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Abstract

Spontaneous breaking of symmetries leads to universal phenomena. We extend this
notion to (−1)-form U(1) symmetries. The spontaneous breaking is diagnosed by a de-
pendence of the vacuum energy on a constant background field θ , which can be probed
by the topological susceptibility. This leads to a reinterpretation of the Strong CP prob-
lem as arising from a spontaneously broken instantonic symmetry in QCD. We discuss
how known solutions to the problem are unified in this framework and explore some, so
far unsuccessful, attempts to find new solutions.
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1 Introduction and summary

Symmetries are extremely useful for understanding quantum theories. In quantum field the-
ory, symmetries have traditionally been taken to act on local operators and to obey a group
law multiplication, but recent years have seen many generalizations, starting with p-form gen-
eralized global symmetries [1, 2]. The subsequent literature is too large to comprehensively
cite here; instead, we refer readers to several recent pedagogical reviews [3–9]. Generalized
symmetries have proved to be useful for characterizing phase transitions, strong dynamics,
and other nonperturbative aspects of quantum field theory. Quantum gravity, in contrast to
quantum field theory, is believed to lack such symmetries (though approximate symmetries
are common). The absence of global symmetries has powerful implications, for example re-
quiring a complete spectrum of charged objects in quantum gravity [10–14]. Our goal in this
paper is to argue that an apparently degenerate case of generalized symmetry, namely the
case of (−1)-form U(1) global symmetry, is a useful concept that provides a unifying language
for discussing many interesting dynamical phenomena in quantum field theory. Although this
degenerate case has received relatively little attention in the literature, it has previously made
an appearance in [15–19], and our discussion will build on ideas introduced therein.1

The case of p-form invertible global symmetries in d-dimensional quantum field theory,
with 0 ≤ p ≤ d − 2, is well-established. A p-form global symmetry with group G is associated
with a family of topological operators U(g,Σ), known as symmetry operators, labeled by a
group element g ∈ G and a closed (i.e., compact and without boundary) (d − p−1)-manifold
Σ. These operators are topological, in the sense that correlation functions are invariant under
deformations of Σ provided that Σ does not cross another operator insertion when deformed.
The symmetry operator U(g,Σ) acts on p-dimensional charged operators living on p-manifolds
that are linked by Σ. Although the symmetry charge in general is defined on a (d − p − 1)-
manifold, in many cases it is localized to the (p + 1)-dimensional worldvolumes of massive
charged objects created by the charged p-dimensional operators. In the special case of a U(1)
symmetry, the symmetry operators take the form

U(eiα,Σ) = exp

�

iα

∫

Σ
⋆ jp+1

�

, (1)

where jp+1 is a conserved (p+ 1)-form current. In other words, jp+1 is co-closed:

d⋆ jp+1 = 0 . (2)

1Other recent discussions of (−1)-form global symmetries, with less overlap with our current focus, appear
in [20–22]. (d − 1)-form global symmetry is another interesting special case; see [23].
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The topological nature of the operator follows from this local conservation equation. (In some
literature, the (d− p−1)-form operator Jd−p−1 = ⋆ jp+1 is referred to as the conserved current,
and it is closed rather than co-closed. Here we follow the classic convention in which an
ordinary conserved current for a symmetry acting on local operators is a 1-form.) For a U(1)
symmetry, the charge Q =

∫

Σ ⋆ jp+1 is an integer, which is equivalent to saying that the right-
hand side of (1) is invariant under α 7→ α+2π, a necessary condition for the operator to be a
well-defined function of eiα ∈ U(1).

Every symmetry is associated with topological operators, even if it is a traditional Noether
symmetry that is conserved only on the equations of motion. The topological nature of the
operator is a statement about correlation functions in the theory. However, in special cases
the symmetry itself is topological in nature. For example, in Maxwell theory, the magnetic
flux 1

2π

∫

Σ F ∈ Z is an integer topological invariant for any U(1) bundle and any closed 2-
manifold Σ, without the need to use equations of motion. In such cases, the path integral
decomposes into topological sectors, and the symmetry operator insertion is identical for all
field configurations in a given sector. Whether a symmetry is topological in this sense can
depend on the duality frame in which one works, so it is not a physical invariant. On the other
hand, many ordinary symmetries are not topological in any duality frame. In this paper, we
focus on symmetries that are topological in the strong sense, in the duality frame in which we
define the theory.

A p-form U(1) global symmetry (without an ’t Hooft anomaly) can be coupled to a back-
ground (p+1)-form gauge field (U(1) connection) Ap+1 by adding a coupling Ap+1∧⋆ jp+1. We
can gauge the symmetry by making Ap+1 dynamical, i.e., by summing over U(1) bundles with
connection Ap+1 in the path integral (and generally including a kinetic term for Ap+1, which
will typically be generated by loops). In this case, Maxwell’s equation 1

e2 d⋆Fp+2 = ⋆ jp+1 indi-
cates that the would-be co-closed current has become co-exact, and as a result the symmetry
operators become trivial.

1.1 Defining a (−1)-form U(1) global symmetry

The special case p = −1 of p-form global symmetry is somewhat degenerate, in a few senses. At
first glance, one may reasonably be skeptical that it is a useful notion at all. A standard p-form
global symmetry acts on p-dimensional charged operators. There is, apparently, no such thing
as a (−1)-dimensional operator, so a (−1)-form symmetry would appear to have nothing to
act on. On the other hand, a p-form symmetry is also associated to dynamical charged objects
with a (p+1)-dimensional worldvolume, and we do have a notion of a dynamical object with
a 0-dimensional worldvolume, namely, an instanton. (For example, it is common to speak
interchangeably of D(−1)-branes or D-instantons in Type IIB string theory [24].) A related
concern is that the symmetry operators U(g,Σ) for a (−1)-form symmetry are associated with
closed d-dimensional spacetime manifolds Σ; in other words, they are integrated over the
entire spacetime. In this case, the question of whether the operator’s correlation functions are
topological is not obviously meaningful, because we cannot locally deformΣwhile keeping the
spacetime background of our theory fixed.2 Similarly, in the case of a continuous symmetry, a
(−1)-form symmetry is associated with a conserved 0-form current, d⋆ j0 = 0. However, this
condition is trivial, because ⋆ j0 is a top form in the theory. Thus, every scalar operator in the
theory defines, in some sense, a (−1)-form global symmetry, which threatens to render the
concept vacuous. There may still be some merit to this concept, even in the extremely general
case, where the absence of such (−1)-form global symmetries has been identified with the
longstanding claim that there are no free parameters in quantum gravity [18].

2There may be useful perspectives in which the deformation occurs in configuration space, or in some type of
auxiliary extra dimension. We will not make use of such perspectives in this paper.

3

https://scipost.org
https://scipost.org/SciPostPhys.17.2.031


SciPost Phys. 17, 031 (2024)

In this paper, we focus on the case of (−1)-form U(1) global symmetries, which retain
enough structure to be a useful concept [15–17,19]. The U(1) case is associated with integer
charges,
∫

Σ ⋆ j0 ∈ Z. Correspondingly, these theories can be coupled to a background axion
field, i.e., a compact scalar θ (x)∼= θ (x)+2π, which we think of as a 0-form U(1) gauge field.
The gauge redundancies of θ are simply θ (x) 7→ θ (x)+2πn for n ∈ Z. These are the analogues
of “large” or winding gauge transformations Ap 7→ Ap+2πnωp with [ωp] ∈ H p(M ,Z) for a p-
form gauge field; the axion has no analogue of the local gauge transformations
Ap 7→ Ap + dλp−1.3

We will follow the pragmatic approach of taking the possibility to couple a theory to a
background axion field as our working definition of a (−1)-form U(1) global symmetry:

Definition. We say that a theory has a (−1)-form U(1) global symmetry when it contains an
operator j0 that can be consistently linearly coupled to a background field θ (x) taking values
in a circle (θ ∼= θ + 2π),

e−SE 7→ e−SE exp

�

i

∫

M
θ (x)⋆ j0(x)

�

. (3)

We refer to j0(x) as the (−1)-form U(1) symmetry current and (for the case of orientable
spacetime manifolds M) we refer to

∫

M ⋆ j0(x) ∈ Z as the (−1)-form symmetry charge.

The canonical example, and the case of greatest relevance to particle physics, is a 4d gauge
theory with

⋆ j0 =
1

8π2
tr(F ∧ F) , (4)

for which the (−1)-form symmetry charge is the instanton number of a gauge field configura-
tion. We will point out a number of other examples as we go along.

A few comments about our definition are in order. We require that the theory can be
defined on arbitrary orientable spacetime manifolds M for arbitrary θ (x) backgrounds, which
in general are bundles over spacetime—i.e., they admit configurations in which θ (x) winds
around a cycle.4 In some cases, turning on other background fields can clash with turning on
general θ backgrounds; in that case, we say that there is a mixed ’t Hooft anomaly involving the
(−1)-form symmetry, or an anomaly in the space of coupling constants, as discussed extensively
in [15,16].

We have referred to orientable spacetime manifolds because in a theory with an
orientation-reversing spacetime symmetry like parity (by which we mean reflection of an odd
number of spatial dimensions) or time reversal, there are additional subtleties. Such theories
may be defined on non-orientable manifolds (see, e.g., [27–29] for recent discussions). In this
case, the quantity that we can integrate over M is a pseudoform or twisted form, i.e., one that
transforms with an extra minus sign under parity. If ⋆ j0 is an ordinary form, then θ (x) must
be a pseudoscalar in order for (3) to make sense. Our definition is valid in that case, but the
charge
∫

M ⋆ j0(x) is not defined on arbitrary spacetime backgrounds, and in particular it does
not make sense to couple the theory to a constant θ -term on a general background. This is as
expected: such a term violates parity.

The definition of a (−1)-form U(1) global symmetry that we have chosen is useful, because
theories with this property have many features in common with theories with p-form U(1)

3See for instance [25].
4One might wonder if a weaker notion of (−1)-form symmetry is of interest, in which a theory need only admit

a coupling to a constant background θ term. An interesting candidate is discussed in [26]: the CP1 sigma model in
3d has a topological invariant characterized by π3(CP1)∼= Z, which one might expect can be coupled to a constant
θ , but this topological invariant is not given by an integral of a local term. It turns out that the theory is only
consistent with the choices θ = 0 and θ = π. We do not know any theory admitting a coupling to generic constant
θ but not to a background axion.
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global symmetries for higher p. For example, the symmetry can be gauged. In our context,
we can do this by making the field θ (x) dynamical, summing over θ field configurations in
the path integral. In some theories we can also gauge the symmetry by introducing massless
chiral fermions [19]. In theses cases, as in ordinary electromagnetism, gauging the symmetry
renders the current co-exact instead of merely co-closed. The central point of this paper is that
the analogy also extends to the notion of spontaneous breaking of the global symmetry, and
correspondingly, to higgsing (and dual confinement) when the symmetry is gauged.

For an ordinary U(1) global symmetry, it is possible to gauge a subgroup Zk ⊂ U(1). This
operation also extends to the (−1)-form case, where it corresponds to summing over only field
configurations with topological charge a multiple of k [17,30–33].

1.2 Spontaneous breaking of a (−1)-form U(1) symmetry

The spontaneous breaking of p-form global symmetries for p ≥ 0 has been extensively dis-
cussed in the literature [2, 34–36]. A standard diagnostic for breaking of an ordinary 0-form
symmetry is that a charged operator obtains a vacuum expectation value. When the symmetry
is continuous, we also find massless, propagating Nambu-Goldstone bosons that nonlinearly
realize the symmetry. This picture extends to higher-form symmetries: for example, a Wilson
loop generally has an expectation value that obeys a perimeter law or an area law. In the case
of a perimeter law, a counterterm in the definition of the Wilson loop can cancel the perime-
ter dependence, leaving behind a constant expectation value even for arbitrarily large loops.
This is the case of spontaneous breaking of a 1-form global symmetry, and the photon can be
viewed as a massless Nambu-Goldstone mode. For a confining theory with an area law for the
Wilson loop, on the other hand, the expectation value decays for large loops, and the 1-form
global symmetry is considered to be unbroken.

Such diagnostics cannot be extended to the case of (−1)-form global symmetries, because
there is no (−1)-dimensional charged operator that can obtain a vacuum expectation value.
Similarly, there is no possibility of a propagating Nambu-Goldstone boson created by a (−1)-
form field nonlinearly realizing the symmetry. Nonetheless, we will argue that there is a useful
notion of spontaneous symmetry breaking for a (−1)-form U(1) symmetry, and even a sense in
which there is an emergent Nambu-Goldstone field in the infrared (though not a propagating
boson).

We propose that a useful diagnostic of spontaneous symmetry breaking for a (−1)-form
global symmetry is that the vacuum energy for the theory in Minkowski space depends on the
value of a constant θ background. In particular, one order parameter for such spontaneous
symmetry breaking is the topological susceptibility, defined as

X = −i

∫

dd x 〈T{ j0(x) j0(0)}〉conn. =
∂

∂ θ
〈 j0〉=

∂ 2

∂ θ2
V (θ ) , (5)

where, conn. denotes the connected two-point function. One suggestive link between this
expression and familiar cases of spontaneous symmetry breaking is that of the Kogut-Susskind
pole [37, 38], which we briefly review here. Specifically, in many theories, the (−1)-form
topological charge density j0 is a total derivative of a (gauge-dependent) quantity vµ(x),

j0(x) = ∂
µvµ(x) . (6)

In this context, a nonzero value of X signals the existence of a pole in the two-point function
of vµ(x):

X = lim
q→0
−i qµqν
∫

dd x eiq·x〈T{vµ(x)vν(0)}〉conn. , (7)
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which implies that

lim
q→0

∫

dd x eiq·x〈T{vµ(x)vν(0)}〉conn. = i
qµqν
q2

X
q2

. (8)

That is, the topological susceptibility is the residue of a pole at q2 = 0 in a (gauge-dependent)
two-point function. Because of the gauge dependence, this pole does not signal the existence
of a propagating particle, but it does relate to important long-distance correlations in the
theory [38].

An interesting perspective on the Kogut-Susskind pole is that it signals that the infrared
theory has a description in terms of an emergent (d − 1)-form gauge field [39–43]:

⋆ j0→IR dCd−1 . (9)

A (d − 1)-form gauge field has no propagating degrees of freedom, but there can be domain
walls carrying a gauge charge under it, and such fields prove useful in various applications
(see, e.g., [44–47]).

We would like to propose a reinterpretation of the emergent (d − 1)-form gauge theory.
In general, spontaneous breaking of a p-form U(1) global symmetry is associated with the
emergence of a p-form Nambu-Goldstone gauge field in the IR. In the standard case of a 0-form
symmetry, we think of this simply as a compact boson, but as we have argued, such bosons
can also be thought of as 0-form gauge fields. A p-form gauge field has a complementary
description in terms of a magnetic dual (d − p − 2)-form gauge field, whose field strength is
the Hodge dual of the original field strength:

⋆dap ∼ dbd−p−2 . (10)

It is unclear what it would mean to seek a (−1)-form gauge field emerging in the IR description
of a spontaneously broken (−1)-form global symmetry, but the magnetic dual makes perfect
sense: it should be a (d−1)-form gauge field, precisely as in (9). Thus, we argue that the Kogut-
Susskind pole can be thought of as signaling that the IR theory admits an emergent description
in terms of a (d−1)-form Nambu-Goldstone gauge field. There is no Nambu-Goldstone boson,
because there are no propagating degrees of freedom; nonetheless, the Nambu-Goldstone field
can be useful.

One example of the utility of such a description arises when we gauge the (−1)-form global
symmetry. When we gauge a spontaneously broken p-form global symmetry, the resulting
theory is in the Higgs phase. We can summarize the phenomenon of higgsing and its mag-
netic dual, confinement, by saying that in this phase electrically charged worldvolumes have
boundaries (they can end on a vacuum insertion) and magnetically charged worldvolumes are
boundaries (they are confined by a higher-dimensional object). Many of the consequences of
higgsing have analogues when we couple a dynamical axion field to a spontaneously broken
(−1)-form global symmetry. To name a few:

• The gauge field acquires a mass. For the axion, this is apparent: there is a potential V (θ )
and the axion mass is proportional to X at the minimum of the potential.

• Electric charges are screened. In the axion case, the electrically charged objects are in-
stantons. We can think of the local operator eiθ (x) as the analogue of a Wilson line: it
inserts a static instanton configuration at a point. The effects of this insertion in corre-
lation functions fall off at long distances, because the axion is massive.

• Magnetic charges are confined. In the axion case, these are vortices, codimension-two
objects in spacetime around which the axion field winds. They are charged under the
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gauge field Bd−2 dual to θ . This field is eaten by the emergent (d−1)-form gauge field via
a Stueckelberg structure of the form |dBd−2 − Cd−1|2 [43]. Equivalently, axion vortices
are the boundaries of domain walls, which carry charge under Cd−1.

We consider this set of parallels to be a strong argument that our definition of spontaneous
breaking of a (−1)-form global symmetry is a useful one, allowing us to successfully apply
intuition from more standard cases in a different context.

1.3 Application to the Strong CP problem

The language that we have introduced above provides a useful framework for thinking about
the Strong CP problem. The Strong CP problem is the puzzle that the Standard Model admits a
CP-violating term of the form 1

8π2 θ̄
∫

tr(G∧G),5 but experiment finds that this term is extraor-
dinarily small, |θ̄ |≲ 10−10 [48,49]. This cries out for some explanation in terms of symmetries
or dynamics. Because the CKM phase in the quark mixing matrix has been measured to be an
O(1) number, the simplest answer that our universe respects CP is not a viable one. A number
of solutions to this puzzle have been proposed over the years.

From our perspective, the Strong CP problem is closely related to the existence of a spon-
taneously broken (−1)-form U(1) global symmetry of the Standard Model, with charge the
QCD instanton number. The symmetry itself allows us to turn on a θ̄ term (in the absence
of an additional symmetry like CP, which would forbid a constant θ (x) background field on
generic spacetimes). The spontaneous breaking of the symmetry allows θ̄ to affect physical
observables like the neutron EDM. This suggests that a useful strategy for solving the Strong
CP problem is to seek mechanisms for eliminating this global symmetry. A global symmetry
can be eliminated by effects that explicitly break the symmetry, or by gauging. As already
noted in [19], two different classic solutions to the Strong CP problem, the QCD axion and
the massless up quark, can be understood as different ways of gauging the (−1)-form global
symmetry. Explicitly breaking the symmetry is more challenging, since the underlying charge
is topological. Nonetheless, there are physical mechanisms that can break such symmetries.
We will discuss some of these mechanisms, and see that for the most part they do not offer a
satisfactory resolution of the Strong CP problem. A final, classic set of solutions to the Strong
CP problem rely on the spontaneous breaking of an orientation-reversing spacetime symmetry
(parity or CP). These mechanisms, again, are linked to the fate of the (−1)-form symmetry,
since the topological charge is not defined on the non-orientable spacetime backgrounds that
are allowed in such theories.

1.4 Outline

The remainder of this text is structured as follows. In section 2 we present a discussion on how
generic abelian gauge theories in the Coulomb phase can be understood as describing sponta-
neously broken higher form symmetries. We argue that this still holds in 2d, where Maxwell
theory realizes a spontaneously broken (−1)-form U(1) symmetry. We examine several de-
formations of this theory and propose universal features of spontaneously broken (−1)-form
symmetries. In section 3 we argue that the instantonic symmetry of SU(N) Yang Mills and QCD
is spontaneously broken and link this fact with the Strong CP problem. In section 4 we explore
solutions to the Strong CP problem from this point of view. We list some open questions and
provide an outlook in section 5.

5The physical quantity θ̄ in fact is a linear combination of the coefficient of tr(G ∧ G) and the phase of the
determinant of the quark mass matrix; here we assume we have rephased the quarks to move the physical quantity
entirely into the gluonic term.
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2 Gauge theories as spontaneously broken phases

Standard lore holds that abelian gauge theories in the Coulomb phase describe spontaneously
broken higher form symmetries. The lore further specifies that the Nambu-Goldstone bosons
realizing the spontaneously broken symmetries nonlinearly are the photons themselves.6 This
section aims to show that this lore holds even in 2d theories, where the higher-form symmetry
is a (−1)-form symmetry. To gain some intuition we review Maxwell’s theory in 4d and 3d,
making our way to the two-dimensional world. Then we describe abelian gauge theories in 2d
and give explicit realizations of the concepts introduced in Sec. 1. As we will describe, 2d gauge
theories have instantons that are charged under a (−1)-form symmetry that is spontaneously
broken.

2.1 4d Maxwell theory

Free electromagnetism is a theory of a U(1) gauge field A with field strength F = dA and the
following action,

S =

∫

−
1

2e2
F ∧ ⋆F . (11)

The equation of motion for the gauge field is d⋆F = 0. This equation signals the existence of a
conserved 2-form current Je =

1
e2 F that generates a 1-form U(1)(1)e symmetry. The topological

symmetry operator can be constructed by exponentiation of the current,

Uα(Σ2) = e
iα
e2

∫

Σ2
⋆F . (12)

This symmetry operator counts the electric charge inside Σ2 and acts by linking on non-
dynamical probe electric charges dubbed Wilson lines. If massless electrically charged dy-
namical matter, such as the electron, is added to this theory, the electric charge of Wilson lines
is screened and the U(1)(1)e symmetry is explicitly broken. Provided that the gauge group is
U(1), electric charge is quantized and α ∈ [0, 2π), as befits a U(1)(1)e symmetry. The gauge
field obeys a topological constraint, the Bianchi identity dF = 0. As before, this equation sig-
nals the existence of a conserved 2-form magnetic current Jm = ⋆F that generates a U(1)(1)m
symmetry. Exponentiation of the current yields the symmetry operators Ũα(Σ2) that measure
the magnetic charge inside of Σ2. If the gauge group is U(1),

∮ F
2π ∈ Z, which is a topological

invariant labeling gauge bundles by their monopole number. The topological nature of the
magnetic symmetry makes explicitly breaking it a non-perturbative statement in the action in
Equation (11). In other words, no modification of the Lagrangian, no matter how drastic it is,
can explicitly break this symmetry as long as A is a U(1) gauge field.

A 1-form symmetry is generated by codimension 2 topological operators. There is no in-
variant way of defining an action of an operator of such dimensionality on local operators.
This implies that a local operator can’t transform under a 1-form symmetry. This is not true
for local operators that are not gauge invariant, which do not correspond to physical observ-
ables. In fact the action of the electric 1-form symmetry can be encoded as a shift of the gauge
field by a closed but not quantized 1-form Λ1, A→ A+Λ1,

∮

Λ1 ∈ [0, 2π). Note that if Λ1
was quantized this shift would correspond to a large gauge transformation. The gauge invari-

ant operator transforming under the symmetry is the Wilson line, defined as Wq(γ) = eiq
∫

γ
A

for some integer q and its transformation rules follow from those of A. This is one of the nice
features of gauge fields: they allow for the description of line operators in terms of local (but
not gauge invariant) ones. A further important lesson follows from the transformation of A;

6This also holds for the compact scalar, which we understand as a gauge boson for a (−1)-form U(1) symmetry.
It nonlinearly realizes a spontaneously broken 0-form symmetry.
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it realizes the 1-form symmetry non-linearly. This is a familiar property of Nambu-Goldstone
bosons φ in phases with spontaneously broken U(1) 0-form symmetries. Given a symme-
try transformation with compact parameter c ∈ [0, 2π) the Nambu-Goldstone boson shifts as
φ → φ + c. The lesson that follows from this observation is that A is the Nambu-Goldstone
boson of a spontaneously broken U(1)(1)e symmetry [2].

This heuristic observation can be made precise by computing the expectation value of an
object charged under U(1)(1)e , a Wilson line. It obeys a perimeter law in the Coulomb phase,
signaling the spontaneous breaking of the symmetry. The Goldstone theorem implies that, in
a phase with a spontaneously broken U(1) 0-form symmetry, the conserved current creates
Nambu-Goldstone bosons from the vacuum, which propagate a massless excitation. In the
case at hand the conserved current creates a 1-form Nambu-Goldstone boson, the photon [2],

〈0|Je,µν(x)|λ, p〉=
�

λµpν −λνpµ
�

eipx . (13)

The equation of motion and the Bianchi identity are exchanged under 1
2π F ↔ 1

e2 ⋆ F . One
can introduce a magnetic photon Ã by defining a Hodge dual field strength 1

2π F̃ = 1
e2 F and a

dual coupling ẽ = 2πe−1 and the action remains invariant. In the electric frame an ’t Hooft
line is defined as a boundary condition for the gauge field along a 1-dimensional locus. In

the dual frame however it can be defined in terms of the dual gauge field Hq(γ) = eiq
∫

γ
Ã.

If one substitutes U(1)(1)e with U(1)(1)m , A with Ã and the Wilson lines with ’t Hooft lines all
the discussion regarding the spontaneous breaking of the symmetry remains unchanged. It
follows that both U(1)(1)e and U(1)(1)m are spontaneously broken in the Coulomb phase giving
rise to a single Nambu-Goldstone boson in either the electric or magnetic frame.

It is interesting to note that the photon remains exactly massless even if both symmetries
are explicitly broken at some scale by adding fundamental matter and dynamical monopoles.
Indeed this is plausibly what happens in our universe. Since local operators may not carry
1-form charge, no relevant (or irrelevant) couplings can spoil the emergent 1-form symmetry,
making it exact at low energies. This fact protects the masslessness of the photon. For related
references see for instance [36,50–56].

2.2 3d Maxwell theory

The symmetries of 3d electromagnetism follow a similar pattern to its 4d counterpart. There
is a U(1)(1)e 1-form symmetry under which Wilson lines are charged. In this case, however, the
magnetic symmetry is 0-form U(1)(0)m . Magnetic charge is sourced by local operators called
monopole operators which are defined by excising a point of spacetime and prescribing a
boundary condition for A sourcing magnetic flux. Due to the change in dimensionality the
gauge field A is dual to a compact scalar field σ. In terms of this field the monopole op-
erator is defined as Mp(x) = eipσ(x). In the 3d world a continuous 1-form symmetry can’t
spontaneously break and give rise to Nambu-Goldstone modes, a result which follows from a
generalization of the Hohenberg-Mermin-Wagner-Coleman theorem [2, 34, 57, 58]. This im-
plies that the electric 1-form symmetry can’t be spontaneously broken in 3d. This result is
made apparent by introducing dynamical monopoles which give rise to a confining force be-
tween electric particles [59]. The Wilson line then follows an area law, which in the large
area limit vanishes, and the U(1)(1)e symmetry remains unbroken. This means that the 3d pho-
ton can’t be understood as the Nambu-Goldstone boson for the spontaneous breaking of the
electric symmetry. This result follows from monopole proliferation, which in turn implies that
the vacuum is magnetically charged and the magnetic 0-form symmetry is spontaneously bro-
ken. Furthermore, explicit computation in the magnetic frame shows that the matrix element
between the magnetic current Jm,µ = (⋆F)µ and the dual photon is,

〈0|Jm,µ(x)|p〉= pµeipx . (14)
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The lesson is that 3d electromagnetism can be understood as in the magnetic Coulomb phase
and describes a spontaneously broken U(1)(0) symmetry.

As already mentioned, addition of magnetic monopoles leads to their proliferation and
the onset of confinement of electric charges. A further effect of this proliferation is to give the
photon a mass exponentially small in the monopole action Smon. This is understood by noticing
that once dynamical monopoles are included, the magnetic 0-form symmetry is only emergent
at energies below Smon. An emergent 0-form symmetry, unlike an emergent 1-form symmetry,
is not enough to protect the masslessness of the photon. This was beautifully exemplified
by Polyakov in [59]. He studied how the photon, when embedded in SU(2) through adjoint
Higgsing gets a mass from vortices. The magnetic symmetry is absent in the SU(2) theory and,
correspondingly, the U(1) photon is massive.

2.3 2d Maxwell theory

We are now ready to tackle the wacky two dimensional world. In 2d the Maxwell theory admits
a θ -term, which we omitted in the 4d case. It will play a starring role in our discussion, so let
us spell it out,

S =

∫

−
1

2e2
F ∧ ⋆F +

1
2π

∫

θ F . (15)

The equation of motion is unchanged, d⋆F = 0, and gives rise to a conserved 2-form current Je.
The Bianchi identity is more subtle than in the higher dimensional counterparts. It still reads
dF = 0 but it is a tautological equation, since every top form is closed. As in higher dimensions,
the first Chern class of a U(1) gauge bundle in 2 dimensions is quantized

∮

F = 2πZ. This
is what allows for the introduction of the θ -term in the first place. We can use this fact to
identify 2πF = ⋆ j0 as a magnetic (−1)-form U(1) current and the θ -term as the coupling to
a background gauge field for it,7 following our definition in Equation (3). In our terminology
the symmetry of 2d Maxwell theory is then U(1)(1)e ×U(1)(−1)

m .8 Furthermore, in analogy with
the higher dimensional counterparts, it is natural to expect the (−1)-form symmetry to be
spontaneously broken. In the following we explore this possibility in detail. The field strength
in 2d has a single component F01, and the action can be rewritten.

S =

∫

d2 x
�

1
2e2

F2
01 +

1
2π
θ F01

�

. (16)

It is useful to quantize the theory by choosing the space manifold to be a circle S1 of radius
R. By a suitable choice of gauge A0 = 0 one can argue that only the zero mode survives and
the theory can be rewritten in terms of an angular variable φ(t) =

∫ 2πR
0 d xA1(x , t). The

angular nature follows from the large gauge transformations of A winding along the circle,
which become φ→ φ + 2π. In terms of φ the action becomes,

S =

∫

d t
�

1
4πe2R

φ̇2 +
θ

2π
φ̇

�

. (17)

This is just the action for a particle in a circle in the presence of a magnetic field. The system
can be quantized and has energy eigenstates ψl = eilφ with energy,

El = πe2R
�

l −
θ

2π

�2

. (18)

7Given that θ is a background gauge field, the meaning of the transformations θ → θ + 2π is clear, they are
just the large gauge transformations of the background gauge field. These large gauge transformations shift the
scalar background gauge field by a closed but not exact 0-form: a constant. In the (−1)-form symmetry case this
is all there is, since small gauge transformations, described by shifts by an exact 0-form, are trivially zero.

8A SymTFT realization of this symmetry can be found in appendix C.
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The ground state is ψ0, which we denote |0〉 = |ψ0〉. The system in state ψl is characterized
by a constant electric field,

F01 = e2
�

l −
θ

2π

�

. (19)

The ground state is the state with lowest electric field,

〈F01〉0 = −
e2θ

2π
. (20)

This result is hardly surprising since the classical equations of motion for A0, A1 in eq. (16)
are ∂0F01 = ∂1F01, whose only solution is a constant electric field. This also agrees with the
photon not propagating any degree of freedom in 2d. In free Maxwell theory there are no
electric particles but one can consider adding heavy particles, or Wilson lines, to probe the
theory. On the circle we must add at least two, of opposite charge and separated by a distance
L. Regardless of the chosen state, the electric field between them will increase by one unit,
giving rise to an energy that grows linearly with L. This shows that, even if the photon does
not propagate any degree of freedom there is a long range force that confines probe charges
classically.

Classic confinement implies that large Wilson loops obey an area law and the electric 1-
form symmetry is not spontaneously broken. A similar check is not available for the magnetic
(−1)-form symmetry. We would need a charged operator that is analogous to the ’t Hooft loop
in 4d or the monopole operator in 3d but such a thing does not seem to exist. As discussed
in Sec. 1, we propose instead that the spontaneous breaking of the (−1)-form symmetry is
diagnosed by an explicit dependence of the vacuum energy V (θ ) on the value of the back-
ground θ . The leading measure of such dependence is the topological vacuum susceptibility
X = ∂ 2

∂ θ2 V (θ ). Given the topological density ⋆F , the topological susceptibility can be rewritten
as,

X = −i
1

4π2

∫

d2 x〈T (⋆F(x) ⋆ F(0))〉conn. =
1

2π
∂

∂ θ
〈⋆F〉=

e2

4π2
, (21)

which is nonzero in the present case, signaling spontaneous breaking of the (−1)-form sym-
metry. So far we have linked the spontaneous breaking of the (−1)-form symmetry with a
physical dependence on its gauge background. A further motivation for this definition is the
relation between a non-vanishing X and the appearance of a double pole at zero momentum
in the 2-point function of the photon. By considering the gauge-dependent two point function
〈Aµ(x)Aν(y)〉, one can show that it is written in terms of a propagator G(q2) that satisfies,

lim
q2→0

q2G(q2)∼ X . (22)

Although G(q2) is gauge dependent, this limit matches the manifestly gauge invariant quan-
tity (21) and so the pole at q2 = 0 is independent of the gauge [38]. While in higher dimen-
sions the Kogut-Susskind pole is somewhat mysterious, there is no mystery in the abelian two
dimensional case where the role of the non-propagating photon field is well understood. In
particular, it is responsible for the long-range force that confines probe particles. In this sense,
the gauge field Aµ mediates a long range force thanks to a pole in its “propagator,” in complete
analogy with Maxwell theory in higher dimensions. We conclude that the non-vanishing of the
topological susceptibility signals the spontaneous breaking for the (−1)-form symmetry giving
rise to a Nambu-Goldstone field that creates a long range force, even if it does not propagate.

After explicitly establishing the connection between free 2d Maxwell theory and the (−1)-
form symmetries introduced in sec. 1, in the following we explore the fate of these universal
features in theories with fermions, both massless and massive. We have also considered two
other 2d models displaying interesting low energy dynamics that can be understood in terms of
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the magnetic (−1)-form symmetry but, for deference to the exhausted reader, those discussions
are left to the appendices. In appendix A we review the 2d Abelian-Higgs model while in
appendix B we review the CPN−1 model.

2.4 The Schwinger model

If we couple the 2d U(1) gauge theory with a charge 1 massless Dirac fermion we obtain the
Schwinger model. The action is,

S =

∫

−
1

2e2
F ∧ ⋆F +

1
2π
θ F + iψ̄ /Dψ . (23)

Explicit computation of the equation of motion shows that the electric current is no longer
conserved. There is a would-be chiral U(1) symmetry that is ABJ anomalous. Finally, despite
the θ -term, we will argue below that the would-be U(1)(−1)

m symmetry of this theory is gauged,
not global.

The gauge coupling is dimensionful in two dimensions and the theory is strongly coupled
in the IR. Nonetheless, it is simple enough for Schwinger to be able to solve it explicitly using
the operator formalism [60]. If you are not Schwinger, a simpler approach was pioneered by
Coleman [61] taking advantage of 2d bosonization. This duality states that a strongly coupled
fermion can be exchanged with a weakly coupled boson, provided that a dictionary is used.9

The fermion theory confines classically at low energies but it is equivalently described by a
theory of a free compact scalar which only couples to the gauge field through a topological
term. In the present case the bosonized version of the theory takes the following form,10

S′ =

∫

−
1

2e2
F ∧ ⋆F +

1
2π
(θ +φ)F +

1
8π
(dφ)2 , (24)

with φ a scalar of period 2π. One could naively think that there is still a ground state electric
field given by,

F01 = −
e2

2π
(θ +φ) . (25)

However, we can redefine φ → φ − θ to absorb θ , signaling that θ is unphysical. In fact,
this was already apparent in the original formulation of the theory, which has an ABJ anomaly
that allows θ to be absorbed in a chiral rotation. The bottom line is that the electric field in
the ground state, which was proportional to θ in the free Maxwell case, can now relax to a
vanishing value.

〈0|(⋆F)|0〉= 0 . (26)

In more detail, in 2d the ABJ anomaly is computed by the vacuum polarization diagram. The
vacuum polarizes and the electric field is screened. We highlight that this screening is not
mediated by Schwinger pair production since the electric field to be screened is fractional in
units of the charges of the massless fermions.11 Consequently, the topological susceptibility X

9An interesting comment, made to us by a SciPost referee is the following. In general the bosonization dictionary
involves gauging the fermion parity in the fermionic theory. In the present case the fermion parity is already gauged
in the Schwinger model and the equivalence with the bosonic theory is faithful.

10The dictionary fixes the periodicity of the canonically normalized compact scalar. A free Dirac fermion
bosonizes to a canonically normalized compact scalar with period

p
π [62], hence the factor of 1/(8π) in the

kinetic term in (23).
11One can also argue for this by noticing that the constant electric field becomes F01 =

−e2

2π φ, which gives a
non-zero energy. Another way to argue for the field relaxing to zero is by integrating out F = dA from 24. One
finds a quadratic potential for φ, which naturally relaxes to zero setting F01 = 0. For related discussions see for
instance [63,64].
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vanishes and the Schwinger model does not spontaneously break the (−1)-form symmetry. By
virtue of eq. (22) the vanishing of the topological susceptibility implies that the pole disappears
from the gauge 2-point function, signaling that the Nambu-Goldstone field has been lifted and
we are no longer in the Coulomb phase. Hence we also expect the long-range force between
probe particles to vanish.

Indeed the polarized vacuum can also screen the electric field sourced by probe particles
and the long-range force is well known to be absent in the Schwinger model [60,65]. We see
that all our expectations regarding a theory that spontaneously breaks a (−1)-form symmetry
are negated in this model.

We finish our discussion by noting that the Schwinger model is equivalent, through the
bosonization dictionary, to a theory where the (−1)-form symmetry has been gauged. In
eq. (24) the (−1)-form symmetry current J0 = ⋆F has been coupled to a dynamical gauge
field φ (a compact scalar), which is the canonical way of gauging symmetries associated to
conserved currents. From this point of view, it is very natural that the Schwinger model cannot
possibly realize a spontaneously broken (−1)-form symmetry, since it has been gauged! This
observation will be useful when we leverage the knowledge gained from this toy model to
understand QCD and the Strong CP problem.

2.5 The massive Schwinger model

A further twist can be made by adding a mass to the Dirac fermion in the Schwinger model.
In the massless Schwinger model the vanishing of the topological susceptibility was intimately
tied with the ABJ anomaly, which is absent in this case due to the fermions having a mass.
For this reason, we expect this model to realize a spontaneously broken (−1)-form global
symmetry. If the fermion is massive enough m2 ≫ e2, we recover free Maxwell theory in the
IR and our expectation is trivially satisfied. A more interesting question is what happens in the
opposite case of m2 ≪ e2. Consider the following action of a massive Dirac fermion coupled
to a U(1) gauge field,

S =

∫

−
1

2e2
F ∧ ⋆F +

1
2π
θ F + iψ̄ /Dψ− imψ̄ψ . (27)

In the m2 ≪ e2 regime the theory is strongly coupled in the IR. Luckily, Coleman taught us
how to solve it using the bosonization dictionary. The bosonized theory is [61,66],

S′ =

∫

−
1
2

F ∧ ⋆F +
1

2π
(θ +φ)F +

1
8π
(dφ)2 +

m
πε

cosφ , (28)

where ε is a UV regulator [62, 67, 68]. The only difference with the bosonized action of the
massless Schwinger model is the last term in Equation (28) which is absent in Equation (24).
This term obstructs the absorption of θ by a φ field redefinition, so we expect θ to be physical
and to give rise to a vacuum electric field. As discussed in [61, 66], this is precisely what
happens. There is a non-zero electric field in the vacuum, which can’t be screened in this case,

〈0|(⋆F)|0〉=
e2

2π
(θ +φ) . (29)

From Equation (21) it follows that there is a non-zero topological susceptibility and, conse-
quently a zero momentum pole in the 2-point function of the gauge field. Furthermore, this
theory displays a long-range force between probe particles. The bottom line is by now clear,
the magnetic (−1)-form symmetry, which was gauged in the massless case, is now ungauged
and spontaneously broken, giving rise to a Nambu-Goldstone field and a long-range force.

13

https://scipost.org
https://scipost.org/SciPostPhys.17.2.031


SciPost Phys. 17, 031 (2024)

A difference with the pure Maxwell case is that the long range force between two particles
vanishes if the difference of their charges is a multiple of 2. The reason is that a Schwinger
pair of massive fermions may nucleate, screening the electric field created by the particles.
We learn that the long range characteristic of spontaneously broken (−1)-form symmetries
may be dynamically screened but will be present for improperly quantized probes. A similar
phenomenon happens with the vacuum electric field, giving a physical explanation for the
periodicity of θ in this model.

An explicit, numerical computation of the topological susceptibility was carried out in the
recent work [64] by using a tensor network approach in the lattice, where it was indeed found
to be non-vanishing.

3 A different look at the Strong CP problem

While 2 dimensions are fun, they are somewhat detached from the high energy physics of our
universe. In this section we present two 4d gauge theories whose low energy dynamics are
governed by a spontaneously broken (−1)-form symmetry. Namely, SU(N) Yang-Mills theory
and QCD. We will see how the low energy dynamics in these theories have similarities with
the physics of 2d Maxwell theory, particularly in the large N limit of Yang-Mills. In the last
part of this section we use this insight to reformulate the Strong CP problem as a consequence
of the spontaneous breaking of a (−1)-form symmetry.

3.1 Low energy effective theory in 4d Yang-Mills theory and QCD

For concreteness, let us consider SU(N) Yang-Mills theory with no light matter, which serves
us as a toy model for QCD. The action is,

S =

∫

tr
�

−
1
g2

F ∧ ⋆F +
θ

8π2
F ∧ F
�

. (30)

An important property of SU(N) YM theory, is that the θ -term leads to physical effects. Note
that this property lies at the core of the Strong CP problem. Such a physical dependence on θ
is probed by the topological susceptibility of the vacuum X which can be defined as [69],

X ≡
�

d2E
dθ2

�

= lim
q→0
−i
�

1
16π2

�2
∫

d4 x eiqx〈0|T (tr(Fµν F̃µν(x))tr(Fρσ F̃ρσ(0)))|0〉 . (31)

The low energy dynamics of 4d Yang-Mills theory is strongly coupled and notoriously difficult
to study. Nonetheless, the non-vanishing of the topological susceptibility for generic θ gives
us important hints about the vacuum structure. As noticed by Lüscher in [38], the 2-point
function above can be recast in terms of a 2-point function of the Chern-Simons 1-form current
K1, which is the Hodge dual of the Chern Simons 3-form K1 = ⋆C3, at vanishing momentum.
Using the fact that ∂ µKµ =

1
16π2 tr(Fµν F̃µν) one can rewrite eq. (31) as,

X = lim
q→0
−iqµqν
∫

eiqx〈0|T Kµ(x)Kν(0)|0〉d4 x . (32)

As discussed in the introduction, the non-vanishing of the topological susceptibility implies
that the two point function has a pole at q2 = 0. Given that the 2-point function in question is
not gauge invariant, one may be wary that this pole may be unphysical. Luscher argued that
the pole remains in any gauge and, as we will explain, its physical implications are profound.
The existence of this pole at zero momentum signals the appearance of a massless mode for C3
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in the IR. Since we believe that Yang-Mills theory is otherwise gapped, it is natural to expect
the vacuum structure of SU(N) Yang-Mills theory to be captured by an effective theory of a
massless 3-form gauge field C3. In fact, this observation should hold for QCD as well, since X
is also nonzero in that case. For related discussions in Yang-Mills and QCD see [40,70–72].

The precise form of the Lagrangian describing this effective theory will depend on strongly
coupled dynamics and is, in general, not available to us. In the large N limit matters are
simpler, as discussed in [40, 41, 70, 71]. At small momenta only terms with less than two
derivatives will be relevant. One can assume that a kinetic term is generated and all other
2-derivative terms are in fact suppressed in the large N limit. In this limit the effective theory
takes the following form,

L= − 1
2X

F4 ∧ ⋆F4 +
1

2π
θ F4 . (33)

Where F4 = dC3 is an abelian 4-form field strength that should not be confused with F , the
2-form non-abelian field strength. This action describes a 3-form gauge field in 4d with a
topological coupling or θ -term. This theory is reminiscent to electromagnetism in 2d, see 2.3.
In fact, the physics of both theories is very similar, as explored in, for instance [73]. Like its
2d counterpart, a 3-form gauge field in 4d does not propagate and the different vacua are
characterised by a constant electric field,

〈⋆F4〉l = (θ + 2πl)X . (34)

The energy density of these vacua is

El(θ ) =
1
2
(θ + 2πl)2X . (35)

The true vacuum, or ground state, is selected by minimizing the expression above. One then
finds a non-zero electric field in the ground state,

〈⋆F4〉0 = Xθ . (36)

Reassuringly these results match the expectations that one infers from holography [74]. Away
from the large N limit, the precise form of the action for such a field is unknown.12 In general
the Lagrangian will take the following form,

L= −1
2
|F4|2+

1
2π
θ F4 +K(F4) , (37)

where K(F4) denotes higher order contributions with F4. For instance, in QCD θ and K(F4)
will depend explicitly on the quark masses. Regardless of the precise form of the Lagrangian
the equations of motion still admit a constant solution for ⋆F4 such that the physical picture
remains unchanged.

3.2 SSB of the (−1)-form U(1) symmetry in 4d Yang-Mills theory and QCD

An important property of any theory with a Lagrangian of the form 37 is that it has a magnetic
(−1)-form U(1) symmetry. The existence of this symmetry follows from the Bianchi identity
of the C3 gauge field and the quantization of

∮

F4. From the Biachi identity we identify the
conserved current as,

j0 = ⋆F4 , (38)

12Its form may be determined in some approximations such as the dilute instanton gas; see [43].
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which we can couple to a background gauge field θ which is periodic. This symmetry in the
IR effective theory is already present in the UV of both SU(N) Yang-Mills and QCD: it is a
Chern-Weil symmetry with conserved current [19],

⋆ j0 =
1

8π2
tr(F ∧ F) , (39)

where now F is the non-abelian field strength. This symmetry is sometimes called the instan-
tonic symmetry, as it measures the instanton number. The non-vanishing of the topological
susceptibility in SU(N) YM and QCD implies that the physics depends non-trivially on the
value of the background field θ . Following our discussion in section 2.3 we take this depen-
dence to signal the spontaneous breaking of the (−1)-form U(1) symmetry. Finally, we identify
the 3-form gauge field C3 as the Nambu-Goldstone field of the spontaneously broken (−1)-form
symmetry.

A further way of arguing that the (−1)-form symmetry is spontaneously broken is by con-
sidering its gauging. It can be explicitly gauged by introducing a kinetic term for the gauge field
θ (x) and summing over it in the path integral. This is equivalent to coupling the Chern-Weil
current to an axion. Importantly, the axion has a non-trivial potential arising from the θ de-
pendence of the vacuum energy density, i.e., the non-vanishing X . This potential endows the
axion with a non-zero mass, signaling that the gauged (−1)-form symmetry is spontaneously
broken giving rise to a Higgs mechanism. Furthermore, an electric Higgs phase is dual to mag-
netic confinement. This can be explicitly checked in this case by replacing θ (x) by its Hodge
dual 2-form gauge field dθ ∼ ⋆dB2. The 3-form field C3 is no longer massless as it picks up a
mass from a Stueckelberg-like mass term of the form,

|dB2 − C3|2 , (40)

which implies that the would-be Nambu-Goldstone field C3 is eaten by the gauge field B2. A
similar Stueckelberg-like mass is obtained in, e.g., the dual description of gauging the magnetic
1-form U(1) symmetry. From 40 it follows that, to preserve gauge invariance, axion strings
must be attached to C3 domain walls. These domain walls have a finite tension, giving rise to a
confining force between strings. We conclude that axionic strings are confined, in agreement
with the gauge (−1)-form symmetry being spontaneously broken and Higgsed. Note that,
were X to vanish, the effective field theory would not have a massless 3-form gauge field
which we have associated with the spontaneous breaking of the (−1)-form U(1) symmetry.
Furthermore, in the gauged (−1)-form symmetry theory, the axion would remain massless
and the (−1)-form symmetry unhiggsed. These two facts, together with similar considerations
in section 2 lead us to propose X as an order parameter for the spontaneous breaking of the
(−1)-form symmetry.

Spontaneous Breaking of a (−1)-form U(1) symmetry.

A (−1)-form U(1) symmetry with background gauge field θ is spontaneously broken if
the vacuum energy in Minkowski space V depends on θ . An order parameter for such
spontaneous breaking is the topological susceptibility:

X = ∂ 2

∂ θ2
V (θ ) . (41)

3.3 Reformulation of the Strong CP problem

An important consequence of the non-vanishing of X in QCD is that physical observables can
depend on θ̄ = θ + Arg(detM), where M is the quark mass matrix. An example of such
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observable is the neutron electric dipole moment (nEDM). Experimental measurements of the
nEDM place stringent constraints,

|θ̄ |≲ 10−10 . (42)

In the following we will refer to θ̄ as θ . That is, we take θ to be the physical parameter. Given
that θ is a free angular parameter of the quantum theory, its experimental value is unnaturally
small, giving rise to the Strong CP problem. We have argued that the non-vanishing of X and,
more generally, a partition function13 that depends on θ signals the spontaneous breaking of
the (−1)-form U(1) Chern-Weil symmetry of QCD. More broadly, a theory with a spontaneously
broken (−1)-form symmetry has a physical dependence on a circle valued background field
θ . If θ is measured to be too small, a naturalness problem arises. The Strong CP problem is
the QCD avatar of this naturalness problem. We can now extract a necessary condition for the
QCD Strong CP problem to arise.

A necessary condition for the Strong CP problem in QCD.

A necessary condition for Quantum Chromodynamics to have a Strong CP problem is
that the global (−1)-form U(1) symmetry is spontaneously broken.

In the next section we will use this necessary condition for the Strong CP problem to arise
in QCD to provide a new perspective on the problem and its solutions.

4 Solutions to the Strong CP problem and its analogues

We have argued that the Strong CP problem is intimately tied with a spontaneously broken
(−1)-form U(1) symmetry that arises in the Standard Model. If the physics associated with
this spontaneous breaking is prevented in some way, the Strong CP problem should be solved.
This problem has direct analogues in various other theories with spontaneously broken, global
(−1)-form symmetries, some of which are easier to analyze because they are low-dimensional,
as we have discussed above. In this section, we discuss various solutions to the Strong CP
problem from this perspective.

4.1 Solving the problem by gauging with an axion

The classic Peccei-Quinn-Weinberg-Wilczek solution to the Strong CP problem [75–78] may
be thought of as gauging the (−1)-form global U(1) symmetry with a dynamical axion field
θ (x). The existence of a (−1)-form global U(1) symmetry means that our theory can be con-
sistently coupled to a background axion field θ (x); we now simply sum over all such possible
backgrounds in the path integral.

In the analogue problem in 2d Maxwell theory, we have already introduced the relevant
action in (24), where the field φ plays the role of the dynamical axion. Such a coupling
explicitly removes the physical dependence on θ by polarizing the vacuum and screening the
constant electric field. In this case, the original 0-form U(1) gauge symmetry is Higgsed.
One can see this explicitly by dualizing φ to φ̃. The resulting kinetic term is ∼ |dφ̃ − A|2,
which shows that A is made massive by a Stueckelberg mechanism. However, the (−1)-form
U(1) gauge symmetry is also higgsed, eliminating the Kogut-Susskind pole. We can see this
by dualizing the field strength F = dA to a 0-form integer field strength n, which acquires
a Stueckelberg-type “kinetic term” |n − φ|2 that can also be interpreted as a potential that
makes the gauge field φ for the (−1)-form symmetry massive. In general, we expect higgsing
of a (−1)-form gauge symmetry to correspond to confinement of axion vortices by domain

13That is a generating “functional” with θ -term as an external source term.
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walls. In the (1 + 1)d case, the domain walls are simply particles charged under A, while
the operator eiφ̃ inserts a static vortex at a point in spacetime. Because φ̃ shifts under A
gauge transformations, such a vortex must have an attached domain wall. This is the expected
dual confinement phenomenon. Higher-dimensional analogues of this have been extensively
discussed in the literature on inflation [46,47].

For the Strong CP problem in QCD, the relevant coupling takes the following form:

S ⊃
1

8π2

∫

θ (x)tr(G ∧ G) . (43)

The Vafa-Witten theorem [79] ensures that the axion potential generated by QCD dynamics
sets the effective low-energy θ angle to zero. As in the 2d case, this term describes the coupling
of the (−1)-form symmetry current j0 =

1
8π2 ⋆ tr(G ∧G) to a dynamical gauge field, the axion.

The net effect is that the (−1)-form symmetry is gauged. The axion equation of motion then
shows that the instanton number current becomes co-exact,

f 2d⋆dθ =
1

8π2
tr(G ∧ G) . (44)

This exactness condition is equivalent to gauging: an exact current integrates to zero on any
closed manifold, implying that there are no charged operators that may link with the symmetry
operators ei

∮

⋆ j . There are thus no objects charged under a symmetry generated by an exact
current. This is the chief property of a gauge symmetry in gauge theory. As discussed in §3.2,
the gauged (−1)-form symmetry is in a higgsed phase, which is reflected in the confinement
of magnetically charged objects (axionic strings) by axion domain walls.

It is worth noting that the Strong CP problem may not be solved if the axion potential has
additional contributions beyond the QCD one. In this case one says that the axion suffers
a quality problem. In our language the failure boils down to the fact that the (−1)-form
U(1) global symmetry is not automatically gauged anymore. Indeed eq. (44) ceases to hold
generically. For a discussion in greater detail see [19].

4.2 Solving the problem by gauging with massless fermions

A second canonical solution to the Strong CP problem is to postulate a chiral massless fermion.
In the case of 2d Maxwell theory the resulting theory is the Schwinger model, whose action
we wrote in (23). Such a massless chiral fermion comes with an ABJ anomaly for the chiral
symmetry that allows the θ angle to be rotated away, making it an unphysical parameter.
This effect is particularly explicit in the 2d case thanks to the 2d bosonization by which the
Schwinger model is equivalent to the bosonic theory in eq. (24), where the θ is absorbed
by a redefinition of the compact scalar field. It is now clear what is happening in terms of
the (−1)-form symmetry. The (−1)-form symmetry has been gauged, making its spontaneous
breaking innocuous. It follows that the ground state electric field is screened by a polarized
vacuum and the Strong CP problem is avoided. In 2 dimensions it is clear that these two
solutions to the Strong CP problem are really the same. Furthermore, the lesson that adding
massless fermions gauges (−1)-form symmetries holds more generally. For instance, in Yang-
Mills, adding a massless fermion produces an ABJ anomaly for the chiral current Jc ,

d⋆Jc =
1

8π2
tr(F ∧ F) . (45)

This equation implies that ⋆ j0 =
1

8π2 F ∧ F is (globally) exact, and hence (as explained in [19])
the (−1)-form symmetry is gauged. As in Sec. 4.1, this gauged (−1)-form symmetry is in a
Higgs phase. In this case, although there is no elementary axion field, there is still a magnetic
confinement phenomenon. The confined vortices are the boundaries of η′ domain walls, which
have chiral excitations carrying baryon number, as described in [80].
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4.3 Solving the problem with non-compact symmetries

An alternative solution to the CP problem was proposed in [81]. As discussed there, if one
considers a 2d abelian gauge theory with gauge group R instead of U(1), the analogue of the
Strong CP problem is immediately solved. The reason for this to work is most easily understood
in terms of the (−1)-form symmetry, which we recall, is the magnetic symmetry of the U(1)
gauge theory in 2d. As is well known, for the gauge group R the would-be magnetic symmetry
operators act trivially.14 In more detail, there is a topological constraint that

∫

M F = 0 for any
closed 2-manifold M , so a

∫

M θ F term for constant θ does not affect the physics. In particular,
the vacuum energy is independent of constant θ and so we would not say that the theory
spontaneously breaks a (−1)-form symmetry. Physically, a background electric field on a non-
compact space can be screened by combinations of particles with mutually irrational electric
charges. An analogous 4d setup to this 2d theory requires modifying the instanton sum by
coupling to a topological theory (TQFT) with a non-compact 3-form gauge field [33]. As in
the 2d theory however, a dynamical mechanism, i.e., adding mutually irrationally charged
domain walls, is needed to relax θ and fully solve the Strong CP problem.

For the Strong CP problem of the Standard Model, [81] also proposed a related mechanism,
relying on a non-compact axion field a(x), which has couplings

∫

1
8π2

[ξH a(x)tr(GH ∧ GH) + ξa(x)tr(G ∧ G)] . (46)

Here G(x) is the usual Standard Model gluon field strength, while GH is the field strength of
a hidden Yang-Mills group that confines at a much higher scale. This confinement generates a
potential with a set of minima for a(x). If ξH and ξ are mutually irrational, then the infinite
set of minima of the GH -generated potential allows the effective theta term of QCD to scan
over a dense discretuum of values, some of which will be very small. One then must invoke
a cosmological argument for why we find ourselves in a universe with such a small value. In
our language, this model has gauged a (−1)-form R global symmetry, which is an irrational
combination of two (−1)-form U(1) global symmetries. This is only possible with an axion
field that is non-compact.

The common feature of the models of [33, 81] is the introduction of non-compact gauge
fields (either an ordinary gauge field, or an axion, or a three-form field). This can enable novel
solutions of CP problems in quantum field theory, but we expect that such models do not have
consistent UV completions in quantum gravity (see, e.g., [11]).

4.4 Failing to solve the problem with explicit breaking

As we have discussed, standard solutions to the Strong CP problem rely on gauging the (−1)-
form global symmetry. One might wonder if, instead, we could simply break the symmetry
explicitly. In the following we discuss a couple of strategies that implement this idea but that
ultimately fail to solve the problem.

14Equivalently one may say that an R gauge theory is obtained from the U(1) theory by performing a topological
gauging of the U(1) magnetic symmetry. This gauging is enforced by coupling the magnetic current to a non-
dynamical (i.e. with no kinetic term) U(1) gauge field with only flat connections and summing over it. In the
present case this auxiliary field is a flat compact scalar. From this point of view, the Strong CP problem is avoided
also in this case by gauging the (−1)-form symmetry. A SymTFT discussion of this model and the topological
gauging can be found in appendix C. We thank Andrea Antinucci for comments on this point and for careful
explanation of his recent paper [82].
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4.4.1 Explicit breaking via gauging and mixed anomalies

First, it is often the case that we can break a symmetry by gauging a different symmetry with
which it has a mixed anomaly.15 One can attempt this strategy for solving the 2d Maxwell
theory analogue of the Strong CP problem, as follows. A well known fact about Maxwell
theory in any number of dimensions is that it has a U(1)(1)e ×U(1)(d−3)

m symmetry under which
Wilson lines and ’t Hooft operators are charged. There is an obstruction to gauging these two
symmetries at the same time, or a mixed ’t Hooft anomaly, that can be succinctly encapsulated
in terms of the background gauge fields Be and Bm by its anomaly polynomial,

A= 1
2π

dBe ∧ dBm . (47)

In the 2d case these facts also hold, with the background field for the magnetic symmetry
being θ itself. In this case the anomaly polynomial is,

A2d =
1

2π
dBe ∧ dθ . (48)

It follows that an easy way of breaking the magnetic (−1)-form symmetry is to gauge the
electric symmetry. The gauging is implemented by coupling the electric symmetry to a back-
ground gauge field Be, adding suitable local counterterms and summing over the background
field configurations in the path integral. The resulting action is16

S =

∫

−
1

2e2
(F − Be)∧ ⋆(F − Be) +

1
2π
θ (F − Be) . (49)

A first observation is that the kinetic term for the gauge field becomes a Stueckelberg-like
coupling and the U(1) gauge field is “eaten” by Be. This mass term removes the pole from the
photon 2-point function, destroying the long range force. Thus, the infrared physics of the
theory is trivial, and X = 0. Whether one considers this to be a solution of the 2d CP problem
or not is perhaps a matter of semantics: the problem is gone, but so is all of the physics, since
the photon is gapped.

Even this pyrrhic victory is lost in the case of the actual Strong CP problem for QCD. The
analogue would be to gauge a U(1) 3-form symmetry that has an anomaly polynomial of the
form

A4d =
1

2π
dB4 ∧ dθ , (50)

with B4 a background gauge field for the 3-form symmetry. However, QCD has no such 3-form
symmetry! The 3-form gauge field associated with the Kogut-Susskind pole emerges in the IR,
rather than existing as a fundamental UV field. There is no electric 3-form global symmetry
associated with it that we can gauge.

4.4.2 Explicit breaking in the UV

It is possible that the (−1)-form U(1) global symmetry associated with QCD instantons is ex-
plicitly broken in the UV. Because the symmetry is topological, we expect that this will occur
only when the gauge group itself is somehow modified in the UV. An example was discussed
in [19]. Suppose that the Standard Model gauge group is embedded in SU(5) (and let us

15There are many exceptions to this statement when gauging gives rise to a 2-group structure or non-invertible
symmetries, see for instance [83–87]. Here we restrict to anomalies that break the ungauged symmetry.

16A similar computation has recently appeared in section 4.1.2 of [88].
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ignore fermions for the moment, which slightly complicate the story without changing the
punchline). The UV theory has a single (−1)-form Chern-Weil symmetry with current

j0 SU(5) =
1

8π2
⋆ tr(FSU(5) × FSU(5)) . (51)

In the IR however, there are three such Chern-Weil symmetries, one for each field strength.
Clearly, two linear combinations thereof are emergent in the low energy theory, and explic-
itly broken in the UV. One could then ask: could the UV breaking of an emergent (−1)-form
symmetry be sufficient to remove the Nambu-Goldstone pole and solve the Strong CP prob-
lem? From one point of view, the answer should be no, as it would be a dramatic failure of
decoupling if physics at the GUT scale could set the topological susceptibility computed in the
infrared limit of QCD to zero. From a different point of view, however, one may have the
intuition that Nambu-Goldstone poles are fragile and easily removed by UV effects. Thus, it is
worth discussing this point in more detail.

A well-known fact about Nambu-Goldstone bosons parametrizing the degenerate vacua of
a spontaneously broken 0-form symmetry is that, if the symmetry is not exact in the UV, they get
a small mass [89]. Consider for instance a symmetry that is explicitly broken by some irrelevant
coupling with a characteristic scale ΛUV. If the emergent symmetry is spontaneously broken at
a scale ΛIR, the pseudo-Goldstone boson will typically have a mass scaling like ∼ (ΛIR/ΛUV)p,
where p is some power depending on the specific details.

A surprising feature of Nambu-Goldstone bosons for spontaneously broken 1-form symme-
tries is that their masslessness remains protected even if the symmetry is only approximate in
the sense above. In other words, 1-form symmetries (and higher) are exact emergent symme-
tries [56]. An example of this fact is the electromagnetic field that we observe in nature. At
low energies there are two U(1) symmetries, electric and magnetic. At high energies these two
symmetries are explicitly broken by the presence of electric fermions and, presumably, mag-
netic monopoles. Those two symmetries are spontaneously broken and the Nambu-Goldstone
boson is the photon, which is exactly massless despite the explicit breaking in the UV. More
detailed examples were given in [56]. A difference with 0-form symmetries is that no local
operator can be charged under a 1-form symmetry, which implies that emergent 1-form sym-
metries are exact in perturbation theory. The standard lore is that this helps in keeping the
photon massless.

For the case of (−1)-form symmetries one can pose a similar question: If the (−1)-form
symmetry is emergent in the IR, is the massless nature of the emergent gauge field, i.e., the
pole, protected? In other words, are emergent (−1)-form symmetries exact? This question
is relevant because the pole is behind all the features of spontaneously broken (−1)-form
symmetries and, in particular, if there is no pole, there is no vacuum electric field and, thus,
no Strong CP problem. If (−1)-form symmetries behave like 0-form symmetries it should be
possible to lift the pole by changing the UV physics in such a way that the (−1)-form symmetry
is explicitly broken.

Again, it is useful to consider the case of Maxwell theory in various dimensions. In 3d,
where the photon is dual to a compact scalar, Maxwell theory has an electric 1-form symmetry
and a magnetic 0-form symmetry. The magnetic 0-form symmetry can be explicitly broken in
the UV by embedding U(1) gauge theory in SU(2) gauge theory, higgsed by a real adjoint scalar
field. This theory admits a famous semiclassical analysis of confinement due to Polyakov [59],
in which magnetic monopoles (which are instantons in 3d) produce an exponentially small
mass for the dual photon. Thus, in this case, the would-be Nambu-Goldstone boson is removed
by the explicit breaking of a 0-form symmetry.

On the other hand, in 2d Maxwell theory, the magnetic symmetry is a (−1)-form symmetry.
Again, the magnetic symmetry can be explicitly broken by embedding the U(1) gauge theory
in SU(2); no axion coupling that UV completes 1

2πθ F is possible in that theory, because the
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SU(2) field strength is not gauge invariant. There are no instanton effects in this theory, and
the photon should remain massless. Thus, in this case we expect that the pole associated with
the spontaneous breaking of the (−1)-form symmetry is still present in the IR, despite the
explicit breaking of the symmetry in the UV. We expect a similar behavior in the case of SU(5)
breaking into the SM gauge group in 4d, and leave a detailed investigation for a future study.

We expect that the lesson here generalizes: a Nambu-Goldstone pole can be removed only
in the case where the Nambu-Goldstone is protected by a 0-form symmetry that is explicitly
broken in the UV. The Kogut-Susskind pole is associated with an emergent (d −1)-form gauge
field, and can be protected by either a (d − 1)-form symmetry or a (−1)-form symmetry, and
hence its existence is robust against UV symmetry breaking in d > 1 spacetime dimensions.
Thus, embedding the Standard Model in a GUT should not have any impact on the Strong CP
problem.

4.5 Solving the problem with gauged reflection symmetries

Aside from the axion, the most well-studied solution to the Strong CP problem assumes a fun-
damental spacetime reflection symmetry, which is either a generalized parity symmetry [90] or
CP symmetry [91–94]. Here we will refer to the latter case, generally known as Nelson-Barr
models, though our remarks will apply more broadly. Theories with a spacetime reflection
symmetry can be defined on non-orientable manifolds. On such a space, 1

8π2 tr(F ∧ F) is not
defined, because F∧F is an ordinary differential form, but only pseudo-forms can be integrated
without a choice of orientation. Thus, the instanton number is not well-defined (although a
topological invariant valued in Z2 survives). However, by our definition, these theories still
have a (−1)-form U(1) global symmetry, because they can be consistently coupled to a back-
ground pseudoscalar axion field θ (x), which transforms with a minus sign under spacetime
reflections. Furthermore, the symmetry is still spontaneously broken, because on Minkowski
space we can still turn on an arbitrary constant θ̄ term and evaluate a nonzero topological
susceptibility (31). However, the only constant θ (x) backgrounds that can be defined on an
arbitrary space are θ̄ = 0 and θ̄ = π. Thus, the reflection symmetry requires that the theory be
defined with one of these two special θ̄ terms, and the Strong CP problem could, in principle,
be solved.

The difficulty begins when we recall that the world in which we live is not CP symmetric,
and indeed the CP-violating phase in the CKM matrix is an O(1) number. Thus, if we live in a
universe with an underlying CP symmetry, the symmetry must be spontaneously broken, and
(at least as measured by the CKM phase) badly so. Below the scale of CP breaking, we should
match the fundamental theory onto a theory without CP, and such a theory in principle admits
an arbitrary constant θ̄ term. The low-energy value of θ̄ need not be one of the special values
θ̄ = 0 or π defining the theory in the ultraviolet, because integrating out massive particles
that couple to CP-breaking can generate effective contributions to θ̄ in the IR. Nelson-Barr
models are engineered so that such effects are small, whereas the CKM phase is large. It is
difficult to give a purely symmetry-based explanation of how they work, without delving into
the detailed structure of the quark mass matrices, which must be enforced with additional
(model-dependent) gauge symmetries.

5 Outlook

In this work we have extended the notion of spontaneous breaking to (−1)-form U(1) sym-
metries and started the exploration of its applications. We finish this text with some open
questions.
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• We have provided a useful working definition of a (−1)-form U(1) symmetry and its
spontaneous breaking, but it would be useful to put (−1)-form symmetries in general
on a more similar footing to other p-form symmetries in QFT. For example, the SymTFT
approach could be a useful way to formulate (−1)-form symmetries. It would also be
interesting to gain a better understanding of whether (−1)-form R symmetries are a
useful concept in QFT.

• We have explored several solutions to the Strong CP problem which, broadly speaking,
aim at removing the Nambu-Goldstone field by either gauging or explicitly breaking the
(−1)-form symmetry. It turns out that gauging has been extensively covered in the liter-
ature. On the other hand, it seems to us that explicit breaking is still poorly understood
and we hope to study it further in future work. Besides, the explicit breaking of the
(−1)-form symmetry by monopoles has not been thoroughly investigated except in the
case of U(1) gauge theory [19]. It would be interesting to examine the case of more
general gauge groups, including Grand Unified Theories.

• A fundamental ingredient in our understanding of spontaneous breaking of continuous
(higher form) symmetries is the Goldstone Theorem. While we have established the
presence of a pole in the 2-point function of a Nambu-Goldstone field whenever a (−1)-
form U(1) symmetry is spontaneously broken, we have not been able to explicitly prove
a theorem that follows the reasoning of the usual Goldstone theorem. Difficulties arise
because the symmetry operator fills the entire spacetime and cannot be deformed, and
because there are no (−1)-dimensional charged operators that can obtain vacuum ex-
pectation values. A better understanding of the formalism of (−1)-form symmetries may
overcome these obstacles and provide a more direct Goldstone Theorem.

• While most of the solutions to the Strong CP-problem that are discussed in our paper are
concentrated on lifting the (−1)-form U(1) symmetry, Nelson-Barr models are concep-
tually different. Unlike the other solutions that lead to no dependence of the vacuum
energy on θ , Nelson-Barr models are constructed such that the value of θ is small. It
remains an open question to understand a generic symmetry-based explanation for such
models.

• Axion-like fields play a role in several solutions to longstanding naturalness problems
in particle physics. A prime example is the hierarchy problem, which sees potential
mitigation through the relaxion model [95,96]. This model introduces an axion-like field
having a coupling with the Higgs mass term. Another example is the axion monodromy
framework for inflation [45]. In these models the axion couplings appear to violate the
axion periodicity but it is restored by monodromy, much as in the 2d Maxwell example
we discussed in Sec. 2.3. Understanding the interplay between monodromy and SSB of
(−1)-form symmetries in such models would be interesting.

We hope that this novel case of spontaneous symmetry breaking will prove a useful unifying
tool for physical phenomena.
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A The 2d Abelian-Higgs model

A nice exposition of this model, which we follow, may be found in [68, 97]. Consider the
action,

S =

∫

d2 x
1

2e2
F2

01 +
θ

2π
F01 + |Dφ|2−m2|φ|2−

λ

2
|φ|4 . (A.1)

As already mentioned, in 2d the gauge coupling is dimensionful and the theory is strongly
coupled in the IR. Hence, the regime |m2|≲ e2 will be complicated to solve. Consider instead
|m2|≫ e2. There are then two regimes to consider,

• m2≫ e2: In this case the gauge symmetry is not spontaneously broken and the theory is
just electrodynamics with a heavy scalar meson. The behaviour is similar to the massive
Schwinger model. In particular, there is a vacuum electric field, a non-zero topological
susceptibility and a long range constant force mediated by the photon. We conclude that
there is a magnetic (−1)-form symmetry in the IR which is spontaneously broken.

• m2≪ e2: In this case the gauge symmetry is spontaneously broken by the condensation
of the scalar field. The naive expectation is that the photon becomes massive, the long-
range force is screened, the topological susceptibility vanishes and there is no electric
field in the vacuum. We therefore expect that the (−1)-form symmetry is not sponta-
neously broken. It turns out that this expectation is wrong. Due to non-perturbative
effects mediated by instantons (which are vortices in 2 dimensions), the gauge symme-
try is restored, there is a long-range force between probe particles and there is a vacuum
electric field which depends linearly with θ . In fact the physics is the same as in the
m2 ≫ e2 regime but all effects are exponentially suppressed. We learn that the (−1)-
form symmetry is, contrary to expectation, realized in the IR and spontaneously broken!

B The CPN−1 model

This model has been extensively discussed in the literature, we follow [68, 98]. The CPN−1

model can be defined by the following Euclidean action,

S =

∫

d2 x
1

2e2
|F |2+i

θ

2π
F +

N
∑

a=1

|Dφa|2+
λ

2

� N
∑

a=1

|φa|2−v2

�2

, (B.1)

which describes a set of N massive complex scalar fields with an SU(N) global symmetry and
coupled to a U(1) gauge field. Classically we expect the scalar potential to be minimized,
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spontaneously breaking the SU(N) symmetry to SU(N − 1)×U(1),

|φa|2= v2 . (B.2)

Thus, classically, the low energy is described by N−1 massless scalar fields (Goldstone bosons)
with target space,

CPN−1 =
SU(N)

SU(N − 1)×U(1)
. (B.3)

This is of course in contradiction with the MWC theorem and it is well known that strong
dynamics radically change the low energy physics of this theory. We will not review the com-
putations but merely state the result. It turns out that the low energy dynamics is that of N
massive scalar fields coupled to a U(1) gauge field, whose dynamics is emergent in the IR.17

The mass is given by a dynamically generated scale ΛC PN−1 analog to ΛQC D. The resulting
dynamics are pretty much the same as the ones of the abelian-Higgs model in the unbroken
phase:

• There is an electric field in the vacuum. In the large N limit it was computed in [38,99],

〈F01〉 ∼
Λ2

C PN−1

N
θ +O (1/N) . (B.4)

• It follows that the topological susceptibility, which is the order parameter for the (−1)-
form symmetry SSB, takes a non-zero value,

X ∼
Λ2

C PN−1

N
. (B.5)

• There is a long range force between fractionally quantized probe particles. Integer quan-
tized particles don’t experience such force because they are screened by Schwinger pair
production.

• The spectrum is composed of mesons. As the θ angle is dialed from 0 to 2π a φφ⋆ pair
is created and the spectrum undergoes a flow.

• Interestingly all these phenomena are not exponentially suppressed as befits an instanton
effect, signaling that one can’t hope to explain them using semiclassical techniques.

• We conclude that there is a (−1)-form symmetry which is spontaneously broken and all
the expected features are present.

Note that this model has many of the salient features of QCD. It is well-known that it has
θ -vacua, a dynamically generated scale and instantons that are insufficient to explain the low
energy physics. We learn now that it shares a further feature with QCD, namely an (−1)-form
symmetry which is spontaneously broken.

C A SymTFT for 2d Maxwell theory.

The SymTFT [100–102] of a given d dimensional Quantum Field Theory Td is a d+1 TQFT that
encodes the (categorical) symmetry of Td and of all other theories that can be obtained from Td
by a topological manipulation. The SymTFT is placed on a (d+1) slab with two boundaries. On

17In fact, if one starts with no kinetic term for the UV gauge field a nonzero kinetic term is dynamically generated
in the IR. In this sense, the U(1) dynamics are emergent.
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one of them the boundary condition is not topological and the local degrees of freedom live. On
the other boundary a topological boundary condition is imposed that prescribes the symmetry
of Td once the slab is collapsed to recover Td . Different topological boundary conditions encode
the symmetry of theories obtained from Td by a topological manipulation.

This construction has recently been extended to abelian continuous symmetries in [82,
103]. In this appendix we present the SymTFT for 2d abelian gauge theories, which is an
application of [82]. This construction puts (−1)-form U(1) symmetries in the same footing as
more familiar symmetries and also clarifies the relation between the (−1)-form symmetries of
abelian gauge theories with different global forms of the gauge group.

Consider a 3d BF theory with action,

S =
1

2π

∫

φ db2 , (C.1)

where both φ and b2 are R gauge fields.18 This means that they don’t have any large gauge
transformations and charged operators with arbitrary real coefficients are allowed. In this case
there are local operators and surfaces,

Uα(x) = eiαφ(x) , Ũβ(Σ2) = eiβ
∫

Σ2
b2 , (C.2)

where α,β are real-valued. The braiding between these operators is,

〈Uα(x)Ũβ(Σ2)〉= e2παβ ·Link(x ,Σ2) . (C.3)

This SymTFT encodes the symmetry of continuous free abelian gauge theories in 2d. Different
topological boundary conditions correspond to a choice of mutually transparent bulk operators
that can terminate on the boundary, i.e. their braiding is trivial. Different boundary conditions
give different symmetries on the boundary. Here we mention those corresponding to the global
forms that we have encountered in the main text.19

• Dirichlet Boundary Conditions (DBC’s) for b2 allow the Wilson surfaces

Ũβ(Σ2) = eiβ
∮

Σ2
b2 to end on the boundary, giving rise to a R 1-form symmetry. The

topological symmetry operators on the boundary are Uα(x). For the variational problem
to be well posed φ must obey Neumann Boundary Conditions (NBC’s), which imply that
it must be summed over in the 2d theory. This sum explicitly implements the topological
gauging mentioned in footnote 14. The total symmetry of the 2d theory is an R 1-form
symmetry, which is the symmetry of the R 2d gauge theory that we met in section 4.3.

• Mixed boundary conditions are allowed. In particular, one may impose NBC’s for the
Z piece of both fields and DBC’s for the remaining U(1) ≃ R/Z pieces [103]. These
boundary conditions allow operators Ũβ(Σ2) with β ∈ Z to end on the boundary. The

endpoints become the charged lines under a U(1)(1) symmetry. The remaining opera-
tors Ũβ(Σ2) with β ∈ U(1) can be placed on the boundary and correspond to symmetry

operators generating a U(1)(−1) symmetry. The operators Uα(x) = eiαφ(x), α ∈ Z can’t
end on the boundary because they are zero-dimensional, so the U(1)(−1) symmetry does
not have charged operators. Finally, the operators Uα(x) = eiαφ(x), α ∈ U(1) are topo-
logical on the boundary and generate the U(1)(1) symmetry. We conclude that the total
symmetry is,

U(1)(1) ×U(1)(−1) , (C.4)

which matches the symmetry of the U(1) gauge theory discussed in section 2.3.
18For the case of φ this means that it is a non-compact scalar field.
19The different boundary conditions can be expressed in terms of a variational problem that must be well-defined,

see [87,103] for a similar discussion. We refrain from going into such details and merely state the results here.
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The SymTFT of the gauge theories with electric matter can be similarly realized by turning φ
into a compact scalar. Through this exercise we see that (−1)-form symmetries are very similar
to more usual symmetries, at least from the SymTFT point of view. We plan to return to these
considerations in more generality and depth in future work.
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