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Abstract

We derive the loop equation for the 1-matrix model with generic difference-type measure
for eigenvalues and develop a recursive algebraic framework for solving it to an arbitrary
order in the coupling constant in and beyond the planar approximation. The planar limit
is solved exactly for a one-parametric family of models and in the general case at strong
coupling. The Wilson loop in the N = 2∗ super-Yang-Mills theory and the Hoppe model
are used to illustrate our methods.
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1 Introduction

The loop equations were originally proposed for the Yang-Mills theory [1, 2] in view of its
potential reformulatation as a theory of strings [3]. Their zero-dimensional counterpart [2,4],
in the same vein, gives a non-perturbative definition of quantum gravity in two dimensions
[5–7]. The starting point then is a zero-dimensional quantum field theory, a matrix model. The
loop equations are the Schwinger-Dyson equations for the Wilson loop expectation values that
follow from reparametrisation invariance of matrix averages. Their perturbative (in 1/N2)
solution generates the topological expansion of correlation functions with interpretation in
terms of discretised random surfaces [3].

In the planar limit of strictly infinite N , matrix models can be solved by a variety of tech-
niques such as the saddle-point method [8] or orthogonal polynomials [9,10]. The added value
of the loop equations is an ease in going beyond the planar approximation [11]. A powerful
recursive procedure developed in [12] can be systematically extended to any desired order
in 1/N2, and lies at the heart of the topological recursion formulated entirely in geometrical
terms [13].

In this paper we study loop equations for random eigenvalue ensembles

Z =

+∞
∫

−∞

N
∏

i=1

dai

∏

i< j

µ(ai − a j) e
−N

∑

i
V (ai)

, (1)

with µ(a) and V (a) subject to the obvious convergence conditions but otherwise arbitrary. This
class of models is a particular case of more general integrals with bi-local measure [14, 15]
with the measure function of difference type.

Many such models have been studied in the past. The standard Vandermonde measure
µ(a) = a2 corresponds to Hermitian random matrices. A one-parameter deformation thereof,
µ(a) = a2β , is known as the β-ensemble. The topological recursion for it was formulated
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in [16, 17] and further studied in [18–21]. Other solvable cases include the Hoppe model
µ(a) = a2/(a2 +m2) [22, 23], and the Chern-Simons matrix model with µ(a) = sinh a [24–
26].

The topological recursion can in fact be formulated for an arbitrary bi-local measure [14],
with the genus-zero expectation values considered as an input. It is unlikely that the genus-
zero problem is solvable for arbitrary µ(a) and V (a), and our goal here is more modest – to
study the loop equations in the regimes where a well-defined approximation scheme can be
devised, namely at weak and at strong coupling.

The eigenvalue integrals with the difference-type measure arise in many contexts: quan-
tum D-branes [23], supersymmetric Wilson loops [27, 28], supersymmetric localisation [29],
Chern-Simons theory [24,25], knot invariants [30,31] and many more. To give one example,
N = 2 supersymmetric gauge theories on S4 are described by eigenvalue integrals with the
Gaussian potential and a fairly complicated measure: for the mass deformation of the N = 4
super-Yang-Mills known as the N = 2∗ theory, the measure is expressed through a combination
of the Meijer G-functions [29]. The latter model has been studied by a variety of approximate
techniques [32–38] but has never been solved in full generality and will be a prime example
to illustrate our methods. Localisation integrals in superconformal gauge theories [39–46]
constitute another set of matrix models where a complicated measure precludes the use of
conventional techniques, and we believe that our methods will be useful in this context as
well.

Section 2.1 covers the basics to the inverse Laplace transforms of n-point resolvents, also
called n-point Wilson loop operators W(x1, x2, . . . , xn). Section 2.2 derives the (non-linear,
integro-differential) loop equation for arbitrary N and polynomial potential. It closes on the
single functionW(x) in the planar limit and depends also onW(x , y) otherwise. In preparation
for large-λ models, section 2.3 converts the equation for a one-parameter deformation of the
Vandermonde measure into an exactly-solvable algebraic problem. Section 3.1 operates a
change of variables to eliminate the linear term in the potential. This is instrumental in the
structure of the perturbative solution in section 3.2 and in the algebraic equations for the series
coefficients in section 3.3. We collect and test our results forW(x) to high orders against exact
formulas in various models in section 4. The key observation that makes contact with physics
is the fact that certain (matrix-model) Wilson loop operators evaluated at x = 2π calculate the
expectation value of the (gauge-theory) 1/2-BPS circular Wilson loop in N = 4 and N = 2∗

SYM theories. In particular section 4.3.2 pays great attention to the latter: an analysis of the
perturbative convergence and a Padé resummation to extrapolate to λ≫ 1, which build on our
power-series expansion of the planar Wilson loop to the order λ35. For small mass parameter,
the ratio test signals a singularity at λ = −π2 which also affects other observables in N = 2
theories. A finite value of the mass slows down the convergence rate and falls short of detecting
a mass-dependent convergence radius. The large-mass/flat-space limit is incompatible with
λ≪ 1 but formally organises the power series in agreement with the renormalisation of N = 2
theories. Section 5 is about a systematic method to generate the expansion ofW(x) in strongly-
coupled models with a general deformation of the Vandermonde measure. We distinguish two
regimes: when x is smaller than the characteristic eigenvalue scale in sections 5.1 and 5.2.1,
the leading approximation tracks back to section 2.3, whereas the opposite limit in sections
5.2 and 5.2.1 is brought to a form reminiscent of a Wiener-Hopf problem. We intersperse
remarks for Gaussian models in this part and present a thorough application to the strongly-
coupled Hoppe model in section 6. Section 7 outlines future advancements and the appendices
collate technical proofs. The Mathematica notebooks attached to the publication automatise
the algorithm of section 3.3 and generate the results of section 4.
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2 Loop equation

2.1 Matrix model

The Wilson loop expectation is an exponential average:

W(x) =
1
N




tr exA
�

, (2)

in the ensemble defined by the partition function (1). The two-point connected correlator is
defined as

W(x , y) =



tr exA tr e yA
�

−



tr exA
� 


tr e yA
�

. (3)

The averages are computed as multiple integrals

〈 f (a1, . . . , aN )〉=
1
Z

+∞
∫

−∞

∏

i

dai

∏

i< j

µ(ai − a j) f (a1, . . . , aN ) e
−N

∑

i V (ai) , (4)

over the eigenvalues ai ∈ R (i, j = 1, 2, . . . , N) of the N × N hermitian matrix A. The integral
measure µ(a) is a smooth function with µ(a) = µ(−a)⩾ 0. The matrix model (4) encompasses
the β-ensemble (µ(a) = a2β), including the Hermitian matrix model with unitary symmetry
U(N) (with Vandermonde measure, β = 1), the real symmetric matrices with orthogonal
symmetry SO(N) (β = 1/2) and the real quaternionic matrices with symplectic symmetry
Sp(N) (β = 2). We will later impose mild assumptions on the measure to achieve results in
different regimes. The probability measure is set by the potential V (a), given by a formal sum

V (a) =
8π2

λ

∞
∑

n=0

Tnan . (5)

We will need all “times” Tn to generate loop averages by differentiation, upon which we assume
the potential settles to some fixed polynomial with only finite number of terms present. We
factor out the expansion parameter λ, which possibly takes small or large values, from the
“coupling constants” Tn, which are finite and include odd n, thus allowing non-symmetric
potentials. When eigenvalues are seen as the coordinates of N particles along a line, the i-
th particle is subject to the potential V (ai) and each pair repels with energy − logµ(ai − a j).
Large values of λ spread particles apart and away from the potential minima in the equilibrium
configuration. For a more detailed account of random matrix models we refer to reviews
[47–49].

The loop correlatorsW(x) andW(x , y) are the first two representatives of the family

W(x1, . . . , xn) = N n−2



tr ex1A . . . tr exnA
�

c , (6)

where the subscript “c” pertains to the connected part [20]. A more commonly used set of
observables are correlators of trace resolvents, related to the exponential correlators by the
inverse Laplace transform. Namely,

ω(x) =
1
N

­

tr
1

x − A

·

. (7)

The multi-point correlators of resolvents are generating functions of the basic monomial cor-
relators:

ω(x1, . . . , xn) = N n−2
­

tr
1

x1 − A
. . . tr

1
xn − A

·

c
(8)

= N n−2
∞
∑

k1,...,kn=0

x−k1−1
1 . . . , x−kn−1

n




tr Ak1 . . . tr Akn
�

c .
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Like the partition function, W(x) and W(x , y) are formal power series in the potential coef-
ficients by the expansion of (5) in the vicinity of a minimum. They are generating functions
similar to (7) and (8):

W(x) =
1
N

∞
∑

n=0

xn

n!
〈trAn〉 , (9)

W(x , y) =
∞
∑

n,m=0

xn ym

n!m!
(〈trAn trAm〉 − 〈trAn〉 〈trAm〉) , (10)

and in that they have a 1/N -expansion, called topological expansion [7]. The product of n
traces enumerates discrete open surfaces with n holes, whose Euler characteristics control the
power of N , and the variables x1, . . . , xn are fugacities for the lengths of the n boundaries
[8,50–52]. The expansion in the couplings is associated with ribbon-graph diagrams [3].

The genus expansion begins at N0 in our normalisation [16,21] and odd powers of N−1 are
absent when the measure scales as µ(a) ∼ Ca2 for small eigenvalue separation (the constant
C is not important for this conclusion), in accordance with the observation that only the Her-
mitian model has this property among the β-ensembles. Such measure defines a deformation
of the Vandermonde determinant and brings us to coin the name generalised eigenvalue model
for (4).

Although the focus of section 2.2 is on an equation for W(x), this has to be fed with
W(x , y), save for the strict large-N limit. The loop-insertion method [53, 54] generates all
loop correlators by consecutive differentiation:

W(x1, . . . , xn) = N−2 δ

δV (x1)
. . .

δ

δV (xn)
log Z (11)

=
δ

δV (x1)
. . .

δ

δV (xn−1)
W(xn) ,

where the loop-insertion operator is defined as1

δ

δV (z)
= −

λ

8π2

∞
∑

n=0

zn

n!
∂

∂ Tn
. (12)

The simplicity of the recursion comes at the cost of solving the loop equation for an infinite-
degree potential (5) before choosing a specific polynomial.

2.2 Loop equation

We derive the loop equation (27) below: a non-linear integro-differential equation forW(x),
which depends on an infinite-degree potential (5) and a measure function µ. The latter is
subject to γ(0) = 2, where we find convenient to define the even function2

γ(a) = a
d

da
logµ(a) . (13)

As noted below (10), this puts a mild constraint on the topological expansion. Far from being
necessary, it is motivated by our interest in supersymmetric theories.

1It is the inverse Laplace transform of the operator − λ
8π2

∑∞
n=0 z−n−1∂ /∂ Tn, which similarly acts upon (7) to

generate the tower of multi-point (or multi-loop, in matrix-model terminology) resolvents (8).
2The condition γ(0) = 2 is necessary to have a regular large-N expansion with only even powers of 1/N ap-

pearing. This technical assumption, that immediately excludes all β-ensembles, becomes important once we take
into account 1/N corrections. All our result at leading planar approximation are independent of it and are valid
for models with γ(0) ̸= 2 as well.
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We will use also another function

R(a) =
1
2

d
da

logµ(a) =
γ(a)
2a

. (14)

We assume that these two functions admit regular Fourier representation:

γ(a) =

+∞
∫

−∞

dω
2π

e −iωaγ̂(ω) , R(a) =

+∞
∫

−∞

dω
2πi

e −iωaR̂(ω) . (15)

The function R̂ is anti-symmetric:

R̂(−ω) = −R̂(ω) , (16)

and real, with the above definition.
The resolvent obeys loop equations, also called Pastur equations in mathematics and

Schwinger-Dyson equations in the physics literature. The loop equations are self-consistency
conditions based off the invariance of (4) under an infinitesimal local change of variables or
integration by parts. We adapt the latter derivation [6, 20] (usually done for the resolvent)
to the exponential average. The shift of focus draws inspiration from the loop dynamics in a
QCD-like random matrix model [2].

We insert an exponential in the form of (2) into the average

1
Z

+∞
∫

−∞

∏

i

dai

∑

p

∂

∂ ap





∏

i< j

µ(ai − a j)e
xap e−N

∑

i V (ai)



= 0 . (17)

The chain rule delivers three terms. The derivative acting on the potential yields

−N

®

∑

p

V ′(ap) e
xap

¸

= −N2V ′
�

d
d x

�

W(x) . (18)

We swap the average and the operator

V ′
�

d
d x

�

=
8π2

λ

∞
∑

n=1

nTn

�

d
d x

�n−1

. (19)

The derivative acts on µ and the exponential as

®

x
∑

p

exap

¸

+

*

∑

i ̸=p

exap
µ′(ap − ai)

µ(ap − ai)

+

. (20)

We recall (2), use γ(a) = γ(−a) to symmetrise in i↔ p

N xW(x) +
1
2

*

∑

i ̸=p

exap − exai

ap − ai
γ(ap − ai)

+

, (21)

complete the sum with the terms with i = p

�

1−
γ(0)

2

�

N xW(x) +
1
2

*

∑

i,p

exap − exai

ap − ai
γ(ap − ai)

+

, (22)

6

https://scipost.org
https://scipost.org/SciPostPhys.17.1.017


SciPost Phys. 17, 017 (2024)

and notice that the assumption above (13) removes the linear dependence on N . The next
step is to link up to the functionals (3), noting the double sum, and possibly (2). For that one
has to write the expression as a combination of exai . The way to achieve this is not unique.3

While the numerator is already in this form, we operate the identity

1
ap − ai

=

∫ x

0

ds es(ap−ai) , (23)

on the denominator and trade the measure factor for its Fourier transform

γ(a) =

+∞
∫

−∞

dω
2π

e−iωaγ̂(ω) , γ̂(ω) =

+∞
∫

−∞

da eiωaγ(a) . (24)

This brings (22) to the desired form

1
2

∑

i,p

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds



esap+(x−s)ai eiω(ap−ai)
�

, (25)

at the cost of introducing two auxiliary integrations. The comparison with (3) yields explicitly
the Wilson loops

1
2

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds
�

W(s− iω, x − s+ iω) + N2W(s− iω)W(x − s+ iω)
�

. (26)

The last step puts together (18) and (26) and yields the loop equation4

V ′
�

d
d x

�

W(x) =
1
2

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds
�

W(s− iω)W(x − s+ iω) +
W(s− iω, x − s+ iω)

N2

�

.

(27)

The formula deserves a number of comments.
First, the equation displays a direct dependence on the model (4): the parameters (number

of eigenvalues N , or rank of gauge group U(N), and coupling λ), the integral measure (via
the Fourier transform (24) of its logarithmic derivative (13)) and potential (via the infinitely-
many coefficients {Tn}n=1,2,... of (19)). The two-point operatorW(x , y) is linear in the solution
through one loop insertion (11) and (12):

W(x , y) =
δW(y)
δV (x)

. (28)

Second, the equation is to solve forW(x) on the real line. The normalisation of (2) sets the
initial condition W(0) = 1. In section 4 the matrix-model quantity W(2π) maps to physical
observables (expectation values of gauge-theory Wilson loops), hence one can restrict to the
segment x ∈ [0,2π]. For this to be possible, our derivation prefers (23) among equivalent
representations with domain larger than s ∈ [0, x].5 The imaginary shifts ±iω require the
analytical continuation to the strip Re(x) ∈ [0, 2π] in the complex plane.

3Any integral with exponential weight, like Fourier and Laplace transforms of a kernel, fits the criteria. We
present a simpler version of the loop equation later in this section exploiting this freedom.

4This is the first one in a chain of loop equations that intertwines higher-point Wilson loops.
5It is hard to devise representations with s ∈ [0,∞] that converge for all orderings ap − ai ≶ 0.
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Third, the equation is non-linear (due to the first term in the integrand) and of a specific
integro-differential type (thus backed up by little literature). The imaginary shifts prevent
the interpretation of the s-integral as a convolution, hence precluding a solution in Laplace
transform. An exception is the subject of section 4.1: the Vandermonde measure µ(a) = a2

maps to a Dirac delta γ̂(ω) = 4πδ(ω), which localises the integrand on vanishing shifts.
Fourth, there are two ways to approach the equation perturbatively. At infinite N , the

operatorsW(x) andW(x , y) are of order N0 and the latter drops out of (27). At large N , they
expand in series of N−2. The suppression factor N−2 in (27) helps solving order by order in
an intertwined manner. The knowledge ofW(x) up to N−2n calculatesW(x , y) up to N−2n by
loop insertion, which is necessary in turn to write the equation at the order N−2(n+1) and find
the next term N−2(n+1) ofW(x).

The same argument applies to the expansion in small λ: the left-hand side contains powers
up to λℓ−1 and the right-hand side λℓ at the iteration ℓ= 0, 1, . . . , hence one iteratively reads
off the order λℓ from the former. The argument relies on the linearity of the left-hand side to
easily adjust the next unknown term.

The same reasoning does not go through at large coupling because the right-hand side is
not linear. Once a truncated solution is plugged into the left-hand side, one would have to
disentangle the next order from the integral equation on the right-hand side. The obstruction
is intrinsic to the loop equation: it is not washed away by large N nor by a choice of model.
Section 5 revisits the equation with a method similar to the Wiener-Hopf decomposition.

Another form of the loop equation arises upon Fourier transforming R(a) instead of γ(a)
and is best formulated in terms of the oscillating loop average:

W (κ) =
1
N

®

∑

k

e iκak

¸

, (29)

related to the Wilson loop in (2) by an analytic continuation: W(x) =W (−i x). Repeating the
steps following (17) with the insertion of e iκap and using the anti-symmetry of R̂(ω) we find:

i
2

V ′
�

−i
∂

∂ κ

�

W (κ) =

+∞
∫

−∞

dω
2π

R̂(ω)W (κ−ω)W (ω) . (30)

This manifestly real form of the equation (for an even potential) is particularly beneficial for the
strong-coupling analysis in section 5. The non-planar corrections, dropped here for simplicity,
are easily recovered by replacing WW with WW + N−2δW/δV .

This Fourier-space form of the loop equation is slightly unconventional, it has no obvious
symmetries, and even for the Vandermonde measure with R̂(ω) = −π signω contains a non-
linear integral transform that does not reduce to a simple convolution. In contrast, the kernel
in (27) for the Vandermonde measure becomes the delta-function γ̂(ω) = 4πδ(ω) and the
loop equation assumes the standard convolution form. In the appendix A we show that the
alternative form of the loop equation (30) is equivalent to the standard saddle-point conditions
of the original eigenvalue model.

Below we identify a class of models, generalising the usual matrix model with the Vander-
monde measure, for which (30) can be solved exactly.

2.3 The ν-model

We start by considering an eigenvalue model with a polynomial potential and the kernel

R̂(ω) = −π signω|ω|2ν−2 . (31)
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The conventional Vandermonde measure corresponds to ν = 1. Fourier transforming back to
the a-representation gives a rather baroque-looking measure. Nonetheless the loop equation
is solvable in this case. This solution will be an integral part of the strong-coupling analysis for
generic R̂(ω). We thus spend some time discussing this type of models which we collectively
call the ν-model.

The loop equation with the above kernel can be written as

−i V ′
�

−i
∂

∂ κ

�

W (κ) =

∞
∫

0

dωω2ν−2W (ω)
�

W (κ−ω)−W (κ+ω)
�

. (32)

The exact solution of this equation can be found by exploiting the following mathematical fact.
Consider a function f (κ) whose Fourier transform has a compact support:

f (κ) =

1
∫

−1

d t e i tκ f̂ (t) . (33)

Then the following operator identity holds true for any integer n:

∞
∫

0

dωω2ν−2 Jν+n(ω)
ων+n

�

f (κ−ω)− f (κ+ω)
�

= −iD(ν)n f (κ) , (34)

where D(ν)n ≡ D(ν)n (−i∂ /∂ κ) is a differential operator of finite degree. For n negative it van-
ishes identically:

D(ν)n = 0 (n< 0) , (35)

and for n positive or zero D(ν)n is a differential operator of degree 2n+ 1 expressed through
the Gegenbauer polynomials:

D(ν)n (a) = (−1)n2ν−n−1Γ (ν− n− 1)C (ν−n−1)
2n+1 (a) . (36)

The proof is surprisingly simple, and goes by direct calculation the details of which are given
in the appendix B.

We list here the first few D(ν)n polynomials:

D(ν)0 (a) = 2νΓ (ν)a , D(ν)1 (a) =
2νΓ (ν)

6

�

3a− 2νa3
�

,

D(ν)2 (a) =
2νΓ (ν)

120

�

15a− 20νa3 + 4ν(ν+ 1)a5
�

. (37)

The general definition and key properties of the Gegenbauer polynomials C (λ)k can be found
in [55].

The integral transform in (34) suggests to choose Jν+n(µκ)/(µκ)ν+n as the basic building
blocks of the Wilson loop and to seek the solution of the loop equation as linear combination
of these functions. We thus take an Ansatz of the form:

W (κ) =
∑

n⩾0

An
Jν+n(µκ)
(µκ)ν+n

. (38)

The rescaling factor µ is necessary for imposing the normalisation condition W (0) = 1. Phys-
ically, µ corresponds to the endpoint of the eigenvalue distribution as we detail below.
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The rationale to take this Ansatz is twofold. First, all the functions in the basis have a
Fourier image with a compact support, as follows from the integral representation of the Bessel
function:

Jν+n(κ)
κν+n

=
1

2ν+n
p
π Γ

�

ν+ n+ 1
2

�

1
∫

−1

d t e i tκ
�

1− t2
�ν+n− 1

2 . (39)

The Ansatz therefore satisfies the condition (33). At the same time, regarding W (ω) in (32) as
the kernel of an integral operator we can apply the master identity (34) valid for all individual
Bessel kernels and a function with finite support.

The operator identity (34) transforms (32) into a linear differential equation:

V ′
�

−i
∂

∂ κ

�

W (κ) = µ1−2ν
∑

n

AnD(ν)n

�

−
i
µ

∂

∂ κ

�

W (κ) . (40)

Both sides are differential polynomials acting on one and the same function. It just remains
to match the coefficients:

V ′(µa) = µ1−2ν
∑

n

AnD(ν)n (a) . (41)

Solving the loop equation boils down to a simple algebraic problem: given a polynomial
V ′(µa), find its expansion coefficients in the basis (36). In each particular case the problem
is easily solved by hand, just by matching the coefficients one-by-one, but it is also possible
to derive the general solution by exploiting pseudo-orthogonality of the Gegenbauer polyno-
mials. We first illustrate the matching procedure and then derive the general solution using
orthogonality.

Consider the Gaussian potential:

V (a) =
a2

2g2
. (42)

The left-hand side of (41) is then linear in a and the first polynomial in (37) will suffice.
Matching the coefficient we get:

A0 =
µ2ν

2νΓ (ν)g2
, (43)

which yields for the Wilson loop:

W (κ) =
1

Γ (ν)g2

� µ

2κ

�ν

Jν(µκ) . (44)

This still contains an unknown parameter µ, and to fix it we need to impose the normalisation
condition W (0) = 1.

Taking into account that

lim
u→0

Jν(u)
uν

=
1

2νΓ (ν+ 1)
,

we get:
�µ

2

�2ν
= Γ (ν)Γ (ν+ 1)g2 . (45)

The properly normalised solution thus reads

W (κ) = Γ (ν+ 1)
Jν(µκ)
(µκ/2)ν

. (46)

The last two equations solve the ν-model with the Gaussian potential.
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When ν= 1 the relation between µ and g is linear: µ= 2g. Upon continuation to complex
κ = −i x we recover the well-known expression for the Wilson loop in the Gaussian matrix
model:

W(x) =
I1(2g x)

g x
. (47)

We revisit this result in section 4.3.1 from a slightly different perspective.
Returning to the generic case, an expansion of a given polynomial V ′ in the basis (36) can

be derived from pseudo-orthogonality of the Gegenbauer polynomials. The polynomial basis
(36) does not form an orthonormal set with respect to any measure, for the reasons explained
in the appendix B. This can be also verified directly by checking that D(ν)n do not satisfy trilinear
relations characteristic of orthogonal polynomials, as can be seen by examining the first few
cases. The closest counterpart of functional orthogonality is derived in the appendix B, and
involves a differential operator inside the integral:

1
∫

−1

da (1− a2)ν−n− 3
2D(ν)n (a)

�

a
∂

∂ a
+ 2ν− 1

�

D(ν)m (a) =
4πΓ (2ν− 1)
(2n+ 1)!

δnm . (48)

Applying the differential operator a∂ /∂ a + 2ν − 1 to both sides of (41) and integrating
with the prescribed weight, we get:

An =
µ2ν−1(2n+ 1)!
4πΓ (2ν− 1)

1
∫

−1

da (1− a2)ν−n− 3
2D(ν)n (a)

�

a
∂

∂ a
+ 2ν− 1

�

V ′(µa) . (49)

Together with (38) this constitutes the full solution of the ν-model with any potential.
The real-valued Wilson loop is obtained by analytic continuation to κ = −i x which trans-

forms the entries in (38) into the modified Bessel functions:

W(x) =
∑

n⩾0

An
Iν+n(µx)
(µx)ν+n

. (50)

The width of the eigenvalue distribution µ is fixed by imposing the normalisation condition
W(0) = 1:

∑

n

An

2ν+nΓ (ν+ n+ 1)
= 1 . (51)

We can also find the eigenvalue density directly. The density is formally defined as a Fourier
transform of the Wilson loop:

W (κ) =

µ
∫

−µ

da e iκaρ(a) . (52)

Using the integral representation (39) in (38) we arrive at

ρ(a) =
1
p
π

∑

n

An(µ2 − a2)ν+n− 1
2

(2µ2)ν+nΓ
�

ν+ n+ 1
2

� . (53)

We have checked that for ν= 1 this formula, together with the equation for An, boils down to
the well-known solution of the conventional Vandermonde matrix model:

ρ(a) = −

µ
∫

−µ

d b
2π2

V ′(b)
b− a

√

√µ2 − a2

µ2 − b2
. (54)
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The eigenvalue density must be positive on the whole interval (−µ,µ) which imposes cer-
tain constraints on the coefficients An.6 The simplest of those is the positivity of the density
near the endpoints which requires

A0 > 0 . (55)

Indeed, A0 multiplies the smallest power of (µ2 − a2) in (53). The other terms (those with
n> 0) are necessarily more suppressed for a very close to µ. If A0 < 0 the density is destined to
becomes negative at some a = µ−ε with small ε. Therefore, the model undergoes a transition
into a multi-cut phase as soon as A0 reaches zero. The multi-cut solutions are not described
by our Ansatz.7 It would be very interesting to explore the multi-cut phases of the ν-model by
extending our method to this case, or by some other technique.

For generic V (a) and R̂(ω) the non-linear integro-differential equation (30) cannot be
solved in a closed form, but the weak and strong coupling expansions can be worked out
systematically under very general assumptions. This is what we do in the rest of the paper.

3 Weak coupling: Solution

3.1 Shift of the matrix variables

In preparation for the perturbative analysis, we eliminate the linear term n = 1 in (5) and
change the loop equation accordingly. In quantum models linearities conflict with the inter-
pretation of {ai}i=1,2,...,N as good perturbative degrees of freedom. The shift ãi = ai − ā by
a constant ā, which is a stationary point of the potential V ′(ā) = 0, centres the excitations
{ãi}i=1,2,...,N around a vacuum. For the model with the Gaussian potential (but an arbitrary
measure), the centre of mass decouples. The SU(N) and U(N) loop averages are then simply
related as we show in the appendix C. For arbitrary potential the situation is more complicated
but still manageable as we demonstrate below.

The ability of operating infinitesimal changes of the potential (28), without breaking the
stationarity condition at ᾱ, is the difficult bit to demonstrate. Let us assume the target potential
and its deformations to be concave (V (a) → +∞ for a → ±∞) and to have one or many
minima ā. The new potential is still polynomial

Ṽ (ãi) = V (ā+ ãi) =
8π2

λ

∑

p=0,2,3,...

T̃p ãp
i , (56)

and parametrised by {ā, T̃0, T̃2, T̃3, . . . }. The relations

T̃1 =
∞
∑

p=1

pTp āp−1 = 0 , T̃p′ =
∞
∑

p=p′
Tp

�

p
p′

�

āp−p′ , p′ = 0,2, 3, . . . , (57)

determine ā = ā(T1, T2, . . . ), albeit not uniquely, and T̃p′ = T̃p′(Tp′ , Tp′+1, . . . ) respectively. The
effect on Wilson loops is

W̃(x) = e−āxW(x) , W̃(x , y) = e−ā(x+y)W(x , y) , (58)

by the definitions (2) and (3). Matrix averages with tilded symbols are averages of the type (4)

6The constraints of positivity are very powerful and in conjunction with the loop equations can be used to
bootstrap matrix models not solvable otherwise [56].

7We are grateful to D. Bykov for this comment.
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where {ãi} take the place of {ai}. The operator (12) undergoes a major change

δ

δṼ (x)
≡ e−āx δ

δV (x)
=
λ

8π2





x

2T̃2

∂

∂ ā
+

∑

m′=0,2,3,...

�

(m′ + 1)x
2T̃2

T̃m′+1 −
xm′

m′!

�

∂

∂ T̃m′



 . (59)

The proof is based on three lemmas. First, the left equation in (57) gives

∂ ā
∂ Tm

= −
8π2

λ

mām−1

V ′′(ā)
. (60)

Second, we repeat on the right equation: use (60) with m⩾ m′ ̸= 1

∂ T̃m′

∂ Tm
=
�

m
m′

�

ām−m′ −
8π2

λ

m
V ′′(ā)

∞
∑

p=m′

�

p
m′

�

(p−m′)Tp āp−m′+m−2 , (61)

use the inverse of left equation Tp =
∑∞

p′=p T̃p′
�p′

p

�

(−ā)p
′−p

∂ T̃m′

∂ Tm
=
�

m
m′

�

ām−m′ −
8π2

λ

mām−m′−2

V ′′(ā)

∞
∑

p=m′

∞
∑

p′=p

(−)p
′−p
�

p
m′

��

p′

p

�

(p−m′)T̃p′ ā
p′ , (62)

swap the sums and resum

∂ T̃m′

∂ Tm
=
�

m
m′

�

ām−m′ −
8π2

λ

m(m′ + 1)ām−1

V ′′(ā)
T̃m′+1 . (63)

Third, we begin with (5) and compare to (57)

V ′′(ā) =
8π2

λ

∞
∑

p=2

p(p− 1)Tp āp−2 =
16π2

λ
T̃2 . (64)

Finally, we collect the lemmas and change variables in (12) via the chain rule.

δ

δV (x)
= −

λ

8π2

∞
∑

m=0

xm

m!

 

∂ ā
∂ Tm

∂

∂ ā
+

∑

m′=0,2,3,...

∂ T̃m′

∂ Tm

∂

∂ T̃m′

!

= eāx





x
V ′′(ā)

∂

∂ ā
+

∑

m′=0,2,3,...

�

(m′ + 1)x
V ′′(ā)

T̃m′+1 −
λ

8π2

xm′

m′!

�

∂

∂ T̃m′



 (65)

= eāx λ

8π2





x

2T̃2

∂

∂ ā
+

∑

m′=0,2,3,...

�

(m′ + 1)x
2T̃2

T̃m′+1 −
xm′

m′!

�

∂

∂ T̃m′



 .

This ends the proof of (59).
We are ready to insert (56) and (58) into (27). We pull out e−āx on both sides thanks to

the definition (59) and the shift property

Ṽ ′
�

d
d x
− ā

�

�

eāxW̃(x)
�

= eāx Ṽ ′
�

d
d x

�

W̃(x) , (66)

and derive

Ṽ ′
�

d
d x

�

W̃(x) =
1
2

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds

�

W̃(s− iω)W̃(x − s+ iω) +
W̃(s− iω, x − s+ iω)

N2

�

,

(67)
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where the relations (19) and (28) still hold

Ṽ ′
�

d
d x

�

=
8π2

λ

∞
∑

n=2

nT̃n

�

d
d x

�n−1

, W̃(x , y) =
δW̃(y)
δṼ (x)

. (68)

The reader should be aware that this not an independent loop equation. However there is
more than a formal distinction with (27): the averages in (67) are written in matrix variables
that ensure Ṽ ′(0)∝ T̃1 = 0, but artificially complicate the insertion rule (59).

3.2 Power-series Ansatz

The equation is tractable analytically in the limit of large N and small λ with the Ansatz

W̃(x) = c̃000 +
∞
∑

n=0

∞
∑

ℓ=2n

2ℓ
∑

m=1

c̃n,ℓ,m

(16π2)ℓ
N−2nλℓxm , c̃000 = 1 . (69)

The rationale behind the index ranges becomes clear a posteriori. The power of λ puts an
upper bound on that of x due to diagrammatical arguments. In (4) written in tilded variables,
the limit λ → 0 drives eigenvalues ãi → 0 towards the minimum of the potential. One can
expand the “interacting” potential exp(8π2λ−1N

∑

i

∑∞
n=3 T̃nãn

i ) and the rest of the integrand
(including a test measure, e.g. µ(a) = a2 + a4), then average polynomials of ã′is with the
Gaussian weight exp(8π2λ−1N T̃2

∑

i ã2
i ). This is doable analytically for each term of the series

in λ, which is nothing but some Feynman diagrams (integrals) of a quantum field theory
(matrix model) for N scalar fields ãi in zero dimensions. Each interaction vertex (labeled by
n⩾ 3) brings a power of λ−1 and each propagator (after Gaussian integration) a λ. When one
throws x in by choosing f (ã1, . . . , ãN ) =

∑

i exp(x ãi), the Gaussian integral of any monomial
is proportional to λℓxm with m ⩽ 2n. This further restricts to m = 2ℓ for Gaussian Hermitian
models (T̃n⩾3 = 0 and µ(a) = a2).

We also put forward

W̃(x , y) =
∞
∑

n=0

∞
∑

ℓ=2n+1

2ℓ−1
∑

m=1

2ℓ−m
∑

m′=1

d̃n,ℓ,m,m′

(16π2)ℓ
N−2nλℓxm ym′ . (70)

Necessary conditions for the symmetry x↔ y are d̃n,ℓ,m,m′ = d̃n,ℓ,m′,m and m+m′ ⩽ 2ℓ.
The coefficients {c̃n,ℓ,m, d̃n,ℓ,m,m′} in (69) and (70) constitute the maximal set required by

arbitrary measure and potential; the simpler these are, the more of the coefficients vanish. It
is often useful to pad our formulas with extra coefficients though, namely those labeled by
indices out of the ranges in (69) and (70), for example c̃0,0,1 = 0.

The coefficients are related via (68):

d̃n,ℓ,1,m′ =
c̃n,ℓ−1,m′−1

T̃2
+

2ℓ−m′+1
∑

m′′=2

(m′′ + 1)
T̃m′′+1

T̃2

∂ c̃n,ℓ−1,m′

∂ T̃m′′
, (71)

for m′ = 1, . . . , 2ℓ− 1 and

d̃n,ℓ,m,m′ = −
2

m!

∂ c̃n,ℓ−1,m′

∂ T̃m
, (72)

for m = 2, . . . , 2ℓ− 1 and m′ = 1, . . . , 2ℓ−m. As per our convention, we have d̃0,1,1,1 = T̃−1
2

for example. The validity of the Ansatz relies on the stationary point being extremal, i.e.
V ′′(ā) = Ṽ ′′(0)∝ T̃2 ̸= 0. The apparent asymmetry between (71) and (72) arises from the
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partition operated between T̃1 = 0 and {T̃n}n=0,2,3,... and placing x and y as in (68). The
symmetry d̃n,ℓ,m,m′ = d̃n,ℓ,m′,m is restored on the solution of the loop equation.

The coefficients are sensitive to the measure through its Taylor coefficients

γ(0) = γ(0) = 2 , γ(n) =
dnγ

d xn
(0) =

+∞
∫

−∞

dω
2π
(−iω)nγ̂(ω) , n= 2, 4,6, . . . , (73)

the potential through the extremal point ā and the Taylor coefficients near this point. The
indices restrict the dependence:

∂ c̃n,ℓ,m

∂ T̃m′
= 0 , m′ ⩾ 2ℓ−m+ 3 , (74)

therefore the solution (69) and (70) up to the order N−2nmaxλℓmax with 2nmax ⩽ ℓmax depends
on the finitely-many coefficients {T̃2, T̃3, . . . , T̃2ℓmax+1} of (56). The bound is directly visible at
the level of (67) once one plugs (56) and (69).

3.3 Solving algorithm

We build upon the ansätze (69) and (70) to turn the loop equation (67) into a system of
algebraic equations for the infinitely-many coefficients {c̃n,ℓ,m}. We take note of (71) and
(72), but use the dependent set {d̃n,ℓ,m,m′} too in order not to clutter formulas.

Planar limit. The limit of infinite N washes away the two-point Wilson loop in (67) and
most coefficients, save for the subset {c̃0,ℓ,m} with ℓ = 1,2, . . . and m = 1,2, . . . , 2ℓ. Appendix
D details how to spell out (69) in the equation. Equating powers of λ and x leads to two
systems of equations:

2ℓ+1
∑

r=2

r! T̃r c0,ℓ,r−1 = 0 , (75)

spanned by ℓ= 1,2, . . . and

1
p!

2ℓ−p+1
∑

r=2

r(p+ r − 1)!T̃r c̃0,ℓ,p+r−1 (76)

=
∑

q=1−p,3−p,...,p−1

2ℓ−2
∑

m= p−q−1
2

2ℓ−2
∑

m′= p+q−1
2

ℓ−
 

m′
2

£

−1
∑

ℓ′=⌈m
2 ⌉

∑

d=− p+q−1
2 ,− p+q−1

2 +2,..., p+q−1
2

�

m
p−q−1

2

�

×
�

m′
p+q−1

4 + d
2

��m′ − p+q−1
4 − d

2
p+q−1

4 − d
2

�

(−)m
′− p+q−1

4 −
d
2

3p−q+1
4 − d

2

γ(m+m′−p+1) c̃0,ℓ′,m c̃0,ℓ−ℓ′−1,m′ ,

by ℓ = 1, 2, . . . and p = 1, . . . , 2ℓ − 1. The sums with γ(m+m′−p+1) are constrained to have
m+m′ − p odd by (73). The terms c̃2 inherit the non-linearity of the loop equation. There is
a solution strategy that handles only linear equations.
Suppose the iteration ℓ∗ knows the subset {c̃0,ℓ,m} with ℓ= 1,2, . . . ,ℓ∗−1 and m= 1,2, . . . , 2ℓ.
We recall T̃2 ̸= 0 below (72) and express c̃0,ℓ∗,1 in terms of {c̃0,ℓ∗,m}m⩾2 through (75)

c̃0,ℓ∗,1 = −
1

2T̃2

2ℓ∗+1
∑

r=3

r! T̃r c̃0,ℓ∗,r−1 . (77)
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We replace this in (76) and verify that the equations are linear in the coefficients {c̃0,ℓ∗,m}m⩾2;
in particular, these coefficients never appear quadratically in the right-hand side, but linearly
and each multiplied by one found at a previous iteration. Moreover, the equations are inho-
mogeneous due to the terms γ(m+m′−p+1), hence the {c̃0,ℓ∗,m}m⩾2 turn out to be polynomials in
the Taylor coefficients of γ(a). Standard techniques can efficiently solve (76)8 and use (77) to
calculate c̃0,ℓ∗,1.

Sub-planar corrections. We apply the same logic to the full equation (67) to find {cn,ℓ,m}
and {dn,ℓ,m,m′}. This spells out a (bulky) system of equations, after keeping powers of N in
appendix D and considering the two-point Wilson loop. We prefer however to put together
the numerous observations so far and present the algorithmic workflow.

1. The goal is to find the solution of (67) up to order N−2nmaxλℓmax in the form

W̃(x) =
nmax
∑

n=0

ℓmax
∑

ℓ=2n

W̃n,ℓ(x)N
−2nλℓ , W̃n,ℓ(x) = δn,0δℓ,0 +

2ℓ
∑

m=1

c̃n,ℓ,m

(16π2)ℓ
xm , (78)

and as a by-product

W̃(x , y) =
nmax
∑

n=0

ℓmax
∑

ℓ=2n+1

W̃n,ℓ(x , y)N−2nλℓ ,

W̃n,ℓ(x , y) =
2ℓ−1
∑

m=1

2ℓ−m
∑

m′=1

d̃n,ℓ,m,m′

(16π2)ℓ
xm ym′ . (79)

We remind the measure factor obeys γ(0) = 2 and approximate the potential to a finite-
degree polynomial

Ṽ (x) =
8π2

λ

2ℓmax+1
∑

n=0

T̃n xn , T̃1 = 0 , T̃2 ̸= 0 , (80)

thanks to the observation below (74). The coefficients can take numerical values from
the get-go when the target is the planar limit (nmax = 0) of (78). They cannot otherwise,
for the sake of the step 2 which extracts (79) from (78) by differentiation.

2. We compute the coefficients in (78) and (79) iteratively. We loop over n∗ = 0,1, . . . , nmax
and ℓ∗ = 2n∗, 2n∗ + 1, . . . ,ℓmax

9 to find the subsets {c̃n∗,ℓ∗,m}m and {d̃n∗,ℓ∗,m,m′}m,m′ . The
iteration starts by collecting terms N−2n∗λℓ

∗−1 in (67)

Ṽ ′
�

d
d x

�

W̃n∗,ℓ∗(x) =
1
2

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds





n∗
∑

p=0

ℓ∗−1
∑

q=0

W̃p,q(s− iω)

× W̃n∗−p,ℓ∗−q−1(x − s+ iω) +
1

N2
W̃n∗−1,ℓ∗−1(s− iω, x − s+ iω)



 . (81)

The last term exists at sub-planar level (n∗ ⩾ 1) and involves the coefficients
{d̃n∗−1,ℓ∗−1,m,m′}m,m′ found in a previous iteration. The integrand is a polynomial in ω,

8Existence and uniqueness of the solution fall back on that of the loop equation.
9The case n∗ = ℓ∗ = 0 is trivial.
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s and x; each monomial can be integrated via Fourier transform (73). The integro-
differential equation (81) turns into a polynomial equation which must hold regardless
of the value of x . The coefficients of x-powers are proportional to one of {c̃n∗,ℓ∗,m}m.
Therefore equating homonymous powers of x writes a finite system of linear equations
for {c̃n∗,ℓ∗,m}m. Once the solution is found, the iteration ends with the computation of
{d̃n∗,ℓ∗,m,m′}m,m′ using (71) and (72).

3. At this stage one knows (78) and (79) for an arbitrary potential (80) with extremal point
in the origin. The analysis of section 3.1 comes in handy when we want to translate it
to a generic point ā. We translate (80) according to (56)

V (a) = Ṽ (a− ā) =
8π2

λ

2ℓmax+1
∑

p=0

Tpap , (82)

Tp =
2ℓmax+1
∑

p′=p

T̃p′

�

p′

p

�

(−ā)p
′−p , p = 0,1, . . . , 2ℓmax + 1 . (83)

The solution of (27) for this potential is given by (58)

W(x) = eāxW̃(x) , W(x , y) = eā(x+y)W̃(x , y) . (84)

4. We assign numeric values to {T̃n}n=1,...,ℓmax
in order to specialise (82) to a target po-

tential. The task is already part of step 1 in the special case mentioned therein. Notice
different potentials correspond to the same solution as long as they share the same shape
sufficiently near the extremal point.

4 Weak coupling: Applications

We run the algorithm in section 3.3 for a selection of matrix models, perform checks with
the literature and derive new results for Wilson loops in SYM theories. We remind that (78)
solves (67) with potential Ṽ ′(0) = 0. Step 3 of the algorithm converts the solution to that
(84) associated to the shifted potential V (a) = Ṽ (a − ā). The distinction between tilded and
untilded variables is immaterial when ā = 0 and the focus is on the planar limit.

4.1 Models with Vandermonde measure

The Vandermonde measure µ(a) = a2 maps to a constant γ(a) = 2. This brings massive
simplifications: the Dirac delta γ̂(ω) = 4πδ(ω) trivialises one integral in the loop equation
and all derivatives γ(n) = 2δn,0 in (73) drop out of step 1. The planar coefficients of (78) up
to λ3 are

c̃0,1,1 = −
3T̃3

2T̃2
2

, c̃0,1,2 =
1

2T̃2
, c̃0,2,1 =

−54T̃3
3 + 72T̃2 T̃3 T̃4 − 20T̃2

2 T̃5

4T̃5
2

,

c̃0,2,2 =
18T̃2

3 − 8T̃2 T̃4

4T̃4
2

, c̃0,2,3 = −
T̃3

T̃3
2

, c̃0,2,4 =
1

12T̃2
2

,

c̃0,3,1 =
−3888T̃5

3 + 9936T̃2 T̃3
3 T̃4 − 4320T̃2

2 T̃3(T̃2
4 + T̃3 T̃5)

16T̃8
2

+
1440T̃3

2 (T̃4 T̃5 + T̃3 T̃6)− 280T̃4
2 T̃7

16T̃8
2

,
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c̃0,3,2 =
3888T̃4

3 − 6480T̃2 T̃2
3 T̃4 + 2160T̃2

2 T̃3 T̃5 + 864T̃2
2 T̃2

4 − 360T̃3
2 T̃6

48T̃7
2

, (85)

c̃0,3,3 =
144T̃3(−T̃2

3 + T̃2 T̃4)− 30T̃2
2 T̃5

8T̃6
2

,

c̃0,3,4 =
27T̃2

3 − 9T̃2 T̃4

12T̃5
2

, c̃0,3,5 = −
3T̃3

16T̃4
2

, c̃0,3,6 =
1

144T̃3
2

,

and those at genus one

c̃1,2,1 =
−27T̃3

3 + 48T̃2 T̃3 T̃4 − 20T̃2
2 T̃5

8T̃5
2

, c̃1,2,2 =
9T̃2

3 − 8T̃2 T̃4

8T̃4
2

,

c̃1,2,3 = −
T̃3

4T̃3
2

, c̃1,2,4 =
1

24T̃2
2

,

c̃1,3,1 =
1

16T̃8
2

�

− 3402T̃5
3 + 10044T̃2 T̃3

3 T̃4 − 5220T̃2
2 T̃2

3 T̃5

+ 432T̃2
2 T̃3(−12T̃2

4 + 5T̃2 T̃6) + 80T̃3
2 (27T̃4 T̃5 − 7T̃2 T̃7)

�

, (86)

c̃1,3,2 =
3402T̃4

3 − 7020T̃2 T̃2
3 T̃4 + 2880T̃2

2 T̃3 T̃5 − 720T̃2
2 (−2T̃2

4 + T̃2 T̃6)

48T̃7
2

,

c̃1,3,3 =
−126T̃3

3 + 156T̃2 T̃3 T̃4 − 40T̃2
2 T̃5

8T̃6
2

, c̃1,3,4 =
177T̃2

3 − 60T̃2 T̃4

48T̃5
2

,

c̃1,3,5 = −
T̃3

4T̃4
2

, c̃1,3,6 =
1

72T̃3
2

.

The Vandermonde measure is the hallmark of the Hermitian model and plenty of closed-form
formulas populate the literature. The two-point resolvent was considered in topological ex-
pansion [57] and finite N [58]. We test the solution with the small-λ expansion of (87) and
(88) below.

The genus-zero and -one resolvents are solvable in closed form [6]. The inverse Laplace
transform is worked out in [57], for example: for sixth-order even potentials

W(x) =
2
µx

I1(µx) +
3π2

λ

�

4T̃4 +
15
2

T̃6µ
2
�

µ3

x
I3(µx) +

15π2

2λ
T̃6
µ5

x
I5(µx) (87)

+
λ

32π2N2

�

x2 I2(µx)

3(2T̃2 + 6T̃4µ2 + 45
4 T̃6µ4)

−
(4T̃4µ+ 15T̃6µ

3)x I1(µx)

(2T̃2 + 6T̃4µ2 + 45
4 T̃6µ4)2

�

+O(N−4) ,

and for general even potentials

W(x , y) =
µx y

2(x + y)
[I0(µx)I1(µy) + I0(µy)I1(µx)] +O(N−2) , (88)

where In is the modified Bessel function of the first kind. The coupling dependence enters the
branch-cut endpoints [−µ,µ], with µ the solution of the algebraic equation

Res

�

V ′
�1

z

�

z2
p

1−µ2z2
, z = 0

�

=
16π2

λ

∑

p=2,4,...

Γ
�

p+1
2

�

p
π Γ

� p
2

� T̃pµ
p = 2 . (89)

The correct solution approximates the branch point of the Wigner semicircle distribution

µ=
1

2π

√

√

√
λ

T̃2

�

1+
∞
∑

ℓ=1

µℓ

�

λ

16π2 T̃2
2

�ℓ
�

, (90)
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with the corrections

µ1 = −3T̃4 , (91)

µ2 =
1
2
(63T̃2

4 − 30T̃2 T̃6) , (92)

µ3 =
1
2
(−891T̃3

4 + 810T̃2 T̃4 T̃6 − 140T̃2
2 T̃8) , (93)

µ4 =
15
8
(3861T̃4

4 − 5148T̃2 T̃2
4 T̃6 + 660T̃2

2 T̃2
6 + 1232T̃2

2 T̃4 T̃8 − 168T̃3
2 T̃10) . (94)

4.2 Models with Gaussian potential

The next-to-simplest models feature the weight

V (a) =
8π2

λ
a2 , (95)

alongside the smooth measure (73). We list the non-zero planar coefficients up to λ6

c̃0,1,2 =
1
2

, c̃0,2,2 =
γ(2)

4
, c̃0,2,4 =

1
12

, c̃0,3,2 =
6(γ(2))2 + 5γ(4)

48
,

c̃0,3,4 =
γ(2)

12
, c̃0,3,6 =

1
144

, c̃0,4,2 =
18(γ(2))3 + 45γ(2)γ(4) + 7γ(6)

288
,

c̃0,4,4 =
12(γ(2))2 + 7γ(4)

192
, c̃0,4,6 =

γ(2)

96
, c̃0,4,8 =

1
2880

,

c̃0,5,2 =
180(γ(2))4 + 900(γ(2))2γ(4) + 255(γ(4))2 + 280γ(2)γ(6) + 21γ(8)

5760
,

c̃0,5,4 =
360(γ(2))3 + 630γ(2)γ(4) + 77γ(6)

8640
, c̃0,5,6 =

20(γ(2))2 + 9γ(4)

1920
, (96)

c̃0,5,8 =
γ(2)

1440
, c̃0,5,10 =

1
86400

,

c̃0,6,2 =
1

172800

�

2700(γ(2))5 + 22500(γ(2))3γ(4)

+10500(γ(2))2γ(6) + 4550γ(4)γ(6) + 225γ(2)(85(γ(4))2

+7γ(8)) + 66γ(10)
�

,

c̃0,6,4 =
450(γ(2))4 + 1575(γ(2))2γ(4) + 345(γ(4))2 + 385γ(2)γ(6) + 24γ(8)

17280
,

c̃0,6,6 =
900(γ(2))3 + 1215γ(2)γ(4) + 122γ(6)

103680
, c̃0,6,8 =

30(γ(2))2 + 11γ(4)

34560
,

c̃0,6,10 =
γ(2)

34560
, c̃0,6,12 =

1
3628800

,

the N−2-coefficients

c̃1,2,2 = −
γ(2)

4
, c̃1,2,4 =

1
24

, c̃1,3,2 = −c̃0,3,2 ,

c̃1,3,4 = −
γ(2)

12
, c̃1,3,6 =

1
72

,

c̃1,4,2 = −c̃0,4,2 , c̃1,4,4 =
−18(γ(2))2 − 5γ(4)

192
, c̃1,4,8 =

1
576

,
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c̃1,5,2 =
−36(γ(2))4 − 180(γ(2))2γ(4) − 15(γ(4))2 − 56γ(2)γ(6) − 3γ(8)

1152
,

c̃1,5,4 =
−126(γ(2))3 − 135γ(2)γ(4) − 7γ(6)

1728
, c̃1,5,6 =

−3(γ(2))2 + γ(4)

288
, (97)

c̃1,5,8 =
γ(2)

576
, c̃1,5,10 =

1
8640

,

c̃1,6,2 =
1

6912

�

−108(γ(2))5 − 900(γ(2))3γ(4) − 420(γ(2))2γ(6)

+70γ(4)γ(6) − 45γ(2)(5(γ(4))2 + γ(8))
�

,

c̃1,6,4 =
−684(γ(2))4 − 1620(γ(2))2γ(4) + 15(γ(4))2 − 224γ(2)γ(6) + 3γ(8)

13824
,

c̃1,6,6 =
−288(γ(2))3 − 9γ(2)γ(4) + 35γ(6)

20736
, c̃1,6,8 =

12(γ(2))2 + 17γ(4)

13824
,

c̃1,6,10 =
7γ(2)

34560
, c̃1,6,12 =

1
207360

,

the N−4-coefficients

c̃2,4,4 =
3(γ(2))2 − γ(4)

96
, c̃2,4,6 = −

γ(2)

96
, c̃2,4,8 =

1
1920

,

c̃2,5,2 =
−30(γ(4))2 − γ(8)

960
, c̃2,5,4 =

90(γ(2))3 + 15γ(2)γ(4) − 14γ(6)

2880
,

c̃2,5,6 = −
47γ(4)

5760
, c̃2,5,8 = −

7γ(2)

2880
, c̃2,5,10 =

23
172800

,

c̃2,6,2 =
−2250γ(2)(γ(4))2 − 1050γ(4)γ(6) − 75γ(2)γ(8) − 11γ(10)

28800
, (98)

c̃2,6,4 =
540(γ(4))2 + 600(γ(2))2γ(4) − 485(γ(4))2 − 140γ(2)γ(6) − 37γ(8)

23040
,

c̃2,6,6 =
270(γ(2))3 − 480γ(2)γ(4) − 91γ(6)

34560
, c̃2,6,8 =

−210(γ(2))2 − 77γ(4)

69120
,

c̃2,6,10 =
−7γ(2)

69120
, c̃2,6,12 =

7
518400

,

and the N−6-coefficients

c̃3,6,6 =
45γ(2)(−(γ(2))2 + γ(4))− 4γ(6)

17280
, c̃3,6,8 =

3(γ(2))2 − γ(4)

2304
,

c̃3,6,10 = −
γ(2)

7680
, c̃3,6,12 =

1
322560

. (99)

4.3 Circular Wilson loop

Supersymmetric localisation [29] calculates the expectation value of the circular Wilson loop
on S4 in N ⩾ 2 SYM theories as the matrix-model operatorW(2π) in (2). Here one identifies
N and λ with that of the gauge group U(N) and with the ’t Hooft coupling respectively. The
potential

V (a) =
8π2

λ
a2 , (100)

is generated by the conformal mass of the vector-multiplet scalar in the definition of the Wilson
loop, while the measure comprises the exact one-loop determinants of the field fluctuations
near the localisation locus.
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4.3.1 N = 4 SYM

The maximally-symmetric case is captured by the simplest zero-dimensional dynamics with

µ(a) = a2 . (101)

This falls within the applicability range of sections 4.1 and 4.2. Here we set T̃2 = 1, T̃n⩾3 = 0
due to (100) and γ(n) = 2δn,0 due to (101). We reproduce the weak-coupling expansion of
(106) and also the N−2-term of (107)10 below.

The planar loop equation is solvable at finite coupling. The Wilson loop appears under a
derivative and a convolution11

W′(x) =
λ

16π2

∫ x

0

duW(u)W(x − u) , (102)

therefore it converts to algebraic form by Laplace transform. Since the resolvent (7) coincides
with ω(s) = Ls(W(x)), (102) maps to nothing but the equation for the resolvent

sω(s)− 1=
λ

16π2
ω2(s) . (103)

The correct solution with the decay ω(s)∼ 1/s at infinity is

ω(s) =
8π2

λ

�

s−

√

√

s2 −
λ

4π2

�

, (104)

and leads to the famous Wigner semicircle distribution. We transform12

W(x) = L−1
x (ω(s)) =

4π

x
p
λ

I1

�

x
p
λ

2π

�

, (105)

and recover the planar circular Wilson loop [27]

W(2π) =
2
p
λ

I1

�p

λ
�

. (106)

We recall that this gets replaced by [28]13

W(x) =
1
N

e
λx2

32π2N L(1)N−1

�

−
λx2

16π2N

�

, (107)

at finite N , where L(α)n is a generalised Laguerre polynomial.
In general, loop equations compute the genus-zero n-point resolvents [12, 63, 64], hence

the Wilson loops upon inverse Laplace transforms [57, 65]. High-genus expansion are also
available [66] in scaling limits [58]. We reproduce the series of

W(x , y) =
x y
p
λ

4π(x + y)
I0

�

x
p
λ

2π

�

I1

�

y
p
λ

2π

�

+
x y2λ3/2

48(2π)3N2
I1

�

x
p
λ

2π

�

I2

�

y
p
λ

2π

�

+
x y2λ2

192(2π)4N2

∑

k=0,1

�

y Ik

�

x
p
λ

2π

�

Ik+2

�

y
p
λ

2π

�

+
x
2

Ik+1

�

x
p
λ

2π

�

Ik+1

�

y
p
λ

2π

��

+ (x↔ y) +O(N−4) . (108)

10An expansion algorithm is presented in [59] and appendix B of [60].
11W(x) maps to the k-wound circular Wilson loop, with k ∈ N analytically continued to k = x/(2π) ∈ R. Upon

a rescaling x and u, the relevant parameter in (102) is actually λx2. This matches the gauge-theory dependency
of the k-wound loop, an example of the coupling-rescaling property of loops on S2 [61,62].

12The series of (104) for s→∞ matches that of (105) for λ→ 0.
13Multiplying this by exp(− λx2

32π2N2 ) is the result valid for the SU(N) gauge group.
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The rest of the section is devoted to derive the planar order (118) below in a way neater,
although less general, than [58]. We begin with (3)

W(x , y) =

*

∑

i, j

exai e ya j

+

− N2W(x)W(y) . (109)

The second term is evaluated with (107) whereas the first one calls for some ingenuity. Taking
inspiration from the coincident Wilson loops [28,58,60], we represent it as (4)

*

∑

i, j

exai e ya j

+

=
1
Z

+∞
∫

−∞

∏

i

dai

∏

i< j

(ai − a j)
2
∑

i, j

exai e ya j e−
8π2N
λ

∑

i a2
i , (110)

separate N “diagonal” and N(N − 1) “non-diagonal” terms

1
Z

+∞
∫

−∞

∏

i

dai

∏

i< j

(ai − a j)
2
�

Nea1(x+y) + N(N − 1)ea1 x+a2 y
�

e−
8π2N
λ

∑

i a2
i , (111)

and rescale ai → λ ai/(8π2N)

NW(x + y) +
N(N − 1)

Z ′

+∞
∫

−∞

∏

i

dai

∏

i< j

(ai − a j)
2e
r

λ

8π2N
(a1 x+a2 y)e−

∑

i a2
i . (112)

We apply the method of orthogonal polynomials [28]. The Hermite polynomials

Pn(a) =
Hn(a)

p

2nn!
p
π

, (113)

are defined by the recurrence relation H0(a) = 1 and Hn+1(a) = 2xHn(a)−H ′n(a). We integrate
over the N − 2 eigenvalues that do not appear explicitly in (112)

NW(x + y) +

+∞
∫

−∞

dada′
N−1
∑

i, j=0

�

P2
i (a)P

2
j (a
′)− Pi(a)Pj(a)Pi(a

′)Pj(a
′)
�

e
r

λ

8π2N
(ax+a′ y)e−a2−a′2 .

(114)
The orthogonality relation generalises to the formula in Appendix A of [58]

+∞
∫

−∞

da Pi(a)Pj(a)e
−
�

a− x
4π

q

λ
2N

�2

=

√

√

√ j!
i!

�

λx2

16π2N

�i− j

L(i− j)
j

�

−
λx2

16π2N

�

. (115)

Using this and recalling (107), (114) becomes

e
λ(x+y)2

32π2N L(1)N−1

�

−
λ(x + y)2

16π2N

�

+ e
λ(x2+y2)

32π2N

N−1
∑

i=1

i−1
∑

j=0

�

Li

�

−
λx2

16π2N

�

L j

�

−
λy2

16π2N

�

−
j!
i!

�

λx y
16π2N

�i− j

L(i− j)
j

�

−
λx2

16π2N

�

L(i− j)
j

�

−
λy2

16π2N

�

+ (x↔ y)

�

. (116)
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The large-N expansion is hard [66], save for x = y [57] (see section 4.1 of [60])
*

∑

i, j

exai exa j

+

=
16π2N2

λx2

�

I1

�

x
p
λ

2π

��2

+
x
p
λ

4π
(117)

×
�

I0

�

x
p
λ

2π

�

I1

�

x
p
λ

2π

�

+
1
6

I1

�

x
p
λ

2π

�

I2

�

x
p
λ

2π

��

+O(N−2) .

When the dust settles in (109), one obtains

W(x , x) =
x
p
λ

4π
I0

�

x
p
λ

2π

�

I1

�

x
p
λ

2π

�

+O(N−2) . (118)

4.3.2 N = 2∗ SYM

The circular Wilson loop in N = 2∗ SYM with hypermultiplet mass m on the sphere S4 of
radius R is measured by the matrix modelW(2π) with14

µ(a) =
a2H2(a)

H(a−M)H(a+M)
, H(a) =

∞
∏

n=1

�

1+
a2

n2

�n

e−
a2
n , M = mR . (119)

The massless/small-radius limit M → 0 makes the theory flow to the UV theory in section
4.3.1. The properties of H are in appendix A of [67].

Small-coupling solution. The integral representation15

γ(a) = 2+ 2a
H ′(a)
H(a)

− a
H ′(a−M)
H(a−M)

− a
H ′(a+M)
H(a+M)

(120)

= 2+ 4a

∫ ∞

0

dω
sin2(Mω)
sinh2ω

sin(2ωa) ,

allows systematic differentiation: we expand

(sinhω)−2 =
∞
∑

k=1

4ke−2kω , (121)

swap x-derivative and ω-integration

�

d
d x

�n

x sin(2ωx)

�

�

�

�

x=0
= (−)

n
2+1n(2ω)n−1 , (122)

then integrate and sum over k. The result for n= 2,4, . . . is16

γ(n) = −2(−)
n
2 n!(2ζn−1 − ζn−1,1−iM − ζn−1,1+iM − iMζn,1−iM + iMζn,1+iM ) , (123)

in terms of Riemann and Hurwitz zeta functions

ζs =
∞
∑

k=1

k−s , ζs,a =
∞
∑

k=0

(k+ a)−s . (124)

14Instanton contributions to the measure are dropped because they should become exponentially suppressed at
large N . There is also a divergent factor which has no incidence on expectation values and it is therefore removed.

15The identity holds for real argument and descends from K′′(x) in [67].
16The case n= 2 holds under an operation of limit.
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The result for n= 0 complies with the assumption γ(0) = 2.
A prediction up to N−6 and λ6 follows from (96)-(99). We are able to match a matrix-

model prediction [29] and an arduous two-loop calculation in gauge theory [38]

W(2π)−
1
N

e
λ

8N L(1)N−1

�

−
λ

N

�

=

�

N2 − 1
�

λ2

64π2N2

�

ψ(0)(1+ iM) +ψ(0)(1− iM) + iMψ(1)(1+ iM)

−iMψ(1)(1− iM) + 2γ
�

+O(λ4) , (125)

whereψ(n)(x) =
� d

d x

�n+1
Γ (x) and γ= −ψ(0)(1) is the Euler’s constant. Further orders can be

generated with the Mathematica notebooks.

Loop equation. We push the solution to very high order thanks to a simpler form of the loop
equation in the N = 2∗ model

W′(x) =
λ

16π2

∫ x

0

ds
�

W(s)W(x − s) +
1

N2
W(s, x − s)

�

(126)

−
λ

4π2

∫ ∞

0

dω
sin2(Mω)
sinh2ω

Im[W(2iω)W(x − 2iω)

+
1

N2
W(2iω, x − 2iω)

�

.

The proof repeats section 2.2 with the substitution of (23) and (24) with the single integral
representation (120). The properties W(z∗) = (W(z))∗ and W(z∗, w∗) = (W(z, w))∗ under
complex conjugation pull out the imaginary part Im. The first line is the (finite-N version
of the) equation (102). In the second line the single integral is due to the mass-dependent
deformation of the Vandermonde measure (120) and offers an edge over the general equation
(27). This could be appreciated in the linear-algebra approach of section 3.3 or numerically.17

Here we explore a shortcut inspired by functional analysis.
The equation closes on a single functionW(x) in the planar limit. The solution is the fixed

point

W(x) = F[W](x) , W(0) = 1 , (127)

of the functional

F[g](x) = 1+
λ

16π2

∫ x

0

d y

∫ y

0

ds g(s)g(y − s) (128)

−
λ

4π2

∫ x

0

d y

∫ ∞

0

dω
sin2(Mω)
sinh2ω

Im[g(2iω)g(y − 2iω)] ,

in the space of holomorphic functions on C. The form of the equation restricts the analysis
to the strip Re(x) ∈ [0, 2π] as noted below (27). We construct a sequence of approximants
{W(n)(x)}n=0,1,... by iteration W(n) = F[W(n−1)]. In perturbation theory we close them on
polynomials seeded by the normalisation constant W(0)(x) = 1 in such a way that the fixed-
point iteration converges: the approximants are partial sums

W(n)(x) =
n
∑

ℓ=0

Wℓ(x)
�

λ

16π2

�ℓ

, (129)

17Numerics at strong coupling may benefit from the further step of trading the s-integration with the integral
kernel R̂ of (30).
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Figure 1: Domb-Sykes plot to estimate the radius of convergence of the perturbative
solution at small mass. Each colours denote a set of Taylor coefficients for a M2m-
correction to the Wilson loop. The points settle on asymptotes (dotted lines) with
intercepts r−1

m = π2/(λRm). The fits of the last 5 data points give r−1
2 = −0.999,

r−1
2 = −1.000, r−1

3 = −0.998, r−1
4 = −0.992 and r−1

5 = −0.983. The near-zero value
r−1
0 = −0.002 detects the infinite radius of the zero-mass solution (106). The discrep-

ancy from 0, due to a finite number of coefficients, may be taken as a rough estimate
of the error on the other r−1

m . Data sets with larger m are bending downwards in the
fitting window. This fact signals a slower convergence rate and can explain why the
estimates of r−1

4 and r−1
5 are slightly above the value −1.

generated by

Wℓ(x) =
∫ x

0

d y

∫ y

0

ds
ℓ−1
∑

ℓ′=0

Wℓ′(s)Wℓ−ℓ′−1(y − s) (130)

− 4

∫ x

0

d y

∫ ∞

0

dω
sin2(Mω)
sinh2ω

ℓ−1
∑

ℓ′=0

Im [Wℓ′(2iω)Wℓ−ℓ′−1(y − 2iω)] .

Every approximant is a polynomial of degree ℓ in x2. The M -dependence shows up in a com-
plicated manner through the derivatives (123): we perform the ω-integrals as below (120)

∫ ∞

0

dω
sin2(Mω)
sinh2ω

(2iω)n =
i γ(n+1)

4(n+ 1)
, n= 1, 3, . . . (131)

The imaginary part filters out the cases with even n.18

Small-M analysis. We estimate the radius of convergence of the perturbative solution by ap-
plying the ratio test to a finite number of its Taylor coefficients in (129). We run the algorithm
above to collect those with ℓ= 0, 1, . . . , 35 as exact functions of M .

18A numerical approach to (127) and (128) could exploit the fast convergence of the exact seed (105) at zero
mass to approximate solutions at small M . Each iteration can analytically continue an approximant on the real
segment x ∈ [0, 2π] to the complex strip Re(x) ∈ [0, 2π] by means of the Cauchy-Riemann equations and can
perform the ω-integral numerically. The algorithm has the unique advantage to work at finite coupling. However
the fixed-point convergence is sensitive to accurate continuations far off the real axis.
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At small M we expand19

Wℓ(x) =
∞
∑

m=0

Wℓ,m(x)M2m , (132)

and extract the coefficient sets m = 0, 1, . . . , 5. The analysis in figure 1 is compatible with the
fact that the series at fixed power of M2 have a common radius |Rm|, with

1
Rm
=

λ

16π2
lim
ℓ→∞

Wℓ+1,m(2π)

Wℓ,m(2π)
≈ −

λ

π2
, m= 1, 2, . . . , 5 . (133)

The ratio means the radius-limiting singularity lies on the negative axis at λ ≈ −π2. The
lack of analytic control on all Taylor coefficients prevents a non-perturbative resummation.
However, the estimated value agrees with the exact critical value λ= −π2 that affects the free
energy [32, 67], the circular Wilson loop [67] (see (135) below) and its phase transitions in
the decompactification limit M →∞ [34] of N = 2∗ SYM. Convergence-limiting singularities
are ubiquitous phenomena of perturbative expansions in N = 2 theories,20 affecting the free
energy [71], local operators and circular BPS Wilson loops [41,42,72–75].

We check that the truncated solution at order M2

M2
35
∑

ℓ=0

Wℓ,1(2π)
�

λ

16π2

�ℓ

, (134)

matches the perturbative expansion of the finite-coupling formula [67]21

W(2π)−
2
p
λ

I1

�p

λ
�

= 2πM2

∫ ∞

0

dω
ωJ1

�p
λω
π

�

(ω2 +π2) sinh2ω
(135)

×
�

πI0

�p

λ
�

J1

�p
λω

π

�

−ωI1

�p

λ
�

J0

�p
λω

π

��

+O(M4) ,

where In and Jn are the Bessel functions of the first kind. To this end we expand (135) for
small λ and integrate

∫ ∞

0

dω
ωn

sinh2ω
=

n!
2n−1

ζn , n= 2, 3, . . . (136)

The denominator ω2 + π2 cancels order by order. The estimated leading singularity agrees
with the logarithmic branch point λ= −π2 that affects (135).

Finite-M analysis. The study is hindered by the slow rate of convergence of the solution.
Evidence of this trend is appreciated in figure 1. The behaviour of the coefficients, some of
them in figure 2, suggests that they are positive for ℓ ⩽ ℓ∗(M) and alternate in sign beyond a

19The small-coupling and small-mass limits commute.
20They are expected for a generic observable in a finite theory [8] including N = 4 SYM. Branch-point singular-

ities show up in the single-magnon dispersion relation [68,69] and the modern quantum algebraic treatment [70]
for dimensions of local operators. Convergence properties should be ascribed to the combinatorics of planar graphs
and are typically insensitive to the particular observable. The circular Wilson loop is an exception due to massive
diagram cancellations [27], for which the perturbative series has an infinite radius of convergence and it is re-
summed to (106). The richer graph content of the observable in N = 2∗ SYM shifts the radius to a finite value. It
may be related to integrability structures yet to be fully clarified.

21Following the ideas in [76], this first term in the Taylor expansion in M2 can be related to the integrated
two-point correlator in the N = 4 super-Yang-Mills [77,78].
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Figure 2: Analysis of the perturbative solution at finite mass. The Taylor coefficients
Wℓ(2π) are positive at M = 0, oscillate in a finite region and grow logarithmically to
positive infinity. The number of zeros seems to grow linearly in ℓ and their positions
to spread over the positive axis. Notice two curves are magnified to fit the window.

certain order ℓ > ℓ∗(M). The small number of extracted coefficients is insufficient to claim that
there exists a tail without consecutive sign repetitions,22 or to pinpoint a radius of convergence
by root test applied to such tail. We remind that one expects the radius to be a function of M
on general grounds.

Large-M analysis. The Taylor coefficients in (129) expand in log M and M−1:

W0(2π) = 1 , W1(2π) = 2π2 ,

Wℓ(2π) = 2π2(4 log M)ℓ−1 +
ℓ−2
∑

ℓ′=0

cℓ′(log M)ℓ
′
+ o(M0) , ℓ= 2, 3, . . . , (137)

hence the series breaks down by the ratio test. At exponentially-large M new singularities
should settle in on the positive λ-axis [34],23 although their arise is screened off by the non-
commutativity of the limits λ→ 0 and M →∞.

The structure of (137) is a corollary of the measure γ(2) = 8 log(eγ+1M) + O(M−1) and
γ(n) = O(M0) for n ̸= 2, and of the solutionWℓ(x), which is made of products of γ(n) with the
leading term 2π2(γ(2)/2)ℓ−1. Physically (137) connects to the renormalisation-group prop-
erties of N = 2∗ SYM [29, 32, 67]. In fact the infinitely-heavy matter can be integrated out,
leaving N = 2 SYM with one vector multiplet to the leading approximation. The “kinematic”
scale M sets the dynamically-generated scale ΛR= M exp(−4π2/λ+ γ+ 1) and the coupling

λR =
λ

1− βλ log(eγ+1M)
, (138)

where β = (4π2)−1 is basically the numerical factor in the beta function of N = 2 SYM [29]. If
one insists on taking λ→ 0− and later M →∞, the Wilson loop admits an expansion similar
to (129)

W(2π) =
∞
∑

ℓ=0

Cℓ

�

λR

16π2

�ℓ

, in N = 2 SYM, (139)

22A convergence-limiting singularity on the negative λ-axis would imply such behaviour. Only the infinite-mass
limit allows the Wilson loop to undergo phase transitions on the positive axis [34].

23See figure 2 in [67].
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Figure 3: Padé approximation of the perturbative solution for M = 0.5. The poly-
nomials (145) of degrees n = 34 and n = 35 (blue curves) are indistinguishable in
the interval λ ≲ 1 and diverge at λ ≈ 1 near the radius of convergence. The blow-
up with opposite signs of even- and odd-degree polynomials diagnoses a singularity
on the negative λ-axis. The Padé approximants (146) (orange curves) reconstruct
the polynomials up to λ ≲ 1, extend them beyond the perturbative region and sta-
bilise around the asymptote (142) (green curve). They become unreliable at larger λ
where they asymptote towards horizontal lines (not shown). Round-off errors in the
evaluation of the polynomials can impair the precision of Padé approximants before
reaching the plateaus.

with C0 = 1 and C1 = 2π2,24 in the renormalised coupling

λR =
∞
∑

ℓ′=0

λℓ
′+1
�

β log(eγ+1M)
�ℓ′

. (140)

Replacing (140) into (139), the coefficient of (λ/(16π2))ℓ reads

C1

�

16π2β log M
�ℓ−1

, (141)

and reproduces what observed in (137).

Large-coupling resummation. Finally we extrapolate the perturbative series beyond the
convergence radius by means of Padé resummation [79,80] in the spirit of [41,72,73,75,81]
and compare to independent analytic results at strong coupling. This sets an important test
of the solution. The Wilson loop was calculated by saddle-point techniques from the matrix
model:

logW(2π) = 2πµ+ log

�

23/2

πµ3/2

�

ĝ(2πi) +
1

25/2π

�

�

+ o(λ0) . (142)

The leading order is that of the Gaussian model with mass-rescaled coupling [33]

µ=

p

λ(1+M2)
2π

, (143)

24They match those (137) in the massive theory. The first coefficient is the normalisation. The one-loop term is
mass independent because in gauge theory it stems solely from the free gluon propagator.
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and the O(1)-correction is the solution of a variant of the Wiener-Hopf problem [35]

ĝ(ω) =
i3/2pπ

2ω
p
ω+ i0+

�

M2 sinh2 ω
2 − sin2 Mω

2

sinh2 ω
2 + sin2 Mω

2

+ (M2 + 1)2ωe−
iφω
2π
Γ
�M−i

2π ω
�

Γ
�

−M+i
2π ω

�

Γ 2
�

− iω
2π

�

×
∞
∑

n=1

(−)n

n n!

�

e
iφn
M−i

ω− 2πn
M−i

Γ
�M+i

M−i n
�

Γ 2
� i

M−i n
� +

e−
iφn
M+i

ω+ 2πn
M+i

Γ
�M−i

M+i n
�

Γ 2
�

− i
M+i n

�

��

, (144)

φ = 2M arctan M − log(M2 + 1) .

The Wilson loop diverges exponentially, hence our analysis should consider the logarithm of a
truncated solution (129)

logW(n)(2π) =
n
∑

ℓ=1

cℓ

�

λ

16π2

�ℓ

+O(λn+1) . (145)

For example one measures c1 = 2π2 and c2 = π2γ(2) − 2π4/3 with γ(2) in (123).25 The cutoff
n= 35 suffices to deliver good results at moderate values M ≲ 1. When the data is limited by
a finite number of coefficients of (145), it is useful to define the Padé approximants26

P[M/K](λ) =

� 35
∑

ℓ=1

cℓ

�

λ

16π2

�ℓ
�

[M/K]

. (146)

The square-root scaling and the expansion in fractional powers of (142) force a choice between
P[K/K](λ) = O(λ0) and P[K+1/K](λ) = O(λ). As an example, figure 3 shows that diagonal ap-
proximants are an excellent interpolation between the perturbative solution (145) at λ ≲ 1
and the prediction (142) in a wide non-perturbative region. In particular, they better approx-
imate (142) for increasing Padé degree K at fixed λ.27 Precise numerical results and the type
of the singularity could be investigated by series accelerations and a conformal map [73].

4.4 Hoppe model

We also cover the model put forward and solved in the planar limit by [22], with

µ(a) =
a2

a2 + 1
. (147)

The Gaussian case V (a) = a2/(8π2λ)was revisited via a saddle-point integral equation for the
planar distribution of the matrix eigenvalues [23]. Our result is (96)-(99) with γ(n) = 2(−)

n
2 n!

and the values of c̃n,ℓ,m multiplied by (8π2)2ℓ in order to compensate for T̃2 = (8π2)−2 ̸= 1.
The non-zero N0-coefficients read up to λ6

c̃0,1,2 = 32π4 , c̃0,2,2 = −4096π8 ,

c̃0,2,4 =
1024π8

3
, c̃0,3,2 = 1835008π12 ,

25The authors of [82] employ a trick to go from the first two terms to large coupling in the case of the
cusp anomaly of the light-like Wilson cusp. Here it would find the constants C1(M) and C2(M) such that
C1(M) logW(2)(2π) + C2(M)[logW(2)(2π)]2 = λ, regard this as an exact algebraic equation and invert at large
coupling. Note that such solution would have the same expansion in λ−1/2 of the exact formula (142). However
the coarse numerical agreement deteriorates when M nears the zero of C2(M).

26The degree of (145) puts the bound M +K ⩽ n on the degrees of the numerator M and the denominator K of
the rational approximation.

27They eventually fall short of providing asymptotic expressions due to the wrong asymptotics, see caption of
figure 3.
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c̃0,3,4 = −
262144π12

3
, c̃0,3,6 =

16384π12

9
, c̃0,4,2 = −1157627904π16 ,

c̃0,4,4 = 46137344π16 , c̃0,4,6 = −
2097152π16

3
, c̃0,4,8 =

262144π16

45
, (148)

c̃0,5,2 = −863288426496π20 , c̃0,5,4 = −31675383808π20 ,

c̃0,5,6 =
6308233216π20

15
, c̃0,5,8 = −

134217728π20

45
,

c̃0,5,10 =
8388608π20

675
, c̃0,6,2 = −712483534798848π24 ,

c̃0,6,4 = 24945170055168π24 , c̃0,6,6 = −309237645312π24 ,

c̃0,6,8 =
30064771072π24

15
, c̃0,6,10 = −

1073741824π24

135
,

c̃0,6,12 =
268435456π24

14175
,

the N−2-coefficients

c̃1,2,2 = 4096π8 , c̃1,2,4 =
512π8

3
, c̃1,3,2 = −1835008π12 ,

c̃1,3,4 =
262144π12

3
, c̃1,3,6 =

32768π12

9
, c̃1,4,2 = 1157627904π16 ,

c̃1,4,4 = −46137344π16 , c̃1,4,8 =
262144π16

9
, c̃1,5,2 = −695784701952π20 , (149)

c̃1,5,4 = 27380416512π20 , c̃1,5,8 = −
67108864π20

9
,

c̃1,5,10 =
16777216π20

135
, c̃1,6,2 = 241617680203776π24 ,

c̃1,6,4 = −12094627905536π24 , c̃1,6,6 = −
300647710720π24

3
,

c̃1,6,8 =
15032385536π24

3
, c̃1,6,10 = −

7516192768π24

135
,

c̃1,6,12 =
134217728π24

405
,

the N−4-coefficients

c̃2,4,6 =
2097152π16

3
, c̃2,4,8 =

131072π16

15
, c̃2,5,2 = −167503724544π20 ,

c̃2,5,4 = 4294967296π20 , c̃2,5,6 = −
6308233216π20

15
,

c̃2,5,8 =
469762048π20

45
, c̃2,5,10 =

96468992π20

675
,

c̃2,6,2 = 470865854595072π24 , c̃2,6,4 = −12850542149632π24 ,

c̃2,6,6 =
1228360646656π24

3
, c̃2,6,8 = −

105226698752π24

15
,

c̃2,6,10 =
3758096384π24

135
, c̃2,6,12 =

1879048192π24

2025
,

and the N−6-coefficients

c̃3,6,10 =
536870912π24

15
, c̃3,6,12 =

67108864π24

315
. (150)
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5 Strong coupling: Solution

We now turn to strong coupling. In what follows we develop a method to systematically solve
the loop equation in that regime. This is particularly important for localisation matrix models
which often have dual holographic description that becomes simple at strong coupling.

To discuss the strong-coupling limit we redefine the potential as

V (a) = ħh2ν−2U(ħha) . (151)

If the potential is quadratic and ν = 1, the new parameter ħh is literally the inverse of the
coupling. Indeed, for V (a) = a2/2g2 the rescaled potential is U(x) = x2/2, and ħh = 1/g.
The anharmonic terms, if present, must follow a particular pattern in the ħh→ 0 limit. In the
general parameterisation (5), the individual couplings Tn scale as ħhn, while the parameter ν
defines the overall scaling weight of the potential. We show later that this parameter is not
arbitrary and is dictated by the behaviour of the integration measure µ(a) at large a, in order
for the strong-coupling limit to be well-defined.

The strong-coupling regime corresponds to ħh → 0. When the potential is quadratic, ex-
panding in ħh is equivalent to expanding in 1/g, exactly opposite to the weak-coupling expan-
sion considered so far. For example, in the N = 2∗ SYM theory or any other model relevant
for AdS/CFT, V (a) = 8π2a2/λ and thus ħh= 4π/

p
λ. This coupling coincides with the natural

expansion parameter in the dual string theory, making the strong-coupling expansion in the
matrix model equivalent to the weak-coupling expansion on the string worldsheet.

We develop a systematic procedure to generate expansion of the Wilson loop in ħh for the
potential of the form (151) and an arbitrary measure. Our motivation comes from localisa-
tion and string theory, but the method is completely general and we expect it to have other
applications.

The form of the potential (151) suggests to rescale the integration variables ai → ai/ħh.
This tacitly assumes that typical ai ’s in the eigenvalue integral are very large, of order 1/ħh.
The measure µ(a), it may seem, can be replaced by its large-argument asymptotics and then
expanded in 1/a to generate the next orders of the expansion. The loop equations, as we
shall see, do justify this simple reasoning up to a small but important caveat. The measure
depends on the eigenvalue difference and the typical distance between nearby eigenvalues
may be of order one or smaller even if all eigenvalues are large. This is especially true at large
N when the eigenvalues form a continuous distribution and can be found arbitrary close to
one another. More care is thus needed, and our goal is to set up a systematic procedure to
develop the strong-coupling expansion that would take this effect into account.

For the Wilson loop, the two regimes have to be distinguished at strong coupling: short
loopsW(x) with x ∼ ħh and long loops with x ∼ 1. The naive strong-coupling approximation
holds for short loops, while for long loops (more interesting for applications) nearby eigenval-
ues start to become important and the answer depends on the measure in a non-trivial way.
The two regimes match in the overlapping region of validity 1≫ x ≫ ħh.

5.1 Short loops

The natural variable for short loops is x/ħh. The integration variables in the loop equation,
be it (27) or (30), need to be rescaled accordingly. The kernels can then be replaced by their
small-argument asymptotics (in the Fourier space) or the large-argument ones in the original
a-variables. To proceed further we need to know how the measure, equivalently the kernel in
the loop equation, behaves in this limit. We will assume a power-like asymptotics (cf. (31)),
which covers a large class of physically interesting eigenvalue models:

R̂(ω)
ω→0
≃ −πβ signω|ω|2ν−2 ≡ R̂∞(ω) . (152)
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All eigenvalue integrals with measure growing not faster than polynomially fall into this class.
Indeed, for

µ(a)
a→∞
≃ C a2β , (153)

and β > 0,

γ̂(ω)
ω→0
≃ 4πβδ(ω) , R̂(ω)

ω→0
= −πβ signω , (154)

which in our notations corresponds to ν= 1. This behavior is found for example in the N = 2∗

localisation integral. In the Hoppe model the kernel has a power-like asymptotics with an
exponent different from one. We will discuss the Hoppe model in greater detail later.

Denoting by W∞ the leading-order strong-coupling approximation for short loops, we ar-
rive at the equation

iħh2ν−1

2
U ′
�

−iħh
∂

∂ κ

�

W∞(κ) =

+∞
∫

−∞

dω
2π

R̂∞(ω)W∞(κ−ω)W∞(ω) , (155)

in which all the ħh-dependence can be absorbed into rescaling κ → ħhκ. Notice that for this
to happen the exponents in the kernel (152) and in the potential (151) must agree with one
another. Upon the rescaling we get the loop equation for the ν-model from sec. 2.3.

The solution (analytically continued to complex κ) is

W∞(x) =
∑

n⩾0

An
Iν+n

�µx
ħh

�

�µx
ħh

�ν+n , (156)

with

An =
µ2ν−1(2n+ 1)!
4πβΓ (2ν− 1)

1
∫

−1

da (1− a2)ν−n− 3
2D(ν)n (a)

�

a
∂

∂ a
+ 2ν− 1

�

U ′(µa) , (157)

which differs from (49) by an extra factor of β from the kernel in (154). The parameter µ
is to be fixed by normalisation, which we will discuss later, after taking into account the next
correction in ħh.

5.2 Long loops

We can get an insight into the behaviour of long loops by considering a short loop with x ≫ ħh,
but x ≪ 1. Approximations used in deriving (156) then still apply, and we can just take
the x → ∞ limit of that expression. All the Bessel functions have the same exponential
asymptotics, taking into account the power-like prefactor we can see that the term with n= 0
is the largest one, and we get:

W∞(x)
1≫x≫ħh
≃

A0p
2π

�

ħh
µx

�ν+ 1
2

e
µx
ħh . (158)

The constant A0, given by (157), can be simplified taking into account the explicit form of the
first Gegenbauer polynomial (37) and integrating by parts:

A0 =
µ2

2ν
p
πβΓ

�

ν− 1
2

�

µ
∫

−µ

da
�

µ2 − a2
�ν− 3

2 U ′′(a) . (159)
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For yet larger x of order one the short-loop approximation can no longer be trusted, but it
is natural to expect that exponential dependence on x will persist. This suggests an Ansatz:

W(x) =
A0ħhν+

1
2

p
2πµν+

1
2

e
µx
ħh f(x) , (160)

with some unknown function f(x). Matching to the short-loop solution we find:

f(x)
x→0
≃ x−ν−

1
2 , (161)

which will serve as a boundary condition for the equation we are going to derive.
Accordingly, the oscillating Wilson loop (29) behaves as

W (κ) =
A0ħhν+

1
2

p
2πµν+

1
2

e
iµκ
ħh f (κ) , (162)

where f (κ) and f(x) are related by analytic continuation κ→ −i x . An important remark is
in order here. For real κ the Wilson loop no longer grows but oscillates and this gives rise to
subtleties with the analytic continuation. An instructive example is the Bessel function. The
modified Bessel function grows exponentially:

Iν(x)
x→∞
≃

1
p

2πx
e x , (163)

while its analytic continuation, the ordinary Bessel function asymptotes to

Jν(κ)
κ→∞
≃

√

√ 2
πκ

cos
�

κ−
πν

2
−
π

4

�

, (164)

and contains oscillating exponentials of both signs, so the analytic continuation and the limit
of the argument going to infinity do not commute. To suppress the exponential with the wrong
sign, and to continue using the single exponent in (162), we need to give κ a (small) negative
imaginary part.

This example shows that an analytic continuation of f (κ) is only well-defined in the lower
half-plane of κ, where it coincides with f(x):

f (−i x) = f(x) , Re x > 0 . (165)

The function f (κ) can be analytically extended to the real line and to the upper half-plane,
but it need not coincide there with the ħh → 0 limit of the exact Wilson loop. The latter is
well-defined for any value of the argument, while an analytic continuation of f (κ) into the
upper half-plane may hit singularities of various kinds.

One singularity is actually prescribed by the boundary condition (161), according to which
f (κ) has a branch point at zero, shifted slightly into the upper half-plane:

f (κ)
κ→0
≃

i−ν−
1
2

(κ− iε)ν+
1
2

≡ f∞(κ) . (166)

The branch of (κ− iε)ν+
1
2 is defined with a cut along the positive imaginary semi-axis. Other

singularities may hide further away from the origin.
Keeping this in mind, we may substitute (162) into the loop equation (30). As emphasised

early on [2], an exponential Ansatz always goes through. Indeed, the exponential factors
re-combine inside the integral and cancel between the two sides so long as the exponent is
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linear in κ. Another simplification occurs because the exponent is large at ħh → 0, bearing
certain similarity to the semi-classical wavefunction in quantum mechanics. The action of
the differential operator V ′(−i∂ /∂ κ) = ħh2ν−1U ′(−iħh∂ /∂ κ) on the Wilson loop can then be
replaced with multiplication by a constant ħh2ν−1U ′(µ), to the leading order in ħh.

At a first sight this leads to problems. The power counting does not seem to match. The
left-hand side is proportional to ħh2ν−1 × ħhν+

1
2 = ħh3ν− 1

2 , while the right-hand side scales as
ħhν+

1
2 ×ħhν+

1
2 = ħh2ν+1. Next, the integral over ω diverges at zero for ν⩽ 3/2 as a consequence

of (166).
The two problems are not unrelated. The integral includes not only ω ∼ 1, but also

ω ∼ ħh where the Ansatz (166) is not applicable. The short-loop contribution is proportional
to ħh2ν−1 × ħhν+

1
2 = ħh3ν− 1

2 , a factor of ħh
3
2−ν bigger than the contribution of long loops (propor-

tional to ħh2ν+1). To extract the short-loop contribution we can use the solution (156) inside
the integral for the small range of ω∼ ħh, but first it is necessary to isolate this leading term in
the equation.

This can be done by the following trick. In the dangerous region of small ω the Wilson
loop is well approximated by W∞ and the kernel by R̂∞(ω). Adding and subtracting those
splits the integral into two parts:

iħh2ν−1

2
U ′(µ)W (κ) =

+∞
∫

−∞

dω
2π

��

R̂(ω)− R̂∞(ω)
�

W (κ−ω)W (ω)

+R̂∞(ω)W (κ−ω)
�

W (ω)−W∞(ω)
��

+

+∞
∫

−∞

dω
2π

W (κ−ω)R̂∞(ω)W∞(ω) . (167)

In the last term the main contribution comes from ω∼ ħh and W (κ−ω) there can be replaced
by W (κ) (for κ∼ 1). The remainder, one can show, integrates to28

+∞
∫

−∞

dω
2π

R̂∞(ω)W∞(ω) =
iħh2ν−1

2
U ′(µ) , (168)

and cancels the left-hand side.
The integral in the middle of (167) converges at ω = 0 and thus receives no contribution

from short loops. The exact Wilson loop can now be replaced by its strong-coupling asymp-
totics (162):

+∞
∫

−∞

dω
2π

f (κ−ω)
�

R̂(ω) f (ω)− R̂∞(ω) f∞(ω)
�

= 0 . (169)

This non-linear integral equation on the scaling function f (κ) describes the strong-coupling
behaviour of the Wilson loop for κ∼ 1.

Our approach to solving this equation is inspired by the Wiener-Hopf method, in the form
it was applied to matrix models in [35, 40, 83, 84]. Our results are actually equivalent to the
Wiener-Hopf solution of N = 2∗ super-Yang-Mills [35], given by (144), even if our derivation
is different and also applicable to any generalised eigenvalue model.

28This formula can be proven by sending κ → (1 − iε)∞ in the equation (155), using (158) and replacing
V ′(−iħh∂ /∂ κ) with ħh2ν−1U ′(µ). It can be also derived by direct integration of the exact solution (156).
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Figure 4: Closing the contour of integration in the upper half-plane.

The key point is the Riemann-Hilbert decomposition of the kernel:

R̂(ω) =
G+(ω)
G−(ω)

, (170)

where G+(ω) admits an analytic continuation into the upper half-plane and G−(ω) into the
lower one. This representation exists under very general assumptions and is unique up to
simultaneous rescaling of G+ and G− by the same constant.

The equation (169), as it stands, is defined on the real line. The idea is to deform the
contour of integration into the complex plane, more precisely into its upper half where f (κ−ω)
is a well defined function of ω for a fixed real κ. The analytic form of the asymptotic kernel is

R̂∞(ω) = −πβ(ω+ iε)ν−
3
2 (ω− iε)ν−

1
2 , (171)

where the two factors have cuts along the imaginary axis in the opposite directions. The
complex function so defined indeed coincides with the real-valued function (152) once the
argument is restricted to the positive half of the real line, while in the complex plane it has
two cuts along the positive and negative imaginary semi-axes. To extend this function to
negative semi-axis we need to pass between the two branch points at ω = ±iε. The phases
of the two factors rotate in the opposite direction, because their cuts extend in the opposite
half-planes, producing an overall minus sign. This is the origin of the signω factor in (152).

The Wiener-Hopf decomposition of the asymptotic kernel, obvious from (171), defines the
boundary conditions for the exact Wiener-Hopf factors:

G+(ω)
ω→0
≃ −πβ(ω+ iε)ν−

3
2 , (172)

G−(ω)
ω→0
≃ (ω− iε)

1
2−ν . (173)

Common normalisation here is a matter of convention. Being made, it fixes the rescaling
ambiguity of the Riemann-Hilbert decomposition.

With these data at hand we can proceed with the analytic continuation of (169). Taking
f∞ from (166) and denoting f /G− = P, we can write the integral equation as

+∞
∫

−∞

dω
2π

f (κ−ω)

�

G+(ω)P(ω) +
πβ i−ν−

1
2 (ω+ iε)ν−

3
2

ω− iε

�

= 0 , (174)

with P being the new unknown function. Importantly, this function is analytic in the lower
half-plane.

The next step is a contour deformation trick. If the contour shown in figure 4 encircles
no singularities of the integrand, the integral will automatically be zero, and we will be done.
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To achieve this we first notice that the function f (κ −ω) is analytic in the upper half-plane
of ω, and so is G+(ω). There are two possible obstructions to closing the contour. One is
the pole at ω = iε. Another is possible singularities of P(ω) in the upper half-plane. We
are in principle agnostic about the latter, however, any singularity of P that is not localised
at ω = iϵ cannot be cancelled by the second term. Barring no accidental cancellations occur,
such singularities better not be there and P(ω) better have a pole at ω = iε with no other
singularities whatsoever. The problem reduces to matching the residues such that the pole
cancels in the sum. The integrand in (174) is then analytic in the upper half-plane, the contour
can be closed and the integral will be zero as requested.

Taking into account (172), the residues will match provided

P(ω) =
i−ν−

1
2

ω− iε
. (175)

We thus find:

f (κ) =
i−ν−

1
2 G−(κ)
κ− iε

. (176)

This function is manifestly analytic in the lower half-plane, has the right asymptotics (166) in
virtue of (173) and solves (169) by the above contour-deformation argument.

For the Wilson loop, as defined in (160) and (162), we get:

W(x) =
i

1
2−νA0ħhν+

1
2

p
2πµν+

1
2 x

e
µx
ħh G−(−i x) . (177)

This is our final result. The constant A0 is given by (159) and G− is determined by the Riemann-
Hilbert factorisation of the kernel. To close the circuit we need to find µ, which can be done by
imposing the normalisation conditionW(0) = 1. The asymptotic solution (177) is unsuitable
for this purpose, since it applies to long loops with x ≫ ħh and cannot be continued down to
x = 0. We need to use short loops, but the solution (156) is not sufficient. Since µ enters (177)
in the ratio µ/ħh it has to be known to O(ħh). Hence we need to know the short-loop solution
to the next order in the strong-coupling expansion. Fortunately, the first-order corrections are
simple and can be easily taken into account.

5.2.1 Shift of the spectral endpoint

To find the short-loop solution (156) we replaced the kernel by its asymptotic form (152) and
rescaled ω→ ħhω. Since R̂(ω) is an odd function, see (16), at small ω,

R̂(ω) = R̂∞(ω)
�

1+O(ω2)
�

. (178)

The correction term is of relative order ω2 → ħh2ω2, and can be neglected as long as we are
interested in effects linear in ħh.

At the same time, the Riemann-Hilbert factors G±(ω) are neither even nor odd and, in
general,

G−(ω)
ω→0
≃ (ω− iε)

1
2−ν(1+ iγω+ . . .) . (179)

The linear term then affects the solution at O(ħh).
The solution for long loops has to match with (158) at small x . Taking into account the

first correction, that is, expanding the already known solution (177) in x , we find:

W∞(x)
1≫x≫ħh
≃

A0p
2π

�

ħh
µx

�ν+ 1
2

e
µx
ħh (1+ γx + . . .) . (180)
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Matching it to the general expression for short loops (156) requires to include the n = −1
term, absent in the zeroth-order solution, with the coefficient

A−1 =
ħhγ
µ

A0 . (181)

The solution for short loops accurate through O(ħh) is thus

W∞(x) =
∑

n⩾0

An
Iν+n

�µx
ħh

�

�µx
ħh

�ν+n +
ħhγ
µ

A0

Iν−1

�µx
ħh

�

�µx
ħh

�ν−1 . (182)

It may seem odd that the equation for short loops has not changed at O(ħh) but the solution
does receive an order ħh correction. There is no contradiction, however. The reason is that the
key operatorial identity (39) simply gives zero for n < 0, according to (35). Any term with
n< 0 can thus be added without affecting the equation. They cannot arise at the zeroth order,
as they compromise the boundary conditions at x →∞, but at higher orders they are allowed
and do occur by the matching argument above.

The normalisation conditionW(0) = 1 results in

∑

n⩾0

An

2ν+nΓ (ν+ n+ 1)
+ħh

γA0

2ν−1µΓ (ν)
= 1 , (183)

with an extra correction term compared to (51). This equation determines µ to the O(ħh)
accuracy and thus completes the solution for the Wilson loop at the two first orders in the
strong-coupling expansion.

To conclude, the solution for the Wilson loop is given by (177) where µ si determined by
(183) and the constants An are taken from (157).

For the Gaussian model with U(a) = a2/2,

A0 =
µ2ν

2νΓ (ν)β
, (184)

all other An = 0 and

µ= 2

�

Γ (ν)Γ (ν+ 1)β

�
1

2ν

−ħhγ , (185)

to the first order in ħh. We checked that these equations along with (177) reproduce the first two
orders of the strong-coupling expansion in the N = 2∗ SYM theory [35]. To further illustrate
our method we consider the strong-coupling expansion in the Hoppe model.

6 Strong coupling: Hoppe model

The Hoppe model is defined by the Gaussian potential V (a) = a2/2g2 and the measure29

µ(a) =
a2

a2 + 1
. (186)

The kernel of the loop equation is determined by the log-derivative of the measure.

R(a) =
1
a
−

a
a2 + 1

, (187)

29A more general measure µ(a) = a2/(a2+m2) does not introduce new parameters, as m can be scaled away by
the change of variables a→ am with subsequent redefinition of the coupling.
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which gives, upon Fourier transform:

R̂(ω) = −2π e −
|ω|
2 sinh

ω

2
. (188)

In contradistinction to (154), the kernel vanishes at ω= 0:

R̂(ω)
ω→0
≃ −πω≡ R̂∞(ω) , (189)

and has a non-trivial index and a slope

ν=
3
2

, β = 1 . (190)

The same index controls the scaling of the potential and thus defines the parameter of the
strong-coupling expansion. Comparing the potential V (a) = a2/2g2 to the general scaling
form (151) we find:

ħh= g−2/3 . (191)

We thus come to a conclusion, not completely obvious from the model’s definition, that the
strong-coupling expansion goes in powers of g−2/3.

6.1 Short loops

For short Wilson loop we can use the solution of the ν-model with the asymptotic kernel,
whose explicit form for the Gaussian potential is given by (156) with the constants A0 and µ
in (184), (185). Ignoring, for the moment, the O(ħh) shift of the endpoint, we get:

µ= (3π)
1
3 , A0 = 3

s

π

2
, (192)

and

W∞(x) =

√

√ 3
2x2

I 3
2

�

(3πg2)
1
3 x
�

=
3
y3
(y cosh y − sinh y)

�

�

�

�

y=(3πg2)
1
3 x

. (193)

This corresponds to the eigenvalue density

ρ(a) =
3

4B3
(B2 − a2) , B = (3πg2)

1
3 , (194)

defined on the interval from −B to B. The density can be found from (53), with A0 taken from
(192) and µ replaced by B to account for the rescaling µ→ µ/ħh= µg2/3 = B in (156). These
results are valid for x ∼ g−2/3. For longer loops the formulas from section 5.2 should be used
instead.

6.2 Long loops

The kernel (188) can be readily factorised with the help of an analytic representation of |ω|:

|ω|=
iω
π

�

log
ω− iε

2π
− log

ω+ iε
2π

�

+ω , (195)

along with representation of sinh as a product of two gamma-functions. That gives:

G+(ω) = −
π

Γ
�

1− iω
2π

� e −
ω
4 −

iω
2π(log ω+iε

2π −1) ,

G−(ω) =
1

ω− iε
Γ

�

1+
iω
2π

�

e
ω
4 −

iω
2π(log ω−iε

2π −1) . (196)
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The solution derived in section 5.2 is expressed in terms of G−, and in addition contains
an O(ħh) shift of µ. The latter is determined by a constant that appears in (179), the Tay-
lor expansion of G−(ω) at small ω. In the Hoppe model that expansion is contaminated by
logarithms:

G−(ω)
ω→0
≃

1
ω− iε

�

1−
iω
2π

logω+ . . .
�

. (197)

This does not have exactly the same form as (179), but if we recall that the small-ω expansion
is matched to the short-loop solution at ω∼ ħh, the log term is essentially equivalent to setting

γ= −
1

2π
logħh . (198)

This determines the endpoint shift with the logarithmic accuracy:30

µ= (3π)
1
3 +

1
2π
ħh logħh . (199)

The next, O(ħh) term cannot be determined by this simple reasoning.
Taking this all into account we find from (177):

W(x) =
�

3
8π2 g4 x6

�
1
3

Γ
�

1+
x

2π

�

e
h

(3πg2)
1
3 − 1

6π log(C g2 x3)
i

x
. (200)

The numerical constant C cannot be determined within this scheme. Finding it requires a
more refined analysis which goes beyond the leading-log approximation.

It is no more difficult to repeat the same analysis for an arbitrary even potential, not neces-
sarily Gaussian. We concentrated on the simplest quadratic case because the Gaussian model
is exactly solvable and the results can be directly confronted with the strong-coupling asymp-
totics of the exact solution.

6.3 Comparison to exact solution

The exact solution of the Hoppe model is formulated in terms of a resolvent function G(z)with
the following properties:31

(i) The resolvent is an even function: G(−z) = G(z).

(ii) It is analytic in the complex plane with two cuts (−B ± i/2, B ± i/2) (figure 5).

(iii) The function is real and monotonous along the contour C shown in the figure.

(iv) The discontinuity of the resolvent across the cut determines the eigenvalue density:

2πρ(a) = G
�

a+
i
2
− iϵ

�

− G
�

a+
i
2
+ iϵ

�

. (201)

(v) At infinity the resolvent behaves as

G(z)
z→∞
≃

z2

2g2
. (202)

30The expansion of the full kernel (188) also does not match the generic form (178), because it starts with
a linear term proportional to |ω| and not quadratic in ω as had been assumed in the derivation. This entails
extra corrections to short loops beyond matching, but those corrections are of order O(ħh) and in the leading-log
approximation can be ignored.

31A derivation can be found in [22,23]; we just quote the results.
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Figure 5: The resolvent is real on the contour C and takes values ξi at marked points.

(vi) The explicit form of the resolvent can be found by integrating the following differential
equation:

dz = g
dG(G − ξ3)

p

2(G − ξ1)(G − ξ2)(G − ξ4)
, (203)

where ξi are the values of G(z) at the points marked red in figure 5. Monotonicity
implies that ξ1 > ξ2 > ξ3 > ξ4.

The resolvent can expressed through elliptic integrals but we will never need this explicit
expression. The parameters of the solution can be also expressed through elliptic integrals,
the K ≡ K(m) and E ≡ E(m):

ξ1 =
K [(2−m)K − 2E]

2π2 g2
,

ξ2 =
K(K − 2E)

2π2 g2
,

ξ3 =
K [(2−m)K − 3E]

2π2 g2
,

ξ4 =
K [(1−m)K − 2E]

2π2 g2
. (204)

The elliptic modulus is implicitly determined by the relation:

6π4 g2 = K2
�

2(2−m)KE − (1−m)K2 − 3E2
�

. (205)

While the endpoint of the eigenvalue distribution is given by

πB = KE(ϕ)− EF(ϕ) , (206)

where
sinϕ =

K − E
mK

. (207)

A step-by-step derivation of all these results can be found in [22,23].
The strong-coupling limit corresponds to m → 1− is when the elliptic K develops a log-

divergence. Denoting

L ≡ 4 log
2

1−m
, (208)

we find:

6π4 g2 ≃
L2(L − 3)

4
, (209)
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and

sinϕ ≃
L − 2

L
. (210)

Likewise,

ξ1 ≃
L(L − 4)
8π2 g2

, ξ2 ≃
L(L − 4)
8π2 g2

, ξ3 ≃
L(L − 6)
8π2 g2

, ξ4 ≃ −
L

2π2 g2
. (211)

Corrections are exponential in L.
It then follows from (206) that

2πB ≃ L − log L − 2 , (212)

up to corrections of order 1/L. Solving (209) for L we get, with the same accuracy:

B = (3πg2)
1
3 −

1
6π

log
�

24π4 g2 e 3
�

. (213)

This agrees with (199) in the leading-log approximation, if we recall that B = µ/ħh and
ħh= g−2/3.

The eigenvalue density can be found from (201) as the discontinuity across the cut in
figure 5. We first notice that ξ3 ≫ ξ4 at large L, while ξ2 and ξ3 are approximately equal.
Since G(z) varies from ξ3 to ξ2 on the lower side of the cut, there it is can be replaced by a
constant

G
�

a+
i
2

�

�

�

�

�

lower side
≃ ξ2 ≃

L2

8π2 g2
≃

B2

2g2
, (214)

where we have used (211) and (212).
On the upper side, g2G varies by a huge amount, from O(L) to O(L2), but both values are

big and the asymptotic behaviour (202) can be used to approximate G(z):

G
�

a+
i
2

�

�

�

�

�

upper side
≃

a2

2g2
. (215)

Subtracting (215) from the (214) we get, according to (201):

ρ(a)≃
B2 − a2

4πg2
=

3
4B3
(B2 − a2) . (216)

This agrees with the solution for short loops (194). The Wilson loop itself can be found by
integrating e xa which makes sense for x ∼ 1/B. For larger x the exponential is too strong and
the integral is dominated by the close vicinity of the endpoint where this crude approximation
for the density is no longer valid.

While G itself is very large near the endpoint, O(L2), its variation on the scale O(L) be-
comes important. It thus becomes necessary to account for the difference between ξ2 and ξ3.
At the same time the difference between ξ2 and ξ1 is much smaller and can still be neglected.
The differential equation (203) in this approximation becomes

dz ≃
g

p

2ξ3

dG
G − ξ3

G − ξ2
, (217)

and can be integrated in elementary functions. Denoting

B +
i
2
− z ≡ α , (218)
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Figure 6: The eigenvalue density is the jump across the branch cut of G(α), equiva-
lently the difference between the two branches for any given α.

we find:

α=
g

p

2ξ3

�

(ξ2 − ξ3) log
ξ2 − ξ3

ξ2 − G
+ ξ3 − G

�

. (219)

The integration constant was chosen to ensure G = ξ3 at α= 0 (figure 5).
The function α(G) is displayed in figure 6. It is obvious that its inverse G(α) has a branch

cut starting at α= 0. The density is the discontinuity across the cut and can be found graphi-
cally from the definition (201), as shown in the plot. The Wilson loop can be computed as

W(x) =

B
∫

−B

daρ(a) e ax ≃ e Bx

∞
∫

0

dαρ(B −α) e −αx

=
e Bx

2π

ξ2
∫

−∞

dG
dα
dG
(G − ξ3) e

−αx . (220)

Using (217) and (219) this can be explicitly written as

W(x) =
e Bx

2π
g

p

2ξ3

ξ2
∫

−∞

dG
(G − ξ3)2

ξ2 − G
e
− g xp

2ξ3

�

(ξ2−ξ3) log
ξ2−ξ3
ξ2−G +ξ3−G

�

. (221)

Introducing a “dimensionless” variable

ξ2 − G = (ξ2 − ξ3)u , (222)

and taking into account that
g

p

2ξ3

(ξ2 − ξ3)≃
1

2π
, (223)

we get:

W(x) =
ξ2 − ξ3

4π2
e (B+

1
2π)x

∞
∫

0

duu
x

2π (1− u)2 e −
ux
2π

=
ξ2 − ξ3

x2
Γ
�

1+
x

2π

�

e x(B− 1
2π log x

2πe ) . (224)

42

https://scipost.org
https://scipost.org/SciPostPhys.17.1.017


SciPost Phys. 17, 017 (2024)

Using (211), (209) and (213), we finally find:

W(x) =
�

3
8π2 g4 x6

�
1
3

Γ
�

1+
x

2π

�

e
h

(3πg2)
1
3 − 1

6π log(3πg2 x3)
i

x
, (225)

which agrees with the solution of the loop equations for long loops (200). Here we have
kept track of the log normalisation and thus computed the constant C in (200) which was left
undetermined in the leading-log approximation.

7 Conclusion

The multipoint Wilson loop operators in this paper can grant access to connected correlators of
matrix fields. Repeating common arguments in literature one can show that our loop equation
too is the top one in a tower of equations that interrelate the n-point and higher-point opera-
tors. A special interest arises in N ⩾ 2 SYM theories: W(2πk1, 2πk2, . . . , 2πkn) measures the
correlator of n supersymmetric Wilson loops, each wrapping the same circular path ki times.

For the large part we concentrated on the zeroth, planar order of the topological expansion,
where we derived systematic approximations at weak and at strong coupling. Higher-genus
results can be generated by the topological recursion, for the models at hand formulated in
[14,15] giving access to potentially arbitrary order in 1/N2.

One can venture into finding patterns in perturbative data and engineering closed-form
solutions. The task would be rewarding given the scarcity of such formulas, but it may require
a dose of ingenuity, judging by the complex nature of the existing results. Simplifications occur
in particular models or limits.

We hint at this prospect in section 4.3.2 when our approximate solution was compared to
the integral representation of the M2-correction, which is an exact function of λ. The order
M4, which contains products of two zeta numbers, may descend from the double integral of
products of Bessel functions. If such step were repeatable for more orders in M2, one would
be tell the analyticity properties of the mass series and possibly resum it.

Other interesting questions involve the effect of instantons (to be accounted by an N -
dependent measure), the large-N and large-x limit with x

p
λ ∼ N (with contributions stem-

ming from isolated eigenvalues) for branes in AdS/CFT [58,85] and the case x1 x2 < 0 which
models Wilson loops in complex-conjugate representations.

Solving the matrix model of circular Wilson loops has been a long-standing dream in N = 2
theories. The loop equation harbours the potential to move the goalpost further into hardly-
accessible regions of the parameter space. One can employ finite-difference methods, as noted
in section 4.3.2, and the Monte Carlo method for the matrix-model average [41,72,75], which
is significantly simpler in matrix models in one dimension.

Loops in N = 2∗ theories feature a rich diagram of quantum phase transitions on the line
of couplings at infinite mass [34]. The non-commuting limits λ→ 0− and M →∞ at fixed ΛR
are markedly different from the perturbation theory in this paper. One could revisit directly in
the loop equation and test the findings against the large-ΛR asymptotics in [32].

The loop equation is an essential tool to measure observables with a matrix-integral rep-
resentation. Supersymmetric localisation techniques are available for BPS observables in any
N = 2 Lagrangian theories [29]. The prime generalisation is the two circular BPS Wilson
loops in SU(N)×SU(N) quiver theory [39,46,83,84,86–88]. The model with equal couplings
is equivalent to the Z2 orbifold of N = 4 SYM with gauge group SU(2N) [89] and the loops
have the same expectation value: the planar value coincides with that in N = 4 SYM and the
non-planar expansion was the subject of a recent study [81]. The model with unequal cou-
plings is the next-to-simplest case where the loop equation could close on and be solvable for
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all Wilson loops associated to different gauge groups. Likewise another setup is the class of
Aq−1 circular quiver theories, which are relevant for a number of motivations including inte-
grability in N = 2 theories. Localisation reduces BPS loops to multi-matrix models for which
perturbative algorithms are available [86,90].

The loop equations are applicable to models with fermionic variables, including su-
pereigenvalue models [91–94] or fermionic matrix models [95]. We believe generalisations
we discussed are applicable to this class of models as well.
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A Saddle-point equation from loop equation

By the standard argument [8], the saddle-point equations for the eigenvalue integral (4) are
equivalent to an integral equations for the eigenvalue density. The latter can be formally
defined as a Fourier transform of the Wilson loop (29):

ρ(a) =

+∞
∫

−∞

dω
2π

e −iωaW (ω) . (A.1)

Here we derive the saddle-point equation for the density from the Fourier-space loop equation
(30).

The latter can be written as

i
2

V ′
�

−i
∂

∂ κ

�

W (κ) =

+∞
∫

−∞

dω
2π

R̂(ω)W (ω) e −ω
∂
∂ κW (κ) , (A.2)

where the exponential operator shifts the argument of W (κ) to κ − ω. Going to the a-
representation (A.1) and doing the ω-integral with the help of (15) we find:

1
2

V ′
�

−i
∂

∂ κ

�

W (κ) =

∫

daρ(a)R
�

−i
∂

∂ κ
− a

�

W (κ) . (A.3)

Differential operators on both sides act on the same function W (κ) and should coincide to give
the same result. This condition is equivalent to an integral equation for the density:

1
2

V ′(b) =

∫

daρ(a)R(b− a) , (A.4)

where we denoted b ≡ −i∂ /∂ κ. This is the standard saddle-point equation [8] for the eigen-
value integral (1).
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B Operator identity and orthogonality relations

In this appendix we derive the operator identity (34) valid for functions whose Fourier trans-
form has a compact support, and derive orthogonality relations for the ensuing differential
polynomials.

Substituting (33) in (34) we get:

D(ν)n f (κ) = −2i

∞
∫

0

dωω2ν−2 Jν+n(ω)
ων+n

1
∫

−1

d t e i tκ f̂ (t) sin tω . (B.1)

Interchanging the order of integration we can evaluate the ω integral explicitly:
∞
∫

0

dωω2ν−2 Jν+n(ω)
ων+n

sin tω=
2ν−n−1Γ (ν)
Γ (n+ 1)

t 2F1

�

ν,−n;
3
2

; t2
�

. (B.2)

It is important to stress that this formula is only valid for |t| < 1. For t outside the unit
interval the result is way more complicated. The restriction to |t| < 1 is sufficient for our
purposes since the t integration is confined to the (−1, 1) interval by definition, because we
only consider functions with a Fourier image of finite support. This is not a technical condition,
without it the derivation falls apart and the final conclusion does not hold at all.

The Gamma-function in the denominator hits the pole at negative integer n. This imme-
diately implies that the whole integral is to zero for n < 0. If n is a non-negative integer, the
result is not zero but then the Taylor expansion of the hypergeometric function truncates to a
finite polynomial [55]:

t 2F1

�

ν,−n;
3
2

; t2
�

=
(−1)nΓ (ν− n− 1)Γ (n+ 1)

2Γ (ν)
Cν−n−1

2n+1 (t) . (B.3)

Under the integral t can be replaced by −i∂ /∂ κ, so any polynomial in t can be replaced by
a differential operator acting on f (κ). The operator identity (34) then immediately follows,
with the operator on the right-hand-side given by the differential polynomial (36).

The polynomials (36) do not satisfy any standard orthogonality relations. That perhaps
requires some explanation. The Gegenbauer polynomials of course form an orthonormal set,
but that assuming the upper index fixed and the lower one varying. In our case both indices
vary with n, so polynomials with different n in fact belong to different series with different
orthogonality measures.

The closest analogy to classical orthogonality can be derived from the differential equation
that the Gegenbauer polynomials satisfy:32

�

(1− a2)
d2

da2
− (2ν− 2n− 1)a

d
da
+ (2ν− 1)(2n+ 1)

�

C (ν−n−1)
2n+1 (a) = 0 . (B.4)

The operator in the square brackets is Hermitian on the interval (−1, 1) with respect to the
measure (1− a2)ν−n− 1

2 . We can use this to derive a quadratic integral identity by multiplying
both sides of the equation with C (ν−m−1)

2m+1 (a)(1− a2)ν−n− 1
2 and integrating by parts:

1
∫

−1

da(1− a2)ν−n− 1
2 C (ν−n−1)

2n+1 (a)

�

(1− a2)
d2

da2
− (2ν− 2n− 1)a

d
da

+ (2ν− 1)(2n+ 1)

�

C (ν−m−1)
2m+1 (a) = 0 . (B.5)

32The conventional orthogonality for a fixed upper index is also a consequence of the same differential equation.
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The Gegenbauer polynomial C (ν−m−1)
2m+1 satisfies (B.4) with n replaced by m. This can be used

to simplify the integrand and we finally arrive at an identity

2(n−m)

1
∫

−1

da (1− a2)ν−n− 1
2 C (ν−n−1)

2n+1 (a)
�

a
d

da
+ 2ν− 1

�

C (ν−m−1)
2m+1 (a) = 0 . (B.6)

When m ̸= n we can divide by (n − m) and the integral itself must vanish. If m = n we get
do not get any useful relation. The m= n integral has to be computed by hand, fortunately is
reduces to table integrals, such that

1
∫

−1

da(1− a2)ν−n− 1
2 C (ν−n−1)

2n+1 (a)
�

a
d

da
+ 2ν− 1

�

C (ν−m−1)
2m+1 (a)

=
πΓ (2ν− 1)

22ν−2n−4(2n+ 1)! Γ (ν− n− 1)2
δnm . (B.7)

Taking into account the normalisation factor in (36), we arrive at the orthogonality condition
(48).

C U(N) vs. SU(N)

The SU(N) version of the matrix model constrains the centre of mass of the eigenvalues:

ZSU(N) =

+∞
∫

−∞

N
∏

i=1

dai δ

�

∑

i

ai

�

∏

i< j

µ(ai − a j) e
− 1

2g2

∑

i
a2

i
, (C.1)

and the same in the correlation functions. In this appendix we consider the model with the
Gaussian potential but arbitrary measure. We will prove that the U(1) contribution factors out
despite non-linearity of the measure:

ZU(N) = ZU(1)ZSU(N) , WU(N)(x) =WU(1)(x)WSU(N)(x) , (C.2)

where

ZU(1) =
Æ

2πg2 , WU(1)(x) = e
g2 x2

2 . (C.3)

To do so we Fourier transform the delta function:

ZSU(N) =

∫

dω
2π

+∞
∫

−∞

N
∏

i=1

dai

∏

i< j

µ(ai − a j) e
− 1

2g2

∑

i
a2

i +iω
∑

i
ai

, (C.4)

and shift the integration variables:

ai → ai + i g2ω . (C.5)

This generates an effective potential forω: V (ω) = g2ω2/2, and has no effect on the measure
since the shift is common to all the eigenvalues. The integral over ω thus decouples, and we
get:

ZSU(N) =
1

p

2πg2
ZU(N) . (C.6)

The same manipulations over the Wilson loop give:

WSU(N)(x) =WU(N)(x)
¬

e i g2 xω
¶

=WU(N)(x) e
− g2 x2

2 . (C.7)
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D Derivation of planar equations

We derive (75) and (76). The goal is to insert (69) into (67) and identify the coefficients of λ
and x , ignoring negative powers of N . We rescale away c̃n,ℓ,m→ (16π2)ℓ c̃n,ℓ,m for simplicity.

In the left-hand side

∞
∑

r=2

r T̃r

�

d
d x

�r−1

W̃(x) =
∞
∑

r=2

∞
∑

ℓ=1

λℓ
2ℓ
∑

p=r−1

r p!
(p− r + 1)!

T̃r c̃0,ℓ,p x p−r+1 , (D.1)

we rearrange the sums, shift p→ p+ r − 1

∞
∑

ℓ=1

λℓ
∞
∑

r=2

2ℓ−r+1
∑

p=0

r(p+ r − 1)!
p!

T̃r c̃0,ℓ,p+r−1 x p , (D.2)

and pull out the sum over x-powers

∞
∑

ℓ=1

λℓ
2ℓ−1
∑

p=0

x p
2ℓ−p+1
∑

r=2

r(p+ r − 1)!
p!

T̃r c̃n,ℓ,p+r−1 . (D.3)

In the right-hand side

λ

16π2

+∞
∫

−∞

dω
2π
γ̂(ω)

∫ x

0

ds W̃(s− iω)W̃(x − s+ iω) , (D.4)

we apply the binomial theorem on the powers of s − iω and x − s + iω and integrate using
(73)

1
16π2

∞
∑

n=0

∞
∑

n′=0

λn+n′+1
2n
∑

m=0

m
∑

k1=0

2n′
∑

m′=0

m′
∑

k2=0

m′−k2
∑

k3=0

(−)m
′−k2

�

m
k1

��

m′

k2

��

m′ − k2

k3

�

×
xk1+k2+k3+1

k1 + k3 + 1
γ(m+m′−k1−k2−k3) c̃0,n,m c̃0,n′,m′ . (D.5)

A change of indices ℓ= n+ n′+1 brings a homogeneous λ-power. The exponent of x calls for
more dexterity. We rotate k2 and k3 into their sum s and difference d

1
16π2

∞
∑

ℓ=1

λℓ
ℓ−1
∑

ℓ′=0

2ℓ′
∑

m=0

2ℓ−2ℓ′−2
∑

m′=0

m
∑

k1=0

m′
∑

s=0

xk1+s+1
∑

d=−s,−s+2,...,s

(−)m
′− s+d

2

k1 +
s−d

2 + 1

�

m
k1

��

m′
s+d

2

�

×
�m′ − s+d

2
s−d

2

�

γ(m+m′−k1−s) c̃0,ℓ′,m c̃0,ℓ−ℓ′−1,m′ , (D.6)

commute the sums over ℓ′ and m, m′

1
16π2

∞
∑

ℓ=1

λℓ
2ℓ−2
∑

m=0

2ℓ−2⌈m
2 ⌉−2

∑

m′=0

ℓ−
 

m′
2

£

−1
∑

ℓ′=⌈m
2 ⌉

m
∑

k1=0

m′
∑

s=0

xk1+s+1

×
∑

d=−s,−s+2,...,s

(−)m
′− s+d

2

k1 +
s−d

2 + 1

�

m
k1

��

m′
s+d

2

��m′ − s+d
2

s−d
2

�

γ(m+m′−k1−s) c̃0,ℓ′,m c̃0,ℓ−ℓ′−1,m′ , (D.7)
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pull out the sums over the indices of x

1
16π2

∞
∑

ℓ=1

λℓ
2ℓ−2
∑

k1=0

2ℓ−2
∑

s=0

xk1+s+1
2ℓ−2
∑

m=k1

2ℓ−2
∑

m′=s

ℓ−
 

m′
2

£

−1
∑

ℓ′=⌈m
2 ⌉

∑

d=−s,−s+2,...,s

(−)m
′− s+d

2

k1 +
s−d

2 + 1

�

m
k1

��

m′
s+d

2

�

×
�m′ − s+d

2
s−d

2

�

γ(m+m′−k1−s) c̃0,ℓ′,m c̃0,ℓ−ℓ′−1,m′ , (D.8)

and rotate k1, s into p, q to create x p

1
16π2

∞
∑

ℓ=1

λℓ
2ℓ−1
∑

p=1

x p
∑

q=1−p,3−p,...,p−1

2ℓ−2
∑

m= p−q−1
2

2ℓ−2
∑

m′= p+q−1
2

ℓ−
 

m′
2

£

−1
∑

ℓ′=⌈m
2 ⌉

×
∑

d=− p+q−1
2 ,− p+q−5

2 ,..., p+q−1
2

�

m
p−q−1

2

��

m′
p+q−1

4 + d
2

��m′ − p+q−1
4 − d

2
p+q−1

4 − d
2

�

(−)m
′− p+q−1

4 −
d
2

3p−q+1
4 − d

2

× γ(m+m′−p+1) c̃0,ℓ′,m c̃0,ℓ−ℓ′−1,m′ . (D.9)

We equate the powers of λ and x across (D.3) and (D.9), undo c̃n,ℓ,m→ c̃n,ℓ,m/(16π2)ℓ and
prove (75) and (76).
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