
SciPost Phys. 17, 020 (2024)
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Abstract

We demonstrate that some quantum teleportation protocols exhibit measurement in-
duced phase transitions in Sachdev–Ye–Kitaev model. Namely, Kitaev–Yoshida and Gao–
Jafferis–Wall protocols have a phase transition if we apply them at a large projection rate
or at a large coupling rate respectively. It is well-known that at small rates they allow
teleportation to happen only within a small time-window. We show that at large rates,
the system goes into a new steady state, where the teleportation can be performed at
any moment. In dual Jackiw–Teitelboim gravity these phase transitions correspond to
the formation of an eternal traversable wormhole. In the Kitaev–Yoshida case this novel
type of wormhole is supported by continuous projections.
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1 Introduction

In the past few years, it was observed that hybrid quantum dynamics (i.e. when a quantum
system undergoes unitary evolution and is simultaneously subject to measurements or pro-
jections) exhibits quite a rich structure [1–16]. In this situation, the von Neumann entropy
of the steady state can change between area-law and volume-law, a phenomenon known as
Measurement-Induced Phase Transition (MIPT) [1–4]. The presence of a MIPT can be related
to an emergent quantum error correction [17–19]. A similar phase transition can also happen
between two volume-law phases [20]. Moreover, an MIPT was observed in connected cor-
relation functions [21] or a charge distribution [22]. Recently, measurement dynamics was
shown to be useful in proving [23] the NLTS (no low energy trivial states) conjecture [24] and
diagnosing the intrinsic sign problem of quantum states [25].

A common feature of all these results is that the phase transition is diagnosed by a quan-
tity that is non-linear in the density matrix. This happens because measurements/projections
introduce a lot of energy into the system, resulting in the typical emergent steady-state having
infinite temperature, which makes all linear observables trivial. We propose a setup where the
system does not heat to an infinite temperature, and the phase transition is then diagnosed by
an anti-commutator which is linear in the density matrix.1 We refer to [6,7] for other ways to
avoid infinite heating.

The MIPT has been studied in the quantum field theory (QFT) and gravity context in some
recent papers [27–29]. Nonetheless, in the QFT setup MIPTs are mostly overlooked. The
main reason is that the heating problem becomes even more severe: in continuum QFT naive
application of local measurements lead to ultraviolet (UV) divergences (as is always the case
when, in continuum QFT, we operate with quantities localized within “sharp regions”). To
resolve this issue, we will develop path-integral techniques to study “weak projections”, which
consist of coupling the system to an auxiliary qubit, letting them to interact for a certain time
and then measuring the auxiliary qubit. In particular, we keep only one of the measurement
outcomes. This setup is known as measurement with post-selection, forced measurement or
just projection, we will use these terms interchangeably. We would like to stress that it is a
physical operation which can be performed in a laboratory setting, albeit at an expense of
exponentially many samples: if the probability of obtaining a single desired measurement
outcome is p, then simulating the system for time t will roughly require 1/pt samples. We
will see that in our case this is mathematically equivalent to performing an Euclidean time-
evolution. Euclidean evolutions are well-defined even in a continuum QFT.

Although in this paper we study Sachdev–Ye–Kitaev (SYK) model [30–33], which is a
quantum-mechanical model for which genuine (non-weak) projections are well-defined, we
still restrict ourselves to weak projections. This will allow us to work within the low-energy
sector, where a lot of analytical tools are available. Moreover, this low-energy sector has a
holographic gravity dual.

We will apply our results to study teleportation protocols. Teleportation protocols ad-
dress the following problem: suppose we have two subsystems L and R which are initially
entangled but otherwise do not interact. How can we efficiently transfer information from
one subsystem to another? The most simple quantity which can diagnose teleportation is the
anti-commutator2 between the L and R fermionic operators at times3

u1, u2 : Im GLR(u1, u2) = −iTr (ρLR{ψL(u1),ψR(u2)})≤ 1 .

Teleportation fidelity is proportional to this anti-commutator [34] and in this paper we will
concentrate on Im GLR.

1We refer to [26] which studies MIPT in out-of-time-ordered correlation functions.
2Or commutator for bosonic operators.
3Following SYK model literature tradition, we denote time by u.
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Figure 1: Illustration of our setup. We have two subsystems L and R prepared in the
TFD state (3). The goal is to make anti-commutator 〈{ψL ,ψR}〉 non-zero. Left: to
this end GJW applies a unitary eiµδuOLOR , with OL/R being some hermitian operators.
This essentially adds an extra term to the Hamiltonian: H ′ = HL+HR+µθ (u)OLOR.
Right: KY takes a subsystem on each side and projects them on the maximally entan-
gled (Bell) state.

Two such protocols are the Kitaev–Yoshida (KY) [35] and the Gao–Jafferis–Wall (GJW)
[36–39], which are depicted in Figure 1. We consider left (L) and right (R) subsystems
prepared in the thermofield-double (TFD) state, that entangles these subsystems. The to-
tal Hamiltonian does not involve L-R interactions, H = HL + HR, so each subsystem evolves
independently. However, TFD state is not stationary under such evolution. Nonetheless, the
anti-commutator 〈{ψL(u1),ψR(u2)}〉 is identically zero for all u1, u2. The goal is to make anti-
commutator 〈{ψL(u1),ψR(u2)}〉 non-zero at least for some u1, u2, allowing the information
transfer between L and R.

The KY protocol uses a projection for this purpose. In contrast, the GJW protocol applies an
extra unitary operator which couples L and R to make Im GLR = −iTr (ρLR{ψL(u1),ψR(u2)})
large for a finite amount of time. But eventually it decays to zero, prohibiting any information
transfer. In the GJW case applying multiple unitary operators at a small rate leads to the same
result [36].

The main question of this paper: is there a qualitative change if these protocols are applied
continuously at a high rate? Specifically we study this question in the low-energy (Schwarzian)
sector of the SYK model. We indeed find a phase transition to a new steady state when we apply
unitary operators or projections at a high rate. In this new phase, teleportation fidelity Im GLR
stays finite indefinitely. In the dual gravity picture it means creating an eternal traversable
wormhole. In the KY case we will use weak projections in order to avoid heating the system
up. The GJW protocol is governed by a Hamiltonian so this problem does not arise.

The whole paper can be summarized by Figures 2 and 3. We turn on the protocols at times
u = 0, insert a message at u = u1 > 0 and probe with Im GLR(u1, T ) if it reached the other
side at u= T . In the GJW case we denote two-sided coupling by µ and for the KY protocol we
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Figure 2: Transfer rate in a slightly perturbed TFD. The coupling/projections are
turned on at u= 0. A message is inserted at u= u1 and we probe its presence on the
other side at u= T , hence we plot Im GLR(u1, T ). Left: unitary GJW dynamics. Right:
KY protocol with projections (forced measurements). The results are very similar:
there is a small transfer amplitude which decays with time. Injecting a message at
later times (bigger u1) results in even weaker transition amplitude.
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Figure 3: Transfer rate in the strong coupling phase. In both cases we see a dramatic
increase in the transfer rate. Left: unitary GJW protocol. Once a message is inserted
it bounces back and forth leading to revivals. It does not matter when (different u1)
it is inserted. Right: KY protocol with projections (forced measurements). Again it
does not matter when a message is inserted. However, there are no revivals.

denote the projection rate4 κ. Figure 2 illustrates the phase with small µ or κ. The results are
very similar for the GJW and KY: initially Im GLR is non-zero, but then exponentially drops to
zero if we try to insert a message at later times u1. This is essentially the GJW computation.
Again, note that the interaction term µOLOR is constantly on for all times u > 0. We can
greatly enhance the rate if we insert a message at some specific negative time u1 before the
protocols are turned on at u = 0. However, in this paper we are interested if we can teleport
at later times.

At large µ or κ a qualitative change occurs - Figure 3. We can insert a message at any time
u1 > 0 and it will reach the other side with fidelity that does not depend on the time u1. This
is the only common feature between the GJW and KY in the strong coupling regime. In the
GJW case the message bonces back-and-forth without dissipation, leading to revivals. Maximal
value of Im GLR is of order 1, and it has a weak dependence on µ and initial temperature β . In
the KY case a message reaches the other subsystem and then dissipates: Im GLR decays to zero
at late times. Its maximal value does not depend on initial temperature, but it depends on κ.

The strong coupling phase in the GJW case was discussed by Maldacena and Qi [40]. The

4That is, a projection is applied every 1/κ time interval.

4

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020


SciPost Phys. 17, 020 (2024)

SYK model is dual [32,41] to the two-dimensional Jackiw–Teiltelboim gravity where this phase
represents an eternal traversable wormhole. Our contribution is that it is possible to reach this
phase starting from TFD state, which represents two entangled black holes. This can be done
easily (without coupling to external systems), but it requires a finite µ coupling:5 the transition
happens only if µ is large enough. We will obtain the corresponding critical value analytically.
Such behavior was conjectured for higher-dimensional black holes [43]. A similar problem
was addressed by Lensky and Qi [44] in large q SYK, although the phase transition is absent
there, we discuss this in Section 3.3. The strong coupling phase of the KY protocol represents
a novel type of a wormhole supported by projections. Wormhole length can be diagnosed
by correlator − log GLR(T, T ) at coincident time points. For TFD state it grows linearly with
time, reflecting the growth of the Einstein–Rosen bridge. We find that this quantity becomes
constant for the KY wormhole, similarly to Maldacena–Qi (MQ) wormhole. Finally, let us point
out that in the GJW/MQ case a similar transition can happen [45] even if the L, R subsystems
initially unentangled.6 However, it requires coupling to an external bath and the analysis has
to be performed in full SYK, not just in the low-energy Schwarzian sector.

Finally, let us address one apparent difference between the GJW/MQ traversable wormhole
and the KY one. The most prominent feature of the GJW/MQ wormhole is the presence of
strong revivals in the correlation function. From the Figure 3 it is not obvious if they are
present in the KY case.7 We claim that they are present. In Section 4.3 we discuss the analytical
approximation to the KY wormhole. We find that at late times the correlation function can be
approximated by

GLR(u1, u2) = const
1

cos2∆
�

eφ∗ (u1−u2)
2

� , (1)

where eφ∗ is complex. Hence the correlation functions oscillates, but the oscillations are
damped due to decoherence caused by the projections. Figure 9 shows the behavior at very
late times demonstrating revivals.

The paper is organized as follows. In Section 2 we present a very general discussion of
weak projections. In Section 3 we discuss the GJW protocol in SYK and setup the necessary
machinery. In Section 4 we combine the two together to discuss the non-unitary KY dynamics.
We will discuss some of the open questions in the Conclusion.

2 Projections at low energies

Let us consider the following setup. Suppose that we have a Hamiltonian H acting on N/2
qubits, with energies En and eigenvectors |n〉. We double the system, such that we have two
identical subsystems, which we denote as L and R. They have N qubits in total. We can use
Jordan–Wigner transformation to map them to 2N Majorana fermions ψi

L ,ψi
R, i = 1, . . . , N .

These operators square to one and anticommute
¦

ψi
α,ψ j

β

©

= δi jδαβ , α,β = L, R , i = 1, . . . , N . (2)

5Equations are simple enough to have an exact solution for any µ. We believe the transition to an eternal worm-
hole cannot be seen in the perturbation theory in µ because above the critical µ the classical solution completely
changes its behavior. The equations can be mapped to a classical particle moving in a potential. If µ is large enough
the particle trajectory becomes trapped rather than running away to infinity. Such qualitative change of behavior
cannot be treated as a small perturbation. We refer to [42] for the perturbative discussion of the bulk dilaton.

6This models the scenario when two unentangled black holes evaporate and exchange radiation.
7We thank the anonymous reviewers for raising this question.
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The system is prepared in the thermofield-double (TFD) state:

|T F D〉=
∑

En

e−βEn/2|nL〉|nR〉 , (3)

where bar denotes time-reversal operation. The evolution is governed by a Hamiltonian
H = HL + HR, that does not include interaction between these two subsystems. In order
to teleport information between L and R we add a certain interaction between the sides.

First we address the question of how to add a projection operation. Ideally, we are inter-
ested in adding a projection on a maximally mixed state, which can be written as follows

Π=
N
∏

j=1

Π j =
N
∏

j=1

1
2

�

1− iψ j
Lψ

j
R

�

. (4)

The projection Π makes the two subsystems maximally entangled. This would lead immedi-
ately to an infinite temperature. Instead, we want to act very softly and make the process
continuous. We will use Schwinger-Keldysh techniques in order to formulate this in the path
integral language.

Let us introduce a probability κ of performing a projection (measurement with post-
selection) per unit time. Hence the precise evolution equation is

eρ(u+ du) = i[H, eρ(u)]du+ eρ(u)(1− 4Nκdu) + κdu
∑

j

(1− iψ j
Lψ

j
R)eρ(u)(1− iψ j

Lψ
j
R) . (5)

Here we are working with unnormalized density matrix eρ. Observables in this case are eval-
uated as

〈O〉=
Tr (eρO)

Treρ
. (6)

Physically, these equations correspond to the following physical situation. First, we have mul-
tiple copies of the system. Each copy is evolved separately. Each time interval du the system
does not change with probability 1− 4Nκdu. Otherwise, with probability 4Nκdu we pick a
random j and measure iψ j

Lψ
j
R. If the outcome is −1, we disregard this copy altogether. If the

outcome is +1 then we proceed with the unitary evolution. Measuring an observable involves
taking the number of copies to infinity and averaging over all copies where the outcome is +1.

One has to normalize the observables by diving by Treρ. In a generic disordered system it
might be hard to do the disordered averaging of such ratios. However, in SYK it is known that
for large N the interaction between replicas is suppressed by 1/N and we can do the averaging
in the following way [31,32]:

­

Tr (eρO)
Treρ

·

≈
〈Tr (eρO)〉
〈Tr (eρ)〉

+O
�

1
N

�

. (7)

Hence we can separately write a path integral for numerator and denominator.
This evolution does not preserve trace, but still all correlators satisfy usual hermicity con-

ditions. The advantage of dealing with eρ is that it has a nice Schwinger-Keldysh path-integral
representation. It can be obtained as follows. First, the Hamiltonian evolution acts on density
matrix ρ in the following way:

ρ→ e−iHuρe+iHu . (8)

And in infinitesimal form:
ρ→ ρ − iHduρ + iρHdu . (9)
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Each eiHu can be formulated as a path integral. This is the origin of ± in Schwinger–Keldysh
(SK) formalism. e−iHu corresponds to (forward) plus part, and e+iHu to (backward) minus
part. They also have different signs:

ZSK =

∫

Dψ+Dψ− eiS+−iS− . (10)

Without extra insertions in the path integral we identify + fields with − fields and get ZSK = 1,
hence the trace is conserved. Now comparing our master eq. (5) with the standard Hamilto-
nian dynamics, eq. (9), we see that ± parts, coming from the forward and the backward time
evolutions of the density matrix, do not cancel, and the trace is not conserved.

The resulting action coming from eq. (5) is8

ZSK =

∫

Dψ± exp

 

iS+ − iS− −κ
∑

j

∫

du
�

iψ+R, jψ
+
L, j + iψ−L, jψ

−
R, j +ψ

+
R, jψ

+
L, jψ
−
L, jψ
−
R, j

�

!

. (11)

This evolution projects fermions at a steady rate κ, instead of projecting them all at once,
but it still introduces a lot of energy into the system. This can be traced to the quartic fermionic
term in the above action. Moreover, although such term is perfectly permissible for quantum
mechanical systems, such as SYK, it does not make sense in a continuum QFT, as we have to
take product of operators at coincident points, ψ+R, jψ

−
R, j .

In order to circumvent this problem we consider weak projections. It means that we couple
ψ

j
L ,ψ j

R to an auxiliary qubit |0A〉, they undergo evolution together and after that we measure
and post-select the state of this auxiliary qubit. Mathematically, we start from the density
matrix

|0A〉〈0A| ⊗ρ , (12)

it undergoes the following unitary evolution

|0A〉〈0A| ⊗ U†
00ρU00 + |0A〉〈1A| ⊗ U†

01ρU01 + |1A〉〈0A| ⊗ U†
10ρU10 + |1A〉〈1A| ⊗ U†

11ρU11 . (13)

Then we post select on
|0A〉〈0A| ⊗ U†

00ρU00 . (14)

Operators Uab, a, b = 0, 1 act on ψ j
L ,ψ j

R Hilbert space (which is 2 dimensional). They do not
have to be unitary. Specifically, we want U00 to be

U00 = e−κduS j , S j = 1+ iψ j
Lψ

j
R , (15)

such that it damps iψ j
Lψ

j
R = 1 subspace. However, the complete U operator,

U =

�

U00 U01

U10 U10

�

, (16)

has to be unitary. We can easily find the missing U01, U11 from unitarity:

U =









1 0 0 0

0 e−2duκ 0
p

1− e−4duκ

0 0 1 0

0
p

1− e−4duκ 0 −e−2duκ









. (17)

8Possible extra constant c in eρ→ cdueρ does not matter, as it will be eventually cancelled by trace normalisation.
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The above procedure can be performed for any pair index j. The upshot is that the system
undergoes the following Euclidean evolution:

eρ(u+ du) = e−κSdu
eρ(u)e−κSdu , S = i

∑

j

ψ
j
Lψ

j
R . (18)

Such evolution is obviously hermitian and completely positive. The corresponding action is

iSweak proj = −κ
∑

j

∫

du
�

iψ+R, jψ
+
L, j + iψ−L, jψ

−
R, j

�

. (19)

We will denote e−κS asΠκ. This term was recently studied in [12] for Brownian SYK. However,
in that paper it has a completely different origin. For comparison, MQ interaction looks like

iSMQ∝ µ
∑

j

∫

du
�

ψ+L, jψ
+
R, j −ψ

−
L, jψ
−
R, j

�

. (20)

Notice an extra i and a difference in the relative sign between ± parts. That leads to unitary
evolution that preserves energy and trace.

3 Turning TFD into an eternal traversable wormhole with Gao–
Jafferis–Wall

3.1 The setup

In this Section, we study the SYK model out of equilibrium when we apply an extra unitary
exp (iµOLORδu) on top of the standard Hamiltonian dynamics - Figure 1. OL/R are any oper-
ators on the left/right. We will review the formalism of Maldacena and Qi [40] which we will
later apply in Section 4 when we discuss dynamics under continuous projections. Most of the
equations in this Section, except eqns. (25) , (26), are valid for arbitrary time-dependent cou-
pling µ(t). Our contribution is solving them after µ is suddenly turned on and understanding
the fate of the system.

The total Hamiltonian is

H = HSY K ,L +HSY K ,R + iµθ (u− u0)OLOR , (21)

HSY K ,L/R = iq
∑

i1...iq

Ji1...iqψ
i1
L/R . . .ψ

iq
L/R , 〈J2

i1...iq
〉= J2 (q− 1)!

Nq−1
, (22)

note that the disorder couplings Ji jkl are the same for both subsystems. Initially the system
is prepared in the TFD state. We wrote the microscopic Hamiltonian explicitly, but we would
not really need it, as we will be concentrated on the low energy sector, that is governed by
the Schwarzian action. The only important thing is that both L and R subsystems are subject
to the same disorder. The case of instantaneous insertion of µOLOR was extensively studied
in [46,47]. Here we address the question of what happens if we switch on a large µ at u= u0
and keep it on.

One of the most interesting features of SYK is that in the limit of large N and low energies
it develops an approximate conformal and reparametrization symmetry. The corresponding
action for reparametrizations is given by the Schwarzian action. Equations of motion of the
Schwarzian are local and corresponding classical solutions determine all correlation functions
in the leading order in 1/N . This is true for any state, even the ones that are out of equilibrium
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Figure 4: Analytical continuation from TFD state.

[48]. This is a great simplification, as in general mean-field equations are highly non-local. As
a side note, there are SYK models where low-energy effective action is dominated by a non-
local action for reparametrizations [41, 49, 50], but here we concentrate on the Schwarzian
case.

In the low energy sector of SYK all correlation functions depend only on reparametrizations
f (u), that determine two-point functions of operators of dimension ∆ as

〈W∆(u1)W∆(u2)〉=
�

f ′(u1) f ′(u2)
( f (u1)− f (u2))2

�∆

. (23)

For example, elementary fermions have dimension ∆= 1/q. The reparametrizations f (u) are
governed by the following action

S/N = −
αs

J

∫

dτ Sch( f (τ),τ) , Sch( f (τ),τ) =
�

f ′′

f ′

�′

−
1
2

�

f ′′

f ′

�2

. (24)

We put the (dimensionful) Schwarzian coupling to be αs/J = 1, so we will measure everything
in terms of this coupling. In the TFD state, L or R separately look thermal. The corresponding
Euclidean solution is fL,R(τ) = tan

�

πτ
β

�

. One can easily check that it is a solution of the
Schwarzian theory.

In this paper we will be dealing mostly with Lorentzian solutions parametrized by time u.
Later when we return to solutions on Euclidean circle we will simply analytically continue to
−iu. Since we have Lorentzian evolution of two independent SYK dots we need to use two
reparametrizations to describe each of the systems. If we depict exp(−Hβ/2) in the definition
of TFD as Euclidean evolution along a semicircle then the two trajectories in Lorentzian are
obtained from two endpoints of the semicircle - Figure 4. The corresponding solutions are:9

tL = tR = 2arctan tanh
πu
β

, (25)

and two-sided Green function reads as

GLR =





π/β

cosh
�

π(u1+u2)
β

�





2∆

. (26)

Obviously, Im GLR = 0 which reflects the fact that we cannot transfer any information be-
tween the sides. Geometrically it is linked to the fact that tL , tR have finite range, namely

9In geometrical terms, u is (physical) boundary time, f is AdS2 Poincare coordinate time and t L,R are global
AdS2 times.
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tL,R ∈ [−π/2,π/2]. It means that a signal cannot propagate from one side to the other -
Figure 5 (a).

If we add an interaction µ ̸= 0, the picture changes. Again at low temperatures we can use
reparametrizations fL,R to describe the behaviour of the system. If µ is small enough we can
take the leading perturbative answer µ〈OLOR〉 and reparametrize it:

S/N = −
∫

du Sch
�

tan
tL

2
, u
�

−
∫

du Sch
�

tan
tR

2
, u
�

+µθ (u− u0)

∫

du

�

t ′L t ′R

cos2 (tL−tR)
2

�∆

. (27)

The last term is obtained from eq. (23) by taking f (u1)=tan(tL/2) and f (u2)=−1/ tan(tR/2).
In this choice of coordinates, correlation function are determined by 10

GLL(u1, u2) = i∆
�

t ′L(u1)t ′L(u2)

sin2(tL(u1)/2− tL(u2)/2)

�∆

,

GLR(u1, u2) =

�

t ′L(u1)t ′R(u2)

cos2(tL(u1)/2− tR(u2)/2)

�∆

. (28)

However, in terms of dynamics this is not the full story. The action (23) is redundant: any
SL(2, R) linear-fractional transformation on f will leave physical Green function invariant.
Hence in the Schwarzian theory the global SL(2, R) must be gauged [41]. The total L + R
charges Q0,±1 must be set to zero. J.Maldacena and X.Qi showed that Q±1 constraints can be
satisfied by the symmetric solution tL(u) = tR(u) = t(u). The remaining Q0 constraint can be
recast as

0=Q0 = 2e−φ
�

−φ′′ − e2φ +µ∆e2∆φ
�

, φ(u) = log t ′(u) , (29)

that provides the equation of motions for the t ′(u) and could be considered as a motion of a
particle in one dimensional potential. Quantity ℓ = −φ is proportional to − log GLR(u, u). It
characterises the distance between the trajectories in AdS2 - Figure 5.

3.2 Turning on the interaction

In the previous subsection we introduced the MQ equations for studying two interacting SYK
models. This subsection contains new results about the time-dynamics of two interacting SYK
models. At low energies the dynamics of the system boiled down to one simple equation (29),
that could be understood as a simple one-dimensional classical mechanics problem. This prob-
lem possesses some integrals of motions. For instance, we can find that “energy” is conserved

E = φ′2 + e2φ −µe2∆φ , (30)

and the corresponding dynamics depends on the sign of E.

• Positive or zero11 energy E ≥ 0. In this case we have a run-away solution at infinity,
φ = −γu. It implies that t(u) ∼ e−γu. Hence the range is finite. This is illustrated by
Figure 5 (b). TFD becomes traversable for a finite amount of time.

• For negative energy E < 0 there is a qualitative change. The particle is confined in a
one-dimensional potential and oscillates near the minimum of the potential. Obviously,
we can state that φmin < φ < φmax. Since φ = log t ′ we conclude that t ′ is always
positive and t grows all the way to infinity. We have an eternal traversable wormhole,

10We are omitting extra ∆-dependent normalization. For elementary fermions in SYK one has to multiply these
expressions by c∆ = J−2∆ ((1/2−∆) tanπ∆)∆.

11The below analysis covers only positive energy. A slightly more elaborate analysis shows that for zero energy
t ′∝ 1/u1/∆. Hence for ∆< 1 the range is finite too.
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Figure 5: (a) No interaction between the sides, we have a TFD solution. (b) Non-zero
µ is switched on, but it is not big enough to make the wormhole eternally traversable.
(c) For large enough µ we get an eternal traversable wormhole.

Figure 5 (c). To illustrate the behavior of GLR we can fine-tune the interaction parameter
µ to make t ′ constant. Then the solution is simply [40]:

GLR(u1, u2)∝
�

1
cos(t ′(u1 − u2))

�2∆

,

Im GLR(u1, u2)∝ θ
�

cos(t ′(u1 − u2))
�

sinπ∆
�

1
cos(t ′(u1 − u2))

�2∆

, (31)

this propagator has a branch cut that opens at u1 − u2 =
π

2t ′ and therefore has non-
zero imaginary part. The fact that it blows up indicates that the information transfer is
too strong, effectively leading to operators colliding and therefore inapplicability of the
low energy approximation. The actual finite value (of order 1) of GLR can be obtained
in large-q SYK (next Section) or by numerically solving the corresponding systems of
Dyson-Schwinger equations, but that is outside of the scope of this paper.

These different cases take place depending on µ and time u0 when the interaction was
turned on. By usual arguments we conclude that the functions φ,φ′ must be continuous. It
allows to compute the effective energy as

E = φ′2T F D(u0) + e2φT F D(u0) −µe2∆φT F D(u0) . (32)

Using eq. (25) we find

E =
4π2

β2
−µ





2π/β

cosh
�

2πu0
β

�





2∆

. (33)

As we explained above the phase transition happens when E < 0. At early times, when the
correlation between the sides is still big, we only need µ∗ ∼ β2∆−2. As was announced in the
Introduction, for a fixed initial state it requires a finite µ coupling, determined by E = 0, to
create an eternal traversable wormhole. For example, static MQ wormhole corresponds to the
absolute minimum of the energy (30), which is Emin = 1/(∆µ)1/(1−2∆) − µ/(∆µ)∆/(1−2∆). It
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is possible to reach it only if the interaction is switched on at u0 = 0. In general for a fixed µ,
(33) is always greater than Emin.

It is very important to check that we are inside the perturbative regime. The actual pertur-
bative parameter is µβ1−2∆ ≪ 1 [45], whereas we only require µ∗ ∼ β2∆−2. So low-energy
approximation is applicable for β ≫ 1 (in dimensionless units) as expected.

We can also repeat this analysis if the initial state is an excited TFD. It means that SL(2, R)
charges are not zero.12 For simplicity we assume L ↔ R symmetry. In this case the only
information about the excitations is encoded in Q0 > 0. Now the motion is controlled by the
effective Hamiltonian or energy:

E = φ′2 + V (φ) , V (φ) =Q0eφ + e2φ −µe2∆φ . (34)

For ∆ < 1/2 the story is essentially the same: potential has only one global minima and
the energy is negative there. Hence having a bounded trajectory (traversable wormhole) is
equivalent to having negative energy.

However, for ∆ > 1/2 there is a new phenomenon: energy can be positive, but the clas-
sical motion is confined within a finite φ region around a local minima, yielding an eternal
traversable wormhole. It happens because now the potential has a local maxima. But still we
have V (φ) → 0,φ → −∞. It means that such solution is metastable at finite N and due to
the quantum corrections this wormhole will close at some point. And the rate of the decay is
non-perturbatively small N : Γ ∼ e−N .

3.3 Comments on large-q SYK

We should also make a comment about large-q SYK. In this case it is possible to find the corre-
lators at any time separation. However, in this limit the dimension of an elementary fermion
operator goes as 1/q. Hence one ends up with a long-range attraction potential V (φ)∝ µφ

in the effective Hamiltonian. In this case there is no phase transition: any small µ > 0 will
lead to a wormhole. This setup was studied in [44] and we refer to this paper for technical
details. We will borrow their results to study the transition and correlation functions at any
energy scale. In order to see a phase transition, the coupling operator must have the form of
�

ψ
j
Lψ

j
R

�k
, where k/q stays finite for q→∞. The derivation of [44] can be easily applied in

this case as well, leading to the following large q analogue of (30):

E = −2 cos(p)
p

1− e2φ −µe2∆φ , (35)

with φ, p being conjugate variables. Now the correlation functions are determined by a com-
plex reparametrization χ(u) as (compare with (28))

GLL∝ i∆
�

χ ′(u1)χ ′(u2)∗

sin2 χ(u1)−χ(u2)∗
2

�2∆

, GLR∝

�

χ ′(u1)χ ′(u2)∗

cos2 χ(u1)−χ(u2)∗
2

�2∆

. (36)

χ(u) can be easily found from

χ ′ =
eip

p

e2φ − 1
. (37)

In the limit of small p and largeφ we recover eq. (30). The analysis of trajectories can be done
in the same way as in the previous Section. However, this formalism allows us to compute GLR
at any time separation. This is how we obtained the left panels of Figure 2 and Figure 3.

12We should take into account that to create an excited TFD we should have introduced some operators that
create such state. Now if we add contributions to the charges from these operators we get zero.
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Figure 6: SK contour for projections dynamics. Red dots indicate projections. They
couple left and right subsystems, which is indicated by a dashed line. Semicircles pre-
pare TFD state and the vertical parts represent Lorentz-time evolution (they should
be drawn as vertical lines instead of wedges and the red dots at the bottom should
coincide, but we separated them to make the drawing more clear).

4 Projection dynamics

In this Section we will combine the results from the previous two sections and study the dy-
namics with continuous projections. First we study Kitaev–Yoshida protocol with a single pro-
jection. After that we study the continuous dynamics that involve multiple projections.

Before proceeding to the actual computation we should understand how to properly diag-
nose traversability, that is, how to check that information is transmitted from one subsystem to
the other. The most simple thing to do is to insert ψL(u1) at some time u1, perform projection
at u = 0 and then measure if the information has reached by other qubit ψR(u2). The trans-
mission of the information would result at non-zero anti-commutator of these two operators.
Thus the corresponding matrix element is

Im GLR(u1, u2) = − Im
i〈T F D|ψL(u1)Πκ(0)ψR(u2)Πκ(0)|T F D〉

〈T F D|Π2
κ|T F D〉

, (38)

where Πκ = e−κS is the weak projector in eq. (18). SK path-integral (11) naturally produces
Green functions normalised this way. Also this intuition can be made precise if one follows the
protocol proposed in [34].

Another way to normalize the anti-commutator is

Im Gnorm
LR = − Im

i〈T F D|ψL(u1)Πκ(0)ψR(u2)Πκ(0)|T F D〉
〈T F D|ψL(u1)Πκ(0)2ψL(u1)|T F D〉

. (39)

This is natural too because we want to normalize the state after we insertedψL . Unfortunately,
we do not know any specific protocols which would measure Gnorm

LR . However, this quantity
suggests an enhanced transfer rate compared to (38) so we will study it too.

4.1 Boundary conditions

The matrix element GLR(u1, u2) (38) was studied by Streicher and Qi [51] for large q SYK
in the context of operator growth. In their setup the operator S played the role of the size
operator. We will reproduce this result using the low-energy Schwarzian approximation.

The relevant Schwinger-Keldysh contour for computing the correlators (38),(39) is shown
on Figure 6. We will need 4 reparametrizations: two Euclidean ones f β± and two Lorentzian
ones f±. The only non-standard feature of our calculation is that forward + and backward −
evolutions do not cancel each other due to the insertion of weak projector operators. Hence
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f+ ̸= f−, unlike the usual Hamiltonian evolution.13 However they still obey some conditions.
First, the two-point function must be real, that requires f−(u) = ( f+(u))∗. Secondly, when we
do not conduct any more projections the systems should be evolved by a standard Hamiltonian
evolution, so f−(u) = f+(u) and by demanding continuity we arrive at f+(T ) = f−(T ), where
T is a moment of the last weak projection. Moreover, the Schwarzian equations of motion
imply that f , f ′ must be continuous, when the weak projection is inserted. That provides
us with another boundary condition. Another case when such conditions arise is when we
evaluate expectation values at time T . In this case ± contours merge and we get the same set
of conditions.

Also we need to determine the boundary conditions on the thermal circle. Again, because
±-parts of SK contour do not cancel out, the dynamics is not causal so we should not expect
to have a standard thermal solution. We want to find f± such that analytic continuation of a
solution to Lorentzian signature would respect a L↔ R symmetry. Upon analytic continuation
to Lorentzian signature, the AdS2 global times tL,R(u) are determined in terms of Poincare time

f β± (u) by the following equations:

tan
t±L (u)

2
= f β± (u) , tan

t±R (u)

2
= −

1

f β± (−iβ/2− u)
. (40)

Upon demanding the L−R symmetry we can find a gauge for f β+ such that tL(u) = tR(u). This
fixes f β+ to be

f β+ (u) =
e−αu − iA+eiαβ/4

A+e−αu + ieiαβ/4
, (41)

where α, A+ are some constants, that we will fix later.14

4.2 Single projection: Recovering Kitaev–Yoshida teleportation

First, let us discuss a dynamics after one single weak projection. It corresponds to a situation
with one pair of red dots at the bottom in the Figure 6. Inserting iψLψR at time u∗ into the
action generates a certain discontinuity in reparametrizations, that could be determined from
the equations of motions. Thus we consider the following action

S = −
∫

dτ Sch( fL , u)−
∫

dτ Sch( fR, u) + iκ

∫

du δ(u− u∗)

�

f ′L(u) f
′

R(u)

( fL(u)− fR(u))2

�∆

, (43)

Under the variation of fL the Schwarzian we get the following equation

δSch= −(Sch)′
δ fL

f ′L
=

�

−
f ′′′′L

f ′2L

+
4 f ′′L f ′′′L

f ′4L

−
3 f ′′3L

f ′4L

�

δ fL , (44)

whereas the most singular part of the κ term comes from varying f ′L:

δSint = −
δ fL

f ′L(u∗)
δ′(u− u∗)κ∆

�

f ′L(u
∗) f ′R(u

∗)

( fL(u∗)− fR(u∗))2

�∆

+
A
f ′L
δ(u− u∗) , A= const . (45)

13This is just the statement that in the semiclassical limit with Hamiltonian evolution Schwinger-Keldysh action
is controlled by f+ = f−. In our case we are in the semiclassical regime because of large N .

14Simultaneous shift of time on both sides by 2x , uL,R→ uL,R+2x generates a gauge transformation of a constant
A+:

A+→
Acos x − sin x
cos x + Asin x

. (42)

So the global time shifts in AdS2 are not fixed yet.
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Then we arrive at the following equation

Sch= −δ′(u− u∗)κ∆

�

f ′L(u
∗) f ′R(u

∗)

( fL(u∗)− fR(u∗))2

�∆

+Aθ (u− u∗) , (46)

that allows us to determine that the discontinuity in the second derivative that would also
provide the boundary conditions. Thus we arrive at

f ′′L (u
∗ + ε)− f ′′L (u

∗ − ε) = ieκ f ′L(u
∗) , eκ= κ∆

�

f ′L(u
∗) f ′R(u

∗)

( fL(u∗)− fR(u∗))2

�∆

, (47)

for convenience we defined a new parameter parameter eκ. This boundary conditions together
with equations of motions allows us to completely fix the form of the correlators. For instance,
let us consider the correlator

〈T F D|ψL(u1)Πκ(0)
2ψL(u1)|T F D〉 .

This correlator corresponds to a situation when we have only two pairs of red dots on each
side in the bottom of the Figure (6). Roughly speaking, after the measurement we immediately
jump from + part of our Schwinger-Keldysh contour to the − part of the contour. It requires
us to glue the Euclidean reparametrizations f β+ to f β− at the time of a measurement u= u∗:

f β+ (u
∗) = f β− (u

∗) , f ′β+ (u
∗) = f ′β− (u

∗) ,

f ′′β+ (u
∗) = f ′′β− (u

∗)− 2ieκ f ′β+ (u
∗) . (48)

For the sake of brevity we will set u∗ = 0. The factor of two in 2eκ comes from the fact that
there are two projections separating two Euclidean circles (note that in the denominator of
(39) we have two consecutive insertions of Πκ(0)). The choice of A+ in (41) is a gauge choice,
that determines when we transition to a Lorentzian signature. We can set A+ = −ie−iαβ/4 to
continue the trajectory into Lorentz spacetime at u = 0 (that correspond to f β+ (0) = 0). For
f β− (u) we can adopt the ansatz similar to (41):

f β− (u) = −
e−αu − iA−e−iαβ/4

A−e−αu + ie−iαβ/4
. (49)

Using the boundary conditions (48) we come to the following solutions for the reparametriza-
tions

f β+ (u) = i
sinh

�

αu
2

�

sinh
�

αu
2 + i αβ4

� , f β− (u) = −i
sinh

�

αu
2

�

sinh
�

αu
2 − i αβ4

� , (50)

where the parameter α is determined from the equation

α cot(αβ/4) = κ∆





α2

4sin2
�

αβ
4

�





∆

, (51)

when κ = 0, we can get that α = 2π/β . This solution is real on the thermal Euclidean circle
(taking f → i f and u= iτ) but in Lorentzian signature it is complex.

Using the solutions f β± (u) (50) we can evaluate the correlator:

〈T F D|ψL(u1)Πκ(0)Πκ(0)ψL(u2)|T F D〉

=

�

α2/4

−i sinh(α(u1 − u2)/2) +
2eκ
α sinh(αu1/2) sinh(αu2/2)

�∆

.
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This is exactly the Streicher–Qi answer at low temperatures [51].
Now let us consider the situation when after the measurement, we continue a bit into

the Lorentzian time, that allows us to compute the correlator (38). Since the Lorentzian part
lies after projections or measurements are performed, we must set f+(u) = f−(u) to provide
a proper cancellation along the Schwinger-Keldysh contour. The most general ansatz, that
solved the equations of motions, would have the following form

f+(u) =
e−γu − 1

Be−γu + C
, (52)

where we have already used that f β± (u
∗ = 0) = 0. Now we need to set total SL(2, R) charges to

zero. Since we choose tL(u) = tR(u), it implies immediately Q1 =Q−1 = 0. The last constraint
Q0 = 0 leads to the following equation [40]:

Q0[t(u)L] = −
t ′′′L
t ′2L
+

t ′′2L

t ′3L
− t ′L = 0 , tL(u) = 2arctan f+(u) . (53)

This implies F = 1
B . To determine the unknown parameters B and γ we use the boundary

conditions:

f ′+(0) = f ′β+ (0) , f ′′+ (0) = f ′′β+ (0)− ieκ f ′β+ (0) . (54)

since we encounter only one projection we should set just eκ in the boundary conditions in
comparison to the equation (48). Taking into account the equation (51) we arrive at the
following solution in the Lorentzian time

f+(u) = tanh
�

eαu
2

�

, eα=
α

sin
�

αβ
4

� . (55)

This solution is real and the u dependence is controlled by α/ sin(αβ/4) instead of just α,
that effectively changing the temperature and energy of the system. Now we can compute the
correlator (38):

〈T F D|ψL(u1)Πκ(0)ψL(u2)Πκ(0)|T F D〉=
�

α2/4
M

�∆

,

M = −i sinh(αu1/2) cosh(eαu2/2) + i sinh(eαu2/2) cosh(αu1/2) sin(αβ/4)

+
eκ

α
sin(αβ/4) sinh(eαu2/2) sinh(αu1/2) ,

(56)

Finally we are ready to study the anticommutators. First we need to analytically continue
u2→−iβ/2− u2 and multiply the final expression by i−∆ to convert ψL(u2) to ψR(u2). Then
a quick examination reveals that the anti-commutator is maximal for u1 = −u2 = u. This is
similar to the GJW teleportation. Figure 7 shows a few sample plots. We can estimate that at
late times (larger than the thermal time β) and small κ, GLR behaves as

GLR ≈

�

α2/4

1− i eκα sinh(αu/2) cosh(αu/2)

�∆

. (57)

GJW practitioners can recognize here the answer after an instantaneous insertion of µOLOR
in the Hamiltonian except that here we have ieκ instead of µ. Because of that the correla-
tor never blows up. It means that the transition rate is suppressed by α2∆ ∼ β−2∆. In
the GJW case the naive blow-up behavior signals the breakdown of low-energy approxima-
tion (as ψL ,ψR can cross each other’s lightcone) and the actual value of GLR is of order 1.
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Figure 7: Left: Anti-commutator (39) with alternative normalisation. Right: anti-
commutator (38).

Naively, the teleportation is possible for both signs of eκ. However, for negative eκ, correlator
〈T F D|ψL(u1)Πκ(0)Πκ(0)ψL(u1)|T F D〉 blows up for large u1. It happens because operator S
in the weak projector e−κS measures the operator size growth of ψL(u1). So one is restricted
to eκ > 0.

Alternatively normalized correlator Gnorm
LR behaves as

Gnorm
LR ≈

�

2eκ sinh(αu/2)2/α

1− i eκα sinh(αu/2) cosh(eαu/2)

�∆

. (58)

It is not suppressed by powers of temperature and can become of order 1. From Kitaev–
Yoshida computation we expect that the information is transferable after SYK scrambling time.
For small eκ≪ 1 (39) information gets transferred even earlier. Thus Gnorm

LR reaches maximal
value at u∼ −β log eκ. Eventually it decays to zero because eα > α. However, for small eκ there
is a long plateau where it reaches the maximal value of 2∆ sin(π∆/2). It principle, eκ can be
made as small as 1/N . Then the transfer starts after the scrambling time and continues for
times of order N .

4.3 Multiple projections: Creating a wormhole

Now we want to make a step further and consider multiple consecutive measurements at
different times. The setup is the same as in Figure 6, but we have many projections (red dots).
As in the previous section we consider the situation when we prepare the system in the TFD
state and then switch on continuous projections at time u= 0.

Recall that our weak projections act in the following way (18):

eρ→ . . . e−κS∆ueiH∆u
eρe−κS∆ue−iH∆u . . . (59)

Basically it leads to an interaction similar to MQ interaction [40], except the signs on ± parts of
the SK contour are different and purely imaginary. Nonetheless, this is consistent with having
complex-conjugate solutions f+(u) = f ∗−(u).

Because of that, we can still use the formalism developed in Section 3, but we should
modify it slightly. We reintroduce the variable φ(u) that is related to the reparametrization
f (u) in Poincare time as

eφ = t ′ = (2arctan( f ))′ =
2 f ′

1+ f 2
. (60)
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On Lorentzian parts of the Schwinger-Keldysh contour (the spikes on Figure 4) the
reparametrization should satisfy the zero charge conditions and we arrive at the following
equation (compare to the eq. (29)):

φ′′± = −e2φ± ± iκ∆e2∆φ± . (61)

Note that in this equation the κ appears instead of eκ in comparison to the boundary conditions
(47). Thermal solution on the Euclidean (semi-)circle is given by eq. (41). Also we want to
satisfy the following boundary conditions:

• Continuity at u= 0, when we glue the real-time solution to the thermal one:

f±(0) = f β± (0) , f ′±(0) = f ′β± (0) , f ′′± (0) = f ′′β± (0) , (62)

Note that since we introduce continuous measurements the second derivative also should
be continuous.

• Gluing together f+(u) and f−(u) at final time T , when we are done with the measure-
ments:

f+(T ) = f−(T ) , f ′+(T ) = f ′−(T ) , f ′′+ (T ) = f ′′− (T ) , (63)

that could be thought as a requirement of f+(u) = f−(u) in a consequent real-time evo-
lution.

The boundary condition at T then implies that φ±(T ) and φ′±(T ) are real. The above patching
procedure can be done numerically. Since φ∗+(u) = φ−(u), we can focus only on the plus field
φ+(u). First we fix T , the time when we ± branches merge. The thermal boundary conditions
for φ at u = 0 are parameterized by only α (A+ drops out once we convert f to φ). We
need to find complex α such that φ+(T ),φ′+(T ) are real. That will provide two real equations
for two real parameters, that could be in principle solved by using shooting method or some
more advanced tools. That will allow us to completely determine the evolution of the system.
Equivalently, we can fixα and just solve the equations of motion, and see whether the trajectory
terminates on a real line or not. That would provide us with two functions T (α),φ+(α), that
allows us to compute all interesting correlation functions.

For ∆= 1/2 the solution can be obtained analytically:

exp(φ±) =
2v± exp(v±(u− s±))

1∓ 2ηi exp(v±(u− s±))/v± −κ2 exp(2v±(u− s±))/v2
± + exp(2v±(u− s±))

. (64)

This solution depends on two parameters v±, s±, that are complex conjugated to each other
v∗+ = v−, s∗+ = s−. With the use of boundary conditions at u = 0 we can find this parameters.
By going numerically through different β and κ we find that increasing κ does not lead to
qualitative differences: left-right two-point function GLR always behaves like on Figure 2. That
is, there is no phase transition: after turning on κ at u= 0 one can transfer information, but the
efficiency decays exponentially. In this trivial phase φ± trajectories just run away to infinity.
Also GLR(T, T ) decays exponentially signalling the growth of the Einstein–Rosen bridge and
losing correlation between left and right.

For generic∆ one has to resort to numerics. Interestingly, for∆< 1/2 and large enough κ
we do find a wormhole solution. For∆= 1/4 a sample (complex) trajectory φ+(u) in this new
phase is shown on Figure 8. We see that at late times the trajectories spend at lot of time around
the critical point φ∗+ and then reach the same point φ∞ on the real axis, where it should be
glued to φ−. This results in constant GLR(T, T ) ∼ e2∆φ∞ which says that the Einstein–Rosen
bridge has stopped growing - the right panel of Figure 8. Also now one can teleport information
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Figure 8: Left: Trajectory φ+(u) in the wormhole phase. Red dot is the equilibrium
saddle point. For longer evolution times T , the trajectory spends more and more time
around the saddle point. Right: wormhole length log GLR(T, T ) as a function of time
in different phases. The fact that it is constant in the wormhole phase reflects the
fact that φ+ ends up in the same point on the real axis on the left plot. For β = 46
the critical coupling κcri t ≈ 0.02.

at any time - the left panel of Figure 3. Anti-commutator Im GLR(u1, T ) eventually decays to
zero for large T , but it does not really matter when (at what u1) you inserted the perturbation.
The decay to zero can also be easily explained by the fact that trajectories spend most of the
time around the saddle point. Consider the equation (28) for GLR:

GLR =
t ′L(u1)∆ t ′L(u2)∆

cos2∆
�

tL(u2)−tL(u1)
2

� . (65)

For a fixed u1 and large u2, the difference tL(u2) − tL(u1) =
∫ u2

u1
du eφ is dominated by the

saddle hence the integral is equal to eφ∗(u2 − u1). The value of φ∗ can be easily determined
from eq. (61):

e2φ∗ + iκ∆e2∆φ∗ = 0 . (66)

The value of t ′L(u2) is determined by the position of the trajectoryφ(u)where the+ Schwinger-
Keldysh part meets the − part and φ is real. At late times this position is a constant, since the
trajectory has almost zero velocity near the critical point, so it intersects the real axis almost
at the same point - Figure 8. Hence, the Green function can be approximated as

GLR = const
1

cos2∆
�

eφ∗ u2−u1
2

� , (67)

this is the result quoted in the Introduction. It does exhibit revivals, but since eφ∗ is complex,
GLR eventually decays to zero. In the GJW/MQ case, the Green functions has exactly the same
form but eφ∗ is real hence the behavior is purely oscillatory. Figure 9 zooms in on a late time
behavior of the GLR in the KY case.

Using the fact that the trajectory at late times spend most of the time around the critical
point also explains why all trajectories terminate at the same point φ∞. The equations of
motions for the fields φ± (61) has a conserved metric

E± = φ
′2
± + e2φ± ∓ iκe2∆φ± , (68)
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Figure 9: Late time behavior of GLR. Since it is exponentially decaying it is convenient
to plot log | Im GLR|. The analytical answer is given by (67).

we can see that as T tends to infinity the trajectories stays around the critical point φ∗± closest
to the real axis

−e2φ∗± ± iκ∆e2∆φ∗± = 0 , φ∗± = −
log (±iκ∆)
2 (∆− 1)

, (69)

because only around this point the trajectory can stay infinitely long. The provides us with
some approximate energy E∗±. After that it easy to see that if the trajectory terminated at the
real axis at φ∞ the following equation must hold

Im E∗+ = κe2∆φ∞ , φ∞ =
1

2∆
log

�

1
κ

Im E∗+

�

. (70)

Finally, lets us comment on the steady-state solution. Our numerical analysis suggests that
in the wormhole phase the system does not depend on the initial temperature - Figure 10. It
means that the maximal value of the teleportaion fidelity Im GLR depend only on κ.
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Figure 10: The steady state in the wormhole phase does not depend on the ini-
tial temperature β of TFD. Left: behavior of φ(T ) for different initial temperatures,
Right: two-sided correlation function.
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5 Conclusions and discussion

This paper has two major conclusions. First, projections/measurements could be approxi-
mated with a low-energy quantum channel. Then one can perform multiple measurements
without introducing too much energy into the system and hence study phase transitions in
observables linear in the density matrix. Also this opens a possibility of studying unitary-
measurement dynamics in continuum QFT.

Second, in SYK/JT gravity there is a phase transition in teleportation rate triggered by
continuous projection dynamics. In geometric terms it is a transition between TFD state (two
entangled black holes) and an eternal traversable wormhole. In the KY case it is a novel type
of wormhole supported by projections rather than negative energy.

This techniques could be generalized to higher dimensions. The interaction (19) could be
generalized to any continuous QFT.It would be interesting to see if it can support a wormhole in
higher dimensions. Also in Section 4.3 we presented specific examples of wormhole solutions
supported by projections, but we do not have as much analytic control as in the GJW case. We
have only numerical evidence that the transition happens for∆< 1/2. It would be interesting
to understand why it happens and determine κcri t . The biggest challenge is the inherent time-
dependence of the solution: it is true that the trajectory φ+ spends a lot of time around the
saddle point but eventually it must come to real axis to meet with φ−. Also since the dynamics
is happening around a saddle rather than a minimum, this raises concerns about its stability.
We leave this question for future work.

Another important question is the nature of teleportation. In case of the GJW protocol with
a single unitary insertion, one one easy explain teleportation using negative energy pulses in
the dual gravity picture [36]. From the boundary quantum mechanics perspective the GJW
protocol works due to the specific distribution of phases (perfect size-winding) in the operator
spreading dynamics. Perfect size-winding is expected for holographic theories, but not for gen-
eral chaotic Hamiltonians. It would be interesting to generalize the arguments of [34] to the
continuous GJW setting and explain the phase transition. The KY case is different. The KY pro-
tocol with a single projection is guaranteed to work for any chaotic Hamiltonian. Dual gravity
picture in this case is not clear. Comparing (68) and (30) we can naively conclude that KY
inserts “complex” energy into the bulk. In this paper we justified using complex reparametriza-
tions (and hence complex bulk geometry) by reproducing in Section 4.2 a known large-q SYK
answer this way. Moreover, in case of single projection one can perform all computations in
Euclidean where everything is real. Complex geometries in gravity are not something exotic
and recently they received a new wave of attention [52–56]. Our situation is reminiscent of
replica wormholes: in Euclidean the geometry is real [57], but in Lorentz signature it be-
comes complex [58, 59]. It would be interesting to explore the complex geometry of the KY
teleportation further.

The biggest issue with projections is a post-selection procedure: one has to do a measure-
ment first and then discard the outcomes in which system ends up not in the state we want.
It leads to a problem, that the number of states we can work with is exponentially small. A
natural thing to do then is not to discard that sample, but to try to push the system towards
what we want [7,60–64]. We can try to follow this approach in our case. Returning to eq. (5),
if the measurement of iψ j

Lψ
j
R yields +1, we act with another ψL to turn it into −1 eigenstate:

ρ→ (1− 4Nκdu)ρ +κdu
∑

j

(1− iψ j
Lψ

j
R)ρ(1− iψ j

Lψ
j
R)

+κdu
∑

j

ψ
j
L(1+ iψ j

Lψ
j
R)ρ(1+ iψ j

Lψ
j
R)ψ

j
L . (71)

Now the trace is preserved. Quartic terms in the action are problematic. Inspired by Section
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2, we can try to drop them and consider the action

1
κ
∂uρ = −iψ j

Lψ
j
Rρ −ρiψ j

Lψ
j
R + iψ j

Rρψ
j
L − iψ j

Lρψ
j
R . (72)

It is trace-preserving, but unlike eq. (19) it is not completely positive (not even positive). It
would be interesting to come up with another notion of a driving which does not have this
problem. In principle, dynamics (71) can be studied numerically, but one would not be able
to do it within the low-energy Schwarzian approximation.

Acknowledgments

We would like to thank M. Tomasevic for collaboration at early stages of this project. Also
we are grateful to E. Colafranceschi for reading the mansuscript and providing comments.
It is pleasure to thank A. Gorsky, B. Grado-White, A. Khindanov, J. Maldacena, D. Marolf,
H. Marrochio, V. Su, W. Weng, M. Usatyuk, Y. Zhao and especially S. Antonini, P. Glorioso and
S. Diehl for discussions and comments. AM also would like to thank C. King for moral support.

Funding information F.K.P. is currently a Simons Junior Fellow at NYU and supported by a
grant 855325FP from the Simons Foundation. This material is based upon work supported by
the Air Force Office of Scientific Research under award number FA9550-19-1-0360. It was also
supported in part by funds from the University of California. AM would like to acknowledge
support from Berkeley Center for Theoretical Physics and by the Department of Energy, Of-
fice of Science, Office of High Energy Physics under QuantISED Award DE-SC0019380 while
visiting Berkeley Center for Theoretical Physics.

References

[1] Y. Li, X. Chen and M. P. A. Fisher, Quantum Zeno effect and the many-body entanglement
transition, Phys. Rev. B 98, 205136 (2018), doi:10.1103/PhysRevB.98.205136.

[2] B. Skinner, J. Ruhman and A. Nahum, Measurement-induced phase tran-
sitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019),
doi:10.1103/PhysRevX.9.031009.

[3] Y. Li, X. Chen and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid
quantum circuits, Phys. Rev. B 100, 134306 (2019), doi:10.1103/PhysRevB.100.134306.

[4] M. Szyniszewski, A. Romito and H. Schomerus, Entanglement transition from
variable-strength weak measurements, Phys. Rev. B 100, 064204 (2019),
doi:10.1103/PhysRevB.100.064204.

[5] T. Minato, K. Sugimoto, T. Kuwahara and K. Saito, Fate of measurement-induced
phase transition in long-range interactions, Phys. Rev. Lett. 128, 010603 (2022),
doi:10.1103/PhysRevLett.128.010603.

[6] T. Müller, S. Diehl and M. Buchhold, Measurement-induced dark state phase tran-
sitions in long-ranged fermion systems, Phys. Rev. Lett. 128, 010605 (2022),
doi:10.1103/PhysRevLett.128.010605.

[7] M. Buchhold, T. Müller and S. Diehl, Revealing measurement-induced phase transitions by
pre-selection, (arXiv preprint) doi:10.48550/arXiv.2208.10506.

22

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevLett.128.010603
https://doi.org/10.1103/PhysRevLett.128.010605
https://doi.org/10.48550/arXiv.2208.10506


SciPost Phys. 17, 020 (2024)

[8] S. Dhar and S. Dasgupta, Measurement-induced phase transition in a quantum spin system,
Phys. Rev. A 93, 050103 (2016), doi:10.1103/physreva.93.050103.

[9] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte and M. Schiró, Measurement-induced entan-
glement transitions in the quantum Ising chain: From infinite to zero clicks, Phys. Rev. B
103, 224210 (2021), doi:10.1103/PhysRevB.103.224210.

[10] Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonin-
tegrable model by density-matrix renormalization group calculations, Phys. Rev. Res. 2,
013022 (2020), doi:10.1103/physrevresearch.2.013022.

[11] M. Szyniszewski, A. Romito and H. Schomerus, Universality of entanglement transitions
from stroboscopic to continuous measurements, Phys. Rev. Lett. 125, 210602 (2020),
doi:10.1103/PhysRevLett.125.210602.

[12] S.-K. Jian, C. Liu, X. Chen, B. Swingle and P. Zhang, Measurement-induced phase tran-
sition in the monitored Sachdev-Ye-Kitaev model, Phys. Rev. Lett. 127, 140601 (2021),
doi:10.1103/PhysRevLett.127.140601.

[13] A. Nahum, S. Roy, B. Skinner and J. Ruhman, Measurement and entanglement phase tran-
sitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory,
PRX Quantum 2, 010352 (2021), doi:10.1103/PRXQuantum.2.010352.

[14] T. Botzung, S. Diehl and M. Müller, Engineered dissipation induced entanglement transition
in quantum spin chains: From logarithmic growth to area law, Phys. Rev. B 104, 184422
(2021), doi:10.1103/PhysRevB.104.184422.

[15] O. Alberton, M. Buchhold and S. Diehl, Entanglement transition in a monitored free-
fermion chain: From extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021),
doi:10.1103/PhysRevLett.126.170602.

[16] A. Altland, M. Buchhold, S. Diehl and T. Micklitz, Dynamics of measured
many-body quantum chaotic systems, Phys. Rev. Res. 4, L022066 (2022),
doi:10.1103/PhysRevResearch.4.L022066.

[17] S. Choi, Y. Bao, X.-L. Qi and E. Altman, Quantum error correction in scrambling dy-
namics and measurement-induced phase transition, Phys. Rev. Lett. 125, 030505 (2020),
doi:10.1103/PhysRevLett.125.030505.

[18] R. Fan, S. Vijay, A. Vishwanath and Y.-Z. You, Self-organized error correction in
random unitary circuits with measurement, Phys. Rev. B 103, 174309 (2021),
doi:10.1103/PhysRevB.103.174309.

[19] Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev.
B 103, 104306 (2021), doi:10.1103/physrevb.103.104306.

[20] S. Vijay, Measurement-driven phase transition within a volume-law entangled phase, (arXiv
preprint) doi:10.48550/arXiv.2005.03052.

[21] M. Buchhold, Y. Minoguchi, A. Altland and S. Diehl, Effective theory for the
measurement-induced phase transition of Dirac fermions, Phys. Rev. X 11, 041004 (2021),
doi:10.1103/PhysRevX.11.041004.

[22] F. Barratt, U. Agrawal, S. Gopalakrishnan, D. A. Huse, R. Vasseur and A. C. Potter, Field
theory of charge sharpening in symmetric monitored quantum circuits, Phys. Rev. Lett. 129,
120604 (2022), doi:10.1103/PhysRevLett.129.120604.

23

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020
https://doi.org/10.1103/physreva.93.050103
https://doi.org/10.1103/PhysRevB.103.224210
https://doi.org/10.1103/physrevresearch.2.013022
https://doi.org/10.1103/PhysRevLett.125.210602
https://doi.org/10.1103/PhysRevLett.127.140601
https://doi.org/10.1103/PRXQuantum.2.010352
https://doi.org/10.1103/PhysRevB.104.184422
https://doi.org/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PhysRevResearch.4.L022066
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.103.174309
https://doi.org/10.1103/physrevb.103.104306
https://doi.org/10.48550/arXiv.2005.03052
https://doi.org/10.1103/PhysRevX.11.041004
https://doi.org/10.1103/PhysRevLett.129.120604


SciPost Phys. 17, 020 (2024)

[23] A. Anshu, N. P. Breuckmann and C. Nirkhe, NLTS Hamiltonians from good quantum
codes, in Proceedings of the 55th annual ACM symposium on theory of computing, As-
sociation for Computing Machinery, New York, USA, ISBN 9781450399135 (2023),
doi:10.1145/3564246.3585114.

[24] M. H. Freedman and M. B. Hastings, Quantum systems on non-k-hyperfinite complexes: A
generalization of classical statistical mechanics on expander graphs, Quantum Inf. Comput.
14, 144 (2014), doi:10.26421/QIC14.1-2-9.

[25] C.-J. Lin, W. Ye, Y. Zou, S. Sang and T. H. Hsieh, Probing sign structure using measurement-
induced entanglement, Quantum 7, 910 (2023), doi:10.22331/q-2023-02-02-910.

[26] Z. Weinstein, S. P. Kelly, J. Marino and E. Altman, Scrambling transition
in a radiative random unitary circuit, Phys. Rev. Lett. 131, 220404 (2023),
doi:10.1103/PhysRevLett.131.220404.

[27] S. Antonini, G. Bentsen, C. Cao, J. Harper, S.-K. Jian and B. Swingle, Holo-
graphic measurement and bulk teleportation, J. High Energy Phys. 12, 124 (2022),
doi:10.1007/JHEP12(2022)124.

[28] B. Yoshida, Projective measurement of black holes, (arXiv preprint)
doi:10.48550/arXiv.2203.04968.

[29] T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR pairs, local projec-
tions and quantum teleportation in holography, J. High Energy Phys. 08, 077 (2016),
doi:10.1007/JHEP08(2016)077.

[30] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg
magnet, Phys. Rev. Lett. 70, 3339 (1993), doi:10.1103/PhysRevLett.70.3339.

[31] A. Kitaev, A simple model of quantum holography, Kavli Institute for Theoretical Physics,
Santa Barbara, USA (2015), http://online.kitp.ucsb.edu/online/entangled15/kitaev,
http://online.kitp.ucsb.edu/online/entangled15/kitaev2.

[32] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94,
106002 (2016), doi:10.1103/PhysRevD.94.106002.

[33] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, J. High En-
ergy Phys. 04, 001 (2016), doi:10.1007/JHEP04(2016)001.

[34] P. Gao and D. L. Jafferis, A traversable wormhole teleportation protocol in the SYK model,
J. High Energy Phys. 07, 097 (2021), doi:10.1007/JHEP07(2021)097.

[35] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, (arXiv
preprint) doi:10.48550/arXiv.1710.03363.

[36] P. Gao, D. L. Jafferis and A. C. Wall, Traversable wormholes via a double trace deformation,
J. High Energy Phys. 12, 151 (2017), doi:10.1007/JHEP12(2017)151.

[37] A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G. Salton,
L. Susskind, B. Swingle and M. Walter, Quantum gravity in the lab. I. Tele-
portation by size and traversable wormholes, PRX Quantum 4, 010320 (2023),
doi:10.1103/PRXQuantum.4.010320.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020
https://doi.org/10.1145/3564246.3585114
https://doi.org/10.26421/QIC14.1-2-9
https://doi.org/10.22331/q-2023-02-02-910
https://doi.org/10.1103/PhysRevLett.131.220404
https://doi.org/10.1007/JHEP12(2022)124
https://doi.org/10.48550/arXiv.2203.04968
https://doi.org/10.1007/JHEP08(2016)077
https://doi.org/10.1103/PhysRevLett.70.3339
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev2
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1007/JHEP04(2016)001
https://doi.org/10.1007/JHEP07(2021)097
https://doi.org/10.48550/arXiv.1710.03363
https://doi.org/10.1007/JHEP12(2017)151
https://doi.org/10.1103/PRXQuantum.4.010320


SciPost Phys. 17, 020 (2024)

[38] S. Nezami, H. W. Lin, A. R. Brown, H. Gharibyan, S. Leichenauer, G. Salton,
L. Susskind, B. Swingle and M. Walter, Quantum gravity in the lab. II. Tele-
portation by size and traversable wormholes, PRX Quantum 4, 010321 (2023),
doi:10.1103/PRXQuantum.4.010321.

[39] T. Schuster et al., Many-body quantum teleportation via operator spread-
ing in the traversable wormhole protocol, Phys. Rev. X 12, 031013 (2022),
doi:10.1103/PhysRevX.12.031013.

[40] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, (arXiv preprint)
doi:10.48550/arXiv.1804.00491.

[41] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in
two-dimensional nearly anti-de Sitter space, Prog. Theor. Exp. Phys. 12C104 (2016),
doi:10.1093/ptep/ptw124.

[42] D. Bak, C. Kim and S.-H. Yi, Transparentizing black holes to eternal traversable wormholes,
J. High Energy Phys. 03, 155 (2019), doi:10.1007/JHEP03(2019)155.

[43] Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting worm-
holes, Class. Quantum Gravity 36, 045006 (2019), doi:10.1088/1361-6382/aafcea.

[44] Y. D. Lensky and X.-L. Qi, Rescuing a black hole in the large-q coupled SYK model, J. High
Energy Phys. 04, 116 (2021), doi:10.1007/JHEP04(2021)116.

[45] J. Maldacena and A. Milekhin, SYK wormhole formation in real time, J. High Energy Phys.
04, 258 (2021), doi:10.1007/JHEP04(2021)258.

[46] J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortschr. Phys.
65, 1700034 (2017), doi:10.1002/prop.201700034.

[47] H. W. Lin, J. Maldacena and Y. Zhao, Symmetries near the horizon, J. High Energy Phys.
08, 049 (2019), doi:10.1007/JHEP08(2019)049.

[48] A. Almheiri, A. Milekhin and B. Swingle, Universal constraints on energy flow and SYK
thermalization, (arXiv preprint) doi:10.48550/arXiv.1912.04912.

[49] A. Milekhin, Non-local reparametrization action in coupled Sachdev-Ye-Kitaev models, J.
High Energy Phys. 12, 114 (2021), doi:10.1007/JHEP12(2021)114.

[50] A. Milekhin, Coupled Sachdev-Ye-Kitaev models without Schwartzian dominance, (arXiv
preprint) doi:10.48550/arXiv.2102.06651.

[51] X.-L. Qi and A. Streicher, Quantum epidemiology: Operator growth, thermal effects, and
SYK, J. High Energy Phys. 08, 012 (2019), doi:10.1007/JHEP08(2019)012.

[52] M. Kontsevich and G. Segal, Wick rotation and the positivity of energy in quantum field
theory, Q. J. Math. 72, 673 (2021), doi:10.1093/qmath/haab027.

[53] E. Witten, A note on complex spacetime metrics, (arXiv preprint)
doi:10.48550/arXiv.2111.06514.

[54] M. Visser, Feynman’s iε prescription, almost real spacetimes, and acceptable complex space-
times, J. High Energy Phys. 08, 129 (2022), doi:10.1007/JHEP08(2022)129.

25

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020
https://doi.org/10.1103/PRXQuantum.4.010321
https://doi.org/10.1103/PhysRevX.12.031013
https://doi.org/10.48550/arXiv.1804.00491
https://doi.org/10.1093/ptep/ptw124
https://doi.org/10.1007/JHEP03(2019)155
https://doi.org/10.1088/1361-6382/aafcea
https://doi.org/10.1007/JHEP04(2021)116
https://doi.org/10.1007/JHEP04(2021)258
https://doi.org/10.1002/prop.201700034
https://doi.org/10.1007/JHEP08(2019)049
https://doi.org/10.48550/arXiv.1912.04912
https://doi.org/10.1007/JHEP12(2021)114
https://doi.org/10.48550/arXiv.2102.06651
https://doi.org/10.1007/JHEP08(2019)012
https://doi.org/10.1093/qmath/haab027
https://doi.org/10.48550/arXiv.2111.06514
https://doi.org/10.1007/JHEP08(2022)129


SciPost Phys. 17, 020 (2024)

[55] S. K. Asante, B. Dittrich and J. Padua-Argüelles, Complex actions and causality viola-
tions: Applications to Lorentzian quantum cosmology, Class. Quantum Gravity 40, 105005
(2023), doi:10.1088/1361-6382/accc01.

[56] J. Louko and R. D. Sorkin, Complex actions in two-dimensional topology change, Class.
Quantum Gravity 14, 179 (1997), doi:10.1088/0264-9381/14/1/018.

[57] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica worm-
holes and the entropy of Hawking radiation, J. High Energy Phys. 05, 013 (2020),
doi:10.1007/JHEP05(2020)013.

[58] S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational
replicas: Formalism and a variational principle, J. High Energy Phys. 05, 117 (2021),
doi:10.1007/JHEP05(2021)117.

[59] S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravi-
tational replicas: Low dimensional examples, J. High Energy Phys. 08, 171 (2021),
doi:10.1007/JHEP08(2021)171.

[60] T. Iadecola, S. Ganeshan, J. H. Pixley and J. H. Wilson, Measurement and feedback driven
entanglement transition in the probabilistic control of chaos, Phys. Rev. Lett. 131, 060403
(2023), doi:10.1103/PhysRevLett.131.060403.

[61] R. A. Santos, F. Iemini, A. Kamenev and Y. Gefen, A possible route towards dissipation-
protected qubits using a multidimensional dark space and its symmetries, Nat. Commun.
11, 5899 (2020), doi:10.1038/s41467-020-19646-4.

[62] F. Verstraete, M. M. Wolf and J. I. Cirac, Quantum computation, quantum state
engineering, and quantum phase transitions driven by dissipation, (arXiv preprint)
doi:10.48550/arXiv.0803.1447.

[63] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler and P. Zoller, Quantum states
and phases in driven open quantum systems with cold atoms, Nat. Phys. 4, 878 (2008),
doi:10.1038/nphys1073.

[64] J. T. Barreiro et al., An open-system quantum simulator with trapped ions, Nature 470,
486 (2011), doi:10.1038/nature09801.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.1.020
https://doi.org/10.1088/1361-6382/accc01
https://doi.org/10.1088/0264-9381/14/1/018
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1007/JHEP05(2021)117
https://doi.org/10.1007/JHEP08(2021)171
https://doi.org/10.1103/PhysRevLett.131.060403
https://doi.org/10.1038/s41467-020-19646-4
https://doi.org/10.48550/arXiv.0803.1447
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nature09801

	Introduction
	Projections at low energies
	Turning TFD into an eternal traversable wormhole with Gao–Jafferis–Wall
	The setup
	Turning on the interaction
	Comments on large-q SYK

	Projection dynamics
	Boundary conditions
	Single projection: Recovering Kitaev–Yoshida teleportation
	Multiple projections: Creating a wormhole

	Conclusions and discussion
	References

