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Abstract

In two-dimensional critical loop models, including the O(n) and Potts models, the spec-
trum is exactly known, as are a few structure constants or ratios thereof. Using numerical
conformal bootstrap methods, we study 235 of the simplest 4-point structure constants.
For each structure constant, we find an analytic expression as a product of two factors:
1) a universal function of conformal dimensions, built from Barnes’ double Gamma func-
tion, and 2) a polynomial function of loop weights, whose degree obeys a simple upper
bound. We conjecture that all structure constants are of this form. For a few 4-point
functions, we build corresponding observables in a lattice loop model. From numerical
lattice results, we extract amplitude ratios that depend neither on the lattice size nor on
the lattice coupling. These ratios agree with the corresponding ratios of 4-point structure
constants.
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1 Introduction and main results

1.1 Exact solvability in conformal field theory

Solvability and degenerate fields in various dimensions

In conformal field theory in dimensions d > 2, the bootstrap approach is effective not only for
studying specific models such as the Ising model, but also for carving out the space of unitary
theories. However, most results are numerical. No interacting model has been exactly solved,
and the known analytic results are about unitarity bounds, or about features that emerge in
some limits [1].

The situation is a bit better in planar N = 4 super Yang–Mills theory. This d = 4 CFT can
be mapped to an integrable spin chain, and this reduces the determination of the spectrum to
solving functional equations [2]. Computing correlation functions is a harder problem, which
may be addressed by combining integrability with numerical bootstrap techniques.

In d = 2, on the other hand, a number of CFTs have been exactly solved, starting with
Virasoro minimal models in the 1980s. These solutions rely not only on local conformal sym-
metry, but also on the existence of two independent degenerate fields. In minimal models,
two degenerate fields are needed for generating the whole spectrum by repeated fusion; in
Liouville theory, two degenerate fields lead to two independent shift equations for structure
constants, which are thereby uniquely determined [3, 4]. To some extent, similar techniques
can also be applied to CFTs with extended chiral symmetry algebras [5,6]. We however restrict
our attention to Virasoro-CFTs.

In this article, we will focus on exactly solving critical loop models: a class of Virasoro-CFTs
that only have one degenerate field. This includes theories such as the Potts and O(n)models,
which are much richer than minimal models and Liouville theory. Another motivation is that
in d > 2 CFT, there exist weight-shifting operators that are the analogs of degenerate fields,
although there is nothing like two independent degenerate fields [7, 8]. Solving d = 2 CFTs
with one degenerate field would therefore bring exact solvability a bit closer to d > 2 CFT.
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Hints of exact solvability in loop models

Originally, loop models arose by reformulating certain statistical lattice models in terms of
loops. In particular, in the Q-state Potts model, local spins can be traded for Fortuin–Kasteleyn
clusters [9], and then for loops defined as the boundaries of these clusters. Similarly, the
O(n) model, whose local variables are n-dimensional vectors and which has an O(n) global
symmetry, can be reformulated in terms of loops [10]. The critical limits of these models may
be studied with the methods of conformal field theory, leading to the exact determination
of certain conformal dimensions [11]. Mathematically, random curves have been studied in
probability theory since the 2000s: open curves may be constructed using Schramm–Loewner
Evolutions [12, 13], and closed loops using Conformal Loop Ensembles [14]. This has led
to proofs of some previously known results, and to the exact determination of the backbone
exponent [15].

The first and biggest hint that critical loop models may be exactly solvable, is that their full
spectra of conformal dimensions can be exactly determined [16]. This does not immediately
lead to the determination of structure constants, but this gives us access to high-precision
numerical bootstrap methods [17].

The existence of a degenerate field implies exact relations between structure constants
[18, 19], which may be interpreted in terms of an extension of local conformal symmetry
called interchiral symmetry [20,21]. However, in the absence of two independent degenerate
fields, these relations are far from enough for solving critical loop models, although they help
simplify bootstrap equations by reducing the number of unknowns.

The first exact result for structure constants was the conjecture by Delfino and Viti for
the 3-point cluster connectivity in the Potts model [22]. While it was not immediately clear
that the conjecture was exactly true, it was later found to agree with high-precision numerical
bootstrap results [23], and generalized to 3-point functions of arbitrary diagonal fields [24,25].
According to these results, structure constants of diagonal fields in critical loop models coincide
with structure constants of Liouville theory with c ≤ 1. (This does not mean that critical
loop models are related to Liouville theory: the former have a discrete spectrum, the latter a
continuous spectrum.)

In critical loop models, diagonal fields are however only a small part of the story. Most
fields are non-diagonal, i.e. they have nonzero conformal spins. To be precise, we also call
non-diagonal a spinless field if its operator product with a degenerate field yields fields with
nonzero spins. For structure constants of such non-diagonal spinless fields, Liouville structure
constants may be used as an ansatz, and some ratios of structure constants were found to differ
from this ansatz by rational functions of the Potts model’s number of states [26]. Remarkably,
these exact results hold not only in the critical limit, but also on lattices of finite size.

These are strong but limited hints of exact solvability. To actually determine all structure
constants, what is missing is an ansatz to which we could compare numerical bootstrap results.
As soon as fields with nonzero conformal spins are involved, this ansatz cannot come from
Liouville theory.

1.2 Structure constants in loop models

Reference structure constants and normalized structure constants

We will now write reference two- and 3-point structure constants in critical loop models. We
will provide some justification for these expressions in Section 2, but no derivation: these
expression emerged by trial and error from analytic considerations, and comparison with nu-
merical bootstrap results.
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First let us define the critical loop models’ fields. We write the central charge as

c = 13− 6β2 − 6β−2 , with

(

ℜβ2 > 0 ,

β2 /∈Q ,
(1.1)

and we introduce standard notations for the conformal dimension ∆ and momentum P,

∆= P2 − P2
(1,1) , ∆(r,s) = P2

(r,s) − P2
(1,1) , P(r,s) =

1
2

�

−β r + β−1s
�

. (1.2)

We introduce the following primary fields, with left- and right-moving conformal dimensions
(∆, ∆̄):

Name Notation Parameters (∆, ∆̄)

Degenerate V d
〈r,s〉 r = 1; s ∈ N∗

�

∆(r,s),∆(r,s)
�

Diagonal VP P ∈ C
�

P2 − P2
(1,1), P2 − P2

(1,1)

�

Non-diagonal V(r,s) r ∈ 1
2N
∗; s ∈ 1

rZ
�

∆(r,s),∆(−r,s)
�

(1.3)

The parameters r, s are Kac table indices: in the case of degenerate fields, they are strictly
positive integers. In critical loop models, the spectrum contains a one-parameter family of
degenerate fields, which we take by convention to be V d

〈1,s〉 (rather than V d
〈r,1〉). As we review

in Section 2.1, the existence of these degenerate fields constrains non-diagonal fields to obey
r ∈ 1

2N
∗. Another constraint is that the conformal spin be integer, rs ∈ Z.

Our list of fields leads to a working definition of critical loop models: we define a corre-
lation function in critical loop models as a correlation function of these fields, whose decom-
positions into conformal blocks are discrete sums over the same set of fields. In particular,
although we allow diagonal fields with arbitrary momenta P ∈ C, we never integrate over P.
At the time of this writing, it is not clear whether critical loop models are CFTs obeying axioms
such as the existence of an associative operator product expansion [25,27]. Nevertheless, our
working definition allows us to study their 4-point function by numerically solving crossing
symmetry.

For diagonal fields, the critical loop models’ two- and 3-point structure constants formally
coincide with those of Liouville theory with c ≤ 1, although critical loop models make sense
under the less demanding condition ℜc < 13 [4,25]:

BP =
∏

±,±
Γ−1
β

�

β±1 ± 2P
�

, CP1,P2,P3
=
∏

±,±,±
Γ−1
β

�

β+β−1

2 ± P1 ± P2 ± P3

�

, (1.4)

where Γ−1
β
(x) = 1

Γβ (x)
. Barnes’ double Gamma function Γβ obeys Γβ−1(x) = Γβ(x) as well as

the shift equations

Γβ(x + β)

Γβ(x)
=
p

2π
ββ x− 1

2

Γ (β x)
,

Γβ(x + β−1)

Γβ(x)
=
p

2π
β

1
2−β

−1 x

Γ (β−1 x)
. (1.5)

For non-diagonal fields, we define the reference 2-point structure constant

Bref
(r,s) =

(−)rs

2sin (π(frac(r) + s)) sin (π(r + β−2s))

∏

±,±
Γ−1
β

�

β ± β r ± β−1s
�

, (1.6)
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where frac(r) ∈ {0, 1
2} is the fractional part of r ∈ 1

2N
∗. This is formally ill-defined if r ∈ N∗

and s ∈ Z, but can be regularized by taking a limit from generic values of s. We define the
reference 3-point structure constant

C ref
(r1,s1)(r2,s2)(r3,s3)

=
∏

ε1,ε2,ε3=±
Γ−1
β

�

β+β−1

2 + β2
�

�

∑

iεi ri

�

�+ β
−1

2

∑

iεisi

�

, (1.7)

which is also valid if one or more fields are diagonal, provided we use the identification

VP = V(0,2βP) . (1.8)

In particular, C ref
(0,2βP1)(0,2βP2)(0,2βP3)

= CP1,P2,P3
.

Whenever we determine some structure constant numerically, for example a 3-point struc-
ture constant C , we can divide it by the corresponding reference structure constant, and obtain
what we will call a normalized structure constant

Cnorm =
C

C ref
. (1.9)

Our general expectation is that Cnorm is simpler than C , to the extent that we can determine
its analytic expression from numerical results.

Polynomial factors

Let us write the decomposition of a 4-point function into conformal blocks G(x)
∆,∆̄

in one of three
possible channels:
® 4
∏

i=1

Vi(zi)

¸

=
∑

∆,∆̄

D(x)
∆,∆̄

G(x)
∆,∆̄
(z1, z2, z3, z4) , with x ∈ {s, t, u} . (1.10)

Here D(x)
∆,∆̄

is a 4-point structure constant. We now define d(x)
∆,∆̄

as the corresponding normal-
ized structure constant. To be precise, in the case of an s-channel 4-point structure constant
for a non-diagonal s-channel field V(r,s), this definition amounts to

D(s)(r,s) =
C ref
(r1,s1)(r2,s2)(r,s)

C ref
(r,s)(r3,s3)(r4,s4)

Bref
(r,s)

d(s)(r,s) . (1.11)

Our main claim is the conjecture in Section 2.3, which states that d(x)(r,s) is a polynomial in the
loop weight

n= −2cos
�

πβ2
�

, (1.12)

whose coefficients are β-independent numbers, and whose degree obeys

degn d(x)(r,s) ≤ r(r − 1) . (1.13)

If some of the four fields are diagonal, Vi = VPi
, or if the decomposition involves a diagonal

field VPx
in addition to the non-diagonal fields, then d(x)(r,s) also depends on the corresponding

loop weights

w(P) = 2cos (2πβP) . (1.14)

The dependence on wi = w(Pi) is again polynomial. The dependence on wx = w(Px) becomes
polynomial after we subtract a rational term that is needed for the 4-point function to be
holomorphic in Px , see Eq. (2.61). From now on, we will use the notation wi for the weights
w1, w2, w3, w4 (one of them or all four), and wx for the channel weights ws, wt , wu (one of
them or all three).
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1.3 Conformal bootstrap

Solutions of crossing symmetry equations

In critical loop models, given four fields V1, V2, V3, V4 defined by their conformal dimensions,
the crossing symmetry equations for the 4-point function

¬

∏4
i=1 Vi(zi)
¶

generally have several
linearly independent solutions. For example, in the Potts model, there are four independent

correlation functions of the type


∏4
i=1 VP

(0, 1
2 )

·

, which can be interpreted as 4-point cluster

connectivities [28]. More generally, the global symmetries of the Potts and O(n) models lead
us to expect finite-dimensional spaces of 4-point functions. Recently, it was conjectured that
the space of solutions of crossing symmetry equations for the 4-point function

¬

∏4
i=1 V(ri ,si)

¶

has a dimension
∑4

i=1 r2
i + d0, with d0 ∈ {

1
2 , 1, 2} a known ri-dependent number [29]. The

case of a diagonal 4-point function corresponds to ri = 0 and d0 = 1. Cluster connectivities do
not obey this formula because they can have several diagonal fields propagating in the same
channel, see Section 3.2 for more details.

Given a 4-point function
¬

∏4
i=1 Vi(zi)
¶

, not all solutions of crossing symmetry can have

polynomial structure constants d(x)(r,s), as this property is not preserved by taking linear com-
binations with non-polynomial coefficients. Fortunately, there is a natural basis of solutions,
parametrized by combinatorial maps [29]: we conjecture that solutions in this basis have
polynomial structure constants.

For example, in the case of
¬

V( 3
2 ,0)V( 1

2 ,0)V(1,0)V(1,0)

¶

, the space of solutions of crossing sym-
metry equations has dimension 5. Let us call (Z1, . . . , Z5) the basis of solutions that correspond
to the following combinatorial maps:

Z1 , Z2 , Z3 , Z4 , Z5 .

(1.15)

In a combinatorial map, the primary field V(r,s) corresponds to a vertex of valency 2r. The
maps do not depend on the second Kac index s.

Each one of the solutions Z1, . . . , Z5 can in principle be singled out by imposing enough
constraints on the structure constants d(x)(r,s), in addition to the crossing symmetry equations.
We consider constraints that amount to setting finitely many structure constants to zero, de-
pending on their first Kac index:

∀x ∈ {s, t, u} , r < σ(x) =⇒ d(x)(r,s) = 0 , (1.16)

where the triple σ =
�

σ(s),σ(t),σ(u)
�

is called a signature. There is a combinatorial definition
of the signature of a combinatorial map: 2σ(x) is the minimum number of lines that are crossed
by an x-channel loop. For example:

σ(s) = 2 , σ(t) = 1
2 , σ(u) = 3

2 .

(1.17)
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Then the solution that corresponds to a map obeys the constraints that correspond to that map’s
signature. However, these constraints do not always uniquely characterize that solution. In
our example, the signatures are:

Map Z1 Z2 Z3 Z4 Z5

Signature (1, 3
2 , 3

2) (1, 3
2 , 3

2) (2, 1
2 , 3

2) (2, 3
2 , 1

2) (0, 5
2 , 5

2)
(1.18)

Since Z1 and Z2 have the same signature, the corresponding constraints only characterize a
two-dimensional space of solutions, and not Z1 and Z2 individually. On the other hand, the
solutions that correspond to Z3, Z4 and Z5 are each singled out by the respective constraints.

If a solution has a diagonal field that propagates in the s-channel, then by definition
σ(s) = 0. Moreover, we then have σ(t) = σ(u) = max(r1, r2) + max(r3, r4). Based on nu-
merical results, we then conjecture the degrees of the normalized 4-point structure constants
in the weight ws of the diagonal field:

r > 0 =⇒ degws
d(s)(r,s) ≤
j r

2
−σ(t)
k

, degws
d(t)(r,s) = degws

d(u)(r,s) = r −σ(t) . (1.19)

By convention, a polynomial of negative degree is zero. The structure constant for the diagonal
s-channel field is not subject to the bound on degws

d(s)(r,s), and is set to one as a way to fix the
solution’s overall normalization.

Evidence from numerical bootstrap results

We can solve crossing symmetry numerically in order to determine 4-point structure constants
to arbitrary precision [30]. Instead of counting solutions as in [29], we are now focussing
on specific solutions, in order to find analytic expressions for their structure constants. If a
structure constant d(w) is polynomial of degree k, it is enough to compute it for k+2 values of
the variable w, so that we can determine its k+1 coefficients and test the resulting polynomial.
Depending on the solution, our normalized structure constants are polynomials in 1 to 8 loop
weights: the weight n in all cases, and some or all of the weights w1, w2, w3, w4, ws, wt , wu.
The more variables, the more coefficients to be determined! The situation is not as bad as it
looks, for a number of reasons:

• The only correlation function that involves more than one of the three channel weights
ws, wt , wu is the 4-point function of diagonal fields. In this 4-point function, these three
weights appear in different terms [25], so that we are effectively dealing with three
polynomials of one variable, which is better than one polynomial of three variables.

• Furthermore, in the crossing symmetry equations, the channel weight ws only affects
one conformal block. As a result, determining the dependence on ws is effectively free
computationally: determining structure constants for several values of ws is not sensibly
longer than for one value. In contrast, the variables n, w1, w2, w3, w4 affect all conformal
blocks, so all calculations must be done from scratch for each one of their values.

• Showing that a function is a polynomial can be done variable by variable. Having mul-
tiple variables is inconvenient only when it comes to determining the coefficients.

Eventually, writing a normalized structure constant as a polynomial means reducing it to a
list of coefficients. We find that these coefficients are not all rational numbers, as they can
involve irrational expressions of the type cos(πs), where s ∈Q is a combination of the second
Kac indices of the relevant fields. In the following table, we list the 4-point functions that we
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have investigated, and indicate the number of polynomials that we have determined (modulo
discrete symmetries). The number rmax is the largest number such that we know all structure
constants D(x)(r,s) with r ≤ rmax, and also the largest number such that we know some structure

constants of the type D(x)(rmax,s): when these two numbers differ, both are given.

Four-point function σ Map Weights rmax #poly Eq.

¬

VP1
VP2

VP3
VP4

¶

(0,0, 0)
n, ws,t,u
w1,2,3,4

3 6 (3.7)

¬

V 4
P
(0, 1

2 )

¶

(0,0, 0) n2 6|10 24 (3.13)




V(1,0)VP1
VP2

VP3

�

(0,1, 1)
n, ws
w1,2,3

2|3 12 (3.22)



V 2
( 1

2 ,0)
VP1

VP2

·

(0, 1
2 , 1

2)
n, ws
w1,2

3 11 (3.25)

¬

V( 3
2 ,0)V( 1

2 ,0)VP1
VP2

¶

(0, 3
2 , 3

2)
n, ws
w1,2

3 8 (3.28)



V(1,1)V
2
( 1

2 ,0)
VP

·

(1
2 , 1, 1

2)
n
w

3 8 (3.30)

¬

V 4
( 1

2 ,0)

¶

(0,1, 1) n, ws 3|4 17 (3.32)

¬

V 2
( 1

2 ,0)
V 2
(1,0/1)

¶

(0, 3
2 , 3

2) n, ws 3 8/8 (3.34)

¬

V 2
( 1

2 ,0)
V 2
(1,0)

¶

(1, 3
2 , 1

2) n 3|4 20 (3.36)

¬

V 2
( 1

2 ,0)
V 2
(1,1)

¶

(1, 3
2 , 1

2) n 3 18 (3.37)

¬

V 4
(1,0)

¶

,
¬

V 4
(1,1)

¶

(0,2, 2) n, ws 3|4 11 (3.39)

¬

V 4
(1,0)

¶

,
¬

V 4
(1,1)

¶

(2,1, 1) n 3|4 16 (3.40)

¬

V( 3
2 ,0)V(1,1)V(1,0)V( 1

2 ,0)

¶

(3
2 , 2, 1

2) n 3 13 (3.42)

¬

V( 3
2 , 2

3 )
V(1,1)V(1,0)V( 1

2 ,0)

¶

(3
2 , 2, 1

2) n 3 23 (3.43)
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V( 3
2 ,0)V

3
( 1

2 ,0)

·

(1,1, 1)
even n 3 5 (3.46)

odd n 3 3 (3.48)



V( 3
2 , 2

3 )
V 3
( 1

2 ,0)

·

(1,1, 1)
even n 3 12 (3.50)

odd n 3 12 (3.52)

Four-point function σ Map Weights rmax #poly Eq.

In the last 4 lines, even and odd denote even-spin and odd-spin solutions, see Section 3.5.
The total number of polynomials that we have determined in all these examples is 235, as
announced in the abstract. In a few examples, let us illustrate the weights on which our 4-
point functions depend: weights wi (in red) associated to vertices, and channel weights wx
(in blue). Anticipating on the lattice approach, we associate each weight to a certain type of
loops:

w1

w2 w3

w4

ws

wt

wu w3 w2

w1

ws
w

ws (1.20)

1.4 Lattice approach

Nienhuis loop model

We have used the name critical loop models for the CFTs that we have been studying, and
we will now justify this terminology by comparing our 4-point functions with critical limits of
observables in a loop model on a lattice. To be specific, we consider a gas of non-intersecting
loops on a honeycomb lattice [10], although different lattice models are expected to share the
same critical limit. The partition function is defined as the sum of the weights of all possible
loop configurations, where each loop contributes a factor n to the weight, and each vertex a
factor 1 or K:

loop weight n ,
Vertex weights 1 and K .

1 K K K

(1.21)

The critical limit is obtained by sending the lattice size to infinity, and the coupling to the
critical value

Kc =
1
p

2+
p

2− n
, (1.22)

9
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where n is now related to the central charge of the resulting CFT by Eq. (1.12). On this lattice,
we also insert the analogs of primary fields, diagonal or non-diagonal. A diagonal primary field
VP simply changes the weight of any loop that goes around it from n to w(P) (1.14). A non-
diagonal primary field V(r,s) is the end point of 2r open loops, and contributes a weight factor
that depends on s and on the relative angles of these loops:

VP

w(P) ,

1
2

3

2r

V(r,s)

exp i
2 s
∑2r

k=1 θk .

(1.23)

The reader who wonders how we can measure angles, and how 2r segments can end at the
same point on a trivalent lattice, is invited to consult [29]. While it was long known that the
second Kac index s corresponds to the angular momentum, its unambiguous interpretation
requires combinatorial maps.

Results for amplitude ratios

The loop model allows us to build lattice 4-point functions C loop(L,ℓ|K , n, wi , wx), where L
is the circumference of our cylindrical lattice (measured in lattice units), and ℓ the distance
between the two Euclidean time slices where we respectively position the vertices z1, z2 and
z3, z4. In the critical limit, the geometrical parameters L,ℓ go to infinity. The numbers wi , wx
with i ∈ {1,2, 3,4} and x ∈ {s, t, u} are loop weights: external weights wi for loops around the
four fields, and internal weights wx for loops around two of the fields, if such loops exist, see
Figure (1.20). Loops are non-intersecting, and also cannot intersect the segments that end at
vertices. In particular, in a given configuration, there cannot be two different loop types among
{s, t, u}. In the transfer matrix formalism, we can compute C loop(L,ℓ|K , n, wi , wx) numerically.
In practice, we are limited to low values of the lattice width L ≤ 5.

We decompose the lattice 4-point functions into s-channel amplitudes Aω:

C loop(L,ℓ|K , n, wi , wx) =
∑

ω∈S(L)

Aω(L|K , n, wi , wx)
�

Λω(L|K , n, ws)
Λmax(L|K , n, ws)

�ℓ

, (1.24)

where (Λω)ω∈S(L) is the spectrum of eigenvalues of the transfer matrix, with Λmax the largest
eigenvalue. This decomposition is reminiscent of the decomposition of a CFT 4-point function
into s-channel conformal blocks, and the transfer matrix depends on the weights n, ws of con-
tractible loops and s-loops, but not on the other loop weights. Our main lattice result is that a
ratio of amplitudes with different internal weights wx , w′x agrees with the corresponding ratio
of s-channel 4-point structure constants,

A(r,s),ρ
�

L
�

�K , n, wi , wx : w′x
�

= D(s)(r,s)
�

n, wi , wx : w′x
�

, (1.25)

where we use the notation

f (x : x ′) =
f (x)
f (x ′)

. (1.26)

In this equation, the eigenvalue parameter is rewritten as ω = (r, s),ρ where (r, s) are Kac
table indices, and ρ distinguishes states that share the same indices. Our result implies that
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the amplitude ratio depends neither on ρ, nor on the lattice size L, nor on the lattice coupling
K . Furthermore, since reference structure constants do not depend on wx , the ratio of 4-point
structure constants reduces to a ratio of normalized structure constants, which are rational
functions of loop weights.

This result is supported by strong numerical evidence in the cases of 4-point functions of

the types
¬

∏4
i=1 VPi

¶

and


V 4
( 1

2 ,0)

·

, for the first few values of (r, s) (but hundreds of values of

ω). We conjecture that Eq. (1.25) holds for arbitrary 4-point functions and arbitrary eigen-
values ω. Having exact rational formulas for amplitude ratios suggests that such ratios have
an algebraic origin, and might be computable from the representation theory of appropriate
diagram algebras. This might be a hint that lattice loop models are exactly solvable.

2 Analytic constraints

Let us work out the constraints on the spectrum and structure constants that can be derived
analytically. In Sections 2.1 and 2.2, we will deal with the constraints that follow from the
existence of degenerate fields. Mostly, we will be reviewing and simplifying the treatment
of [19]. In Section 2.3, we will assume that 4-point functions are holomorphic in the conformal
dimensions of the s-channel’s diagonal field when there is one. The resulting constraints are
new, as the possibility that such a field can have an arbitrary conformal dimension was only
recently raised in [25]. In Section 2.4, we will derive simple relations following from field
permutations: this is in principle straightforward, but signs of conformal blocks have to be
treated carefully.

2.1 How degenerate fields constrain the spectrum

Degenerate fusion rules and integer spin condition

A degenerate representation of the Virasoro algebra may be characterized by its fusion prod-
ucts with other representations. In particular, for s ∈ N∗, let us call Vd

〈1,s〉 the degenerate
representation with momentum P(1,s), and VP the Verma module with momentum P. We have
the fusion products

Vd
〈1,1〉 ×VP = VP , (2.1a)

Vd
〈1,2〉 ×VP = VP− 1

2β
−1 +VP+ 1

2β
−1 , (2.1b)

Vd
〈1,3〉 ×VP = VP−β−1 +VP +VP+β−1 , (2.1c)

Vd
〈1,2〉 ×V

d
〈1,2〉 = Vd

〈1,1〉 +Vd
〈1,3〉 . (2.1d)

These fusion rules constrain the operator product expansions of the corresponding fields.
We define the conformal spin of a field with left and right dimensions ∆, ∆̄ as

S = ∆̄−∆ . (2.2)

The single-valuedness of correlation functions requires S ∈ 1
2Z, and that S is conserved modulo

Z in interactions [4]. In order to study bosonic observables in critical loop models, we adopt the
slightly stronger assumption S ∈ Z. (Fields with half-integer spins such as V( 1

2 ,1) are fermionic.)

Degenerate OPEs of diagonal fields

Let us consider the OPE V d
〈1,2〉VP , which involves the diagonal primary field VP . According to the

fusion rules, we may obtain four primary fields of left and right dimensions
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(P, P̄) ∈
�

P − 1
2β
−1, P + 1

2β
−1
	2

. However, for generic values of the momentum P, the con-
formal spin cannot be integer if the left and right dimensions differ. Due to the integer spin
condition, our OPE can therefore involve only the two primary fields that are diagonal:

V d
〈1,2〉VP ∼ VP− 1

2β
−1 + VP+ 1

2β
−1 . (2.3)

By a similar reasoning, we have

V d
〈1,3〉VP ∼ VP−β−1 + VP + VP+β−1 . (2.4)

Degenerate OPEs of non-diagonal fields

We now consider non-diagonal primary fields V(r,s) as defined in Table 1.3. For the moment, the
Kac table indices r, s are arbitrary complex numbers, which provide a convenient parameteri-
zation of the left and right conformal dimensions. In particular, the corresponding conformal
spin reads

S = rs . (2.5)

According to the fusion rule (2.1b), four primary fields may appear in the degenerate OPE

V d
〈1,2〉V(r,s) ⊂
∑

±
V(r,s±1) +
∑

±
V(r±β−2,s) . (2.6)

We assume that V(r,s) has integer spin rs ∈ Z. Since the spin is conserved modulo Z, the fields
that appear in the OPE must also have integer spins. For V(r,s±1), this constraint amounts to
r ∈ Z. For V(r±β−2,s), it amounts to sβ−2 ∈ Z. Taken together, these two constraints would
imply rs ∈ β−2Z, which cannot hold if β is generic. We choose to assume r ∈ Z, so that
sβ−2 /∈ Z: the choice sβ−2 ∈ Z would be equivalent, although it would make our notations
remarkably clumsy. Therefore, we find the OPE

V d
〈1,2〉V(r,s) ∼
∑

±
V(r,s±1) , provided r ∈ Z . (2.7)

Similarly, had we considered the degenerate field V d
〈1,3〉 instead of V d

〈1,2〉, we would have found

V d
〈1,3〉V(r,s) ∼ V(r,s−2) + V(r,s) + V(r,s+2) , provided r ∈ 1

2Z . (2.8)

We therefore recover known features of critical loop model’s spectra [16], as reviewed in [23]:
in the Potts model, there is a degenerate field V d

〈1,2〉, and the non-diagonal fields obey r ∈ N∗.
In the O(n) model, there is a degenerate field V d

〈1,3〉 but no V d
〈1,2〉, which allows non-diagonal

fields with r ∈ 1
2N
∗.

In Table (1.3), we have quoted the least stringent constraints for degenerate and non-
diagonal fields: we now add the caveat that in a given correlation function, V d

〈1,2〉 (or more

generally V d
〈1,s〉 with s ∈ 2N∗) cannot coexist with V(r,s) with r ∈ N+ 1

2 .

2.2 How degenerate fields constrain structure constants

Structure constants

We schematically define two- and 3-point structure constants Bi , Ci jk by

〈V1V2〉= δ12B1 , 〈V1V2V3〉= C123 . (2.9)
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Three-point structure constants can pick non-trivial signs when the three fields are permuted,
depending on the fields’ conformal spins Si [4]:

Cσ(1)σ(2)σ(3) = sign(σ)S1+S2+S3 C123 . (2.10)

Our goal is to constrain these structure constants, by exploiting crossing-symmetry and single-
valuedness of 4-point functions that involve the degenerate field V d

〈1,2〉. We will therefore also
need the OPE coefficients C±(r,s) of that degenerate field, which appear in the OPE

V d
〈1,2〉V(r,s) ∼
∑

±
C±(r,s)V(r,s±1) . (2.11)

Four-point functions with a degenerate field

In order to constrain three-point structure constants, the basic idea is to exploit crossing sym-
metry of 4-point functions that involve degenerate fields [3]. Here we will consider a 4-point
function of the type

Z =

®

V d
〈1,2〉

3
∏

i=1

V(ri ,si)

¸

. (2.12)

As we saw in Eq. (2.7), while the indices ri take half-integer values in critical loop models, only
fields with ri ∈ N can coexist with the degenerate field V d

〈1,2〉. If we had fields with ri ∈ N+
1
2 ,

we could instead consider
¬

V d
〈1,3〉

∏3
i=1 V(ri ,si)

¶

, but would be technically more complicated.
And this is in fact unnecessary, as the same constraints can be derived from Z itself, even
though it is not single-valued. Here we are following the spirit of [3], which used the field
V d
〈1,2〉 although it does not belong to the spectrum of Liouville theory.

Using the OPEs V d
〈1,2〉V(r1,s1) and V d

〈1,2〉V(r3,s3), we can decompose our 4-point function into
s- and t-channel conformal blocks respectively. The equality of these decompositions is the
crossing symmetry equation,

Z =
∑

±
D(s)±

�

�

�F (s)±
�

�

�

2
=
∑

±
D(t)±

�

�

�F (t)±
�

�

�

2
. (2.13)

Here, the x-channel chiral conformal blocks
�

F (x)− ,F (x)+
�

are a basis of solutions of the second-
order BPZ equation for Z . The modulus square notation indicates that we take a product of a
left-moving block with a right-moving block. Schematically, the s- and t-channel blocks may
be represented as follows:

V(r1,s1)

V(r1,s1±1)

V(r2,s2)

V d
〈1,2〉 V(r3,s3)

s-channel

V(r1,s1)

V(r3,s3±1)

V d
〈1,2〉

V(r2,s2)

V(r3,s3)

t-channel

(2.14)

The s-channel and t-channel bases are related by the fusion transformation

F (s)ε1
=
∑

ε3=±
Fε1,ε3

F (t)ε3
, (2.15)
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which involves the fusing matrix elements

Fε1,ε3
=

Γ
�

1+ ε12β−1P1

�

Γ
�

−ε32β−1P3

�

∏

± Γ
�1

2 + ε1β−1P1 ± β−1P2 − ε3β−1P3

� . (2.16)

Here we use the convention that the non-diagonal field V(r,s) has the left and right momenta

(P, P̄) = (P(r,s), P(−r,s)) , (2.17)

so that the shift s → s + 1 amounts to (P, P̄) → (P + 1
2β
−1, P̄ + 1

2β
−1). Taken together, the

crossing symmetry equation and the fusion transformation imply the compatibility condition

F++F−−
F+−F−+

=
F̄++ F̄−−
F̄+− F̄−+

. (2.18)

With our fusing matrix elements, this condition boils down to [19]
�

1− (−)2
∑3

i=1 ri
�

sin
�

2πβ−1P1

�

cos
�

2πβ−1P2

�

sin
�

2πβ−1P3

�

= 0 . (2.19)

We assume that this holds not only for Z itself, but also for the 4-point functions that are
related to Z by shifts of the type si → si + 2 i.e. Pi → Pi + β−1. A trigonometric factor such as
sin
�

2πβ−1P1

�

may vanish for some special value of P1, but then it cannot vanish for P1+β−1,
assuming β is generic. Therefore, the compatibility condition is equivalent to the conservation
of r modulo Z,

r1 + r2 + r3 ∈ Z . (2.20)

If compatibility is obeyed, there exists a solution Z of crossing symmetry, which is unique up
to a constant factor. This means that we can determine any ratio of the structure constants
D(s)± , D(t)± . In particular,

D(s)−
D(s)+

= −
F++ F̄+−
F−+ F̄−−

, (2.21)

D(t)+
D(s)+

=
F++
F̄−−

det F̄ . (2.22)

Next, we will translate this into equations for two- and 3-point structure constants.

Shift equations

In Eq. (2.21), let us write the coefficients D(s)± in terms of structure constants, and the fusing
matrix elements as functions of momenta using Eq. (2.16):

C−(r1,s1)
C(r1,s1−1)(r2,s2)(r3,s3)

C+(r1,s1)
C(r1,s1+1)(r2,s2)(r3,s3)

= −
Γ (1+ 2β−1P1)
Γ (1− 2β−1P1)

Γ (1+ 2β−1 P̄1)
Γ (1− 2β−1 P̄1)

(−)2r2

π4

×
∏

ε2,ε3=±
cos
�

πβ−1 (P1 + ε2P2 + ε3P3)
�

× Γ
�1

2 − β
−1(P1 + ε2P2 + ε3P3)

�

Γ
�1

2 − β
−1(P̄1 + ε2 P̄2 + ε3 P̄3)

�

. (2.23)

This expression is invariant under (Pi) ↔ (P̄i), thanks to the relation β−1 P̄i = ri + β−1Pi ,
together with Eq. (2.20).
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Let us also write the same equation in the case of a 4-point function of the type
¬

V d
〈1,2〉V(r,s)V

d
〈1,2〉V(r,s)
¶

, which involves two degenerate fields. This special case amounts to set-
ting (r1, s1) = (r3, s3) = (r, s), and (r2, s2) = (0,2βP(1,2)). The compatibility condition (2.20)
then boils down to r ∈ 1

2Z. The 3-point structure constants can be rewritten in terms of de-
generate OPE coefficients and 2-point structure constants, and we find

(C−(r,s))
2B(r,s−1)

(C+(r,s))
2B(r,s+1)

= −
Γ
�

1+ 2β−1P
�

Γ (1− 2β−1P)

Γ
�

1+ 2β−1 P̄
�

Γ
�

1− 2β−1 P̄
�

Γ
�

β−2 − 2β−1P
�

Γ
�

1− β−2 − 2β−1P
�

Γ
�

β−2 + 2β−1 P̄
�

Γ
�

1− β−2 + 2β−1 P̄
� . (2.24)

Finally, let us rewrite Eq. (2.22) in the same manner:

C+(r3,s3)
C(r1,s1)(r2,s2)(r3,s3+1)

C+(r1,s1)
C(r1,s1+1)(r2,s2)(r3,s3)

= (−)r3
Γ
�

1+ 2β−1P1

�

Γ
�

−2β−1 P̄1

�

Γ
�

−2β−1P3

�

Γ
�

1+ 2β−1 P̄3

�

∏

±

Γ
�

1
2 − β

−1 P̄1 ± β−1 P̄2 + β−1 P̄3

�

Γ
�

1
2 + β−1P1 ± β−1P2 − β−1P3

� .

(2.25)
This equation only makes sense provided ri ∈ N. This is because the 3-point structure constants
involve fields V(r1,s1) and V(r1,s1+1), which can both have integer spins only provided r1 ∈ Z.
For the same reason we have r3 ∈ Z, and therefore r2 ∈ Z by Eq. (2.20). The sign factor
(−)r3 appears when applying Eq. (2.10) to the permutation that relates the degenerate OPE
V(r3,s3)V

d
〈1,2〉 to V d

〈1,2〉V(r3,s3) (2.11).
In contrast, Eq. (2.23) involved V(r1,s1−1) and V(r1,s1+1), whose spins differ by 2r1, which

allows r1 ∈
1
2N. Degenerate OPE coefficients involved fields whose spins differ by r1, but these

were auxiliary quantities, so we did not impose r1 ∈ N in that case.

Behaviour of reference structure constants under shifts

Let us show that reference structure constants provide solutions of shift equations, up to signs.
To do this, let us work out how the normalized 3-point structure constant Cnorm (1.9) behaves
under shifts. We start with the shift equation for the double Gamma function (1.5), and deduce
the identity

∏

±

Γβ

�

β+β−1

2 + β2 R± β
−1

2 (S + 1)
�

Γβ

�

β+β−1

2 + β2 R± β
−1

2 (S − 1)
� =

β−β
−2S

π
cos π2
�

R+ β−2S
�

∏

±
Γ
�

1
2 ±

1
2 R− β

−2

2 S
�

. (2.26)

The values of R that appear in C ref (1.7) are integers of the type |r1 ± r2 ± r3|, and we find

C ref
(r1,s1−1)(r2,s2)(r3,s3)

C ref
(r1,s1+1)(r2,s2)(r3,s3)

=
β−4β−2s1

π4

∏

±,±
cos π2
�

|r1 ± r2 ± r3|+ β−2(s1 ± s2 ± s3)
�

× Γ
�1

2 − β
−1(P1 ± P2 ± P3)

�

Γ
�1

2 − β
−1(P̄1 ± P̄2 ± P̄3)

�

. (2.27)

Therefore, Cnorm satisfies the shift equation (2.23) provided the degenerate OPE coefficients
obey

C−(r,s)
C+(r,s)

= −β4β−2s Γ (1+ 2β−1P)
Γ (1− 2β−1P)

Γ (1+ 2β−1 P̄)
Γ (1− 2β−1 P̄)

, (2.28)

and provided the normalized 3-point structure constant obeys

Cnorm
(r1,s1+2)(r2,s2)(r3,s3)

Cnorm
(r1,s1)(r2,s2)(r3,s3)

= (−)2r3(−)max(2r1,2r2,2r3,r1+r2+r3) , (2.29)
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where we used the identity
∑

±,±
|r1 ± r2 ± r3|= 2max (2r1, 2r2, 2r3, r1 + r2 + r3) . (2.30)

This result is consistent with permutation symmetry of structure constants (2.10): under the

odd permutation 2↔ 3, the ratio
Cnorm|s1→s1+2

Cnorm should pick a factor
(−)S1 |s1→s1+2

(−)S1
= (−)2r1 . Eq.

(2.29) is consistent with this expectation, thanks to the conservation of r modulo integers.
Combining the square of Eq. (2.28) with Eq. (2.24), we obtain the ratio

B(r,s−1)
B(r,s+1)

, which
turns out to coincide with the corresponding ratio of reference 2-point functions (1.6),

Bref
(r,s−1)

Bref
(r,s+1)

= (−)2rβ−8β−2s
Γ
�

1− 2β−1P
�

Γ (1+ 2β−1P)

Γ
�

1− 2β−1 P̄
�

Γ
�

1+ 2β−1 P̄
�

Γ
�

1− β−2 − 2β−1P
�

Γ (1− β−2 + 2β−1P)

Γ
�

β−2 − 2β−1 P̄
�

Γ
�

β−2 + 2β−1 P̄
� . (2.31)

Finally, let us assume ri ∈ N, and use Eq. (2.26) for computing

C ref
(r1,s1)(r2,s2)(r3,s3+1)

C ref
(r1,s1+1)(r2,s2)(r3,s3)

=
β2β−2(s3−s1)

π2

∏

±
cos π2
�

|r1 ± r2 − r3|+ β−2(s1 ± s2 − s3)
�

× Γ
�1

2 − β
−1(P1 ± P2 − P3)

�

Γ
�1

2 − β
−1(P̄1 ± P̄2 − P̄3)

�

. (2.32)

This agrees with the shift equation (2.25), provided the degenerate OPE coefficient is

C+(r,s) = β
−2β−2s

Γ
�

−2β−1P
�

Γ
�

1+ 2β−1 P̄
� , (2.33)

and provided the normalized 3-point structure constant obeys

Cnorm|s1→s1+1

Cnorm|s3→s3+1
=

(

(−)r1+r2 if r2 ≥ |r1 − r3| ,

(−)r3 else .
(2.34)

This result is consistent with permutation symmetry of structure constants (2.10): under the

odd permutation 1↔ 3, the ratio
Cnorm|s1→s1+1

Cnorm|s3→s3+1
should pick a factor

(−)S1+S3 |s1→s1+1

(−)S1+S3 |s3→s3+1
= (−)r1+r3 ,

and it does. Moreover, using cyclic permutations, we deduce two more shift equations,

Cnorm|s1→s1+1

Cnorm|s2→s2+1
=

�

(−)r2+r3 if r3 ≥ |r1 − r2| ,
(−)r1 else ,

(2.35)

Cnorm|s2→s2+1

Cnorm|s3→s3+1
=

�

(−)r1+r3 if r1 ≥ |r2 − r3| ,
(−)r2 else .

(2.36)

Our three shift equations are compatible, i.e. the product of the three shifts is one. To see this,
we have to consider two cases. The first case is when the three conditions ri ≥ |r j − rk| are
obeyed, i.e. when there exists a planar triangle with sides of lengths r1, r2, r3. Then compat-
ibility boils down to (−)r1+r2(−)r2+r3(−)r1+r3 = 1. The second case is when say r2 > r1 + r3.
Then compatibility reduces to (−)r1+r2(−)r1(−)r2 = 1.

Why there is no reference sign factor

Under shifts, the normalized 3-point structure constant Cnorm (1.9) only picks signs. It is
natural to wonder whether we could include a reference sign factor in C ref, such that Cnorm
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would be invariant under shifts, and under permutations as well. We will now argue that this
is not possible, due to two different obstacles.

The first obstacle is that a reference sign factor would have to be a universal quantity,
and depend only on the fields’ conformal dimensions. However, the permutation properties
of fields do not depend solely on their dimensions. For example, given two fields V, W , the
permutation relation (2.10), which was based on the assumption that fields have integer spins,
implies that 〈V VW 〉 can be nonzero only provided the spin of W is even. On the other hand,
given two fields V (1), V (2) with the same conformal dimensions, nothing prevents




V (1)V (2)W
�

from being nonzero if the spin of W is odd.
In this case, and in its images under shifts, we could try to overcome the first obstacle

by building a reference sign factor θ that obeys θσ(1)σ(2)σ(3) = −sign(σ)S1+S2+S3θ123 instead
of Eq. (2.10). After this sign flip, the permutation relation remains compatible with shift
equations. After including the resulting reference sign factor in C ref, the normalized structure
constant Cnorm would be invariant under shifts, but it would have to pick a minus sign under
odd permutations.

The second obstacle is that we have diagonal fields, whose momenta P1 may take any
complex values. A sign that depends continuously on a complex number must be constant.
This would not be a problem if we only worried about the shift P1→ P1+β−1 i.e. s1→ s1+2:
in the case r1 = 0 of a diagonal field, the corresponding sign is, according to Eq. (2.29),

Cnorm|s1→s1+2

Cnorm
=

r1=0
1 . (2.37)

However, if r2, r3 ∈ N, we also have shift equations for s1→ s1+1, and the corresponding sign
(2.34) can be −1.

Let us rephrase these statements in terms of the loop weight w1 = w(P1) (1.14). We assume
that the diagonal field VP1

only depends on its conformal dimension, and is therefore invariant
under P1 → −P1. Together with Eq. (2.37), this implies that Cnorm is a function of w1, and
shift equations for s1→ s1+ 1 imply that it can have a nontrivial behaviour under w1→−w1.
Since w1 ∈ C, this behaviour cannot be captured by a sign factor.

2.3 Analyticity in dimensions of diagonal fields

From the S-matrix bootstrap to Seiberg–Witten theory or integrable models, whenever we have
continuous parameters, it is crucial to know the analytic properties of physical observables as
functions of these parameters. This is also the case in two-dimensional CFT. For example, in
the bootstrap solution of Liouville theory, the analytic properties of correlators as functions of
the central charge and conformal dimensions play an essential role [3,4].

In critical loop models, we have two types of continuous parameters: the central charge,
and the momenta of diagonal fields. In the lattice approach, correlation functions depend on
these parameters via loop weights, respectively called n (1.12) and w (1.14). For any finite
lattice size, unnormalized correlation functions are polynomials in loop weights [29]. In the
critical limit, the dependence becomes more complicated, and structure constants are written
in terms of Barnes’ double Gamma function.

We will now focus on how 4-point functions depend on the momentum P of an s-channel
diagonal field. Such a field appears in 4-point functions of diagonal fields [25], and in other
4-point functions as well, for example in the solution Z5 (1.15). In the decomposition of such
4-point functions into conformal blocks, some terms have first-order poles in P. Assuming
that these poles cancel between various terms will lead to non-trivial constraints on structure
constants.
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Poles and their cancellation

Consider a 4-point function Z(P) =
¬

∏4
i=1 V(ri ,si)

¶

, such that the s-channel spectrum includes

a diagonal field VP . Due to the existence of the degenerate field V d
〈1,3〉, we must in fact have an

infinite family of diagonal fields with momenta in P+β−1Z, see the OPE (2.4). The s-channel
decomposition of Z(P) may be written as

Z(P) =
∑

k∈Z
DP+kβ−1GP+kβ−1 +

∑

r∈N∗

∑

s∈ 1
r Z

D(r,s)(P)G(r,s) . (2.38)

Since our diagonal field VP has r = 0, the rule (2.20) forces the first Kac index r to be integer
for all fields in the s-channel. We use the notations GP and G(r,s) for s-channel non-chiral
conformal blocks: while GP = |FP |

2 is holomorphically factorized, G(r,s) is factorized only for
s /∈ N∗, while for s ∈ N∗ it is logarithmic, and by convention G(r,s) =s∈−N∗

0 [23].

We first assume that the diagonal 4-point structure constant coincides with the reference
4-point structure constant,

DP = Dref
P =

C ref
(r1,s1)(r2,s2)P

C ref
P(r3,s3)(r4,s4)

BP
, (2.39)

with Bref
P = BP . In the case of 4-point functions of diagonal fields

¬

∏4
i=1 VPi

¶

, there are diagonal

fields in all channels s, t, u. Ratios such as
D(s)Ps

D(t)Pt

are determined by crossing symmetry, and

their numerical agreement with the corresponding reference quantities provides a very non-
trivial test of our assumption (2.39) [25]. We now make the same assumption for our more
general 4-point function Z(P). If there is a diagonal field in the s-channel only, this does
not lead to predictions that can be compared with numerical bootstrap results: rather, the
assumption amounts to a choice of overall normalization for a solution of crossing symmetry.
The suitability of this choice will depend on the simplicity of the resulting expressions for the
other structure constants.

Consider the analytic behaviour of the diagonal terms of Z(P) as functions of P. Since
Barnes’ double Gamma function Γβ(x) has simple poles for x ∈ −βN − β−1N and no zeros,
C ref
(r1,s1)(r2,s2)P

(1.7) has no poles, and Dref
P has poles that correspond to the zeros of Bref

P (1.4).
For any r, s ∈ N∗, there is a double pole at P = P(r,−s), and simple poles at P = P(0,s) and
P = P(r,0). Moreover, for r, s ∈ N∗, the chiral conformal block FP has a simple pole, with the
residue

Res
P=P(r,s)

FP =
Rr,s

2P(r,s)
FP(r,−s)

, (2.40)

where the quantity Rr,s will be given explicitly in Eq. (2.45). Therefore, GP = |FP |
2 has a

double pole. According to [23], double poles cancel in the combination DPGP+DP−sβ−1GP−sβ−1 ,
and there remains a simple pole, whose residue is proportional to the logarithmic non-chiral
block G(r,s):

Res
P=P(r,s)

�

DPGP + DP−sβ−1GP−sβ−1

�

=
R̄r,s

2P(r,s)
DP(r,s)G(r,s) . (2.41)

Therefore, the diagonal terms of Z(P) have simple poles, whose residues are proportional
to conformal blocks from the non-diagonal sector. We now assume that the non-diagonal
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structure constants D(r,s)(P) have simple poles that cancel the poles from the diagonal terms,
so that

∀r, s ∈ Z , Res
P=P(r,s)

Z(P) = 0 . (2.42)

Let us sketch the implications of this assumption. We focus on three cases:

1. Since DPGP is an even function of P and P(0,−s) = −P(0,s), the simple poles at P = P(0,s)
cancel between the diagonal terms of Z(P) (2.38). So our assumption is trivially satisfied
in this case.

2. The residue ResP=P(r,0) D(r,0)(P)G(r,0) must cancel a residue at P = P(r,0) that is itself pro-
portional to G(r,0). This can only come from the diagonal term DPGP , and we must have

Res
P=P(r,0)

D(r,0)(P) = − Res
P=P(r,0)

DP . (2.43)

3. For r, s ∈ N∗, the residue ResP=P(r,s)D(r,s)(P)G(r,s) must cancel a residue at P = P(r,s) that
is itself proportional to G(r,s). According to Eq. (2.41), this comes from a combination
of two diagonal terms, and we have

Res
P=P(r,s)

D(r,s)(P) = −
R̄r,s

2P(r,s)
DP(r,s) . (2.44)

Since the diagonal term of Z(P) is invariant under P → P+β−1, the poles of D(r,s)(P) must be
invariant too, so that ResP=P(r,s′+2)

D(r,s)(P) = ResP=P(r,s′)D(r,s)(P). This allows us to deduce all
the residues of D(r,s)(P) from the three cases that we have just considered.

To summarize, the analyticity assumption (2.42) determines the residues of non-diagonal
structure constants D(r,s)(P) in terms of diagonal structure constants, which coincide with ref-
erence structure constants according to the assumption (2.39). Poles and residues do not
completely determine the structure constant D(r,s)(P), but they provide important hints for
guessing the corresponding reference structure constant. We will now compute the residues
more explicitly.

Residues of non-diagonal structure constants

In order to compute the residue (2.44), let us fist spell out the conformal block residue Rr,s
(2.40) more explicitly. This is a well-known universal quantity, which plays an important role
in Zamolodchikov’s recursive representation of Virasoro conformal blocks. Here, we rewrite it
in terms of Barnes’ double Gamma function, following [31], while using the notation (2.17)
for P, P̄:

Rr,s

P(r,s)
=

cr,s(P1, P2)cr,s(P4, P3)

br,s
,

R̄r,s

P(r,s)
=

cr,s(P̄1, P̄2)cr,s(P̄4, P̄3)

br,s
, (2.45)

where we define

cr,s(P1, P2) =
∏

±,±

Γβ

�

β+β−1

2 + P1 ± P2 ± P
�

Γβ

�

β+β−1

2 + P1 ± P2 ± P̄
� , br,s =

Γβ(β − 2P)Γβ(β + 2P)

Γβ(β − 2P̄)Resβ+2P̄ Γβ
, (2.46)
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which obey the properties cr,s(P2, P1) = (−)rscr,s(P1, P2) and cr,s(−P1, P2) = cr,s(P1, P2). Let us
compute the ratio

ρ
r,s
(r1,s1)(r2,s2)

= cr,s(P̄1, P̄2)
C ref

P(r1,s1)(r2,s2)

C ref
(r,s)(r1,s1)(r2,s2)

. (2.47)

Assuming for convenience r1 ≥ r2, we find

cr,s(P̄1, P̄2)C
ref
P(r1,s1)(r2,s2)

=
r1≥r2

∏

±,±
Γ−1
β

�

β+β−1

2 − P1 ± P2 ± P
�

Γ−1
β

�

β+β−1

2 + P̄1 ± P̄2 ± P̄
�

. (2.48)

In the case r ≤ |r1 − r2| together with r1 ≥ r2, we find that this coincides with C ref
(r,s)(r1,s1)(r2,s2)

.
We can easily get r1 < r2 by the permutation 1↔ 2, therefore

ρ
r,s
(r1,s1)(r2,s2)

=
r≤|r1−r2|

(−)rsδr1<r2 . (2.49)

In the case r > |r1 − r2|, we find

ρ
r,s
(r1,s1)(r2,s2)

=
Sβ
�

β+β−1

2 − P̄1 + P̄2 + P̄
�

Sβ
�

β+β−1

2 − P1 + P2 + P
�





Sβ
�

β+β−1

2 − P̄1 − P̄2 + P̄
�

Sβ
�

β+β−1

2 − P1 − P2 + P
�





δr>r1+r2

, (2.50)

where we introduce the double sine function and its shift equation, deduced from Eq. (1.5):

Sβ(x) =
Γβ(x)

Γβ(β + β−1 − x)
=⇒

Sβ(x + β)

Sβ(x)
= 2sin(πβ x) . (2.51)

Together with the relation P̄i = β ri + Pi , this shift equation implies that the ratio ρr,s
(r1,s1)(r2,s2)

is trigonometric:

ρ
r,s
(r1,s1)(r2,s2)

= (−)s min(r,|r1−r2|)δr1<r2

∏

±

r−1−|r1±r2 |
2
∏

j
1
=− r−1−|r1±r2 |

2

2 cosπ
�

jβ2 + s−s1∓s2
2

�

, (2.52)

where the product over j runs by increments of 1. This formula is in fact valid irrespective of
the signs of r1− r2 and r−|r1− r2|: the sign prefactor ensures that it picks a factor (−)rs under
the permutation 1↔ 2 as it should, and in the first product, the + factor is one if r ≤ r1+ r2,
while the − factor is one if r ≤ |r1 − r2|.

For r, s ∈ N∗, we compute the reference 2-point structure constant by taking a limit from
the generic case s /∈ Z (1.6),

Bref
(r,s) =

(−)(r+1)(s+1)

2πβ sin(πβ−2s)
Γ−1
β

�

β − 2P̄
� �

Resβ+2P̄ Γβ
�−1
∏

±
Γ−1
β (β ± 2P) . (2.53)

Moreover, the diagonal 2-point structure constant (1.4) at any momentum P may be rewritten
as

BP =
sin(2πβP)

sin(2πβ−1P)

∏

±
Γ−2
β (β ± 2P) . (2.54)

When combining these 2-point structure constant with the quantity br,s (2.46), we find

br,s

BP(r,s)

Bref
(r,s)

=
1
2
(−)(r+1)sw′
�

P(r,s)
�

, (2.55)
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where w′(P) is the derivative of the loop weight w(P) (1.14). Now, let us use this result,
together with the corresponding combination of 3-point structure constants (2.47), in order
to evaluate the residues of 4-point structure constants (2.44):

Res
w=w(P(r,s))

D(r,s)(w)

Dref
(r,s)

=
r∈N∗,s∈N

−(−)(r+1)sρ
r,s
(r1,s1)(r2,s2)

ρ
r,s
(r4,s4)(r3,s3)

. (2.56)

While we have been assuming s ∈ N∗, this result is in fact also valid for s = 0, as we now
quickly sketch. In this case P = P̄, so that formally cr,s(P1, P2) = 1 in Eq. (2.46), and our
results for ρr,s

(r1,s1)(r2,s2)
are still valid. The reference 2-point function becomes

Bref
(r,0) =

(−)r

2π2
Γ−2
β (β − 2P)
�

Resβ+2P Γβ
�−2

,

and we have

ResP=P(r,0) B
−1
P =

π

2β
(−)r

sin(2πβP)
Γ 2
β (β − 2P)
�

Resβ+2P Γβ
�2

.

Having obtained the residues of D(r,s), let us dispel a cloud of asymmetry that hangs over
the whole calculation. The logarithmic conformal block G(r,s) is normalized with respect to the
primary field V(r,s), which is left-degenerate for r, s ∈ N∗. The same logarithmic module also
contains the right-degenerate primary field V(−r,s) [23]. Normalizing with respect to V(−r,s),
we would have to do the replacements R̄r,s → Rr,s and Dref

(r,s) → Dref
(−r,s) in our calculation. We

would nevertheless get the same residue (2.56), thanks to the identity
R̄r,s

Dref
(r,s)
=

Rr,s

Dref
(−r,s)

, which

follows from
cr,s(P̄1,P̄2)

C ref
(r,s)(r1,s1)(r2,s2)

=
cr,s(P1,P2)

C ref
(−r,s)(r1,s1)(r2,s2)

, which can itself be deduced from the behaviour of

Eq. (2.26) under R→−R.

Polynomial factors

Remarkably, the normalized residues (2.56) of D(r,s)(w) are polynomial functions of loop
weights. The quantity ρr,s

(r1,s1)(r2,s2)
(2.52) is indeed a polynomial function of the weight n

(1.12) of contractible loops. Moreover, if V(r1,s1) and/or V(r2,s2) are diagonal (i.e. r1 = 0 and/or
r2 = 0), then ρr,s

(r1,s1)(r2,s2)
is also polynomial in the corresponding loop weights wi = w(Pi)

(1.14), with si = 2βPi . The degrees of this polynomial are

degnρ
r,s
(r1,s1)(r2,s2)

=
�

1
2

�

r2 + r2
1 + r2

2

�

− r max(r1, r2)
�

, (2.57)

degw1
ρ

r,s
(0,s1)(r2,s2)

= r − r2 . (2.58)

(We assume r > |r1− r2|, otherwise our polynomial is constant.) Let us illustrate this in a few
examples. We start with the case ρr,s

(0,s1)(0,s2)
where both fields are diagonal:

ρ1,0 = w1 +w2 , (2.59a)

ρ1,1 = −w1 +w2 , (2.59b)

ρ2,0 = w2
1 +w2

2 + n2 − nw1w2 − 4 , (2.59c)

ρ2,1 = w2
1 +w2

2 + n2 + nw1w2 − 4 , (2.59d)

ρ3,0 = (w1 +w2)
�

w2
1 +w2

2 + (n
2 − 2)2 +w1w2(n

2 − 2)− 4
�

, (2.59e)

ρ3,1 = (−w1 +w2)
�

w2
1 +w2

2 + (n
2 − 2)2 −w1w2(n

2 − 2)− 4
�

. (2.59f)
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Next, we consider an example with two non-diagonal fields ρr,s
( 3

2 , 2
3 )(

1
2 ,0)

:

ρ1,0 = 1 , (2.60a)

ρ1,1 = 1 , (2.60b)

ρ2,0 = 1 , (2.60c)

ρ2,1 =
p

3 , (2.60d)

ρ3,0 = −(n+ 1) , (2.60e)

ρ3,1 = −
p

3(n− 1) . (2.60f)

Now comes the crux of the argument of this section 2.3, and maybe of the whole article.
Since the normalized 4-point structure constant has polynomial residues, we conjecture that
its holomorphic term, which is obtained by subtracting the simple pole, is also polynomial.
In fact, we further conjecture that an x-channel normalized 4-point structure constant is still
polynomial when it has no pole, i.e. when s /∈ Z, or even when there is no diagonal field in
the channel, equivalently when the signature σ(x) is nonzero.

Let us write these conjectures more explicitly. We call d(x)(r,s) the normalized 4-point structure
constant, after subtracting the pole term if there is one, so that

D(x)(r,s)

D(x)ref
(r,s)

= d(x)(r,s) +δσ(x),0δs∈Z

f (x)(r,s)
wx −w(P(r,s))

. (2.61)

Here we have restored the dependence on the channel x ∈ {s, t, u}, instead of working in the
s-channel only. The quantity wx is the loop weight of the x-channel diagonal field, if it exists.
The residue f (x)(r,s) is known explicitly; in the s-channel it is given by Eq. (2.56). The term d(x)(r,s)
will be computed using numerical bootstrap methods; exact expressions can then be inferred
from numerical results thanks to the following conjecture:

Conjecture: The normalized structure constants d(x)(r,s), defined as in Eq. (2.61) to ex-
clude the pole term when there is one, depend polynomially on all relevant loop weights:
the weight n of contractible loops, which is related to the central charge via Eq. (1.12),
the weights of diagonal fields w1, w2, w3, w4, and the weights of channel diagonal fields
ws, wt , wu when applicable.

Let us sketch how our conjectured polynomials behave under shifts, according to the results
of Section 2.2:

• Whenever we have a diagonal field, normalized structure constants are invariant under
the corresponding shift P → P +β−1, according to Eq. (2.37). Together with the invari-
ance under P →−P, this implies that d(x)(r,s) is indeed a function of loop weights, and not
a more general function of momenta.

• According to Eq. (2.29), we have d(x)(r,s+2) = ±d(x)(r,s), with a sign that depends on r, ri . This
allows us to focus on second indices in an interval of length 2, say −1< s ≤ 1. We apply
a similar restriction to the indices si .

• The shift equation (2.34) for normalized 3-point structure constants gives rise to sign
flips w→−w of the corresponding loop weights. This shift equation not only determines
how d(x)(r,s) picks sign factors under combinations of shifts of the type si → si + 1, but it

also relates d(x)(r,s) with d(x)(r,s+1).
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We will write shift equations for d(x)(r,s) more explicitly in examples in Section 3.

2.4 Permutation symmetry of 4-point functions

It is a fundamental axiom of CFT that bosonic fields commute, and a correlation function
¬

∏N
i=1 Vi(zi)
¶

does not depend on the order in which we write the fields. We will now de-
duce the behaviour of conformal blocks and structure constants under field permutations. We
include this elementary technical subject not just to provide comic relief after the previous
subsection, but also because this will allow us to write the numerical results of Section 3 more
compactly.

Behaviour of conformal blocks

We parametrize primary fields by their left and right conformal dimensions∆, ∆̄, whose differ-
ence is the conformal spin S = ∆̄−∆. Let x = z12z34

z13z24
be the cross-ratio, then a 4-point function

reads
® 4
∏

i=1

Vi(zi)

¸

=
�

�

�z−2∆1
13 z∆1−∆2−∆3+∆4

23 z∆1+∆2−∆3−∆4
34 z−∆1−∆2+∆3−∆4

24

�

�

�

2
G (x) , (2.62)

where we use the notation
�

�z∆
�

�

2
= z∆z̄∆̄, and the function of the cross-ratio may be written

as

G(x) =
¬

V1(x)V2(0)V3(∞)V4(1)
¶

. (2.63)

Given any permutation of the four fields, we can deduce how G(x) behaves from the invariance
of
¬

∏4
i=1 Vi(zi)
¶

. For example, in the case of the transposition 1↔ 2, which we also call 2134,
we have

G(x) =
�

�(1− x)−∆1−∆2+∆3−∆4
�

�

2 G
�

2134
�

�

x
x−1

�

. (2.64)

The behaviour of conformal blocks is more complicated, because a permutation can relate
different channels, and because blocks can pick signs. Non-chiral conformal blocks are char-
acterized by their asymptotic behaviour:

G(s)
∆,∆̄
(x) =

x→0

�

�x∆−∆1−∆2
�

�

2
(1+O(x)) , (2.65a)

G(t)
∆,∆̄
(x) =

x→1

�

�(1− x)∆−∆1−∆4
�

�

2
(1+O(1− x)) , (2.65b)

G(u)
∆,∆̄
(x) =

x→∞

�

�

�

� 1
x

�∆+∆1−∆3
�

�

�

2
�

1+O
� 1

x

��

. (2.65c)

Tracking the asymptotic behaviour of blocks before and after the permutation, we obtain

G(s)
∆,∆̄
(x) = (−)S+S1+S2

�

�(1− x)−∆1−∆2+∆3−∆4
�

�

2 G(s)
∆,∆̄

�

2134
�

�

x
x−1

�

, (2.66a)

G(t)
∆,∆̄
(x) = (−)S+S2+S3

�

�(1− x)−∆1−∆2+∆3−∆4
�

�

2 G(u)
∆,∆̄

�

2134
�

�

x
x−1

�

, (2.66b)

G(u)
∆,∆̄
(x) = (−)S+S1+S3

�

�(1− x)−∆1−∆2+∆3−∆4
�

�

2 G(t)
∆,∆̄

�

2134
�

�

x
x−1

�

. (2.66c)

Let us write the sign prefactors in a matrix of size 3, whose rows respectively correspond to
the blocks G(x)

∆,∆̄
(x),G(t)

∆,∆̄
(x),G(u)

∆,∆̄
(x), and whose colums correspond to the permuted blocks

G(s)
∆,∆̄

�

2134
�

�

x
x−1

�

,G(t)
∆,∆̄

�

2134
�

�

x
x−1

�

,G(u)
∆,∆̄

�

2134
�

�

x
x−1

�

. We also write the analogous matrices
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for the 5 remaining transpositions, plus 2 other involutive permutations. (We choose these
8 permutations for later convenience.) We use the notations Stotal = S1 + S2 + S3 + S4 and
∆14

23 = ∆2 +∆3 −∆1 −∆4 and ∆124
3 = ∆3 −∆1 −∆2 −∆4. In the left column we reproduce

Eq. (2.64), and generalize it to the other permutations:

G(x) =
�

�

�(1− x)∆
124
3

�

�

�

2
G
�

2134
�

�

x
x−1

�

�

(−)S+S1+S2

(−)S+S2+S3

(−)S+S1+S3

�

G(x) = (−)Stotal
�

�(1− x)−2∆1
�

�

2 G
�

1243
�

�

x
x−1

�

�

(−)S+S3+S4

(−)S+S2+S3

(−)S+S2+S4

�

G(x) = (−)StotalG (1432|1− x)
h 1

1
(−)S+S1+S3

i

G(x) =
�

�

�x∆
12
34(1− x)∆

14
23

�

�

�

2
G (3214|1− x)

h 1
1
(−)S+S2+S4

i

G(x) = (−)Stotal
�

�x−2∆1
�

�

2 G
�

1324
�

�

1
x

�

h 1
(−)S+S1+S4

1

i

G(x) =
�

�

�x∆
124
3

�

�

�

2
G
�

4231
�

�

1
x

�

h 1
(−)S+S1+S4

1

i

G(x) = (−)Stotal

�

�

�x∆
12
34(1− x)∆

14
23

�

�

�

2
G (3412|x)
h 1

1
(−)Stotal

i

G(x) = (−)Stotal

�

�

�(1− x)∆
14
23

�

�

�

2
G (2143|x)

h 1
1
(−)Stotal

i

(2.67)

For example, G(s)
∆,∆̄
(x) = (−)S+S3+S4

�

�(1− x)−2∆1
�

�

2 G(s)
∆,∆̄

�

1243
�

�

x
x−1

�

. Beware that the spin S
may refer to the s-channel, t-channel or u-channel spin, depending on the context. In our
matrices, S should therefore be viewed as an operator whose eigenvalues are channel spins.

Behaviour of solutions of crossing symmetry

The crossing symmetry equations for a 4-point function are schematically

∀x ∈ C ,
∑

D(s)G(s)(x) =
∑

D(t)G(t)(x) =
∑

D(u)G(u)(x) , (2.68)

where the unknowns are the 4-point structure constants
�

D(s), D(t), D(u)
�

. (See [29] for more
details.) Given a solution for the 4-point function




V1V2V3V4

�

, Eqs. (2.66) implies that
�

(−)S+S1+S2 D(s), (−)S+S1+S3 D(u), (−)S+S2+S3 D(t)
�

is a solution for



V2V1V3V4

�

. If now
(∆1, ∆̄1) = (∆2, ∆̄2), then the equations for




V1V2V3V4

�

and



V2V1V3V4

�

coincide, and any
solution can be uniquely decomposed as a sum of an even-spin and an odd-spin solution,
which we define as solutions that obey the following linear constraints:

Even-spin solutions: D(s)(r,s) =
S∈2Z+1

0 , D(t)(r,s) = (−)
S+S1+S3 D(u)(r,s) , (2.69)

Odd-spin solutions: D(s)(r,s) =S∈2Z
0 , D(t)(r,s) = −(−)

S+S1+S3 D(u)(r,s) , (2.70)

where S = rs. Let us generalize this to all possible coincidences of conformal dimensions in
4-point functions. If the dimensions of 2 fields coincide, then there is a channel where the
conformal spin can be assumed to be either odd or even (the s-channel in our example), and
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the 4-point structure constants of the other two channels are related. If the dimensions of 3
or 4 fields coincide, we may assume the spin to have definite parity in any channel, but there
is no guarantee that an s-channel even-spin solution is also even-spin in the other channels.
Examples:

• In the case of


V( 3
2 , 2

3 )
V 3
( 1

2 ,0)

·

, the space of solutions of crossing symmetry is

two-dimensional [29]. There are three different bases of solutions, parametrized by
x ∈ {s, t, u}. Each basis is made of an x-channel even-spin solution, and an x-channel
odd-spin solution.

• In the case of


V( 3
2 ,0)V

3
( 1

2 ,0)

·

, the space of solutions is still two-dimensional. There is a

basis made of a solution that is even-spin in all channels, and a solution that is odd-spin
in all channels.

Let us summarize the relations between 4-point structure constants for even-spin and odd-spin
solutions, depending on which fields have the same dimensions. If 3 or 4 fields have the same
dimensions, we consider solutions that are even-spin or odd-spin in all channels, if they exist.
For solutions that are even-spin or odd-spin in only one channel, the relations are the same as
when only 2 fields have the same dimensions:

Equal dimensions Even spin solutions Odd spin solutions

1,2 or 3, 4 D(t) = (−)S+S2+S3 D(u) D(t) = −(−)S+S2+S3 D(u)

2,4 or 1, 3 D(s) = (−)Stotal D(t) D(s) = −(−)Stotal D(t)

2,3 D(s) = (−)Stotal D(u) D(s) = −(−)Stotal D(u)

1,4 D(s) = D(u) D(s) = −D(u)

1,2, 3 or 2,3, 4 D(t) = D(u) = (−)Stotal D(s) D(t) = D(u) = −(−)Stotal D(s)

1,3, 4 or 1,2, 4 D(s) = D(u) = (−)Stotal D(t) D(s) = −D(u) = −(−)Stotal D(t)

1,2, 3,4 D(s) = D(t) = D(u) D(s) = −D(t) = −D(u)

(2.71)

Structure constants of a permuted 4-point function

Permutation symmetry implies an equivalence between solutions of crossing symmetry for



V1V2V3V4

�

and for any permuted 4-point function, say



V2V1V3V4

�

. The precise relation be-
tween solutions depend not only on how conformal blocks behave under the permutation,
but also on how the solutions are normalized. In particular, notice that our normalization
assumption (2.39) induces unnatural permutation behaviour: under permutations, reference
structure constants are invariant, whereas structure constants in general pick a sign. In our
example, this implies that if there is an s-channel diagonal field, then the s-channel structure
constants for



V1V2V3V4

�

and



V2V1V3V4

�

differ by (−)S instead of the expected (−)S+S1+S2 .

What about parity?

Parity is another discrete symmetry of correlation functions. Conformal blocks are invariant
under the parity transformation V∆,∆̄(z) → V∆̄,∆(z̄) applied to all fields. Therefore, the ex-
change ∆↔ ∆̄ maps a solution of crossing symmetry to another solution. For a 4-point func-
tion of spinless fields

¬

∏4
i=1 V(ri ,0)

¶

, any solution can be decomposed into a parity-even term
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and a parity-odd term. For example, the odd-spin solution for


V( 3
2 ,0)V

3
( 1

2 ,0)

·

is also parity-odd.

Parity may be combined with permutation symmetry: for example,



V(r,s)V(r,−s)V(r3,0)V(r4,0)
�

is
invariant under parity times the permutation 1↔ 2. Parity may also be combined with the
shift equations of Section 2.2: for example, the field V(r,1) is related to its parity image V(r,−1)
by a shift s→ s+2. We refrain from systematically investigating all these possibilities, but we
will indicate the symmetries of the solutions of crossing symmetry that we will find.

3 Numerical bootstrap results

3.1 Four-point functions of diagonal fields

Given the central charge c and three loop weights ws, wt , wu, there is a unique solution of cross-
ing symmetry for the diagonal 4-point function

¬

∏4
i=1 VPi

¶

, with diagonal fields of weight wx

propagating in the channel x ∈ {s, t, u} [25]. In any channel, the decomposition into conformal
blocks is therefore given by Eq. (2.38). The normalized 4-point structure constants for the di-
agonal channel fields are known to be one: it remains to determine the structure constants d(x)(r,s)
for the non-diagonal x-channel fields V(r,s). According to the conjecture of Section 2.3, these
structure constants are polynomial functions of the 8 loop weights n, ws, wt , wu, w1, w2, w3, w4.

Symmetries of normalized structure constants

Name Origin Equations

Partition [25] ∂ws
∂wt

d(x)(r,s) = 0

Parity Section 2.4 d(x)(r,s) = d(x)(r,−s)

Permutation Table (2.67)

d(x)(r,s)

�

�

�w1↔w2
w3↔w4

= d(x)(r,s)

d(s)(r,s)

�

�

�w1↔w2
wt↔wu

= (−)rsd(s)(r,s)

d(s)(r,s)

�

�

�w2↔w4
ws↔wt

= d(t)(r,s)

d(s)(r,s)

�

�

�w2↔w3
ws↔wu

= d(u)(r,s)

Shift Eq. (2.29) d(x)(r,s) = d(x)(r,s+2)

Reflection Eq. (2.34)

d(x)(r,s)

�

�

�

w1,2,3,4→−w1,2,3,4

= d(x)(r,s)

d(s)(r,s)

�

�

�

w1,2,t,u→−w1,2,t,u

= (−)r d(s)(r,s)

d(s)(r,s)

�

�

�

w2,3,s,u→−w2,3,s,u

= (−)r d(s)(r,s+1)

(3.1)

Thanks to these symmetries, all structure constants d(x)(r,s) can in principle be deduced from the

s-channel case, with a second Kac index obeying 0≤ s ≤ 1
2 . We will write a bit more than this

minimal set, in order to make some symmetries manifest.
Let us sketch how we derive the reflection equations from the behaviour (2.34) of the 3-

point structure constant. We first choose which loop weights should change signs, such that
at each vertex in each channel, 0 or 2 edges are affected. In the case w2,3,s,u → −w2,3,s,u, let
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us draw the affected edges as dashed lines:

2
s

3

1 4

,

2 3

1

t

4

,

2

u

3

41

. (3.2)

Now, the behaviour of a 4-point structure constant is given by the product of the sign factors
coming from its vertices. These sign factors depend on the orientation around each vertex,
since Eq. (2.34) is not invariant under orientation-reversing permutations. For example, d(s)(r,s)
picks no sign from the vertex 12s, and a sign (−)r from the vertex 34s. And reflection ws→−ws
amounts to (r, s)→ (r, s+ 1) for the non-diagonal fields in that channel.

Degrees

In numerical bootstrap results, we observe that normalized structure constants are indeed
polynomial in loop weights, with the degrees:

(r, s) degn d(s)(r,s) degws
d(s)(r,s) degwt ,wu

d(s)(r,s) degwi
d(s)(r,s)

(1, 0) 0 0 1 0

(2, 0) 2 1 2 1

(2, 1
2) 2 0 2 1

(3, 0)(3, 1
3) 6 1 3 2

(4, 0)(4, 1
2) 12 2 4 3

(4, 1
4) 12 1 4 3

(5,0)(5, 1
5)(5, 2

5) 20 2 5 4

(r, s) r(r − 1) ≤
� r

2

�

r r − 1

(3.3)

In the last row, we have used these results to conjecture the degrees for any (r, s), or an upper
bound in the case of degws

d(s)(r,s). In particular, the degrees in n saturate the bound (1.13), and
the degrees in ws, wt , wu are consistent with the general formulas (1.19).

Expression in terms of residues

While the dependences of d(x)(r,s) on ws, wt , wu do not mix thanks to the partition equations,
the dependences on w1, w2, w3, w4 are not so simple. However, we already know a family
of polynomials of these four variables: the residues f (x)(r,s) (2.61) of the normalized structure

constants with integer second index s ∈ Z, or rather s ∈ {0,1} since f (x)(r,s+2) = f (x)(r,s). It is
tempting to rewrite numerical results in terms of these residues. We have found that this is
indeed possible, and that the structure constants in a given channel can actually be written in
terms of the residues in that same channel.

For simplicity, we do not quite use the residues (2.56), but we remove their sign prefactors,
and include a prefactor 1

2 . We focus on the s-channel residues,

pr,s =
1
2
ρ

r,s
(0,s1)(0,s2)

ρ
r,s
(0,s4)(0,s3)

, (3.4)
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where ρr,s is defined in Eq. (2.52), while the first few examples are displayed in Eq. (2.59).
The price to pay is that when rewritten as a polynomial in the residues pr,s, structure

constants are in general no longer polynomial in n. This phenomenon occurs for the first time
in the structure constant d(s)

(3, 1
3 )

, due to relations of the type

p2,1 − p2,0 + np2
1,1 − np2

1,0

n(n2 − 4)
= w1w2 +w3w4 , (3.5)

p2,0 + p2,1 − 2p2
1,0 − 2p2

1,1

(n2 − 4)
= w2

1 +w2
2 +w2

3 +w2
4 +w1w2w3w4 + n2 − 4 . (3.6)

Explicit results

For r = 0, 1, we explicitly write the structure constants in all three channels:

d(s,t,u)diag = 1 , (3.7a)

d(s)(1,0) = wt +wu , d(t)(1,0) = ws +wu , d(u)(1,0) = ws +wt , (3.7b)

d(s)(1,1) = wu −wt , d(t)(1,1) = wu −ws , d(u)(1,1) = ws −wt . (3.7c)

For r = 2, 3, we focus on s-channel structure constants, and we write the dependence on
w1, w2, w3, w4 through the residues pr,s (3.4):

2d(s)(2,0) = (n
2 − 4)
�

w2
t +w2

u + 2ws − 4
�

− (n− 2)(wt +wu)p1,0 − (n+ 2)(wt −wu)p1,1 ,

(3.7d)

2d(s)(2,1) = (n
2 − 4)
�

w2
t +w2

u − 2ws − 4
�

− (n+ 2)(wt +wu)p1,0 − (n− 2)(wt −wu)p1,1 ,

(3.7e)

2d(s)
(2, 1

2 )
= n2(w2

u −w2
t ) + n(wt −wu)p1,0 + n(wt +wu)p1,1 , (3.7f)

3d(s)(3,0) = n2(n2 − 4)2
�

w3
t +w3

u −wt −wu

�

− n(n2 − 4)2
�

w2
t −w2

u

�

p1,1

− n2(n2 − 4)
�

nw2
t + nw2

u − 4ws − 4n
�

p1,0 + 2(n2 − 4)(wt −wu)p1,0p1,1

−
�

n2p2
1,0 + (n

2 − 4)p2
1,1 − n(n− 2)p2,0 − n(n+ 2)p2,1

�

(wt +wu) , (3.7g)

3d(s)(3,1) = n2(n2 − 4)2
�

wt −wu −w3
t +w3

u

�

+ n(n2 − 4)2
�

w2
t −w2

u

�

p1,0

+ n2(n2 − 4)
�

nw2
t + nw2

u + 4ws − 4n
�

p1,1 − 2(n2 − 4)(wt +wu)p1,0p1,1

+
�

n2p2
1,1 + (n

2 − 4)p2
1,0 − n(n− 2)p2,1 − n(n+ 2)p2,0

�

(wt −wu) , (3.7h)

3
n2 − 1

d(s)
(3, 1

3 )
= (n2 − 1)(n2 − 3)

�

4wt − 4wu −w3
t +w3

u

�

+ n(n2 − 1)(w2
t −w2

u)p1,0

+ (n2 − 3)
�

nw2
t + nw2

u − 2ws − 4n
�

p1,1 − 2(wt +wu)p1,0p1,1

+
wt −wu

n2 − 4

�

(n2 − 3)p2
1,1 + (n

2 − 1)p2
1,0 −

n+ 1
n
(n2 − 3)p2,1 −

n− 1
n
(n2 − 3)p2,0

�

,

(3.7i)
3

n2 − 1
d(s)
(3, 2

3 )
= (n2 − 1)(n2 − 3)

�

w3
t +w3

u − 4wt − 4wu

�

− n(n2 − 1)(w2
t −w2

u)p1,1

− (n2 − 3)
�

nw2
t + nw2

u + 2ws − 4n
�

p1,0 + 2(wt −wu)p1,0p1,1

−
wt +wu

n2 − 4

�

(n2 − 3)p2
1,0 + (n

2 − 1)p2
1,1 −

n+ 1
n
(n2 − 3)p2,0 −

n− 1
n
(n2 − 3)p2,1

�

.

(3.7j)
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For r ≥ 4, the larger degree of polynomials makes it impractical to determine them with our
current code.

3.2 Cluster connectivities of the Potts model

Connectivities of Fortuin–Kasteleyn clusters in the Q-state Potts model have been receiving
much attention, because they are simple geometrical observables of critical loop models. Com-
puting connectivities has allowed various approaches to be tested and compared: Monte-
Carlo [17, 32, 33], diagram algebras [26], conformal bootstrap [17, 20, 23]. Here we will
write connectivities in terms of our diagonal 4-point functions, and give exact formulas for
their structure constants up to r = 6, and for some structure constants for r = 8, 10.

Expression in terms of diagonal 4-point functions

Four-point connectivities are diagonal 4-point functions of the type


V 4
P
(0, 1

2 )

·

. There is a unique

solution of crossing symmetry Z(ws, wt , wu) for this 4-point function if we specify one diagonal
field propagating in each channel. However, connectivities can have multiple propagating
diagonal fields, which we now write together with the corresponding loop weights according
to Eq. (1.14):

Diagonal field VP
(0, 1

2 )
V〈1,1〉 V〈1,2〉

Loop weight 0 n −n
(3.8)

There exist four independent connectivities. Let us indicate which diagonal fields appear in
which channel in each case:

Connectivity s-channel t-channel u-channel

Paaaa VP
(0, 1

2 )
VP
(0, 1

2 )
VP
(0, 1

2 )

Paabb VP
(0, 1

2 )
, V〈1,1〉, V〈1,2〉 − −

Pabba − VP
(0, 1

2 )
, V〈1,1〉, V〈1,2〉 −

Pabab − − VP
(0, 1

2 )
, V〈1,1〉, V〈1,2〉

(3.9)

This determines each connectivity as a linear combination of diagonal 4-point functions, up
to normalization. To determine the normalizations, we use known relations for s-channel
structure constants daaaa

0 = 2 [22,24] and daabb
0 = −daaaa

0 [33], where the subscripts refer to
the loop weight w= 0 of VP

(0, 1
2 )

. This leads to

Paaaa = 2Z(0,0, 0) , (3.10a)

Paabb = Z(n, 0, 0) + Z(−n, 0, 0)− 2Z(0, 0,0) , (3.10b)

Pabba = Z(0, n, 0) + Z(0,−n, 0)− 2Z(0, 0,0) , (3.10c)

Pabab = Z(0,0, n) + Z(0, 0,−n)− 2Z(0, 0,0) . (3.10d)

29

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029


SciPost Phys. 17, 029 (2024)

For example, in Paabb, the linear combination of three terms leads to the three diagonal fields
propagating in the s-channel. On the other hand, the contributions of the diagonal field VP

(0, 1
2 )

cancel between the terms in the t- and u-channels. This cancellation occurs because of the
partition symmetry, which means that ws, wt , wu appear in different terms of Z(ws, wt , wu)
[25].

Since we have multiple diagonal fields in the same channel, we must take linear combina-
tions of pole terms. In particular:

Daabb
(r,0)

Dref
(r,0)

= daabb
(r,0) −

4n2pr,0

w(P(r,0))
�

w(P(r,0))2 − n2
� , (3.11)

where pr,0 is defined in Eq. (3.4).

Symmetries of connectivities

First of all, connectivities belong to the Q-state Potts model, so they should be functions of
Q = n2. Equivalently, they should be invariant under n→−n. This does not follow from any
symmetry that we have considered, although the formulas for Paabb, Pabba, Pabab (3.10) at
least do not break this invariance via their explicit dependence on n. We find that numerical
bootstrap results are indeed invariant.

We focus on the s-channel structure constants of connectivities. For the other channels
we can use permutation symmetry, which relates for example the t-channel of Pabba to the
s-channel of Paabb. Due to the permutation and reflection symmetries (3.1), we have

daaaa
(r,s) ̸= 0 =⇒
�

r ∈ 2N∗ ,
rs ∈ 2Z ,

daaaa
(r,s+1) = daaaa

(r,s) , (3.12a)

daabb
(r,s) ̸= 0 =⇒
�

r ∈ 2N∗ ,
rs ∈ 2Z ,

daabb
(r,s+1) = daaaa

(r,s) , (3.12b)

dabab
(r,s) ̸= 0 =⇒ r ∈ 2N∗ , dabab

(r,s+1) = dabab
(r,s) , (3.12c)

dabba
(r,s) = (−1)rsdabab

(r,s) . (3.12d)

In particular, reflection symmetry, which ultimately follows from the existence of the degen-
erate field V〈1,2〉, explains the vanishing of structure constants with odd first index r ∈ 2N+1.
We recover the known spectrum of connectivities [34], which is a rather sparse subset of the
critical loop model spectrum (1.3). Thanks to this sparseness, it is possible to numerically
determine structure constants that would be out of reach for a general 4-point function of
diagonal fields.

Polynomial factors of structure constants

We have determined all structure constants with r ≤ 6, and we will now display their polyno-
mial factors. We label the structure constants of diagonal fields using their loop weights (3.8).

daaaa
0 = 2 , (3.13a)

daaaa
(2,0) = −4(Q− 4) , (3.13b)

daaaa
(4,0) = −2(Q− 4)3(Q− 1)2(Q− 2) , (3.13c)

daaaa
(4, 1

2 )
= 2Q3(Q− 3)2(Q− 2) , (3.13d)

3daaaa
(6,0) = 4(Q− 4)5(Q2 − 3Q+ 1)2(Q− 1)2

�

Q2 − 3(Q− 1)4
�

, (3.13e)

3daaaa
(6, 1

3 )
= 4(Q− 1)3(Q− 4)(Q− 3)Q

�

(Q− 3)2Q− 1
�

[(Q− 4)(Q− 3)(Q− 2)Q+ 1] , (3.13f)
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daabb
0 = −2 , (3.14a)

daabb
±n = 1 , (3.14b)

daabb
(2,0) = 0 , (3.14c)

daabb
(4,0) = (Q− 4)3(Q− 1)2Q2 , (3.14d)

daabb
(4, 1

2 )
= −Q3(Q− 3)2(Q− 2)2 , (3.14e)

3daabb
(6,0) = 4(Q− 4)5(Q− 2)(Q− 1)2Q2(Q2 − 3Q+ 1)2 , (3.14f)

3daabb
(6, 1

3 )
= −2(Q− 4)(Q− 3)(Q− 2)(Q− 1)3Q

�

(Q− 3)2Q− 1
�

× [(Q− 4)(Q− 3)(Q− 2)Q+ 1] . (3.14g)

dabab
(2,0) =Q(Q− 4) , (3.15a)

dabab
(2, 1

2 )
=Q2 , (3.15b)

2dabab
(4,0) = (Q− 4)3(Q− 1)2Q(Q2 − 3Q− 2) , (3.15c)

2dabab
(4, 1

2 )
= (Q− 4)(Q− 3)2(Q− 2)(Q− 1)Q3 , (3.15d)

2dabab
(4, 1

4 )
= (Q− 4)(Q− 3)(Q− 2)2Q2(Q2 − 4Q+ 1) , (3.15e)

3dabab
(6,0) = (Q− 4)5(Q− 1)2Q(Q2 − 3Q+ 1)2

×
�

Q6 − 9Q5 + 30Q4 − 40Q3 + 13Q2 + 4Q+ 3
�

, (3.15f)

3dabab
(6, 1

6 )
= (Q− 4)(Q− 3)3Q2

�

(Q− 3)2Q− 3
�

[(Q− 4)(Q− 2)(Q− 1)Q+ 1]

×
�

Q5 − 10Q4 + 34Q3 − 43Q2 + 11Q+ 5
�

, (3.15g)

3dabab
(6, 1

3 )
= (Q− 4)(Q− 3)(Q− 1)3Q

�

(Q− 3)2Q− 1
�

[(Q− 4)(Q− 3)(Q− 2)Q+ 1]

×
�

(Q− 4)(Q2 − 5Q+ 7)Q2 +Q+ 4
�

, (3.15h)

3dabab
(6, 1

2 )
= (Q− 3)3Q5(Q2 − 5Q+ 5)2

×
�

Q6 − 14Q5 + 80Q4 − 236Q3 + 369Q2 − 273Q+ 64
�

. (3.15i)

In addition, we have determined a couple of higher structure constants. We find that they are
still polynomial, although a bit complicated:

daaaa
(8,0) = −(Q− 4)7(Q− 1)2(Q− 2)(Q2 − 3Q+ 1)2 [(Q− 3)(Q− 2)Q− 1]2

×
�

Q2 − 2(Q2 − 3Q+ 1)4
�

, (3.16)

5daaaa
(10,0) = −4(Q− 4)9(Q− 1)6(Q2 − 3Q+ 1)2

�

(Q− 3)2Q− 1
�2
[(Q− 3)(Q− 2)Q− 1]2

×
�

5Q14 − 110Q13 + 1074Q12 − 6142Q11 + 22878Q10 − 58418Q9 + 104850Q8

− 133450Q7 + 119948Q6 − 74862Q5 + 31496Q4 − 8574Q3 + 1420Q2 − 130Q+ 5
�

.

(3.17)

These polynomials agree with previous results for the ratios of structure constants [20,23,26].
(To perform the comparison, do not forget the pole terms from Eq. (2.61)!) Our new results are
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however more general and more systematic; in particular we determine the structure constants
themselves and not just some ratios thereof.

The degrees of our polynomials do not necessarily obey the bound (1.13). For example,
degn dabab

(2,0) = 4 > 2. This is because the weights wx of channel diagonal fields are themselves

functions of n. Taking their contributions into account, we obtain the bound degQ d y
(r,s) ≤

1
2 r2

with y ∈ {aaaa, abab, abba, aabb}, which is obeyed in our examples.

We observe that daaaa
(r,0) includes a prefactor (Q− 4)

r
2−1
∏

r
2
j=1

�

T2 j−1(
Q−2

2 )− 1
�

, where T j is
a Chebyshev polynomial of the first kind. Using the identity

T2 j+1(x)− 1= (x − 1)
�

U j(x) + U j−1(x)
�2

, (3.18)

where U j is a Chebyshev polynomial of the second kind, this prefactor can be rewritten as

(Q − 4)r−1
∏

r
2
j=1

�

U j−1(
Q−2

2 ) + U j−2(
Q−2

2 )
�

. The relevant combinations of Chebyshev polyno-
mials are

U0 = 1 , (3.19a)

U1 + U0 =Q− 1 , (3.19b)

U2 + U1 =Q2 − 3Q+ 1 , (3.19c)

U3 + U2 = (Q− 3)(Q− 2)Q− 1 , (3.19d)

U4 + U3 = (Q− 1)
�

(Q− 3)2Q− 1
�

. (3.19e)

After the prefactor, we have a polynomial whose coefficients have alternating signs, which is
a good omen that its expression for all r might be tractable.

3.3 Four-point functions of diagonal and non-diagonal fields

When non-diagonal fields are involved, we typically find that some structure constants vanish,
for three types of reasons:

• Vanishing due to symmetry. This may happen to odd-spin or even-spin structure con-
stants, when our solutions are odd-spin or even-spin. This may also happen to structure
constants of the type d(x)(r,0) or d(x)(r,1), due to parity.

• Vanishing due to signature-dependent bounds. By construction, we impose the signature-
dependent constraints (1.16). Moreover, in the presence of an s-channel diagonal field,
i.e. if the signature is of the type (0,σ,σ), we observe the bound (1.19) on the degrees
of s-channel structure constants, which implies

1≤ r < 2σ =⇒ d(s)(r,s) = 0 . (3.20)

For the sake of brevity, we will omit such vanishing structure constants.

• Vanishing for no known reason. This happens rarely, and will be pointed out explicitly.

If there is an s-channel diagonal field, we fix the overall normalization of the solution by setting
the corresponding structure constant d(s)diag to one. If not, we set the structure constant(s) d(x)(r,s)
with the lowest first index r to be n-independent numbers. With these normalizations, we
observe that the structure constants d(x)(r,s) are polynomial.
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Case of



V(1,0)VP1
VP2

VP3

�

with σ = (0, 1,1)

We indicate the symmetries of the normalized 4-point structure constants, in the same way as
in Table (3.1):

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s)

�

�

�

w2↔w3

= (−)rsd(s)(r,s) , d(t)(r,s)

�

�

�

w2↔w3

= (−)rsd(u)(r,s)

Shift d(x)(r,s) = d(x)(r,s+2)

Reflection
d(s)(r,s)

�

�

�

−w2,3

= (−)r d(s)(r,s) , d(s)(r,s)

�

�

�

−w1,2,s

= (−)r+δr ̸=0 d(s)(r,s+1)

d(t)(r,s)

�

�

�

−w2,3

= (−)r d(t)(r,s+1) , d(t)(r,s)

�

�

�

−w1,2,s

= (−)r+1d(t)(r,s)

(3.21)

There is a subtlety with the reflection equations: the structure constant d(s)diag, which we nor-
malize to one, is predicted by Eq. (2.34) to change sign under w1,2,s→−w1,2,s. When writing

the behaviour of a structure constant d(x)(r,s), we actually display the behaviour of the ratio
d(x)(r,s)
d(s)diag

,

including a minus sign from the denominator.
Vanishing structure constant d(s)

(2, 1
2 )
= 0. This follows from permutation symmetry, if we

assume that d(s)
(2, 1

2 )
does not depend on wi .

d(s)diag = 1 , (3.22a)

d(s)(2,0) = n2 − 4 , (3.22b)

d(s)(2,1) = −(n
2 − 4) , (3.22c)

3d(s)(3,0) = −2n2(n2 − 4)(n−w1)(w2 +w3) , (3.22d)

3d(s)
(3, 1

3 )
= −(n2 − 3)(n2 − 1)(n+w1)(w2 −w3) , (3.22e)

3d(s)
(3, 2

3 )
= (n2 − 3)(n2 − 1)(n−w1)(w2 +w3) , (3.22f)

3d(s)(3,1) = 2n2(n2 − 4)(n+w1)(w2 −w3) . (3.22g)

d(t)(1,0) = 1 , (3.22h)

d(t)(1,1) = −1 , (3.22i)

2d(t)(2,0) = ws(n
2 − 4) + (2+w3)(2w1 − nw2) , (3.22j)

2d(t)
(2, 1

2 )
= n(w2w3 −wsn) , (3.22k)

2d(t)(2,1) = ws(n
2 − 4) + (2−w3)(2w1 + nw2) . (3.22l)

Let us now display the degrees of polynomials for this 4-point function. We write 0 if the
degree vanishes, and “zero” denotes vanishing structure constants. These degrees obey the
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conjectures (1.13) and (1.19).

(r, s) degn d(s)(r,s) degws
d(s)(r,s) degws

d(t,u)(r,s) degw1
d(s)(r,s) degw1

d(t,u)(r,s)

(1,0)(1,1) zero zero 0 zero 0

(2,0)(2,1) 2 0 1 0 1

(2, 1
2) zero zero 1 0 0

(3,0)(3,1) 5 0 2 1 2

(3, 1
3)(3, 2

3) 5 0 2 1 1

(4,0)(4,1) 12 1 3 2 3

(4, 1
2) 12 1 3 2 2

(4, 1
4) 8 1 3 2 2

(r, s) ≤ r(r − 1)
� r

2 − 1
�

r − 1 r − 2 ≤ r − 1

(3.23)

Case of
¬

V( 1
2 ,0)V( 1

2 ,0)VP1
VP2

¶

with σ = (0, 1
2 , 1

2)

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(x)(r,s)

�

�

�

w1↔w2

= d(x)(r,s) , d(s)(r,s) = (−)
rsd(s)(r,s) , d(t)(r,s) = (−)

rsd(u)(r,s)

Shift d(x)(r,s) = −d(x)(r,s+2)

(3.24)

Vanishing structure constants: d(s)odd-spin = 0 from permutation symmetry, and d(s)(r,1) = 0 from
the parity and shift equations.

d(s)diag = 1 , (3.25a)

d(s)(1,0) = 2 , (3.25b)

d(s)(2,0) = 2(n− 2)
�

n+ 2− p1,0

�

, (3.25c)

3d(s)(3,0) = 2n2(n− 2)
�

(n2 − 4)
�

(n+ 2)(ws + 1)− 2p1,0

�

− p2,0 − (n+ 1)p2
1,0

�

, (3.25d)

3d(s)
(3, 2

3 )
= 2(n2 − 3)(n2 − 1)(n+ 1)

�

− (n− 1)(ws − 2)− p1,0 +
p2,0

n2 − 4
+

p2
1,0

n+ 2

�

. (3.25e)

Here the residues pr,s are given by Eq. (3.4), and their values are

p1,0 = w1 +w2 , (3.25f)

p2,0 = 2(1− n)
�

w2
1 +w2

2 + n2 − nw1w2 − 4
�

. (3.25g)
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d(t)
( 1

2 ,0)
= 1 , (3.25h)

3d(t)
( 3

2 ,0)
= (w1 + 2)(w2 + 2)− (n+ 2)(ws + 2) , (3.25i)

3d(t)
( 3

2 , 2
3 )
= 2 [(w1 − 1)(w2 − 1)− (n− 1)(ws − 1)] , (3.25j)

5d(t)
( 5

2 ,0)
= w2

s (n+ 2)2(n− 1)2 −ws(n+ 2)(n− 1) [n(w1w2 + 2) +w1(w2 − 2)− 2w2]

+ (n−w1)(n−w2)
�

3n2 − n(w1 +w2 − 2) +w1w2 − 4
�

, (3.25k)

5d(t)
( 5

2 , 2
5 )
= 2n
�

ϕ(2n2 − n− 4)(n− 1)− 2n2 + n+ 3
�

+ 2ϕ(n−ϕ)
�

2n2 − 2n−ϕ − 2
�

ws − 2(n−ϕ)(n+ϕ−1)[ϕ(n2 − 2)− n− 1]w2
s

− 2(n− 1)(n−ϕ)ws(w1 +w2)− 2
�

(n+ 1)(n− 2)2ϕ − 2n2 + 2n+ 3
�

(w1 +w2)

+ 2ϕ(n−ϕ)(n2 − 1)wsw1w2 − 2[ϕ(n2 − 2) + n− 1]w1w2

+ 2nw1w2(w1 +w2)− 2
�

ϕ(n2 − 3)− 1
�

(w2
1 +w2

2)− 2ϕw2
1w2

2 , (3.25l)

d(t)
( 5

2 , 4
5 )
= −d(t)

( 5
2 , 2

5 )

�

�

�

ϕ→−ϕ−1
, (3.25m)

where we use the golden ratio

ϕ =
1+
p

5
2

= 2 cos
�π

5

�

. (3.26)

The degrees of these polynomials obey the conjectures (1.13) and (1.19).

Case of
¬

V( 3
2 ,0)V( 1

2 ,0)VP1
VP2

¶

with σ = (0, 3
2 , 3

2)

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s)

�

�

�

w1↔w2

= (−)rsd(s)(r,s) , d(t)(r,s)

�

�

�

w1↔w2

= (−)rsd(u)(r,s)

Shift d(s)(r,s) = (−)
δr≥2 d(s)(r,s+2) , d(t)(r,s) = −d(t)(r,s+2)

(3.27)

Vanishing structure constant: d(s)
(3, 1

3 )
= 0, which follows from permutation symmetry if we

assume that this structure constant does not depend on wi . Moreover, the parity and shift
equations imply d(s)(r≥2,1) = 0.

d(s)diag = 1 , (3.28a)

3d(s)(3,0) = 2n2
�

n2 − 4
�2

, (3.28b)

3d(s)
(3, 2

3 )
= −2
�

n2 − 3
� �

n2 − 1
�2

, (3.28c)
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3d(t)
( 3

2 ,0)
= −(n+ 2) , (3.28d)

3d(t)
( 3

2 , 2
3 )
= −2(n− 1) , (3.28e)

5d(t)
( 5

2 ,0)
= (n− 1)(n+ 2)

�

(w2 + 2) (2− (n+ 1)w1) + (n− 1)(n+ 2)ws

�

, (3.28f)

5d(t)
( 5

2 , 2
5 )
= 2(n−ϕ)
�

(n− 1)(ϕw2 + 1) ((n+ 1)w1 + 1−ϕ)

− (ϕn+ 1)
�

n2 + (1−ϕ)n−ϕ − 1
�

ws

�

, (3.28g)

5d(t)
( 5

2 , 4
5 )
= 2ϕ−2(ϕn+ 1)

�

(n− 1)(w2 −ϕ) ((n+ 1)w1 +ϕ)

− (n−ϕ)
�

n2 +ϕn+ϕ − 2
�

ws

�

. (3.28h)

The degrees of these polynomials obey the conjectures (1.13) and (1.19).

Case of
¬

V(1,1)V( 1
2 ,0)V( 1

2 ,0)VP

¶

with σ = (1
2 , 1, 1

2)

Parity d(s)(r, s) = (−)
δ

r≥ 3
2 d(s)(r,−s) , d(t)(r, s) = −d(t)(r,−s)

Permutation d(t)(r, s) = −(−)
rsd(t)(r, s) , d(s)(r, s) = d(u)(r, s)

Shift d(s)(r, s) = (−)
δ

r≥ 3
2 d(s)(r, s+2) , d(t)(r, s) = −d(t)(r, s+2)

(3.29)

In this case, it would seem that we do not have parity symmetry, because V(1,1) is not invariant
under parity. However, its image V(1,−1) is related by a shift. The parity behaviour of structure
constants is therefore obtained by using the shift equation for V(1,1). The parity symmetry

implies d(x)(r,0) = 0 (except d(s)
( 1

2 ,0)
), consistently with the fact that we have a t-channel odd-spin

solution i.e. d(t)even-spin = 0.

d(s)
( 1

2 ,0)
= 1 , (3.30a)

3d(s)
( 3

2 , 2
3 )
= −2
p

3(w− n) , (3.30b)

5d(s)
( 5

2 , 2
5 )
= 4cos
�

π
10

�

ϕ−2(ϕn+ 1)(n−w)
�

ϕw− n2 + (ϕ − 2)n+ 2ϕ + 1
�

, (3.30c)

5d(s)
( 5

2 , 4
5 )
= 4cos
�

π
10

�

(n−ϕ)(w− n)
�

ϕ−1w+ n2 + (ϕ + 1)n+ 2ϕ − 3
�

. (3.30d)

d(t)(1,1) = −2 , (3.30e)

d(t)
(2, 1

2 )
=
p

2n(w− n) , (3.30f)

3d(t)
(3, 1

3 )
= 2(n− 1)2(n+ 1)(w− n)[2w+ (n+ 3)(n− 1)] , (3.30g)

3d(t)(3,1) = 2(n− 2)(n+ 2)2(w− n)(w+ 2n2 − 5n) . (3.30h)
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3.4 Four-point functions of non-diagonal fields

Case of
¬

V( 1
2 ,0)V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

with σ = (0, 1,1)

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s) = (−1)rsd(s)(r,s) , d(t)(r,s) = (−)
rsd(u)(r,s)

Shift d(x)(r,s) = d(x)(r,s+2)

(3.31)

d(s)diag = 1 , (3.32a)

d(s)(2,0) = n2 − 4 , (3.32b)

d(s)(2,1) = −(n
2 − 4) , (3.32c)

3d(s)(3,0) = −8n2(n− 2)2(n+ 2) , (3.32d)

3d(s)
(3, 2

3 )
= 4(n2 − 1)(n2 − 3)(n− 2) , (3.32e)

2d(s)(4,0) = n2(n− 2)3(n+ 1)2(n+ 2)

×
�

ws(n+ 2)2(n− 1)2 + 2n4 − 6n2 − 8n+ 16
�

, (3.32f)

2d(s)
(4, 1

2 )
= −n3(n2 − 2)(n2 − 3)

×
�

wsn(n
2 − 2)(n2 − 3)− 4n4 + 4n3 + 8n2 + 4n− 16

�

, (3.32g)

2d(s)(4,1) = n2(n2 − 4)3(n− 1)2
�

ws(n+ 1)2 − 2n2 − 8n− 10
�

. (3.32h)

d(t)(1,0) = 1 , (3.32i)

d(t)(1,1) = −1 , (3.32j)

2d(t)(2,0) = (n− 2) [ws(n+ 2)− 8] , (3.32k)

2d(t)
(2, 1

2 )
= −n(wsn− 4) , (3.32l)

2d(t)(2,1) = ws(n
2 − 4) , (3.32m)

3d(t)(3,0) = n2(n− 2)2
�

w2
s (n+ 2)2 − 4ws(n+ 2) + n2 + 8

�

, (3.32n)

3d(t)
(3, 1

3 )
= −(n− 1)2(n+ 1)

×
�

(n2 − 3)(n+ 1)w2
s − 2(n+ 1)(2n− 3)ws − 2(n− 2)(n2 + 4n+ 1)

�

, (3.32o)

3d(t)
(3, 2

3 )
= (n2 − 3)(n2 − 1)

�

w2
s (n

2 − 1)− 2ws(2n− 1)− 2(n+ 1)(n− 2)
�

, (3.32p)

3d(t)(3,1) = −(n
2 − 4)2
�

w2
s n2 − 4wsn+ (n+ 2)2

�

. (3.32q)
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Case of
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,0)V(1,0)

¶

and
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,1)V(1,1)

¶

with σ = (0, 3
2 , 3

2)

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s) = (−)
rsd(s)(r,s) , d(t)(r,s) = (−)

rsd(u)(r,s)

Shift d(s)(r,s) = (−)
δr≥2 d(s)(r,s+2) , d(t,u)(r,s) = −d(t,u)(r,s+2)

(3.33)

Vanishing structure constants due to symmetry: d(s)odd-spin = d(s)(r,1) = 0.

We find that the normalized structure constants d(x)(r,s) for the two 4-point functions that we
consider are identical to the leading order in ws. In particular, the structure constants of the
types d(s)(r≤3,s) and d(t)

(r≤ 3
2 ,s)

coincide, as they do not depend on ws. In the analytic results that

we will display, only the structure constants d(t)
( 5

2 ,0)
, d(t)
( 5

2 , 2
5 )

and d(t)
( 5

2 , 4
5 )

differ, in which case we

indicate the results for
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,0)V(1,0)

¶

above the results for
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,1)V(1,1)

¶

.

d(s)diag = 1 , (3.34a)

3d(s)(3,0) = 2n2(n2 − 4)2 , (3.34b)

3d(s)
(3, 2

3 )
= −2(n2 − 3)(n2 − 1)2 . (3.34c)

3d(t)
( 3

2 ,0)
= −(n+ 2) , (3.34d)

3d(t)
( 3

2 , 2
3 )
= −2(n− 1) , (3.34e)

5d(t)
( 5

2 ,0)
= (n+ 2)2(n− 1)2ws −

�

8n(n+ 2)(n− 1) ,
0 ,

(3.34f)

5d(t)
( 5

2 , 2
5 )
= −2(n2 − n− 1)

�

ϕn2 − n− 2ϕ − 1
�

ws (3.34g)

+ 2(n− 1)

� �

(4ϕ + 2)n2 − (3ϕ + 3)n− 4ϕ − 3
�

,
�

(4ϕ − 2)n2 + (ϕ − 3)n− 4ϕ − 3
�

,
(3.34h)

5d(t)
( 5

2 , 4
5 )
= −2(n2 − n− 1)ϕ−1

�

n2 +ϕn+ϕ − 2
�

ws (3.34i)

+ 2(n− 1)

� �

(4ϕ − 6)n2 − (3ϕ − 6)n− 4ϕ + 7
�

,
�

(4ϕ − 2)n2 + (ϕ + 2)n− 4ϕ + 7
�

.
(3.34j)

Case of
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,0)V(1,0)

¶

with σ = (1, 1
2 , 3

2)

We again consider the 4-point functions


V 2
( 1

2 ,0)
V 2
( 1

2 ,0)

·

and


V 2
( 1

2 ,0)
V 2
(1,1)

·

, but with a different

signature. This signature breaks the permutation symmetry, so that there is no longer a simpler
relation between the t- and u-channels, and the s-channel spectrum is no longer even-spin.
Moreover, the structure constants for our two 4-point functions are less similar.

Parity d(x)(r,s) = d(x)(r,−s)

Shift d(s)(r,s) = (−)
δr≥2 d(s)(r,s+2) , d(t,u)(r,s) = −d(t,u)(r,s+2)

(3.35)
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The shift and parity relations imply d(s)(r≥2,1) = 0.

d(s)(1,0) = 1 , (3.36a)

d(s)(1,1) = −1 , (3.36b)

d(s)(2,0) = n(n− 2) , (3.36c)

2d(s)
(2, 1

2 )
= −
p

2n(n− 2) , (3.36d)

3d(s)(3,0) = 2n3(n− 4)(n− 2)(n+ 1) , (3.36e)

3d(s)
(3, 1

3 )
= −
p

3(n− 2)(n− 1)2(n+ 1)
�

n2 + 1
�

, (3.36f)

3d(s)
(3, 2

3 )
= n(n− 1)(n+ 1)2(n2 − 3) , (3.36g)

2d(s)
(4, 1

2 )
= −
p

2n5
�

n2 − 3
� �

n2 − 2
�2

, (3.36h)

d(s)(4,0) = n3(n− 2)3(n+ 1)2
�

n4 + 2n3 + n2 − n− 2
�

. (3.36i)

d(t)
( 1

2 ,0)
= 1 , (3.36j)

3d(t)
( 3

2 ,0)
= 4 , (3.36k)

3d(t)
( 3

2 , 2
3 )
= 2 , (3.36l)

5d(t)
( 5

2 ,0)
= 2
�

n4 + 2n3 − n2 − 12n+ 12
�

, (3.36m)

5d(t)
( 5

2 , 2
5 )
= 2
�

−n4 + 2n2 + 2n− 1
�

+ 2ϕ
�

n3 − 2n2 − 2
�

, (3.36n)

5d(t)
( 5

2 , 4
5 )
= 2
�

n4 − n3 − 2n+ 3
�

+ 2ϕ
�

n3 − 2n2 − 2
�

. (3.36o)

3d(u)
( 3

2 ,0)
= −2(n+ 2) , (3.36p)

3d(u)
( 3

2 , 2
3 )
= −2(n− 1) , (3.36q)

5d(u)
( 5

2 ,0)
= 2(n− 1)(n+ 2)

�

n2 − 3n+ 6
�

, (3.36r)

5d(u)
( 5

2 , 2
5 )
= −2
�

n4 − 3n3 + n+ 1
�

− 2ϕ
�

n4 − 5n3 + 3n2 + 4n+ 2
�

, (3.36s)

5d(u)
( 5

2 , 4
5 )
= −2
�

2n4 − 8n3 + 3n2 + 5n+ 3
�

+ 2ϕ
�

n4 − 5n3 + 3n2 + 4n+ 2
�

. (3.36t)

Case of
¬

V( 1
2 ,0)V( 1

2 ,0)V(1,1)V(1,1)

¶

with σ = (1, 1
2 , 3

2)

The symmetries and vanishing structure constants are as in the case


V 2
( 1

2 ,0)
V 2
(1,0)

·

, except that

we notice the additional vanishing d(t)
( 3

2 ,0)
= 0 – a rare example of a vanishing for no known
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reason.

d(s)(1,0) = 1 , (3.37a)

d(s)(1,1) = −1 , (3.37b)

d(s)(2,0) = −(n− 2)(n+ 4) , (3.37c)

2d(s)
(2, 1

2 )
=
p

2n(n+ 2) , (3.37d)

3d(s)(3,0) = −2n2(n− 2)(n+ 4)(n2 + n− 8) , (3.37e)

3d(s)
(3, 1

3 )
=
p

3(n− 1)2(n+ 1)(n+ 2)(n2 − 7) , (3.37f)

3d(s)
(3, 2

3 )
= −(n− 4)(n− 1)(n+ 1)2(n2 − 3) . (3.37g)

d(t)
( 1

2 ,0)
= 1 , (3.37h)

d(t)
( 3

2 ,0)
= 0 , (3.37i)

d(t)
( 3

2 , 2
3 )
= 2 , (3.37j)

5d(t)
( 5

2 ,0)
= −2(n+ 2)2(n− 1)2 , (3.37k)

5d(t)
( 5

2 , 2
5 )
= 2
�

n4 − 2n2 − 6n+ 5
�

− 2ϕ
�

n3 + 2n2 − 4n+ 2
�

, (3.37l)

5d(t)
( 5

2 , 4
5 )
= 2
�

−n4 + n3 + 4n2 + 2n− 3
�

− 2ϕ
�

n3 + 2n2 − 4n+ 2
�

. (3.37m)

3d(u)
( 3

2 ,0)
= −2(n+ 2) , (3.37n)

3d(u)
( 3

2 ,± 2
3 )
= −2(n− 1) , (3.37o)

5d(u)
( 5

2 ,0)
= 2(n+ 2)2(n− 1)2 , (3.37p)

5d(u)
( 5

2 , 2
5 )
= −2
�

n4 + n3 − 12n2 − 3n+ 9
�

− 2ϕ
�

n4 − n3 − 5n2 + 4n+ 14
�

, (3.37q)

5d(u)
( 5

2 , 4
5 )
= −2
�

2n4 − 17n2 + n+ 23
�

+ 2ϕ
�

n4 − n3 − 5n2 + 4n+ 14
�

. (3.37r)

Case of



V(1,0)V(1,0)V(1,0)V(1,0)
�

and



V(1,1)V(1,1)V(1,1)V(1,1)
�

with σ = (0, 2,2)

By reflection symmetry, these two 4-point functions have the same normalized structure con-
stants.

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s) = (−)
rsd(s)(r,s) , d(t)(r,s) = (−)

rsd(u)(r,s)

Shift d(x)(r,s) = d(x)(r,s+2)

(3.38)
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Vanishing structure constants: d(s)odd-spin = 0.

d(s)diag = 1 , (3.39a)

2d(s)(4,0) = n2
�

n2 − 4
�3 �

n2 − 1
�2

, (3.39b)

2d(s)
(4, 1

2 )
= −n4(n2 − 3)2(n2 − 2)2 , (3.39c)

2d(s)(4,1) = n2
�

n2 − 4
�3 �

n2 − 1
�2

. (3.39d)

2d(t)(2,0) = n2 − 4 , (3.39e)

2d(t)
(2, 1

2 )
= −n2 , (3.39f)

2d(t)(2,1) = n2 − 4 , (3.39g)

3d(t)(3,0) = n2(n2 − 4)2ws − 8n3(n2 − 4) , (3.39h)

3d(t)
(3, 1

3 )
= −(n2 − 1)2(n2 − 3)ws + 6n(n2 − 1)2 , (3.39i)

3d(t)
(3, 2

3 )
= (n2 − 1)2(n2 − 3)ws − 2n(n2 − 1)(n2 − 3) , (3.39j)

3d(t)(3,1) = −n2(n2 − 4)2ws . (3.39k)

Case of



V(1,0)V(1,0)V(1,0)V(1,0)
�

and



V(1,1)V(1,1)V(1,1)V(1,1)
�

with σ = (2, 1,1)

The symmetries are the same as with σ = (0, 2,2), leading again to d(s)odd-spin = 0.

d(s)(2,0) = n2 − 4 , (3.40a)

d(s)(2,1) = −(n
2 − 4) , (3.40b)

3d(s)(3,0) = 32n2(n2 − 4) , (3.40c)

3d(s)
(3, 2

3 )
= −4(n2 − 1)(n2 − 3) , (3.40d)

d(s)(4,0) = (n− 2)3(n+ 1)2(n+ 2)
�

n6 + 2n5 − 2n4 − 8n3 + 9n2 − 4n+ 4
�

, (3.40e)

d(s)
(4, 1

2 )
= 2n5(n2 − 3)(n2 − 2) , (3.40f)

d(s)(4,1) = −(n− 2)(n− 1)2(n+ 2)3
�

n6 − 2n5 − 2n4 + 8n3 + 9n2 + 4n+ 4
�

. (3.40g)
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d(t)(1,0) = 1 , (3.40h)

d(t)(1,1) = 1 , (3.40i)

d(t)(2,0) = −(n− 2) , (3.40j)

d(t)
(2, 1

2 )
= −n , (3.40k)

d(t)(2,1) = −(n+ 2) , (3.40l)

3d(t)(3,0) = 2n2(n4 − 6n2 + 32) , (3.40m)

3d(t)
(3, 1

3 )
= (n2 − 1)(n4 − n2 + 18) , (3.40n)

3d(t)
(3, 2

3 )
= −(n2 − 1)(n2 − 2)(n2 − 3) , (3.40o)

3d(t)(3,1) = −2n2(n2 − 4)2 . (3.40p)

Case of
¬

V( 3
2 ,0)V(1,1)V(1,0)V( 1

2 ,0)

¶

with σ = (3
2 , 2, 1

2)

Parity d(s)(r,s) = (−)
δ

r ̸= 3
2 d(s)(r,−s), d(t)(r,s) = (−)

δr≥2 d(t)(r,s), d(u)(r,s) = (−)
δ

r≥ 3
2 d(u)(r,−s)

Shift d(s,u)(r,s) = (−)
δ

r≥ 5
2 d(s,u)(r,s+2) , d(t)(r,s) = −d(t)(r,s+2)

(3.41)

The parity equations are obtained with the help of the shift equation for V(1,1). This equa-
tion suffers from an overall ambiguity from the relative normalizations of the solutions for the
two 4-point functions

¬

V( 3
2 ,0)V(1,±1)V(1,0)V( 1

2 ,0)

¶

. This ambiguity is lifted by the observation that

d(u)
( 1

2 ,0)
̸= 0 in our numerical solution. Then parity implies the vanishings

d(s)
( 1

2 ,0)
= d(u)

( 3
2 ,0)
= d(s,u)

(r≥ 5
2 ,0)
= d(t)(r≥2,0) = 0.

3d(s)
( 3

2 ,0)
= n+ 2 , (3.42a)

3d(s)
( 3

2 , 2
3 )
= −2(n− 1) , (3.42b)

5d(s)
( 5

2 , 2
5 )
= 4 cos
�

π
10

� �

−n4 + 4n2 − 2+ϕ(n+ 1)(n2 − 3)
�

, (3.42c)

5d(s)
( 5

2 , 4
5 )
= 4 cos
�3π

10

� �

n4 − 4n2 + 2+ϕ−1(n+ 1)(n2 − 3)
�

. (3.42d)

2d(t)
(2, 1

2 )
=
p

2n2 , (3.42e)

d(t)(2,1) = n2 − 4 , (3.42f)

3d(t)
(3, 1

3 )
= (n− 4)(n− 1)(n+ 1)2(n2 − 3) , (3.42g)

3d(t)
(3, 2

3 )
=
p

3(n2 − 1)2(n+ 2)(n− 3) , (3.42h)

3d(t)(3,1) = 2n2(n2 − 4)2 . (3.42i)
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d(u)
( 1

2 ,0)
= 1 , (3.42j)

3d(u)
( 3

2 , 2
3 )
= −2
p

3 , (3.42k)

5d(u)
( 5

2 , 2
5 )
= 4cos
�

π
10

� �

n2 − 2+ϕ
�

, (3.42l)

5d(s)
( 5

2 , 4
5 )
= 4cos
�3π

10

� �

−n2 + 2+ϕ−1
�

. (3.42m)

Case of
¬

V( 3
2 , 2

3 )
V(1,1)V(1,0)V( 1

2 ,0)

¶

with σ = (3
2 , 2, 1

2)

In this case we have the same shift equations as in Table (3.41), but no parity symmetry due
to the presence of the field V( 3

2 , 2
3 )

. We observe the vanishings d(u)
( 3

2 ,0)
= d(u)

( 5
2 ,0)
= 0. This suggests

that the structure constants of the type d(u)
(r≥ 3

2 ,0)
vanish, even though there is no symmetry that

requires it.

3d(s)
( 3

2 ,0)
= (n+ 1) , (3.43a)

3d(s)
( 3

2 , 2
3 )
= −2(n− 1) , (3.43b)

3d(s)
( 3

2 ,− 2
3 )
= −2(n− 1) , (3.43c)

5d(s)
( 5

2 ,0)
=
p

3(n− 1)(n+ 2)(n2 + 3n− 2) . (3.43d)

d(t)(2,0) = cos
�

π
6

�

(n2 − 4) , (3.43e)

d(t)
(2, 1

2 )
= cos
�5π

12

�

n2 , (3.43f)

d(t)
(2,− 1

2 )
= cos
�

π
12

�

n2 , (3.43g)

2d(t)(2,1) = −(n
2 − 4) , (3.43h)

3d(t)(3,0) =
p

3n2(n2 − 4) , (3.43i)

3d(t)
(3, 1

3 )
= (n2 − 3)(n+ 4)(n+ 1)(n− 1) , (3.43j)

3d(t)
(3,− 1

3 )
= 2(n2 − 3)(n2 − 1)2 , (3.43k)

3d(t)
(3, 2

3 )
= 2
p

3n(n2 − 1)2 , (3.43l)

3d(t)
(3,− 2

3 )
=
p

3(n2 − 1)2(n+ 3)(n− 2) , (3.43m)

3d(t)(3,1) = −n2(n2 − 16)(n2 − 4) . (3.43n)
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d(u)
( 1

2 ,0)
= 1 , (3.43o)

d(u)
( 3

2 ,0)
= 0 , (3.43p)

3d(u)
( 3

2 , 2
3 )
= −4
p

3 , (3.43q)

3d(u)
( 3

2 ,− 2
3 )
= −2
p

3 , (3.43r)

d(u)
( 5

2 ,0)
= 0 , (3.43s)

5d(u)
( 5

2 , 2
5 )
= 4cos
�

π
10

� �

n+ϕ−1
� �

n− 2cos
�4π

15

��

, (3.43t)

5d(u)
( 5

2 ,− 2
5 )
= 4cos
�

π
10

� �

n+ϕ−1
� �

−n+ 2 cos
�14π

15

��

, (3.43u)

5d(u)
( 5

2 , 4
5 )
= 4ϕ−1 cos
�

π
10

�

(n−ϕ)
�

−n+ 2 cos
�2π

15

��

, (3.43v)

5d(u)
( 5

2 ,− 4
5 )
= 4ϕ−1 cos
�

π
10

�

(n−ϕ)
�

n− 2 cos
�8π

15

��

. (3.43w)

3.5 Some even-spin and odd-spin solutions

Let us consider the 4-point functions


V( 3
2 ,0)V

3
( 1

2 ,0)

·

and


V( 3
2 , 2

3 )
V 3
( 1

2 ,0)

·

, where we do not allow

any diagonal field to propagate. In both cases, the space of solutions of crossing symmetry is
two-dimensional, and the solutions correspond to the combinatorial maps [29]

, and . (3.44)

Both maps have the same signature σ = (1, 1,1), and we do not know how to characterize the
corresponding solutions by imposing constraints on the structure constants. We will focus on
another basis of solutions, defined by their behaviour under permuting the third and fourth
fields. In other words, we will consider s-channel odd-spin and even-spin solutions, as defined
in Section 2.4. It will turn out that the normalized structure constants for these solutions are
polynomial.

Case of
¬

V( 3
2 ,0)V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

: even-spin solution

This solution turns out to be even-spin in all channels. We deduce the permutation symmetries
of structure constants from Table (2.71).

Parity d(x)(r,s) = d(x)(r,−s)

Permutation d(s)(r,s) = (−)
rsd(s)(r,s) = d(t)(r,s) = d(u)(r,s)

Shift d(x)(r,s) = (−)
δr=1 d(x)(r,s+2)

(3.45)
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d(s)(1,0) = 1 , (3.46a)

2d(s)(2,0) = (n− 2)2 , (3.46b)

2d(s)(2,1) = −(n
2 − 4) , (3.46c)

3d(s)(3,0) = 2n2(n− 2)2(n2 + 2n+ 3) , (3.46d)

3d(s)
(3, 2

3 )
= −n(n− 2)(n2 − 1)(n2 − 3) . (3.46e)

Case of
¬

V( 3
2 ,0)V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

: odd-spin solution

This solution turns out to be odd-spin in all channels. It also turns out to be parity-odd.
Combined with the shift equations, this implies the vanishings d(x)(r≥2,1) = 0.

Parity d(x)(r,s) = −d(x)(r,−s)

Permutation d(s)(r,s) = −(−)
rsd(s)(r,s) = −d(t)(r,s) = −d(u)(r,s)

Shift d(x)(r,s) = (−)
δr=1 d(x)(r,s+2)

(3.47)

d(s)(1,1) = 1 , (3.48a)

2d(s)
(2, 1

2 )
= −n(n+ 2) , (3.48b)

3d(s)
(3, 1

3 )
=
p

3(n− 1)2(n+ 1)(n+ 2)
�

n2 + n− 4
�

. (3.48c)

Case of
¬

V( 3
2 , 2

3 )
V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

: even-spin solution

This solution is even-spin in the s-channel only.

Permutation d(s)(r,s) = (−)
rsd(s)(r,s) , d(t)(r,s) = (−)

rsd(u)(r,s)

Shift d(x)(r,s) = (−)
δr=1 d(x)(r,s+2)

(3.49)

d(s)(1,0) = 2 , (3.50a)

2d(s)(2,0) = −2(n− 2)(n+ 4) , (3.50b)

2d(s)(2,1) = 2(n2 − 4) , (3.50c)

3d(s)(3,0) = 2n2(n− 2)
�

n3 + 3n2 − n− 9
�

, (3.50d)

3d(s
(3, 2

3 )
= 2(n2 − 1)(n2 − 3)

�

n2 − 2n+ 3
�

, (3.50e)

3d(s
(3,− 2

3 )
= −2(n2 − 3)(n2 − 1)(n+ 1)(2n− 3) . (3.50f)

We observe the relations

rs ∈ 2Z =⇒ d(s)(r,s) = 2d(t)(r,s) = 2d(u)(r,s) , (3.50g)
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so we only need to write the odd-spin t-channel structure constants,

d(t)(1,1) = −
p

3 , (3.50h)

2d(t)
(2, 1

2 )
= −
p

3n(n− 1−
p

3) , (3.50i)

2d(t)
(2,− 1

2 )
=
p

3n(n− 1+
p

3) , (3.50j)

d(t)
(3, 1

3 )
= (n− 1)(n2 − 1)(n2 − 4n− 1) , (3.50k)

d(t)
(3,− 1

3 )
= (n2 − 1)2(n2 − 3) , (3.50l)

d(t)(3,1) = −(n+ 2)(n2 − 4)(n3 − n2 − n− 1) . (3.50m)

Case of
¬

V( 3
2 , 2

3 )
V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

: odd-spin solution

This solution is odd-spin in the s-channel only.

Permutation d(s)(r,s) = −(−)
rsd(s)(r,s) , d(t)(r,s) = −(−)

rsd(u)(r,s)

Shift d(x)(r,s) = (−)
δr=1 d(x)(r,s+2)

(3.51)

d(s)(1,1) = 2 , (3.52a)

d(s)
(2, 1

2 )
= n(n− 1−

p
3) , (3.52b)

d(s)
(2,− 1

2 )
= −n(n− 1+

p
3) , (3.52c)

3d(s)
(3, 1

3 )
= −2
p

3(n− 1)(n2 − 1)(n2 − 4n− 1) , (3.52d)

3d(s)
(3,− 1

3 )
= −2
p

3(n2 − 1)2(n2 − 3) , (3.52e)

3d(s)(3,1) = 2
p

3(n+ 2)(n2 − 4)(n3 − n2 − n− 1) . (3.52f)

We observe the relations

rs ∈ 2Z+ 1 =⇒ d(s)(r,s) = −2d(t)(r,s) = −2d(u)(r,s) , (3.52g)

so we only need to write the t-channel even-spin structure constants,

d(t)(1,0) = −
p

3 , (3.52h)

2d(t)(2,0) =
p

3(n− 2)(n+ 4) , (3.52i)

2d(t)(2,1) = −
p

3(n2 − 4) , (3.52j)

3d(t)(3,0) = −
p

3n2(n− 2)
�

n3 + 3n2 − n− 9
�

, (3.52k)

3d(t)
(3, 2

3 )
= −
p

3(n2 − 1)(n2 − 3)
�

n2 − 2n+ 3
�

, (3.52l)

3d(t)
(3,− 2

3 )
=
p

3(n2 − 3)(n2 − 1)(n+ 1)(2n− 3) . (3.52m)

Finally, notice that the odd-spin and even-spin solutions for
¬

V( 3
2 , 2

3 )
V( 1

2 ,0)V( 1
2 ,0)V( 1

2 ,0)

¶

have a
simple relation to one another:

rs ∈ 2Z =⇒
p

3d(s)(r,s)

�

�

�

even-spin
= −2d(t)(r,s)

�

�

�

odd-spin
= −2d(u)(r,s)

�

�

�

odd-spin
, (3.53)

rs ∈ 2Z+ 1 =⇒
p

3d(s)(r,s)

�

�

�

odd-spin
= −2d(t)(r,s)

�

�

�

even-spin
= −2d(u)(r,s)

�

�

�

even-spin
. (3.54)
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Thanks to this relation, it is easy to write solutions that are even-spin or odd-spin the the
t-channel or in the u-channel, by taking simple linear combinations of our two solutions.

4 Lattice models

4.1 The two lattice models

We will now introduce two lattice models:

• The Nienhuis loop model, which we already sketched in Section 1.4. The model lives on
a honeycomb lattice, and has 4 possible configurations (1.21) at each trivalent vertex.
We call its partition function Z loop.

• The Fortuin–Kasteleyn cluster model, which lives on a square lattice, and has 2 possible

configurations at each tetravalent vertex. We call its partition function Zcluster.

Both models come with a parameter n, which is the weight of loops. If n ∈ N, the partition
function of the loop model coincides with that of the O(n)model, which has a global symmetry
group O(n). In fact it is possible to make sense of the O(n) symmetry even if n is not integer.
However, we will consider correlation functions that involve loops with arbitrary weights, and
this breaks the O(n) symmetry in general. We therefore avoid referring to the loop model as
an O(n) model. Similarly, if Q = n2 ∈ N, the partition function of the cluster model coincides
with that of the Q-state Potts model, with its global symmetry group SQ. Again, introducing
loops with arbitrary weights breaks that symmetry.

Loop model

The loop model is most conveniently defined on a honeycomb lattice L that is obtained from
the square lattice S by deforming each of its vertices into a pair of degree-three vertices sepa-
rated by a new horizontal edge:

7→ =⇒ 7→ . (4.1)

Each configuration C is a set of loops, obtained by occupying some of the edges of L, subject
to the constraint that each vertex be adjacent to 0 or 2 occupied edges: the curves do not end
or bifurcate. The partition function is defined by attributing a local weight K to each occupied
edge and a non-local weight n to each loop:

Z loop(K , n) =
∑

C
K |C|nℓ(C) , (4.2)

where |C| is the number of occupied edges and ℓ(C) is the number of loops.
Let us build diagonal correlation functions. We give a lattice implementation of the general

idea from [25]. We mark N distinct faces of our lattice {x1, . . . ,xN}. Each loop partitions these
faces into two (possibly empty) subsets, and we allow the loop’s weight to depend on this
partition. In the case N = 4, there are 8 possible partitions, and we write the corresponding
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weights as follows:

w1 (1)(234) ws (12)(34)
w2 (2)(134) wu (13)(24)
w3 (3)(124) wt (14)(23)
w4 (4)(123) n (1234)

(4.3)

The diagonal 4-point function of the lattice loop model then reads

C loop(xi|K , n, wi , wx) =
1

Z loop(K , n)

∑

C
K |C|nℓ0(C)
∏

i=1,2,3,4

wℓi(C)
i

∏

x=s,t,u

wℓx (C)
x . (4.4)

Here ℓ0(A) is the number of contractible loops, while ℓi(A) and ℓx(A) denote the numbers of
various types of non-contractible loops, with i = 1, 2,3, 4 and x = s, t, u.

Since loops are non-intersecting, at most one of the three integers ℓs,ℓt ,ℓu can be non-
vanishing, in other words ℓsℓt + ℓsℓu + ℓtℓu = 0. This leads to the decomposition

C loop(ws, wt , wu) = C (0) + C (s)(ws) + C (t)(wt) + C (u)(wu) , (4.5)

where

C (0) = C loop(0, 0,0) , (4.6a)

C (s)(ws) = C loop(ws, 0, 0)− C loop(0,0, 0) , (4.6b)

C (t)(wt) = C loop(0, wt , 0)− C loop(0, 0,0) , (4.6c)

C (u)(wu) = C loop(0, 0, wu)− C loop(0,0, 0) . (4.6d)

Cluster model

The cluster model is in fact a model of completely packed loops, which we call cluster model
to distinguish it from the previously considered loop model. The loops live on a diagonally
oriented square lattice S. Here is a sample configuration:

(4.7)

Loops are shown as blue curves that jointly cover all the edges of S and split in one of two
ways at its vertices. Each configuration of loops on S is bijectively related to a set of clusters
(in red) on an axially oriented square lattice L, and to a corresponding set of dual clusters (in
green) on a shifted axially oriented square lattice L∗. In other words, L and L∗ are mutually
dual lattices, and S is their common medial lattice, with a vertex of S standing on each pair
of intersecting edges of L and L∗. Each loop on S then forms the boundary between a cluster
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on L and a dual cluster on L∗. The partition function Z is defined by attributing a weight v
n

to each occupied (red) edge of L and a weight n to each (blue) loop:

Zcluster(v, n) =
∑

A⊆E

� v
n

�|A|
nℓ(A) , (4.8)

where the sum runs over subsets A of the edges E in L, and ℓ(A) denotes the number of loops
on S as determined by A. The critical value of the lattice weight v is vc = n. This corresponds
to the ferromagnetic critical point of the Potts model.

Diagonal correlation functions are defined as in the loop model, with the points {x1, . . . ,xN}
now being nodes of the lattice L. In the case of 4-point functions, the expression is

Ccluster(xi|v, n, wi , wx) =
1

Zcluster(v, n)

∑

A⊆E

� v
n

�|A|
nℓ0(A)
∏

i=1,2,3,4

wℓi(A)
i

∏

x=s,t,u

wℓx (A)
x . (4.9)

Since the points {x1, . . . ,x4} belong to clusters, and loops separate clusters from dual clusters,
any two points are separated by an even number of loops. This leads to the following 6 parity
constraints on loop numbers, 3 of which are independent:

ℓ12tu,ℓ34tu,ℓ13st ,ℓ24st ,ℓ14su,ℓ23su ∈ 2N , (4.10)

where ℓabcd = ℓa + ℓb + ℓc + ℓd . Now, our numerical calculations will turn out to require
the stronger constraint that all 7 loop numbers ℓi ,ℓx have a well-defined parity. In particular,
without this constraint, ratios of amplitude would depend on lattice size. To illustrate this
constraint, let us sketch two configurations near the points {x1,x2}, with loops in blue, clusters
in red and dual clusters in white:

x1 x2 x1 x2
(4.11)

We have (ℓ1,ℓ2) = (2,2) on the left and (3,1) on the right. The common parity of ℓ1 and ℓ2
determines whether the smallest object that contains both points is a cluster (left) or a dual
cluster (right). We want our correlation functions to distinguish these two cases.

Equivalently, our constraint means that the 4-point function must be an eigenvector of all
7 reflections wi →−wi , wx →−wx . We therefore consider the combinations

Cν1,νs ,νt ,νu(xi|v, n, wi , wx) =
1

16

∑

εa∈{+,−}





∏

a∈{1,s,t,u}

ενa
a



Ccluster(xi|v, n,εiwi ,εx wx) , (4.12)

where νa ∈ {0,1}, and by convention ε2 = ε3 = ε4 = 1. This is the sum over lattice configura-
tions such that ∀a ∈ {1, s, t, u},ℓa ≡ νa mod 2, with the parities of ℓ2,ℓ3,ℓ4 then determined by
Eq. (4.10). Since loops do not intersect, only the 8 combinations such that νs+νt+νu ∈ {0, 1}
are in fact non-vanishing. Then, if we decompose Ccluster as in Eq. (4.5), we have

Cν1,νs ,νt ,νu = δνs
δνt
δνu

C (0),ν1 +δνt
δνu

C (s),ν1,νs +δνs
δνu

C (t),ν1,νt +δνt
δνu

C (u),ν1,νu , (4.13)

where δν is the Kronecker delta function, and in each term we only sum over the signs of the
weights that do appear, for example C (s),ν1,νs = 1

4

∑

ε1,εs∈{+,−} ε
ν1
1 ε
νs
s C (s)(ε1w1,εsws).
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4.2 Transfer matrix formalism

Construction of the transfer matrix

For both lattice models we define a time slice as a horizontal line just below a row of horizontal
edges in L. If we take the width of L to be L lattice spacings, the time slice intersects 2L loop
strands. The transfer matrix T constructs loop configurations from the bottum up, by adding
one row together with its Boltzmann weights. We write the transfer matrix as

T =

� L
∏

i=1

Ř2i,2i+1

�

×

� L
∏

i=1

Ř2i−1,2i

�

, (4.14)

where Řk,k+1 is an operator that propagates through a single vertex of S by acting on a pair of
neighbouring loop strands k and k + 1. We apply periodic boundary conditions horizontally,
meaning that the strands labelled 2L + 1 and 1 are identified.

The explicit expression of the operator Řk,k+1 depends on the model. In the loop model,
Řk,k+1 is obtained by gluing two vertices, which gives rise to 8 possible diagrams:

Řloop
k,k+1 = + K

�

+
�

+ K2
�

cup

+ + + +

cap

�

. (4.15)

In particular, we call a cap the concatenation of two loop strands, and a cup the creation of two
connected loop strands. In the cluster model, the operator Řcluster

k,k+1 takes two forms, depending
on the parity of k:

Řcluster
2i,2i+1 =

v
n

+ , Řcluster
2i−1,2i = +

v
n

. (4.16)

In both forms, the second diagram is a cap with a cup on top.

Space of states and the partition function

Let us now define the space of states on which the transfer matrix acts. In the loop model,
the space of states has a basis made of dilute defect-free link patterns over the set of sites
{1, 2, . . . , 2L}. Such a link pattern is a collection of p arcs with 0 ≤ p ≤ L, such that each
arc connects two distinct sites, each site is connected by 0 or 1 arc, and arcs do not cross.
Therefore, 2(L − p) sites are left empty. The link patterns can be depicted by arranging sites
on a line (the time slice) and drawing a set of p non-intersecting arcs in the half-space below
that line. For example, here is a dilute link pattern with p = 4 arcs in the case L = 6:

(4.17)

In order to define the action of the transfer matrix on dilute link patterns, we need only define
the action of the operator Řloop

k,k+1 (4.15). This operator is written as a linear combination
of diagrams, which act by diagram concatenation. Any diagram that does not respect the
occupancy of the link pattern for the sites k and k + 1 acts as zero by definition, so there are
always 2 out of 8 diagrams in (4.15) that contribute. In our example (4.17), the sites 2 and
3 are respectively occupied and empty, so that the diagrams 2 and 5 in (4.15) contribute to
the action of Řloop

2,3 . Similarly, the action of Řloop
4,5 reduces to the contributions of the diagrams 7

and 8. As a result, the loop model’s transfer matrix is an element of the Motzkin algebra [35],

50

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029


SciPost Phys. 17, 029 (2024)

also known [36] as the dilute affine Temperley–Lieb algebra [37,38]. The space of states is a
standard module of that algebra.

In the case of the cluster model, the states are still defect-free link patterns over the set of
sites {1, 2, . . . , 2L}, but they are no longer dilute: there are always L arcs, which connect all
the sites pairwise. Here is an example with L = 6:

(4.18)

As a result, the cluster model’s transfer matrix is an element of the affine Temperley–Lieb
algebra. The space of states is a standard module of that algebra.

For both models, the least trivial diagram of Řloop
k,k+1 or Řcluster

k,k+1 is the one that involves a cap,
i.e. that contracts the sites k and k + 1. If these two sites were already connected by the link
pattern, connecting them again produces a closed loop, which is erased from the pattern and
replaced with a factor of n. If the sites k and k+1 were not connected by the link pattern, we
obtain situations where two arcs are concatenated, like in the following example:

= . (4.19)

The link patterns that we have described allow us to compute the partition functions
Z loop(K , n) (4.2) and Zcluster(v, n) (4.8). In particular, the local Boltzmann weights K and
v
n come from the prefactors in the operators Řloop

k,k+1 (4.15) and Řcluster
k,k+1 (4.16), while the non-

local loop weight n arises whenever a closed loop is produced. We will now turn to computing
correlation functions, which involve more variables and therefore require more complicated
constructions.

Diagonal 4-point functions

For concreteness, let us focus on the lattice model’s diagonal 4-point function (4.4) or (4.9).
The weight of each closed loop depends on how it partitions the set {x1,x2,x3,x4}, according
to Eq. (4.3). In order to take this information into account in the transfer matrix formalism,
we introduce three seam lines Σ0,Σ1,Σ2:

x1 x2

x4 x3

Σ1

Σ0

Σ2
(4.20)

Our picture is in the cylinder geometry with the left and right boundaries being identified. The
seam lines are of combinatorial nature: they can be deformed at will, and can even cross one
another, as long as their endpoints are unchanged. These lines are only accounting devices:
in spite of this they were called defect lines by Gamsa and Cardy [39].

Given a closed loop, knowing how it partitions the set
�

x1,x2,x3,x4

	

is equivalent to know-
ing its characteristic (σ0,σ1,σ2) ∈ Z3

2, where σi ∈ Z2 is the number of times the loop crosses
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the seam line Σi , modulo 2. For instance, in the picture, the blue loop has characteristic
(1, 1,1) and is hence of type (13)(24) with weight wt , while the green loop has characteristic
(1, 1,0) and is hence of type (1)(234) with weight w1.

For the transfer matrix to assign the correct loop weights, we associate a characteristic
(σ0,σ1,σ2) to each arc. When the transfer matrix acts on the link pattern, we determine the
characteristic of the resulting link pattern via local rules:

• When two arcs are concatenated by a cap, their characteristics add.

• When an arc is created by a cup, its initial characteristic is (0,0, 0).

• Each time the seam line crosses an arc, that arc’s characteristic is modified asσi → σi+1.

• When an arc between k and k + 1 is turned into a loop by the cap, the corresponding
loop weight (4.3) is inferred from the characteristics of the arc.

In particular, the operator Řloop
k,k+1 acts on the characteristics, whenever a seam line is present

where it is applied. In the presence of the horizontal seam lineΣ0, the operator Řloop
k,k+1 becomes

Řloop
k,k+1 = + K

�

+
�

+ K2
�

+ + + +
�

. (4.21)

It might be of interest to formalize these characteristics in the representation theory of the
affine (dilute) Temperley–Lieb algebra.

To be complete, we still have to specify the boundary conditions at the top and bottom of
the cylinder. In the loop model, we take the top and bottom boundaries to consist of rows of
empty sites. To achieve this in the transfer matrix formalism,

• we take the initial state to be the empty link pattern · · · ,

• in the last transfer matrix, Řloop
k,k+1 with k even becomes Řloop, last

2i,2i+1 = + K2 .

In the cluster model, we take the top and bottom boundaries to reflect the loops, as in Figure
(4.7). To achieve this in the transfer matrix formalism,

• we take the inital state to be the all-cups link pattern · · · ,

• we build the last transfer matrix from the cap with a cup operator Řcluster, last
k,k+1 = ,

i.e. one of the two terms of the operator Řcluster
k,k+1 (4.16).

In both models, after repeatedly acting with the transfer matrix on the initial state, we obtain
a final state that is proportional to that initial state, and the value of the correlation function
is the coefficient of proportionality.

Non-diagonal 4-point functions

We believe that it is possible to modify the transfer matrix formalism to compute the correla-
tion function associated with any combinatorial map. We first sketch the general idea before
turning to the only case that we will study in this article.

A combinatorial map that is associated to the 4-point function
¬

∏4
i=1 V(ri ,si)

¶

has four ver-
tices of valencies 2ri . This map defines constraints on loop configurations: in particular, there
must exist open loops that end at vertices, according to their valencies. A vertex of valency
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zero corresponds to a diagonal field, which modifies the weights of surrounding loops. A ver-
tex that corresponds to the non-diagonal field V(r,s) comes with a weight that depends on the
angles of the loops that end there, see the diagram (1.23).

In the transfer matrix formalism, we have to add information about the open loops. In a
link pattern, some sites may come with labels that indicate to which open loop they belong.
When acting with the transfer matrix, this information must be carried to the resulting link
pattern. Terms that would be inconsistent with the desired combinatorial map are set to zero
using local rules.

Let us focus on the 4-point function


V 4
( 1

2 ,0)

·

, in the context of the loop model. There are

three possible combinatorial maps:

, , . (4.22)

In the case of the first map, the open loops on the cylinder are as follows:

x1 x2

x4 x3

Σ1

Σ0

Σ2
(4.23)

The existence of these two open loops forbids closed loops of type (12)(34) and (13)(24),
while allowing closed loops of type (14)(23), such as the green loop in the figure. We still
need the seam Σ0 to distinguish such loops from contractible loops, but the seams Σ1 and Σ2
are no longer needed. Any link pattern that occurs after the two bottom vertices but before
the two top vertices must include two labelled empty sites, with labels 1 and 2 that indicate
which bottom vertex the site is connected to. For example:

1 2

(4.24)

The label i appears when we insert an open loop that ends at xi . Our convention is to do this
insertion using the operator

Řloop
k,k+1(xi) = K

1
2

i
+ K

3
2

i
. (4.25)

Then the labels can move when the transfer matrix is applied. For example, if we act with the
cap term of Ř3,4, the label 1 moves 4 sites to the right, and the arc that ends there is erased:

1 2
=

12 . (4.26)

If the two marked sites are neighbours, acting with a cap that would connect them annihilates
the state:

12 = 0 . (4.27)
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A link pattern that occurs above the two top sites includes four labelled empty sites. It is now
allowed to connect site 1 with site 4 and site 2 with site 3, in which case the two corresponding
labels disappear. When reaching the top boundary, no labels must remain, so that we obtain
the empty link pattern after having generated the desired combinatorial map.

Tests of the formalism

We have implemented transfer matrix algorithms for computing 4-point correlation functions,
using sparse-matrix factorisation, hashing techniques and arbitrary-precision arithmetics, as
described in [34]. We have performed a number of stringent tests to make sure that the
implementations are correct:

• Comparison with exact enumeration results for small systems.

• Checks of the asymptotic decay of the correlation functions for large systems.

• Changing the transfer direction from vertically to horizontally, we find that the results
do not change, provided free boundary conditions are imposed in both directions.

• Deforming the seams does not lead to different results.

• In the case of diagonal 4-point functions, comparing with results that are already known
in special cases [26].

4.3 Amplitudes

Four-point functions are complicated quantities whose lattice computation leads to finite-size
effects. A direct comparison with conformal field theory could therefore only succeed to good
precision if the lattice was large. However, the size of the transfer matrix grows exponentially
with the size of the lattice, so we only have access to small lattices.

Fortunately, it is possible to extract lattice observables that are much less sensitive to finite-
size effects, called amplitudes. Four-point amplitudes depend on the choice of a channel
x ∈ {s, t, u}. Roughly speaking, the decomposition of a lattice 4-point function into x-channel
amplitudes corresponds to the x-channel decomposition of a conformal 4-point functions into
structure constants and conformal blocks. We will therefore compare amplitudes with 4-point
structure constants.

Definition of 4-point amplitudes

We consider a 4-point function on a finite cylindrical lattice, represented as a rectangle with
the left and right sides identified. The size of the cylinder and the positions of the punctures
x1, . . . ,x4 are determined by four lengths L,ℓ, M , d, where the points form a rectangle of size
d × ℓ in a cylinder of size L × (2M + ℓ). In the transfer matrix formalism, with time running
upwards, the horizontal size L must be small, since it determines the dimension of the space
of states. However, the vertical size 2M + ℓ can be large. We choose M large enough for the
results not to depend on it. Moreover, we choose d = ⌊ L2 ⌋, which gives the richest possible
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spectrum. Our results will therefore only depend on the two variables L,ℓ.

x1 x2

x4 x3

M ∼∞

ℓ

M ∼∞

d = ⌊ L2 ⌋

L

(4.28)

Now, the idea is to expand the 4-point function on the eigenvalues of a simplified transfer
matrix T0, which describes the propagation on the cylinder in the absence of the punctures
x1, . . . ,x4. The simplified transfer matrix therefore depends on the weights of contractible
loops n and of s-channel loops ws, but not on the other loop weights w1, . . . , w4, wt , wu. Con-
tractible loops and s-channel loops are the only loops whose numbers are extensive in the
cylinder length ℓ. We therefore write the expansion (1.24), where Λω are the eigenvalues
of T0, including the largest eigenvalue Λmax, S(L) is the s-channel spectrum, and Aω are the
s-channel amplitudes.

Comparison with the CFT

The eigenvalues Λω of the simplified transfer matrix T0 are plagued by finite-size effects, and
can be compared with CFT quantities only at the critical coupling K = Kc, and in the limit
L→∞. In this limit, they behave as [40]

− logΛmax(L, Kc, n, ws) =L→∞
f∞(n, ws)L −

πceff(n, ws)
6L

+ o(L−1) , (4.29)

− log
Λω(L, Kc, n, ws)
Λmax(L, Kc, n, ws)

=
L→∞

2π∆ω(n, ws)
L

+ o(L−1) , (4.30)

where f∞ is the free energy per unit area, ceff is the effective central charge, and ∆ω is an
effective critical exponent.

On the other hand, it turns out that the spectrum S(L) and amplitudes Aω are much less
dependent on the coupling K and size L, and therefore better suited to a comparison with the
CFT. In the case of the spectrum S(L), let us relate the labelsω of the states to CFT parameters.
In the case of the loop model, the simplified transfer matrix T0 belongs to the dilute affine
Temperley–Lieb algebra, whose representations are parametrized by the number of through-
lines 2r ∈ N, and the pseudomomentum s ∈ 1

rZmod 2 [34,36]. Since we have 2L loop strands
on each time slice, the value of r must obey

r ≤ L . (4.31)

This truncation is the only L-dependence of the spectrum.
As our notations suggest, the numbers r, s coincide with the Kac table indices of conformal

field theory. In addition, the momentum that is associated to rotations around the cylinder
(described by the cyclic group ZL) corresponds to the conformal spin ∆− ∆̄mod L. For sim-
plicity, we will omit the conformal spin, and write states as ω= (r, s),ρ, where ρ labels states
that share the same quantum numbers r, s.
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Computation of 4-point amplitudes

The amplitude Aω is associated to the eigenvalue Λω of the simplified transfer matrix T0, and
we could deduce it from the corresponding left and right eigenvectors [34]. However, to do
this, we would need to find local operators that create the punctures xi . This is not easy, and
we will use an approach that does not require us to compute eigenvectors, at the price of
having to use large values of the geometric parameters ℓ, M : we compute the 4-point function
C loop for as many values of ℓ as the size of the spectrum |S(L)|, and solve the resulting linear
system for Aω.

In practice, we compute C loop to a precision of 2 000 digits for as many as Nℓ = 500 differ-
ent values of ℓ. This requires taking M ∼ 103 L, a value that is chosen such that
�

Λsub
Λmax

�M
⪅ 10−2000, where Λsub is the second-largest eigenvalue. This ensures that further

increasing M does not change the first 2 000 digits of C loop. The computation of the the eigen-
values Λω is much easier, so we compute them to 4 000 digits, although in principle 2 000
digits could suffice.

We reach L ≤ 4 in the lattice loop model and L ≤ 5 in the lattice cluster model. This leads

to spectra that are in fact too large, with |S(L)| ∼ 3 000 > Nℓ. Moreover
�

Λmin
Λmax

�Nℓ ≪ 10−2000,
making the smallest contribution Λmin to (1.24) indetectable. In order to make the linear
system invertible, we truncate it by keeping only the Nℓ largest eigenvalues. We call an am-
plitude Aω well-determined if its relative variation upon a small change of ℓmin is less than
10−20. In practice, we find that a fraction of about 1

2 to 2
3 of the computed amplitudes are

well-determined. This fraction turns out to be optimal for ℓmin ∼ 100.
In fact, we cannot access amplitudes that saturate the bound (4.31), because for r = L

through-lines do not have any wiggle room in our lattice, and this prevents us from distin-
guishing modules with different values of s [34]. In the loop model, this means that we would
need L ≥ 4 in order to access r = 3. But in this case, the r = 3 eigenvalues are buried too
deeply in the transfer matrix spectrum to be accessible in practice. This is why we will only
give results for r ≤ 2.

With these choices, it nevertheless remains true that the considerable range of magnitudes
of the terms in (1.24) adversely affects the numerical stability of the linear system if Nℓ is
taken too large. In order for the results to have a good precision, we find it necessary to keep
Nℓ < 390.

4.4 Wonderful simplification of amplitude ratios

To summarize Section 4 so far, we have defined two lattice models, introduced a transfer
matrix formalism for computing correlation functions, and advertised amplitudes as the right
observables to be extracted from numerical results. We will justify these constructions by
displaying our numerical results for amplitudes in Section 4.5. Here, we will qualitatively
sketch these results, and compare them to earlier results in the same spirit [26,34].

Main results and conjecture

Our main observation is that ratios of amplitudes at different values of the channel weights wx
depend neither on the lattice size L, nor on the coupling K , nor on the state ρ, and coincide
with the corresponding ratios of 4-point structure constants. We have observed this in all the
examples that we have investigated, which are not many because lattice computations are
numerically heavy. We conjecture that this holds for all amplitudes in all 4-point correlation
functions. This conjecture is summarized in Eq. (1.25).

The conjecture first means that our amplitude ratio does not depend on the label ρ of
states within a given module of the affine Jones–Temperley–Lieb algebra. To be independent
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from ρ, which we also call to be constant over the module, is necessary for an amplitude ratio
to be comparable to conformal field theory. The reason is that while modules correspond
to representations of the interchiral algebra (with parameters (r, s)), states within modules
correspond to CFT states only in the critical limit.

The corresponding CFT quantity is a ratio of s-channel 4-point structure constants D(r,s).
According to the conjecture of Section 2.3, D(r,s) is the product of a reference structure constant
that does not depend on channel momenta, with a rational function of the weights n, wi , wx .
Therefore, in our ratio of 4-point structure constants, the reference structure constants cancel,
the result is a function of weights (rather than momenta), and this function is rational.

Further puzzling results

It is also tempting to study ratios of amplitudes of the type A(r,s),ρ
�

L
�

�K , n : n′, wi , wx

�

, where
we vary the weight of contractible loops. We will now give a lattice argument why this ratio
should not be constant over the module. In Eq. (1.24), amplitudes are defined by expanding a
4-point function over eigenvalues of the simplified transfer matrix T0. Changing n changes T0
itself and all its eigenvalues, in a way that also depends on the variables ρ, L, K . In particular,
our ratio is not expected to be constant over the module, and this is what we find numerically.

One may object that the simplified transfer matrix T0 and its eigenvalues also depend
on the s-channel weight ws, whereas our conjecture (1.25) predicts the simplification of ratios
ws : w′s. However, the dependence of T0 on ws is only visible in modules with r = 0. Whenever
r > 0, the presence of 2r through-lines forbids s-channel loops (of weight ws). Therefore, our
conjecture should be understood to apply only if r ̸= 0 or x ̸= s, which is a minor caveat.

When it comes to ratios of the type A(r,s),ρ
�

L
�

�K , n, wi : w′i , wx

�

, our lattice argument does
not apply. However, there is a CFT argument why this cannot agree with a ratio of structure
constants. In the critical limit, the lattice 4-point function (1.24) should agree with a CFT
4-point function. This 4-point function depends non-trivially on wi not only through struc-
ture constants, but also through conformal blocks. On the lattice side, the only dependence
on wi is through amplitudes, and this dependence should therefore account for the confor-
mal blocks. Since a conformal block is a sum over states in a module, we do not expect
A(r,s),ρ
�

L
�

�K , n, wi : w′i , wx

�

to be constant over the module.
However, in some (but not all) cases, we find that A(r,s),ρ

�

L
�

�K , n, wi : w′i , wx

�

is in fact
constant over the module, and does not depend on L, K . On top of that, it agrees with the
corresponding ratio of 4-point structure constants, stripped of their reference prefactors as in
Eq. (2.61). In such cases, the ratio is therefore a rational function of n, wi , w′i , wx . We have
no explanation for these puzzling results, which seem too good to be true.

Comparison with previous work

There is a priori little reason to suppose that lattice correlation functions could be more than
crude approximations of their CFT counterparts, in particular for lattice sizes as small as L ≤ 5.
Nevertheless, in certain 4-point functions of the lattice cluster model, it was found that the s-
channel spectrum at finite L coincides with the CFT spectrum up to the truncation (4.31) [34].
In the same work, amplitudes were also introduced, but were found to agree with CFT results
only in the critical limit, since ratios of the type wx : w′x were not computed. Examples of such
ratios were considered in [26]: not by explicitly introducing the variables wx , but by studying
various 4-point connectivities in the Potts model. These ratios were found to be constant over
the module, L-independent, and rational in Q = n2.

We are now generalizing these results by introducing the variables wi , wx in diagonal 4-
point functions, studying the non-diagonal 4-point function

¬

V 4
( 1

2 ,0)

¶

, considering non-critical

couplings, and comparing lattice results with CFT predictions.
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4.5 Numerical results

Loop model diagonal 4-point functions
¬

∏4
i=1 VPi

¶

The diagonal 4-point function depends on 8 loop weights n, {wi}, {wx}. However, we use
the decomposition (4.5), which is valid for 4-point functions as well as for the corresponding
amplitudes, and reduce the problem to studying the amplitures A(0), {A(x)}, which depend on
5 loop weights for A(0) (namely n, {wi}) and 6 for A(x) (namely n, {wi}, wx). We choose the
following reference values and alternative values for the loop weights:

w1 =
p

0.61 , w2 =
p

0.71 , w3 =
p

0.81 , w4 =
p

0.91 , wx =
p

1.21 , n=
p

0.51 ,

w′1 =
p

1.61 , w′2 =
p

1.71 , w′3 =
p

1.81 , w′4 =
p

1.91 , w′x =
p

1.41 . (4.32)

Let us first display the amplitude ratios that are obtained by varying the channel weight wx .
We display the first 15 digits, although we actually computed hundreds of digits:

(r, s) A(s)(w′s : ws) A(t)(w′t : wt) A(u)(w′u : wu)

diag not constant zero zero

(1, 0) 1.029851066998826 1.079485644276174 1.079485644276174

(1, 1) 0.880065202821509 1.079485644276174 1.079485644276174

(2, 0) 1.110388044669465 1.252108197040402 1.252927747824670

(2,±1
2) zero 0.986021203400590 0.986021203400590

(2, 1) −8.924478873210560 1.121066979295078 1.121044569052319

(4.33)

Notations:

• The amplitude for the channel diagonal field i.e. r = 0 is labelled ’diag’.

• Amplitudes that are not constant over the module are labelled ’not constant’.

• When an amplitude vanishes, there is no ratio to compute, and we write ’zero’.

These results are consistent with the conjecture (1.25): all amplitude ratios are constant on
the module, except A(s)diag, since we are computing s-channel amplitudes. Moreover, these ratios
agree with the 4-point structure constants

D(1,0)

Dref
(1,0)

∝−
(w1 +w2)(w3 +w4)

ws + n
+wt +wu , (4.34a)

D(1,1)

Dref
(1,1)

∝
(w1 −w2)(w4 −w3)

ws − n
+wt −wu , (4.34b)

D(2,0)

Dref
(2,0)

∝−
4(w2

1 +w2
2 − nw1w2 + n2 − 4)(w2

4 +w2
3 − nw4w3 + n2 − 4)

ws − n2 + 2

− (n− 2)(wt +wu)(w1 +w2)(w3 +w4)− (n+ 2)(wt −wu)(w1 −w2)(w4 −w3)

+ 2(n2 − 4)(w2
t +w2

u + 2ws − 4) , (4.34c)
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D(2, 1
2 )

Dref
(2, 1

2 )

∝ n(w2
t −w2

u)−wt(w1w4 +w2w3) +wu(w1w3 +w2w4) , (4.34d)

D(2,1)

Dref
(2,1)

∝
4(w2

1 +w2
2 + nw1w2 + n2 − 4)(w2

4 +w2
3 + nw4w3 + n2 − 4)

ws + n2 − 2

− (n+ 2)(wt +wu)(w1 +w2)(w3 +w4)− (n− 2)(wt −wu)(w1 −w2)(w4 −w3)

+ 2(n2 − 4)(w2
t +w2

u − 2ws − 4) . (4.34e)

These formulas are special cases of Eq. (2.61), with the polynomial terms given by the boot-
strap results (3.7). We have omitted constant or n-dependent overall factors, which cancel
when taking ratios wi : w′i or wx : w′x . The entries of (4.33) follow from inserting (4.34) into
(4.6) before taking the ratios.

In addition, we have computed ratios of amplitudes at different weights wi . In contrast to
ratios at different wx , this makes sense for A(0) as well as for A(x). The results are

(r, s) A(s)(w′i : wi) A(t)(w′i : wi) A(u)(w′i : wi) A(0)(w′i : wi)

diag not constant zero zero zero

(1, 0) not constant not constant not constant not constant

(1, 1) not constant not constant not constant not constant

(2, 0) 1.66936126690 −0.35481068436 −0.35852887492 2.16917615486

(2,±1
2) zero 3.78379075932 3.79931935182 zero

(2, 1) 7.28790351811 1.68830922070 1.68763016857 1.04572417389

(4.35)

The ratios that are constant on the module do agree with ratios of 4-point structure constants
(4.34). But we did not expect such ratios to be constant, and these results are puzzling.

Finally, after doing our computations at the critical coupling
Kc(n =

p
0.51) = 0.564877 · · · , we repeated them at the coupling K = 0.25, which is well

into the non-critical low-density phase. This did not change the results for the constant ratios.

A loop model non-diagonal 4-point function
¬

V 4
( 1

2 ,0)

¶

There are three distinct 4-point functions of the type
¬

V 4
( 1

2 ,0)

¶

, corresponding to the combi-

natorial maps (4.22). There are two types of closed loops: contractible loops, with weight
n, and non-contractible loops, with weight wx . We have computed ratios of amplitudes for
n =
p

0.51 and wx , w′x =
p

1.21,
p

1.41. Permutation symmetry leads to the vanishing of the

amplitudes with rs odd for and + , and to the vanishing of the amplitudes with

rs even for − . These vanishings make the s-channel spectra sparser, which allows us
to access amplitudes for all r ≤ 3, whereas we were limited to r ≤ 2 in the case of diagonal
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4-point functions. The results are:

(r, s) (w′x : wx) or (w′x : wx)

diag not constant zero

(1, 0) 0.954020159934012 1

(1, 1) zero 1

(2, 0) 0.986202017764047 0.952674915680381

(2,±1
2) zero 0.980575011958174

(2, 1) 1 1.079485644276174

(3, 0) 0.894756612775786 1.095611691091229

(3,±1
3) zero 0.968102239881201

(3,±2
3) 1 0.939824510321535

(3, 1) zero 0.969479747742282

(4.36)

These amplitude ratios agree with the 4-point structure constants from the conformal boot-
strap. In the case of , the relevant results are the s-channel structure constants in Eq. (3.32).
We omit constant or n-dependent prefactors, including the reference structure constants, but
restore the pole terms from Eq. (2.61):

D(s)(1,0)∝
1

n+ws
, (4.37a)

D(s)(2,0)∝ n2 − 4−
4(n− 2)2

ws − n2 + 2
, (4.37b)

D(s)(2,1)∝ 1 , (4.37c)

D(s)(3,0)∝−
8
3
(n− 2)2(n+ 2)n2 −

4(n− 2)2n4

n (n2 − 3) +ws
, (4.37d)

D(s)
(3, 2

3 )
∝ 1 . (4.37e)

In the cases of and , the relevant results are the t-channel structure constants in Eq.
(3.32). Since there is no diagonal field in this channel, the polynomials do not have to be
supplemented with pole terms, and can be directly compared with the lattice results.

Cluster model diagonal 4-point functions
¬

∏4
i=1 VPi

¶

In the cluster model, we consider combinations of diagonal 4-point functions (4.12) that are
even or odd under the reflections wi → −wi . In the conformal field theory, such combina-
tions would not make sense, since reflections do not preserve conformal dimensions. It is only
normalized structure constants that behave reasonably under reflections, see Eq. (3.1). Fortu-
nately, it is the normalized structure constants that we want to compare with the amplitudes
from the cluster model. We therefore have to consider combinations of the type (4.12) for nor-
malized structure constants. A subtlety is that we have only 2 reflection equations for a given
structure constant, since the third reflection equation in Eq. (3.1) relates d(s)(r,s) to d(s)(r,s+1). These
2 reflection equations are one fewer than the cluster model’s 3 independent parity constraints
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(4.10). In order to obtain a third reflection equation, we consider the s→ s+ 1 eigenvectors

1
2

�

d(s)(r,s) + (−)
r d(s)(r,s+1)

�

. (4.38)

Equivalently, these eigenvectors can be defined as invariants under the simultaneous reflection
of w1, w4, ws, wu. After taking combinations of the type (4.12), these become eigenvectors of
all 7 reflections wi →−wi , wx →−wx , and can be compared with lattice results. Admittedly,
we do not know a priori whether we should consider eigenvectors of s→ s+1 for the eigenvalue
+1 or −1: our choice of the eigenvalue (−)r is what will make the comparison work.

From our results (3.7) for normalized s-channel structure constants, let us deduce the
relevant combinations. We add the pole terms whenever required by Eq. (2.61) in order to
obtain ratios D

Dref . Taking combinations as in Eqs. (4.38) and (4.12), we obtain objects that we
call Dν1,νs ,νt ,νu . We decompose these objects according to Eq. (4.13), and focus on the term
D(s),ν1,νs(ws), while neglecting any factors that do not depend on ws:

D(s),ν1,νs
(1,0) (ws)∝

w2−νs
s

w2
s − n2

, (4.39a)

D(s),ν1,νs
(2,0) (ws)∝

w2−νs
s

(n2 − 2)2 −w2
s

, (4.39b)

D(s),ν1,0
(3,0) (ws)∝

w2
s

n2 (n2 − 3)2 −w2
s

, (4.39c)

D(s),ν1,νs

(3, 1
3 )
(ws)∝ δ1−νs

ws . (4.39d)

These results are simple and wi-independent, but this is not true for general (r, s), as we can
already see in the cases

D(s),1,1
(3,0) (ws)∝

2
3 n2(n2 − 4)ws

+

�

(n2 − 1)w2
1 +w2

2 + n2(n2 − 4)
��

(n2 − 1)w2
3 +w2

4 + n2(n2 − 4)
�

n2(n2 − 3)2 −w2
s

ws , (4.39e)

D(s),0,1
(3,0) (ws)∝

2
3 n2(n2 − 4)ws

+

�

(n2 − 1)w2
2 +w2

1 + n2(n2 − 4)
��

(n2 − 1)w2
4 +w2

3 + n2(n2 − 4)
�

n2(n2 − 3)2 −w2
s

ws . (4.39f)

Moreover, for r = 4, we could infer the analytic expressions of a few structure constants from
numerical lattice results:

D(s),1,0
(4,0) (ws)∝

w2
s

(n4 − 4n2 + 2)2 −w2
s

, (4.40a)

D(s),ν1,0

(4, 1
2 )
(ws)∝ w2

s , (4.40b)

D(s),0,1
(4, 1

2 )
(ws)∝ ws . (4.40c)

Let us now display numerical lattice results for the amplitude ratios A(s),ν1,νs , which correspond
to the 4-point functions C (s),ν1,νs via Eq. (1.24). (In that expression, the eigenvalues Λω
are invariant under ws → −ws, so we can combine amplitudes just like we combine 4-point
functions in Eq. (4.12).) We choose the following parameters:

w1 =
p

0.81 , w2 =
p

1.11 , w3 =
p

0.71 , w4 =
p

0.91 ,

ws =
p

1.21 , w′s =
p

1.27 , n=
p

0.51 . (4.41)

61

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029


SciPost Phys. 17, 029 (2024)

(r, s) A(s),0,0(w′s : ws) A(s),1,1(w′s : ws) A(s),0,1(w′s : ws) A(s),1,0(w′s : ws)

diag 1 zero zero 1

(1,0) 0.966724662896 0.943612364678 0.943612364678 0.966724662896

(2,0) 1.115869490901 not constant not constant 1.115869490901

(3,0) 1.082870872590 not constant not constant 1.082870872590

(3, 1
3) zero 1.024493424507 1.024493424507 zero

(4,0) 1.002830912628 0.988626236815 0.989211641764 0.998033506172

(4, 1
2) 1.049586776859 1.024493424507 1.024493424507 zero

(4.42)

We find that all amplitude ratios that are constant over the module perfectly agree with the an-
alytic formulas, or with numerical bootstrap formulas when no analytic formulas are available:
A(s),ν1,νs(w′s : ws) = D(s),ν1,νs(w′s : ws). It is mysterious to us why the ratios are not constant
in a few cases. (This phenomenon persists when we consider other combinations of structure
constants, such as A(s),1,1 + A(s),0,1.) We conjecture that the non-constant ratios are numerical
artefacts, and that in fact the lattice and bootstrap results exactly coincide for all r, s.

For the other terms A(t),ν1,νt , A(u),ν1,νu , the lattice results are similar to those for A(s),ν1,νs ,
but they match the bootstrap results only for certain values of the indices ν1,νt ,νu. We believe
that this is not a fundamental problem: rather, we may not be considering the correct linear
combinations and/or s→ s+ 1 eigenvectors.

5 Outlook

Exactly solving critical loop models

We have provided strong evidence for the exact solvability of critical loop models, by exactly
determining a fair number of 4-point structure constants. In order to actually solve the models,
it may seem that the next logical step is to determine all 4-point structure constants. Given
the complexity of the polynomial factors, this looks difficult. And even if this could be done,
we would still know only the 4-point functions.

In order to solve a conformal field theory and compute all correlation functions, we actually
need 3-point functions. Therefore, we need to decompose 4-point structure constants into 3-
point structure constants. It is not clear how to do this in loop models. Certainly this question
should be addressed in terms of combinatorial maps, since these objects describe the solutions
of crossing symmetry [29].

Having exact epressions is particularly useful for cases where the central charge is ratio-
nal i.e. β2 ∈ Q. These cases include physically interesting systems such as polymers and
percolation. However, they are hard to study numerically, because structure constants and
conformal blocks can have poles, which cancel when computing 4-point functions. Our results
on 4-point structure constants could be useful for understanding rational values of β2 as limits
from non-rational β2.

Exact solvability and degenerate fields

We have demonstrated exact solvability in two-dimensional CFTs that include only one degen-
erate field V d

〈1,2〉, and not the second independent degenerate field V d
〈2,1〉. However, it turns out

that the resulting structure constants are still built from the double Gamma function, which is
defined by two independent shift equations (1.5).
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This suggests that the field V d
〈2,1〉 might actually be present in the theory, while playing a

more discrete role than in say Liouville theory. And indeed, this degenerate field is known to
live at the endpoints of certain topological defects [41]. This suggests that these defects might
be used for constraining structure constants, and explaining the appearance of the double
Gamma function.

Much further in that direction, we would hope to find conformal field theories with no de-
generate field at all, which would nevertheless still be solvable. Even further, two-dimensional
theories with only global conformal symmetry.

Non-unitarity and logarithms

In the literature, much attention has focussed on CFTs such as critical loop models being non-
unitary and/or logarithmic. However, as we have demonstrated, what really matters for solv-
ability is the existence of degenerate fields.

From this point of view, unitarity may be reassuring, as it implies that null vectors vanish.
In a unitary CFT, any field that has a null vector is therefore degenerate. However, as the
examples of minimal models and critical loop models illustrate, unitarity is not a necessary
condition for the existence of degenerate fields.

Logarithmic CFTs are a particular class of non-unitary CFTs. They may be frightening
because their spaces of states can have complicated algebraic structures. However, when it
comes to structure constants, there is no difference between logarithmic and non-logarithmic
representations. The non-diagonal primary field V(r,s) belongs to a logarithmic representation
if (r, s) ∈ N∗×Z∗, but this does not affect the reference three-point structure constant (1.7). In
fact, if r ∈ N∗, the OPE V d

〈2,1〉V(r,0) ∼
∑

± V(r,±1) (2.7) produces fields that belong to a logarith-
mic representation, from V(r,0) which does not. And the OPE determines the structure of that
representation [23,42]. Therefore, logarithms can be both conjured and tamed by degenerate
fields. This should still be true if β2 ∈ Q, although logarithmic representations become more
intricate [43].

Exactly solving lattice loop models?

From lattice results, we have extracted certain amplitude ratios that depend neither on lattice
size nor on lattice coupling, and exactly coincide with ratios of normalized structure constants.
Is this a hint that the lattice models are exactly solvable off-criticality? Maybe not, in view of
our results’ limitations:

• We have only determined ratios of amplitudes at different values of a channel weight
wx . But in generic solutions of crossing symmetry, there is no channel weight, and our
results say nothing on the dependence on the contractible loop weight n.

• Our results do not depend on lattice size, whereas solving lattice models must involve
determining finite-size effects.

Nevertheless, these limitations could conceivably be overcome:

• The truncation (4.31) is an important finite-size effect that does not contradict the size-
independence of amplitudes.

• Our polynomials may well be manifestations of the representation theory of diagram
algebra, and/or of the combinatorics of finite ensembles of loops. Then they could be
computed even in the absence of a channel weight.

63

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029


SciPost Phys. 17, 029 (2024)

Acknowledgements

We are grateful to Hubert Saleur for many enlightening discussion, for his constant encour-
agement, and for collaboration on related problems. Moreover, we benefited from useful dis-
cussions with John Cardy and Didina Serban. We wish to thank Hubert Saleur, Paul Roux and
Yifei He for helpful comments on the draft text.

Funding information This work is partly a result of the project ReNewQuantum, which
received funding from the European Research Council. It was also supported by the French
Agence Nationale de la Recherche (ANR) under grant ANR-21-CE40-0003 (project CONFICA).

References

[1] T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass white paper: The
analytic conformal bootstrap, (arXiv preprint) doi:10.48550/arXiv.2202.11012.

[2] N. Gromov, Introduction to the spectrum of N=4 SYM and the quantum spectral curve,
(arXiv preprint) doi:10.48550/arXiv.1708.03648.

[3] J. Teschner, On the Liouville three-point function, Phys. Lett. B 363, 65 (1995),
doi:10.1016/0370-2693(95)01200-A.

[4] S. Ribault, Conformal field theory on the place, (arXiv preprint)
doi:10.48550/arXiv.1406.4290.

[5] J. Teschner, On structure constants and fusion rules in the SL(2,C)/SU(2)-WZNW model,
Nucl. Phys. B 546, 390 (1999), doi:10.1016/S0550-3213(99)00072-3.

[6] V. A. Fateev and A. V. Litvinov, Correlation functions in conformal Toda field theory I, J.
High Energy Phys. 11, 002 (2007), doi:10.1088/1126-6708/2007/11/002.

[7] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight shifting operators and conformal
blocks, J. High Energy Phys. 02, 81 (2018), doi:10.1007/JHEP02(2018)081.

[8] S. Ribault, With weight-shifting operators, d ̸= 2 looks increasingly like d = 2
in CFT (2017), https://researchpracticesandtools.blogspot.com/2017/10/
with-weight-shifting-operators-dneq-2.html.

[9] C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model, Physica 57, 536 (1972),
doi:10.1016/0031-8914(72)90045-6.

[10] B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions,
Phys. Rev. Lett. 49, 1062 (1982), doi:10.1103/PhysRevLett.49.1062.

[11] B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the
Coulomb gas, J. Stat. Phys. 34, 731 (1984), doi:10.1007/BF01009437.

[12] G. F. Lawler, Schramm-Loewner evolution, (arXiv preprint)
doi:10.48550/arXiv.0712.3256.

[13] J. Cardy, SLE for theoretical physicists, Ann. Phys. 318, 81 (2005),
doi:10.1016/j.aop.2005.04.001.

64

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029
https://doi.org/10.48550/arXiv.2202.11012
https://doi.org/10.48550/arXiv.1708.03648
https://doi.org/10.1016/0370-2693(95)01200-A
https://doi.org/10.48550/arXiv.1406.4290
https://doi.org/10.1016/S0550-3213(99)00072-3
https://doi.org/10.1088/1126-6708/2007/11/002
https://doi.org/10.1007/JHEP02(2018)081
https://researchpracticesandtools.blogspot.com/2017/10/with-weight-shifting-operators-dneq-2.html
https://researchpracticesandtools.blogspot.com/2017/10/with-weight-shifting-operators-dneq-2.html
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1103/PhysRevLett.49.1062
https://doi.org/10.1007/BF01009437
https://doi.org/10.48550/arXiv.0712.3256
https://doi.org/10.1016/j.aop.2005.04.001


SciPost Phys. 17, 029 (2024)

[14] S. Sheffield. Exploration trees and conformal loop ensembles, Duke Math. J. 147, 79
(2009), doi:10.1215/00127094-2009-007.

[15] P. Nolin, W. Qian, X. Sun and Z. Zhuang, Backbone exponent for two-dimensional percola-
tion, (arXiv preprint) doi:10.48550/arXiv.2309.05050.

[16] P. di Francesco, H. Saleur and J. B. Zuber, Relations between the Coulomb gas picture
and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49, 57 (1987),
doi:10.1007/BF01009954.

[17] M. Picco, S. Ribault and R. Santachiara, A conformal bootstrap approach to critical percola-
tion in two dimensions, SciPost Phys. 1, 009 (2016), doi:10.21468/SciPostPhys.1.1.009.

[18] B. Estienne and Y. Ikhlef, Correlation functions in loop models, (arXiv preprint)
doi:10.48550/arXiv.1505.00585.

[19] S. Migliaccio and S. Ribault, The analytic bootstrap equations of non-diagonal two-
dimensional CFT, J. High Energy Phys. 05, 169 (2018), doi:10.1007/JHEP05(2018)169.

[20] Y. He, J. L. Jacobsen, and H. Saleur, Geometrical four-point functions in the two-
dimensional critical Q-state Potts model: The interchiral conformal bootstrap, J. High En-
ergy Phys. 12, 19 (2020), doi:10.1007/JHEP12(2020)019.

[21] A. M. Gainutdinov, N. Read, and H. Saleur, Associative algebraic approach to logarithmic
CFT in the bulk: The continuum limit of the periodic spin chain, Howe duality and the
interchiral algebra, Commun. Math. Phys. 341, 35 (2016), doi:10.1007/s00220-015-
2483-9.

[22] G. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys.
A: Math. Theor. 44, 032001 (2011), doi:10.1088/1751-8113/44/3/032001.

[23] R. Nivesvivat and S. Ribault, Logarithmic CFT at generic central charge: From
Liouville theory to the Q-state Potts model, SciPost Phys. 10, 021 (2021),
doi:10.21468/SciPostPhys.10.1.021.

[24] Y. Ikhlef, J. L. Jacobsen and H. Saleur, Three-Point Functions in c≤ 1 Liou-
ville Theory and Conformal Loop Ensembles, Phys. Rev. Lett. 116, 130601 (2016),
doi:10.1103/PhysRevLett.116.130601.

[25] S. Ribault, Diagonal fields in critical loop models, SciPost Phys. Core 6, 020 (2023),
doi:10.21468/SciPostPhysCore.6.1.020.

[26] Y. He et al., Geometrical four-point functions in the two-dimensional critical Q-state
Potts model: Connections with the RSOS models, J. High Energy Phys. 05, 156 (2020),
doi:10.1007/JHEP05(2020)156.

[27] Y. Ikhlef and A. Morin-Duchesne, Fusion in the periodic Temperley-Lieb alge-
bra and connectivity operators of loop models, SciPost Phys. 12, 030 (2022),
doi:10.21468/SciPostPhys.12.1.030.

[28] G. Delfino and J. Viti, Potts q-color field theory and scaling random cluster model, Nucl.
Phys. B 852, 149 (2011), doi:10.1016/j.nuclphysb.2011.06.012.

[29] L. Grans-Samuelsson, J. L. Jacobsen, R. Nivesvivat, S. Ribault and H. Saleur, From com-
binatorial maps to correlation functions in loop models, SciPost Phys. 15, 147 (2023),
doi:10.21468/SciPostPhys.15.4.147.

65

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029
https://doi.org/10.1215/00127094-2009-007
https://doi.org/10.48550/arXiv.2309.05050
https://doi.org/10.1007/BF01009954
https://doi.org/10.21468/SciPostPhys.1.1.009
https://doi.org/10.48550/arXiv.1505.00585
https://doi.org/10.1007/JHEP05(2018)169
https://doi.org/10.1007/JHEP12(2020)019
https://doi.org/10.1007/s00220-015-2483-9
https://doi.org/10.1007/s00220-015-2483-9
https://doi.org/10.1088/1751-8113/44/3/032001
https://doi.org/10.21468/SciPostPhys.10.1.021
https://doi.org/10.1103/PhysRevLett.116.130601
https://doi.org/10.21468/SciPostPhysCore.6.1.020
https://doi.org/10.1007/JHEP05(2020)156
https://doi.org/10.21468/SciPostPhys.12.1.030
https://doi.org/10.1016/j.nuclphysb.2011.06.012
https://doi.org/10.21468/SciPostPhys.15.4.147


SciPost Phys. 17, 029 (2024)

[30] S. Ribault et al., Bootstrap_Virasoro 6.0: Bootstrapping two-dimensional CFTs with Vi-
rasoro symmetry, GitLab (2023), https://gitlab.com/s.g.ribault/Bootstrap_Virasoro/-/
releases/v6.0.

[31] S. Ribault, On 2d CFTs that interpolate between minimal models, SciPost Phys. 6, 075
(2019), doi:10.21468/SciPostPhys.6.6.075.

[32] J. Simmons, R. Ziff and P. Kleban, Factorization of percolation density correlation functions
for clusters touching the sides of a rectangle, J. Stat. Mech.: Theory Exp. p02067 (2009),
doi:10.1088/1742-5468/2009/02/P02067.

[33] M. Picco, S. Ribault and R. Santachiara, On four-point connectivities in the critical 2d Potts
model, SciPost Phys. 7, 044 (2019), doi:10.21468/SciPostPhys.7.4.044.

[34] J. L. Jacobsen and H. Saleur, Bootstrap approach to geometrical four-point functions in
the two-dimensional critical Q-state Potts model: A study of the s-channel spectra, J. High
Energy Phys. 01, 84 (2019), doi:10.1007/JHEP01(2019)084.

[35] G. Benkart and T. Halverson, Motzkin algebras, Eur. J. Comb. 36, 473 (2014),
doi:10.1016/j.ejc.2013.09.010.

[36] J. L. Jacobsen, S. Ribault and H. Saleur, Spaces of states of the two-dimensional O(n) and
Potts models, SciPost Phys. 14, 092 (2023), doi:10.21468/SciPostPhys.14.5.092.

[37] U. Grimm, Dilute algebras and solvable lattice models, in Statistical models, Yang-Baxter
equation and related topics; Symmetry, statistical mechanical models and applications,
World Scientific, Singapore, ISBN 9789814530927 (1995), doi:10.1142/3186.

[38] J. Belletête, Y. Saint-Aubin, The principal indecomposable modules of the dilute Temperley-
Lieb algebra, J. Math. Phys. 55, 111706 (2014), doi:10.1063/1.4901546.

[39] A. Gamsa and J. Cardy, Correlation functions of twist operators applied to single
self-avoiding loops, J. Phys. A: Math. Gen. 39, 12983 (2006), doi:10.1088/0305-
4470/39/41/S12.

[40] H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central
charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56, 742 (1986),
doi:10.1103/PhysRevLett.56.742.

[41] J. Lykke Jacobsen and H. Saleur, Non-invertible symmetries and RG flows in
the two-dimensional O(n) loop model, J. High Energy Phys. 12, 90 (2023),
doi:10.1007/JHEP12(2023)090.

[42] V. Gorbenko, and B. Zan, Two-dimensional O(n) models and logarithmic CFTs, J. High
Energy Phys. 10, 99 (2020), doi:10.1007/JHEP10(2020)099.

[43] Y. He and H. Saleur, A note on the identity module in c=0 CFTs, SciPost Phys. 12, 100
(2022), doi:10.21468/SciPostPhys.12.3.100.

66

https://scipost.org
https://scipost.org/SciPostPhys.17.2.029
https://gitlab.com/s.g.ribault/Bootstrap_Virasoro/-/releases/v6.0
https://gitlab.com/s.g.ribault/Bootstrap_Virasoro/-/releases/v6.0
https://doi.org/10.21468/SciPostPhys.6.6.075
https://doi.org/10.1088/1742-5468/2009/02/P02067
https://doi.org/10.21468/SciPostPhys.7.4.044
https://doi.org/10.1007/JHEP01(2019)084
https://doi.org/10.1016/j.ejc.2013.09.010
https://doi.org/10.21468/SciPostPhys.14.5.092
https://doi.org/10.1142/3186
https://doi.org/10.1063/1.4901546
https://doi.org/10.1088/0305-4470/39/41/S12
https://doi.org/10.1088/0305-4470/39/41/S12
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1007/JHEP12(2023)090
https://doi.org/10.1007/JHEP10(2020)099
https://doi.org/10.21468/SciPostPhys.12.3.100

	Introduction and main results
	Exact solvability in conformal field theory
	Structure constants in loop models
	Conformal bootstrap
	Lattice approach

	Analytic constraints
	How degenerate fields constrain the spectrum
	How degenerate fields constrain structure constants
	Analyticity in dimensions of diagonal fields
	Permutation symmetry of 4-point functions

	Numerical bootstrap results
	Four-point functions of diagonal fields
	Cluster connectivities of the Potts model
	Four-point functions of diagonal and non-diagonal fields
	Four-point functions of non-diagonal fields
	Some even-spin and odd-spin solutions

	Lattice models
	The two lattice models
	Transfer matrix formalism
	Amplitudes
	Wonderful simplification of amplitude ratios
	Numerical results

	Outlook
	References

