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Abstract

Direct detection of relic neutrinos in a beta-decay experiment is an ambitious goal that
has long been beyond the reach of available technology. One of the most challenging
practical difficulties for such an experiment is managing a large amount of radioac-
tive material without compromising the energy resolution required to distinguish useful
events from the substantial beta-decay background. The PTOLEMY project offers an in-
novative solution to this problem by depositing radioactive material on graphene. While
this approach is expected to address the main challenge, it introduces new issues due
to the proximity of the beta decayers to a solid-state system. In this work, we focus on
the effect of the shakeup of the graphene electron system caused by a beta-decay event.
We calculate the distortion of the relic neutrino peaks resulting from this shakeup, ana-
lyze the impact of the distortion on the visibility of neutrino capture events, and discuss
potential technological solutions to enhance the visibility of these events.
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1 Introduction

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson [1] was a
pivotal event in Big Bang cosmology. The data from WMAP (Wilkinson Microwave Anisotropy
Probe), 2001 [2] and Planck in 2013 [3] gave us the snapshot of the Universe dating back to
about 13 billion years ago. However, the CMB provides no direct access to the Universe within
300 000 years of the Big Bang, because electromagnetic waves could not freely propagate in
that epoch. For this reason, astronomers looked for an alternative messenger, a particle that
had decoupled from matter earlier than the CMB. In particular, the decoupling of neutrinos is
believed to have occurred about one second after the Big Bang. Unfortunately, the extremely
weak coupling of neutrinos with matter makes the detection of the Cosmic Neutrino Back-
ground (CνB) a challenging task. Various ideas have been put forward as to how the CνB
could manifest itself in a laboratory experiment [4–6]. The most practicable route to CνB
detection today goes back to Weinberg’s observation that the processes of cosmic neutrino
capture should leave an extremely weak however potentially discernible feature in the beta
spectra of radioactive nuclei [4]. Weinberg’s original idea was elaborated in several propos-
als [7, 8] centred around the beta decay of Tritium, which has a number of advantages such
as the high neutrino capture cross-section, convenient half-lifetime, sufficient abundance and
relatively simple chemistry [9].

Spontaneous beta-decay is a radioactive process in which a neutron decays into a proton,
also emitting an electron and an anti-neutrino [10]. Its sibling process, induced beta decay
occurs through the absorption of a neutrino. The two processes are illustrated in the following
two reaction equations

3H→ 3He+ + e− + ν̄e , (1)

and
νe +

3 H→ 3He+ + e− . (2)

While the former is a 1 → 3 process resulting in a wide the continuous energy spectrum of
beta-electrons, the latter is a 2→ 2 process imposing fixed values of the kinetic energies of the
products in the centre of mass reference frame. For this reason, the energy spectrum of the
beta-electron emitted in an induced process forms a narrow peak whose width is determined
only by the variance of the kinetic energy of the incoming particles. Furthermore, considering
the finite value of the neutrino mass mν, this peak should be separated from the edge of the
spontaneous beta-spectrum by the energy gap equal to 2mν.

The expected influence of the CνB on the beta emission of nuclei is illustrated in Fig. 1,
which shows the theoretically predicted beta spectrum of free monoatomic 3H. The figure
contains both the spontaneous beta decay background and the CνB contribution.1 The two
narrow CνB peaks in the spectrum come from the contributions of different neutrino mass
eigenstates. The broadening of the peaks reflects the finite energy resolution of the experiment,
which in this plot is assumed to be 40 meV [11, 12]. The energy gap is only about 100 meV,
so in order for the CνB signal to be visible the energy resolution of the experiment has to be

1We acknowledge Dr. Boyarsky to provide us the date and the Mathematica code.
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Figure 1: Beta decay spectrum and the sketch of the beta decay process. The blue
curve depicts the CνB spectrum, and the red curve represents the beta decay spec-
trum, and they are separated by an energy gap, which has an order of magnitude
twice the neutrino mass (2mν). The annotation of the horizontal axis is the kinetic
energy of the emitted electron measured from the endpoint of the beta decay spec-
trum, and the annotation of the vertical axis is the events observed at a certain energy
per year. The area behind each cure represents the events per year, and the area be-
hind the CνB curve is only 4.

on the same order of magnitude or less than the neutrino mass, otherwise the extremely weak
cosmic neutrino feature will be submerged by the massive beta decay background.

Although it has been demonstrated that a 40 meV energy resolution of the beta-electron
detector is within the reach of today’s technology [13], the task of the fabrication of the neu-
trino target remains a serious challenge. The difficulty stems from the conflicting requirements
of sufficiently high sample size on the one hand and sufficiently low probability of information
loss to inelastic scattering on the other. In particular, detectors using gas-phase Tritium as
a neutrino target, such as KATRIN, fall short of the required resolution [8] due to complica-
tions arising from inelastic collisions of electrons with ionised gas. Today, the most promising
proposal addressing the issue is the solid state setup put forward by the PTOLEMY collabo-
ration [13–15]. In this design, the required density of radioactive material will be achieved
by creating a stack of two-dimensional graphene sheets covered by 3H. Inelastic collisions are
avoided due to the emission of beta-electrons into the empty space between the graphene
sheets, from where the electrons are guided into the calorimeter with the help of a cleverly
designed electromagnetic guidance system.

While the PTOELMY design offers an appealing solution to one issue, it also encounters a
range of challenges of its own. Recently, it was pointed out that trapping Tritium on a solid
state surface leads to a substantial loss of energy resolution due to the zero-point motion of
the nucleus [16]. Different mitigation strategies have been discussed such as engineering of
the trapping potential [17], or use of heavier emitters [18–23], however, none of them is free
of difficulty.

One of the important conclusions one can draw from these recent studies is as follows: the
tightness of the energy resolution requirements imposed by the task of relic neutrino detection
mandates exhaustive understanding and high control of the energy balance of beta-decay pro-
cesses on a solid state surface down to the energy scale of about 10 meV. Clearly, the first step
towards this goal should be the identification and preliminary theoretical analysis of all solid
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state effects affecting the beta-electron on this energy scale. This, presumably, constitutes a
considerable research program consisting of a range of tasks each addressing a separate solid
state effect or interplay of several effects, if necessary. Some early and by no means compre-
hensive discussion of potentially harmful effects can be found in Refs. [11,16,17].

In this work, we aim to contribute to the theoretical analysis of solid state effects affecting
the resolution of the PTOLEMY experiment by looking into a particular set of phenomena as-
sociated with the shakeup of the electron Fermi sea in graphene due to the beta-decay process.
Ref. [11] identifies the Fermi sea shakeup as potentially very harmful due to the large band-
width of graphene’s conduction band. Our preliminary analysis here shows that the shakeup
effect may not be as dangerous as it may seem from dimensional considerations. The main
reason for this is that the shakeup of the Fermi sea results in a peculiar distortion of the line
shape of a beta-electron, which is highly asymmetric and contains a power-law divergence at
the energy of the process where no energy is transferred to the Fermi sea. Such a line shape is
reminiscent of the famous X-ray edge singularity in the X-ray emission spectra (XES) of met-
als [24–29] and it is explained by the same physical mechanism. We demonstrate that the
X-ray edge type broadening, although unpleasant, is not fatal for the PTOLEMY experiment,
moreover, there are reasonably straightforward in situ ways to mitigate it. What we find a lot
more dangerous is the effect of the core hole recombination. Our main conclusion here is that
the requirements on the core hole lifetime are so stringent that one may need to consider ways
to make the ion formed after the beta-decay chemically stable.

We would like to emphasize that in this work, we do not delve into the ramifications asso-
ciated with the zero-point motion of the nucleus. The reader may assume that we are examin-
ing beta-decay within a system where such effects have been mitigated. This mitigation may
be achieved through the utilization of heavy isotopes, such as 171Tm or 151Sm, or by imple-
menting engineering strategies like confining potential manipulation, such as configurations
where a Tritium atom is attached to a surface via physisorption. We defer the consideration
of practicality related to the use of heavy isotopes or physisorption on graphene for a separate
discussion.

2 Formulation of the problem

In this section, we introduce the spectral function, which encapsulates the influence of any
solid-state environment on the shape of the beta-spectrum emitted by a decaying atom. Fur-
thermore, we discuss some general properties of the spectral function, in particular, the effect
of a finite lifetime of the decay product. We conclude this section by formulating a mathemat-
ical model of beta-emission on graphene in the presence of the Fermi sea of mobile electrons.
We also discuss why despite being only an approximation to the intricate system under inves-
tigation, such a model captures the most important qualitative features of beta-decay, as well
as providing reasonable quantitative estimates for the key parameters of the distortion of the
beta-spectrum.

We consider a beta-emitter atom positioned at some microscopic distance from a graphene
sheet. Possible mechanisms of attachment may include chemisorption or physisorption on
graphene, adsorption on an atomically thin insulating layer grown on top of graphene, ad-
sorption of a molecular coordination complex containing beta-emitter as a ligand, or other. In
either case, we assume that the hybridisation between the orbitals of the beta-emitter and the
electron system in graphene is perturbatively weak. To simplify the presentation, we focus on
the capture process

νe +
A
Z XQ→ A

Z+1XQ+1 + e− . (3)

Here Q is the charge state of the beta-emitter and Q + 1 is the charge state of the daughter
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Figure 2: Sketch of the beta emitter and graphene sheet. A
Z+1XQ+1 is the produc-

tion of the beta decay process, and it introduces a sudden localized perturbation in
the electron system of graphene. This sudden localized perturbation causes an X-
ray edge, which changes the beta decay spectrum. The thin green layer is a spacer
inserted between the beta emitter and the graphene sheet to isolate the daughter
isotope A

Z+1XQ+1 from the graphene sheet. Thus it improves the lifetime of A
Z+1XQ+1.

isotope. It is assumed that an electrically neutral atom corresponds to Q = 0. All general re-
sults discussed here extend to the case of spontaneous beta decay trivially. After capturing
an incoming neutrino, the beta-emitter converts into a daughter isotope, releasing a fast out-
going electron as depicted in Fig(2). The sudden emergence of a charge centre next to the
graphene sheet triggers local rearrangement of the material’s electronic structure, in the exact
same manner as the core hole in an X-ray emission experiment. In the latter case, such a rear-
rangement is known to result in the X-ray edge singularity in the emission spectrum [24–29],
which is seen as the broadening of the emission line into an asymmetric shape having a power-
law singularity at the emission edge. A similar phenomenon will occur in the β-spectrum of a
radioactive atom on graphene.

Generally, the influence of the rearrangement of the electron system on the beta-spectrum
is described by the following convolution (see section 2.2 for the technical details)

d Γ̃
dEk

= N
�

dΓ
dEk
∗ A
�

(Ek) , (4)

where dΓ/dEk is the differential beta emission rate for a free monoatomic beta-decayer in the
vacuum, N is the number of beta-decayers and A is the spectral function. It is worth noting
that this expression is quite generic and it is not tied to any particular model of interaction of
the beta-decayer with the solid state environment, as long as the electronic composition of the
beta-decayer and the daughter ion can be defined in a meaningful way.

The spectral function encodes the internal dynamics of the solid state system after the
sudden emergence of a positively charged daughter ion. Let Hg denotes the Hamiltonian
describing the graphene sheet in the presence of the charged daughter ion, and let |λ〉 be the
eigenstates of this Hamiltonian

Hg |λ〉= Eλ|λ〉 , (5)
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then the spectral function is given by the following expression (see section 2.2)

A(E) =
∑

λ

|〈λ|FS〉|2δ(E + Eλ − E0) . (6)

Here E0 is the ground state energy of the graphene-beta emitter system prior to beta-decay, and
|FS〉 is the ground state of the solid-state system prior to beta decay. Implicit within Eq. (6) is
the assumption that the decay process transpires significantly faster than the typical timescales
associated with the dynamics governed by Hg . The derivation of Eq. (6) from Fermi’s Golden
Rule is contained in 2.2.

2.1 Properties of the spectral function

From Eq. (6) one can infer the following general properties of the spectral function

• Non-negativity
A(E)≥ 0 .

• Normalisation
∫ ∞

−∞
dEA(E) = 1 .

• End point of the support
A(E) = 0 , E < E0 − EGS .

Here EGS is the energy of the ground state of the Hamiltonian Hg .

Most of this work is going to be focused on the properties of the function A(E) near the
end point of its support. However, before delving into this discussion an important remark is
in order here.

If the interaction between the daughter ion and its solid state environment were negligible,
then the ion would have been an eigenstate of Hg and A(E) would have had the structure of a
delta-peak A(E) = δ(E + Ei). In reality, the ion gets entangled with the environment through
different mechanisms, which leads to the peak’s broadening. One mechanism, which deserves
particular attention is the hole capture. It works as follows. Due to the work function differ-
ence, an atom attached to graphene would typically donate or accept a number of electrons.
This effect is characterised by the atom’s equilibrium charge state, that is the atomic number
less the average total number of electrons occupying its atomic shells in equilibrium. For an
mother isotope A

Z X in the charge state Q the dominant decay channel will be into a daughter
isotope A

Z+1X in the charge state Q+1, as is described by Eq.(3). Depending on the chemistry
of the graphene-atom interaction A

Z+1XQ+1 may or may not be an equilibrium charge state. If
this state is not equilibrium, it will further decay into an equilibrium charge state through,
for example, an electron capture, which in the language of elementary excitations of the solid
state system amounts to the creation of a hole h+. The correct equation describing such a
process would be

νe +
A
Z XQ→ A

Z+1XQ + e− + h+ , (7)

in which the hole h+ is a quasiparticle endowed with its own energy and momentum. As a
2→ 3 process, Eq. (7) would not result in a sharp relic neutrino peak in the beta spectrum,
rather it would produce a broad continuum useless for relic neutrino detection.

The problem can be avoided if the charge state A
Z+1XQ+1 formed immediately after beta-

decay is stable, or, at least, long-lived. In that case, the spectral function A(E) will have a
sharp resonant peak at the energy corresponding to the 2→ 2 process Eq.(3), while the pro-
cess Eq.(7) will be present at the tail. In such a limit, one can treat the metastable daughter
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Figure 3: The spectral density function of graphene at a given energy. A(Ω) describes
the possibility of graphene absorbing the outgoing electron’s energy. The energy is
measured in the unit of cut-off energy ξ0.

ion A
Z+1XQ+1 as the final product of the decay process, however allowing for Heisenberg’s un-

certainty in the energy conservation law. More precisely, let τ be the lifetime of the daughter
ion A

Z+1XQ+1. By virtue of Heisenberg’s principle, this will introduce an additional ħh/τ uncer-
tainty into the energy conservation law for the products of the decay and consequently into
the energy of the beta-electron. It is tempting to think that in order for the neutrino peak to
be visible such an uncertainty has to be less than the neutrino mass, τmνc2/ħh≪ 1. In fact, the
situation is more complex due to the effect of a spillover of the massive beta decay background
into the vicinity of the relic neutrino peak. As will be discussed later in this work, in order to
suppress the spillover effect and make the neutrino capture peak observable, the lifetime of

A
Z+1XQ+1 has to be extremely long. For example, in the case of beta decay of neutral Tritium,
the lifetime of the 3He+ daughter ion needs to be longer than 10−2 s. Such long lifetimes re-
quire that either the atom be well insulated from graphene, for example by a thin layer of a
wide gap insulator, or A

Z+1XQ+1 be an equilibrium charge state. The discussion of strategies
for making A

Z+1XQ+1 a long-lived state is outside the scope of the present work and it will be
addressed elsewhere.

The rest of our analysis is devoted to situations where the conditions on the lifetime of the
ion are fulfilled so we may assume that the ion is for all intents and purposes stable. In this case,
the dominant mechanism of entanglement of the ion with the quantum degrees of freedom of
graphene is through the Coulomb interaction between the suddenly emerging localised charge
of the daughter ion and graphene’s electron system. The comprehensive analysis of such a
sudden quench is, of course, a daunting, if at all feasible task. However, as we shall establish
later in this paper, the spectral function possesses a universal structure near the edge of its
support, which makes the detailed knowledge of the rest of the energy spectrum unnecessary.
More precisely, the spectral function has the shape of a very sharp one-sided peak (see Fig. 3)
with a power-law divergence at the edge, which ensures the visibility of the relic neutrino
feature. Moreover, due to the one-sidedness of the peak, there is no spillover effect from the
beta-decay background. The analysis of the shape of the peak only requires the knowledge
of the effective low-energy theory of the ion-graphene interaction, which massively simplifies
theoretical analysis of the process.
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2.2 Considerations of the model

We can now state the main assumptions about the system that will enable us to focus on the
Fermi sea shakeup effect

(1) The recoil of the daughter ion from the beta decay will be neglected. This effect and its
mitigation strategies have been addressed in recent literature [16,17,23,30]. Although
significant on the 10meV scale, this effect is not directly related to the Fermi sea shakeup
discussed here.

(2) We only focus on the processes that do not result in the excitation of internal degrees of
freedom of the daughter ion. Only such processes are relevant to the neutrino capture
experiment.

(3) We assume that the graphene sample is spatially uniform. Where we analyse the effect
of disorder, we assume that the disorder is spatially uniform.

(4) We neglect crystalline lattice effects arising from the lateral position of the beta-decayer
relative to the graphene sheet. This is because the X-ray edge singularity is an infrared
phenomenon, arising from the long-range Coulomb interaction, which is insensitive to
the exact position of the Coulomb centre inside the unit cell.

(5) We assume for simplicity that the initial charge state of the beta-decayer is neutral.

(6) We assume that the temperature of the system is less than the resolution of the detector,
which is about 100K. We thus neglect thermal effects and consider our model at zero
temperature.

Based on the above assumptions, we formulate the Hamiltonian

H = H0 +Hw +HD−G , (8)

which comprises the kinetic part, the weak interaction part, and the coupling between the
daughter ion and graphene. The kinetic part is trivial, and it is the total relativistic energy of
free motion of all particles involved in the process

H0 = Hν +HD +HM +He +
∑

s

∑

k

sħhvF kC†
ksCk′s . (9)

Here Hν stands for the kinetic energy of the neutrino, He – for the kinetic energy of the beta-
electron, HM and HD are the Hamiltonians of the isolated mother and the daughter isotopes
respectively, vF is the Fermi velocity C†

ks and Cks are the creation and annihilation operators
for the electrons in the graphene respectively, and s is the band index of the graphene. The
spin and valley indices have been absorbed into the band index.

The term

Hw =

∫

GFνM D†e†d3 x , (10)

is the effective Hamiltonian of the beta-decay process, where ν† is the creation operator for
the neutrino, D† is the creation operator for the daughter ion, and M is the annihilation oper-
ator for the mother isotope atom, e† is the creation operator for the outgoing electron, and GF
is the effective beta decay interaction constant absorbing the details of ultrafast electroweak
processes inside the nucleus [10,31],
The final term in the Hamiltonian, HD−G describes the interaction between the electrons in
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graphene and the charged daughter ion, which suddenly emerges due to the beta-decay pro-
cess. Since the daughter ion is very heavy and therefore can be treated as a localised object,2

we can write its density operator as D†
0 D0δ(r), where the origin r= 0 coincides with the equi-

librium position of the mother atom and D†
0 D0 is the daughter ion counting operator. Thus we

write this interaction term as follows

HD−G = −
∫

ρ(x)V (x)D†
0 D0d2 x , (11)

where

V (x) =
e2

4πεε0
p

d2 + x2
, (12)

is the Coulomb pontential of the ion in the graphene plane, and

ρ(x) =:ψ†(x)ψ(x) : , (13)

is the two-dimensional density of electrons in graphene. We have denoted the dielectric con-
stant of the graphene as ε and the distance between the daughter ion and the graphene as
d. The field operator of an electron in graphene ψ(x) admits for the standard plane wave
decomposition

ψ(x) =
∑

k,s

Cksψkse
−ik⃗ x⃗ , (14)

where ψks is the spinor of the Dirac electrons in the graphene,

ψks =
1
p

2

�

e−iθk

s

�

, (15)

with θk = arctan(ky/kx).
In the standard vein of beta decay theory, the transition probability is given by Fermi’s

golden rule

W =
2π
ħh

∑

f

�

�

�

�

〈0|M 〈0|ν 〈k|e 〈1|D 〈λ|
∫

GFνM D†e†d3 x |1〉M |1〉ν |0〉e |0〉D |FS〉
�

�

�

�

2

δ(E f − Ei) ,

(16)

where f refers to the final states of the process, and |λ〉 is the final eigenstate of the graphene
Hamiltonian with the energy Eλ and |FS〉 is the Fermi sea of the graphene electrons char-
acterised by the ground state energy E0, |0〉M ,D denotes a state where the isotope (mother or
daughter) is absent, and |1〉M ,D denotes a state where the isotope is present in the state of zero
kinetic energy. The equation neglects the effect of the recoil of the daughter isotope. Such an
effect has been extensively analysed elsewhere [16], and it leads to additional broadening of
the neutrino capture peak.

The total energy of the final state in the process is mec2+ ħh
2k2

2me
+Eλ+mDc2, and the energy of

the initial state is mvc2+mM c2+ E0. The final state is the tensor product of the neutrino state,
the outgoing electron state, and the graphene electron state. We can sum over the normal beta
decay part and graphene part independently. We use index f ′ to denote the final state of beta
decay and use index λ to denote the final state of electrons in graphene.

2In fact, the departure from the local approximation due to the quantum zero-point motion of the beta-decayer
is another source of the uncertainty of the emitted electron energy [16]. It could, in principle, be suppressed by
choosing heavier beta-decayers, e.g. rare earth atoms. We do not address the zero-point motion effect in this work
assuming that it is less important than the shakeup effect analysed here.
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It is worth noting that Eq. (16) reflects the fact that following the beta-decay of the nucleus,
which we treat as an instantaneous process, the combined graphene-electron system emerges
in a quantum superposition of states | f 〉 =

∑

k,λ Ck,λ|k〉e|λ〉. The states in the superposition
have to obey the energy conservation law (ħh2k2/2me) + Eλ = const. Therefore, the tensor
Ck,λ is inseparable and the final state is an entangled state between the outgoing electron and
the graphene system in which the kinetic energy of the beta electron is indefinite. Therefore
despite their dynamics being decoupled, their entanglement necessitates the total transition
probability to be a convolution of the transition probability function of beta decay and the
graphene spectral density function, as depicted by the subsequent expression.

W =
2π
ħh

∫

dE
∑

f ′

∑

λ

|Vi f ′ |2| 〈λ|FS〉 |2δ(E + Eλ − E0)× δ(Ek −Q − E) = (Γ ∗ A)(Ek) , (17)

where Vi f ′ is the weak interaction matrix element, Q = mM c2 +mvc2 −mec2 −mDc2 is the
emission energy of beta decay, Ek is the kinetic energy of the beta electron, Γ (E) is the beta
decay transition rate of a single atom in the vacuum, and A(E) is the electron spectral density
function in graphene. Note, that the energy conservation law in Eq. (17) neglects the kinetic
energy of both the heavy particles and the neutrino. The latter is due to the fact that we are
interested in the narrow vicinity of the endpoint of the beta decay spectrum, furthermore,
the temperature of the cosmic neutrino background, 1.95 K, is negligible compared to the
neutrino’s mass. Therefore, Eq. (17) both applies to the beta decay background and the
cosmic neutrino absorption process. Following the convention, we can consider d Γ̃/dEk as
observable beta decay rate at given electron kinetic energy corrected by the electron shakeup
process

d Γ̃
dEk

= N
dW
dEk

= N
�

dΓ
dEk
∗ A
�

(Ek) , (18)

where N is the number of beta-decayers deposited on graphene. The discussion above is
also valid for the process of background neutron decay. We have found out that the smeared
beta decay spectrum is nothing but the convolution between the spectral density function of
graphene and the original beta decay spectrum. This result is vital to us since it tells us the
influence of the X-ray edge in the PTOLEMY project. Later, we will show that the spectral
density function does have an X-ray edge.

3 Linked cluster expansion

In this section, we assume that the daughter ion is screened instantaneously. This assumption
does not work well in graphene and we will revise it later, however, at this stage, we would like
to keep our discussion as simple as possible focusing on the key physics of the problem. With
the help of the RPA and neglecting time retardation, we obtain the effective static dielectric
constant of graphene [32]

ε=
1+ κ

2
+

2πe2

q
gs gvq
16ħhvF

, (19)

where κ is the external dielectric constant of the substrate, the degeneracy factor gs = 2,
gv = 2, and vF ≈ 106 m/s. If the graphene is suspended in the vacuum, then ε≈ 4.4.

The spectral density function A(E) is the central object of interest, so we will investigate
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its property further in this section. The expression for it is

A(E) =
∑

λ

|〈λ|FS〉|2δ(E + Eλ − E0)

=
1

2πħh

∑

λ

∫

d t 〈FS| e−iHg t |λ〉 〈λ|FS〉 e−i(E−E0)t/ħh

=
1

2πħh

∫

d t



FS|e−iHg t/ħh|FS
�

eiE0 t/ħhe−iE t/ħh ,

(20)

where Hg is the Hamiltonian of the graphene after the beta decay. The influence of the energy
redistribution between the graphene system and the daughter ion on the energy spectrum
is encapsulated within the spectral density function, defined by Eq. (20). We express the
Hamiltonian Hg in momentum space [32,33],

Hg =
∑

s

∑

k

sħhvF kC†
ksCk′s −

1
L2

∑

ss′

∑

kk′
V (k, k′)Fss′(k, k′)C†

ksCk′s′ , (21)

with
Fss′(k, k′) =

1
2

�

ss′ + exp(iθk − iθk′)
�

, (22)

and

V (k, k′) =
2πe2 exp
�

−|k′ − k|d
�

ε|k− k′|
. (23)

To calculate the spectral density function A(E), we first focus on the density function, which
is its Fourier transform

ρ(t) =



FS
�

�e−iHg t/ħh
�

�FS
�

eiE0 t/ħh . (24)

One can recognize −iΘ(t)ρ(t) as the core hole Green function in the conventional X-ray sin-
gularity problem [25, 26, 34–36]. Using linked cluster expansion method [36–38], we can
express the density function ρ(t) in another way.

ρ(t) = exp

�

∑

l

Fl(t)

�

, (25)

where Fl(t) is the l-th connected diagrams,

Fl(t) =
(−i)l

l

∫ t

0

d t1 · · ·
∫ t

0

d t l 〈T V (t1) · · ·V (t l)〉connected . (26)

V (t) is the interaction term in the Dirac picture. We note that F1(t) = −iEi t where the constant
Ei is called the self-energy. The self-energy is responsible for the overall energy shift of the
beta spectrum relative to the vacuum one. Assuming the interaction is weak, we can restrict
ourselves to the second term [36].

F2(t) = −
∫ ∞

0

du
u2

Re(u)(1− e−iut) , (27)

where

Re(u) =
1
πL2

∑

q

|V (q)|2Λ(q, u) , (28)
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and
Λ(q, u) = ImP(1)(q, u) , (29)

where P(1)(q, u) is the polarizability function. The expression of the polarizability is given in
many references [36,39], so we just quote the result

P(1)(q, u) =
−i g ′

L2

∫ ∞

−∞

dE
2π

∑

p,s,s′
|Fss′(p, p+ q)|2 × Gss(p, E)Gs′s′(p+ q, E + u) , (30)

where Gss(P, E) is the Green function for graphene, g ′ is the degeneracy, and it is 4 for intrinsic
graphene. The polarizability function of the intrinsic graphene was calculated in the references
[32,40,41]. In particular, its imaginary part gives

Λ(q, u) =
q2

4
q

u2 − v2
F q2
Θ(u− vF q) . (31)

To calculate Re(u), one needs to substitute Eq. (31) into Eq. (28). To simplify the calculation,
we omit the exponential factor in the Eq. (23), and the potential becomes

V (k, k′) =
2πe2

ε|k− k′|
. (32)

Although this crude simplification is only valid near the edge of the spectral density function,
it gives us a physics insight in the first step. Later, we will recover the effect of the distance d
in the next section. Then we have

Re(u) = gu , (33)

where

g =
e4

2ε2v2
F

. (34)

Using the effective dielectric constant we get in the previous step, we can find g ≈ 0.125.
Substituting it into the expression of F2, thus one can get

F2(t) = −g

∫ ξ0

0

(1− e−iut)du
u

≈ −g

∫ ξ0

1/i t

du
u
≈ −g ln(1+ i tξ0) . (35)

Note that due to the logarithmic divergence of the integral we had to use an arbitrary ultravio-
let cutoff ξ0 to complete the calculation. This cutoff parameter is important for the estimate of
the visibility of the CνB peak, therefore it cannot be chosen arbitrarily. The physical meaning
and the value of ξ0 will be clarified later.

The expression (35) is valid only for large enough t, that is ξ0 t ≫ 1. The expression for
the density function is obtained from Eq. (35) ,

ρ(t) = exp(−iEi t − g ln(1+ i tξ0)) , (36)

where the self-energy term Ei can be absorbed into the exponent E in the Fourier transforma-
tion in the later steps. It has no effect on the shape of the spectral density function, but shifts
it by Ei .
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4 Spectral density function

In this section, we give an explicit formula for the spectral density function of graphene. Fur-
thermore, we investigate the influence of the height from the daughter ion above the graphene
sheet, as well as the influence of disorder and the dynamical screening on the spectral density
function.

The Fourier transform of Eq. (36) gives the spectral density function of graphene at the
given energy, and it is exactly the gamma distribution function.

A(Ω) =

∫ ∞

−∞

d t
2π

e−iE tρ(t) = Θ(−Ω)
exp(Ω)

ξ0Γ (g)(−Ω)(1−g)
, (37)

with
Ω= (E + Ei)/ξ0 . (38)

The spectral density function obeys the gamma distribution, and the result coincides with that
for a metal with a local constant interaction [36–38]. The gamma distribution function has two
parameters: one is the shape parameter, which is the coupling constant in our problem, and
another one is the scale parameter, which has so far remained an arbitrary cutoff parameter.
The coupling constant determines how sharp the peak is near the edge, and the cutoff energy
determines how many events are lost in the long tail of the spectral density function. Fig. 3
represents the spectral density function. As we can see in Fig. 3, the function sharply diverges
when Ω goes to zero. In other words, the differential emission rate is the largest when no
electron excitations are created in graphene at the end of the process.

4.1 Influence of the height

In the previous discussion, we calculated the spectral density function and obtained its shape
parameter g. However, the cutoff energy remains unknown. Typically, one would expect the
cutoff energy to be associated with the electron bandwidth or the Fermi energy. In this section,
we find that the cutoff energy is dictated by the height of the daughter ion above the graphene
sheet. Indeed, for any given d the expression of Re(u) is

Re(u) = e4

∫ u/vF

0

qe−2qd dq

2ε2
q

u2 − v2
F q2
= gu+

πgu
2

�

L1

�

2du
vF

�

− I1

�

2du
vF

��

, (39)

where L1

�

2du
vF

�

and I1

�

2du
vF

�

are modified Struve function and modified Bessel function, re-
spectively.
This equation may look slightly intimidating however its intuitive meaning is simple. The
X-ray edge singularity is an infrared phenomenon, so only long-distance interaction is signifi-
cant for it. Thus we can eliminate the short-distance structure of the Coulomb interaction. If
q≪ 1/(2d), the Yukawa type potential in Eq. (39) recovers to the normal Coulomb potential,
thus giving a natural cutoff energy ξ = ħhvF/2d. From asymptotic analysis (details are in Ap-
pendix 1), we find that the spectral density function was the same form as in Eq. (37) albeit
with a cutoff energy ξ′,

ξ′ =
ξ0

1+ 2dξ0/vF
. (40)

ξ0 is a microscopic parameter on the order of the bandwidth energy. Assuming that ξ0≫ vF/d,
one finds

ξ= lim
ξ0→∞

ξ′ =
ħhvF

2d
. (41)
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The expression (41) should replace ξ0 as the scale factor in the line shape equation Eq. (37).
One can see that the scale factor depends on the height d, so one could potentially manipulate
the line shape by adjusting the height of the ion.

4.2 Influence of disorder

Until now, we have only considered intrinsic graphene, uncontaminated and ungated. How-
ever, a finite density of beta emitters in graphene inevitably introduces disorder, which changes
the mean free path and the density-density response function of electrons. Intuitively, one
should expect that if the time scale associated with the inverse energy resolution of the beta
detector is greater than the mean free time in graphene, i.e., τres≫ τ, then one needs to take
into consideration the effect of electron diffusion on the polarizability function and thus the
coupling constant.

We consider Eq. (20), in the presence of many random impurities, focusing on the
impurity-average effect. The impurity-average polarizability function Pimp(q,ω) is [39,42,43]

Pimp(q,ω) =
P(1)(q,ω+ i

τ)

1+ (1− iωτ)−1
h

P(1)(q,ω+ i
τ )

P(1)(q,0) − 1
i

, (42)

where τ is the momentum relaxation time of a quasiparticle. The required energy resolution of
the detector isωres is about 10 meV, therefore the resolution time τres is ∼ 10−13 s. If τ > τres,
then one can neglect the effect of impurities, and the polarizability function recovers to the
Lindhard function [42]. Otherwise, one needs to consider both diffusive and ballistic regimes.

To get some insight into the degree of coverage at which it is necessary to take the impurity
scattering into consideration, we give an elementary estimate based on the mean free time
calculated within the midgap model which is known to work reasonably well for hydrogen
and other atoms with covalent on-site bonding on graphene [44–46]. In this model, mobility
electrons in graphene see a carbon site with attached hydrogen as a vacancy. The potential is
profiled as

U(r) =











∞ , if 0< r ≤ R′ ,

U0 , if R′ < r ≤ R ,

0 , if r > R ,

(43)

where R′ is the the radius of a hydrogen atom, and R is the radius of a carbon atom. The mean
free time is defined by the following expression

ħh
τk
=

8ni

πρ(Ek)
sin2δ(k) , (44)

where δ(k) is the phase shift of electrons with momentum k, and ρ(Ek) is the density of state,
with the explicit form

ρ(Ek) =
2Ek

πħh2v2
F

. (45)

Using the method in the paper [45], we can obtain the phase shift at k ≈ 0,

δ(k) = −
π

2
1

ln(2kR′)
. (46)

We expand the sine function in Eq. (44) for kR′≪ 1. Thus it gives the mean free time

τk =
ħhρ(Ek)
2πni

(ln kR′)2 =
k

π2vF ni
(ln kR′)2 , (47)
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where ni is the impurity concentration. The mean free path has a minimal value at kR′ = e−2,
and its minimum value is

τmin =
4e−2

π2vF niR′
. (48)

If τmin is much greater than the resolution time, we can neglect the impurity effect. It means
that

4e−2

π2vF niR′
≫ 1/ω∼ 10−13 s . (49)

R′ is about 1 Å, so we find the condition for a maximum impurity concentration,

ni ≪
4e−2ω

π2vF R′
= 5× 1011/cm2 . (50)

The mass density for the impurity in the case of hydrogen atoms is

ρi ≈ 8.31× 10−13 g/cm2, (51)

and the standard surface density of graphene is about 7.61× 10−8 g/cm2 [47]. To conclude,
for atoms in the onsite boding configuration the effect of disorder is negligible for the surface
coverage of less than 5×1011 cm−2. For atoms in other configurations the critical concentration
could be different, even though we do not expect the difference to be dramatic. If impurity
atoms are separated from graphene by a thin layer of insulator the critical coverage may be
significantly greater.

Apart from impurities, phonons can also influence the mean free time of graphene. How-
ever, one can keep the system at a very low temperature to reduce the phonon scattering. For
intrinsic graphene under liquid nitrogen temperature, the momentum relaxation time is about
one ps [48,49], which is one order of magnitude greater than the resolution time. Therefore,
we can treat electrons of the graphene ballistically within the resolution time.

4.3 Influence of dynamic screening

The instantaneous screening assumption is not valid in the tail of the spectral function of
graphene. While, if the weight of the tail is too high, it will cause the beta decay spectrum to
broaden widely, and it may take many years to observe a single event. To get a more rigorous
result, we need to consider the dynamic screening effect. The dynamic screening potential
is [36]

V (q,ω) =
Vi(q,ω)
ε(q,ω)

. (52)

For a sudden external potential [50]

Vi(q,ω) =
V (q)i
ω+ iδ

. (53)

δ is an infinitesimal quantity, and V (q) = 2πe2/(κq) is the bare Coulomb potential with κ the
external dielectric constant of the substrate. We notice that ε−1(q,ω)− 1 is the susceptibility
function so we can use the Kramers-Kronig relations.

1
ε(q,ω)

− 1= −
1
π

∫ ∞

−∞
dω′Im
�

1
ε(q,ω′)

− 1
�

1
ω−ω′ + iδ

. (54)
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Substituting it into the expression of dynamic screening potential and performing the Fourier
transform, one can find the time-dependent screening potential.

V (q, t) =

∫ ∞

−∞
V (q,ω)e−iωt dω

=
V (q)θ (t)
π

∫ ∞

−∞

1− e−iω′t

ω′
Im
�

1
ε(q,ω′)

− 1
�

dω′ + V (q)θ (t) .

(55)

In the large time limit, the oscillating term disappears, so the potential becomes

V (q,∞) =
V (q)
ε(q, 0)

. (56)

For graphene, ε(q, 0) does not depend on q, so we can denote ε(q, 0) as ε. The first term in
the last line vanishes in the short time limit, so the potential turns into the bare potential.

V (q, 0) = V (q) . (57)

For an arbitrary time, we can express V (q, t) as

V (q, t) =
V (q)θ (t)
ε(q, 0)

−
V (q)θ (t)
π

∫ ∞

−∞
dω′

e−iω′t

ω′
× Im
�

1
ε(q,ω′)

− 1
�

. (58)

From detailed analysis (see B), we found out that the spectral density function is the same as
the previous result in Eq. (37), but with a different coupling constant

g1 = g +

∫ ∞

1

2gε
π

a log(ω+
p
ω2 − 1)

ω2 (ω2 − 1+ a2)
dω , (59)

where a = (ε− 1) = πe2/2ħhκvF , and this result is quoted from the Appendix 2 Eq. (B.6 ). It
is similar in meaning to the fine structure constant in QED.

If graphene is suspended in the vacuum, then g = 0.125, and g1 ≈ 0.200. For graphene
on SiO2, the coupling constant g is about 0.065, and g1 ≈ 0.090.3 As one can see in Fig. 4, the
dynamic screening effects of intrinsic graphene significantly change the coupling constant at
a small dielectric constant, and this can be understood intuitively. For intrinsic graphene, the
Fermi energy is zero, therefore there is no intrinsic time scale. For long wave-length scattering,
the screening time is about 1/(vF q), which is also the time scale for the Fermi sea shakeup effect
at the energy scale vF q, so we cannot separate the screening of the Coulomb potential from
the formation of the X-ray edge singularity. Hence, the dynamical screening effects have a
considerable influence on the coupling constant. In contrast, the Fermi energy is non-zero for
normal metals and gated or doped graphene, so the static screening is a good approximation
near the edge in those cases. In the large dielectric constant limit, one can see from Fig. 4b,
that the ratio of the dynamic coupling constant and static coupling constant approaches 1. It
can be understood from Eq. (19) and Eq. (59) that when the external dielectric constant is
big enough, it makes the dominant contribution to the total dielectric constant.

To summarize, the dynamical screening effect has a considerable influence on the coupling
constant in intrinsic graphene, but it can be suppressed by applying an external gate voltage
or increasing the dielectric constant of the substrate.

3The coupling constant g1 is calculated from Eq. (59), and the coupling constant g is from the Eq. (34).
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a b

Figure 4: Fig. 4a depicts the coupling constant with different external dielectric con-
stants. κ describes the dielectric constant of the substrate, and g is the graphene’s
coupling constant. The blue curve represents the coupling constant considering the
dynamic screening effect, and the orange curve represents the coupling constant in
the static screening approximation. Fig. 4b describes the ratio of the dynamic cou-
pling constant and the static coupling constant. In the large dielectric constant limit,
the ratio approaches 1.

4.4 Constraints on the daughter ion’s lifetime

In the previous discussion, we assumed that the lifetime of the daughter ion is infinite, how-
ever in reality this may not be true. The daughter ion could be chemically unstable and have
32propensity to, for example, capture an electron from its chemical environment. By virtue
of Heisenberg’s principle, shorter lifetimes would introduce greater uncertainty into the mea-
sured energy of the beta electron. In the conventional X-ray edge singularity context the life-
time of an ion is limited by the process of recombination of a conductance electron with the
core hole. Such a process requires accommodation of a large amount of energy which is usu-
ally achieved through the Auger effect. In the case of an ion which is formed through beta
decay, the electron deficit occurs in the chemically active outer shell therefore capture of an
electron may be possible through a direct tunnelling process. The efficiency of such a process
will vary depending on the way an atom is deposited on the surface. Insertion of a dielectric
spacer between the atom and a graphene layer, or deposition of atoms in the form of self-
assembled metal-organic complexes [51] could be possible ways to make the lifetime of the
daughter ion longer. Ideally, one should aim to tune the chemical environment so as to make
the daughter ion chemically stable. Somehow or other, the lifetime of an ion formed after the
beta decay process is determined by a range of environmental mechanisms and is a matter for
the experiment to measure and manipulate. Here, we do not attempt to estimate it. Rather
we investigate how the finite lifetime of the daughter ion influences the visibility of the CνB
signal. Semi-empirically, one absorbs the effects of a finite lifetime into the Lorentzian broad-
ening of the delta function representing the energy conservation law. For the spectral density
function that amounts to an extra convolution [36].

A(E) 7→
∫ ∞

−∞
A(E)L(E − E)dE , (60)

where L(E) is the Lorentzian distribution function,

L(E) =
γ/2

π[E2 + (γ/2)2]
. (61)

τ = ħh/γ is the lifetime of the daughter ion. Thus the deformed spectral function should then
be used in Eq. (18) to describe the observable beta spectrum. In particular, inserting Eq. (61)
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Figure 5: The spectral density function taking into account the influence of the fi-
nite lifetime of the daughter ion (blue curve) is compared with the spectral density
function at infinite lifetime (red curve). As one can see, at a finite lifetime the the
sharp Gamma distribution is broadened into a smooth asymmetric peak. In this plot
we take g = 0.125, ξ0 = 1eV and γ= 0.2eV.

into Eq. (60), one obtains the shape of the spectral density function

A(E) = Im

�

eΩ̃Γ (1− g, Ω̃)
πξ0Ω̃1−g

�

, (62)

where Γ (x , y) is the incomplete gamma function and

Ω̃=
E − iγ/2
ξ0

= Ω−
iγ

2ξ0
. (63)

To illustrate such a shape, we plotted A as a function of the dimensionless eneregy Ω for
g = 0.125, ξ0 = 1 eV, and γ = 0.2 eV in Fig. 5. As one can see, at finite γ the X-ray edge
power law singularity gets deformed into an asymmetric bell-shaped distribution. The longer
the lifetime, the closer the absorption peak is to the Gamma distribution (37).

While it is tempting to conclude that the main manifestation of a finite lifetime of the
daughter ion is just some degree of broadening the neutrino absorption peak, which can be
neglected for γ ≪ mν, on closer inspection the effect turns out to be a lot more detrimental
and the conditions on γ a lot more stringent. Moreover, the semi-empirical one-parameter
model encapsulated in equation (61) turns out to be unsuitable for the quantitative analysis
of the visibility of the CνB peak. Indeed, unlike the pure X-ray edge singularity (37), the semi-
phenomenological distribution (62) has a long power-law tail on the right-hand side of the
peak

A(E)∼
γ

E2
, E≫ γ . (64)

At the same time, the beta-decay background near the emission edge E0 ≈Q has the parabolic
shape

dΓ (E)
dEk

= α
N

Q3T
(E0 − E)2 , E < E0 , (65)

which remains a good approximation up to E0 − E on the order of Q. In this expression α
is a nucleus-specific numerical constant on the order of 1 and T is the half-lifetime. Due
to the rapid increase of the background intensity away from the termination point E0, the
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convolution (18) at energies slightly above the edge of the spectrum is completely dominated
by the bulk of the beta spectrum and to a good accuracy can be expressed as

d Γ̃BG

dEk
= C + o(E − E0) , (66)

where

C =
γ

2π

∫ Q

0

1
(Q− E)2

dΓ
dEk
(E)dE ∼

γN
Q2

. (67)

In other words, the number of beta decay events as a function of the energy distance from
the emission threshold increases so rapidly that it overwhelms the slow 1/E2 decay of the
Lorentzian and thus creates a massive background in the region of the CνB peak. In reality,
the fact that the main contribution to noise comes from the tail of the Lorentzian distribution
invalidates the model (61) and the resulting estimate (67). To obtain an accurate result one
would have to replace L(E) with the exact ion’s spectral function. Although such a spectral
function is impossible to calculate in practice, one can still make an order of magnitude esti-
mate of the background intensity in the CνB peak region based on the observation that the tail
on the right-hand side of the resonant peak terminates at energies on the order of the ionisation
energy of the recombined atom. More precisely, the termination point of the support of the
ion’s spectral function is defined by the process of direct transition of the beta-decayer into the
neutral daughter atom and a positively charged quasihole on graphene’s Fermi surface, which
is the lowest energy out-state of the combined graphene - daughter atom system. In order
to incorporate this physics into the semi-phenomenological model we introduce a truncated
Lorentzian model in which L(E) is given by Eq. (61) up to the first ionization energy EI of the
daughter atom attached to the graphene and vanishes for E > EI . Using such a truncation, the
background will be approximately given by

d Γ̃BG(E)
dEk

∼
γ

2π

∫ E0

E−EI

1
(E − E)2

dΓ (E)
dEk

dE . (68)

Such a function describes an EI -wide tail of background events above the edge E0 containing
total events per unit time

dNBG

d t
∼

E2
I γN

TQ3
. (69)

The practical implications of the finite lifetime for the required amount of radioactive material
are discussed in section 5.

5 Discussion

In this section, we have investigated how the results of the previous sections translate into
the visibility of the CνB signal in the PTOLEMY experiment. From Eq. (18), we know that
we can get the correct beta decay spectrum by performing a convolution between the spectral
density function and the beta decay spectrum in the vacuum. Using Mathematica, we plotted
the beta decay spectrum with, mlightest = 50 meV. As can be seen from comparison of Fig. 6a
and Fig. 6b, the shakeup of the electron system results in each cosmic neutrino background
peak getting deformed into a strongly asymmetric shape peaking near the actual neutrino
mass and having a long power-law tail stretching into the beta decay background. Note that
the distortion of the beta-decay background is not as conspicuous as in the case of the CνB
peak. The reason for that is that the distortion is a result of each individual beta-electron losing
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some part of its energy in order to create a collective excitation of electrons in graphene. That
is why the distortion of the CνB peak results in signals appearing at lower energies in the gap
between the CνB signal and the beta-decay background. At the same time the distortion of the
beta-decay background just leads to a certain amount of re-distribution of electrons within the
beta-decay continuum, without affecting the endpoint. The latter effect is difficult to see by the
unaided eye, especially on the logarithmic scale. Using the calculated spectrum, we obtained
the visibility, that is the number of events in the non-overlapping region in the spectrum. For
the calculation of visibility, we assume the amount of radioactive material equivalent to four
capture events per year (about 100 g in the case of Tritium).

From our analysis, it follows that the visibility depends on four parameters, the lightest
neutrino mass, the coupling constant g, the distance from the daughter ion to the graphene
sheet, and the lifetime of the daughter ion. We investigate the PTOLEMY project’s sensitivity
to those parameters by making plots of the visibility in different parameter planes.

In Fig. 7 we show the dependence of the visibility on the lightest mass of neutrino and
the coupling constant g. As shown in Fig. 7, the smaller the coupling constant and the larger
lightest mass of the neutrino, the better the visibility. This result can be explained by the
fact that a smaller coupling constant leads to a sharper distribution, which causes the beta
decay spectrum less broadening. The effect of the distance between the daughter ion and
graphene is that it affects the cutoff energy and therefore influences the shape of the distorted
beta-emission peak. Smaller cutoff energy means less weight in the long tail of the gamma
distribution, therefore fewer losses and better visibility. Indeed, as one can see from Fig. 9,
visibility increases with the helium ion’s height. Note that compared with the previous three
parameters the influence of height on visibility is less pronounced, at least for a small enough
coupling constant. This is explained by the fact that for small g a lot of spectral weight is
concentrated in the infrared region near the X-ray edge therefore the visibility is less sensitive
to the ultraviolet cutoff.

To get some feel for the magnitude of the impact of the lifetime, we apply the estimate
Eq. (69) to beta decay of Tritium neglecting for illustrative purposes the problems arising
from recoil. A 100 g sample of Tritium contains N = 2 × 1025 atoms, and it is predicted to
experience only 4 neutrino capture events per year. We take EI ∼ 10eV and Q ∼ 10 keV and
T ∼ 10 years and demand that dNBG/d t be less than 1 event per year, which would roughly
correspond to a 3σ detection confidence if 5 events are observed during the 1 year period.
This results in the requirement γ < 10−14 eV, that is a lifetime on the order of a few hundred
milliseconds or longer. The condition on the lifetime of the daughter ion can in principle be
relaxed if the energy window (E0, E0 +∆E) containing the neutrino capture peak is known a
priori. In that case, the number of background events inside that window is estimated as the
right-hand side of Eq. (69) times∆E/EI . For∆E on the order of 100meV that gives the lower
bound on the ion’s lifetime of about 1ms. This estimate is further elaborated in our numerical
calculation, illustrated in Fig: 8, of the effective amount of the radioactive material required
in order to achieve the p-value of 5σ in a CνB detection experiment using the energy bin of
100 meV above the spontaneous beta-emission threshold of Tritium. We see that in order to
achieve the signal-to-noise ratio ensuring 5σ confidence of detection of the CνB signal with
a reasonable amount of the radioactive material the lifetime of the daughter ion needs to be
greater than 100 µs. Such a stringent requirement for the lifetime of the daughter ion poses
a separate challenge to the experiment. Detailed proposals as to how this challenge could be
addressed will be discussed elsewhere.
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a b

Figure 6: Panel 6a shows the theoretical beta decay spectrum of mono-atomic tritium
in the vacuum assuming the lightest neutrino mass of 50 meV The solid red curve
represents the background beta decay. The solid blue curve represents the signal
from the cosmic neutrino background. dΓ/dE describes the possibility that the events
happen at a given energy per year. The area under the curve represents the number
of events per year. The area under the blue curve is only four, that is the calculation
is done for the amount of Tritium that can capture at most four cosmic neutrinos
per year. In the region where the beta decay background (red curve) overlaps with
the CνB (blue curve), one cannot distinguish the cosmic neutrino signal from noise.
Panel 6b describes the beta decay spectrum adjusted for the Fermi sea shakeup effect.
We choose the coupling constant g = 0.125.

6 Summary and Outlook

In this work, we discussed how the shakeup of graphene’s Fermi sea may influence the visibility
of the cosmic neutrino signal in the PTOLEMY project. In the first section, we used Fermi’s
golden rule to find the beta decay spectrum adjusted for the Fermi sea shakup effect. We
showed that it is the convolution between the spectral density function of a coulomb centre
in graphene and the beta spectrum of the decaying isotope in the vacuum. Furthermore, we
applied the linked cluster expansion technique, to obtain the spectral density function, which
is the Gamma distribution function and is controlled by two parameters, the cutoff energy and
the dimensionless coupling constant.
In the next section, we examined factors that influence the coupling constant and the cutoff
energy, and we also considered the influence of the daughter ion’s lifetime on the spectral
density function. We found that the distance between the ion and graphene dictates the natural
distance-dependent energy cutoff scale. Also, the effects of the disorder can be neglected if the
mean free time of an electron in graphene exceeds the resolution time of the experiment, which
is about 10−13 s. However, the dynamic screening effects of the intrinsic graphene significantly
increase the coupling constant, which is detrimental to the visibility of the PTOLEMY project.
Fortunately, if the external dielectric constant of the substrate is large enough, the dynamic
screening effects can be suppressed. We further established that the lifetime of the daughter
ion may have a hugely detrimental impact on the discernibility of CνB signal. To illustrate this
point we show that for the decay of a reasonable amount of Tritium, the lifetime of the Helium
ion would need to be at least 100µs or longer.

Overall, we have three main conclusions.
(1) Our preliminary analysis indicates that despite large energy scales associated with the
shakeup of the Fermi sea, the visibility can still be protected by the X-ray edge singularity and
screening effects. Even though we use the parameters of Tritium for numerical illustration,
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Figure 7: Contour plot of visibility as a function of the lightest mass of neutrino and
the coupling constant. The cut-off energy is assumed to be 1eV. The maximum
possible number of CνB events is 4.

our results are universal and directly adaptable to any other atom.
(2) The visibility of the CνB signal can be improved in the following ways:
1) use a substrate with a high dielectric constant;
2) deposit the radioactive atoms in such a way as to maximize their distance from the graphene
sheet, possibly with the help of a dielectric spacer
(3) Not all effects are included in our analysis, so experiments should be conducted to test
the validity range of our theory. Also, the parameters such as the coupling constant g and the
lifetime of the daughter ion can only be reliably determined in an experiment.
We finally remark that although we have considered some important solid state effects that
can affect the spectral density function, other effects require further study. Those include
phonon emission, inhomogeneous broadening in a disordered sample, Coulomb interaction of
the beta-electron with electrons in graphene and others. While such effects are not necessarily
important in the traditional X-ray emission experiment, the extraordinary energy resolution
required by the PTOLEMY experiment puts unusually stringent constraints on the admissible
rate and magnitude of disruption due to various solid state processes. We hope that further
research will improve our understanding of such effects and their mitigation.

Acknowledgments

We wish to acknowledge Dr. Boyarksy for providing us with the data. We also appreciate the
discussion with Yevheniia Cheipesh. The first author especially wants to express his gratitude
to his wife Yiping Deng for taking care of him when writing this paper.

A Appendix 1

The details of obtaining the natural cutoff energy are presented here.
Substituting Eq. (39) into the Eq. (27), one can find that

F ′2(t) = −g

∫ ξ0

0

(1− e−iut)du
u

−
πg
2

∫ ξ0

0

du
(1− e−iut)

u

�

L1

�

2du
vF

�

− I1

�

2du
vF

��

. (A.1)
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Figure 8: Contour plot of the effective amount of Tritium required in order to achieve
the p-value of 5σ or better as a function of the coupling constant and the lifetime.
The unit of the effective amount of tritium is 100 gram × year, which means one
can achieve the same necessary number of events by either increasing the amount of
Tritium or increasing the duration of the experiment. The plot is calculated within
the truncated Lorentzian model assuming the ionization energy EI = 10 eV.

The first integration is the original term, labelled as F0
2 (t) and the second integration is the

correction term, labelled as F ′2(t). Directly evaluating the correction term is difficult, but we
can express it as a double integral.

F ′2(t) = g

∫ 2dξ0/vF

0

∫ 1

0

e−zx
p

1− x2(1− e−izvF t/2d)d xdz = P(ξ0) + N(ξ0, t) , (A.2)

where

P(ξ0) = g

∫ 1

0

d x
p

1− x2

�

1− e−2d xξ0/vF

x

�

, (A.3)

Figure 9: Visibility at different heights with coupling constant g = 0.1, and
mlightest = 50 meV. The curves with different coupling constants and the neutri-
nos’ lightest mass share a similar feature.
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and

N(ξ0, t) = g

∫ 1

0

d x
p

1− x2

�−1+ exp(−i tξ0 − 2d xξ0/vF )
x + ivF t/2d

�

, (A.4)

with z = 2du/vF . From the calculation above, we can find that the correction term can be
split into two terms. The first part is a constant independent of time t, and the second part is
a time-dependent function. Hence, only the function N(ξ0, t) is significant to our calculation.
Obviously, if t = 0, it cancels with the first term P(ξ0). However, when t approaches infinity,
the correction term F ′2(t) should equal to P(ξ0). We need to make some approximations to
evaluate the function N(ξ0, t).
At a large time limit, roughly, we can use 1 to replace the ugly square root

p
1− x2 since most

contributions to the integration in P(ξ0) and N(ξ0, t) come from the vicinity of x=0. Then,
we can write the correction term F ′2(t) in a simple way.

F ′2(t) = g

∫ 1

0

�

1− e−2d xξ0/vF

x

�

d x + g

∫ 1

0

d x
�−1+ exp(−i tξ0 − 2d xξ0/vF )

x + ivF t/2d

�

= g

∫ 1

0

�

1− e−2d xξ0/vF

x

�

d x − g

∫ 1+ivF t/2d

ivF t/2d

�

1− exp(−2d yξ0/vF )
y

�

d y

= g

∫ 1

0

�

1− e−2d xξ0/vF

x

�

d x + g

∫ ivF t/2d

0

�

1− exp(−2d yξ0/vF )
y

�

d y

− g

∫ 1+ivF t/2d

0

�

1− exp(−2d yξ0/vF )
y

�

d y .

(A.5)

The factor 1− exp(−2d yξ0/vF ) behaves as 2d yξ0/vF in the limit u→ 0. We can use vF
2dξ0

to

replace the lower limit of the integration, since vF
2dξ0
≪ 1. At very large time t, we omit the

factor exp(−2d yξ0/vF ). Hence, the correction term F ′2(t) can be approximately expressed as
a very neat form.

F ′2(t)≈ g

∫ 1

vF/(2dξ0)

d x
x
+ g

∫ ivF t/2d

vF/(2dξ0)

d y
y
− g

∫ 1+ivF t/2d

vF/(2dξ0)

d y
y

≈ g ln
�

1+
2dξ0

vF

�

+ g ln(iξ0 t + 1)− g ln
�

iξ0 t +
2dξ0

vF
+ 1
�

.

(A.6)

Substituting Eq. (A.6) into equation (A.1), and using equation (25) and equation ((37)), one
can obtain the expression of the spectral density function of graphene.

A(Ω′) =

∫ ∞

−∞

d t
2π

e−iE t exp(F0
2 (t) + F ′2(t)

= Θ(−Ω′)
exp(Ω′)

Γ (g)ξ′(−Ω′)(1−g)
,

(A.7)

where ξ′ = ξ0
1+2dξ0/vF

, and Ω′ = (E + Ei)/ξ′.
The cut-off energy ξ0 is entirely arbitrary, but we can get a natural cut-off energy ξ when we
extend ξ0 to infinity

ξ= lim
ξ0→∞

ξ0

1+ 2dξ0/vF
=
ħhvF

2d
. (A.8)

We get nearly the same result as the previous one, Eq. (37), only with different cutoff energy ξ.
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B Appendix 2

For intrinsic graphene, the time-dependent potential is

V (q, t) =
V (q)θ (t)
ε(q, 0)

+ V (q)θ (t)T (vF qt) . (B.1)

T (vF qt) is a one-variable fast-decay function that only depends vF qt.

T (vF qt) = −
2
π

∫ ∞

1

a cos(ωvF qt)
p
ω2 − 1

ω (ω2 − 1+ a2)
dω , (B.2)

where a = (ε(q, 0) − 1) = πe2

2ħhκvF
. When t << 1, T (vF qt) ≈ 1

ε(q,0) − 1, and when t >> 1,
T (vF qt)≈ 0.

From the general expression of the F2(t), Eq. (27), we can find that

F2(t) =
1
2

∫ t

0

d t1

∫ t

0

d t2

∫ ∞

0

e−iu(t1−t2) du
πV

×
∑

q

�

1
ε2(q, 0)

+
T (vF qt1)
ε(q, 0)

+
T (vF qt2)
ε(q, 0)

+ T (vF qt1)T (vF qt2)
�

|V (q)|2Λ(q, u) .
(B.3)

When t ≪ 1, then we can find F2(t) ≈ 0. It is trivial and has no contribution to the spectral
density function. Therefore, the most significant part of the X-ray edge is in the long-time do-
main, and the function T (vF qt) decays very fast, so T (vF qt1)T (vF qt2) is negligible compared
to other terms in the bracket. Therefore, one can get

F2(t)≈ F0
2 (t)−

guε
2

∫ t

0

d t1

∫ t

0

d t2

∫ ∞

0

e−iu(t1−t2)du×
∫ ∞

1

aH−1(uωt1)
p
ω2 − 1

ω (ω2 − 1+ a2)
dω

−
guε
2

∫ t

0

d t1

∫ t

0

d t2

∫ ∞

0

e−iu(t1−t2)du×
∫ ∞

1

aH−1(uωt2)
p
ω2 − 1

ω (ω2 − 1+ a2)
dω ,

(B.4)

where F0
2 (t) is the original term in Eq.(27) without considering dynamic screen effect. In the

long time limit, we can extend t into infinity, and then one can get

F2(t)≈ F0
2 (t) +

∫ ξ0

i/t

2gε
πu

du

∫ ∞

1

a log(ω+
p
ω2 − 1)

ω2 (ω2 − 1+ a2)
dω

≈ log(1+ g1iξt) ,

(B.5)

with

g1 = g +

∫ ∞

1

2gε
π

a log(ω+
p
ω2 − 1)

ω2 (ω2 − 1+ a2)
dω . (B.6)

Therefore, the spectral density function has the same form as the previous result in Eq. (37),
but with a different coupling constant.
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