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Abstract

Slow fluctuations of Overhauser fields are an important source for decoherence in spin
qubits hosted in III-V semiconductor quantum dots. Focusing on the effect of the field
gradient on double-dot singlet–triplet qubits, we present two adaptive Bayesian schemes
to estimate the magnitude of the gradient by a series of free induction decay experiments.
We concentrate on reducing the computational overhead, with a real-time implementa-
tion of the schemes in mind. We show how it is possible to achieve a significant im-
provement of estimation accuracy compared to more traditional estimation methods.
We include an analysis of the effects of dephasing and the drift of the gradient itself.
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1 Introduction

Spin-based semiconductor devices offer several very useful properties for hosting qubits, in-
cluding their small size, long relaxation times, fast gate-operation times, and a good potential
for scalability based on their similarity to conventional electronic devices [1–3]. Initially, re-
search focused on type III-V semiconductors, and particularly GaAs, because there is no valley
degeneracy in the conduction band and heterostructure engineering was further developed
than for other materials. However, soon it was realized that for III-V semiconductors hyperfine
coupling of the localized spins to the nuclear spin baths cannot be avoided, and the resulting
randomly fluctuating Overhauser fields limit such devices to very short spin dephasing times
T ∗2 ∼ 20 ns [4–6]. Indeed, it was the eventual development of devices based on materials that
can be isotopically purified to be almost nuclear-spin-free, such as Si and Ge [7–13], that pro-
pelled a recent leap in performance for spin qubits, providing high fidelity and long coherence
times which allowed for 4- and 6-qubit quantum logic with spin qubits [14,15].

The harmful Overhauser field fluctuations are, however, very slow (typically on the scale of
seconds), and an alternative approach could thus be to monitor these fluctuations in real time
and adjust qubit control accordingly: accurate knowledge about the Overhauser fields can be
used to significantly extend the qubit coherence time [16–18]. Furthermore, while universal
control of spin qubits in materials with weak spin–orbit coupling has typically relied on the
use of micromagnets [15,19–21] or microwave striplines [5,22,23], the Overhauser fields can
also be used as control axes, as long as they are known within sufficient uncertainty [24,25].

The development of fast and reliable protocols for real-time estimation of Overhauser fields
could thus lift some of the main limitations of spin qubits realized in type III-V semiconduc-
tor devices, but also allow the use of Si and Ge devices without the costly process of isotopic
purification. Besides, such protocols can also be used to estimate other slowly fluctuating
Hamiltonian parameters, such as the low-frequency components of charge noise [26], and
thus eliminate their contribution to qubit decoherence. Although thus relevant in a much
broader sense, we will focus here on Hamiltonian parameter estimation in the context of
fluctuating Overhauser fields. More specifically, we will consider double-quantum-dot-based
singlet–triplet qubits, where the Overhauser field gradient over the two dots ∆Bz is the most
important fluctuating parameter to be estimated.

One powerful tool for quantum sensing and estimation is provided by Bayesian statis-
tics [27], which can be used to optimize estimation procedures on-the-fly. Bayesian estima-
tion schemes have already been used for estimating the Overhauser fields in GaAs-based spin
qubits [17,18,25], although so far only in a non-adaptive way where the whole estimation pro-
cedure, based on a series of single-shot free induction decay experiments, is predetermined.
Inspired by the availability of field-programmable gate arrays (FPGAs) which perform real-time
data processing and control feedback [28–32], we investigate the feasibility of implementing
fast and efficient adaptive Bayesian estimation of ∆Bz in a singlet–triplet spin qubit, keeping
the state-of-the-art experimental equipment in mind as a boundary condition, both in terms
of the limits on calculation complexity and information storage capacity.

Ideally, an adaptive Bayesian estimation scheme uses global optimization, in the sense
of always considering all possible future measurements when deciding for the next set of
parameters. Global optimization strategies are, however, hard to implement in an efficient
way, and one thus usually reverts to a so-called greedy strategy, where only the optimiza-
tion of the next single-shot experiment is considered. Although thus suboptimal, such greedy
strategies have been shown to yield an exponential scaling of the estimation error as a func-
tion of the number of single-shot experiments [33, 34]. Exact implementation of the optimal
greedy adaptive scheme is, however, still computationally too intensive for real-time feedback
in most instances, and instead there are typically two options: (i) approximate the distribu-
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tion of possible estimates such that simple parametric solutions are possible [34, 35], or (ii)
use Monte-Carlo sampling and approximate the optimal experiment to perform using some
heuristic [36–41]. Otherwise, simple analytical solutions are only attainable for specific prob-
lems [42,43] or when the space of experimental design is sufficiently constrained [44].

In this paper, we focus on the first option, where∆Bz is estimated based on the approxima-
tion that its probability distribution remains Gaussian throughout the whole procedure [34],
the advantage being that this only requires working with two parameters (the mean and vari-
ance of the distribution). The main challenge with this approach is to fit the posterior distri-
bution after each measurement to a Gaussian in a computationally efficient way. We propose
two methods that are simple enough to implement on a state-of-the-art FPGA and improve on
existing schemes in that they allow for any Gaussian prior, including priors with small mean
compared to their standard deviation. We first present a scheme where the fitting is based on
the method of moments, for which we derive an efficient implementation that only relies on
few straightforward calculations, paying particular attention to the problem of how to handle
distributions of ∆Bz that are centered around zero [34]. Secondly, we explore the possibility
of using a neural network (NN) to replace the parametric update equations for the Gaussian
mean and variance, as it has been shown that NNs can be applied for tasks like finding the op-
timal design of experiments [45], updating the parameter distribution [46], and predicting the
Hamiltonian at future times [47]. Finally, we show how the Gaussian approximation can also
allow straightforwardly to account for the Overhauser-field dynamics in between estimations,
thus adding a component of prediction to the schemes.

The structure of the rest of this paper is as follows. In Section 2 we introduce the basic
physics of singlet–triplet qubits, focusing on the role of the Overhauser gradient, and Sec-
tion 3 introduces the rationale behind Bayesian estimation and presents the specifics of the
two schemes we propose. Then, in Section 4.1, we present numerical simulations of the two
estimation schemes, benchmarking them against a more standard non-adaptive approach, both
with and without a finite phenomenological dephasing time T . In Section 4.2 we analyze how
a slow drift of the parameter to be estimated limits the number of useful measurements that can
be performed, and how this can be related to the dephasing time T . Finally, in Section 4.3 we
consider how the evolution of a Gaussian distribution in the Fokker–Planck formalism makes
our schemes predictive, allowing for fewer measurements in future estimations.

2 System dynamics

Below we will discuss Bayesian estimation protocols for both static and slowly fluctuating
Hamiltonian parameters, in relatively general terms. The specific system we will have in mind
throughout is a two-electron singlet–triplet spin qubit hosted in a double quantum dot defined
in a III–V-based semiconductor heterostructure. In this Section, we will highlight the relevant
part of the physics of this system.

Singlet–triplet qubits are usually hosted in double quantum dots tuned to a (1, 1) charge
configuration. In that regime, the gate-tunable exchange interaction J(ε) controls the qubit
splitting, and a randomly fluctuating Overhauser field gradient drives rotations around the
x-axis on the Bloch sphere. The two-level qubit Hamiltonian can be approximated as

H =
ħhω(t)

2
σx +

J(ε)
2
σz , (1)

where σx ,z are Pauli matrices in the qubit basis {|0〉 , |1〉} and ħhω(t) = gµB[B(1)z (t)− B(2)z (t)]
in terms of the fluctuating Overhauser fields B(1,2)(t) on the two dots, with g the effective
electronic g-factor and µB the Bohr magneton (see Fig 1). In principle, the estimation scheme
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Figure 1: Due to the randomly fluctuating nuclear spins of the host material, the
Overhauser fields acting on the two electron spins are unequal and slowly fluctuating.
We model the dynamics of these fields as a drift–diffusion process, driven by rapid
randomly occurring nuclear spin-flip processes.

presented below can be used to find the qubit frequency Ω(ε, t) =
Æ

ω(t)2 + J(ε)2/ħh2 for any
detuning ε. However, for simplicity we will concentrate on the case where all free qubit evolu-
tion takes place deep in the (1,1) region, where J(ε)≈ 0 and we thus estimate Ω(t)≈ |ω(t)|.
The tunable exchange splitting is only made non-zero for initialization and readout purposes
in this case.

We assume that the two Overhauser fields and thus the field gradient ω(t) follow an OU
process [48]. The slow fluctuations of the effective fields arise from averaging the nuclear spin
polarization dynamics of the typically 105–106 nuclei that surround the electrons localized in
the quantum dots, as illustrated in Fig 1. The dynamics of the OU process are compatible with
the microscopic picture of a classical birth–death process, where random nuclear spin flips oc-
cur with a fixed rate (picturing, for simplicity, the nuclei to be Ising spins). This results in a net
diffusion of ω(t) with an entropic drift towards zero. Working with a probability distribution
forω, the dynamics of such a drift–diffusion process can be approximated by a Fokker–Planck
equation. For an initial probability distribution that is Gaussian, with average µ(0) and vari-
ance σ(0)2, solving the Fokker–Planck equation yields the time-dependent distribution

p(ω, t) =
1
p

2πσ(t)2
exp

�

−
[ω−µ(t)]2

2σ(t)2

�

, (2)

which is a Gaussian distribution with a time-dependent mean µ(t) = µ(0)e−Γ t and variance
σ(t)2 = σ2

K + [σ(0)
2 −σ2

K]e
−2Γ t . The parameters σK and Γ follow from the drift and diffu-

sion constants and can be interpreted as the steady-state r.m.s. value of the Overhauser field
gradient (σK ∼ 50 MHz typically) and the slow relaxation rate of nuclear spin polarization
(Γ ∼ 0.2 Hz typically). We note that the inverse, Tc = Γ−1 ∼ 5 s, sets the correlation time scale
of the fluctuations of ω, which defines the scale of the time window within which a single
estimation of ω(t) is useful since the value would have drifted enough so that all potential
information gain is lost.

3 Adaptive Bayesian estimation

We assume that the tool we have available for probing the Overhauser gradient is so-called free
induction decay (FID) experiments: (i) the qubit is initialized in the basis state |0〉 (at the north
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pole of the Bloch sphere), then (ii) it is left to precess freely around the field ω(t) that points
along the x-axis on the Bloch sphere, for a time τ, after which (iii) the qubit state is projectively
measured in the qubit basis {|0〉 , |1〉}, i.e., along the Bloch sphere’s z-axis. The outcome (0 or
1) of every such experiment contains information about the precession frequency ω(t), and
the goal is to find an optimal set of FID experiments (a set of “waiting times” {τn}, with n the
index tracking the number of FID experiments) from which accurate knowledge about ω(t)
can be distilled as efficiently as possible.

For this purpose, we use a Bayesian estimation approach where our knowledge aboutω(t)
is encoded in a probability distribution p(ω), which gets updated after each FID experiment
according to Bayes’ rule,

pn(ω|dn,τn, T )∝ pn−1(ω)p(dn|ω,τn, T ) . (3)

Here, pn−1(ω) is the prior (old) distribution of ω and pn(ω|dn,τn, T ) the posterior (new)
distribution, which is a compromise between our prior knowledge ofω and the new data point
dn obtained, taking into account τn as well as the model parameter T (see below) [49]. In our
case, the data points are the binary measurement outcomes dn ∈ {0,1} of the FID experiment,
labeling the two qubit states. The so-called likelihood function—the probability to measure d
for given ω, τ, and T—is given by the Born rule

p(d|ω,τ, T ) =
1
2

�

1+ (−1)d e−τ
2/T2

cos (ωτ)
�

, (4)

where we included a phenomenological “dephasing time” T that limits the coherence of a
single-shot measurement and subsequently defines the longest useful waiting time τn for each
FID experiment. Indeed, for τ ≳ T the likelihood function quickly reduces to p = 1

2 for both
d, independent of the other parameters, meaning that no information can be gained from the
experiment. In many cases, the appropriate value to insert for T can also be estimated from
experiments in a Bayesian fashion [45,50].

Before the first FID experiment is performed, i.e., when we have no information about ω
at all, we assume a Gaussian probability distribution,

p0(ω) =
1
q

2πσ2
K

exp

�

−
ω2

2σ2
K

�

, (5)

corresponding to the steady-state limit of Eq. (2). We then see from Eqs. (3,4) that, indepen-
dently of the choice of {τn} and T and of the measurement outcomes dn, every subsequent
iteration of the probability distribution will be symmetric inω, i.e., pn(ω) = pn(−ω). This is a
consequence of the projective nature of the measurements; the direction of precession around
the x-axis on the Bloch sphere is impossible to distinguish with FID experiments such as those
performed here. In this sense, the best we can achieve is an accurate estimate of |ω|. How-
ever, we note that if it is possible to control the cosine phase in Eq. (4) it would be possible to
distinguish the sign of ω.

We now turn to the question how to choose the best set of waiting times {τn}. An im-
portant feature of Bayesian estimation is that it allows for “on-the-fly” optimization of free
parameters: For each new experiment an optimal time τn can be computed, based on the cur-
rent distribution function, in order to gain the maximum amount of information aboutω [51].
There are several ways to quantify such information gain, the change in information entropy
being the canonical choice [52]; yet in order to make calculations feasible to implement on an
FPGA in real time, it would be easier to consider a simple quantity such as the variance of the
distribution, using its degree of minimization during the estimation procedure as a measure
for success.
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Figure 2: The Bayesian estimation cycle adapted here: To a bimodal Gaussian prior
we apply Bayes’ rule for many different τ and both potential outcomes d ∈ {0,1}.
All resulting posteriors are fitted to a bimodal Gaussian again and the τ yielding
the lowest posterior expectation value for σ is selected. Finally, the experiment is
performed, which determines the new prior.

However, since our distribution function is always symmetric in ω, a straightforwardly
calculated variance of p(ω)will in general not be a good measure for the uncertainty in |ω|. We
address this problem with the next simplification we make: Throughout the whole estimation
procedure, we will always approximate posterior distributions p(ω|d,τ, T ) with a bimodal
Gaussian,

q(ω,µ,σ) =
1

p
2πσ2

exp

�

−
ω2 +µ2

2σ2

�

cosh
�ωµ

σ2

�

, (6)

where ±µ and σ2 parameterize the mean and variance of the two Gaussian peaks, respec-
tively, thus taking care of the indistinguishability of the sign of ω [34]. In the context of
real-time Overhauser gradient estimation, this approximation has several important advan-
tages: (i) analytic expressions of the τn-dependent posterior distributions are straightforward
to evaluate, possibly allowing for efficient optimization of τn on an FPGA, (ii) the distribu-
tion function is fully characterized by only two parameters, µ and σ, throughout the whole
estimation procedure, which can save significant memory as compared to storing the actual
distribution function pn(ω), and (iii) incorporating the (slow) dynamics of the Overhauser
gradient is straightforward by implementing the time-dependence of µ and σ as mentioned
below Eq. (2).

Returning to the question how to choose the {τn}, we see that a natural choice is to pick
the waiting times in a way that minimizes σ in the Gaussian approximation of the distribution
function. Ideally, one follows an adaptive strategy that aims at every iteration for a path that
results in a globally optimal solution, i.e., a minimal expected σ for the final distribution after
the last iteration. However, since this is difficult in practice [51], one must typically settle for
a “greedy” approach where the optimization is only considering the next experiment, which is
what we will do here.

We thus consider the estimation procedure sketched in Fig 2, which includes the following
steps:

1. The prior pn−1(ω) is forced to always be a bimodal Gaussian distribution.

2. Use Eq. (3) to calculate pn(ω|dn,τ, T ) for all relevant τ and for both potential outcomes
dn ∈ {0, 1} (blue and red curves).

3. Fit both calculated posteriors at each candidate τ to the bimodal Gaussian form (dashed
curves).
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4. Select the τ whose fit yields the smallest expected σ2, considering a weighted average
over the two possible measurement outcomes.

5. Perform experiment n with the selected τn; the outcome determines the prior for the
next iteration.

The main remaining question is how to fit the posteriors calculated from Bayes’ rule to a bi-
modal Gaussian distribution in a computationally efficient way. Below we present two different
fitting schemes we investigated.

3.1 Method of moments fit

Fitting a more complicated distribution to a single Gaussian peak is a common approximation
in statistics, and computationally simple fits can be made using for instance Laplace’s approxi-
mation [53] or the method of moments (MM). In our case, as explained above, we will always
have a symmetric distribution function that we want to fit to a bimodal Gaussian, which in
general requires some caution in designing the fitting procedure.

In this section, we will explore the use of the MM to fit our posterior distributions to
Eq. (6), as the oscillating nature makes Laplace’s approximation unsuited in this case since it
relies on the curvature of the distribution mode. The simplest application of the MM amounts
to finding the bimodal Gaussian distribution whose two lowest moments are equal to the
corresponding moments of the distribution one wants to fit. The fact that our distributions are
always symmetric causes all odd moments to vanish, which means that the moments we focus
on are the second and fourth.

The raw moments 〈ω2〉n and 〈ω4〉n of the posterior distribution for the two possible mea-
surement outcomes dn ∈ {0,1} follow from calculating

〈ωr〉n =
∫ ∞

−∞
dωωr pn(ω|dn,τ, T ) , (7)

where pn(ω|dn,τ, T ) is found using Bayes’ rule (3). When the prior distribution pn−1(ω) is
a bimodal Gaussian distribution, with parameters µn−1 and σn−1, analytic expressions can be
found for 〈ω2〉n and 〈ω4〉n, due to the simple form of the likelihood function [see Eq. (4)],

〈ω2〉n =
ℜ
�

fn−1(0) + (−1)dn fn−1(τ)
	

ℜ
�

nn−1(0) + (−1)dn nn−1(τ)
	 , (8)

〈ω4〉n =
ℜ
�

gn−1(0) + (−1)dn gn−1(τ)
	

ℜ
�

nn−1(0) + (−1)dn nn−1(τ)
	 , (9)

with

fn(t) = e−
1
2α

2
n t2
(ζ2

n +σ
2
n)e

iµn t , (10)

gn(t) = e−
1
2α

2
n t2
(ζ4

n + 6ζ2
nσ

2
n + 3σ2

n)e
iµn t , (11)

nn(t) = e−
1
2α

2
n t2

eiµn t , (12)

where ζn = µn + iσ2
n t and α2

n = σ
2
n + 2T−2. We then pick the bimodal Gaussian that has its

first two non-zero raw moments closest to 〈ω2〉n and 〈ω4〉n, from which the fit parameters σ̂2

and µ̂ follow as

[σ̂(dn)
n ]2 = 〈ω2〉n −ℜ

nÇ

1
2

�

3〈ω2〉2n − 〈ω4〉n
�

o

, (13)

µ̂(dn)
n =
Ç

〈ω2〉n − [σ̂
(dn)
n ]2 . (14)
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In these expressions, we discard imaginary contributions, which can arise when the computed
raw moments of the posterior do not adhere to constraints set on the moments of the bimodal
Gaussian, occurring when µ is small compared to σ. Formally speaking, we see that the
calculated value of σ̂2

n becomes complex when the posterior distribution is leptokurtic, which
indeed happens when the contributions at positive and negative ω are not well-separated
anymore. Discarding the imaginary part of σ̂2

n in that case corresponds to approximating the
posterior distribution by a unimodal Gaussian centered at zero. This approach thus resembles a
simplified version of the scheme presented in Ref. [35], where the number of modes in a fitted
multi-modal Gaussian needed to be continuously adjusted based on the weight distribution
over the modes.

As explained above, the fit parameters σ̂2 and µ̂ should in principle be evaluated for each
candidate τ, and the optimal waiting time τn will be the one that minimizes the expected
variance

Edn

�

σ̂2
n

�

=
1
2

��

[σ̂(0)n ]
2 − [σ̂(1)n ]

2
�

e−
1
2α

2
n−1τ

2
cos (µn−1τ) + [σ̂

(0)
n ]

2 + [σ̂(1)n ]
2
	

, (15)

i.e., τn = arg minτEdn
[σ̂2

n]. This quantity is also known as the risk, and is found by multi-
plying the two possible variance outcomes in Eq. 13 by their probability p(d|µn−1,σn−1,τ, T )
of occurring based on our current knowledge (found by integrating the prior multiplied with
Eq. 4 over all ω’s). The fact that we have, via Eqs. (8–15), an explicit expression for Edn

[σ̂2
n]

allows in principle for minimization of the expected variance. However, since this expression
is in general a complicated function of τ with many local minima, analytic minimization is
still challenging and most likely too complex to perform efficiently on an FPGA in real time.
Therefore, we start by investigating the limits of small and large µn−1/σn−1.

For µn−1/σn−1≫ 1 we find

Edn

�

σ̂2
n

�

= σ2
n−1 −

σ4
n−1τ

2 sin(µn−1τ)

eα
2
n−1τ

2 − cos(µn−1τ)
. (16)

This expression displays fast oscillations as a function of τ, its local minima occurring at times
for which µn−1τ = (k +

1
2)π, with k an integer. The oscillations have an envelope function

σ2
n−1(1 − σ

2
n−1τ

2e−α
2
n−1τ

2
) that is minimal for τ = 1/αn−1. In the limit µn−1/σn−1 ≫ 1, the

optimal waiting time τn can thus be taken to be

τn =
��

µn−1

παn−1
−

1
2

¤

+
1
2

�

π

µn−1
, (17)

where ⌊. . . ⌉ denotes rounding off to the nearest integer. This choice of waiting time leads to
an expected variance Edn

�

σ̂2
n

�

≈ σ2
n−1[1− (σ

2
n−1/eα

2
n−1)], cf. Ref. [34].

For the case of µn−1/σn−1≪ 1 we find

Edn

�

σ̂2
n

�

= σ2
n−1 −σ

4
n−1τ

2ℜ

(

∑

η=±1

q

2+ηe
1
2α

2
n−1τ

2

2
p

2e
1
2α

2
n−1τ

2

)

, (18)

which has its global minimum at τ≈1.75/αn−1, where Edn

�

σ̂2
n

�

≈ σ2
n−1[1−0.60(σ2

n−1/α
2
n−1)].

However, we see that if we instead would evaluate the expected variance at τ = 1/αn−1, i.e.,
at the optimal time we found in the large-µn−1 limit, we would find an expected variance of
Edn

�

σ̂2
n

�

≈ σ2
n−1[1− 0.54(σ2

n−1/α
2
n−1)], the improvement in σ̂2 being reduced by only 10%.

We take this as a motivation to consistently aim for τn = 1/αn−1 for the next experiment,
throughout the whole range of µn−1/σn−1.

We will thus always use Eq. (17) for evaluating the new waiting time τn, thus picking
the local minimum closest to τ = 1/αn−1. However, when µn−1 <

1
2πσn−1 (which signals
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that the oscillations as a function of µn−1τ are slower than the τ-dependence of the envelope
function and thus start to become irrelevant, the expected variance ultimately converging to
the µn−1-independent expression that Eq. (18) gives) we take τn = 1/αn−1.

Since the method presented in this section contains several approximations and is based
on a relatively rough fitting technique, it will not always yield truly optimal fit parameters nor
the most effective τn. However, as argued above, we expect the results to always be reason-
ably good and the advantage of the method is that all calculations that need to be done after
each FID experiment [i.e., evaluating Eqs. (13,14,17)] amount to evaluating straightforward
analytic expressions, which can be done with minimal computational overhead.

3.2 KL-divergence fit using a neural network

The problem with MM estimators, while much simpler to calculate than maximum likelihood
estimators, is that they in general are biased and not robust with respect to the samples they
are derived from. An example is the problem we encounter when getting complex-valued
estimators for small µ/σ in the procedure outlined in the previous Section, which is rooted
in the fact that we try to estimate parameters of a bimodal Gaussian using samples from a
distribution that has higher kurtosis than if they actually were drawn from a bimodal Gaus-
sian. This suggests that in the case of small µ/σ, more sophisticated estimators for µ and σ
should ideally be used (such as maximum likelihood estimators), typically requiring a numer-
ical fitting procedure. In the context of our work, however, this might be too complex and
time-consuming for an efficient real-time implementation.

A possible workaround to investigate is training a neural network to perform the fitting
task [54]; indeed, modern FPGAs allow for the implementation of neural networks for on-the-
fly processing of data. Ultimately, the problem boils down to mapping the old parameters µn−1
and σn−1 to the optimal waiting time τn and the resulting updated values of µn and σn for
both outcomes dn = 0, 1, i.e., we want to learn the map

f : {µn−1,σn−1} →
�

µ̂(0)n , σ̂(0)n , µ̂(1)n , σ̂(1)n , τ̂n

	

. (19)

One could thus perform all (computationally costly) numerical fitting beforehand, for a rele-
vant range of parameters µn−1 and σn−1, and then interpolate the map f by teaching it to a
neural network.

Here, we investigate this possibility by performing the numerical fit through minimizing
the KL-divergence between the true posterior pn(ω|dn,τn, T ) and the bimodal Gaussian dis-
tribution (6). Explicitly, this is done by finding

µ(dn)
n ,σ(dn)

n = argmin
µ,σ

∫

dω pn(ω|dn,τn, T ) log
�

pn(ω|dn,τn, T )
q(ω,µn−1,σn−1)

�

. (20)

The reason we use the KL-divergence, rather than a least-squares fit, is twofold: (i) the KL-
divergence is exactly meant as a metric for similarity between two distributions, and (ii) the
least-squares fit empirically results in too narrow distributions that have a near-zero probability
density in areas where the true posterior actually has a significant weight. In the KL-divergence
fit, the second issue is counteracted by the argument of the logarithm, forcing the fitted distri-
bution to cover the true posterior to a greater extent. We emphasize, to avoid confusion, that
we are not using the KL-divergence as a loss function for the training of the neural network,
but rather to calculate the map (19) to be taught.

The data set for training the neural network is generated on a grid of linearly spaced µn−1
and log-spaced σn−1. We numerically calculate the full posterior distribution for each pair of
parameters, for different measurement outcomes d and times τn. A numerical KL-divergence
fit to a bimodal Gaussian as explained above is performed for each combination of inputs, and
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the target value for each feature {µn−1,σn−1} is chosen to be the set
�

µ(0)n ,σ(0)n ,µ(1)n ,σ(1)n ,τn

	

that minimizes the expected variance Edn
[σ2

n] as a function of τn.
For this task, we used a standard feed-forward NN while keeping the storage size of a

typical FPGA as a boundary condition in mind. The network is trained by minimizing the
mean square error (MSE) between predictions and the target values. A subtlety to address is
that because of their role in the estimation scheme, the tolerance for errors in the output of
the NN varies across the map. Indeed: (i) the errors in µ(d)n and σ(d)n must be contained so that
the bimodal Gaussian based on the output parameters still has a significant overlap with the
one based on the target values, i.e., both errors should not exceed the scale of σ(d)n itself, and
(ii) the error in τn must be contained so that the measurement performed using this time is
consistent with the updates for µ(d)n and σ(d)n . In practice, the calculation of a MSE-based loss
function therefore requires including a variable weight for the error, depending on the values
of the inputs µn−1 and σn−1. We implemented this by instead teaching the NN a map where
all five output parameters are renormalized by σn−1, using a plain MSE as the loss function,
and finally retrieving the predictors of interest by applying the inverse transformation to the
output as a post-processing step, see Appendix A for more details.

We found that a sufficiently large neural network is capable of learning an accurate fit over
several orders of magnitude of µ, σ and τ, though its performance in different regions of the
map was not consistent. However, for a truly useful fit, the size of the network needed makes it
unfeasible to implement straightforwardly on the current generation of FPGAs. Therefore we
explored alternative approaches as well, where the NN is only used in the regime of small µ/σ,
where the simple MM fit of Section 3.1 does not work optimally. We found that a significantly
smaller neural network (three layers of 20 neurons each) manages to consistently learn the
map where µ < 2πσ, and we therefore investigated a hybrid approach as alternative to the
MM: we use the MM for µn−1 ≥ 2πσn−1, while using the NN map when µn−1 < 2πσn−1 where
a good fit is achievable (cf. Ref. [34]). Although we believe that the network can be made even
more compact and still give acceptable results, we did not investigate this further.

4 Results

In this Section we analyze the performance of the two estimation schemes outlined above,
and compare them to the more commonly used Bayesian protocol with linearly spaced τn [17,
18, 25]. To do so, we first discuss the experimentally relevant time scales involved in the
estimation. Firstly, the Hamiltonian parameter ω to be estimated can be assumed constant
during the estimation protocol only if the typical time scale associated with its variation, i.e.,
the correlation time Tc ∼ Γ−1, is much longer than the total estimation time Te ≪ Tc . The
estimation time Te includes N repetitions of the FID experiment, each of which involves an
initialization–evolution–readout sequence. During the n-th repetition, the qubit undergoes
free evolution for time τn, while the initialization and readout steps take additional time Texp,
typically of the order Texp ∼ 10 µs. In total, the n-th repetition thus takes Tn = τn + Texp, and
the estimation time can be formally written as Te = N Texp +

∑

nτn. The constraint Te ≪ Tc
thus implicitly sets a limit to the number of available repetitions N (in Section 4.2 we will
investigate this constraint in more detail). Furthermore, the phenomenological dephasing
time T sets the upper bound on the individual evolution times τn ≲ T and thus limits the total
estimation time Te ≲ N(T + Texp) as a result.

In our simulations, we first set Tc → ∞, i.e., we treat ω as a static parameter, and we
compare the estimation methods both in the dephasing-free case and for finite T . Next, we
include the dynamics of ω by using a finite Tc and we analyze their effect on the estimation
procedure, focusing on the relevant example of low-frequency fluctuations of ω (assuming it
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to be the Overhauser field gradient). Finally, we extend this analysis to include an arbitrary
additional separation time Tw that elapses between consecutive runs of the estimation protocol
and thus defines a time window in which the knowledge obtained about ω can be employed
for qubit control with improved coherence. Altogether, this thus presents a complete protocol
for the tracking of a slowly varying Hamiltonian parameter in practice, with small enough
overhead to be implemented on an FPGA in a typical experiment.

4.1 Estimation of a static parameter

In order to benchmark the schemes, we simulate many estimations where the true parameterω
to be estimated is assumed static and is drawn from the normal distribution p0(ω), truncated
here to ω ∈ [−2σK , 2σK] since the NN is only trained to be valid on this domain, and we
use both estimation methods outlined in Section 3. The results following from the MM (red)
and hybrid schemes (green) are shown in Fig 3, where we compare them to a standard non-
adaptive scheme with uniform sampling in time, τn = nπσ−1

K /2, and a uniform initial prior
(blue), as used in [17, 18, 25]. This is the lowest linear sampling rate (longest time spacing)
that ensures no aliasing with the prior width σK , although otherwise no optimization of this
choice has been made. Other non-adaptive sampling strategies could have been chosen; for
instance, it has been long known that exponential sampling can perform better [55]. We have
however limited our comparison to linear sampling due to its prevalence in experiments. The
distributions of deviations of the estimates µ̂n from the true values are plotted as “violin plots”
on a logarithmic scale, where the horizontal bars indicate the median of each distribution.1

Fig 3(a) shows the results as a function of the total number N of FID experiments per estimate,
and Fig 3(b) presents the same results but now as a function of the total estimation time Te,
where we included Texp = 750σ−1

K . The inset in Fig 3(a) shows the total number of parameters
that need to be stored on the FPGA during an estimation procedure, as a function of the number
of experiments each estimate consists of.

As can be seen from Fig 3(a), the median error of both the MM (red) and the hybrid scheme
(green) decreases exponentially with the number of measurements N starting at around 20
measurements, and both schemes clearly outperform the uniform sampling (blue). This ex-
ponential improvement is similar to the one found in Ref. [34], where a two-step process was
employed, consisting of a “warm-up” round of estimates with linearly spaced τn, followed
by an adaptive procedure similar to the one outlined in Section 3.1 where µ/σ was assumed
to have become large enough such that the positive part of the distribution could be fitted
straightforwardly to a single Gaussian peak. Having such a warm-up round means that the
scheme does not take advantage of the fact that the Gaussian approximation only requires
storing two variables since the warm-up needs to store the entire distribution. Also, for very
small ω one would presumably have to use many measurements in the warm-up period.2

Since the two adaptive schemes are optimized in a greedy way, i.e., to yield the maximum
gain per experiment, they show their exponential improvement clearly as a function of N . The
improvement is less pronounced when considering the total experiment time Te rather than
the number of experiments, as illustrated in Fig 3(b). Indeed, greedy schemes typically tend to
require exponentially spaced waiting times, and 50 experiments with such an adaptive scheme
will thus take significantly longer than the same number of linearly spaced experiments. How-
ever, since the experimental overhead time Texp ∼ 10 µs needed for initialization and readout

1The reason for plotting the median rather than the mean is that the latter will be skewed to deceivingly large
values due to the occurrence of few outliers where the estimation fails [56].

2Asymptotically, all of the adaptive optimization schemes mentioned implement a quantum binary search algo-
rithm where the binary choices relate to the measurement outcomes d = 0 and d = 1. Each outcome results in a
different posterior, choosing which side of the prior’s mean it centres on, giving a factor 1−e−1 ≈ 0.63 improvement
in the variance at each step, cf. Eq. (16).
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Figure 3: (a) Violin plots of the logarithm of the absolute estimation errors of 104

simulations after N single-shot measurements with linear τn (blue) and adaptive τn
using the MM scheme (red) or the hybrid scheme (green), where the true frequency
is sampled from the initial prior truncated to ω ∈ [−2σK , 2σK]. Horizontal lines
indicate the median error over the simulations. The inset shows for each of the
schemes how many parameters have to be stored during the estimation. (b) Same
results versus total experiment time Te assuming that initialization and readout take
Texp = 750 σ−1

K .

is typically orders of magnitude longer than σ−1
K ∼ 20 ns, which sets a typical scale for the

waiting times, the number of experiments N and the total time Te often scale similarly for
moderate N , typically up to tens of experiments, see Fig 3. Interestingly, the scheme based on
the MM does not fare very well for small numbers of measurements (up to N ∼ 15), likely due
to the approximation for evaluating the evolution time being suboptimal at small µ/σ. We
also note that, although the NN interpolation of a KL-divergence fit gives an optimal choice for
the waiting times also at small µ/σ, it does not seem to give a significant improvement over
the uniform time spacing during the first few measurements.

The inset of Fig 3(a) gives an indication of the amount of memory needed to perform
the different schemes, as a function of N . The scheme based on the MM (red) only requires
tracking of three parameters (and calculating very few equations). While the hybrid scheme
(green) technically only needs to track seven variables, it does need to store the NN on the
FPGA and to feed data through the network (which in this case consisted of 1005 trainable pa-
rameters). For the uniform time sampling (blue) the computational cost depends on how the
procedure is implemented. Here, we used a Fourier-coefficient representation of the instan-
taneous distribution functions [33], so that the number of parameters increases quadratically
with N and the distribution is represented accurately at all times.3 Comparing the three meth-

3One could alternatively represent the distribution by discretizing ω with a desired resolution or use Monte-
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Figure 4: Violin plots of the logarithm of the absolute estimation errors of 104 simu-
lations after N = 50 single-shot measurements as a function of the phenomenological
dephasing time T . We show results with linearly spaced waiting times τn (blue) and
adaptive τn using the MM scheme (red) or the hybrid scheme (green), where the
true ω is sampled from the initial prior truncated to ω ∈ [−2σK , 2σK]. Horizontal
lines indicate the median error over the simulations.

ods, the computational advantage of the simple MM approach is dramatically clear and, in our
opinion, clearly outweighs the modest loss in accuracy for smaller N .

We now add a finite dephasing time T , which limits the evolution time during each rep-
etition, τn ≲ T . In its simplest form, the phenomenological parameter T corresponds to the
time scale on which the coherent oscillations that are probed in each FID experiment preserve.
As an example, for the case where coherence is limited by qubit relaxation or by leakage to
non-computational states, the parameter would be directly related to the relaxation or leakage
time T ∼ T1. Alternatively, the time scale T can be related to the fluctuations of the parameter
to be estimated itself around its static value; if such fluctuations would consist of uncorrelated
white noise, then the dephasing time is simply T ∼ T2, where T2 is the commonly measured
dephasing time.4

To show how the value of T affects the estimation procedure, we plot in Fig 4 the dis-
tributions of absolute errors after N = 50 FID experiments as a function of the normalized
dephasing time TσK for the same three schemes as in Fig 3, using the same color coding. The
distributions are again plotted as violin plots on a logarithmic scale, where the horizontal lines
indicate the median. As the coherence time T becomes short, the advantage of the adaptive
schemes diminishes and the accuracy eventually becomes similar to that of the uniform time
sampling. Exponential improvement of the error is only possible with an exponential increase
in waiting times τn, and since the FID times are capped at τn ≲ T the usefulness of adaptive
schemes naturally becomes limited in the case of very short dephasing times.

4.2 Single estimation of a slowly drifting parameter

For the case of ω representing the slowly drifting Overhauser field gradient, with a typical
correlation time Tc ∼ 5 s, the longest useful waiting time (related to the dephasing time
T discussed above) becomes more intricately connected to the other time scales mentioned

Carlo sampling to get an arbitrarily good resolution without storing too many data points.
4We highlight that in all of the above cases the decay of the likelihood function [cf. Eq. (4)]would be exponential

in T , instead of Gaussian. This would, however, only modify details in the estimators σ̂(dn)
n and µ̂(dn)

n but keep the
intuitive interpretation of T as the upper bound of τ intact. In this work we chose Gaussian decay, to align with
the case of spin qubits affected by low-frequency noise, in the form of the fluctuating Overhauser fields themselves
or possibly as residual effects on ω of 1/ f charge noise.
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in the beginning of this Section. Assuming that the dynamics of ω are fully driven by the
fluctuations of the nuclear spin ensemble, which we model as an OU process, we investigate
the effect of these drift–diffusion dynamics on the estimation procedure.

In the absence of any additional information about the Overhauser gradientω, our knowl-
edge about it is described by the probability distribution p0(ω). The uncertainty associated
with this distribution then determines the “standard” dephasing time usually associated with
the fluctuating Overhauser fields in GaAs-based spin qubits, T K

2 ∼ σ
−1
K ∼ 20 ns. The role of

our estimation procedure is to reduce the uncertainty in ω to a final value σ f ≪ σK , and
hence significantly extend the dephasing time of the qubit for operations performed right after
the estimation. One can clearly not reach a final uncertainty σ f if ω diffuses over more than
∼ σ f during a single FID experiment.5 To estimate the time τ2σ f

over which a Gaussian peak

with width σ f evolves to a peak with width 2σ f we can use Eq. (2), yielding6

τ2σ f
∼

Tc

2
ln

�

σ2
K −σ

2
f

σ2
K − 4σ2

f

�

. (21)

In the limit of σ f ≪ σK , this reduces to

τ2σ f
∼

3Tc

2

σ2
f

σ2
K

. (22)

Since both adaptive estimation schemes investigated in this work are greedy and converge
to a roughly exponential increase of τn and exponential decrease of σn as a function of the
experiment number n, the relation (22) also yields a maximal achievable accuracy σmin/σK
and corresponding maximum number of useful single-shot experiments Nmax as a function of
Tc . In principle, these quantities are defined through τNmax

+ Texp = τ2σmin
, but throughout

this section we will set Texp = 0, in order to find the intrinsic limits on the estimation accuracy
purely set by the dynamics of ω interfering with the FID experiments.

The expectation is that as soon as the two Gaussian peaks in the bimodal distribution
are well separated, the schemes will converge to a sequence where τn ∼ aτ(1 − e−1)−n/2

and σn ∼ aσ(1 − e−1)n/2 [35], where the prefactors aτ and aσ depend on how quickly this
exponential regime is reached. Using Eq. (22) we find

Nmax ≈
2 ln
�

3
2

Tc
aτ

a2
σ

σ2
K

�

3[1− ln(e− 1)]
. (23)

This sets the minimal achievable variance as σ2
min ∼ a2

σ(1 − e−1)Nmax , for which the longest
single-shot waiting time needed is τNmax

= aτ(1− e−1)−Nmax/2. Since this time τNmax
is in any

case the longest useful waiting time, one can use T = τNmax
to limit the choice of τn accordingly.

The presence of a finite Texp can be incorporated straightforwardly into the theory, resulting
in results that are slightly modified quantitatively.

To illustrate this intrinsic limitation on the estimation accuracy, we simulated 104 estima-
tions up to N = 60 using the scheme based on the MM, while letting ω continuously fluctuate

5If this constraint is violated, then the estimation procedure might produce so-called outliers, i.e., estimates
that are much further off from the true value of ω than typical ones.

6Formally we always work with the bimodal distribution q(ω,µ,σ), but since both this distribution and the
dynamics of µ and σ following from the FP equation are symmetric in ω, we can simply use Eq. (2) to predict the
evolution of our parameters. Furthermore, the relaxation of µ(t) toward zero also contributes to the drift of the
distribution function describing ω. For small σ f /σK and t/Tc , however, we find that this relaxation goes∝ t/Tc ,
whereas the change in σ is∝ (t/Tc)1/2.
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Figure 5: Median estimation error as a function of the number of single-shot ex-
periments used, for 104 simulations of the scheme based on the MM. Here, we in-
cluded the drift–diffusion dynamics of ω throughout the whole simulation, using
σK = 50 MHz and different correlation times Tc (different traces). The vertical
dashed lines show the maximum useful number of single shots as given by Eq. (23).

following an OU process with σK = 50 MHz and Texp = 0. In Fig 5 we plot the median ac-
curacy of the resulting estimates as a function of the number of total FID experiments,7 for
different Tc ranging from 100 µs to 105 s (different traces). We found that for our simulations,
Eq. (23) predicts that Nmax ≈ 1.45 ln(494σK Tc), where the factors aτ and aσ were determined
from fitting aτ(1 − e−1)−n/2 and aσ(1 − e−1)n/2 to the average of actual τn and σn used by
the scheme, in the limit of Tc →∞. The resulting values for Nmax are indicated in Fig 5 with
vertical dashed lines, confirming that Eq. (23) gives a good estimate for the maximum useful
number of FID experiments. This means that for a typical spin-qubit system (where Tc ≈ 5 s)
and using the greedy adaptive estimation schemes presented in this paper, there is generally
no point in performing more than N ∼ 35 single-shot experiments in a single estimation, and
the dephasing time can be set to T ∼ τ35 ≈ 3 µs. This also means that the intrinsic limitation
on the estimation accuracy caused by the diffusion of ω is roughly σmin/σK ≈ 10−3.

4.3 Sequential estimation of a slowly drifting parameter

Another consequence of having an ω that slowly drifts is that in practice the estimation pro-
cedure has to be repeated over time to update our knowledge about ω, in order to keep the
effective qubit dephasing time suppressed. Denoting the time in between two estimations by
Tw, we understand that if Tw ≳ Tc all previously gained knowledge about ω has become ob-
solete at the start of each estimation procedure and the correct initial prior is always p0(ω).
However, if one sets Tw ≲ Tc then we can expect the initial prior to be still somewhat narrowed,
potentially allowing for a more efficient accurate estimation ofω using fewer FID experiments.

An important advantage of using the Gaussian approximation throughout the whole esti-
mation scheme is that it is very straightforward to include such an “idle time” into the model.
Indeed, if the final posterior distribution of the estimation can be mapped to the Gaussian
parameters µ f and σ f , then we can use Eq. (2) to obtain the parameters that characterize the
distribution at time Tw after the estimation procedure,

µ(Tw) = µ f e−Tw/Tc , (24)

σ(Tw) =
Ç

σ2
K + (σ

2
f −σ

2
K)e
−2Tw/Tc . (25)

7Defining the “correct” value to be ω(t) at the end of the final FID experiment of each estimation.
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Figure 6: (a) Example of tracking a drifting Overhauser gradient (shown in blue)
with the hybrid estimation scheme. A series of FID experiments is performed every
200 ms until the final Gaussian posterior variance becomes σ f < 2 MHz (assuming
that ω remains constant within these few measurements). Red dots mark the final
posterior estimates µ f , with error bars of 2σ f . Equations (24,25) give a recipe for
how to adjust the new prior as the time between estimations increases (the shaded
red regions indicate the evolution of µ and 2σ). The black dots show the resulting
prior estimates µ(Tw), again with error bars of 2σ(Tw). (b) The average number
of single shots needed to regain a final posterior variance with σ f < 2 MHz as a
function of the idle time Tw between measurements.

We see that when Tw ≲ Tc the final σ(Tw) is indeed significantly smaller than σK . The values
for µ(Tw) and σ(Tw) as given by Eqs. (24,25) can easily be evaluated on an FPGA, allowing to
start the subsequent estimation from the initial prior q[ω,µ(Tw),σ(Tw)] instead of p0(ω). In
a way, we thus keep track of the optimal prior to use, which presumably reduces the number
of FID experiments needed in each estimation to achieve good accuracy.

In Fig 6 we illustrate this approach, using the hybrid estimation scheme presented in Sec-
tion 3.2 and setting Tc = 5 s and σK = 50 MHz. Fig 6(a) shows a simulated ω(t) following
from an OU stochastic process in blue. We then simulated six subsequent estimation proce-
dures, spaced by Tw = 0.2 s, where we stopped whenever we reached σ f ≤ 2 MHz. The
resulting final values µ f and σ f are indicated by the red points with error bars (the error bars
show 2σ f ). The initial prior at t = 0 is given by p0(ω), depicted as the black point at |ω|= 0
with an error bar of 2σK . The evolution of µ and 2σ as given by Eqs. (24,25) in between esti-
mations is illustrated by the red shaded areas, still resulting in initial priors (shown in black)
for all estimations after the first one that are significantly narrower than p0(ω). We find that
for the values used here, all subsequent estimations require N ≈ 9 to obtain an accuracy of
σ f = 2 MHz, whereas one typically needs N ≈ 13 to reach the same accuracy starting from
p0(ω). In Fig 6(b) we explore the dependence of the average number of FID experiments
needed, 〈N〉, to reach σ = 2 MHz on the idle time Tw in between estimations. We see that 〈N〉
increases roughly logarithmically until Tw ∼ Tc , where it saturates at 〈N〉 ≈ 12.5.

Depending on the time window needed for coherent qubit operations, one could thus ef-
ficiently reduce the estimation overhead needed by adjusting Tw in the experiment and using
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Eqs. (24,25) for an adaptive adjustment of the initial prior for each estimate. Conversely, one
can use the results presented in Section 4.2 to estimate the maximal time Tw in between esti-
mations for which the uncertainty in ω stays below a given threshold. Suppose that all qubit
operations require σ < σmax and that one is able to efficiently estimate ω to an accuracy σ f ;
then the time window available for coherent qubit operations is given by

Tw ∼
Tc

2
ln

�

σ2
K −σ

2
f

σ2
K −σ2

max

�

, (26)

which for σmax,σ f ≪ σK reduces to Tw ∼ Tc(σ2
max −σ

2
f )/2σ

2
K .

5 Summary and conclusions

We have investigated two different efficient adaptive Bayesian estimation schemes that can
track a slowly fluctuating Overhauser field gradient with a zero-mean Gaussian distribution
in time, using a series of free induction decay experiments. Both schemes perform a greedy
optimization of the single-shot estimation parameters based on the current knowledge of the
field gradient, in order to obtain an exponential scaling of the estimation error with the num-
ber of experiments. The small number of variables needed by these schemes to track the
gradient makes them well-suited for real-time estimation performed on an FPGA, and the ro-
bustness of Bayesian methods combined with the ability of the schemes to handle zero-value
estimates makes them applicable to real-world quantum estimation problems. We also show
how our simple Gaussian approach lends itself excellently for predictive estimation by use of
the Fokker-Planck equation to anticipate how our knowledge of the field gradient evolves after
an estimation has been performed. We included a discussion of the effects of a finite dephasing
time on the estimation schemes and we analyzed the effect of the fluctuations of the field gra-
dient itself on the robustness of the schemes, yielding a useful insight in the intricate interplay
of all experimental time scales involved.
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A Training the neural network

As mentioned in the main text, it becomes necessary to teach the NN a renormalized map to
get acceptably bounded errors such that the NN yields outputs that perform the correct update
of the information aboutω across a larger range of parameters. Specifically, the renormalized
map that we used in teaching the NN reads as

f̃ : {µn−1,σn−1} →

¨

µ̂(0)n −µn−1

σn−1
,
σ̂(0)n

σn−1
,
µ̂(1)n −µn−1

σn−1
,
σ̂(1)n

σn−1
,
σn−1τ̂n

2

«

. (A.1)

Data is generated over a grid of inputs µn−1 and σn−1, with a linearly spaced range [0,1]
and logarithmically spaced range [0.001, 0.5] of the values, respectively. For illustration, the
desired output of τn and its renormalized counterpart σn−1τn/2 are shown in Fig 7(a,b),
where we set T →∞ for simplicity. It is important to accurately capture the fine features that
are visible in the renormalized output [Fig 7(b)] and not in the original output [Fig 7(a)], since
one otherwise would perform a measurement that is inconsistent with the updated distribution
of ω. In Fig 7(a) these features become obscured by the large range of values the output can
have (a difference of two orders of magnitude in this case).

In order to obtain some insight into how the NN is learning the map, we present snapshots
of the learning process in Fig 8, using the same feed-forward network with three layers, each
with 20 neurons, and hyperbolic tangent activation functions as used in Section 4. The five
small plots show a line trace taken at µn−1 = 0.5 of the output σn−1τn/2 to be learned (faint
red line) together with the learned output (red dashed line) at different stages of the train-
ing. The bottom right plot shows the validation loss curve (blue dots) and a quantification of
the number of visible peaks in the output of the NN (black line), with this number being an
indication of the fineness of the features in the map that the network has learned. The NN
first learns the region of small µn−1/σn−1 in the map [bottom right corner in Fig 7(b)], and
then gradually learns features for increasing values of µn−1/σn−1. This is also reflected in the
loss curve, as drops in the loss seem to be correlated with the NN’s discovery of a new peak.
Of course, the decision for what counts as a visible peak is somewhat subjective; we used the
function scipy . signal .find_peaks (with prominence=0.05) to count the number of peaks.

While the NN finds the first few peaks at small µn−1/σn−1 relatively quickly, the subsequent
peaks at larger µn−1/σn−1 take increasingly longer to learn. It is thus hard to quantify how
many peaks are eventually possible for the NN with 3 layers of 20 nodes to learn, in the sense

Figure 7: (a) The original target values for τn and (b) the renormalized values
σn−1τn/2, for T → ∞. The details that become visible after renormalization are
important for consistency between updated parameters. (c) The hybrid estimation
scheme partitions the domain of inputs at µn−1 = 2πσn−1, where the NN is used for
small µn−1/σn−1 (blue region) and the MM for large µn−1/σn−1 (red region).
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that the number of training epochs needed quickly becomes impractically large. The fact that
the region with large µn−1/σn−1 is difficult to teach the NN was the motivation for the hybrid
scheme that only uses the NN fitting where it was able to learn well (small µn−1/σn−1), while
switching to the method of moments fitting where the NN struggles (large µn−1/σn−1). The
decision boundary for the hybrid method was set to µn−1 = 2πσn−1, as illustrated in Fig 7(c).

Figure 8: (small plots) Snapshots of the learning process using the renormalized τn.
The faint read lines show a line cut of the map to be learned at µn−1 = 0.5, the dashed
lines the output of the NN at different stages of the training process. (bottom right)
Validation loss as a function of training epoch number (blue dots, left) and number
of peaks found in the output at µn−1 = 0.5 (black line, right).
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