPT [34,38].

7We will see in later sections that the defect decoration can be implemented by a unitary operation, which does
not change the energy spectrum. This implies that the ground state degeneracy should be one both before and
after defect decoration.
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G SSB
Phase

Γ Gapped
SPT

G SSB
Phase

Γ gSPT Γ igSPT

Non-SPT

λ λ

Figure 1: Phase diagram of non-intrinsically and intrinsically gapless-SPT. The hor-
izontal axis is the strength of G-defect fluctuation. For the non-intrinsic case (left
panel), the G-defects can be fully proliferated and one obtains Γ gapped SPT. For
the intrinsic case, one can only fluctuate the G-defects to the critical point. Further
increase the fluctuation will not drive the system to Γ symmetric gapped SPT phase.

However, this is no longer true for the igSPT. Note that one needs to specify an anomaly of bΓ
(which includes G) as an input data of the decorated defect construction of igSPT. By definition,
the resulting igSPT depends on the choice of symmetry extension (1), bΓ and the anomaly of bΓ .

In this work, we will use the DDC to construct “canonical” bosonic spin models of gSPT
and igSPT and discuss their topological properties. We also briefly comment on the stability
under perturbations, while leaving an analytic study to an upcoming work [33].

1.4 Probing gSPT and igSPT

Given a gapless system with a non-degenerate ground state in the bulk with finite size, how
can we tell whether it is a nontrivial gapless-SPT? If it is nontrivial, how can we tell whether it
is intrinsic or non-intrinsic? There are several features commonly discussed in the literature:

1. degenerate ground states under OBC,

2. non-trivial symmetry charge of the ground state under the twisted boundary condition.

It is well-known that these features are useful in probing non-trivial gapped SPT phases [39–
42]. The first feature is limited in two aspects: (1) It is useful for (1+ 1)d systems [39, 40],
but for higher dimensions the boundary is extensive and the degeneracy on the boundary de-
pends on the boundary dynamics. (2) For a generic Hamiltonian respecting the symmetry, the
ground states on a finite open chain are only quasi-degenerate with exponentially small split-
tings, instead of being exactly degenerate [14]. This makes the identification of degenerate
ground states subtle, especially in the gapless systems. While we can still separate the quasi-
degenerate ground states with exponentially small finite-size excitation energies from gapless
excitations with power-law finite-size excitation energies, the distinction can be challenging
in practical numerical calculations.

We highlight that the second feature is merely based on the global symmetry, hence (1)
can be applied to arbitrary spacetime dimension, and (2) is expected to be stable and exact
for a generic Hamiltonian in the given gSPT and igSPT phase. This stability is also helpful for
numerical calculations, as we will see later. See [43] for an application of twisted boundary
condition to Lieb-Schultz-Mattis ingappability. Moreover, as discussed in [15], the charge
under the twisted boundary condition is equivalent to the charge on the edge of the string order
parameter for CFTs, and the latter is more commonly discussed in the literature. We prefer
to discuss the twisted boundary condition rather than the string order parameter because the
twisted boundary condition is less well-explored in the literature, and having a systematic
and elementary discussion here should be more beneficial. Moreover, the twisted boundary
condition can be generalized more naturally to higher dimensions.
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1.5 Organization of the paper

We emphasize that the concepts and methods to be discussed in this paper, including the
decorated defect construction, and the application of twisted boundary conditions to probe
the gapless SPT, have been discussed in previous works already, in particular [14–16]. The
goal of this paper is to apply the decorated defect construction to build concrete (1 + 1)d
lattice spin models of gSPT and igSPT and study their properties in great detail. Our models
are simple enough so that one can extract the ground state symmetry charges under various
boundary conditions analytically, although the models are not exactly solvable.8 Although the
DDC was both applied to constructing gSPT in [14] and igSPT in [16], we believe that it is
educational to present the construction of both gSPT and igSPT in a single place, highlighting
the usefulness of DDC. It turns out that the examples constructed in this work pave the way
to our later explorations of unified treatment of gSPT, igSPT, pgSPT and ipgSPT [33].

This paper is organized as follows. In section 2, we discuss in detail an analytically
tractable example of gSPT, where Γ = Z2 × Z2, A = Z2, G = Z2 and the spacetime dimen-
sion is d = 1+ 1. In section 3, we discuss in detail an analytically tractable example of igSPT,
where Γ = Z4, A = Z2, G = bΓ = Z2 and d = 1+ 1. We discuss a more realistic spin-1 model
in section 4, which hosts both gSPT and igSPT simultaneously. There are several appendices.
Appendix A shows the stability of boundary degeneracy of Z2 × Z2 gapped SPT. Appendices
B, C and D are devoted to further detailed discussions in section 3. Appendix E discusses an
example of igSPT which involves time reversal symmetry. Appendix F shows the numerical
result on the stability of igSPT under a certain symmetric perturbation.

2 gSPT: (1+ 1)d spin chains With Z2 ×Z2 symmetry

In this section, we study a concrete lattice model of gSPT: (1 + 1)d spin chain with global
symmetry Γ = Z2 × Z2. We let A = Z2, G = Z2, and the symmetry extension in (1) is trivial.
For clarity, we use the superscript A and G to label the two Z2’s.

2.1 Spin chain construction

We construct the 1+1d spin chain with Γ = ZA
2×Z

G
2 global symmetry. Since there are two Z2

symmetries, it is natural to assign two spin-1
2 ’s per unit cell: the spin-1

2 ’s living on the sites are
charged under ZG

2 while those living in between the sites are charged under ZA
2. The symmetry

operators are defined to be

UA =
L
∏

i=1

τx
i+ 1

2
, UG =

L
∏

i=1

σx
i , (3)

where σa
i and τa

i+ 1
2
, a = x , y, z, are Pauli matrices acting on the two spin-1

2 ’s, and L is the

number of unit cells. Both symmetry operators are on-site9 and therefore Γ is anomaly free.
As explained in the introduction, we would like to start with a ZG

2 spontaneously broken phase,
with the Hamiltonian

H0 = −
L
∑

i=1

τx
i+ 1

2
+σz

iσ
z
i+1 . (4)

8Our models do not involve fermions, but it can be shown that under Jordan-Wigner transformation, our model
are equivalent to one of the models discussed in [44].

9A symmetry operator is on-site if it can be written as a product of local operators on mutually adjacent but
un-overlapping patches, U =

∏

i Ui , where i labels the patches.
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si

s j
gi j

[g]

Figure 2: Triangulation of 2d spacetime. The black and red solid links are where
the background field gi j = 0, 1 respectively. The red dashed line in the dual lattice
is the spacetime trajectory of the Z2 domain wall [g], i.e. Z2 symmetry defect line.
Flatness of g ensures that [g] forms loops.

It has two ground states

|±〉=
∑

{τz
i+ 1

2
}

|{τz
i+ 1

2
}, {σz

i = ±1}〉 . (5)

Each of them spontaneously breaks ZG
2 but preserves ZA

2.

2.1.1 Domain wall decoration

To construct aZA
2×Z

G
2 gSPT, we decorate eachZG

2 domain wall by a 0+1dZA
2 SPT in a consistent

way.10 Each ZG
2 domain wall is associated with a ZG

2 group element g. g = 0, 1 means the do-
main wall is trivial/nontrivial, i.e. the adjacent σz spin configurations are the same/opposite,
respectively. We present the domain wall configuration using both the spacetime picture and
the Hamiltonian picture.

The spacetime picture: It is useful to first discuss the domain wall in the spacetime picture.
The spacetime is triangulated into 2-simplices. See figure 2 for an illustration. Each site i is
assigned a Z2 group element si = 0,1, which corresponds to σz

i = (−1)si in the Hamiltonian
picture. Each link is assigned a Z2 1-cochain gi j = s j − si . The gi j is understood as a flat
background field for the ZG

2 symmetry, and it measures the local domain wall excitation on the
link. The locus where gi j = 1 form a closed loop [g] in the dual spacetime lattice, representing
the worldline of the domain wall, a.k.a. the ZG

2 symmetry defect line. Decorating the ZG
2

domain wall by a 1d ZA
2 SPT [7, 14] means that we insert a ZA

2 Wilson line, a.k.a. 1d ZA
2 SPT,

supported on [g]

exp

�

iπ

∫

[g]
a

�

= exp

�

iπ

∫

M2

a ∪ g

�

, (6)

in the path integral. The flatness of the ZA
2 background field a ensures that the decoration is

consistent: the domain wall junctions do not have ZA
2 anomaly. This fits into the construction

of gSPT mentioned in section 1.3.2. The equality in (6) used the Poincare duality to transform
the integral on [g] into the integral over the entire 2d spacetime M2. The topological term on
the right hand side of (6) is precisely the effective action of ZA

2 ×Z
G
2 gapped SPT.

The Hamiltonian picture: In the Hamiltonian picture, domain wall decoration is imple-
mented as follows [14]. We first identify the configuration representing the ZG

2 domain

10In (1+ 1)d, we only have codimension 1 defects, i.e. the domain walls. For this reason, the decorated defect
construction is more conventionally called the decorated domain wall construction.
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wall, i.e. σz
iσ

z
i+1 = −1. Then on the link (i, i + 1), we stack a ZA

2 SPT (6), which as-
signs the wavefunction a minus sign if τz

i+ 1
2
= −1 (i.e. ai,i+1 = 1 in the spacetime picture)

on the wall. Combining the two steps, one assigns a minus sign to the two configurations
(σz

i ,τz
i+ 1

2
,σz

i+1) = (1,−1,−1), (−1,−1, 1) and leaves the wavefunction unchanged for other

configurations. This operation can be realized by acting the unitary operator

UDW =
L
∏

i=1

exp
�

πi
4
(1−σz

i )
�

1−τz
i+ 1

2

�

�

exp
�

πi
4
(1−σz

i+1)
�

1−τz
i+ 1

2

�

�

, (7)

on the states (5) [14]. In terms of the Hamiltonian, domain wall decoration just amounts to
conjugating the original Hamiltonian (4) by UDW , yielding

H1 := UDW H0U†
DW = −

L
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1

�

. (8)

The ground states of H1 are still (5), but the first excited states associated with the domain
wall excitations are decorated.

2.1.2 ZA
2 ×Z

G
2 gSPT

The next step is to fluctuate the decorated domain walls. It is helpful to discuss the fluctuation
without decoration first. The fluctuation is well-known to be achieved by adding a transverse
field∆H = −λ

∑L
i=1σ

x
i , so that the ZG

2 spontaneously broken ferromagnetic phase of the Ising
model (when λ < 1) is driven to the ZG

2 preserving paramagnetic phase (when λ > 1) where
the domain walls are fully proliferated. The transition happens at λ = 1, which is of second
order, and is described by a critical Ising CFT.

After domain wall decoration, the fluctuation should be realized by adding a decorated
transverse field UDW∆HU†

DW = −λ
∑L

i=1τ
z
i− 1

2
σx

i τ
z
i+ 1

2
. As the unitary transformation UDW does

not change the energy spectrum, the critical point also takes place at λ = 1. The decorated
model UDW (H0 +∆H)U†

DW at λ = 1, is the ZA
2 ×Z

G
2 gSPT [14] (see also section 1.3.2 for the

definition of gSPT)

HgSPT = −
L
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1 +τ

z
i− 1

2
σx

i τ
z
i+ 1

2

�

. (9)

When λ > 1, the domain wall is fully proliferated, yielding a ZA
2 × Z

G
2 gapped SPT described

by the well-known cluster model [45–47]

HSPT = −
L
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +τ
z
i− 1

2
σx

i τ
z
i+ 1

2

�

. (10)

See figure 3 for the phase diagram before and after decoration.
As commented in section 1.3.2, we can simplify the above construction of gSPT by directly

starting with the ZG
2 Ising CFT (whose Hamiltonian is given by H0−

∑L
i=1σ

x
i ), and conjugate

it by UDW . This simplification will be useful in section 3.

2.1.3 More on UDW

We make a remark on the unitary operator UDW . Although HgSPT and H0 −
∑L

i=1σ
x
i are re-

lated through a unitary transformation UDW , they are actually not equivalent as the ZA
2 × Z

G
2

symmetric Hamiltonians. Recall that two Γ symmetric Hamiltonians H1, H2 are considered
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ZG
2 SSB Trivial

ZG
2 SSB

Decorated
ZA

2 ×Z
G
2

Gapped SPT

ZG
2

Ising CFT
ZA

2 ×Z
G
2

gSPT
Defect

Decoration

λ λ

Figure 3: Phase diagram of ZG
2 Ising CFT (before decoration) and ZA

2×Z
G
2 gSPT (after

decoration). The horizontal axis represents the transverse field λ.

equivalent if there is a locally-symmetric unitary transformation U = exp(i
∫ t1

t0
d tV (t)) where

V (t) is a sum of local operators satisfying [V (t), Γ ] = 0, such that UH1U† = H2 [1,36]. Since
UDW is a product of local unitary operators and each of them only acts on one or two unit
cells, UDW is a local unitary transformation. Moreover, UDW on a closed chain with the peri-
odic boundary condition is symmetric in the sense that [UDW , Γ ] = 0. Nevertheless, as each

local operator exp
�

πi
4 (1−σ

z
i )
�

1−τz
i+ 1

2

��

does not commute with UA and UG , UDW is not a

locally-symmetric unitary transformation. As an indication, UDW does not commute with the
symmetry generator Γ on an open chain, in contrast to the closed chain discussed above. In
summary, HgSPT and H0−

∑L
i=1σ

x
i are not related by ZA

2×Z
G
2 locally-symmetric unitary trans-

formation, hence they are not equivalent as ZA
2×Z

G
2 symmetric systems. This also justifies that

the gSPT is protected by the ZA
2 ×Z

G
2 .

It is interesting to compare UDW with the Kennedy-Tasaki (KT) transformation [48–50]
introduced for integer-spin chains. Although the KT transformation is also implemented by a
unitary operator UKT , there are several differences. First, UKT is non-local, unlike UDW which
is as discussed above a product of local unitary operators. Second, the KT transformation
is useful for an open chain rather than for a closed chain, which is mapped to a non-local
Hamiltonian by UKT . Lastly, it maps a gapped SPT phase (on an open chain) to an SSB phase,
while UDW maps a gapped SPT phase to a trivially gapped phase. The KT transformation will
be relevant for the discussion in Section 4. In a later work by the same authors [35], we
uncover that the KT transformation on a closed chain is related to the UDW in the following
way, KT= KW · UDW ·KW, where KW is the Kramers-Wannier transformation for both ZA

2 ×Z
G
2

symmetries.

2.2 Trivializability upon stacking gapped SPTs

In this section, we will show that upon stacking a ZA
2 × Z

G
2 gapped SPT, the ZA

2 × Z
G
2 gSPT is

equivalent to ZG
2 Ising criticality via a symmetric local unitary transformation.

Let us consider two decoupled systems. The first system is a ZA
2 × Z

G
2 gSPT given by (9).

The second system is a ZA
2 ×Z

G
2 gapped SPT given by (10). Since two systems are decoupled,

the two Hamiltonians act on decoupled Hilbert spaces. We use the Pauli operators {σa
i ,τa

i+ 1
2
}

for the first system, and {eσa
i , eτa

i+ 1
2
} for the second system. The Hamiltonian for the entire

system is the sum

HgSPT +HSPT = −
L
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1 +τ

z
i− 1

2
σx

i τ
z
i+ 1

2
+ eσz

i eτ
x
i+ 1

2
eσz

i+1 + eτ
z
i− 1

2
eσx

i eσ
z
i+ 1

2

�

.

(11)
The decoupled system has enlarged global symmetry (ZA

2×Z
G
2 )× (eZ

A
2× eZ

G
2 ), whose generators
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are

UA =
L
∏

i=1

τx
i+ 1

2
, UG =

L
∏

i=1

σx
i , eUA =

L
∏

i=1

eτx
i+ 1

2
, eUG =

L
∏

i=1

eσx
i . (12)

There exists a symmetric local unitary transformation11

Udiag =
L
∏

i=1

exp
�

iπ
4

�

1−σz
i σ̃

z
i+1

�

�

1−τz
i+ 1

2
τ̃z

i+ 1
2

�

�

exp
�

iπ
4

�

1−σz
i+1σ̃

z
i+1

�

�

1−τz
i+ 1

2
τ̃z

i+ 3
2

�

�

,

(13)
which (locally) preserves the diagonal Z2 × Z2, where two Z2’s are generated by UAeUA and
UG eUG respectively. It is straightforward to check that

Udiag(HgSPT +HSPT)U
†
diag = −

L
∑

i=1

�

τx
i+ 1

2
+σz

iσ
z
i+1 +σ

x
i + eτ

x
i+ 1

2
+ eσx

i

�

, (14)

which is simply the Hamiltonian of the Ising CFT, a.k.a. the ZG
2 Landau transition, stacked with

some trivially gapped degrees of freedom. In summary, we have shown that upon stacking a
ZA

2 × Z
G
2 gapped SPT, the ZA

2 × Z
G
2 gSPT (9) is related to an ordinary ZG

2 Landau transition
by a symmetric local unitary transformation. The above equivalence can be schematically
represented as

ZA
2 ×Z

G
2 gSPT ⊕ZA

2 ×Z
G
2 gapped SPT ←→ ZG

2 Landau Transition. (15)

This implies that the nontrivial topological properties of the gSPT in the bulk (such as non-
trivial charge of the ground state under the twisted boundary condition, see section 2.3.2) are
basically inherited from the gapped SPT sector. However, we will find in section 2.3.3 that the
boundary properties of the gSPT differ from those of the gapped SPT.

2.3 Symmetry features of ZA
2 ×Z

G
2 gSPT

We discuss the symmetry features of the ZA
2×Z

G
2 gSPT (9) that allow one to distinguish trivial

vs nontrivial gSPTs. As motivated in the introduction (see section 1.4), we will consider the
ground state degeneracy under open boundary condition (OBC), as well as the symmetry
charge of the ground state under twisted boundary condition (TBC). We summarize the main
properties in table 2.

2.3.1 Periodic boundary condition

On a finite chain with periodic boundary condition (PBC), the ground state of the ZA
2×Z

G
2 gSPT

is non-degenerate. To see this, we first consider the Ising CFT described by the Hamiltonian
H0 −

∑L
i=1σ

x
i . It is well-known that the critical Ising model has only one ground state on

a finite chain, and the first excited state is separated from the ground state by a finite size
gap decaying polynomially with respect to the system size. The non-degenerate ground state
preserves the ZA

2 × Z
G
2 global symmetry. Moreover, as noted in section 2.1.2, HgSPT and the

Ising CFT have exactly the same energy eigenvalues because they are related via a unitary
transformation UDW , which implies that HgSPT also has a non-degenerate ground state on a
finite closed chain, with a finite size gap, and is ZG

2 ×Z
A
2 symmetric under PBC.

11Without multiplying over i, each exponent in Udiag commutes with the diagonal symmetries UA
eUA as well as

UG
eUG . As discussed in section 2.1.3, this implies that Udiag is a symmetric local unitary transformation, which

establishes the equivalence between different systems.
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Table 2: Ground state degeneracy and symmetry charges of the ground state under
PBC, TBC and OBC. ZA

2 (or ZG
2 )-TBC means the boundary condition is twisted by ZA

2
(or ZG

2 ). We compare these properties between gSPT, Landau transition and gapped
SPT, all with the same global symmetry ZA

2×Z
G
2 . The 4→ 2 means that HgSPT has four

ground states under OBC, but two of them are lifted under a symmetric perturbation
localized on the boundary.

ZA
2 ×Z

G
2 ZA

2 ×Z
G
2 ZA

2 ×Z
G
2

gSPT Landau Transition Gapped SPT

PBC:
GSD

ZA
2 ×Z

G
2 Charge

1

(0, 0)

1

(0,0)

1

(0,0)

ZA
2-TBC:

GSD

ZA
2 ×Z

G
2 Charge

1

(0, 1)

1

(0,0)

1

(0,1)

ZG
2 -TBC:

GSD

ZA
2 ×Z

G
2 Charge

1

(1, 0)

1

(0,0)

1

(1,0)

OBC: GSD 4→ 2 1 4

2.3.2 Twisted boundary condition

We show that on a closed chain with boundary condition twisted by ZA
2 (or ZG

2 ), the ground
state of the ZA

2 ×Z
G
2 gSPT carries nontrivial symmetry charges under ZG

2 (or ZA
2) respectively.

The same idea has been widely used to characterize nontrivial gapped SPT order [41,42,51–
57], and here we use it to characterize the gSPT (and also igSPT in section 3).

Twist by ZA
2 : We first twist the boundary condition using the ZA

2 symmetry (labeled by ZA
2-

TBC), and measure the ZG
2 charge of the ground state. Twisting the boundary condition by ZA

2
means imposing a ZA

2 domain wall between sites L − 1
2 and L + 1

2 by changing the sign of the
term τz

L− 1
2
σx

Lτ
z
L+ 1

2
. The gSPT Hamiltonian (9) becomes

H
ZA

2
gSPT = −

L−1
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1 +τ

z
i− 1

2
σx

i τ
z
i+ 1

2

�

−σz
Lτ

x
L+ 1

2
σz

1 −σ
z
Lσ

z
1 +τ

z
L− 1

2
σx

Lτ
z
L+ 1

2
.

(16)
It is useful to note that the twisted and untwisted gSPT Hamiltonian are related by a unitary

transformation H
ZA

2
gSPT = σ

z
LHgSPTσ

z
L , hence the ground state of H

ZA
2

gSPT is also non-degenerate.

Denote the ground state under PBC as |GS〉, and that under ZA
2-TBC as |GS〉Z

A
2

tw . We have

|GS〉Z
A
2

tw = σ
z
L |GS〉 . (17)

It follows that
UG |GS〉Z

A
2

tw = UGσ
z
LU†

GUG |GS〉= −σz
L |GS〉= −|GS〉Z

A
2

tw , (18)

which shows that |GS〉Z
G
2

tw has ZG
2 charge 1.12

12We used the fact that the ground state under PBC is neutral under ZG
2 . More precisely, (18) only shows the

relative charge, i.e. the ZG
2 charge of the ground state under TBC minus that under PBC, is one. The relative charge

will be useful in section 3.
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Twist by ZG
2 : We can alternatively twist the boundary condition using ZG

2 symmetry (labeled
by ZG

2 -TBC), and measure the ZA
2 charge of the ground state. Twisting the boundary condition

by ZG
2 means imposing a ZG

2 domain wall on the link between L-th and 1st sites, by changing
the sign of the terms σz

Lσ
z
1 and σz

Lτ
x
L+ 1

2
σz

1. The gSPT Hamiltonian (9) becomes

H
ZG

2
gSPT = −

L−1
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1 +τ

z
i− 1

2
σx

i τ
z
i+ 1

2

�

+σz
Lτ

x
L+ 1

2
σz

1 +σ
z
Lσ

z
1 −τ

z
L− 1

2
σx

Lτ
z
L+ 1

2
.

(19)

Note that σz
i τ

x
i+ 1

2
σz

i+1 commutes with every term in H
ZG

2
gSPT, the ground state |GS〉Z

G
2

tw should be

its eigen-vector

σz
i τ

x
i+ 1

2
σz

i+1 |GS〉Z
G
2

tw = U†
DWτ

x
i+ 1

2
UDW |GS〉Z

G
2

tw =

(

|GS〉Z
G
2

tw , i = 1, . . . , L − 1 ,

−|GS〉Z
G
2

tw , i = L .
(20)

Consequently, the ground state has ZA
2 charge 1:

UA |GS〉Z
G
2

tw =
L
∏

i=1

τx
i+ 1

2
|GS〉Z

G
2

tw = −
L
∏

i=1

(σz
iσ

z
i+1) |GS〉Z

G
2

tw = −|GS〉Z
G
2

tw . (21)

In summary, we find that when we use ZA,G
2 to twist the boundary condition on a closed

chain, the ground state of the twisted Hamiltonian has nontrivial ZG,A
2 charge. This is the prop-

erty distinguished from the ZA
2×Z

G
2 Landau transition, where its ground state under the twisted

boundary conditions does not carry any nontrivial symmetry charge. This tells us that we can
use the symmetry charge of the ground state in the twisted sector as a topological invariant to
distinguish the nontrivial gSPT from trivial gSPT (e.g. second order Landau transition). On
the other hand, the symmetry charges under TBC coincide with those of the gapped SPT. We
summarize the results in table 2.

2.3.3 Open boundary condition

As the nontrivial boundary modes protected by the global symmetry is a signature of gapped
SPT, we will find that same is true for the gSPT. We use the symmetry to analytically show
that the ground states of HgSPT have to be exactly degenerate under OBC, but the number of
degeneracy differs from the gapped SPT. This phenomenon was discussed in [14,15].

We place the spin system on an open chain. The left most spin is the σ spin, and the
right most spin is the τ spin. The σ spins are supported on i = 1, . . . , L, and the τ spins are
supported on i + 1

2 =
3
2 , . . . , L + 1

2 . We first choose the OBC such that only the interactions
completely supported on the chain are kept. The Hamiltonian is

HOBC
gSPT = −

L−1
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1

�

−
L
∑

i=2

τz
i− 1

2
σx

i τ
z
i+ 1

2
, (22)

and the symmetry operators are

UA =
L
∏

i=1

τx
i+ 1

2
, UG =

L
∏

i=1

σx
i . (23)

We find that the set of operators {σz
1,τz

L+ 1
2
,σz

Lτ
x
L+ 1

2
, UA, UG} all commute with the Hamilto-

nian, hence the ground state degeneracy must be at least the dimension of its irreducible
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representation. To find the representation, we choose the maximally commuting subset of op-
erators as {σz

1,τz
L+ 1

2
}, and denote their eigenvalue of a particular ground state |ψ〉 by (a, b),

where a, b = ±1. It is then possible to generate other ground states with different quantum
numbers as follows:

σz
1 τz

L+ 1
2

|ψ〉 a b
UA |ψ〉 a −b
UG |ψ〉 −a b

UAUG |ψ〉 −a −b

. (24)

This shows that there must be at least four exactly degenerate ground states of HOBC
gSPT of four

different sets of quantum numbers. Numerical exact diagonalization confirms that the ground
state degeneracy is exactly four.

However, symmetry does not forbid us to perturb (22) by adding symmetric boundary
terms. We can add a boundary interaction

∆HOBC
gSPT = −τ

x
L+ 1

2
, (25)

which changes the original OBC to a new OBC. This interaction does not commute with
τz

L+ 1
2
, so the set of operators commuting with the Hamiltonian HOBC

gSPT + ∆HOBC
gSPT reduces to

{σz
1,σz

Lτ
x
L+ 1

2
, UA, UG}. As a consequence, the dimension of irreducible representation reduces

from four to two. Indeed, numerical exact diagonalization confirms that there are only two
exactly degenerate ground states under the new OBC. This degeneracy splitting was already
noted in [14, 15]. Here, we provide a simple analytical argument of this splitting by finding
the representation. In appendix A, we show that arbitrary finite range perturbation does not
lift the 4-fold exact degeneracy of the ZA

2 ×Z
G
2 gapped SPT.

2.4 Instability of gSPT

As noted in table 2, the symmetry properties of the ground states under the twisted boundary
condition are the same for the gSPT and gapped SPT. Is there a symmetric perturbation of the
gSPT which derives gSPT to the gapped SPT? In this subsection, we confirm this by noting that
such a ZA

2 ×Z
G
2 symmetric perturbation exists, which is

V = −h
L
∑

i=1

τz
i− 1

2
σx

i τ
z
i+ 1

2
, h> 0 . (26)

In other words, adding V to HgSPT simply modifies the coefficient of the last term of (9) by −h.
After undoing the domain wall decoration by conjugating the HgSPT + V by UDW , we get

UDW (HgSPT + V )U†
DW = −

L
∑

i=1

�

τx
i+ 1

2
+σz

iσ
z
i+1 + (1+ h)σx

i

�

, (27)

which is just a critical Ising model perturbed by−h
∑

i σ
x
i . It is well-known that under fermion-

ization, this term is the mass term of the Majorana fermion, which is a relevant perturbation.
This shows that adding a perturbation with infinitesimal h drives the gSPT to gapped SPT
phase, which shows that gSPT is unstable under symmetric perturbation towards gapped SPT
phases.
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3 igSPT: (1+ 1)d spin chain with Z4 symmetry

In this section, we study a concrete lattice model of igSPT: (1+ 1)d spin chain with Z4 global
symmetry. We let A= Z2, G = Z2, and the symmetry extension (1) is now nontrivial. We still
use superscripts A and G to label the two Z2’s, and use superscript Γ to label Z4.

The igSPT was first studied in [16]. Although essentially all the features of igSPT have
been discussed in that work, the model discussed in our present work has the advantage of
being simpler, where many symmetry properties can be extracted exactly without numerical
computation. Moreover, the characterization of topological features in [16] heavily uses the
string order parameter, while in our work we provide some alternative perspectives of char-
acterization using the twisted boundary conditions. Although the charge of the string order
parameter and the charge of ground states under the TBC are known to be related in the con-
tinuum limit [15], it is nevertheless beneficial to discuss the TBC on the lattice and compare
with the string order parameter discussion on the lattice in [16].

3.1 Spin chain construction

3.1.1 Domain wall decoration and induced anomaly

Domain wall decoration: We construct the (1 + 1)d spin chain with ZΓ4 global symmetry,
by applying the decorated defect construction reviewed in section 1.3.2. Concretely, we start
with a ZG

2 symmetry spontaneously broken phase with a nontrivial anomaly of ZG
2 , and then

decorate the ZG
2 domain wall by ZA

2 SPT. We will show below that the domain wall decoration
induces a nontrivial ZG

2 anomaly due to the nontrivial extension (1), and two ZG
2 anomalies

are designed to cancel against each other. Thus the entire ZΓ4 symmetry is anomaly free. We
further proliferate the decorated ZG

2 domain wall, and fine tune the system to the critical point.
The resulting critical point is the ZΓ4 igSPT.

Induced anomaly: We explain why the domain wall decoration induces nontrivial ZG
2

anomaly. Let us denote the background fields of ZG
2 and ZA

2 as g and a respectively, both
of which are 1-cochains. The ZΓ4 background field is 2a − g̃, where eg is a lift of g to a ZΓ4
valued cochain, i.e. g = eg mod 2. By requiring the ZΓ4 background to be flat, we find

δ(2a− eg) = 2δa−δeg = 0 mod 4 , (28)

which implies

δa = Bock(g) :=
1
2
δeg mod 2 , δg = 0 mod 2 . (29)

Bock(g) is the Bockstein of g, which is defined as in (29). As (6), decorating the ZG
2 domain

wall by a 1d ZA
2 SPT means stacking a ZA

2 Wilson line to the worldline of ZG
2 domain wall.

However, due to the nontrivial bundle constraint (29), the domain wall decoration is not
gauge invariant, and equivalently it induces a nontrivial dependence on the extension to the
3d bulk M3,

exp

�

iπ

∫

[g]
a

�

= exp

�

iπ

∫

M2

a ∪ g

�

= exp

�

iπ

∫

M3

g ∪ Bock(g)

�

. (30)

In the second equality, we applied total derivative to promote the 2d integral to the 3d integral
and used (29). A physical interpretation of (30) is that domain wall decoration induces a ZG

2
anomaly. We will denote this anomaly as the induced anomaly.

However, the igSPT by definition should be free of ZΓ4 anomaly, and the system should be
independent of the extension to M3. This demands that the ZG

2 spontaneously broken system
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before domain wall decoration should already exhibit an opposite anomaly of ZG
2 , which is

given by the same inflow action

exp

�

iπ

∫

M3

g ∪ Bock(g)

�

. (31)

After domain wall decoration, the anomaly (31) from the low energy cancels against the in-
duced anomaly (30) from the domain wall decoration, and the total system is anomaly free.

As commented at the end of section 2.1.2, one can simplify the discussion by directly
starting with a critical system with a non-degenerate ground state and a ZG

2 anomaly (31). A
standard candidate is the critical boundary theory of (2+ 1)d ZG

2 SPT, known as the Levin-Gu
model [42]. We then decorate the ZG

2 domain walls (via conjugating by the unitary operator
UDW in (7)). We will take this simplified strategy of domain wall decoration below.

3.1.2 The model

We still let the σ spins live on integer sites and τ spins live on half integer sites. Let us start
from the Levin-Gu model [42]

HLG = −
L
∑

i=1

�

σx
i −σ

z
i−1σ

x
i σ

z
i+1

�

, (32)

with an anomalous ZG
2 symmetry transformation:

UG =
L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4
(1−σz

iσ
z
i+1)

�

. (33)

The ZG
2 symmetry operator is realized in a non-on-site way, which is demanded by the ZG

2
anomaly.

In the next step, we consider the following Hamiltonian which couples the τ and σ spins
and serves as the pre-decorated Hamiltonian:

Hpre = −
L
∑

i=1

�

σx
i −σ

z
i−1τ

x
i− 1

2
σx

i τ
x
i+ 1

2
σz

i+1 +τ
x
i− 1

2

�

. (34)

This Hamiltonian is invariant under the Z4 symmetry transformation:

Upre
Γ =

L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4

�

1−σz
i τ

x
i+ 1

2
σz

i+1

�

�

. (35)

The normal subgroup ZA
2 is generated by an on-site operator

UA = (U
pre
Γ )

2 =
L
∏

i=1

τx
i+ 1

2
. (36)

Indeed, the two Hamiltonians (34) and (32) enjoy the same low energy theory. As the last
term in (34) commutes with the rest of the terms, the ground state should be the eigenstate
of τx

i− 1
2

with eigenvalue 1. See appendix C for a more detailed discussion on this point.13

In the low energy sector, we simply substitute τx
i− 1

2
= 1 in (34), and obtain that the low

13In fact, all the low energy states with energy E − EGS≪ 1 satisfy τx
i− 1

2
= 1.
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energy effective Hamiltonian (34) is precisely the Levin-Gu Hamiltonian (32). Moreover, the
ZA

2 normal subgroup decouples from the low energy. Only ZG
2 acts nontrivially on the low

energy degrees of freedom, in the same way as (33):

Upre
Γ |low =

L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4
(1−σz

iσ
z
i+1)

�

. (37)

The additional τ operators as in (34) and (35) are motivated by the group extension. We
would like to introduce τ operators such that UA =

∏

i τ
x
i+ 1

2
generates an anomaly free ZA

2,

extending the ZG
2 to ZΓ4. In other words, we demand a modification of UG in (33) such that

it squares to UA. This is precisely achieved by replacing σz
iσ

z
i+1 by σz

i τ
x
i+ 1

2
σz

i+1. This further

induces how the Levin-Gu Hamiltonian (32) should be mapped to (34).
Then, the Hamiltonian for the ZΓ4 igSPT is obtained by conjugating (34) using the unitary

operator UDW . The Hamiltonian is

HigSPT = UDW HpreU†
DW = −

L
∑

i=1

�

τz
i− 1

2
σx

i τ
z
i+ 1

2
+τy

i− 1
2
σx

i τ
y

i+ 1
2
+σz

i−1τ
x
i− 1

2
σz

i

�

. (38)

The pre-decorated ZΓ4 symmetry operator becomes

UΓ = UDW Upre
Γ U†

DW =
L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4

�

1−τx
i+ 1

2

�

�

, (39)

under which σx
i → σx

i ,σ y,z
i → −σ y,z

i , τx
i+ 1

2
→ τx

i+ 1
2
, τy

i+ 1
2
→ τz

i+ 1
2
, τz

i+ 1
2
→ −τy

i+ 1
2
. ZΓ4 is

anomaly free, which can be seen from the on-site-ness of UΓ
14 and justifies that ZG

2 anomaly
in pre-decorated Hamiltonian is canceled by the induced anomaly of decorated defect con-
struction. The normal subgroup ZA

2 is also generated by an on-site operator Eq. (36). Here we
remark that the Hamiltonian (38) is Jordan-Wigner dual to Eq.49 and Eq.50 in [44].

3.2 Symmetry features of ZΓ4 igSPT

We discuss the symmetry features of the ZΓ4 igSPT (38). An immediate fact to realize is that
there is no ZΓ4 gapped SPT in (1 + 1)d.15 Thus it is not possible to stack a gapped SPT to
unitarily connect it to another possibly more trivial igSPT. For this reason, the origin of the
nontrivial SPT order at the critical point here is less obvious, in contrast to the ZA

2 ×Z
G
2 gSPT.

In this subsection, we discuss its properties under various boundary conditions. We summarize
the main results in table 3.

3.2.1 Periodic boundary condition

We have motivated in section 1.2 that any igSPT should have one non-degenerate ground
state, with a finite size splitting with the first excited state. Thus we would like to check the
ground state degeneracy of (38) under PBC to be one.

As we find in section 3.1.2, the number of ground states of the ZΓ4 igSPT is identical to that
of the Levin-Gu model (32). In appendix B.1, we show, by Jordan-Wigner transformation, that
the number of ground states of the Levin-Gu model depends on L mod 4 and is given as

GSDL =

¨

2 , L = 2 mod 4 ,

1 , otherwise.
(40)

14However, not every anomaly free symmetry operator is on-site.
15The (1+ 1)d bosonic SPT with a discrete symmetry G is classified by H2(G, U(1)). In our case, G = Z4, and it

is well-known [36] that H2(Z4, U(1)) = 0 is trivial, hence there is no nontrivial Z4 SPT phase in (1+ 1)d.
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Table 3: Ground state degeneracy and symmetry charges of the ground state under
PBC, TBC and OBC. We focus on the system size L = 0,1, 3,4, 5,7 mod 8 to ensure
trivial ground state degeneracy. Relative ZA

2 (or ZΓ4) charge means the difference be-
tween the corresponding charge under the TBC and that under the PBC. We compare
these properties between the igSPT and Landau transition, both with the same global
symmetry ZΓ4.

ZΓ4 ZΓ4
igSPT Landau Transition

PBC: GSD 1 1

ZA
2-TBC:

GSD

Relative ZA
2 Charge

Relative ZΓ4 Charge

1

0

2

1

0

0

ZΓ4-TBC:

GSD

Relative ZA
2 Charge

Relative ZΓ4 Charge

L = odd : 2; L = even : 4

1

1 or 3

1

0

0

OBC: GSD ≥ 2 1

Thus the number of ground states of the ZΓ4 igSPT under periodic boundary condition is also
given by (40).

Let us further discuss the Z4 charge of the ground state. Denote the ground states of (32),
(34) and the (38) as |GS〉LG, |GS〉pre and |GS〉 respectively. Suppose the ZG

2 charge of |GS〉LG
in the Levin-Gu model (32) is qLG, then by definition we have

UDW UΓU
†
DW |low |GS〉LG = (−1)qLG |GS〉LG . (41)

AsZA
2 decouples from the low energy, we also have UDW UΓU

†
DW |GS〉pre = (−1)qLG |GS〉pre. Since

|GS〉pre = UDW |GS〉, we can then compute the ZΓ4 charge of |GS〉 via,

UΓ |GS〉= U†
DW (UDW UΓU

†
DW ) |GS〉pre = (−1)qLG U†

DW |GS〉pre = ei π2 ·2qLG |GS〉 . (42)

So the ZΓ4 charge q of the ground state |GS〉 is related to the ZG
2 charge of |GS〉LG via q = 2qLG

mod 4.
We are left to determine the symmetry charge of the Levin-Gu model, qLG. While the

ground-state degeneracy was obtained exactly in Eq. (40) by the Jordan-Wigner transforma-
tion as discussed in Appendix B.1, we could not find qLG from the Jordan-Wigner transfor-
mation. Nevertheless, we can utilize an alternative mapping to the XX chain as discussed in
Appendix B.2, to determine qLG for even L’s. The analytical result for even L’s was confirmed
by exact numerical diagonalization for small L’s, which also gives qLG for odd L’s. As a result,
extending the L mod 4 dependence of the ground-state degeneracy (40), we find that the
symmetry charge of the Levin-Gu model qLG depends on α= L mod 8: qLG = 0 for α= 0,1, 7,
while qLG = 1 for α = 3, 4,5. As presented in Eq. (40), for α = 2, 6, the ground states are
two fold degenerate. We find that, each of the two degenerate ground states has qLG = 0 and
qLG = 1.

We conclude that the ZΓ4 charge q of ground state of (38) is

UΓ |GS〉= eiπq/2 |GS〉 , q = 2qLG =











0 , α= 0, 1,7 ,

2 , α= 3, 4,5 ,

0 &2 , α= 2, 6 .

(43)
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This is consistent with that the ground state satisfies

τx
i+ 1

2
|GS〉Z

Γ
4

tw = σ
z
iσ

z
i+1 |GS〉Z

Γ
4

tw (1≤ i ≤ L) . (44)

From the above result, it appears that the ground state degeneracy is not well defined in
the limit L →∞. While we do not completely understand the physical mechanism behind
the periodic dependence of the ground-state degeneracy on the system size, the ground-state
degeneracy for α= 2,6 might be interpreted as a consequence of an effective twist [58]. The
effective twist can be seen by mapping the Levin-Gu model to an XX chain. In appendix B,
we showed that under a unitary transformation, the Levin-Gu model with PBC can be mapped
to an XX chain with PBC and one ground state when L ∈ 4Z, and XX chain with the twisted
boundary condition and two degenerate ground states when L ∈ 4Z + 2. This is analogous
to the phenomenon that an antiferromagnetic chain of odd length is effectively subject to
a twisted boundary condition. Here we simply consider the sequence of systems only with
α ∈ {0,1, 3,4, 5,7}. This would be reasonable if the ground-state degeneracy for α = 2, 6
is indeed due to an effective twist; we just consider the sequence of effectively untwisted
systems.16 Then the ground state degeneracy in the thermodynamic limit is regarded as one,
consistent with our definition of igSPT.

There still remains the periodic dependence of the ZΓ4 charge in the ground state on the
system size: for α= 0, 1,7, the ground state is neutral under ZΓ4, while α= 3, 4,5, the ground
state gets a minus sign under the ZΓ4 transformation. However, this minus sign can always be
absorbed by suitably modifying the definition of UΓ in (39). In fact, in the following sections,
we will only be interested in the relative charge of the ground state between the periodic and
twisted boundary conditions, which turns out to be system-size independent.

3.2.2 Twisted boundary condition

We further discuss the charge of the ground state under the TBC. We can either twist by ZΓ4,
or its normal subgroup ZA

2.

Twist by ZA
2 : We twist the boundary condition by ZA

2 (labeled by ZA
2 TBC). The Hamiltonian

is

H
ZA

2
igSPT = −

L−1
∑

i=1

�

τz
i− 1

2
σx

i τ
z
i+ 1

2
+τy

i− 1
2
σx

i τ
y

i+ 1
2
+σz

i τ
x
i+ 1

2
σz

i+1

�

+τz
L− 1

2
σx

Lτ
z
1
2
+τy

L− 1
2
σx

Lτ
y
1
2
−σz

Lτ
x
1
2
σz

1

= σz
LHigSPTσ

z
L ,

(45)

where HigSPT is (38). We have already encountered the same algebra below (16). De-

note the ground state of HigSPT and H
ZA

2
igSPT as |GS〉 and |GS〉Z

A
2

tw , respectively. Then we have

|GS〉Z
A
2

tw = σ
z
L |GS〉. As UΓσ

z
LU†
Γ = −σ

z
L , we find

UΓ |GS〉Z
A
2

tw = −eiπq/2 |GS〉Z
A
2

tw = eiπ(q+2)/2 |GS〉Z
A
2

tw , (46)

where q is the Z4 charge of |GS〉 under PBC, given by (43). (46) means that the ZΓ4 charge of
the ground state with the ZA

2 twisted boundary condition differs from that with the periodic
boundary condition by two. We thus define the difference between the ZΓ4 charge under ZA

2-
TBC and that under PBC to be the relative ZΓ4 charge, which is two. Relative charge is more

16See also [59] for the system size dependent ground state degeneracy in the (1+ 1)d Luttinger liquids.
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physical since there are ambiguities in defining the absolute charge as we noticed in the previ-
ous subsection. The nontrivial relative ZA

2 charge shows that the igSPT we constructed in (38)
is topologically nontrivial. We also note that the proof applies to all the states.

We remark that the second equality of (45) does not hold under a ZΓ4 symmetric perturba-
tion. However, the conclusion that the relative ZΓ4 charge of the low lying states between the
ZA

2 twisted and untwisted sectors being two still holds under a ZΓ4 symmetric perturbation. We
defer this to a subsequent paper [33].

Twist by ZΓ4: We further use the ZΓ4 symmetry to twist the boundary condition (labeled by
ZΓ4 TBC). The Hamiltonian is

H
ZΓ4
igSPT = −

L−1
∑

i=1

�

τz
i− 1

2
σx

i τ
z
i+ 1

2
+τy

i− 1
2
σx

i τ
y

i+ 1
2
+σz

i τ
x
i+ 1

2
σz

i+1

�

−τz
L− 1

2
σx

Lτ
y
1
2
+τy

L− 1
2
σx

Lτ
z
1
2
+σz

Lτ
x
1
2
σz

1 . (47)

The ground state |GS〉Z
Γ
4

tw satisfies

τx
i+ 1

2
|GS〉Z

Γ
4

tw = σ
z
iσ

z
i+1 |GS〉Z

Γ
4

tw (1≤ i ≤ L − 1) , τx
1
2
|GS〉Z

Γ
4

tw = −σ
z
Lσ

z
1 |GS〉Z

Γ
4

tw . (48)

We then measure the ZA
2 charge using UA in (36),

UA |GS〉Z
Γ
4

tw = −
L−1
∏

i=1

�

σz
iσ

z
i+1

�

σz
Lσ

z
1 |GS〉Z

Γ
4

tw = −|GS〉Z
Γ
4

tw , (49)

which means that the ground state carries ZA
2 charge 1. This also implies that if |GS〉Z

Γ
4

tw is an
eigenstate of UΓ , then it should carry ZΓ4 charge 1 mod 4 or 3 mod 4.

In fact, by exact numerical diagonalization, we find that there are two degenerate ground
states if L is odd and four if L is even. If we organize them into eigenstates of ZΓ4, half of
them have charge 1 mod 4 and the other half have charge 3 mod 4. Since there are different
charges, an arbitrary linear combination of them is generically not an ZΓ4 eigenstate. However,
as all of the ground states have ZA

2 charge 1, an arbitrary linear combination of them also has
ZA

2 charge 1.
From (43), the ZA

2 charge of the ground state under PBC is always trivial, independent
of the system size. Moreover, as we find in (49) the ZA

2 charge of the ground state under ZΓ4
TBC is one, independent of the system size. We thus found that the relative ZA

2 charge is size-
independent, and it shows that the igSPT we constructed in (38) is topologically nontrivial.
Since (44) and (48) also hold for all low energy states with energy E−EGS≪ 1, the above proof
of nontrivial ZA

2 charge of the ground state also applies to low energy states, which should be
stable under perturbations.

In summary, we have checked that using either ZA
2-TBC or ZΓ4-TBC one can probe the topo-

logical nontriviality of the ZΓ4 igSPT.17

17We need to show that the symmetry features shown in this section is stable under deformation. It was noticed
in [15] that if the deformation leads to an accidental symmetry H which has a mixed anomaly with ZΓ4, then
the properties in this section can change due to the mixed anomaly. Assuming such accidental symmetry is the
only mechanism that can change the symmetry properties in this section (which is a common lore, and has been
discussed recently in [60]), we therefore need to demand that the deformation does not lead to any such accidental
symmetry.
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3.2.3 Open boundary condition

We proceed to discuss the ground state degeneracy under the OBC. When placing the Z4 igSPT
on an open chain, as in section 2.3.3, we let the left most spin be σ spin, and right most spin
be τ spin. The Hamiltonian is

HOBC
igSPT = −

L
∑

i=2

�

τz
i− 1

2
σx

i τ
z
i+ 1

2
+τy

i− 1
2
σx

i τ
y

i+ 1
2

�

−
L−1
∑

i=1

σz
i τ

x
i+ 1

2
σz

i+1 , (50)

and the symmetry operator is

UΓ =
L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4

�

1−τx
i+ 1

2

�

�

. (51)

We find that the set of operators {σz
1,σz

Lτ
x
L+ 1

2
, UΓ } commute with the Hamiltonian (50). The

irreducible representation of the above algebra is two, hence the ground states of (50) are at
least two fold degenerate. In appendix D.2, we show that the ground state degeneracy is four
for L ∈ 2Z+ 1, and two for L ∈ 2Z.

3.3 Stability of igSPT

As discussed in section 2, the ZA
2×Z

G
2 gSPT is unstable upon perturbation towards the gapped

SPT phase. It immediately enters the ZA
2×Z

G
2 gapped SPT phase when transverse field λ passes

the critical value λc = 1. How about the stability of the ZΓ4 igSPT against perturbation into a
gapped phase with a unique ground state?

First of all, since ZΓ4 is non-anomalous, in principle, there is no obstruction to deform the
system to Z4 symmetric gapped phase with a unique ground state [61]. Secondly, since there
is no ZΓ4 gapped SPT, the only gapped phase with a non-degenerate ground state is the trivially
gapped phase. In this subsection, we will examine the most obviousZΓ4 symmetric perturbation
that can drive the igSPT into a trivially gapped phase,

−h
L
∑

i=1

�

σx
i +τ

x
i+ 1

2

�

, (52)

where h > 0. When h ≫ 1, as τx
i+ 1

2
anticommutes with the first and second term of the

Hamiltonian (38), and σx
i anticommutes with the third term, only (52) survives and it is in

the trivially gapped phase. This means that there must be at least one phase transition as h
increases from zero where either the ZΓ4 charge under PBC, or the relative ZA

2 charge under
ZΓ4-TBC or relative ZΓ4 charge under ZA

2-TBC jumps.
After adding (52), the proof of non-trivial (relative) charges under the twisted boundary

conditions in Section 3.2.2 no longer apply. We therefore numerically calculate the charges as
a function of h, and indeed observe the jumps for finite h. We relegate the details of small-
scale numerical study in Appendix F. In a subsequent work [33], by using the Kennedy-Tasaki
transformation, we analytically show that the phase transition happens at finite h, therefore
shows that igSPT (38) is stable under the perturbation (52).

4 gSPT and IgSPT in the spin-1 system

In this section, we briefly introduce a more realistic spin-1 model which hosts the igSPT and
gSPT simultaneously. This model is studied in detail in [30] by one of the authors in this work
(L.L.) together with Yang, Okunishi and Katsura. We briefly review the results there, and fit
them into our framework.
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λλ= −λ1 λ= 0 λ= λ1

Haldane
Phase

Zz
2 SSB Zy ′

2 SSB Zz
2 ⋉Z

y
4 SSB

gSPT igSPT
Landau

Transition

Figure 4: The phase diagram of (53) when θ=0.

4.1 The model and phase diagram

The Hamiltonian is given by

H(θ ,λ) = (1−λ)HBLBQ + (1+λ)UKT HBLBQU†
KT , −

π

4
< θ < arctan

1
2

, (53)

where

HBLBQ = cosθ (S⃗i · S⃗i+1) + sinθ (S⃗i · S⃗i+1)
2 , (54)

UKT =
∏

µ<ν

exp(iπSz
µS x
ν ) . (55)

S⃗ is spin-1 operator. UKT is a non-local unitary operator implementing the Kennedy-Tasaki
(KT) transformation [48–50]. Under the KT transformation, λ↔−λ, and λ = 0 is the self-
dual point. For each θ and λ, the Hamiltonian (53) preserves three global symmetries:

1. Zz
2: π rotation in z direction, generated by

∏

j eiπSz
j .

2. Zy
4 : π/2 rotation in y direction, generated by

∏

j ei π2 S y
j .

3. ZT: translation symmetry.

The phase diagram of θ = 0 is obtained in [30], as shown in figure 4. See [30] for the full
2d phase diagram in the (λ,θ ) plane.

4.2 Zz
2 ⋉Z

y
4 ×Z

T igSPT

Let us start by discussing the self-dual point λ = 0 which we argue to be a igSPT. Taking the
low energy limit around this point, some degrees of freedom decouple, and the 3-dimensional
Hilbert space per site in the spin-1 model reduces to 2-dimensional Hilbert space per site,
hence effectively becomes a spin-1

2 model. The spin-1
2 Hamiltonian turns out to be the XXZ

model [30]:

H(λ≪ 1) = −(1+λ)
L
∑

j=1

σx
j σ

x
j+1 + (1−λ)

L
∑

j=1

σ
y
j σ

y
j+1 . (56)

This model also has three global symmetries:

1. Zz′
2 : generated by

∏

i σ
z
i .

2. Zy ′

2 : generated by
∏

i iσ y
i .

3. ZT: translation symmetry.
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We use the primes to distinguish the symmetries of the spin-1/2 model from those of the spin-1
model. Denote their background fields as A′z , A′y and AT . The symmetries Zz′

2 , Zy ′

2 and ZT
2 ⊂ Z

T

have a mixed anomaly [58,62,63] whose inflow action is

ω3d = eiπ
∫

M3
A′y A′zAT . (57)

However, in the entire Hibert space of spin-1 system, the Zz′
2 × Z

y ′

2 is realized as Zz
2 ⋉ Z

y
4

symmetry with the following extension:

Y ′Z ′ = Ry
πZ ′Y ′ , (58)

where Ry
π =

∏L
j=1 exp(iπS y

j ), Y ′ =
∏L

j=1 exp(iπS y
j /2) and Z ′ =

∏L
j=1 exp(iπSz

j ). exp(iπS y
j )

has eigenvalues {−1,−1,1}. In the low energy limit, the spin-1
2 model only acts nontrivially on

the first two components of the spin-1 Hilbert space under the eigenbasis of exp(iπS y
j ), hence

exp(iπS y
j ) = −1 in the spin-1

2 model, Y ′, Z ′ in (58) reduces to the standard spin-1
2 operators

σz
j = exp(iπSz

j ) and iσ y
j = exp(iπS y

j /2). In terms of the background fields, (58) gives us the
restriction

dAY = A′yA′z mod 2 , (59)

where AY is 1-cochain for ZY
2 normal subgroup of Zy

4 symmetry. In summary, we can identify

Zz′
2 and Zy ′

2 in the spin-1
2 theory with the Zz

2 and Zy
4/Z

Y
2 in the spin-1 theory respectively.

Besides, since exp(iπS y
j ) = −1 for each site in the low energy sector, the ground state is

stacked by a weak gapped SPT phase protected by translation and Zy
2 symmetry [64]. This is

represented by the topological action eiπ
∫

M2
AY AT and by (59), it depends on the extension to

a 3d bulk M3,

eiπ
∫

M2
AY AT = eiπ

∫

M3
A′y A′zAT . (60)

This induced anomaly from stacking a weak gapped SPT phase cancels against the mixed
anomaly (57) in the low energy. Thus the total spin-1 system is anomaly free. This shows that
the spin-1 system is a igSPT, protected by the total symmetry Zz

2 ⋉Z
y
4 ×Z

T.
The total symmetry can be decomposed into two extensions,

1→ Zz
2 ×Z

Y
2 ×Z

T
2 → Z

z
2 ⋉Z

y
4 ×Z

T
2 → Z

y ′

2 → 1 , (61)

and

1→ Zy
4 → Z

z
2 ⋉Z

y
4 ×Z

T
2 → Z

z
2 ×Z

T
2 → 1 . (62)

Note that (62) is still a nontrivial extension.18 Comparing with (1), we see that the Zz
2⋉Z

y
4×Z

T

igSPT can be constructed either by starting with G = Zy ′

2 SSB phase or G = Zz
2 SSB phase,

which exactly correspond to the regimes λ > 0 and λ < 0 in figure 4. Moreover, from (57),
the anomalous symmetries in the low energy are bΓ = Zy ′

2 × Z
z′
2 × Z

T
2. This provides an ex-

ample where the SSB symmetry G is strictly smaller than the anomalous symmetry bΓ , which
generalizes the construction in [16].

18Both (61) and (62) are not central extensions, since both Zz
2 ×Z

Y
2 and Zy

4 are not center subgroup of Zz
2 ⋉Z

y
4 .
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4.3 Zz
2 ⋉Z

y
4 ×Z

T gSPT

Let us further consider the critical point at λ= −λ1. The two phases around this critical point
are Zz

2 SSB phase and a nontrivial gapped SPT protected by Zz
2×Z

Y
2 , a.k.a. the Haldane phase.

This fits into the phase diagram of gSPT in the left panel of figure 1.
Moreover, at λ = −λ1, the Hamiltonian (53) has a unique ground state under periodic

boundary condition for a finite system size but has two ground states under the open boundary
condition (up to exponential splitting). There are also three string order parameters with
nonzero expectation value in the Haldane phase Oµ = 〈S

µ
m
∏

m< j<n exp(iπSµj )S
µ
n 〉 (µ= x , y, z).

When the system is turned into this critical point, only Oy remains nonzero but the other two
decay to zero algebraically quickly. All these evidence suggest that the critical point at λ= −λ1
is a nontrivial gSPT. As the system has total symmetry Zz

2⋉Z
y
4 ×Z

T, we name the critical point
as Zz

2⋉Z
y
4 ×Z

T gSPT, although only a subgroup Zz
2×Z

Y
2 protects the gapped SPT in the nearby

phase.
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A Stability of boundary degeneracy of ZA
2 ×Z

G
2 gapped SPT

We find in section 2.3.3 that if we suitably change OBC by adding boundary interactions, the
ground state degeneracy can be lifted from four to two. In this appendix, we would like to
argue that exactly degenerate ground states of the ZA

2 ×Z
G
2 gapped SPT, which is always four,

does not lift under arbitrary symmetric perturbations localized at the boundary.
Let us truncate the system in the same way as section 2.3.3. The σ spins are supported on

i = 1, . . . , L, and the τ spins are supported on i + 1
2 =

3
2 , . . . , L + 1

2 . Let us begin by choosing
one particular OBC such that the Hamiltonian is

HOBC
SPT = −

L−1
∑

i=1

σz
i τ

x
i+ 1

2
σz

i+1 −
L
∑

i=2

τz
i− 1

2
σx

i τ
z
i+ 1

2
. (A.1)

Suppose the boundary perturbation at the left end is supported on 2 sites, 1, 3
2 . A generic

symmetric perturbation takes the form

∆HOBC
SPT = (σ

x
1 )
β1(τx

3
2
)
β 3

2 , (A.2)

where β1, 3
2
∈ {0,1}.19 Let us find the local operators that commute with both HOBC

SPT and

19For perturbations supported on 3 sites, one also allows σz
1σ

z
2. But for 2 site perturbation, Pauli Z operators

are forbidden by the symmetries.
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∆HOBC
SPT . Any interaction commuting with HOBC

SPT are composed of the building blocks σz
1,

σx
1τ

z
3
2
,τx

L+ 1
2
σz

L , τz
L+ 1

2
and all the terms that already exist in (A.1). Using these building blocks,

a generic term that might anticommute with the boundary perturbation takes the form

Ou1u2u3u4 = (σz
1)

u1(σx
1τ

z
3
2
)u2(σz

1τ
x
3
2
σz

2)
u3(τz

3
2
σx

2τ
z
i+ 5

2
)u4 , (A.3)

where u1,2,3,4 ∈ {0,1}. Requiring [O,∆HOBC
SPT ] = 0, we find that the coefficients need to satisfy

the linear equations
β1(u1 + u3) + β 3

2
(u2 + u4) = 0 mod 2 . (A.4)

Note that β1, 3
2

are given, while u’s are variables to be determined. There are 4 variables, and
one equation, hence one is free to choose arbitrary value of u1, u2, such that ui ’s for i = 3, 4
are constrained by the equation. One solution would be u3 = β 3

2
− u1, u4 = β1 − u2. On the

other hand, the algebra between the operators {Ou1u2u3u4 , UA, UB} are

Ou1u2u3u4Ou′1u′2u′3u′4 = (−1)u1u′2+u′1u2Ou′1u′2u′3u′4Ou1u2u3u4 ,

UAOu1u2u3u4 = (−1)u2Ou1u2u3u4 UA ,

UGOu1u2u3u4 = (−1)u1Ou1u2u3u4 UG .

(A.5)

The commutation relations only depends on u1, u2! Hence we are free to choose two commut-
ing independent operators O10u3u4 and O01u′3u′4 whose common eigenvalues (a, b) label the
ground states |(a, b)〉, where u3,4 and u′3,4 are arbitrary solutions of (A.4). The four orthogo-
nal ground states are thus given by

|(a, b)〉 , |(−a, b)〉= UG |(a, b)〉 , |(a,−b)〉= UA |(a, b)〉 , |(−a,−b)〉= UAUG |(a, b)〉 .
(A.6)

The above discussion can easily be generalized to perturbation supported on arbitrary number
sites. We thus conclude that, for the ZA

2 × Z
G
2 gapped SPT, the exact four fold ground state

degeneracy on an open chain is stable under boundary perturbation.

B Spectrum of Levin-Gu model under different boundary condi-
tions

In this appendix, we show the energy spectrum of Levin-Gu model [42] under different bound-
ary conditions analytically. The analytic results are confirmed by the numerical calculation.

B.1 Exact solutions under PBC by Jordan-Wigner transformation

The Hamiltonian of Levin-Gu model is

HLG = −
L
∑

i=1

�

σx
i −σ

z
i−1σ

x
i σ

z
i+1

�

, (B.1)

which respects the Z2 symmetry generated by

UG =
L
∏

i=1

σx
i

L
∏

i=1

exp
�

iπ
4
(1−σz

iσ
z
i+1)

�

. (B.2)

We apply the Jordan-Wigner (JW) transformation which maps spin operator to fermion oper-
ator

σx
i = (−1)ni = 1− 2 f †

i fi , σz
i =

i−1
∏

j=1

(−1)n j ( f †
i + fi) , (B.3)

26

https://scipost.org
https://scipost.org/SciPostPhys.17.1.013


SciPost Phys. 17, 013 (2024)

where ni := f †
i fi is fermion density operator. Note that when i=1, we simply haveσz

1= f †
1 + f1.

We also assume PBC of the spins, i.e. σa
i = σ

a
i+L .

Applying the JW transformation to the Levin-Gu model, we can rewrite (B.1) in terms of
the fermions,

HLG = −L +
L
∑

i=1

�

2 f †
i fi + ( f

†
i − fi)( f

†
i+2 + fi+2)

�

, (B.4)

with boundary condition

fi+L = −(−1)F fi , F =
L
∑

j=1

n j . (B.5)

After Fourier transformation and Bogoliubov transformation, this Hamiltonian is diagonal

HLG =
∑

k

ωk

�

c†
kck −

1
2

�

, (−1)
∑

k c†
kck = (−1)F , (B.6)

where ωk = 4| cos k|. There are zero modes if k can be either π2 or 3π
2 , and whether they are

realizable depends on the boundary condition. It turns out that depending on L ∈ 4Z, 4Z+ 2
or 2Z+ 1, the boundary condition behaves differently. We discuss them separately.

Case 1: L ∈ 4Z

If (−1)F = −1, the fermion chain has PBC. This means k = 2π j
L where j = 0, · · · , L − 1.

Therefore, when j = L
4 and j = 3L

4 , we have two zero modes at k = π
2 and k = 3π

2 . Since
(−1)F = −1, the ground states are: c†

π
2
|VAC〉PBC and c†

3π
2
|VAC〉PBC. The ground state energy is

EPBC
GS = −2

L−1
∑

j=0

�

�

�

�

cos
�

2π j
L

�

�

�

�

�

= −4 cot
�π

L

�

. (B.7)

If (−1)F = 1, the fermion chain has anti-periodic boundary condition (ABC) where k = (2 j+1)π
L .

Since L ∈ 4Z, there is no zero mode. the ground state is |VAC〉ABC with ground state energy:

EABC
GS = −2

L−1
∑

j=0

�

�

�

�

cos
�

(2 j + 1)π
L

�

�

�

�

�

= −
4

sin
�

π
L

� . (B.8)

As EABC
GS < EPBC

GS , the Levin-Gu model has an unique true ground state which is vacuum of ABC
after Jordan-Wigner transformation.

Case 2: L ∈ 4Z+ 2

If (−1)F = −1, the fermion chain has PBC where k = 2π j
L , j = 0, · · · , L − 1. Since

L = 4m + 2 ∈ 4Z + 2, there is no zero mode. The ground states are c†
2mπ

4m+2
|VAC〉PBC,

c†
2π(m+1)

4m+2

|VAC〉PBC, c†
2π(3m+1)

4m+2

|VAC〉PBC and c†
2π(3m+2)

4m+2

|VAC〉PBC. The ground state energy is

EPBC
GS = −2

L−1
∑

j=0

�

�

�

�

cos
�

2π j
L

�

�

�

�

�

+ 4cos(
mπ

2m+ 1
) = −

4

sin
�

π
L

� + 4 sin
�π

L

�

. (B.9)

If (−1)F = 1, the fermion chain has ABC where k = (2 j+1)π
L . Since L = 4m + 2 ∈ 4Z + 2,

there are two zero modes at j = m and j = 3m+ 1. The ground states are double degenerate

27

https://scipost.org
https://scipost.org/SciPostPhys.17.1.013


SciPost Phys. 17, 013 (2024)

|VAC〉ABC and c†
π
2
c†

3π
2
|VAC〉ABC with energy

EABC
GS = −2

L−1
∑

j=0

�

�

�

�

cos
�

(2 j + 1)π
L

�

�

�

�

�

= −4cot
�π

L

�

. (B.10)

Since

EABC
GS − EPBC

GS = −4cot
�π

L

�

+
4

sin
�

π
L

� − 4 sin
�π

L

�

= −4 cot
�π

L

��

1− cos
�π

L

��

< 0 , (B.11)

the Levin-Gu model has double degenerate ground states which is vacuum of ABC.

Case 3: L ∈ 2Z+ 1

If (−1)F = 1, the fermion chains has ABC where k = (2 j+1)π
L and where j = 0, · · · , L − 1. Now

since L = 2m+ 1 ∈ 2Z+ 1, there is no zero mode. The ground states is |VAC〉ABC with energy

EABC
GS = −2

2m
∑

j=0

�

�

�

�

cos
�

(2 j + 1)π
2m+ 1

�

�

�

�

�

= −4
m−1
∑

j=0

�

�

�

�

cos
�

(2 j + 1)π
2m+ 1

�

�

�

�

�

− 2 . (B.12)

If (−1)F = −1, the fermion chain has PBC where k = 2π j
L where j = 0, · · · , L. Now since

L = 2m+ 1 ∈ 2Z+ 1, there is also no zero mode. Here we note that the energy of |VAC〉PBC is
the same as (B.12)

EPBC
VAC = −2

2m
∑

j=0

�

�

�

�

cos
�

2π j
2m+ 1

�

�

�

�

�

= −4
m
∑

j=1

�

�

�

�

cos
�

2π j
2m+ 1

�

�

�

�

�

− 2

= −4
m
∑

j=1

�

�

�

�

cos
�

(2m− 2 j + 1)π
2m+ 1

�

�

�

�

�

− 2= −4
m−1
∑

j=0

�

�

�

�

cos
�

(2 j + 1)π
2m+ 1

�

�

�

�

�

− 2 . (B.13)

Since there is no zero mode, the ground state energy in (−1)F = −1 sector must be higher
than EPBC

VAC which coincides with the ground state energy (B.12) under the ABC and the unique
true ground state is |VAC〉ABC.

In summary, the ground state degeneracy of the Levin-Gu model under PBC is two if
L ∈ 4Z+ 2, and one otherwise. This proves (40).

B.2 Mapping to XX chain and charge of ground state

When the system size is even (L = 2m), there is a unitary transformation [7]

U =
m
∏

j=1

exp
�

πi
2
σ

y
2 j

� m
∏

j=1

i
σz

2 j +σ
x
2 j

p
2

m
∏

j=1

exp





πi
�

1−σz
2 j−1

��

1−σz
2 j

�

4



 , (B.14)

which maps the Levin-Gu model to a XX chain with imaginary hopping constant.

UHLGU† = −
m
∑

j=1

(σz
2 j−1σ

x
2 j −σ

x
2 jσ

x
2 j+1 −σ

x
2 j−1σ

z
2 j +σ

z
2 jσ

x
2 j+1)

= −
L
∑

j=1

iσ+j σ
−
j+1 + h.c. , (B.15)
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where σ+j = σ
z
j + iσx

j . The imaginary hopping XX chain can be further mapped to a standard
XX chain by a unitary transformation

U1 =
L
∏

j=1

exp
�

πi
2

jσ y
j

�

. (B.16)

The resulting Hamiltonian is

U1UHLGU†U†
1 = −

L
∑

j=1

(σz
jσ

z
j+1 +σ

x
j σ

x
j+1) , (B.17)

with boundary condition
σz

L+ j = iLσz
j , σx

L+ j = iLσx
j . (B.18)

After taking the continuum limit [65,66]

(σz + iσx)∝ eiθ , σ y ∝
a

2π
∂xφ , (B.19)

the low energy theory of standard XX chain is the free boson theory and the energy of eigenstate
|m, n〉 is20

(Em,n − E0,0)∝
π

2L
(4m2 + n2) , (B.20)

where the integer pairs (m, n) are determined by the boundary conditions θ (x+L)=θ (x)+2πm
and φ(x + L)=φ(x)+2πn. By combining (B.17), (B.18) and (B.20), we conclude as follows.

1. When L ∈ 4Z, the Levin-Gu model is equivalent to the XX chain with PBC where m ∈ Z
and n ∈ Z. Its energy minimizes at a unique value (m, n) = (0, 0), and the unique ground
state is |0,0〉.

2. When L ∈ 4Z + 2, the Levin-Gu model is equivalent to the XX chain with ABC where
m ∈ Z + 1/2 and n ∈ Z. Its energy minimizes at two distinct values (m, n) = (±1

2 , 0),
and there are two degenerate ground states |±1

2 , 0〉.

This is consistent with the results from JW transformation in (B.1).
Moreover we can obtain the Z2 symmetry (B.2) after transformation

U ′G = U1UUGU†U†
1 =

L
∏

j=1

σ
y
j

L
2
∏

j=1

exp
�

πi
4
(2+σx

2 j−1σ
z
2 j −σ

z
2 jσ

x
2 j+1)

�

. (B.21)

After taking the continuum limit (B.19), the Z2 symmetry operator in the low energy is given
by

U ′G = i
L
2 exp

�

i
2

∫

∂xφd x −
i
2

∫

∂xθd x

�

. (B.22)

The charge of the state can be found by acting U ′G on |m, n〉,

U ′G |m, n〉= i
L
2 eiπ(n−m) |m, n〉 . (B.23)

Therefore when L ∈ 4Z, the charge of ground state |0, 0〉 is (−1)L/4. When L ∈ 4Z + 2 the
charges of ground states |±1

2 , 0〉 are ±(−1)
L−2

4 . This proves (42) for even L.

20Since we are only interested in ground state degeneracy, we don’t consider excitations of the oscillator modes.
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B.3 Spectrum under open boundary condition

In this section, we use the transformations (B.14) and (B.16) to discuss spectrum of Levin-Gu
model under OBC

HOBC
LG = −

L−1
∑

i=2

�

σx
i −σ

z
i−1σ

x
i σ

z
i+1

�

. (B.24)

There are two boundary operators σz
1 and σz

L commuting with Hamiltonian.
When L ∈ 2Z, the Hamiltonian (B.24) and the boundary operators σz

1,L after the transfor-
mation are given by

U1UHOBC
LG U†U†

1 = −

L
2−1
∑

j=1

�

σx
2 j−1σ

x
2 j +σ

z
2 j+1σ

z
2 j+2 +σ

x
2 jσ

x
2 j+1 +σ

z
2 jσ

z
2 j+1

�

, (B.25)

U1Uσz
1U†U†

1 = −σ
x
1 , U1Uσz

LU†U†
1 = (−1)

L
2+1σz

L . (B.26)

After taking the continuum limit, the boundary operators are − sinθ (x = 0) and
(−1)

L
2+1 cosθ (x = L). As the ground state should be the eigenstate of the boundary oper-

ators −σx
1 , (−1)

L
2+1σz

L , − sinθ (x = 0) = ±1, (−1)
L
2+1 cosθ (x = L) = ±1. They determine the

boundary conditions θ (x = 0) = ±π2 and θ (x = L) = 0 or π. The ground state energy under
these four boundary conditions are exactly the same.

When L ∈ 2Z + 1, we only do the transformation (B.14) for even number of sites, say,
i = 1, . . . , L − 1. We still do π/2 rotation along y direction, i.e. U1 in (B.16), on the L-th site.
The Hamiltonian (B.24) and the boundary operators after the transformation are given by

U1UHOBC
LG U†U†

1 = −

L−1
2
∑

j=1

�

σx
2 j−1σ

x
2 j +σ

x
2 jσ

x
2 j+1

�

+

L−3
2
∑

j=1

�

σz
2 j+1σ

z
2 j+2 +σ

z
2 jσ

z
2 j+1

�

, (B.27)

U1Uσz
1U†U†

1 = −σ
x
1 , U1Uσz

LU†U†
1 = σ

x
L . (B.28)

After taking the continuum limit, the boundary operators are − sinθ (x = 0) and sinθ (x = L)
which implies boundary conditions are θ (x = 0) = ±π2 and θ (x = L) = ±π2 , and the signs are
uncorrelated. Unlike even size, the states with different boundary conditions have different
energies,

E(∓π2 ,±π2 ) − E(±π2 ,±π2 )∝
1
L

, (B.29)

where the signs are correlated. Therefore the true ground states are double degenerate and
are in the sector with boundary conditions θ (x = 0) = θ (x = L) = ±π2 .

C Equivalence between ground sector of Z4 igSPT and Levin-Gu
model

In this section, we show the ground state of the pre-decorated model (34) of ZΓ4 igSPT is the
same as the Levin-Gu model (32) with τx

i = 1.
Let us begin with the pre-decorated model (34) with PBC, which we reproduce here

UDW HigSPTU†
DW = −

L
∑

i=1

�

σx
i −σ

z
i−1τ

x
i− 1

2
σx

i τ
x
i+ 1

2
σz

i+1 +τ
x
i− 1

2

�

. (C.1)

Since the last term commutes with all other terms, the Hibert space can be divided into sectors
with different τx configurations. In different sectors, the sign of term σz

i−1σ
x
i σ

z
i+1 is decided
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by τx
i− 1

2
τx

i+ 1
2
. It is easy to see that the number of terms with τx

i− 1
2
τx

i+ 1
2
= −1 must be even,

since
∏L

i=1τ
x
i− 1

2
τx

i+ 1
2
= 1. We prove the splitting of ground state energy of first two terms in

(C.1) with different τ configuration is order of 1/L or exactly zero. Therefore, when L is large
enough, the state in the ground state sector of (C.1) satisfies τx

i+ 1
2
= 1 for each i.

When L ∈ 2Z+ 1, we can prove the first two terms in (C.1) with any τ configuration can
be mapped to the standard Levin-Gu model by a unitary transformation.

This implies the ground state energy of any τ configuration is same as that of the standard
Levin-Gu model. To see the unitary transformation, let us assume that the sign of two terms
σz

i−1σ
x
i σ

z
i+1 and σz

j−1σ
x
j σ

z
j+1 are both −1 where 1 ≤ i < j ≤ L.21 There is always a unitary

transformation which can cancel these two −1 and preserve sign of other terms: If i, j are both
odd (even), the unitary transformation is

∏

i<2k< j σ
x
2k (

∏

i<2k+1< jσ
x
2k+1). If i is odd (even)

and j is even (odd), the unitary transformation is
∏

i<2k<L σ
x
2k

∏

1≤2k+1< j σ
x
2k+1 (

∏

j<2k<L σ
x
2k

∏

1≤2k+1<i σ
x
2k+1) which can do the job only when L ∈ 2Z+1. Since the number of terms with

−1 sign is even, we can cancel these −1s step by step and obtain the standard Levin-Gu model
at last.

When L ∈ 2Z, we apply the unitary transformation (B.14) and (B.16) on the first two
terms and then obtain XX chain with several minus coupling constants:

Hµ1,µ2 = −
L
∑

j=1

(µ1
j, j+1σ

z
jσ

z
j+1 +µ

2
j, j+1σ

x
j σ

x
j+1) , (C.2)

where µ1 and µ2 can be ±1. They are decided by the configuration of τx but we don’t need to
know the exact relationship. We only use the fact that l + l ′ ∈ 2Z where l and l ′ are number
of −1 in µ1 and µ2.22

We note that the spectrum of Hamiltonian (C.2) only depends on l, l ′ mod 2, and is in-
dependent of the configuration of µ1 and µ2. The reason is as follows. The sites of −1 in µ1

can be labeled as µ1
j1, j1+1, µ1

j2, j2+1, · · · µ1
jl , jl+1 where j1 < j2 < · · ·< jl . After the unitary trans-

formation
∏ ji+1

k= ji+1σ
x
k , µ ji , ji+1 , µ ji+1, ji+1+1 will become 1 without changing spectrum. Similar

for µ2.
As l + l ′ are even, there are only two equivalence classes for spectrum: l = l ′ = 0

and l = l ′ = 1. The first case is XX chain with PBC. In the second case, we can choose
µ1

L,1 = µ
2
L,1 = −1 without loss of generality. This is XX chain with the ABC. The splitting be-

tween ground state energy of these two boundary conditions is order of 1/L which completes
our proof.

Besides, one can apply this argument to the Z4 igSPT with TBC and OBC as well. Generally,
the ground state sector is Hilbert subspace which has eigenvalue 1 of the third term in the
Hamiltonian (45), (47) and (50).

D Edge Degeneracy of gSPT and igSPT

In section 2.3.3 and 3.2.3, we discussed the degeneracy of gSPT and igSPT under OBC by
studying the dimension of irreducible representation of operators commuting with the Hamil-
tonian. In this appendix, we rederive the degeneracy under OBC in an alternative way. We first
undecorate the domain wall which maps the gSPT and igSPT to the Ising and Levin-Gu models
under OBC respectively, and then use the results in appendix B to rederive the degeneracy.

21We only focus on the “fundamental domain” where 1≤ i < j ≤ L and do not use periodicity i ∼ i + L here.
22 l + l ′ ∈ 2Z can be seen from the transformation (B.14) and (B.16), which maps σx

2 j−1 → σz
2 j−1σ

z
2 j ,

σx
2 j → σ

x
2 j−1σ

x
2 j , −σ

z
2 j−1σ

x
2 jσ

z
2 j+1→ σ

x
2 jσ

x
2 j+1 and −σz

2 jσ
x
2 j+1σ

z
2 j+2→ σ

z
2 jσ

z
2 j+1.
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D.1 Edge Degeneracy of Z2 ×Z2 gSPT

In section 2.3.3, we studied the Z2 ×Z2 gSPT under OBC, with the Hamiltonian (22),

HOBC
gSPT = −

L−1
∑

i=1

�

σz
i τ

x
i+ 1

2
σz

i+1 +σ
z
iσ

z
i+1

�

−
L
∑

i=2

τz
i− 1

2
σx

i τ
z
i+ 1

2
. (D.1)

After UDW transformation, the Hamiltonian is given by

UDW HOBC
gSPTU†

DW = −
L−1
∑

i=1

�

τx
i+ 1

2
+σz

iσ
z
i+1

�

−
L
∑

i=2

σx
i . (D.2)

τL+ 1
2

decouples from the Hamiltonian which gives two ground state degeneracy. The σz
1 com-

mutes with Hamiltonian which gives two fixed boundary conditions on the left end and the
right end is free boundary condition. Therefore we have four exact ground states. But this is
unstable under symmetric perturbations as noted in section 2.3.3. We can add the boundary
term (25) which becomes

−σz
Lτ

x
L+ 1

2
, (D.3)

after conjugated by UDW , i.e. domain wall undecoration. Now τx
L+ 1

2
no longer decouples,

which lifts degeneracy due to free boundary condition on the right, and ground state degen-
eracy reduces to two.

D.2 Edge degeneracy of Z4 igSPT

In section 3.2.3, we studied the Z4 igSPT under OBC, with the Hamiltonian (50)

HOBC
igSPT = −

L
∑

i=2

�

τz
i− 1

2
σx

i τ
z
i+ 1

2
+τy

i− 1
2
σx

i τ
y

i+ 1
2

�

−
L−1
∑

i=1

σz
i τ

x
i+ 1

2
σz

i+1 . (D.4)

After undecorating the domain wall, we obtain the Levin-Gu model under OBC

UDW HOBC
igSPTU†

DW = −
L−1
∑

i=1

τx
i+ 1

2
−

L−1
∑

i=2

�

σx
i −σ

z
i−1τ

x
i− 1

2
σx

i τ
x
i+ 1

2
σz

i+1

�

−
�

σx
L −σ

z
L−1τ

x
L− 1

2
σx

Lτ
x
L+ 1

2

�

.

(D.5)
The ground state should be the eigenstate of τx

i− 1
2

(i < L + 1) with eigenvalue 1. The low

energy effective Hamiltonian is:

UDW HOBC
igSPTU†

DW

�

�

�

low
= −

L−1
∑

i=2

�

σx
i −σ

z
i−1σ

x
i σ

z
i+1

�

−
�

σx
L −σ

z
L−1σ

x
Lτ

x
L+ 1

2

�

. (D.6)

Since τx
L+ 1

2
commute with effective Hamiltonian, we can redefine τx

L+ 1
2

as σz
L+1 and (D.6)

becomes (B.24) with system size L + 1. We thus conclude that when L ∈ 2Z+ 1, the ground
state degeneracy is four and when L ∈ 2Z the ground state degeneracy is two.

E ZT4 ×Z2 igSPT

In this section we discuss another example of igSPT which respects the ZT4 × Z2 symmetries.
We will also discuss the PBC, TBC and OBC.
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E.1 Lattice Hamiltonian

Let us assign three spin-1
2s τ,σ and µ per unit cell and the Hamiltonian is:

HZT4×Z2
=
∑

j

�

µz
jτ

x
j+ 1

2
µz

j+1 +σ
z
jµ

z
jτ

x
j+ 1

2
µz

j+1σ
z
j+1 +σ

x
j µ

x
j +σ

x
j

�

−
∑

j

τz
j− 1

2
µx

j τ
z
j+ 1

2
. (E.1)

This Hamiltonian respects the following symmetry:

ZT4 : UT ≡
∏

j

�1+µx
j

2
σx

j +
1−µx

j

2
iσ y

j

�

K , U2
T =

∏

j

µx
j , (E.2)

Zτ2 : Uτ ≡
∏

j

τx
j , (E.3)

where T stands for time reversal, and K is the complex conjugation.
To see that (E.1) is a Z2 × ZT4 igSPT, we show that it can be obtained by starting with a

Zτ2 ×Z
T
2 anomalous critical theory, and decorating the Zτ2 domain wall by 1d Zµ2 gapped SPT,

where Zµ2 is generated by U2
T. Let us apply UDW of τ and µ on both the Hamiltonian (E.1) and

the symmetry operators (E.2) and (E.3).

UDW UTU
†
DW =

∏

j

 1+µx
j τ

z
j− 1

2
τz

j+ 1
2

2
σx

j +
1−µx

j τ
z
j− 1

2
τz

j+ 1
2

2
iσ y

j

!

K , (E.4)

UDW UτU†
DW = Uτ , (E.5)

UDW HZT4×Z2
U†

DW =
∑

j

(τx
j+ 1

2
+σz

jτ
x
j+ 1

2
σz

j+1 +σ
x
j +τ

z
j− 1

2
σx

j µ
x
j τ

z
j+ 1

2
)−

∑

j

µx
j . (E.6)

In (E.6), since the last term commutes with all other terms, the energy eigenstates are eigen-
states of µx

j . Similar to the proof in the Z4 igSPT, we can consider the spectrum of first four
terms in the Hamiltonian (E.6) with different configurations of µx . These four terms can be
mapped to an XX chain by applying the unitary transformations (B.14):

H({µx
j }) =

L
∑

j=1

σz
jτ

z
j+ 1

2
+τz

j+ 1
2
σz

j+1 +σ
x
j τ

x
j+ 1

2
+τx

j− 1
2
σx

j µ
x
j . (E.7)

According to the proof in appendix C, we know the spectrum of the (E.7) is invariant if we
flip even number of µx . Thus, the spectrum of first four terms in (E.6) is that of XX chain
with boundary condition: σx

L+ j = ±σ
x
j and σz

L+ j = σ
z
j , where we take ± sign if there are

even or odd number of µx = −1 respectively. After taking the continuum limit (B.19), these
two boundary conditions are PBC and ABC for θ respectively. The splitting between the corre-
sponding ground state energy is also of order 1/L. Thus in the low energy state sector, one can
find that µx

j = 1. The effective Hamiltonian and symmetry are those of the boundary model
of 2+1d ZT2 ×Z2 SPT [7]:

UDW UTU
†
DW

�

�

low =
∏

j

 1+τz
j− 1

2
τz

j+ 1
2

2
σx

j +
1−τz

j− 1
2
τz

j+ 1
2

2
iσ y

j

!

K , (E.8)

UDW HZT4×Z2
U†

DW

�

�

�

low
=
∑

j

�

τx
j+ 1

2
+σz

jτ
x
j+ 1

2
σz

j+1 +σ
x
j +τ

z
j− 1

2
σx

j τ
z
j+ 1

2

�

. (E.9)

Moreover the proof on the equivalence between ground state sector and XX chain can be
generalized to twisted boundary conditions and open boundary conditions. We conclude that
the ground state sector of different boundary conditions is always Hibert subspace which has
eigenvalue 1 of the last term in the Hamiltonian (E.10) and (E.14).
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E.2 Charge of twisted boundary condition

We show that the charge of the ground state under TBC is nontrivial, implying that (E.1) is a
nontrivial igSPT. Let us start by twisting the boundary condition using the Zτ2 symmetry, which
we denote as Zτ2 -TBC. The Hamiltonian (E.1) becomes

H
Zτ2
ZT4×Z2

=
L
∑

j=1

�

µz
jτ

x
j+ 1

2
µz

j+1 +σ
z
jµ

z
jτ

x
j+ 1

2
µz

j+1σ
z
j+1 +σ

x
j µ

x
j +σ

x
j

�

−

 

L−1
∑

j=1

τz
j− 1

2
µx

j τ
z
j+ 1

2
−τz

L− 1
2
µx

j τ
z
1
2

!

.

The ground state satisfies

τz
j− 1

2
µx

j τ
z
j 1

2
= 1 (0< j < L) , τz

L− 1
2
µx

j τ
z
1
2
= −1 . (E.10)

which implies that the ground state has a nontrivial Zµ2 charge

L
∏

j=1

µx
j |GS〉Z

τ
2

tw = −|GS〉Z
τ
2

tw . (E.11)

On the other hand, if we twist by Zµ2 symmetry, the SPT criticality Hamiltonian becomes

H
Zµ2
ZT4×Z2

=
L−1
∑

j=1

�

µz
jτ

x
j+ 1

2
µz

j+1 +σ
z
jµ

z
jτ

x
j+ 1

2
µz

j+1σ
z
j+1

�

+
L
∑

j=1

�

σx
j µ

x
j +σ

x
j −τ

z
j− 1

2
µx

j τ
z
j+ 1

2

�

−µz
Lτ

x
1
2
µz

1 −σ
z
Lµ

z
Lτ

x
1
2
µz

1σ
z
1

= τz
1
2
HZT4×Z2

τz
1
2

. (E.12)

It is straightforward to check that |GS〉Z
µ
2

tw has Zτ2 charge 1:

Uτ |GS〉Z
µ
2

tw = Uττ
z
1
2
U†
τUτ |GS〉= −τz

1
2
|GS〉= −|GS〉Z

µ
2

tw . (E.13)

E.3 Open boundary condition

To consider OBC, we truncate the spin chain so that σ-spins and µ-spins live on i = 1, . . . , L,
and τ-spins live on i = 3

2 , . . . , L + 1
2 . We only keep the terms in (E.1) that are fully supported

on the spin chain. The Hamiltonian is

HOBC
ZT4×Z2

=
L−1
∑

j=1

µz
jτ

x
j+ 1

2
µz

j+1 +σ
z
jµ

z
jτ

x
j+ 1

2
µz

j+1σ
z
j+1 +

L
∑

j=1

σx
j µ

x
j +σ

x
j −

L
∑

j=2

τz
j− 1

2
µx

j τ
z
j+ 1

2
. (E.14)

There are two boundary operators µx
1τ

z
3
2

and τz
L+ 1

2
commuting with Hamiltonian. Since both

of them anticommute with Uτ, there must be at least two exactly degenerate ground states of
(E.14).

The exact ground state degeneracy can be determined by undecorating the domain wall,
by applying UDW on (E.14):

UDW HOBC
ZT4×Z2

U†
DW =

L−1
∑

j=1

τx
j+ 1

2
+σz

jτ
x
j+ 1

2
σz

j+1 +
L
∑

j=1

σx
j +

L
∑

j=2

τz
j− 1

2
σx

j µ
x
j τ

z
j+ 1

2
+σx

1µ
x
1τ

z
3
2
−

L
∑

j=2

µx
j ,
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Figure 5: ZΓ4 charge of the ground state under PBC, relative ZΓ4 charge of the ground
state under ZA

2 TBC, relative ZA
2 charges of the ground state under ZΓ4 TBC, and the

gap between the ground state and first excited state under PBC and two TBC’s. The
horizontal axis is the perturbation strength (52). The system size is L = 11.

and the two boundary operators becomes µx
1 and τz

L+ 1
2
. In the ground state sector µx

j = 1 for

2≤ j ≤ L. The Hamiltonian in the low energy then simplifies to

UDW HOBC
ZT4×Z2

U†
DW

�

�

�

low
=

L−1
∑

j=1

(τx
j+ 1

2
+σz

jτ
x
j+ 1

2
σz

j+1)+
L
∑

j=1

σx
j +

L
∑

j=2

τz
j− 1

2
σx

j τ
z
j+ 1

2
+σx

1µ
x
1τ

z
3
2

. (E.15)

Under the unitary transformation (B.14), this Hamiltonian is mapped to

U
�

UDW HOBC
ZT4×Z2

U†
DW

�

�

�

low

�

U† =
L−1
∑

j=1

σz
jτ

z
j+ 1

2
+τz

j+ 1
2
σz

j+1 +
L
∑

j=1

σx
j τ

x
j+ 1

2
+

L
∑

j=2

τx
j− 1

2
σx

j +σ
x
1µ

x
1 ,

(E.16)
and the two boundary operators become µx

1 and τx
L+ 1

2
. The Hamiltonian (E.16) can be under-

stood as an XX chain on an open chain with size 2L and one spin-1
2 per unit cell.

Similar to the Z4 igSPT, we can redefine µx
1 as τx

1
2
. After taking the continuum limit (B.19),

σx and τx are mapped to sinθ . Thus µx
1 = ±1 and τx

L+ 1
2
= ±1 correspond to the boundary

conditions sinθ (x = 0/L) = ±1 which implies θ (x = 0/L) = ±π2 . There is an energy splitting
between the ground states of two boundary conditions

E(π2 ,−π2 )/(−
π
2 ,π2 )
− E(π2 ,π2 )/(−

π
2 ,−π2 )∝

1
L

. (E.17)

In summary, the ground state degeneracy under OBC is two.

F Small-scale numerical study for igSPT under perturbation

In this appendix, we perform the exact diagonalization numerically, and record the lowest
h where the charges jump in table 4. We also plot the charges and the gaps under various
boundary conditions for L = 11 (22 spin-1

2 ’s) in figure 5.
From the plots in figure 5, we find that the ZΓ4 charge under PBC and both relative charges

under TBC’s are unchanged until h reaches the first critical value hc ≃ 0.28. This first transi-
tion is probed by the charge jump under PBC, where the finite size gap closes simultaneously.
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Table 4: Lowest h where the symmetry charge of the ground state under three bound-
ary conditions jumps, for L = 4,5, 7,8, 9,11.

L ZΓ4 Charge under PBC ZΓ4 Charge under ZA
2-TBC ZA

2 Charge under ZΓ4-TBC

4 1.01 1.01 1.01

5 1.30 1.30 0.50

7 0.44 1.32 0.98

8 0.70 0.70 0.70

9 0.86 0.86 0.86

11 0.28 1.12 1.01

When h further passes hc , the system goes through a sequence of transitions, some are probed
by the ZA

2-TBC, some are probed by the ZΓ4-TBC and the others are probed by PBC. When h is
sufficiently large (h > 2), the system enters into a trivially gapped phase, and all charges be-
come trivial, which is consistent with the phase diagram by the Kennedy-Tasaki transformation
in [33].

For different system sizes, for instance L = 5 as shown in table 4, the first transition can
be probed by the relative charge under TBC instead. Hence it is important to examine all the
boundary conditions and find the minimal hc where the charge jumps. We plot the minimal
hc for each L in figure 6.

The above discussion seems to suggest that igSPT is more stable than the gSPT. Let us
however make a cautionary remark. As observed in figure 6, the critical perturbation strength
hc depends on the system size L. At this point with small-scale ED study, we are unable to
conclude whether the transition away from the igSPT at L→∞ happens at immediately after
h= 0 or at a finite hc .

However, the analytical result by the Kennedy-Tasaki transformation shows that where hc
converges to a finite value in the thermodynamical limit [33]. It would also be interesting to
study more sophisticated perturbation than (52) which can drive the system to the trivially
gapped phase, and discuss the transition for small perturbation strength.
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{8, 0.7}

{9, 0.86}

{11, 0.28}

4 6 8 10 12
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Figure 6: System size L dependence of the first transition out of the ZΓ4 igSPT.
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