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Abstract

The vacuum (i.e., the ground state) of a system in ultrastrong light-matter coupling con-
tains particles that cannot be emitted without any dynamical perturbation and is thus
called virtual. We propose a protocol for inducing and observing real mechanical excita-
tions of a mirror enabled by the virtual photons in the ground state of a tripartite system,
where a resonant optical cavity is ultrastrongly coupled to a two-level system (qubit) and,
at the same time, optomechanically coupled to a mechanical resonator. Real phonons
are coherently emitted when the frequency of the two-level system is modulated at a fre-
quency comparable to that of the mechanical resonator and, therefore much lower than
the optical frequency. We demonstrate that this hybrid effect is a direct consequence of
the virtual photon population in the ground state. Within a classical physics analogy,
attaching a weight to a spring only changes its resting position, whereas dynamically
modulating the weight makes the system oscillate. In our case, however, the weight is
the vacuum itself. We propose and accurately characterize a hybrid superconducting-
optomechanical setup based on available state-of-the-art technology, where this effect
can be experimentally observed.
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1 Introduction

The ultrastrong coupling (USC) regime between light and matter occurs when the coupling
connecting the two is a significant fraction of their quantized resonance frequencies [1]. In the
USC regime of the quantum Rabi model, counter-rotating coupling terms, which do not con-
serve the number of particles, lead to an entangled ground state with nonzero particles [2,3].
Similar to zero-point energy, these particles cannot be converted into real excitations that could
be emitted or detected, unless the system is dynamically perturbed over a timescale compara-
ble to the period of optical oscillations [2,4–7]. In this sense, the vacuum (i.e., ground state) of
a USC system contains virtual particles [7–9]. USC regime has been achieved in various plat-
forms like superconducting circuits, intersubband polaritons, and magnonic systems [10–20].

In an optomechanical system, the radiation pressure of the electromagnetic field displaces
one of the mirrors of the cavity. This displacement, in turn, modulates the cavity’s resonance
frequency [21]. Optomechanical coupling has found numerous applications [21,22], such as
ground-state cooling of the mechanical mode [23–25], generation of nonclassical states [26],
and macroscopic entanglement [27,28]. The vacuum fluctuations of the quantum electromag-
netic field sum to determine the total energy of a system in the ground state, leading to, e.g.,
the Casimir effect [29–31]. Dynamical perturbations of the mirror can convert virtual photons
into real photons, resulting in the dynamical Casimir effect [32], which has been quantum
simulated using a superconducting circuit architecture [33–35]. There is an increasing inter-
est in achieving larger optomechanical couplings [36–38], enabling the possibility of directly
observing the dynamical Casimir effect and other peculiar effects arising from it [39–41]. Sys-
tems combining a USC part and an optomechanical one, involving virtual and optomechanical
transitions, have been recently proposed [42,43].

Here, we propose a novel effect, where virtual photons in a hybrid USC-optomechanical
system can give rise to real mechanical excitations. To do that, we periodically modulate
the vacuum (i.e., ground state) energy using the features of USC coupling. This novel effect
bears close resemblance to the Casimir effect, where the space modulation of energy density
between the two sides of a mirror is what ultimately induces the Casimir force. Here, the time
modulation of the energy results in an effective drive of the mirror through the USC vacuum,
in stark contrast to a standard optomechanical drive, where the cavity is driven far from its
ground state and consequently gets populated by a large number of real photons.
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Figure 1: Schematic depiction of the system. A cavity at frequency ωa and a qubit
of bare frequency ωσ, are in USC with coupling strength λ. The cavity also interacts
with a mirror, whose vibration frequency isωb, through an optomechanical coupling
of intensity g. The frequency of the qubit is adiabatically modulated through Ωσ(t),
and the virtual photon population oscillates in time. This causes the mirror to os-
cillate. Collecting the emission of both the USC systems and of the vibrating mirror,
only the latter will produce a signal.

The system we propose to realize such an effect is a tripartite USC-optomechanical sys-
tem. The architecture, depicted in Fig. 1, includes a cavity in USC with a two-level system
(qubit). The cavity is additionally an optomechanical system. The ground state of the USC
system contains virtual particles, whose presence influences the mechanical degrees of free-
dom. The frequency of the qubit is periodically modulated, with a period much longer than
that characterizing the oscillations of the USC components, but coinciding with that of the
mechanical oscillation. While the USC subsystem adiabatically remains in the ground state,
which does not emit photons into the environment, the number of virtual ground-state pho-
tons determines the ground state energy, and its modulation creates the real (i.e., detectable)
mechanical oscillations of the mirror. We propose an experimental protocol to observe this
virtual-to-real transduction in advanced hybrid superconducting optomechanical systems.

2 Model

Let â (â†) be the annihilation (creation) operators of the cavity mode, b̂ (b̂†) of the mirror
vibration mode, and σ̂− and σ̂+ the Pauli operators associated with the qubit. As detailed in
the Appendix D, the system is described by the Hamiltonian (ħh= 1):

Ĥ(t) = ĤR+ Ĥopt + ĤM(t) ,

ĤR =ωa â†â+ωσσ̂+σ̂− +λ(â+ â†)(σ̂− + σ̂+) ,

Ĥopt =ωb b̂† b̂+
g
2
(â+ â†)2(b̂† + b̂) .

(1)

ĤR is the Rabi Hamiltonian giving rise to the USC interaction, and Ĥopt is the optomechani-
cal coupling, up to a constant displacement of the phononic field. Ĥopt is derived from first
principles both in the case of an electromagnetic field coupled to a vibrating mirror [44] and
for circuital analogs [45]. It includes the rapidly rotating terms (â2 + â†2)(b̂† + b̂) [44, 45]
which, as will emerge from our analysis, cannot be neglected in the present protocol (see
Appendix D). We assume a modulation of the qubit resonance frequency of the form

ĤM(t) =
1
2
∆ω [1+ cos(ωd t)] σ̂+σ̂− = Ωσ(t)σ̂+σ̂− . (2)
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Figure 2: (a) N (t) in Eq. (3) obtained by simulating Eq. (1). (b) Number of phonons
as a function of time according to the full Hamiltonian in Eq. (1) (blue solid line) and
the effective Hamiltonian in Eq. (3) (orange dashed line). The two curves are in ex-
cellent agreement, validating the approximations in Eq. (3). (c) Fourier components
Nκ of N (t). Parameters: ωa =ωσ = 2π×4GHz,ωb =ωd = 2π×1MHz, λ= 0.5ωa,
and g = 2π×15Hz, comparable to Ref. [46]. The system is initialized in the ground
state of Ĥ(t = 0).

The regime of interest is one where g ≪ ωd ≃ ωb ≪ ωa ≃ ωσ. In this regime, entangle-
ment between the mechanical motion and the USC subsystem is negligible, and the state of the
system can be factored as |Ψ(t)〉 ≃ |ψ(t)〉⊗|φb(t)〉, where |ψ(t)〉 describes the USC state, and
|φb(t)〉 is the one of the mirror. A further approximation, holding because ωd ≪ωa ≃ωσ, is
that the USC subsystem adiabatically remains in its vacuum |ψ(t)〉 = |ψ0(t)〉, where |ψ0(t)〉
is the ground state of ĤR+HM(t).

Under these approximations, the time-dependent Hamiltonian governing the motion of the
mirror is

Ĥb(t) = 〈ψ0(t)| Ĥopt |ψ0(t)〉=ωb b̂† b̂+
g
2
N (t)
�

b̂+ b̂†
�

, (3)

where N (t)≡ 〈ψ0(t)|2â†â+ â2 + â†2|ψ0(t)〉 is the time-dependent radiation pressure, acting
as a drive on the mirror and generating real phonons (i.e., detectable).

Drawing a parallel with classical physics, where increasing the weight on a spring merely
alters its equilibrium state, N(t) dynamically modifies the “weight” attached to the spring.
Interestingly, in our scenario, the weight is the vacuum itself.

The full system dynamics is then governed by the Hamiltonian Ĥeff(t)= ĤR+ĤM (t)+Ĥb(t).
Notice the importance of the counter-rotating terms âσ̂− and â†σ̂+ in ĤR: if they are neglected,
one wrongly predicts N (t) = 0. This shows that the mirror oscillates only if the ground state
contains virtual photons.

The validity of these approximations is assessed in Fig. 2 by simulating the system dynam-
ics both under the full Hamiltonian Ĥ(t) in Eq. (1) and the effective Hamiltonian Ĥeff(t). The
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quantity N (t) is plotted in Fig. 2(a). The number of phonons is shown in Fig. 2(b). As the full
and the effective dynamics are in excellent agreement, we conclude that our interpretation
holds and that the phonon number increases in time due to the radiation pressure originating
from N (t).

3 Open-system dynamics

Experimental devices are always subject to the influence of the environment, which has a finite
temperature and generally induces loss and dephasing. For the parameters we consider, the
finite temperature of the environment in, e.g., a dilution refrigerator (T ≈ 10 mK) leads to
thermal noise in the phononic part (nth ≈ 200) but not in the photonic one (nth ≈ 5×10−9).1

The open system dynamics, when assuming a Markovian environment, is governed by the
Lindblad master equation

˙̂ρ = −i
�

Ĥ(t), ρ̂
�

+ (1+ nth)γbD
�

b̂
�

ρ̂ + nthγbD
�

b̂†
�

ρ̂ + γDD
�

b̂† b̂
�

ρ̂ , (4)

where ρ̂ is the density matrix of the system and D[Ô]ρ̂ = 1/2(2Ôρ̂Ô†− ρ̂Ô†Ô− Ô†Ôρ̂) is the
Lindblad dissipator. The phonon loss at rate is γb(1+ nth), the gain γbnth, and the dephasing
γD, with nth the thermal population. As we have verified, the USC subsystem remains in its
ground state, and thus dissipation processes are absent, despite the finite number of virtual
photons. Indeed, when describing an open USC system, dissipation must result in the exchange
of real excitations between the system and the environment, rather than virtual ones [7,47]. At
T = 0 in particular, the system can only lose energy to the environment, through the emission
of real photons. In an ideal setup, never detecting photons but observing the vibration of the
mirror is thus the signature that virtual photons are generating a radiation pressure (see Fig.
1). We therefore do not include photon loss terms in Eq. (4). A similar argument holds for
dephasing in the USC part of the system, which can therefore be neglected in the dynamics. As
for the mechanical part, all dissipators can be expressed in terms of the bare phonon operators
b̂ and b̂†, as the excitations of the mechanical mode are real, and not virtual. Indeed, the
ground state of the mechanical mode is almost empty ( 〈b̂† b̂〉 < 10−12). Furthermore, the
effective Hamiltonian in Eq. (3) has been numerically verified to be valid also in the presence
of dissipation (see Appendix B).

4 Main features of the model

As ĤM(t) has period 2π/ωd , we decompose N (t) in its Fourier components as

N (t) =
+∞
∑

k=−∞
Nk exp[i kωd t] . (5)

The effective drive resonance condition then occurs for ωd = ωb/k̄ with k̄ > 0 ∈ N, as con-
firmed by the numerical simulation reported in Fig. 2(c). If we now assume to be close to res-
onance with the k̄th component, so that the “pump-to-cavity detuning” ∆k̄ ≡ k̄ωd −ωb ≃ 0,
and passing in the frame rotating at ωd , we can discard fast rotating terms2 and obtain (see

1Assuming a Bose-Einstein distribution induced by the reservoir, one gets nth = [exp(ħhω/kBT ) − 1]−1 for the
chosen frequency. Nevertheless, it is known that qubits can experience a non-equilibrium thermal population.

2The rotating wave approximation can only be performed at this stage. Performing it before, instead, would
result in neglecting resonant, thereby important, terms.
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Figure 3: Steady state phonon population: (a) With different drive frequencies:
ωd ≃ ωb/k̄. The number of phonons follows the magnitude of the Fourier coeffi-
cients Nk̄, which are shown in Fig. 2(c); (b) Varying the detuning ∆k̄ with k̄ = 1
and with three different values of the mechanical damping γb. The purple × points
represent the analytical steady state population, following Eq. (6), which is perfectly
in agreement with the numerical simulations; (c) As a function of the thermal popu-
lation nth, showing both the cases ∆ω = 0 (green line) and ∆ω = 4 GHz (blue line).
The effect of nth is to linearly increase the steady-state population as in Eq. (6). Pa-
rameters as in Fig. 2, and, if not specified, γb = 2π× 400 mHz and γD = 2π× 200
mHz. For this choice, the steady state is reached in a time 1/γb ≈ 1s.

Appendix A)

〈b̂† b̂〉ss =
γ+ γD

γ

�

� 〈b̂〉ss
�

�

2
+ nth , (6)

with 〈b̂〉ss = (gNk̄)/[2∆k̄ + i(γ+ γD)].
In experimental implementations, the optomechanical coupling g is a limiting factor in

reaching large 〈b̂† b̂〉ss. Choosing ωd ≈ ωb achieves the largest value of Nk, thus enhancing
the driving effect. Furthermore, the low loss rate in optomechanical systems, and the large
values of λ (and thus of Nk) realized in superconducting circuit architectures [2], make the
phenomenon detectable according to our estimates.

5 Results

Fig. 3 shows the creation of mechanical excitations by modulating the properties of the USC
vacuum (i.e., the ground state) in a dissipative environment. The mechanical part of the
system reaches a periodic steady regime in a timescale of the order 1/γb, the details depending
on the specific choice of parameters. This Floquet steady state was numerically obtained by
using the Arnoldi-Lindblad algorithm [48] for Eq. (4) using the approximation in Eq. (3).
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Figure 4: As in Fig. 3(b), the phonon population at the steady state, but when the
USC part is described by two interacting harmonic resonators. The markers represent
the analytical steady state population, obtained by generalizing Eq. (6). Inset: the
time evolution of N (t). The used parameters are the same as Fig. 3, except for
g = 2π× 30 Hz, ∆ω = 2π× 2 GHz, and λ= 0.3ωa.

Fig. 3(a) shows the steady state population as a function of the frequency of the modulationωd
at the resonance conditionωd =ωb/k̄ and for different values of k̄. The validity of Eq. (6), and
the profound impact of the dissipation rate, is shown in Fig. 3(b), where we plot the steady-
state population as a function of the frequency of the modulation ωd . Both the analytical
prediction and the numerical result have a Lorentian profile, and they perfectly match (shown
only for one curve). The impact of the thermal population nth on both the coherence and the
total number of phonons is shown in Fig. 3(c). As predicted by Eq. (6), thermal phonons do
not modify the coherent emission, but they result in a background phonon occupation that can
be subtracted in the experimental analysis.

We have thus shown that virtual photons can pump mechanical vibrations.

5.1 Two-linear photonic cavities

Above we considered a two-level system in interaction with a linear cavity. Experimentally,
two-level systems are realized by means of large nonlinearities, which may prove difficult to
realize in actual hybrid optomechanical architectures. For this reason, here we demonstrate
that the same phonon pumping by virtual photons can be obtained even if we assume that
the USC part consists in two coupled harmonic cavities. This model is described by replacing
the two-level systems with a bosonic operator (σ̂− → ĉ and σ̂+ → ĉ†, where ĉ is the bosonic
field) [49,50] .

The same analysis reported in Fig. 3 is repeated for this linear model in Fig. 4. All the
results lead to the same conclusion as in the nonlinear case and are in agreement with the
generalization of Eq. (6) to linear models. Considerations about the largest frequency shift
that can be induced in current experimental systems lead to the conclusion that the maximal
occupation of the phononic mode is smaller than in the nonlinear case.
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Figure 5: (a) Lumped element circuit of a resonator composed by a linear induc-
tor Lr and a mechanical-compliant vacuum-gap capacitor (Cr), capacitively coupled
(though Cg) to a frequency tunable transmon qubit. The transmon is realized by
a capacitor Cq in parallel to a SQUID (with Josephson junctions of identical critical
current Ic). (b) Design simulated in SONNET® of a 60µm mechanical drum with
200 nm vacuum gap to the bottom electrode. The circuit parameters are extracted
by the signal transmission between port 1 and port 2.

6 Design and simulation of an experimental device

This model can be realized in superconducting circuit architectures. For instance, the qubit
is implemented by a flux-tunable transmon capacitively coupled to a lumped element LC res-
onator, that is the cavity. The latter is formed by shunting an inductance and a mechan-
ically compliant parallel plate capacitor (the vibrating mirror) [33, 51, 52]. The proposed
schematics is shown in Fig. 5(a). We model the transmon as a bosonic cavity of initial fre-
quency ωσ characterized by a Kerr interaction of the form χ(ĉ†)2 ĉ2. A periodic modulation
of the magnetic flux threaded in the transmon SQUID loop by an on-chip flux line results
in ĤM(t) = ∆ω sin(ωd t)ĉ† ĉ. Such a modulation would also change the coupling strength
λ(t) = λ(0)
p

1+∆ω sin(ωd t)/ωσ. We provide a detailed derivation in the Appendix C.
Based on these target parameters we design the device shown in Fig. 5(b). By simulating

the system with the SONNET® software, we obtain: ωa = 2π× 9.2 GHz; ωσ = 2π× 9.2 GHz
for a 4 nH lumped element inductor that is used to simulate the SQUID. This correspond to
Cq + Cg=75 fF, i.e. χ = 2π× e2/2h(Cq + Cg) = 2π× 270 MHz; λ0 = 0.26ωa. From the drum
diameter, we estimate ωb = 2π× 3.8 MHz and the optomechanical coupling g = 2π× 15 Hz;
∆ω = 2π× 7 GHz. For these parameters we have: |〈b̂〉| ≃ 1.2 and 〈b̂† b̂〉 ≃ 8.4+ nth.

6.1 Phonon occupation readout

The readout of the phononic field can be performed as in Ref. [46]. One switches off the qubit
modulation and pumps the cavity, with a signal red-detuned of ωb. Recording the microwave
quadrature at frequencyωa while the pump is active allows reconstructing the coherent part of
the phononic field (i.e., the one produced only by the vacuum modulation). Following this pro-
tocol, the signal-to-noise ratio of up to a few percent can be detected averaging over many re-
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laxation cycles [46]. State-of-the-art experiments allow reaching the steady state in a dilution
refrigerator with a base temperature of 10 mK, and thus a signal of 〈b̂† b̂〉 ≃ 8.4> 10%nth ≈ 56.
Notice that the very same cavity ωa can be directly used to probe the phononic mode.

7 Conclusions

We have considered a USC system optomechanically coupled to a mechanical mirror. We
demonstrate both numerically and semi-analytically how the presence of modulated virtual
photons – i.e., photons that cannot be emitted into the environment – enables a real mechanical
vibration on the mirror. We have demonstrated that this effect can be realized using current
experimental platforms, and we show an explicit example of a hybrid superconducting circuit
implementation.

The key features of this system are: (i) the mirror vibrates when the frequency of the mod-
ulation matches that of the phononic mode (or integer fractions of it); (ii) even though the
mirror vibrates, and these vibrations can be detected, no photons are emitted by the USC sub-
system (see the sketch in Fig. 1); (iii) although the thermal population contributes to the total
number of phonons, the only coherent contribution comes from the effective drive induced by
the virtual photons.

The remarkable conclusion of our proposal is that virtual photons can drive real mechan-
ical excitations. This phenomenon presented here bears clear similarities with the dynamical
Casimir effect predicted for USC systems. The important difference is that, however, the exter-
nal periodic modulation here needs to match the mechanical frequency, rather than the optical
one. We plan to investigate the extension of this phenomenon to other models, such as the
Dicke transition in collective systems [2].

Acknowledgments

We acknowledge useful discussions with Filippo Ferrari, Luca Gravina, Vincenzo Macrì, and
Kilian Seibold.

Author contributions F.M. and A.M. contributed equally.

Funding information This work was supported by the Swiss National Science Foundation
through Projects No. 200020_185015 and 200020_215172, and was conducted with the fi-
nancial support of the EPFL Science Seed Fund 2021. M.S. acknowledges support from the
EPFL Center for Quantum Science and Engineering postdoctoral fellowship. S.S. acknowl-
edges support by the Army Research Office (ARO) through grant No. W911NF1910065.

9

https://scipost.org
https://scipost.org/SciPostPhys.17.1.027


SciPost Phys. 17, 027 (2024)

A Analytical derivation of the steady state phonon number

Here we are interested in the steady-state phonon population. We start by writing the effective
Hamiltonian, and assuming ωb ≃ωd we have

Ĥb(t) =ωb b̂† b̂+
g
2
N (t)
�

b̂+ b̂†
�

=ωb b̂† b̂+
∑

j

g
2
N j(t)
�

ei jωd t + e−i jωd t
� �

b̂+ b̂†
�

≃ωb b̂† b̂+
g
2
N1

�

eiωd t + e−iωd t
� �

b̂+ b̂†
�

≃ωb b̂† b̂+
g
2
N1

�

b̂eiωd t + b̂†e−iωd t
�

= Ĥ(1)b (t) ,

(A.1)

where N1 is the first Fourier component of N (t), and the approximation follows from be-
ing near the resonance condition and applying the rotating wave approximation. Finally, by
passing in the frame rotating at the frequency ωd through a time-dependent transformation
Û(t) = exp
�

iωd t b̂† b̂
�

, we obtain the time-independent Hamiltonian

Ĥ(1)b = Û(t)Ĥ(1)b (t)Û
†(t)−ωd b̂† b̂ = −∆1 b̂† b̂+

g
2
N1

�

b̂+ b̂†
�

, (A.2)

where ∆1 =ωd −ωs.
As this set of transformations leaves the dissipative part of the system unchanged, we can

now write the Lindblad master equation for the evolution of the reduced density matrix ρ̂b of
the phononic part as

˙̂ρ = −i
�

Ĥ(1)b , ρ̂b

�

+ (1+ nth)γbD
�

b̂
�

ρ̂b + nthγbD
�

b̂†
�

ρ̂b + γDD
�

b̂† b̂
�

ρ̂b , (A.3)

so that the corresponding time evolution of the phonon population is governed by

d
d t




b̂† b̂
�

=
d
d t

Tr
�

b̂† b̂ρ̂
�

= Tr
�

b̂† b̂ ˙̂ρ
�

. (A.4)

Substituting Eq. (A.3) into Eq. (A.5), and expanding all the terms in normal-ordering, we
obtain

d
d t




b̂† b̂
�

= −i
g
2
N1

�




b̂
�∗
−



b̂
�

�

− γ



b̂† b̂
�

+ nthγ . (A.5)

Similarly, the coherence evolves as

d
d t




b̂
�

= i∆1 − i
g
2
N1 −

1
2
(γ+ γD)



b̂
�

. (A.6)

At the steady state d/d t(〈b̂† b̂〉ss = d/d t(〈b̂〉)ss = 0, and we can now solve the linear system
composed by the right-hand-side of Eq. (A.5) and Eq. (A.6), whose solutions read




b̂
�

ss =
gN1

2∆1 + i(γ+ γD)
, (A.7)




b̂† b̂
�

ss =
γ+ γd

γ

�

�




b̂
�

ss

�

�

2
+ nth . (A.8)

B Open dynamics using the full Hamiltonian

The full Liouvillian should contain additional terms, taking into account, e.g., particle loss also
for USC part of the system, thus reading

˙̂ρ = Ltotρ̂ = Lρ̂ + γaD
�

X̂+(t)
�

ρ̂ + γσD
�

Ŝ+(t)
�

ρ̂ , (B.1)
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where ρ̂ is the density matrix of the system, γa,b,s are the damping rates, while X̂+(t) and Ŝ+(t)
are the positive frequency part of the dressed operators of the first and the second resonator,
respectively [47]. These operators are obtained by expressing the field on the basis of the time-
dependent eigenstates | j(t)〉 of the Hamiltonian (1), and by taking only the positive frequency
part

X̂+a (t) =
∑

j,k> j

〈 j(t)|â+ â†|k(t)〉 | j(t)〉〈k(t)| ,

Ŝ+(t) =
∑

j,k> j

〈 j(t)|b̂+ b̂†|k(t)〉 | j(t)〉〈k(t)| ,
(B.2)

where k > j means that the eigenvalue Ek is larger than E j . As, by construction, X̂+a and Ŝ+(t)
can only decrease the energy of the system, they can be safely neglected in the numerical
simulations, as the USC part of the system adiabatically remains in the ground state.

It is worth noting that, contrary to the two resonators, the dissipation of the mirror is
expressed in terms of the bare annihilation operator b̂. Indeed: i) the optomechanical coupling
we considered is very low; ii) We have no time dependence in the membrane dissipator since
the virtual photons of the USC system act as an effective drive for the membrane, and drives
must be introduced after the derivation of the dissipators. Failing to do that would lead to
inconsistent results – for instance, a driven linear cavity would not emit any photon.

C Scheme for the experimental setup

As detailed in the main text and shown in Fig. 5, we propose the following circuit as an ex-
perimental platform to observe the phonon pump via excitation of the USC vacuum. A linear
resonator (mode â) is coupled to a transmon, that we model as a non-linear mode ĉ with
anharmonicity χ. The “Rabi” Hamiltonian is thus

ĤR =ωa â†â+ [ωσ +∆ω sin(ωd t)] ĉ† ĉ +χ ĉ† ĉ† ĉ ĉ +λ(t)
�

â+ â†
� �

ĉ + ĉ†
�

. (C.1)

Notice that, in this configuration, the coupling between the resonator and the transmon de-
pends on their relative frequency, and thus we have introduced the coupling

λ(t) =
Æ

ωa [ωσ +∆ω sin(ωd t)]
Cc

2
p

(Ca + Cc) (Cσ + Cc)
= λ0

Æ

1+∆ω sin(ωd t)/ωσ , (C.2)

where Ca is the capacity of the linear resonator, Cσ that of the transmon, and Cc is the capac-
itive coupling between the two, and

λ0 =
p

ωaωσ
Cc

2
p

(Ca + Cc) (Cσ + Cc)
, (C.3)

is the coupling when the modulation is turned off. The optomechanical coupling maintains its
form and reads

Ĥopt =ωb b̂† b̂+
g
2
(â+ â†)2(b̂† + b̂) . (C.4)

D Derivation of the effective mirror Hamiltonian

Before performing the factorization and the adiabatic approximation, it is useful to re-
move the static mirror displacement term, which arises from the optomechanical interaction
(â+ â†)2(b̂+ b̂†). Indeed, by expanding this term, we have
�

â+ â†
�2 �

b̂+ b̂†
�

=
�

2â†â+ â2 + â†2 + 1
� �

b̂+ b̂†
�

=
�

2â†â+ â2 + â†2
� �

b̂+ b̂†
�

+ b̂+ b̂† ,
(D.1)
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Figure 6: Influence of the counter-rotating terms and the cavity-qubit coupling on the
generation of phonons. The number of phonons is taken after 100 cycles of the closed
dynamics, starting from the zero phonons state. As can be seen, both the counter-
rotating terms and the large coupling are required to achieve this effect. The used
parameters are the same as in Fig. 2 of the main text.

and the last term causes a static displacement of the mirror, which can be seen as an energy
re-normalization after a transformation.

Let’s take the displacement operator D̂(β) = exp(β b̂† − β∗ b̂), which transforms the oper-
ators as D̂(β)b̂D̂†(β) = b̂ − β . By rotating the total Hamiltonian in Eq. (1) of the main text,
we have that only Ĥopt is affected, obtaining

Ĥ ′opt = D̂(β)ĤoptD̂†(β) =ωb b̂† b̂−ωbβ b̂† −ωbβ
∗ b̂+ωb|β |

2

+
g
2

�

2â†â+ â2 + â†2
� �

b̂+ b̂†
�

−
g
2

�

2â†â+ â2 + â†2
�

(β + β∗)

+
g
2

�

b̂+ b̂†
�

−
g
2
(β + β∗) .

(D.2)

By choosing β = g/2ωb, and neglecting terms in g2, we get

Ĥ ′opt =ωb b̂† b̂+
g
2

�

2â†â+ â2 + â†2
� �

b̂+ b̂†
�

. (D.3)

The terms of the order of g2 include a constant energy shift −g2/(4ωb), a frequency shift of
the resonator −g2/(2ωb)â†â, and a two photon drive −g2/(4ωb)(â2 + â†2). Neglecting all
these terms does not affect the purposes of this work, and their contribution is minimal due
to the small optomechanical coupling we have chosen (g = 2π× 15 Hz).

Terms displacing the mirror thus generate a new equilibrium position, around which the
mirror vibrates. By definition, dissipation and drives act around this rest position of the mirror.
Failing to consider these constant shifts emerging from the various coupling results in unphys-
ical effects. For instance, one could generate infinite energy as the mirror could dissipate in a
bath (thus releasing energy) but still be driven by constant terms.
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E Influence of the counter-rotating term and effect of the ground-
state fluctuations

To show that the predicted effect is solely due to the modulation of the vacuum through USC,
here we consider an artificial model where we independently tune the rotating and the counter-
rotating terms. Namely, we set

ĤR =ωa â†â+ωσσ̂+σ̂− +λ(âσ̂+â†σ̂−) + ξλ(âσ̂− + â†σ̂+) , (E.1)

with ξ ∈ [0, 1]. When ξ = 1, this corresponds to the full Rabi model considered in the main
text. The approximation ξ= 0 is known as the Jaynes-Cumming model, and it is valid only in
the limit λ≪ωa, ωσ. All other terms in the Hamiltonian are kept as in the main text.

In Fig. 6, we show that ξ ̸= 0 is a fundamental factor to observe the wanted effect. Despite
the qubit modulation, in the absence of counter-rotating terms, the phononic mode never
oscillates. Furthermore, larger values of λ results in higher visibility of the effect.
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