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Abstract

In pursuit of precise and fast theory predictions for the LHC, we present an implementa-
tion of the MADNIS method in the MADGRAPH event generator. A series of improvements
in MADNIS further enhance its efficiency and speed. We validate this implementation
for realistic partonic processes and find significant gains from using modern machine
learning in event generators.
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1 Introduction

One of the defining aspects of the precision-LHC program is that we compare vast amounts
of scattering data with first-principle predictions. These predictions come from multi-purpose
LHC event generators, for instance PYTHIA8 [1], MG5AMC [2], or SHERPA [3]. They start
from a fundamental Lagrangian and rely on perturbative quantum field theory to provide
the key part of a comprehensive simulation and inference chain. LHC simulations, including
event generation, are a challenging numerical task, so we expect improvements from modern
machine learning [4,5]. These improvements cover precision and speed, which can at least in
part be interchanged, on track to meet the challenges by the upcoming HL-LHC program.

Following the modular structure of event generators, we will use modern neural networks
to speed up expensive scattering amplitude evaluations [6–12]. Given these amplitudes, we
need to improve the phase-space integration and sampling [13–22]. Here, precise generative
networks are extremely useful. Their advantage in the LHC context is that they cover inter-
pretable physics phase spaces, for example scattering events [23–29], parton showers [30–37],
and detector simulations [38–61].

Generative networks for LHC physics can be trained on first-principle simulations and are
easy to ship, powerful in amplifying the training data [62, 63], and — most importantly —
controlled and precise [28, 64–67]. Subsequent tasks for these generative networks include
event subtraction [68], event unweighting [69,70], or super-resolution enhancement [71,72].
Their conditional versions enable new analysis methods, like probabilistic unfolding [73–82],
inference [83–85], or anomaly detection [86–91].

Every LHC event generator covers phase space using a combination of importance sampling
and a multi-channel factorization. To improve phase-space sampling through modern machine
learning, we need to tackle both of these technical ingredients together. This observation is the
basis of the MADNIS approach [20], which has independently been proposed by Refs. [16,17].
Going beyond this proof of principle, we show in this paper how MADNIS can be implemented
within MG5AMC and by how much a classic event generator setup can be improved. This is the
logical next step after employing MADNIS within the phase-space generator Chili [22] and is
similar to previous applications of neural importance sampling (NIS) in Sherpa [18]. In Sec. 2
we describe the updated MADNIS framework, including an improved loss for the network
training in Sec 2.2, a fast initialization using classic importance sampling in Sec. 2.3, and an
efficient training strategy in Sec. 2.4. In Sec. 3.2 we then provide detailed performance tests
for a range of reference processes, and always compared to an optimized MG5AMC setup. In
Sec. 3.3, we show how the MADNIS performance gains can be understood in terms of amplitude
patterns and symmetries, and in Sec. 3.4 we push our implementation to its limits. As a
spoiler, we will find that for challenging LHC processes, MADNIS can improve the unweighting
efficiencies by an order of magnitude, a performance metric which can be translated directly
into a speed gain. This gain is orthogonal to the development of faster amplitude evaluations
and hardware acceleration using highly parallelized GPU farms [92–94].

2 Improving MADNIS

Before we discuss our improved ML-implementations, we briefly review the basics of multi-
channel Monte Carlo. We integrate a function f ∼ |M|2 over phase space

I[ f ] =

∫

dD x f (x) x ∈ RD . (1)
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This integral can be decomposed introducing local channel weights αi(x) [95,96]

f (x) =
nc
∑

i=1

αi(x) f (x) with
nc
∑

i=1

αi(x) = 1 and αi(x)≥ 0 , (2)

This MG5AMC decomposition is different from the original multi-channel method [97, 98],
which is used by SHERPA [3], or WHIZARD [99], as discussed in Ref. [20]. The phase-space
integral now reads

I[ f ] =
nc
∑

i=1

Ii[ f ] =
nc
∑

i=1

∫

dD x αi(x) f (x) . (3)

Next, we introduce a set of channel-dependent phase-space mappings

x ∈ RD Gi(x)→←−−−−−−→
←G i(z)

z ∈ [0, 1]D , (4)

which parametrize properly normalized densities

gi(x) =

�

�

�

�

∂ Gi(x)
∂ x

�

�

�

�

with

∫

dD x gi(x) = 1 . (5)

The phase-space integral now covers the D-dimensional unit cube and can be sampled as

I[ f ] =
nc
∑

i=1

∫

dDz
gi(x)

αi(x) f (x)

�

�

�

�

x=G i(z)

=
nc
∑

i=1

∫

dD x gi(x)
αi(x) f (x)

gi(x)
≡

nc
∑

i=1

­

αi(x) f (x)
gi(x)

·

x∼gi(x)
.

(6)

Typically, physics-inspired channels are initialized with analytic mappings and then refined by
an adaptive algorithm, for instance VEGAS [100–104]. It exploits the fact that the Ii[ f ] are
unchanged under the mappings Gi , but the variance

σ2
i ≡ σ2

i

�

αi f
gi

�

=

�

�

αi(x) f (x)
gi(x)

− Ii[ f ]
�2�

x∼gi(x)

=

�

αi(x)2 f (x)2

gi(x)2

�

x∼gi(x)
− Ii[ f ]

2

(7)

is minimized by the optimal mapping

gi(x)
�

�

opt =
αi(x) f (x)

Ii[ f ]
, (8)

so the optimal form of gi(x) is only defined in relation to the choice of αi(x) and, conse-
quently, Ii[ f ].

We compute the Monte Carlo estimate of each integral using a discrete set of points,

Ii[ f ] =
­

αi(x) f (x)
gi(x)

·

x∼gi(x)
≈ 1

Ni

Ni
∑

k=1

αi(xk) f (xk)
gi(xk)

�

�

�

�

xk∼gi(x)
. (9)

In analogy, the variance gives us an estimate of the uncertainty [98],

∆2
i,Ni
=
σ2

i

Ni
=

1
Ni

�

�

αi(x)2 f (x)2

gi(x)qi(x)

�

x∼qi(x)
−
­

αi(x) f (x)
qi(x)

·2

x∼qi(x)

�

. (10)
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Here, we rely on a different sampling density qi(x) ̸= gi(x). This appears ad-hoc, but is
needed to define a properly differentiable loss function during training and will improve the
performance [20]. When the variance is estimated from a finite sample, a correction factor
Ni/(Ni − 1) has to be introduced to ensure an unbiased estimator. As the complete integral
I[ f ] is the sum of statistically independent Ii[ f ], its uncertainty and variance are

∆2
N =

nc
∑

i=1

∆2
i,Ni
=

nc
∑

i=1

σ2
i

Ni
and σ2

tot = N∆2
N =

nc
∑

i=1

N
Ni
σ2

i . (11)

2.1 ML implementation

Starting from Eq.(6), MADNIS encodes the multi-channel weight αi(x) and the channel map-
pings Gi(x) in neural networks.

Neural channel weights

First, MADNIS employs a channel-weight neural network (CWnet) to encode the local multi-
channel weights defined in Eq.(2),

αi(x)≡ αiξ(x) , (12)

where ξ denotes the network parameters. The best way to implement the normalization con-
dition from Eq.(2) in the architecture is [20]

αiξ(x) = Softmax Aiξ(x)≡
exp Aiξ(x)

∑

j exp A jξ(x)
, (13)

where Ai(x) is the unnormalized network output. As the channel weights vary strongly over
phase space, it helps the performance to learn them as a correction to a physically motivated
prior assumption. Two well-motivated and normalized priors in MG5AMC are

αMG
i (x) =

|Mi(x)|2
∑

j |M j(x)|2

αMG
i (x) =

Pi(x)
∑

j Pj(x)
with Pi(x) =

∏

k∈prop

1

|pk(x)2 −m2
k − imkΓk|2

.
(14)

They define the single-diagram enhanced multi-channel method [95,96]. Relative to either of
them we only learn a correction to the prior, i.e.

αiξ(x) = Softmax
�

logαMG
i (x) + Aiξ(x)

�

=
αMG

i (x) exp Aiξ(x)
∑

j[α
MG
j (x) exp A jξ(x)]

. (15)

We initialize the network parameters ξ0 such that Aiξ0
(x) = 0.

Neural importance sampling

Second, we combine analytic channel mappings and a normalizing flow for a mapping from a
latent space z to the phase space x ,

x ∈ RD analytic←−−−→ y ∈ [0, 1]D
INN←−−−→ z ∈ [0,1]D . (16)
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This chain replaces VEGAS with an invertible neural network (INN) [105], an incarnation of
a normalizing flow equally fast in both directions. This INN is used for latent space refine-
ment, where the INN links two unit hypercubes [0,1]D. MADNIS improves the physics-inspired
phase-space mappings by training an INN as part of

z = Giθ (x) or x = G iθ (z) , (17)

with the network weights θ . Similar to the multi-channel weights, we use physics knowledge
to simplify the task of the normalizing flow and improve its efficiency.

A crucial condition for using a normalizing flow for phase-space integration is its equally
fast evaluation in both directions [20]. The building blocks of the best-suited flows are coupling
layers. The INN task in Eq.(16) can, in principle, be realized with any invertible coupling layer
and an additional sigmoid layer. Coupling layers [105–107] split the input y into two parts,
y = (yA, yB), and define the forward and inverse passes as

�

zA
r

zB
s

�

=

�

yA
r

C(yB
s ; usθ (yA))

�

⇔
�

yA
r

yB
s

�

=

�

zA
r

C−1(zB
s ; usθ (zA))

�

, (18)

The component-wise coupling transform C acts on the learned function uθ , is invertible and
has a tractable Jacobian. The Jacobian of the full mapping is

g(y) =
∏

s

∂ C(yB
s ; usθ (yA))

∂ yB
s

. (19)

For a stable numerical performance we use rational-quadratic spline (RQS) blocks [108],
where each bin is a monotonically-increasing rational-quadratic (RQ) function. They pro-
vide superior expressivity and are naturally defined on a compact interval [a, b]. We split the
unit interval [0, 1] in K bins with K + 1 boundaries or knots (y(k)s , z(k)s ) (k = 0, . . . , K), with
fixed endpoints (0, 0) and (1,1). The K widths ws and heights hs of the bins and the K + 1
derivatives ds at the boundaries are constructed from the output of the network,

usθ (x
A) = (Θw

s ,Θh
s ,Θd

s ) . (20)

They are normalized as

ws = SoftmaxΘw
s

hs = SoftmaxΘh
s

ds =
SoftplusΘd

s

log 2
≡ log

�

1+ expΘd
s

�

log2
.

(21)

In contrast to the original Ref. [108], we add learnable derivatives at the boundaries to increase
expressivity, and introduce the normalization of ds such that Θd

s = 0 is associated with a unit
derivative ds = 1. The w, h and d are then used to construct the RQ function C and its
derivative [108].

In Eq.(18) we see that the coupling layer describes each dimension zB
s using a learned

function of all yA = zA. This way, it cannot describe correlations between different directions
zB

s . To encode correlations between all dimensions, we stack multiple coupling layers and per-
mute the elements between them. The permutation changes which components are combined
within yA and yB. We use a deterministic set of permutations based on a logarithmic decom-
position of the integral dimension [16,20], which ensures that any element is conditioned on
any other element at least once. The number of coupling blocks then scales with log D.
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2.2 Multi-channel loss

After encoding channel weights and importance sampling as neural networks,

αi(x)≡ αiξ(x) and gi(x)≡ giθ (x) , (22)

the integral in Eq.(6) is estimated as

I[ f ] =
nc
∑

i=1

�

αiξ(x) f (x)

giθ (x)

�

x∼giθ (x)
. (23)

The common optimization task for both networks is given by Eq.(8). The relative contri-
bution per sub-integral changes when we train the two networks, ruling out the use of any
f -divergence [109] when optimizing the channel weights αiξ(x).

As the optimization is performed on batches with size b ≪ N , we use a loss function
that does not scale with b and is independent of the number of sampled points. Moreover, the
sampling density in the loss function x ∼ qi(x) cannot coincide with the learned mapping [20].
We can directly minimize the variance as the loss function

Lvariance =
nc
∑

i=1

N
Ni
σ2

i

=
nc
∑

i=1

N
Ni

�

�

αiξ(x)2 f (x)2

giθ (x)qi(x)

�

x∼qi(x)
−
�

αiξ(x) f (x)

qi(x)

�2

x∼qi(x)

�

.

(24)

In practice, qi(x)≃ giθ (x) allows us to compute the loss as precisely as possible and stabilizes
the combined online [110] and buffered training [20].

A critical hyperparameter in the variance loss is the distribution of sample points, Ni , during
training and integral evaluation. Its optimal choice depends on the σ2

i , and with that on αi
and gi . While the latter are only known numerically, the optimal choice of Ni can be computed
by minimizing the loss with respect to Ni , given N =

∑

i Ni [98,111]

Ni = N
σi

∑

j σ j
⇔ N

Ni
=

∑

j σ j

σi
. (25)

This known result from stratified sampling defines the improved MADNIS loss

LMADNIS =
nc
∑

i=1

 

nc
∑

j=1

σ j

!

σi =

� nc
∑

i=1

σi

�2

=





nc
∑

i=1

�

�

αiξ(x)2 f (x)2

giθ (x)qi(x)

�

x∼qi(x)
−
�

αiξ(x) f (x)

qi(x)

�2

x∼qi(x)

�1/2




2

.

(26)

The physics information used to construct a set of integration channels is usually extracted
from Feynman diagrams. MG5AMC automatically groups Feynman diagrams or channels,
which are linked by permutations of the final-state particles. Because of the complications
through the parton densities it does not consider permutations in the initial state. Following
the MG5AMC approach, symmetry-related MADNIS channels share the same phase space map-
ping, but the channel-weight network has separate outputs for each channel. Theσi in the loss
can be defined for individual channels or for channel groups. For processes with many chan-
nels we find that using sets of channels stabilizes the training, so we resort to this assignment
as our default.
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2.3 VEGAS initialization

VEGAS [100–102] is the classic algorithm for importance sampling to compute
high-dimensional integrals. For approximately factorizing integrands VEGAS is extremely effi-
cient and converges much faster than factorized neural importance sampling, so we use use a
VEGAS pre-training to initialize our normalizing flow.

The standard VEGAS implementation integrates the unit cube, zs ∈ [0,1] and relies on
an assumed factorization of the phase space dimensions, made explicit for the phase space
mapping and the corresponding sampling distribution in the second step of Eq.(16)

g(y) =
D
∏

s=1

g(ys) . (27)

In analogy to Eq.(4) it encodes sampling distributions g for each dimension by dividing the
unit interval into K bins of equal probability but different widths wk with

∑

k wk = 1. In each
interval,

y ∈ [Wk−1, Wk] with Wk =
k
∑

m=1

wm , (28)

VEGAS samples uniformly,

g(y) =
1

Kwk
for y ∈ [Wk−1, Wk] , (29)

such that each bin integrates to 1/K , and their sum from Eq.(5) to

∫ 1

0

dy g(y) =
K
∑

k=1

wk
1

Kwk
= 1 . (30)

In one dimension, the integrated mapping G(x) from Eq.(4) is a piece-wise linear function, or
linear spline,

G(y) = (k− 1)
1
K
+

y −Wk−1

Kwk
for y ∈ [Wk−1, Wk] . (31)

The VEGAS algorithm iteratively adapts the bin widths wk such that the distribution g(y)
matches the integrand. We illustrate g and G with K = 20 bins for a Gaussian mixture model
in the upper panels of Fig. 1.

If we want to use VEGAS to pre-train an INN-mapping of two unit cubes, we need to relate
the VEGAS grid to the RQ splines introduced in Sec. 2.1. Following Eq.(21), we need to extract
the bin widths w, the bin heights h, and the derivatives on the bin edges d from a VEGAS grid.
The width in y are the same as the VEGAS bin sizes, the heights are equal for all bins, and the
derivatives can be estimated as the ratio of the bin heights and widths,

widths: wk for k = 1, . . . , K

heights: hk =
1
K

for k = 1, . . . , K

endpoints: d0 =
h1

w1
=

1
Kw1

dK =
hK

wK
=

1
KwK

internal points: dk =
hk+1 + hk

wk+1 +wk
=

2
K(wk+1 +wk)

for k = 1, . . . , K − 1 . (32)
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Figure 1: Top: learned VEGAS density g(y) with 20 bins (left) and its transformation
G(y) (right). Bottom: the RQS density g(y) after embedding the VEGAS grid and
performing bin reduction to 7 bins (left). The right plot shows the corresponding
mapping G(y) including a zoom-in box illustrating the definition of the widths wi ,
heights hi of the bins and the derivatives di on the bin edges.

Because of the higher expressivity of the RQ splines, they need much fewer bins than VEGAS.
For instance, all bins in VEGAS have equal probability, meaning that more bins than necessary
are used in regions of high probability but with little change in the derivative of the transfor-
mation. We therefore reduce the number of bins by repeatedly merging adjacent bins until the
desired number of target bins is reached:
1. Calculate the absolute difference between the slopes of adjacent bins,

∆k =

�

�

�

�

wk

hk
− wk+1

hk+1

�

�

�

�

. (33)

2. Choose the lowest ∆k, i.e. the two bins k and k + 1 with the most similar average slope.
We introduce an additional cutoff, to prevent very large bins, unless all smaller bins are
already merged.

3. Reduce the number of bins by one

w← (w1, . . . , wk−1, wk +wk+1, wk+2, . . . , wK) ,

h← (h1, . . . , hk−1, hk + hk+1, hk+2, . . . , hK) ,

d ← (d0, . . . , dk−1, dk+1, . . . , dK) ,

K ← K − 1 .

(34)

The lower panels of Fig. 1 show g and G for the RQ spline after applying the bin reduction
algorithm to reduce the number of bins to K = 7. We show w, h and d for one bin.

As shown in Eq.(18), a RQS spline block includes a trainable sub-network. It encodes the
bin widths w, heights h and derivatives d. By inverting the normalization from Eq.(21), setting
the weight matrix of the final sub-network layer to zero and assigning our results for Θw, Θh
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and Θd to the bias vector, we can initialize the spline block to behave like the VEGAS grid. This
has to be done for the final two coupling blocks (in the sampling direction), one for each half
of the dimensions.

2.4 Training strategies

Online & buffered training

MADNIS supports two training modes [20]. First, in the online training mode generated events
are immediately used to update the network weights. Their integrands, channel weights, and
Jacobians are stored for later use in the second, buffered training mode. For that, only the
weight update is performed. Online training is typically more stable, especially in the early
stages, while buffered training is much faster in cases where the integrand is computationally
expensive. We alternate between online and buffered training and keep the buffer at a fixed
size, so the oldest sample points are replaced through online training. The impact of the
buffering is given by R@, the ratio of the number of weight updates from online training to
all weight updates. For expensive integrands, R@ determines the speed gain relative to online
training only. For the results shown in Sec. 3 we use a buffer size of 1000 batches and start
with online training until the buffer is filled. We then train alternately on the full buffer and
online, where we aim to replace either a quarter or half of the buffer, corresponding to gain
factors R@ = 5 and R@ = 3.

Learning and correcting the channel weights changes the normalization for each channel.
Since this normalization is a function of all channel weights, the complete set has to be stored
as part of the buffered training. Storing O(1M) phase space points for a process with O(1k)
channels requires several gigabytes, so this becomes prohibitive. On the other hand, we typ-
ically find that for a given sampling only a few channels contribute significantly. Instead of
storing all weights we then store the indices and weights (i,αi) of the m < nc channels with
the largest weights. The channel that was used to generate the sample always has to be in-
cluded in this list, even if it is not among the m largest weights. To optimize the network on
such a buffered sample, we set the other αi to zero and adjust the normalization accordingly.
Because this approximation is only used during buffered training epochs, but not during online
training, integration or sampling, it does not introduce a bias.

Stratified training & channel dropping

The variance of a channel scales with its cross section, and even if different channels contribute
similarly to the total cross section, their variances can still be very imbalanced. The variance
loss will be dominated by channels with a large variance, leading to large and noisy training
gradients if the number of points in these channels is not sufficiently large. We improve our
training by adjusting the number of points per channel and allow for channels to be dropped
altogether.

Because the variance of the channels changes during the training of the channel weights
and during the training of the importance sampling, we track running means of the channel
variances and use them to adjust the number of points per channel during online training. To
ensure a stable training we first distribute a fraction r of points evenly among channels. The
remaining part of the sample is distributed according to the channel variances, following the
stratified sampling defined in Eq.(25). This means r interpolates between uniform sampling
(r = 1) and stratified sampling (r = 0). Note that in the presence of phase space cuts we
cannot be sure that there will be points with non-vanishing weights in a given channel. For
the results shown in Sec. 3 we ensure a stable estimate of the channel variance by first training
with uniform Ni for 1000 batches and then compute the variance with a running mean over
the last 1000 batches.
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We also go a step further and drop channels with a very small contribution to the cross
section. For this, we track the running mean over the Ii per channel and allow for channels to
be dropped after every training epoch. We define a fraction of the total cross section, typically
10−3 × I , which can be neglected by dropping the corresponding channels. Next we sort all
channels by Ii and drop channels, starting from the smallest contributions, until this fraction
is reached. If we drop a channel we also remove its contribution to the buffered sample and
adjust the normalization of the channel weights. This way no training time is invested into
dropped channels and the result remains unbiased.

3 Implementation and benchmarks

We call MG5AMC from MADNIS to compute the matrix element and parton densities, the initial
phase space mapping, and the initial channel weights used in Eq.(15). For each event the
inputs to this MG5AMC call are a vector of random numbers rs with s = 1 . . . D and the index
i of the channel used to sample the event. The MG5AMC output is the concatenation of all
4-momenta p, the event weight w, and the set of channel weights αMG

j with j = 1 . . . nc . All
MADNIS hyperparameters used for our benchmark study are given in the Appendix, Tab. 2.
We note, while trained on significantly less training points than the flow, VEGAS reaches its
optimum faster due to its simpler optimization and construction. We further emphasize, that
VEGAS is trained much longer and on more points than usually done in MG5AMC, guaranteeing
it has reached its optimum. In detail, as indicated in Tab. 2, we train VEGAS for 7 iterations
(default is 3) using 50k samples per iteration. We verified that increasing this number by a
factor of 10 did not further improve the performance of VEGAS. Currently, our interface is
not fully optimized and is still a speed bottleneck. Furthermore, our setup does not support
multiple partonic processes yet. Hence, we will not show run time comparisons in this work
and will use processes with a fixed partonic initial state.

3.1 Reference processes

To benchmark the MADNIS performance we choose a set of realistic and challenging hard
processes,

Triple-W ud̄→W+W+W−

VBS uc→W+W+ ds

W+jets gg→W+dū gg→W+dūg gg→W+dūgg

t̄t+jets gg→ t̄t+ g gg→ t̄t+ gg gg→ t̄t+ ggg . (35)

The produced heavy particles are assumed to be stable. The motivation for VBS and Triple-W
production is that they are key to understand electroweak symmetry breaking, and that their
large number of gauge-related Feynman diagrams will challenge our framework with poten-
tially large interference. Next, we choose W+jets and t̄t+jets production to study the scaling
with additional jets. In Tab. 1 we show the number of Feynman diagrams and the number
of MG5AMC channels for all processes. For instance, MG5AMC does not construct a sepa-
rate channel for four-point vertices, so the number of channels is smaller than the number of
diagrams. Channels which only differ by a permutation of the final-state momenta are com-
bined into groups, further reducing the numbers of mappings. Finally, we show the number
of channels that remain active after a MADNIS training, as discussed in Sec. 3.3.
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Table 1: Number of Feynman diagrams, channels and channel groups after account-
ing for symmetries. The last column shows the number of channels that remain active
after MADNIS channel dropping. Its range reflects ten independent trainings.

Process # diagrams # channels # channel groups # active channels

Triple-W ud̄→W+W+W− 17 16 8 2 . . . 4
VBS uc→W+W+ ds 51 30 15 4 . . . 6
W+jets gg→W+ dū 8 8 4 6

gg→W+ dūg 50 48 24 12 . . . 16
gg→W+ dūgg 428 384 108 28 . . . 51

t̄t+jets gg→ t̄t+ g 16 15 9 4 . . . 6
gg→ t̄t+ gg 123 105 35 12
gg→ t̄t+ ggg 1240 945 119 60 . . . 72

3.2 Benchmarking MADNIS features

To see the gain from each of the MADNIS features introduced in Sec. 2 we apply them to our
reference processes one by one. Our baseline is VEGAS, combined with MG5AMC channel
mappings and channel weights. Again, for a fair comparison, we also optimize VEGAS to
the best of knowledge and work with more iterations and larger samples than the MG5AMC
default. The VEGAS optimization is still significantly faster than MADNIS, but our goal is to
provide a pre-trained MADNIS generator and the training time is amortized for generating
large numbers of events, so the generation time is our only criterion.

We use two metrics for our comparison: (i) the relative standard deviation σ/I minimized
by stratified sampling, as is it independent from the sampling statistics and cross section; (ii)
the unweighting efficiency ε [18], where the maximum weight is determined by bootstrapping
and taking the median. For each, we use ten independent trainings and compute the means
and standard deviations as an estimate of the stability of the training. We note that all obtained
results, both integrated as well as differential cross-sections, agree with the default MG5AMC
output and yield the correct result.

In Fig. 2 we show the results of our benchmarking for the four different processes with
gauge bosons. For the more time-consuming top pair processes without any specific challenges
we will provide the final improvements below.

First, we show the results from a simple setup where only the channel mappings are
trained, but the channel weights are kept fixed, Sec. 2.1. Already here we see a sizeable
gain over the standard method. Next, we also train the channel weights, and observe a fur-
ther significant gain. For instance, the unweighting efficiency for VBS now reaches 20%, up
from a few per-cent from the standard method and by more than a factor ten.

Next, we stick to the trainings without and with adaptive channel weights, but combine
them with the VEGAS-initialization from Sec. 2.3. For all processes, the gain compared to the
standard VEGAS method stabilizes, albeit without major improvements. This changes when
we include stratified training, as introduced in Sec. 2.4. For all processes, stratified sampling
with trained channel weights lead to another significant performance gain, up to a factor 15
for the VBS process.

Finally, we add channel dropping and buffered training, to reduce the training time. For
time-wise gain factors R@ = 3 and R@ = 5 the improvement of the full MADNIS setup over the
standard VEGAS and MG5AMC integration remains stable. For processes with a large number
of channels, channel dropping leads to a more stable training, while providing an equally
good performance for the processes shown in Fig. 2. The fact that the performance gain for
the unweighting efficiency is much larger than for the relative standard deviation reflects the
sensitivity of the unweighting efficiency to the far tails of the weight distribution.
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Figure 2: Relative standard deviation and unweighting efficiency for W+2jets,
W+3jets, VBS and Triple-W for various combinations of MADNIS features.

3.3 Learning from channel weights

It turns our that we can also extract information from the learned channel weights. We look
at the contribution of each channel to the total cross section,

Ii

I
=

∫

dD x αi(x) f (x)
∫

dD x f (x)
. (36)

We find that MADNIS changes the contribution of channel groups coherently, so for W+3jets
and Triple-W production we look at the contributions given by the sum over the channels in
the group.

In Fig. 3, we show the contribution of MADNIS channels or channel groups, compared to
the initial MG5AMC assignments. We mark dropped channels with empty circles, the number
of remaining active channels corresponds to Tab. 1. We see that MADNIS prefers much fewer
channels, illustrating the benefit of our channel dropping feature.

For VBS and Triple-W production, MADNIS adapts the channel weights in a way that the
integrand is almost completely made up from a single group of symmetry-related channels.
The general behaviour and the specific choice of channels is consistent between repetitions
of the training. The Feynman diagrams corresponding to these channels are shown in Fig. 4.
For VBS five channel groups significantly contribute to the integral in MG5AMC, all of them
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Figure 3: Relative contributions of the channels for W+2jets and Triple-W production,
and for the channel groups for W+3jets and VBS. The channel weights are defined by
MG5AMC, their weights are learned by MADNIS. An empty circle indicates a dropped
channel.

with a t-channel gluon or photon. Of those, MADNIS enhances the QCD contribution O(α2
sα

2)
without an s-channel quark propagator. For Triple-W production, one channel group already
dominates the integral in MG5AMC, and it is further enhanced by MADNIS. We give an example
for the distribution learned by the learned channel weights as a function of phase space in
Appendix B.

3.4 Scaling with jet multiplicity

The last challenge of modern event generation MADNIS needs to meet is large number of
additional jets. We study the scaling of the MADNIS performance with the number of gluons in
the final state for W+jets and t̄t+jets production. Again, we use the relative standard deviation
σ/I and the unweighting efficiency ε as performance metrics. As for the final result in Fig. 2,
we train MADNIS with all features, including buffered training with R@ = 5. The results are
shown in Fig. 5. While the unweighting efficiency decreases and standard deviation increases
towards higher multiplicities, the gain over VEGAS and MG5AMC remains roughly constant for
W+jets production. For the even more challenging t̄t+jets production the gain decreases for
three jets, defining a remaining task for the final, public release of MADNIS.
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Figure 4: Feynman diagrams corresponding to the dominant channels after training
MADNIS for VBS (left) and Triple-W production (right).

4 Outlook

We have, for the first time, shown that modern machine learning leads to a significant speed
gain in MG5AMC. We have improved the MADNIS method [20] and implemented it in
MG5AMC, to be able to quantify the performance gain from a modern ML-treatment of phase
space sampling. This implementation will allow us to use the entire MG5AMC functionality
while developing an ultra-fast event generator for the HL-LHC.

Starting from a combined training of a learnable phase space mapping encoded in an INN
and learnable channel weights encoded in a simple regression network, we have added a series
of new features, including an improved loss function and a fast VEGAS initialization. The
combined online and buffered training has been further enhanced by stratified sampling and
channel dropping. The basic structure behind the phase space mapping is still a state-of-the-
art INN with rational quadratic spline coupling layers, rather than more expressive diffusion
networks [29], because event generation requires the mapping to be fast in both directions.

The processes we used to benchmark the MADNIS performance gain are W+2,3,4 jets, VBS,
Triple-W, and t̄t+1,2,3 jets. They combine large numbers of gauge-related Feynman diagrams
with a large number of particles in the final state. Through MG5AMC, these key processes can
easily be expanded to any other partonic production or decay process. For the electroweak
reference processes we have shown the performance gain, in terms of the integration error
and the unweighting efficiency, for each of our new features separately. The performance
benchmark was a tuned MG5AMC implementation. It turned out that learned phase-space
weights, the VEGAS initialization, and the stratified training each contribute to a significant
performance gain. Channel dropping and buffered training stabilize the training and limit the
computational cost of the network training. The MADNIS gain in the unweighting efficiency
ranges between a factor 5 and a factor 15, the latter realized for the notorious VBS process.
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Figure 5: Relative standard deviation and unweighting efficiency for W+jets and
t̄t+jets with different numbers of gluons in the final state. The final MADNIS perfor-
mance gain is illustrated in the lower panels, just as in Fig. 2.
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A Hyperparameters

Table 2: MADNIS hyperparameters. For the VEGAS parameters, the first value is used
for the pre-training and the value in parentheses for the remaining runs.

Parameter Value

Optimizer Adam [112]
Learning rate 0.001
LR schedule Inverse decay
Final learning rate 0.0001
Batch size min(200 · n0.8

c , 10000)
Training length 88k batches
Permutations Logarithmic decomposition [16]
Number of coupling blocks 2 ⌈log2 D⌉
Coupling transformation RQ splines [108]
Subnet hidden nodes 32
Subnet depth 3
CWnet parametrization (log pT ,η,φ)
CWnet hidden nodes 64
CWnet depth 3
Activation function leaky ReLU
Max. # of buffered channel weights 75
Buffer size 1000 batches
Channel dropping cutoff 0.001
Uniform training fraction r 0.1
VEGAS iterations 7 (7)
VEGAS bins 64 (128)
VEGAS samples per iteration 20k (50k)
VEGAS damping α 0.7 (0.5)
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B Channel-weight kinematics

To illustrate the learned channel weights we use an example with only three channels,

gg→ gg . (B.1)

This process has four Feynman diagrams, but MG5AMC only constructs mappings correspond-
ing to the s, t and u-channel Feynman diagrams. The latter two are related by an exchange
of the two final-state gluons and will therefore share the same normalizing flow in MADNIS.
We run a MADNIS training and use it to generate a set of weighted events. We keep the chan-
nel weights αMG provided by MG5AMC and the α obtained from the CWnet. In Fig. 6, we
show a stacked histogram of the z component of the momentum of the first gluon, because the
asymmetric structure of the t and u channels is best visible for this observable. Furthermore,
we show the average αMG and α in every bin of this histogram. In this example we see that
MADNIS does not significantly change the functional form of the channel weights over phase
space, but enhances the contribution of the s channel, while decreasing the contributions of
the t and u channels. This might be because MADNIS prefers channels that cover the entire
phase space instead of more specialized channels for simple processes like this one.
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Figure 6: Stacked histogram of z-component of the first gluon momentum for the
process gg→ gg generated by MADNIS. The lower panel shows the bin-wise averages
of the channels weights as obtained from MG5AMC and the learned channel weights.
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