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Abstract

LiHoF4 is a magnetic material known for its Ising-type anisotropy, making it a model sys-
tem for studying quantum magnetism. However, the theoretical description of LiHoF4
using the quantum Ising model has shown discrepancies in its phase diagram, partic-
ularly in the regime dominated by thermal fluctuations. In this study, we investigate
the role of off-diagonal dipolar terms in LiHoF4, previously neglected, in determining its
properties. We analytically derive the low-energy effective Hamiltonian of LiHoF4, in-
cluding the off-diagonal dipolar terms perturbatively, both in the absence and presence
of a transverse field. Our results encompass the full Bx − T phase diagram, confirming
the significance of the off-diagonal dipolar terms in reducing the zero-field critical tem-
perature and determining the critical temperature’s dependence on the transverse field.
We also highlight the sensitivity of this mechanism to the crystal structure by comparing
our calculations with the Fe8 system.
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1 Introduction

LiHoF4, a magnetic material with remarkable properties, has become a focal point for research
seeking to unravel the intricacies of quantum magnetism. Known for its distinct Ising-type
anisotropy, LiHoF4 serves as an archetype among anisotropic dipolar magnets, encompassing
single-molecule magnets and rare-earth magnetic insulators. These magnets, characterized
by a substantial anisotropy barrier and a ground state doublet, provide an intriguing test bed
for studying perhaps the simplest model for (quantum) magnetism—the (transverse field)
Ising model [1–3]. In addition to their fundamental significance, anisotropic dipolar magnets
have garnered attention due to their potential applications in nanomagnets, qubits, and mem-
ory bits [4–6]. In these regards, LiHoF4 has emerged as one of the most extensively studied
materials in this category, providing insights into diverse phenomena such as quantum tunnel-
ing [7], quantum criticality [1,8–10], quantum annealing [11], the effects of disorder [12–17],
quantum entanglement [18], the formation and dynamics of magnetic domains [19–21], and
high-Q nonlinear dynamics [22]. However, despite being regarded as a quintessential Ising
magnet, the persistent discrepancy in its Bx − T phase diagram compared to the predictions of
the transverse-field Ising model (TFIM), particularly in the high-temperature, low-field regime
dominated by thermal fluctuations, calls into question the adequacy of the theoretical descrip-
tion of LiHoF4 in terms of the TFIM.

Dipolar interactions dominate LiHoF4, and over the years, there has been increasing recog-
nition of the role of the off-diagonal terms of the dipolar interaction in determining the prop-
erties of the material, particularly its diluted series, LiHoxY1−xF4, where holmium ions are
randomly replaced by non-magnetic yttrium ions. In LiHoxY1−xF4, the interplay of an applied
transverse field, random disorder, and the off-diagonal dipolar (ODD) terms has been shown
to reduce the symmetry of the system, rendering the TFIM an inadequate model for the sys-
tem [23–27]. Nevertheless, when studying the pure LiHoF4 system, these ODD terms were thus
far usually neglected in deriving an effective low-energy Hamiltonian, citing their smallness
and vanishing mean-field (MF) contribution [28,29].

In [30], we suggested that the ODD terms are of quantitative importance in determining
the phase diagram and numerically showed that their inclusion in the model results in a no-
table reduction of the low-field critical temperature. Here we analytically derive the effective
low-energy Hamiltonian of the pure LiHoF4 system, perturbatively including the off-diagonal
dipolar terms, both in the absence and in the presence of a transverse field. Thus, we find
that ODD terms manifest in the effective low-energy model as three-body interactions with an
overall anti-ferromagnetic preference. Our results confirm the role of the off-diagonal terms
in reducing the critical temperature, and the dependence of the mechanism on the transverse
field, thus enabling the derivation of the full phase diagram of LiHoF4 in transverse field. In-
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triguingly, this mechanism of reduction of the critical temperature due to the contribution of
the off-diagonal dipolar terms sensitively depends on the structure of the crystal. To empha-
size this point, we repeat our calculations for the Fe8 system and show that in this system, the
reduction of Tc is negligible, in agreement with experiment.

2 Theory

The dominant interactions in LiHoF4 are magnetic dipolar interactions between the Ho3+ ions.
Combined with its crystal structure, these result in ferromagnetic order below Tc = 1.53 K. Its
strong single-ion easy-axis anisotropy results in an Ising-like twofold degenerate non-Kramers
ground state and a first excited state separated by an energy gap ∆ ≈ 11.5K. Previous works
aiming to derive an effective low-energy Hamiltonian did so by directly projecting the full mi-
croscopic Hamiltonian onto the low-energy subspace spanned by its two lowest-energy states
(the ground state doublet is continuously split by the transverse field Bx) [28,29]. In the ab-
sence of an applied transverse field, this approach immediately reduces the dipolar interaction
to a strictly longitudinal interaction since the x and y electronic angular momentum operators
have vanishing matrix elements between the Ising-like ground states. Only at non-zero trans-
verse fields does this projection include terms proportional to off-diagonal dipolar elements,
but in this case, they were neglected due to their smallness compared to the longitudinal in-
teraction and the direct interaction with the transverse field. Thus, this projection results in a
simple TFIM Hamiltonian without any contribution from ODD terms.

Here we derive an effective low-energy spin-1
2 Hamiltonian that perturbatively includes

off-diagonal dipolar terms by applying a Schrieffer-Wolff transformation to the full LiHoF4
Hamiltonian prior to the projection, treating the interaction terms as a perturbation. This
approach was used by Chin and Eastham [31], but only for Bx = 0 and considering only
the lowest excited state. Here we generalize their approach for arbitrary transverse field and
include all excited crystal-field states. We also introduce an exchange interaction between
nearest neighbors of strength Jex. The Hamiltonian is divided into an unperturbed diagonal
part, H0, and a perturbation, HT , which consists of the dipolar and exchange interaction terms,
i.e., Hfull = H0 +HT , where

H0 =
∑

i

Vc

�

J⃗i

�

+ gLµBBx

∑

i

J x
i , (1)

HT =
1
2

ED

∑

i ̸= j
ν,µ

V νµi j Jνi Jµj + Jex

∑

〈i, j〉
ν

Jνi Jνj , (2)

with µ,ν ∈ {x , y, z}. The hyperfine interaction with the nuclear spins is treated separately,
as described later. The dipolar interaction is given by Vµνi j =

�

δµνr2
i j − 3

�

r⃗i j

�µ �
r⃗i j

�ν
�

/r5
i j ,

the nearest neighbor exchange is Jex = 1.16mK [32], and kB ED =
µ0µ

2
B g2

L
4π . The crystal field

parameters that comprise Vc are those suggested in Ref. [33], which are identical to Ref. [32]
except for a small adjustment of B4

6 (s). The low-energy subspace onto which Hfull is projected
is that in which all of the ions are in either of their two lowest-energy eigenstates induced
by H0; the appropriate projection operator is denoted P0. The Schrieffer-Wolff transformation
uses a generator S, in terms of which the projected low-energy Hamiltonian is given as [34]

Heff = H0P0 + P0HT P0 +
1
2

P0 [S, HT ] P0 +O
�

H3
T

�

. (3)

Details of the calculation are found in Appendix A.
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3 Three-state model in zero-field

For concreteness, we perform the procedure explicitly for Bx = 0 while considering only the
first excited state. This means that before the Schrieffer-Wolff transformation is applied, all
operators of the full Hamiltonian are truncated so that they only act upon the three lowest-
energy states. The two lowest-energy states, which in the absence of a transverse field are
designated |↑〉 and |↓〉, are chosen such that 〈↑| J z |↓〉 = 〈↓| J z |↑〉 = 0. The operators are then
given in matrix form by

Vc =





0
0
∆



 , J z =





−α
α

0



 ,

J x =





0 0 ρ

0 0 ρ

ρ ρ 0



 , J y =





0 0 −iρ
0 0 iρ
iρ −iρ 0



 , (4)

where ∆ = 11.5K and eigenbasis of Vc is chosen such that ρ = 2.34 and α = 5.53 are real.1

With these simplifications, we are essentially reproducing the results of Ref. [31], and indeed
we obtain an identical result (assuming Jex = 0),

Heff (Bx = 0) =
α2

2
ED

∑

i ̸= j

V zz
i j σ

z
iσ

z
j +α

2Jex

∑

〈i, j〉

σz
iσ

z
j +
∑

i

hµi σ
µ
i +

∑

i ̸= j
ν,µ

ϵ
µν
i j σ

µ
i σ

ν
j +H3B , (5)

where

H3B =−
α2ρ2

∆
E2

D

∑

i ̸= j ̸=k

�

V xz
i j V xz

ik + V yz
i j V yz

ik

�

σz
jσ

z
k

−
α2ρ2

∆
E2

D

∑

i ̸= j ̸=k

�

V xz
i j V xz

ik − V yz
i j V yz

ik

�

σx
i σ

z
jσ

z
k

−
α2ρ2

∆
E2

D

∑

i ̸= j ̸=k

�

V xz
i j V yz

ik + V yz
i j V xz

ik

�

σ
y
i σ

z
jσ

z
k , (6)

gathers three-body terms.2 σ
µ
i are Pauli matrices acting within the two-dimensional low-

energy subspace of each ion i between the states |↑〉 and |↓〉. Note that an even number of
σz operators in each term of Heff is required by the time-reversal symmetry of the original
Hamiltonian at Bx = 0. The full forms of hµi and ϵµνi j are found in Appendix A; the fields hµi
all vanish due to symmetry in the undiluted case, and the emergent two-body terms ϵµυi j are
two orders of magnitude smaller than the exchange interaction, which itself is significantly
smaller than the dominant longitudinal dipolar interaction. The emergent two-body terms are
also short-range interactions by virtue of being proportional to the squared dipolar interaction,
and thus ∼ 1/r6. In contrast, the three-body terms are of the same order of magnitude as the
exchange interaction, and, crucially, they are effectively long-range interactions despite being
proportional to a product of dipolar interactions due to the additional summation. Thus, the

1These values differ slightly from those of Ref. [31] due to the use of updated crystal-field parameters, as
mentioned in the previous section.

2Though the first term in H3B consists of only two operators, it is, in essence, a three-body interaction by virtue
of its dependence on the existence of spin i. This dependence is crucial for explaining the x-dependent behavior of
the diluted series LiHoxY1−xF4, as expanded upon in Ref. [30].
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three-body terms are expected to be the most impactful of the new emergent interactions.
As we shall immediately see, only the first term of H3B has a non-vanishing MF contribution,
making it pivotal in our analysis. Henceforth, this term will be referred to as the “three-body
term.” The remaining two terms in H3B, involving Pauli x and y operators, do not commute
with the dominant σz

iσ
z
j term in Heff (Bx = 0). Consequently, these terms are classified as

“quantum terms” going forward.
Next, we employ a mean-field approximation by neglecting correlation terms

(σµi − 〈σ
µ
i 〉)(σ

ν
j − 〈σ

ν
j 〉) ≈ 0 for any µ,ν and i ̸= j, and denoting

¬

σ
µ
j

¶

≡ mµ. In general,
we then have three coupled self-consistency equations for m⃗, but, in the case of zero trans-
verse field, the last two terms in (6) vanish in mean-field due to lattice symmetries, leaving
us with the usual Ising self-consistency equation mz = tanh

�

β bz
i

�

. The exact form of b⃗ (m⃗) is
given in Appendix B. The critical temperature determined by this equation, with q = 4 as the
number of nearest neighbors, is

Tc (Bx = 0) =−α2ED

∑

j(̸=i)

V zz
i j −α

2qJex

−
ρ4Jex

∆

 

2ED

∑

j∈NN(i)

V x x
i j + qJex

!

−
ρ4

∆
E2

D

∑

j(̸=i)

h

V x x
i j V y y

i j −
�

V x y
i j

�2i

+
4α2ρ2

∆
E2

D

∑

k ̸= j(̸=i)

V xz
i j V xz

jk , (7)

where the notation j ∈ NN(i) indicates that j sums over the q nearest neighbors of spin i. The
last sum in Eq. (7) above, the result of the first of the three three-body terms in H3B (6), is the
predominant correction to the longitudinal interaction that results in a reduction of Tc; the two
preceding terms in Eq. (7) are much smaller in value. Fig. 1(a) shows a group of three spins
strongly affected by the three-body interaction in such a manner that generates an effective
anti-ferromagnetic interaction between two of them. Fig. 1(b) illustrates the spectrum of the
three states used in the three-state model.

The (long-range) sums in Eq. (7) are calculated using Ewald’s method [35,36], assuming
a needle-shaped domain that, in the non-zero transverse field case to be discussed later, is
embedded within a spherical sample whose magnetization in the x direction in response to
the transverse field is homogeneous [28]. See further discussion in Appendix B. Thus we
find that for the three-state model, the three-body term is responsible for a 5% reduction of
the MF critical temperature. Subsequent sections will demonstrate, by incorporating higher
excited crystal-field states and employing Monte Carlo simulations, that this three-body term
is actually responsible for a majority of the existing discrepancy between MF predictions and
experimental observations.

4 17-state model in Bx ≥ 0

As mentioned previously, the Schrieffer-Wolff procedure and subsequent projection can be
performed for arbitrary non-zero Bx , albeit resulting in an excessively complicated effective
Hamiltonian compared to (5). Nevertheless, a mean-field approximation can be applied to
it just the same, only in this case, the three self-consistency equations are fully coupled, so,
to find Tc , they are solved numerically for decreasing T until a phase transition is detected.
Details of the procedure are related in Appendix C. Here we use the full, rather than truncated,
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1

2

3

(a) (b)

Figure 1: (a) An illustration of three spins, between two of which (denoted 1 and 3)
an effective anti-ferromagnetic interaction emerges due to their off-diagonal dipolar
interactions with the third (denoted 2). The prominent three-body term in H3B en-
ergetically favors a configuration where spin 3 is anti-aligned with spin 1 (yellow),
regardless of the state of spin 2 (thus the double-sided arrow), compared to a con-
figuration where spin 3 is aligned with spin 1 (blue). (b) The three lowest-energy
levels of Vc , used in the three-state model. The existence of an excited level |Γ 〉 at
spin 2, coupled to the ground states |↑〉 and |↓〉 by J x

2 , is crucial to the emergence of
the three-body interaction, as it modifies the ground state energies of spin 2 in a way
that depends on the relative configurations of its neighbors.

forms of the operators in Hfull, again using the Schrieffer–Wolff transformation to decouple (up
to second order in HT ) the two lowest-energy states from the 15 excited states.

The results on the full phase diagram are shown in Fig. 2; once with the Schrieffer-Wolff
transformation applied to the full Hamiltonian in (1) and (2) and once with the Schrieffer-
Wolff transformation applied to that Hamiltonian but only with µ = ν. The results presented
include two important modifications. First, following Refs. [33, 37, 39], we rescale the longi-
tudinal interaction by 0.805, i.e., we replace J z

i J z
j → 0.805J z

i J z
j in the original Hamiltonian

prior to deriving the effective low-energy Hamiltonian. This is done, as elaborated upon in
Appendix E, to account for the strong c-axis fluctuations not captured in MF [32]. The fac-
tor is chosen slightly larger than suggested in Refs. [33, 37, 39] to match the Monte Carlo
results of the current work. Of course, a proper account of fluctuations is warranted where
possible and is done by Monte Carlo simulation, as described in the next section. Second, fol-
lowing Ref. [28], we include the effect of the hyperfine interaction with the nuclear spins by
assuming its predominant effect is a temperature-dependent renormalization of the transverse
magnetic field. Even though the hyperfine interaction has since been studied more compre-
hensively [8,23,40,41], we opted for this simplified approach since the effect of the hyperfine
coupling has not been shown to be significant to the region of the phase diagram of highest
interest to this work—near the classical transition [1]. The renormalization process is briefly
reproduced in Appendix D.

As previously noted, the complexity of the effective Hamiltonian at Bx > 0 precludes a
detailed presentation in this section. Nevertheless, we aim to provide insights into the un-
expected stability of the ferromagnetic phase under a weak transverse field. Accordingly, we
include in Appendix F an extended analysis of the expected behavior of Tc(Bx = 0) (7) at small
yet non-zero Bx . This analysis reveals that, even when considering only single-ion physics, the
influence of the three-body term diminishes with increasing Bx . This attenuation partly offsets
the expected overall reduction in Tc , thereby leading to a steeper rise of the phase boundary.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
T (K)

0

1

2

3

4

5

B x
 (T

) Ferromagnet
Paramagnet

Heff
MF, ODD terms excluded
MF, ODD terms included
MC, ODD terms excluded
MC, ODD terms included

Hmicro
MF

Experiment

Figure 2: Phase diagram of LiHoF4. The solid blue line is the MF result of Ref. [37],
utilizing the full microscopic Hamiltonian, which consists of Hfull with the addition
of the hyperfine interaction, and with the mean-field rescaled by 0.785. Triangles
show experimental results [1,37,38], and all other results are based on the effective
Hamiltonian Heff derived in this work by a Schrieffer-Wolff transformation from the
17-state model. The dot-dashed line represents the MF phase diagram of Heff derived
with the ODD terms explicitly excluded, while the dashed line represents MF results
with the ODD terms included. In both, the longitudinal interaction is scaled by 0.805,
as explained in the text. These MF phase diagrams derived from the spin-1

2 effective
Hamiltonian are corrected for the renormalization of the transverse magnetic field
due to the hyperfine interaction, as described in the text. Additionally, results from
Monte Carlo simulations at zero-field are represented by a square and a diamond for
when ODD terms are included and excluded, respectively. The difference between
the two—the result of the three-body term—is in excellent agreement with that found
using the more involved MC simulations of Ref. [30].

5 Monte Carlo simulations

To properly account for fluctuations we perform classical Monte Carlo (MC) simulations on
the effective spin-1

2 Hamiltonian obtained from the 17-state model at Bx = 0, excluding any
quantum terms. Since the quantum terms—i.e., terms involving σx

i or σ y
i —are found to have

vanishing mean-field contributions, this simulated Hamiltonian, denoted HMC, is effectively
equivalent to that used to generate the MF results in Fig. 2. An explicit form for HMC is
given in Appendix G. Naturally, HMC does not require any renormalization of the interactions,
and, interestingly, the critical temperature of HMC is found to be slightly smaller than its MF
critical temperature, even when the MF includes the scaling factor purported to account for
fluctuations—see Fig. 2.

We stress that unlike the simulation in Ref. [30], which involved diagonalization of the full
single Ho3+ ion, the current simulation is a simple Metropolis MC that works on the effective
spin-1

2 Hamiltonian HMC. In comparing the Bx = 0 results of the two, we observe good agree-
ment, attributing the existing deviations to the adjustment in the crystal-field parameters and
the much larger system sizes achieved in this study. This agreement indicates that the quantum
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fluctuations that dictate the reduction of Tc are very well captured by a classical three-body
term, namely the first term in H3B (6).

6 Fe8 molecular magnet

Another material considered a good physical magnetic realization of the transverse field Ising
model is the molecular magnet Fe8 in crystal form [3,42–46]. Interestingly, it does not show an
obvious discrepancy between experimental results and MF calculations [3], as does LiHoF4,
raising questions regarding the universality of the effect henceforth described. To address
these questions, in this section, we apply the same treatment to Fe8 as we did for LiHoF4.

The Fe8 crystal consists of large molecular clusters, each described by a simple S = 10
spin model subject to a strong uniaxial anisotropy described by the crystal field potential
VFe8

= −DS2
z + E

�

S2
x − S2

y

�

where D > E [42], situated on a triclinic lattice. Experimentally,
in the absence of a transverse magnetic field, Fe8 orders ferromagnetically below a critical
temperature of Tc ≈ 0.6 K [3], in reasonable agreement with theoretical predictions [44,45].

The only non-negligible interaction between the Fe8 molecular clusters is dipolar [45], so
in the absence of an external transverse field, the full Hamiltonian is given by

HFe8
=
∑

i

VFe8
+
µ0µ

2
B g2

8π

∑

i ̸= j
ν,µ

V νµi j Jνi Jµj , (8)

with g = 2 [42]. When we apply the Schrieffer-Wolff transformation and project HFe8
onto the

subspace in which all molecules are within their ground state doublet, we obtain an effective
low-energy spin-1

2 Hamiltonian. This Hamiltonian, similarly to LiHoF4, consists of longitudi-
nal dipolar interactions, proportional to V zz

i j , as well as other two-body and three-body terms,
proportional to products of other dipolar components. As before, the emergent three-body in-
teractions dictate a reduction of the MF critical temperature; only now, we find that the contri-
bution of all emergent interactions amount to a negligible correction of less than 0.01%—well
below experimental error bars. This is perfectly consistent with the stated lack of discrepancy
between MF and experiment. Further details of the calculation are provided in Appendix H.

7 Conclusion

The discrepancy between theory and experiment regarding the shape of the phase bound-
ary near the classical transition has persisted as an open question over the past two decades
[2, 28, 29, 32, 38]. In Ref. [30], it has been shown that the inclusion of ODD terms results in
a significant reduction of the critical temperature of LiHoF4 at low transverse fields. A sim-
plified argument was given for why one could expect this reduction to be attenuated with an
increasing transverse field, possibly leading to the experimentally established steep rise of the
phase boundary at small fields, thus offering a potential resolution of the discrepancy. Unfor-
tunately, due to the numerical nature of that work, the range of transverse fields for which an
exact numerical value could be given was not large enough to clearly show an attenuation of
the described mechanism.

In this work, we pursued an analytical approach that allowed us to describe the full Bx −T
phase diagram of LiHoF4 in MF and thus show that the reduction in Tc is indeed attenuated as
Bx is increased. As a natural result, the shape of the phase boundary curve obtained from the
effective Hamiltonian that includes ODD terms is closer to the experimental curve, showing
a similarly steep rise near the classical transition. We also find that the effect of ODD terms
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becomes minimal at Bx ≳ 3.5T—about the same value where the standard (rescaled) MF and
experimental curves merge [37]. This work also provides an explicit analytical expression
describing said reduction at Bx = 0 (the last term in Eq. (7)), showing that it results from
emergent three-body interactions due to ODD terms.

The Tc-reducing effect of ODD terms is not fully captured in our MF analysis, as evidenced
by the difference between the Bx = 0 MC and MF results when ODD terms are included, as seen
in Fig. 2. A careful examination of the summation over three-body interactions (that occurs in,
e.g., the last term in Eq. (7)) reveals that the mirror symmetry of the crystal guarantees certain
cancellations in the homogeneous system assumed in MF; see Appendix B, specifically Fig. 3
and the pursuing discussion, for further details. This observation explains at least part of the
difference between the MF and MC zero-field critical temperatures, as a MC simulation, not
constrained by the assumption of homogeneity, would arguably manifest a more pronounced
effect for the three-body interaction. Regardless, it is noteworthy and highly encouraging that
a simple Ising MC simulation agrees reasonably well with the experimental zero-field critical
temperature without requiring further special modifications. Furthermore, the current study
represents an improvement over the findings of Ref. [30] as it explicitly acknowledges the
omission of quantum terms from the effective Hamiltonian, which could account for the re-
maining discrepancy between the MC simulation and experimental results at Bx = 0. Although
extending the simulations to Bx > 0 would have been desirable, the complexity of the effective
Hamiltonian, which in that case contains dozens of non-commuting terms of similar order of
magnitude, made any approach beyond MF impractical. Additionally, it should be noted that
a further reduction in Tc could be expected due to the fluctuating transverse spin components
not considered in this work; the magnitude of such a reduction is yet undetermined [47].

Another interesting feature is the dependence of the mechanism on the crystal structure,
made evident by the application of the analysis to the Fe8 system. Qualitatively, the adjust-
ment of Tc due to ODD terms generally applies to any magnetic anisotropic dipolar system.
However, we find that the effect can be quite large, as seen in LiHoF4, but may very well be
quantitatively negligible, as seen in Fe8; the determining factor being the crystal structure as
manifested in MF in sums of the form

∑

j ̸=k(̸=i) V
xz

i j V xz
jk and

∑

j ̸=k(̸=i) V
yz

i j V yz
jk . In a way, this is

not surprising since, as was shown generally by Luttinger and Tisza [48] and later extended
specifically to lithium rare-earth tetrafluorides [49], the nature of the ordered phase of a sys-
tem of dipoles coupled primarily by dipolar interactions is highly sensitive to the geometric
arrangement of said dipoles. Thus, the magnitude of the effect of off-diagonal dipolar inter-
actions could vary markedly depending on crystal structure for the same reasons. Perhaps for
some lattice configurations, it can also be of opposite sign, i.e., favoring rather than disfavoring
ferromagnetic order.
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A Derivation of an effective low-energy Hamiltonian

As discussed in Section 2, the Hamiltonian is divided into an unperturbed diagonal part, H0,
and a perturbation, HT , given respectively by Eqs. (1) and (2). We designate the two lowest-
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energy eigenstates of the single-ion H0 as |α〉 and |β〉 and define the many-body low-energy
subspace through the projection operator P0 =

∏

i (|αi〉 〈αi|+ |βi〉 〈βi|), i.e., it is the subspace
in which all of the ions are in one of their two respective low-energy single-ion electronic
states. Since HT consists of two-body operators, it couples the low-energy subspace to either
the subspace in which there is a single ion in its excited state or to that in which there are two.

The low-energy Hamiltonian is then given by [34]

Heff = H0P0 + P0HT P0 +
1
2

P0

�

S, (HT )od

�

P0 +O
�

H3
T

�

, (A.1)

where S is called the generator of the transformation and is given by

S =
∑

i, j

〈i| (HT )od | j〉
Ei − E j

|i〉 〈 j| .

The notation (.)od indicates that only the block-off-diagonal parts of the operator are con-
sidered, that is, (V )od = P0V (I− P0) + (I− P0)V P0.

For the given HT , we can write S explicitly using projection operators,

S =
ED

2

∑

i ̸= j

∑

µ,ν

′
∑

α1,α2,β1,β2

V νµi j Pα1
i Jµi Pβ1

i ⊗ Pα2
j Jνj Pβ2

j

Eα1
− Eβ1

+ Eα2
− Eβ2

+
Jex

2

∑

i ̸= j

∑

ν

′
∑

α1,α2,β1,β2

δi j,nn

Pα1
i Jνi Pβ1

i ⊗ Pα2
j Jνj Pβ2

j

Eα1
− Eβ1

+ Eα2
− Eβ2

,

where δi j,nn is zero except when spin i and j are nearest neighbors, and the single-ion projec-
tion operators are defined by

Pαi ≡
∏

j(̸=i)

1 j |αi〉 〈αi| .

It should be noted that
∑

α Pαi = I is the identity operator of the complete system. Further,
we denote Eα as the single-ion eigenenergy corresponding to the single-ion eigenstate |α〉.
The prime on the sums above indicates that we exclude terms for which α1,β1,α2,β2 ≤ 2
or α1,β1,α2,β2 > 2 or α1,β2 > 2 ∧ α2,β1 ≤ 2 or α1,β2 ≤ 2 ∧ α2,β1 > 2 or
α1,β1 ≤ 2 ∧ α2,β2 > 2 or α2,β2 ≤ 2 ∧ α1,β1 > 2. Thus, only block-off-diagonal ele-
ments of HT , i.e., elements that couple states with a different number of spins outside of the
low-energy subspace, are included.

The first two terms in (A.1) are the naive projections of the full Hamiltonian onto the
low-energy subspace and are trivially calculated. Therefore, we focus on the third term. In
the interest of clarity, we split the expression for 1

2 [S, HT ] into four parts; one for each of the
combinations of dipolar and exchange interactions,

I
E2

D

=
∑

k ̸=l

∑

i ̸= j

�

V νµi j Pα1
i Jµi Pβ1

i Pα2
j Jνj Pβ2

j , Vστkl Jσk Jτl
�

,

I I
EDJex

=
1
3

∑

k ̸=l

∑

i ̸= j

�

V νµi j Pα1
i Jµi Pβ1

i Pα2
j Jνj Pβ2

j ,δkl,nnJσk Jσl
�

,

I I I
EDJex

=
1
3

∑

k ̸=l

∑

i ̸= j

�

δi j,nnPα1
i Jνi Pβ1

i Pα2
j Jνj Pβ2

j , Vστkl Jσk Jτl
�

,

IV
J2

ex
=

1
9

∑

k ̸=l

∑

i ̸= j

�

δi j,nnPα1
i Jνi Pβ1

i Pα2
j Jνj Pβ2

j ,δkl,nnJσk Jσl
�

.
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The factor of 1/3 takes care of the extra sum over spatial coordinates below that is only relevant
to the dipolar terms. Thus,

1
2
[S, HT ] =

1
8

∑

µ,ν,σ,τ

′
∑

α1,α2,β1,β2

I + I I + I I I + IV
Eα1
− Eβ1

+ Eα2
− Eβ2

.

Using the fact that operators acting on different ions commute, we can simplify the four
sums and split them into a sum over pairs of ions and a sum over triplets of ions as follows,

I
E2

D

=2
∑

i ̸= j

V νµi j Vστi j

¦

Pα1
i Jµi Pβ1

i Jσi
�

Pα2
j Jνj Pβ2

j , Jτj
�

+
�

Pα1
j Jνj Pβ1

j , Jτj
�

Jσi Pα2
i Jµi Pβ2

i

©

+ 4
∑

i ̸= j ̸=k

V νµi j Vστk j Pα1
i Jµi Pβ1

i Jσk
�

Pα2
j Jνj Pβ2

j , Jτj
�

,

I I
EDJex

=
1
12

∑

i ̸= j

V νµi j δi j,nn

¦

Pα1
i Jµi Pβ1

i Jσi
�

Pα2
j Jνj Pβ2

j , Jσj
�

+ Jσi Pα2
i Jνi Pβ2

i

�

Pα1
j Jµj Pβ1

j , Jσj
�©

+
1
6

∑

i ̸= j ̸=k

V νµi j δk j,nnPα1
i Jµi Pβ1

i Jσk
�

Pα2
j Jνj Pβ2

j , Jσj
�

,

I I I
EDJex

=
1
12

∑

i ̸= j

Vστi j δi j,nn

¦

Pα1
i Jνi Pβ1

i Jσi
�

Pα2
j Jνj Pβ2

j , Jτj
�

+
�

Pα1
j Jνj Pβ1

j , Jσj
�

Jτi Pα2
i Jνi Pβ2

i

©

+
1
6

∑

i ̸= j ̸=k

Vστk j δi j,nnPα1
i Jνi Pβ1

i Jσk
�

Pα2
j Jνj Pβ2

j , Jτj
�

,

IV
J2

ex
=

1
36

∑

i ̸= j

δi j,nn

¦

Pα1
i Jνi Pβ1

i Jσi
�

Pα2
j Jνj Pβ2

j , Jσj
�

+
�

Pα1
j Jνj Pβ1

j , Jσj
�

Jσi Pα2
i Jνi Pβ2

i

©

+
1

18

∑

i ̸= j ̸=k

δi j,nnδk j,nnPα1
i Jνi Pβ1

i Jσk
�

Pα2
j Jνj Pβ2

j , Jσj
�

.

Since S is block-off-diagonal by construction, its commutator with the block-diagonal part
of HT necessarily lies outside of the low-energy block and would be eliminated by the projec-
tion operators, that is, 1

2 P0

�

S, (HT )d
�

P0 = 0. Therefore 1
2 P0

�

S, (HT )od

�

P0 =
1
2 P0 [S, HT ] P0,

and the latter is used in the main text, particularly Eq. (3).
The sums over operators (µ, ν, τ, σ) and crystal field levels (α1,α2, β1, β2) are calculated

for a given Bx using Mathematica.
For the three-state model in zero-field, the above commutators result in Heff (Bx = 0), as

given in Eq. (5). It includes effective fields hµi and two-body interactions ϵµνi j , which are given
here in terms of the parameters∆, ρ, and α, described in the main text. Elements not specified
are zero; indeed, neither ϵxz

i j , ϵ yz
i j nor any term with an odd number of σz operators can arise

at Bx = 0 due to time reversal symmetry [31].
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ϵx x
i j =

ρ4E2
D

4∆

�

2
�

V x y
i j

�2
−
�

V x x
i j

�2
−
�

V y y
i j

�2�

−
ρ4

2∆
Jexδi j,nn

�

ED

�

V x x
i j + V y y

i j

�

+ Jex

�

, (A.2)

ϵ
y y
i j =−

ρ4E2
D

2∆

�
�

V x y
i j

�2
+ V x x

i j V y y
i j

�

−
ρ4

2∆
Jexδi j,nn

�

ED

�

V x x
i j + V y y

i j

�

+ Jex

�

, (A.3)

ϵzz
i j =

ρ4E2
D

2∆

�

V x x
i j V y y

i j −
�

V x y
i j

�2�

(A.4)

+
ρ4

2∆
Jexδi j,nn

�

ED

�

V x x
i j + V y y

i j

�

+ Jex

�

, (A.5)

ϵ
x y
i j =

ρ4E2
D

2∆

�

V y y
i j V x y

i j − V x x
i j V x y

i j

�

,

ϵ
x y
i j =ϵ

y x
i j ,

hx
i =
α2ρ2E2

D

∆

∑

j(̸=i)

�
�

V yz
i j

�2
−
�

V xz
i j

�2�

+
ρ4E2

D

2∆

∑

j(̸=i)

�
�

V y y
i j

�2
−
�

V x x
i j

�2�

+
Jexρ

4ED

∆

∑

j(̸=i)

δi j,nn

�

V y y
i j − V x x

i j

�

, (A.6)

hy
i =−

2α2ρ2

∆
E2

D

∑

j(̸=i)

�

V xz
i j V yz

i j

�

−
ρ4

∆
E2

D

∑

j(̸=i)

V x y
i j

�

V x x
i j + V y y

i j

�

−
2Jexρ

4

∆
ED

∑

j(̸=i)

δi j,nnV x y
i j , (A.7)

hz
i = 0 . (A.8)

These expressions coincide with those given in the appendix to Ref. [31] when Jex is taken
to be zero.3

Throughout this section, we derive Heff up to second order in HT . This cutoff is justified
since the relative contribution of terms arising from higher-order corrections is diminished
by a factor of 〈V 〉/∆ ∼ 1/10, where 〈V 〉 symbolically represents the energy scale associated
with the dipolar interactions. However, it must be acknowledged that higher-order terms also
include interactions between a larger number of spins, i.e., four-body terms, five-body terms,
etc. These interactions cannot be naively discounted based solely on the relative smallness

3Except for a factor of half between the second term in Eq. (A.7) here and Eq. (23) in Ref. [31], likely due to a
misprint. This term vanishes for the pure system, so the difference is inconsequential.
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of their coefficient. For instance, Rau et al. [50] perform a similar perturbation procedure on
the pyrochlore XY antiferromagnet Er2Ti2O7, and make the case that due to the combinatoric
factor associated with four-spin and six-spin terms, their contribution is comparable to that of
lower-order terms in the perturbation series. The combinatoric factor is the number of ways
an open chain of nearest-neighbor spins can be chosen in the pyrochlore system (since, in that
work, only nearest-neighbor interactions are considered). This factor enhances the effect of
the four-spin term by two orders of magnitude due to the relatively high coordination number
of the pyrochlore system (q = 6, compared to q = 4 in LiHoF4). In the present case, instead
of a combinatoric factor, it is a sum over multi-spin interactions—some of which, as noted
in the main text, are long-ranged—that seemingly results in a significant enlargement of the
otherwise inherently small higher-order terms.

Despite all of the above, we assert that higher-order terms are negligible in the present
case. First, we argue that for an order-of-magnitude estimate, it suffices to consider only
nearest neighbors, despite the long-range nature of the interaction. Consider, for example, the
three spins depicted in Fig. 1, assuming spin 1 is a nearest-neighbor of spin 2 and spin 3 is a
(different) nearest-neighbor of spin 2. The energy associated with such a triplet due to the first

three-body term in H3B is α
2ρ2

∆ E2
DV xz

12 V xz
23 ≈ 0.01K. Considering that there are 4×3= 12 ways

to choose such a chain of neighboring spins in the LiHoF4 crystal, we estimate the energetic
contribution to be ≈ 0.1 K. This estimation aligns well with the actual mean-field correction
found in this work, as given by the last term in Eq.(7), which is ≈ 0.1 K. In essence, nearest
neighbors dominate the total sum despite the long-range nature of the interactions because
the dipolar-derived emergent interactions provide both positive and negative contributions
that partially offset each other. This offsetting effect would similarly apply to four-spin (and
higher) interactions as well. Now, let us apply the same reasoning to a hypothetical four-
spin interaction that emerges from the next order in the Schrieffer-Wolff transformation. The
energetic contribution of such a term, accounting for a combinatoric enhancement, would be
4×3×3×α2ρ4E3

D[V
xz

12 ]
3/∆2 ≈ 5mK, so its effect on Tc would be negligible in the context of the

present work. To conclude, although the omission of higher-order terms is not trivially justified
when they involve multi-spin interactions, our analysis demonstrates that the contribution of
such terms is indeed negligible in the LiHoF4 system.

B Mean-field approximation at Bx = 0

We employ a mean-field (MF) approximation by neglecting correlation terms
(σµi − 〈σ

µ
i 〉)(σ

ν
j − 〈σ

ν
j 〉) ≈ 0 for any µ,ν and i ̸= j, and denoting

¬

σ
µ
j

¶

≡ mµ. The
resulting single-body mean-field Hamiltonian is given by

HMF = −
∑

i

bµi σ
µ
i , (B.1)

where the local fields bµi , simplified by employing the S4 symmetry of the crystal about the
Ho3+ ions and denoting the number of nearest neighbors q, are given by
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bx
i =
ρ4Jex

∆
mx

 

2ED

∑

j(̸=i)

δi j,nnV x x
i j + qJex

!

+
ρ4

∆
E2

Dmx

∑

j(̸=i)

h
�

V x x
i j

�2
−
�

V x y
i j

�2i

−
2ρ4

∆
E2

Dmy

∑

j(̸=i)

V y y
i j V x y

i j , (B.2)

b y
i =

ρ4Jex

∆
my

 

2ED

∑

j(̸=i)

δi j,nnV x x
i j + qJex

!

+
ρ4

∆
E2

Dmy

∑

j(̸=i)

h
�

V x y
i j

�2
+ V x x

i j V y y
i j

i

−
2ρ4

∆
E2

Dmx

∑

j(̸=i)

V y y
i j V x y

i j , (B.3)

bz
i =−α

2mz ED

∑

j(̸=i)

V zz
i j −α

2qJexmz

−
ρ4Jexmz

∆

 

2ED

∑

j(̸=i)

δi j,nnV x x
i j + qJex

!

−
ρ4mz

∆
E2

D

∑

j(̸=i)

h

V x x
i j V y y

i j −
�

V x y
i j

�2i

+
4α2ρ2mz

∆
E2

D

∑

k ̸= j(̸=i)

V xz
i j V xz

jk . (B.4)

The self-consistency equations for a spin-1
2 in an arbitrary mean-field b⃗ (m⃗) at temperature

kB T = β−1 are [51]

mµ =
bµ
�

�b⃗
�

�

tanh
�

β
�

�b⃗
�

�

�

,

and it is readily observed that mx = my = 0 satisfies the first two equations, leaving us with
the usual Ising self-consistency equation

mz = tanh
�

β bz
i

�

,

from which we get Tc given by Eq. (7) in the main text.

Lattice sums

In order to get a numerical estimation of Tc , we need to calculate the sums in Eq. (7) in the
main text and similar sums arising at Bx > 0. We define

Aµν =
∑

j(̸=i)

Vµνi j ,

Bµν,στ =
∑

j(̸=i)

Vµνi j Vστi j ,
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and express the various sums that appear in the mean fields derived from either the three-state
or 17-state models using these definitions,

∑

j ̸=k(̸=i)

Vµνki Vστk j =
∑

k(̸=i)

Vµνki

 

∑

j(̸=k ̸=i)

Vστk j

!

=
∑

k(̸=i)

Vµνki

 

−Vστki +
∑

j(̸=k)

Vστk j

!

=
∑

k(̸=i)

Vµνki

�

−Vστki + Aστ
�

= AστAµν − Bµν,στ . (B.5)

Similarly, we also have
∑

j ̸=k(̸=i) V
µν
i j Vστik = AστAµν − Bµν,στ.

As the summand in Bµν,στ is ∼ 1/r6, it converges absolutely and rapidly, and is thus best
numerically evaluated directly (values summarized in Table 1). The sum Aµν is a bit more
subtle; since it is ∼ 1/r3, it is conditionally convergent, meaning its value depends on the
summation order—that is, it depends on the limiting sample shape.

Magnetic domains forming below Tc in a pattern of long thin cylinders (or needles) paral-
lel to the easy axis [52,53] are understood as the way the system minimizes stray fields due to
their energetic cost [54]. This is the justification for the use of an infinitely long thin cylinder
as the limiting shape in the mean-field approximation when calculating Azz [28, 29, 55, 56].
Nonetheless, as noted by Chakraborty et al. [28], the transverse component of the magneti-
zation, which develops in response to the applied transverse field, is indifferent to this do-
main structure. Therefore, the shape-dependent transverse dipolar interactions, Ax x and Ay y ,
should be calculated by summing over the entire sample and not just a single needle-shaped
domain as with Azz . Assuming the principal axes of the sample are aligned with the single-ion
magnetic axes, the off-diagonal sums vanish, so Aµν = 0 for µ ̸= ν.

To calculate these sums Aµµ, we use Ewald’s method to obtain their Fourier transform and
evaluate it at k⃗→ 0. The Fourier transform of the dipolar interaction for a lattice with a basis
is given by [36]

Vαβ
k⃗
=
∑

τ⃗

4π
v

kαkβ

k2
exp

�

−k2/
�

4R2
��

+
4π
v

∑

τ⃗

∑

G⃗ ̸=0

(Gα + kα)
�

Gβ + kβ
�

�

�G⃗ + k⃗
�

�

2 exp
�

−
�

�G⃗ + k⃗
�

�

2
/
�

4R2
�

− iG⃗ · τ⃗
�

−
′
∑

τ⃗

∑

r⃗l







2R exp
�

−R2 (r⃗l + τ⃗)
2�

p
π (r⃗l + τ⃗)

2





�

3+ 2R2 (r⃗l + τ⃗)
2�
�

rαl +τ
α
�

�

rβl +τ
β
�

(r⃗l + τ⃗)
2 −δαβ





+





3
�

rαl +τ
α
�

�

rβl +τ
β
�

(r⃗l + τ⃗)
5 −

δαβ

(r⃗l + τ⃗)
3



erfc (R |r⃗l + τ⃗|)







exp
�

−k⃗ · r⃗l

�

−
4R3

3
p
π
δαβ ,

(B.6)

where τ⃗ are the vectors indicating the locations of atoms in the basis, G⃗ are vectors of the
reciprocal lattice, and r⃗l are vectors of the real underlying Bravais lattice. v is the volume of a
unit cell, and R is a parameter used to balance the convergence of the real and reciprocal sums,
usually set to R = 2

a . The prime on the sum indicates that the origin is excluded, i.e., τ⃗ ̸= 0
when r⃗l = 0. It is important to note that the first term in (B.6) is non-analytic as k⃗ → 0—a
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manifestation of the shape dependence discussed above. From a macroscopic point of view,
the shape dependence of the sums Aµν translates to a shape-dependent demagnetization factor.
Defining the demagnetization factors as [57]

Lµ = 4π lim
k→0

�

kµ
k

�2

,

and using the longitudinal factor Lz = 0 (appropriate to a needle-shaped domain) and the
transverse factors Lx = L y =

4π
3 (appropriate to a spherical sample) [54], we obtain

Azz = V zz
k⃗=0
= −11.271

�

a−3
�

, (B.7)

Ax x = Ay y = V x x
k⃗=0
= 1.603

�

a−3
�

, (B.8)

where distances are measured in units of a = 5.175 Å. These are consistent with the values in
Ref. [32], subtracting the respective demagnetization factors.

Table 1: Values of Bµν,στ =
∑

j(̸=i) V
µν
i j Vστi j calculated by direct summation; values

not specified are zero. a = 5.175Å is the length of the LiHoF4 unit cell.

Bzz,zz 17.93 a−6

Bx x ,y y ,By y,x x −22.05a−6

By y,y y ,Bx x ,x x 31.02 a−6

Bxz,xz ,Bxz,zx , Bzx ,xz ,Bzx ,zx ,
Byz,yz ,Byz,z y , Bz y,yz ,Bz y,z y

36.73 a−6

Bx y,x y ,Bx y,y x , By x ,x y ,By x ,y x 4.80a−6

By y,zz ,Bzz,y y , Bx x ,zz ,Bzz,x x −8.96 a−6

Sums of the form
∑

j(̸=i) V
µν
i j δi j,nn are trivially calculated by summing the four dipolar

terms associated with the four nearest neighbors.
In the case of Bx > 0, we also encounter slightly more subtle sums of the form

∑

j ̸=k(̸=i) V
µν
i j δ jk,nn, which can be expressed as

∑

j ̸=k(̸=i)

Vµνi j δ jk,nn = q
∑

j(̸=i)

Vµνi j −
∑

j(̸=i)

δi j,nnVµνi j .

Eventually, combining Eq. (B.5), the values listed in Table 1, and the values given in
Eqs. (B.7) and (B.8), we can evaluate Eq. (7) from the main text to find Tc = 2.18 K, which is
about 5% lower than the critical temperature found from applying a mean-field approximation
directly to the microscopic Hamiltonian (Tc = 2.27 K).

An interesting consequence of Eq. (B.5) is that the three-body sum in Eq. (7) in the main
text,

∑

k ̸= j(̸=i) V
xz

i j V xz
jk , is directly proportional to Bxz,xz . This is a due to the mirror sym-

metry through a plane parallel to the y − z plane which contains spin j. As illustrated in
Fig. 3, this symmetry guarantees that a contribution to the field at spin i, by any spin k lo-
cated at r⃗i j +

�

x jk, y jk, z jk

�

is offset by another spin k located at r⃗i j +
�

−x jk, y jk, z jk

�

. The
only contribution not reduced by this symmetry comes from the spin k that is located at
r⃗i j +

�

x i j ,−yi j ,−zi j

�

=
�

2x i j , 0, 0
�

, since its counterpart is omitted from the sum by the re-
striction i ̸= k. Consequently, a MF approximation only considers three-body interactions
where the third spin is an equal distance, along the x-axis, from the two other spins. This
explains why a MC simulation shows a greater reduction of Tc than seen in MF (see Fig. 2 in
the main text); in MC not all spins are in the same state, so cancellations due to the mirror
symmetry are not guaranteed.
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i

j

k

(b)

i

j

k

(a)

Figure 3: An illustration demonstrating the cancellations occurring in mean-field.
(a) For a given pair of spins i and j, the three-body interaction involving a typical
third spin k, V xz

i j V xz
jk , would tend to offset by the three-body interaction involving

the mirror image of k relative to j (indicated by −V xz
jk ). (b) The exception where

the interactions do not cancel is when k is chosen such that its mirror image is V xz
i j ,

which is omitted from the sum by the restriction k ̸= i. The cancellations are only
guaranteed in MF, where the system is assumed homogeneous, but not in a MC sim-
ulation or, indeed, the physical system.

C Mean-field approximation at Bx ≥ 0

As mentioned in the main text, the procedure described in Appendix A can be performed for
arbitrary non-zero Bx . When a mean-field approximation is applied to the resultant effective
Hamiltonian, the three resulting self-consistency equations are fully coupled. Thus, to find Tc ,
the self-consistency equations are solved numerically for decreasing T until a non-zero value
for 〈σz〉 is detected. We note that, at Bx > 0, the low-energy subspace is spanned by the two
lowest-energy eigenstates of Hsingle-site = Vc

�

J⃗
�

− gLµBBx J x , denoted |α〉 and |β〉. In this case,
we are no longer interested simply in 〈σz〉 ≡ mz as it no longer approximates magnetization
along the physical z-axis. Instead, for each value Bx , we decompose the two-dimensional
projection of Jµ, as done in Ref. [28], defining

Jµeff
:= (|α〉 〈α|+ |β〉 〈β |) Jµ (|α〉 〈α|+ |β〉 〈β |) 7→ Cµ +

∑

ν=x ,y,z

Cµν (Bx)σ
ν . (C.1)
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Figure 4: Magnetization vs. temperature and transverse field. (a) Raw solutions
of the self-consistency equations, mx , my , and mz , as a function of temperature at
Bx = 1T; (b) mean values of the composite quantities J x

eff, J y
eff, and J z

eff, found from
the raw solutions at Bx = 1T by (C.1). (c) Mean values of Jµeff as a function of Bx

at T = 0. The solid red line is a best-fit of



J z
eff

�

∝
p

Bc
x − Bx . Due to the relative

numerical complexity, the latter approach is used only at T ≤ 0.5 K.

Then, after self-consistently obtaining mx , my , and mz , we can plot



Jµeff

�

= Cµzmz + Cµy my + Cµx mx + Cµ vs. temperature.



J z
eff

�

, in particular, acts as an
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order parameter allowing for the identification of Tc . Figs. 4(a) and 4(b) compare mµ with



Jµeff

�

for Bx = 1 T.
It might seem initially surprising that




J x
eff

�

is almost independent of T , also at T > Tc ,
as seen in Fig. 4(b). This behavior is expected in the ferromagnetic phase of the transverse-
field Ising model, but as T →∞, all expectation values should tend towards zero (as seen in
Fig. 4(a)). This apparent issue is resolved by recognizing that the decomposition (C.1) merely
approximates the thermal averages and is only valid at low temperatures. To reproduce the
decline and eventual vanishing of 〈J x〉, higher excited crystal-field levels must be included in
the analysis.

At the low-temperature regime, the critical field is nearly independent of temperature
(when the hyperfine interaction is not considered). Therefore, at low temperatures, instead
of



Jµeff

�

vs. temperature, we calculate



Jµeff

�

for various Bx at a given temperature and fit



J z
eff

�

∝
p

Bc
x − Bx to find the critical field Bc

x . This procedure is illustrated in Fig. 4(c).

D The hyperfine interaction

In this section, we briefly recount the temperature-dependent renormalization procedure in-
troduced in Ref. [28] to account for the effect of the hyperfine coupling between electronic
(J = 8) and nuclear (I = 7/2) spins of the Ho ions in LiHoF4. The hyperfine coupling is
given by a term in the full microscopic Hamiltonian of the form Hhf = A

∑

i (I i · J i), with
A = 0.039 K [7]. While the interaction of electronic spins with their nuclear counterparts in
LiHoF4 has attracted significant interest in its own right [8, 10, 23, 40, 41, 58], the procedure
we implement in this work approximates its effect as mainly a temperature-dependent renor-
malization of the transverse field. The procedure is performed following [28]. We consider a
single Ho ion subject to the LiHoF4 crystal-field potential and a transverse field Bx , and include
both its electronic spin J⃗ , its nuclear spin I⃗ and their mutual interaction. The Hamiltonian of
this system is given by

Hhyp =
�

Vc

�

J⃗
�

− gLµBBx J x
�

⊗1N + A
∑

µ=x ,y,z

Jµ ⊗ Iµ , (D.1)

where 1N is the identity operator in the Hilbert space of the nuclear spin. Hhyp acts on
the Hilbert space that is a tensor product of the (17-dimensional) electronic and (eight-
dimensional) nuclear spin Hilbert spaces and is thus of dimension 17× 8 = 136. We denote
the eigenstates of the Hamiltonian (D.1) by

�

�ψ(no-)hf
n

�

and the corresponding eigen-energies
by E(no-)hf

n for the case with (without) the hyperfine interaction, i.e., A= 0.039K (A= 0). The
single-ion susceptibility can be calculated for a given inverse temperature β ≡ 1/T by [59]

χ(no-)hf
zz =−

2
Z(no-)hf

Em ̸=En
∑

m,n=1,...,136

�

�




ψ(no-)hf
m

�

� J z ⊗1N

�

�ψ(no-)hf
n

��

�

2

E(no-)hf
n − E(no-)hf

m

e−βE(no-)hf
n

+
β

Z(no-)hf

Em=En
∑

m,n=1,...,136

�

�




ψ(no-)hf
m

�

� J z ⊗1N

�

�ψ(no-)hf
n

��

�

2
e−βE(no-)hf

n

− β

�136
∑

n=1




ψ(no-)hf
n

�

� J z ⊗1N

�

�ψ(no-)hf
n

� e−βE(no-)hf
n

Z(no-)hf

�2

. (D.2)

Here, Z(no-)hf =
∑136

n=1 e−βE(no-)hf
n is the partition function with (without) the hyperfine interac-

tion. χ(no-)hf
zz is implicitly a function of transverse field Bx through the states

�

�ψ(no-)hf
n

�

and ener-
gies E(no-)hf

n . The first sum, known as the Van Vleck contribution, is over states non-degenerate
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in energy, while the second sum, known as the Curie contribution, is over states degenerate in
energy. The last term includes the squared thermal average of J z⊗1N , which always vanishes
in the absence of an applied longitudinal magnetic field, as assumed in this appendix.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
T (K)

0

1

2

3

4

5

B x
 (T

)

A = 0.039 K
MF, ODD terms excluded
MF, ODD terms included

A = 0
MF, ODD terms excluded
MF, ODD terms included

Experiment

Figure 5: Phase diagram of LiHoF4 showcasing the effect of the temperature-
dependent renormalization of the transverse field intended to account for hyper-
fine interactions. The dashed lines show MF results derived from Heff without any
modification and thereby include no hyperfine interactions (A= 0). The solid lines
show these results following the application of the renormalization described in the
text (corresponding to a hyperfine interaction A= 0.039K) and are the same results
shown in Fig. 2

The phase boundary without hyperfine interactions is the collection of points
�

Tc , Bno-hf
x ,c

�

,
and is obtained from a MF approximation applied to Heff, as described in the main text. The
renormalization of the transverse field due to hyperfine interactions is then taken as a mapping
�

Tc , Bno-hf
x ,c

�

→
�

Tc , Bhf
x ,c

�

. We find Bhf
x ,c by requiring χno-hf

zz

�

Tc , Bno-hf
x ,c

�

= χhf
zz

�

Tc , Bhf
x ,c

�

. The
procedure is visually illustrated in Fig. 6 of Ref. [28]. Fig. 5 shows the phase boundary before
and after the renormalization procedure described above is applied, in order to illustrate its
effect.

E Rescaling of the longitudinal interaction

Mean-field theory, applied extensively in this paper, is known to inherently overestimate the
values of the critical temperature and critical field due to its neglect of fluctuations. In the case
of LiHoF4, the critical values obtained by straightforward application of MF theory to the mi-
croscopic Hamiltonian (Hfull with the addition of the hyperfine interaction Hhf) are Tc = 2.27K
and Bx ,c = 6.38T; both, as expected, significantly higher than their respective experimental
values. Ref. [32] addresses this issue by employing a high-density 1/z expansion (z is the co-
ordination number), within a so-called effective medium approach which considers corrections
to MF theory by accounting for single-site fluctuations [60]. Within this framework, the effect
of fluctuations, to first order in (1/z), is found to be a rescaling of the longitudinal (cc) inter-
action. Ref. [32] explicitly lists the value of this factor at the critical points (Tc , Bx = 0) and
�

T = 0, Bx ,c

�

, and also notes that it decreases “roughly linearly” with temperature. The values
given at the two critical points are (1.3004)−1 = 0.769 and (1.00493)−1 = 0.995, respectively.
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In later works by some of the same authors [37, 39], they opt for a simpler approach,
wherein they apply a constant rescaling factor of 0.785 in combination with an adjustment of
one crystal-field parameter, B4

6 (s).

0.0 0.5 1.0 1.5 2.0 2.5
T (K)

0

1

2

3

4

5

6

B x
 (T

)

ODD terms excluded, rescaled
ODD terms included, rescaled
ODD terms excluded, no rescaling
ODD terms included, no rescaling
Experiment

Figure 6: Comparison of Bx − T phase diagrams: Mean-field results for LiHoF4 with
the inclusion and exclusion of ODD terms, alongside experimental data. The dia-
grams illustrate the effects of rescaling the longitudinal interactions, showing that
the qualitative features arising from inclusion of ODD terms are preserved with and
without rescaling.

In this work, we follow the same approach, using the same crystal-field parameter values,
but further adjusting the rescaling factor to 0.805. The motivation is to fit the MF zero-field
Tc to the MC result, which fully accounts for fluctuations. The rescaling, J z

i J z
j → 0.805J z

i J z
j ,

is applied directly to the full Hamiltonian before the derivation of the effective Hamiltonian.
For comparison, the phase diagram without the rescaling factor is presented in Fig. 6.

F Extended analytical characterization of Tc in non-zero Bx

Fig. 2 presents the full phase diagram at Bx ≥ 0. The derivation of this diagram is partly
numerical, precluding an analytical expression for Tc (Bx) at Bx > 0. To nevertheless further
illuminate the different factors responsible for the apparent weak dependence of Tc on Bx ,
we extend the expression for Tc (Bx = 0), given in Eq. (7), to small non-zero Bx values. This
extension is done by promoting the parameters α, ρ, and∆ to functions dependent on Bx . For
this purpose, we numerically diagonalize the single-site Hamiltonian,

Hsingle-site = Vc

�

J⃗
�

− gLµBBx J x , (F.1)

and obtain its three lowest-energy eigenstates, which we denote |α (Bx)〉, |β (Bx)〉, and
|Γ (Bx)〉. Following the methodology of Ref. [28], we then define the states |↑ (Bx)〉 and |↓ (Bx)〉
through a unitary rotation of |α (Bx)〉 and |β (Bx)〉, ensuring that the matrix elements of J z

between |↑ (Bx)〉 and |↓ (Bx)〉 are real and diagonal for each Bx . Given these two states, we
define the Bx -dependent parameters below
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α (Bx) := 〈↑ (Bx)| J z |↑ (Bx)〉 (F.2a)

ρx (Bx) := |〈↓ (Bx)| J x |Γ (Bx)〉| ≡ |〈↑ (Bx)| J x |Γ (Bx)〉| (F.2b)

ρy (Bx) := |〈↓ (Bx)| J y |Γ (Bx)〉| ≡ |〈↑ (Bx)| J y |Γ (Bx)〉| (F.2c)

∆ (Bx) := 〈Γ (Bx)|Hsingle-site |Γ (Bx)〉

−
1
2

�

〈↑ (Bx)|Hsingle-site |↑ (Bx)〉+ 〈↓ (Bx)|Hsingle-site |↓ (Bx)〉
�

. (F.2d)

The values of the above parameters are plotted in Fig. 7(b) below for 0≤ Bx ≤ 3 T. By defini-
tion, we have ρx (0) = ρy (0) and the above definitions become equivalent to the definitions in
Eq. (4) at Bx = 0. We note that ρx and ρy are defined separately to account for the symmetry-
breaking Bx applied along the x axis. Before we proceed, we must first acknowledge that
the expression for Tc (Bx = 0) (7) was derived assuming ρx = ρy , which is no longer valid at
Bx > 0. Therefore, we re-derive it, at Bx = 0 but assuming ρx ̸= ρy , and get

Tc (Bx) =−α2ED

∑

j(̸=i)

V zz
i j −α

2qJex

−
ρ2

xρ
2
y Jex

∆

 

2ED

∑

j∈NN(i)

V x x
i j + qJex

!

−
ρ2

xρ
2
y

∆
E2

D

∑

j(̸=i)

h

V x x
i j V y y

i j −
�

V x y
i j

�2i

+
2α2ρ2

x

∆
E2

D

∑

k ̸= j(̸=i)

V xz
i j V xz

jk +
2α2ρ2

y

∆
E2

D

∑

k ̸= j(̸=i)

V yz
i j V yz

jk . (F.3)

The explicit dependence of α, ρx , ρy , and ∆ on Bx has been omitted for brevity. The above
expression is not an exact analytical solution, but rather a heuristic extension of the analytical
(MF) Bx = 0 form, for two reasons. First, the effective Hamiltonian, derived at Bx > 0,
involves many more terms that do not appear at Bx = 0 and are absent from Tc (Bx = 0).
Second, even considering only the Bx = 0 effective Hamiltonian, the original expression (7) is
contingent upon mx = my = 0 being a solution to the self-consistent equations, as mentioned
in Appendix B. This is of course no longer the case when a transverse field is applied, leading
to non-zero mx .

Still, we expect that at small transverse fields, the above expression is useful for under-
standing the Tc (Bx) behavior seen in Fig. 2. Indeed, when we compare the difference in Tc
caused by the inclusion of off-diagonal dipolar terms, as defined by

∆Tc (Bx) = −
ρ2

xρ
2
y

∆
E2

D

∑

j(̸=i)

�

V x y
i j

�2
−

2α2ρ2
x

∆
E2

D

∑

k ̸= j(̸=i)

V xz
i j V xz

jk −
2α2ρ2

y

∆
E2

D

∑

k ̸= j(̸=i)

V yz
i j V yz

jk ,

(F.4)
to the numerical value, we find adequate agreement up to Bx ≈ 1 T, as seen in Fig. 7(a). Here,
the numerical value is the difference between Tc derived with and without off-diagonal dipolar
terms in a three-state model. This difference can be seen in Fig. 8 as the difference between
the curve labeled MF, ODD terms excluded and the curve labeled 3 states. The fact that this
difference decreases with increasing Bx is the key to the steep rise of the phase boundary near
the classical critical point. Namely, that steep rise is the result of a balance between, on the
one hand, the tendency of Tc to decrease with Bx due to the reduction of the first two terms in
Eq. (F.3), and, on the other hand, the decline of the Tc-reducing terms that constitute∆Tc(Bx).
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Figure 7: Dependence of phase transition parameters on external transverse mag-
netic field Bx . (a) plots the shift in critical temperature due to ODD terms ∆Tc with
a comparison between numerical results and the analytical prediction of Eq. (F.4);
the inset shows how the analytical prediction of Eq. (F.3) compares to the numerical
result for Tc(Bx). (b) illustrates the variation of the different parameters defined in
Eq. (F.2) as functions of Bx , providing insights into their individual contributions to
the behavior of ∆Tc .

To summarize, though the approach presented in this section is limited to small fields, and
is superseded by the semi-numerical approach described in Section 4, its significance is in
providing some analytical insight, albeit approximate, into the Bx > 0 regime, clarifying the
source of the steep rise of the phase boundary.

G Simulation details

The Hamiltonian used in MC simulations is very similar to Heff (Bx = 0) given by Eq. (5) in
the main text, with two exceptions. The first, described in the main text, is that quantum
terms, i.e., terms involving σx or σ y operators, are omitted. The second is that the effective
Hamiltonian is derived from the 17-state model rather than the three-state model.

Since the quantum terms have a vanishing MF contribution, the Hamiltonian used in MC
simulations is essentially the same as the one used to obtain the MF results shown in Fig. 2
in the main text. The two differences introduced to the classical terms by switching to the
17-state model are in the magnitudes of the coefficients and in the emergence of a secondary,
diagonal, three-body interaction of magnitude ΓD, so
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Figure 8: A subset of the Bx − T phase diagram of LiHoF4 illustrating the effect of
including more excited states in the derivation of the effective Hamiltonian. X’s of
different colors represent MF results of Heff with a different number of states consid-
ered. The three-state model, described in detail in the main text, shows the smallest
reduction, while, evidently, a 6-state model already sufficiently captures the full ef-
fect shown by the 17-state model used in this work (indicated by a dashed green
line).
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α2

2
ED

∑

i ̸= j

V zz
i j σ

z
iσ

z
j +
α2

2
Jex

∑

i ̸= j

σz
iσ

z
j

− Γ E2
D

∑

i ̸= j ̸=k

�

V xz
ik V xz

jk + V yz
ik V yz

jk

�

σz
iσ

z
j

− ΓDE2
D

∑

i ̸= j ̸=k

V zz
ik V zz

jk σ
z
iσ

z
j

+
∑

i ̸= j

ϵ̃zz
i j σ

z
iσ

z
j , (G.1)

where

Γ = α2
17
∑

i=3

〈i| J x |↑〉 〈↑| J x |i〉
〈i|Vc |i〉 − 〈↑|Vc |↑〉

≈ 1.5
α2ρ2

∆
,

ϵ̃zz
i j = 1.623

ϵzz
i j

ρ4/2∆
≈ 1.25ϵzz

i j ,

ΓD ≈ 0.27 K−1 .

Here we see that the inclusion of all 17 crystal-field states increases the magnitudes of the
emergent three-body and two-body interactions by about 50% and 25%, respectively, com-
pared with the inclusion of just one excited state. The cumulative effect of including higher
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excited states is demonstrated in Fig. 8. The secondary three-body interaction, of magnitude
ΓD, is almost negligible compared to the other three-body terms. In the simulation, periodic
boundary conditions are used, with the long-range interactions handled using the Ewald sum-
mation method [61,62].
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Figure 9: Monte Carlo data for LiHoF4 at Bx = 0. (a) Finite-size correlation length
divided by linear system size L vs. temperature T . The clearly visible crossing in-
dicates a phase transition. (b) Finite-size scaling analysis of the four largest system
sizes, showing that, for an appropriate choice of parameters, data for different sys-
tem sizes all fall on the same curve, indicated by the solid line (polynomial approx-
imation). (c) Equilibration process of




m2 (0)
�

at T ≈ 1.58K. The i-th data point
contains the average of 2i MC sweeps, also averaged over independent simulation
runs. (d) Extrapolation of Tc to the thermodynamic limit. Each data point represents
an estimation of Tc obtained by finite-size scaling analysis of system sizes L and 2L.
A linear fit of the data gives Tc (∞) = 1.6295(2)K.

Equilibration and finite-size analysis

We use the parallel tempering Monte Carlo method [63]. To determine the critical tempera-
ture, we use the finite-size correlation length [64,65],

ξL =
1

2sin (kmin/2)

� 


m2 (0)
�

〈m2 (kmin)〉
− 1

�
1
2

, (G.2)
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where

m (k) =
1
N

N
∑

i=1

σz
i exp (−ik ·Ri) . (G.3)

Here 〈.〉 refers to a thermal (MC) average. Ri is the location of the site i and kmin =
�2π

L , 0, 0
�

.
The finite-size correlation length divided by the linear system size L has a known scaling form,

ξL

L
∼ X̃

�

L1/ν (T − Tc)
�

, (G.4)

so that for T = Tc , it is independent of the system size L, and curves of different sizes should
cross. Assuming the scaling function (G.4) is well approximated by a third-order polynomial
close to the critical point, we perform a non-linear fit for the four polynomial coefficients, ν,
and Tc . The crossing and fitting procedure are illustrated in Fig. 9(a) and Fig. 9(b), respec-
tively. Statistical errors are estimated using the bootstrap method [66]. Finally, to extrapolate
to infinite systems, we perform the above analysis for pairs of distinct system sizes (L, 2L)
and evaluate the crossing temperature T ∗c (L, 2L) from each. The critical temperature in the
thermodynamic limit is determined as the crossing of a linear fit to the T ∗c (L, 2L) vs. 1/L data
with the vertical axis, as shown in Fig. 9(d).

Equilibration of the simulation is verified by logarithmic binning of the data, i.e., the sim-
ulation time in terms of MC sweeps is successively increased by a factor of 2, and observables
are averaged over that time. Once all observables of interest in three consecutive bins agree
within error bars, the simulation is deemed equilibrated [66]. Fig. 9(c) shows the equilibra-
tion process of




m2 (0)
�

. We run N = 100 independent simulations, each for 212 MC sweeps
for equilibration followed by another 212 MC sweeps for measurement.

H Effective low-energy description of the Fe8 molecular magnet

As described in the main text, the Fe8 crystal consists of large molecular clusters, each described
by a simple S = 10 spin model subject to a strong uniaxial anisotropy [3,42,46]. It is therefore
well-described by the following Hamiltonian,

VFe8
= −DS2

z + E
�

S2
x − S2

y

�

, (H.1)

where D/kB = 0.294 K and E/kB = 0.046 K [42], defining the hard, medium, and easy axes.
The structure of the Fe8 crystal is triclinic with a = 10.676Å, b = 14.113 Å, and c = 15.147 Å,
and with α = 89.45◦, β = 109.96◦, and γ = 109.03◦ [46]. The orientation of the magnetic
anisotropy axes is determined in Ref. [46] and used in this work. It gives a magnetic easy-axis
that creates an angle of around 15◦ with the crystallographic a-axis.

Projecting VFe8
and the angular momentum operators onto the four lowest-energy states

of VFe8
, we get

VFe8
=







0
0
Ω

Ω






, J z =







−β
β

−γ
γ






,

J x =







0 0 σ 0
0 0 0 −σ
σ 0 0 0
0 −σ 0 0






, J y =







0 0 −iχ 0
0 0 0 −iχ
iχ 0 0 0
0 iχ 0 0






, (H.2)
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where the states are chosen such that σ = 2.06, χ = 2.43, β = 9.99, and γ = 8.97 are real
and Ω = 5.51K. The only non-negligible interaction between the Fe8 molecular clusters is
dipolar [45], so in the absence of an external transverse field

HFe8
=
∑

i

VFe8
+

1
2

EDF

∑

i ̸= j
ν,µ

V νµi j Jνi Jµj ,

with EDF =
µ0µ

2
B g2

4π where g = 2 [42]. Applying the Schrieffer-Wolff transformation to obtain
an effective low-energy spin-1

2 Hamiltonian, and then using a mean-field approximation, as
before, gives a single self-consistency equation that yields

Tc =− β2EDF

∑

j(̸=i)

V zz
i j +

2β2σ2

Ω
E2

DF

∑

j ̸=k(̸=i)

V xz
i j V xz

jk

+
2β2χ2

Ω
E2

DF

∑

j ̸=k(̸=i)

V yz
i j V yz

jk

+
σ2χ2

Ω
E2

DF

∑

j(̸=i)

�
�

V x y
i j

�2
− V x x

i j V y y
i j

�

=− β2EDF Azz +
2β2σ2

Ω
E2

DF

�

AxzAxz − Bxz,xz

�

+
2β2χ2

Ω
E2

DF

�

AyzAyz − Byz,yz

�

+
σ2χ2

Ω
E2

DF

∑

j(̸=i)

�

Bx y,x y − Bx x ,y y

�

=0.95K .

The Aµν’s and Bµν,στ’s are calculated using Eq. (B.6). Indeed, the contribution of all but
the first term above gives a negligible −0.06 mK, consistent with the lack of an observable
discrepancy between MF and experiment.
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