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Abstract

We compute the expectation values of BPS Wilson loops in the mass-deformed ABJM
theory using the Fermi gas technique. We obtain explicit results in terms of Airy func-
tions, effectively resumming the full 1/N expansion up to exponentially small terms.
These expressions enable us to derive multi-point correlation functions for topological
operators belonging to the stress tensor multiplet, in the presence of a 1/2–BPS Wilson
line. From the one-point correlator, we recover the ABJM Bremsstrahlung function, con-
firming nicely previous results obtained through latitude Wilson loops. Likewise, higher
point correlators can be used to extract iteratively new defect CFT data for higher di-
mensional topological operators. We present a detailed example of the dimension-two
operator appearing in the OPE of two stress tensor multiplets.
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1 Introduction

The superconformal N = 6 gauge theory in three-dimensional space-time, commonly known
as ABJM theory [1,2], is an important theoretical laboratory in quantum field theory. It stands
out in particular due to its tight relations with string and M-theory [3–7], a hidden integrability
at large N [8–10], as well as its relevance within the bootstrap program [11–14]. Moreover,
supersymmetric localization provides a large number of exactly computable quantum observ-
ables for ABJM [15], as Wilson loops [16–20] and the Bremsstrahlung function [21–25]. Com-
pared with its four-dimensional cousin, N = 4 SYM, it appears somehow less constrained by
the manifest superconformal as well as hidden symmetries, making its study harder for specific
observables as scattering amplitudes [26–28].

A peculiar property of ABJM theory is that it admits an interpretation as a statistical system
of N one-dimensional non-interacting fermions [29]. Localization reduces the ABJM partition
function on S3 to a complicated two-matrix model [15]: the planar free energy and the sub-
leading 1/N corrections in the standard ’t Hooft expansion were determined in a pioneering
series of papers long ago [30, 31]. The related genus-weighted series makes contact with
the dual gravitational interpretation: it encodes the type IIA reduction of M-theory on the
background AdS4 ×CP3, and it captures all worldsheet instanton corrections to the partition
function [32].

However, in order to make contact with the M-theory regime, one has to study the ABJM
matrix model in the so-called M-theory limit, where N is large but the coupling constant k is
fixed. This was first attempted in [33], where the leading, large N limit was studied. For a
further understanding of the M-theory expansions, and of the corrections to the large N limit,
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the Fermi gas formulation has been instead instrumental [34–36]. One of the main virtues of
this approach is that it makes it possible to calculate systematically non-perturbative stringy
effects [37], opening the way for a quantitative determination of these contributions in the M-
theory dual to ABJM theory. The vacuum expectation value (vev) of 1/6 and 1/2–BPS Wilson
loops in ABJM theory can also be computed using the Fermi gas technique: these studies were
initiated in [38] and further developed in [39] particularly for the 1/2–BPS Wilson loops.
New advances on the structure of large N ABJM theory and its BPS Wilson loops, in different
regimes, have been recently obtained both from the holographic [40] and the Fermi gas [41]
perspectives.

Interestingly ABJM theory admits massive deformations [42,43] that can be easily derived
from non-standard R-charge assignments to the fundamental fields. In general, the space of
these deformations is three-dimensional but in this paper we will discuss a particular subclass
of the possible deformed models, i.e. ones described by two-parameters only, denoted as ζ1,ζ2.
Using localization, it is still possible to reduce the partition function of the deformed theories
to a two-matrix model [15,44,45]

Z =

∫

 

∏

i, j

dλi

2π

dµ j

2π

!

e
ik
4π

∑

i(λ
2
i −µ

2
i )

∏

i< j 2 sinh2(λi −λ j)2sinh2(µi −µ j)
∏

i, j 2cosh
�

λi−µ j−iπζ1

2

�

2cosh
�

λi−µ j+iπζ2

2

� , (1)

reducing smoothly to the undeformed case as ζ1,ζ2→ 0.1 The expectation values of some pro-
tected observables can be computed by averaging suitable functions in the above expression.
In particular, 1/6 and 1/2–BPS Wilson loops in the fundamental representation are obtained
by inserting linear combinations of the type

f (λi ,µi) =
N
∑

i=1

eλi +
N
∑

i=1

eµi . (2)

In the next subsection we will briefly describe both the structure of the deformations and of
the related BPS Wilson loops.

1.1 Mass-deformed ABJM theory

The ABJM model is an N = 6 Chern-Simons matter theory with gauge group U(N)× U(N).
For each gauge group factor, there is a Chern-Simons kinetic term with integer level k and −k,
respectively.2 Thus, the field content includes two gauge fields, Aµ and Âµ, transforming in the
adjoint of the first and the second U(N) factor of the gauge group. They are minimally coupled
to four matter multiplets CI , ψ̄

I , I = 1, . . . , 4 transforming in the bifundamental of the gauge
group and their conjugates C̄ I , ψI transforming in the antibifundamental. Matter interactions
are encoded into a suitable scalar potential and related Yukawa terms. The theory possesses
an SU(4)R × U(1)b R-symmetry: SU(4)R acts on the fundamental indices I = 1, . . . , 4, while
U(1)b is the hidden topological symmetry generated by the diagonal ungauged U(1) group
factor. The latter will not play any role in our paper and we can safely ignore it for the sake
of simplicity.

Supersymmetric deformations and the localization procedure are better described thinking
of ABJM as a special N = 2 theory. As showed in [4], it is possible to write the action in an
N = 2 language: the gauge content is given by two vector multiplets V = (Aµ,σ,λ, λ̄, D),
while the matter is represented by two bifundamental chirals Ai and two anti-bifundamental
chirals Bi . In that formulation, only the Lagrangian U(1)ℓ×SU(2)×SU(2) symmetry is visible.

1We stress that in this case the matrix model is still expressed in terms of elementary functions, which does not
generally hold for deformations with three parameters.

2When k = 1,2 the SUSY is enhanced to N = 8. We will not discuss that in the paper.
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The U(1)ℓ factor is the N = 2 explicit R-symmetry, the SU(2)× SU(2) appearing as a flavor
symmetry rotating the scalars Ai and Bi separately. Of course, integrating out the auxiliary
fields we recover the R-symmetry of N = 6 theory in its completeness.

In this formulation, a deformation which breaks down the conformal symmetry preserv-
ing instead SUSY is easily obtained assigning different U(1)ℓ R-charges ∆Ai

, ∆Bi
to the

chiral fields. The new R-charges are constrained by the structure of the superpotential
W ∼ εi jkl Tr

�

AiA jBkBl

�

, which must have R-charge 2, that is

∆A1
+∆A2

+∆B1
+∆B2

= 2 . (3)

In general, the space of these deformations is three-dimensional: in this paper we will discuss
a particular subclass of the possible deformed models, i.e. ones described by two-parameters
only.3 A convenient parametrization of the R-charges is the following

∆A1
=

1+ ζ2

2
>∆A2

=
1− ζ1

2
, ∆B1

=
1+ ζ1

2
>∆B2

=
1− ζ2

2
, (4)

where −1 < ζ1,2 < 1 are the parameters introduced in the first page. We can think of this
non-canonical R-charge assignment as a redefinition of the U(1)ℓ charge by mixing it with the
Cartan subalgebra of the flavor symmetry.

In order to perform supersymmetric localization, we have to define the theory with this
new R-symmetry on the 3d sphere S3 [44]. The resulting model will be invariant under
SU(2|1)L×SU(2)R, whose bosonic part contains the isometry group SO(4)≃ SU(2)L×SU(2)R
of S3 and our R-charge U(1)ℓ. The R-charge deformations can be also interpreted as a real mass
deformation. Explicitly, it arises by coupling the theory to a background flavor vector multi-
plet for the symmetries mixing with the original R-symmetry and taking the SUSY-preserving
rigid limit in which we set to zero all the (flavor) gauginos and their variations. The scalars in
the multiplet get the only non-zero vev, which corresponds to a real mass deformation in the
Lagrangian. It turns out that an imaginary value for the masses coincides with R-symmetry
deformations of the type discussed above. Standard localization procedures then lead to the
exact partition function presented in (1).

1.2 BPS Wilson loops in mass-deformed ABJM theory

In supersymmetric models BPS Wilson loops are a natural family of extended operators with
the attractive perspective of being exactly computable through localization. The standard
Wilson loop is usually promoted to be supersymmetric by twisting its connection with suitable
combinations of additional fields [46]: in ABJM we can define the so-called bosonic Wilson
loop, whose expression is

W 1/6
R [γ] = TrR

�

P exp

�

−i

∮

γ

dτ
�

Aµ ẋµ −
2πi

k
| ẋ |MI

J CJ C
I
�

��

. (5)

where γ is a generic curve and M J
I is an arbitrary matrix. To apply localization, we consider

the maximally symmetric case, that is, γ is a circle or a line, and M J
I = diag(1, −1, 1 ,−1).

One can also define a Wilson loop with the same property for the other U(N) factor of the
gauge group by starting with the corresponding gauge field, that is

Ŵ 1/6
R = TrR

�

P exp

�

−i

∮

dτ
�

Âµ ẋµ −
2πi

k
| ẋ |MI

J C
I
CJ

�

��

. (6)

3See [42] for the complete discussion.
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In the undeformed case, both operators preserve four supercharges and are 1/6–BPS [16,17,
47, 48]. The mass deformations partially change the situation: superconformal supercharges
are explicitly broken, and the loop preserves two supercharges.

A peculiar property of supersymmetric Chern-Simons matter theories, including ABJM,
is the possibility of building Wilson loops preserving more supersymmetry by incorporating
matter fermions in the Wilson loop connection [18]. The resulting operator, known as the
fermionic Wilson loop, can be written as the superholonomy of the supergroup U(N |N), which
contains the original gauge group U(N)× U(N) as its diagonal part. Its explicit expression is

WR[γ] = STrR P exp

�

−i

∮

γ

dτ L(τ)

�

, (7)

where, for the moment, we are loose in the definition of the STr. Demanding local supersym-
metry, one can fix the general structure for the superconnection [49]

L(τ) =





A i
q

2π
k | ẋ |ηIψ

I

−i
q

2π
k | ẋ |ψIη

I Â



 , (8)

with






A= Aµ ẋµ − 2πi
k | ẋ |M

I
J CI C

J

Â= Âµ ẋµ − 2πi
k | ẋ |M

I
J C

J
CI

. (9)

The amount of supersymmetry depends on the explicit choices of the path γ and the various
couplings, namely MI

J , ηαI , and η̄I
α. Choosing the curve to be a circle or a line, we obtain

a 1
2–BPS operator, which is the most appealing case in view of the applications in hologra-

phy and defect CFTs of Sections 5 and 6. The BPS equations are neverthless sensible to the
periodicity of the fermions along the path: to ensure supersymmetry one can compensate
for the lack of periodicity by multiplying the superholonomy by the so-called twist matrix
T = diag(1,−1) [18,49]. This gives the correct prescription for the trace in (7) and we adopt
the same prescription for the Wilson line also. As in the bosonic case, mass deformations break
some bulk supersymmetry, but the fermionic operators still preserve half of the remaining su-
percharges.

Happily, supersymmetric localization [15]works for these observables even in the presence
of masses. The vev of bosonic BPS Wilson loop corresponds to an operator insertion into the
ABJM matrix model of (1). If we take Λ to be the diagonal matrix Λ = diag(λ1, . . . ,λN ), the
insertion for (5) is the character

〈W 1/6
R 〉= TrR eΛ . (10)

That holds regardless of the presence of BPS mass deformations, which affects only the form
of the matrix model, but not the insertion. When fermions are present the situation is a little
bit more complicated. One should exploit a cohomological argument [18] and relate the vev
of fermionic loops to those of purely bosonic ones thanks to

W 1/2
R = (W 1/6

R + Ŵ 1/6
R ) +δV , (11)

for a given functional V and a supercharge δ shared among the bosonic and fermionic opera-
tors.4 That argument has been refined and made more transparent in [50], and it is valid for
any known supersymmetric bulk deformations, including the ones considered in this paper.

4The explicit forms of V and δ are not relevant to this paper but can be found in [18].
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Therefore, the expectation value of the fermionic loop corresponds to the following matrix
average

〈W 1/2
R 〉= 〈W 1/6

R 〉 − (−1)n〈Ŵ 1/6
R 〉 , (12)

where n is the winding number of the Wilson loop. For the sake of simplicity, and having
in mind holographic applications, we shall only focus on the fundamental representation, for
which the single-winding Wilson loop insertion is

Tr□ eΛ =
N
∑

i=1

eλi . (13)

1.3 Summary of results and structure of the paper

The holographic description of mass-deformed theories and of their Wilson loops is intricate
[51, 52] and not yet fully understood. The Fermi gas approach instead has been successfully
applied in [53], where the deformed partition function has been explicitly obtained. In the last
few years the large N behaviour of this partition function received a certain amount of attention
from different point of views: phase structure [54, 55], non-perturbative contributions [56]
and dual string theoretical description [57]. Quite surprisingly, Wilson loops have never been
studied within this approach: we plan to fill this gap in the present paper. Additionally, our
analysis provides a concrete result that contributes to shed light on the structure of the Wilson
loop in the dual holographic theories, a point largely unexplored, as already mentioned.

Actually, our motivation is two-fold. On the one hand, we aim to derive explicit large N
expansions for BPS Wilson loops, both in the t’ Hooft and M-theory limit, providing precision
data for future holographic investigations. On the other, we would like to take advantage of
the possibility to perform derivatives with respect to the deformation parameters to compute
correlation functions of particular local operators in the presence of a 1/2–BPS Wilson line in
ABJM theory. This approach has been already applied in the absence of the Wilson line [12,58]
and it provided a full set of OPE data in different situations [59]. Our proposal here relies
heavily on the recent construction of a BPS configuration involving both the 1/2–BPS Wilson
lines and a class of topological operators defined from the superconformal primary of the stress
tensor and living on a linked circle [60].

Crucially the expression of 1/2–BPS Wilson loops vev, in the mass-deformed theory, can
be used as a functional generator for these correlators [61, 62] and we can perform explicit
computations. We derive the one-point and the two-point functions in the large-N limit and,
as an application, we use them to recover a new one-point function in the background of the
Wilson line.

The structure of the paper is the following. We start our computations in Section 2, explor-
ing the large N limit of the BPS Wilson loops directly from the relevant saddle-point equations
for the matrix model. We obtain the leading order exponential behaviour as an independent
result that should be reproduced in the Fermi gas approach. A review of the Fermi gas for-
malism is given in Section 3. Section 4 is instead devoted to the technical computation of
1/6 and 1/2 supersymmetric Wilson loops in the two-parameter deformed model, using the
Fermi gas technique. In Section 5 we perform the explicit ’t Hooft-genus expansion and the
M-theory limit, recovering the known results in the undeformed situation. The applications
of our results to correlation functions in the background of the Wilson line are contained in
Section 6. We obtain an exact large N expression for the one-point function of dimension one
topological operators,5 that reproduces the Bremsstrahlung function in this regime [24]. From
applying OPE to the two-point function we derive a new one-point datum, that we hope will

5With a slight abuse of terminology, we refer to the dimension of the topological as the dimension of the related
physical operators.
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be useful in future applications of bootstrap to the defect CFT defined arising in the presence
of the Wilson line. Our conclusions and the possible extensions of the present work are dis-
cussed in Section 7. A certain number of Appendices, devoted to various technical aspects of
our computations, complete the paper.

2 The large N limit from the eigenvalue density

In this section, we begin to explore BPS Wilson loops in the presence of mass deformations,
at strong coupling. Our starting point is the matrix model description (1). We leverage on
the method developed in [33,63], a technique that found its principal application in the com-
putation of the free energy F(∆) = − log Z(∆), where ∆ is a collective notation for some
deformation parameters. Here, we will use it to extract the leading behavior of the 1/6–BPS
Wilson loop in the presence of mass deformations.

We shall consider the leading order behavior as N →∞ while k is kept fixed. As we will
discuss later, this regime is connected to the so-called M-theory limit.6 In this limit, the discrete
spectrum of eigenvalues condensates and is characterized by a continuous distribution ρ(x),
which can be determined by a saddle point analysis.

To begin with, we review the derivation of the eigenvalue distribution of [63]. One of the
crucial points is to assume the following behaviour for the eigenvalues at large N

λi =
p

N x i + i y(1)i , µi =
p

N x i + i y(2)i , (14)

a property that has been confirmed by the precise numerical analysis of [33]. Under the usual
hypothesis that the eigenvalues become dense, we approximate them with the continuous
functions x(s), y(1,2)(s) : [0,1]→ R, where s ∈ [0, 1] is a continuous parameter corresponding
to i/N . We also slightly modify the standard notation and identify ρ ≡ ds

dx with the density of
the real part of the eigenvalues.

Implementing those assumptions into the matrix model [33,63], one can express the free
energy as a functional of ρ(x) and δ y(x) = y(1)(x)− y(2)(x), namely

F[ρ,δ y] =N
3
2

�

k
2π

∫

d x xρ(x)δ y(x)−
∫

d x ρ(x)2
�

δ y(x)2 +πδ y(x) (ζ1 − ζ2)

+
1
2
π2
�

ζ2
1 + ζ

2
2 − 2

�

�

−
α

2π

�∫

d x ρ(x)− 1

��

, (15)

where α is a Lagrange multiplier imposing the normalization of the distribution ρ. Notice that
the expression of F is local in x , a remarkable simplification due to the strict large N limit.

Solving the extremization problem for F w.r.t. ρ and δ y , under the condition ρ(x) > 0,
one finds two continuous piecewise smooth functions

−
α

πk (1− ζ1)
< x < −

α

πk (1+ ζ2)
:

ρ =
α+πk(1− ζ1)x

2π3 (2− ζ1 − ζ2) (ζ1 + ζ2)
, δ y = π(ζ1 − 1) , (16)

6This does not correspond to the usual planar limit. See [31] for a complete analysis of that case in the limit
ζ1→ 0, ζ2→ 0.

7

https://scipost.org
https://scipost.org/SciPostPhys.17.2.035


SciPost Phys. 17, 035 (2024)

−
α

πk (1+ ζ2)
< x <

α

πk (1+ ζ1)
:

ρ =
α+ π

2 xk (ζ2 − ζ1)

π3 (2− ζ1 − ζ2) (ζ1 + ζ2 + 2)
, (17)

δ y =
kπ2 x

�

2− ζ2
1 − ζ

2
2

�

−απ(ζ2 − ζ1)

2α−πkx(ζ1 − ζ2)
,

α

πk (1+ ζ1)
< x <

α

πk (1− ζ2)
:

ρ =
α−πkx(1− ζ2)

2π3 (2− ζ1 − ζ2) (ζ1 + ζ2)
, δ y = π(1− ζ2) , (18)

where α is
α2 = 2π4k

�

1− ζ2
1

� �

1− ζ2
2

�

. (19)

Finally, the free energy in the mass-deformed case is found to be

F =
π

3

Ç

2k
�

1− ζ2
1

� �

1− ζ2
2

�

N3/2 , (20)

exhibiting the expected N3/2 scaling.

2.1 The Wilson loop

We are now ready to exploit the previous results to compute BPS Wilson loops in the mass-
deformed background, at leading order in the M-theory limit. In the large N limit, their vev is
captured by the following integrals

〈W 1/6〉=
2πiN

k

∫

C
d x ρ(x)eλ(x) , 〈W 1/2〉=

2πiN
k

∫

C
d x ρ(x)

�

eλ(x) + eµ(x)
�

, (21)

where the integrals extend over the support of the eigenvalue distribution, and λ(x),µ(x)
denote the continuous limit of the eigenvalue distribution (14). In the superconformal case,
the prescription successfully reproduced the leading behavior of the BPS Wilson loop at strong
coupling [33].

We perform here an analogous computation with the masses ζ1, ζ2 turned on. Unlike the
superconformal case, we are not aware of an explicit form for the imaginary part of the func-
tions y(1)(x) and y(2)(x), as the extremization of the free energy fixes only their difference
δ y . However, the imaginary part is subleading in N with respect to the real part and, con-
sequently, it cannot affect the leading exponential behavior of the Wilson loop: we can still
obtain a reliable estimate of its mass dependence from the computation of (21).
The explicit result for the 1/6–BPS Wilson loop reads

〈W 1/6〉=
i

π(ζ1 + ζ2)





(1− ζ2)
(2− ζ1 − ζ2)

e
π
r

2N(1−ζ2
1)(1−ζ

2
2)

(1−ζ2)
p

k −
(1+ ζ1)

(ζ1 + ζ2 + 2)
e
π
r

2N(1−ζ2
1)(1−ζ

2
2)

(ζ1+1)
p

k



 , (22)

and, as expected, we observe in the exponential factor a peculiar dependence on the mass
parameters.7

7We do not compute the vev of the 1/2–BPS Wilson loop as its differences from the bosonic one lies in the
imaginary parts of the eigenvalues, which are unknown.
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We note the emergence of a novel double exponential behavior in (22), which may signal
a rich underlying structure depending on the relative values of ζ1 and ζ2. We recover, instead,
a single exponential in two limits. The first one is when ζ2 = −ζ1 = ζ, where we can interpret
the double deformation as a single imaginary FI deformation. In this case the explicit result is

〈W 1/6〉= i(1+ ζ)

√

√ N
2k

e
p

2π(ζ+1)
p

Np
k . (23)

Nicely, up to a suitable redefinition of the deformation parameter the dependence on ζ agrees
with that found in [55].8

The other special point is the superconformal limit of vanishing masses. Apparently (22)
seems singular in such a limit, but a more careful analysis shows that is finite,9 leading to

〈W 1/6〉 ∼

√

√N
k

e
p

2π
p

Np
k , (24)

in perfect agreement with [33].
In the next section we propose an alternative, and perhaps more solid, derivation of this

result, which incorporates all the perturbative correction in 1/N . We anticipate that the two
methods give the same leading exponential for the Wilson loop, confirming all the features we
observed above.

3 The large N limit from the Fermi gas method

The strong coupling limit of ABJM-like models is particularly rich, with different behaviours
corresponding to different scalings of k and N . Various approaches have been developed [29,
31, 33] along the years and sometimes they can be extended to the massive case [53–55,
63–66]. Among them, the most fruitful is perhaps the Fermi gas method [29]. The reason
is that corrections in 1/N , perturbative and non-perturbative, are naturally encoded in this
formalism. We shall focus on perturbative corrections, and defer the study of non-perturbative
contributions to future investigations.

The original observation [29] is that the ABJM matrix model can be written as a statistical
system of N one-dimensional non-interacting fermions. Several generalizations were later
proposed, including the possibility of turning on the massive background described in the
previous sections [53]. One appealing feature of the Fermi gas approach is the correspondence
between the 1/N expansion of ABJM and the quantum corrections of the statistical model, due
to a proportionality relation between the Chern-Simons coupling and the Planck constant of
the gas. Since quantum corrections are accessible via somewhat standard WKB techniques,
the method gives a powerful tool to explore the strong coupling dynamics beyond the results
of Section 2.

Even more interestingly, one can incorporate in the Fermi gas formalism the presence of
quantum operators, both local [59, 67, 68] and extended, like BPS Wilson loops [38]. In the
latter case, without mass deformations, it is possible to compute all the 1/N corrections and
some non-perturbative contributions [69]. In the following, we will generalize the results
of [38] to the presence of the mass terms ζ1 and ζ2.

Before entering the details, which might seem technical for a first reading, we would like
to present the main results of our computations. We obtained the exact expression for the

8The precise identification is ζhere =
4iζthere

k .
9See also Appendix B for the analogous computation which keeps into account also 1/N perturbative correc-

tions.
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expectation value of the n-winding 1/6–BPS Wilson loop in the mass-deformed background
of (4)

〈W 1/6
n 〉=

i−nζ2+1

2
B̂1(k,ζ1,ζ2)

Ai
�

C−1/3
�

N − B − 2n
k(1−ζ2)

��

Ai
�

C−1/3 (N − B)
� +

+
inζ1−1

2
B̂2(k,ζ1,ζ2)

Ai
�

C−1/3
�

N − B − 2n
k(1+ζ1)

��

Ai
�

C−1/3 (N − B)
� ,

(25)

with

C =
2

π2k(1− ζ2
1)(1− ζ

2
2)

, B =
k

24
+

2+ ζ2
1 + ζ

2
2

6k(1− ζ2
1)(1− ζ

2
2)

,

B̂1(k,ζ1,ζ2) =
in−1

πn!(2− ζ)
Γ

�

1+ n−
nζ
2

�

Γ

�

n
ζ

2

�

csc
�

2nπ
k(1− ζ2)

�

,

B̂2(k,ζ1,ζ2) =
in+1

πn!(2+ ζ)
Γ

�

1+ n+
nζ
2

�

Γ

�

−n
ζ

2

�

csc
�

2nπ
k(1+ ζ1)

�

,

(26)

where ζ≡ ζ1 + ζ2. From that, we can easily compute the vev of the 1
2–BPS Wilson loop

〈W 1/2
n 〉= B̂1(k,ζ1,ζ2) sin

�

nπζ2

2

� Ai
�

C−1/3
�

N − B − 2n
k(1−ζ2)

��

Ai
�

C−1/3 (N − B)
� +

+B̂2(k,ζ1,ζ2) sin
�

nπζ1

2

� Ai
�

C−1/3
�

N − B − 2n
k(1+ζ1)

��

Ai
�

C−1/3 (N − B)
� .

(27)

The expansion at large N of these results agrees, at leading order, with that we have derived
from the eigenvalue distribution, providing a nice cross check.

In the rest of the section, we present an introduction to the necessary technology of the
Fermi gas, that can be skipped by people already familiar with this methodology. We focus on
two relevant examples: the ABJM partition function in the presence of mass deformations ζ1
and ζ2 and the computation of Wilson loops in the superconformal ABJM model.

3.1 A crash course on the Fermi gas formalism

To begin with, we rearrange the matrix model of mass-deformed ABJM (1) in a more con-
venient form. After some manipulations detailed, e.g., in [53], the partition function can be
written as

Z(N) =
1
N !

N
∏

i=1

∫

dλi

2π
deti j ρ0(λi ,λ j) =

1
N !

N
∏

i=1

∫

d x i

2π
deti j 〈x i|ρ̂|x j〉 , (28)

where we set x i = kλi , and promoted it to be the eigenvalue of an auxiliary position operator
x̂ i , whose physical interpretation will be clarified soon. We also have implicitly introduced
the canonical momentum operator p̂i and the corresponding eigenstates |x i〉, |pi〉 respectively.
They satisfy the standard quantization condition

[ x̂ i , p̂ j] = iħhδi j = 2πikδi j , (29)

where ħh is not the physical Planck constant but rather a convenient interpretation of the Chern-
Simons level. Then, we recognize (28) as the partition function of a quantum Fermi gas of
N non-interacting particles, with position x i . Accordingly, ρ̂ corresponds to the one-particle
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density matrix for such a gas and, after performing a unitary transformation to bring it into
an Hermitian form, its expression reads as

ρ̂ =
e−

ζ1
4 Q̂

�

2cosh Q̂
2

�

1
2

e
ζ2
2 P̂

2cosh P̂
2

e−
ζ1
4 Q̂

�

2cosh Q̂
2

�

1
2

, (30)

where the operators Q̂ and P̂ are related to x̂ and p̂ through a suitable canonical transforma-
tion [53]. Finally, we define a quantum Hamiltonian Ĥ from ρ̂ = e−Ĥ : neglecting all the ħh
corrections, Ĥ can be written as a sum of kinetic and potential term, T̂ (P) and Û(Q) respec-
tively

T̂ (P) = −
ζ2

2
P̂ + log

�

2cosh
P̂
2

�

, Û(Q) =
ζ1

2
Q̂+ log

�

2cosh
Q̂
2

�

. (31)

The quantum Hamiltonian, of course, has not the simple form T (P)+U(Q). Quite interestingly,
we see that the effect of the R−charge deformations is a shift of the kinetic and the potential
terms, recovering easily the superconformal ABJM case [29] at this level.

Remarkably, the vevs of 1/6–BPS Wilson loops, and hence also of the fermionic ones
through the relation (12), admit a natural reinterpretation within this framework as 1-body
operators [38]. A 1-body operator Ô1 is an operator invariant under permutations and acting
on states |x1, . . . , xN 〉 of the Hilbert space of N distinguishable particles as

Ô1 |x1, . . . , xN 〉=
N
∑

i=1

O1(x i) |x1, . . . , xN 〉 . (32)

In the case of fermionic particles, the states |x1, . . . , xN 〉 must be antisymmetrized according
to the Pauli exclusion principle. The canonical thermal average of a 1-body operator can be
expressed in terms of the single particle density matrix ρ1 as

〈O〉N =
1
n!

∫

d x1O1(x1)ρ1(x), ρ1(x1) =
1
N !

∫

d x2 . . . d xNρ(x1, . . . , xN ) , (33)

where 〈〉N denotes unnormalized vevs. Following the procedure described for the partition
function, one finds that the insertion corresponding to the n-winding Wilson loop, in terms of
the Q, P variables, is [38]

〈W 1/6〉N = e
n
k (Q+P) . (34)

This representation holds also in the mass-deformed case, as we will show explicitly in the
next section.

Now, the striking advantage of the Fermi gas formulation is the possibility to explore the
strongly coupled regime of ABJM-like theories, i.e. k ≪ 1, by performing a standard WKB
expansion of the statistical model defined by (30). An efficient way to implement a systematic
WKB expansion is to introduce the Wigner-Kirkwood formalism [29]. In this approach one
associates to any operators Â a quantum function on the phase space AW through the so-called
Wigner transform

AW (Q, P) =

∫

dQ′ 〈Q−
Q′

2
|Â|Q+

Q′

2
〉 eiPQ′/ħh . (35)

Then, statistical expectation values are written as

〈A〉= Tr (ρ̂Â) =

∫

dQdP
2πħh

AW (Q, P) ⋆ ρW (Q, P) , (36)
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where ρW is the Wigner transform of the density matrix. We also recall that the Wigner trans-
form of the product of two operators is the Moyal product, denoted by ⋆, of the transformed
quantities, namely

(ÂB̂)W = AW ⋆ BW ≡ AW exp
�

iħh
2
(
←
∂Q

→
∂P −

←
∂P

→
∂Q)

�

BW . (37)

It is not difficult to obtain the Wigner transform of the quantum Hamiltonian exploiting the
Baker-Campbell-Hausdorff formula

ρW = e−HW
⋆ = e−

1
2 U(Q̂) ⋆ e−T (P̂) ⋆ e−

1
2 U(Q̂) . (38)

We stress again that the full quantum Hamiltonian is not of the type T + U , but contains an
infinite tower of corrections coming from nested commutators

HW (Q, P) = T + U +
1
12
[T, [T, U]⋆]⋆ +

1
24
[U , [T, U]⋆]⋆ + · · ·=

= T (P) + U(Q)−
ħh2

12
(T ′(P))2U ′′(Q) +

ħh2

24
(U ′(Q))2T ′′(P) +O(ħh4) .

(39)

Up to now, we always have worked at fixed N : as observed in the seminal paper [29], it is
convenient, for the large N limit, to evaluate thermodynamic quantities in the grand-canonical
ensemble. The grand-canonical partition function Ξ is therefore constructed as

Ξ(µ) = 1+
∞
∑

N=1

Z(N)eNµ = eJ(µ) , (40)

being µ the chemical potential, z ≡ eµ the fugacity and defining implicitly the grand-canonical
potential J(µ). Given Ξ, the canonical partition function is recovered from

Z(N) =

∮

dz
2πi
Ξ(log z)

zN+1
=

1
2πi

∫

dµ Ξ(µ) e−µN . (41)

An analogous prescription applies to observables. Specifically, for the Wilson loop

〈W 1/6〉GC =
∞
∑

N=1

〈W 1/6〉N zN , 〈W 1/6〉N =
1

2πi

∫

dµ e−µN 〈W 1/6〉GC . (42)

We can finally present the results for the partition function in the presence of mass deforma-
tions. The relevant point is to compute J(µ): a useful approach is to consider the distribution
operator n̂(E), which counts eigenstates with energy less than E and is defined as

n̂(E) = Tr θ (E − Ĥ) . (43)

Its explicit relation with the grand potential is

J(µ) =

∫

dE
dn
dE

log
�

1+ ze−E
�

, (44)

and building on this formula, one can argue [54] that

J(µ) =
C
3
µ3 + Bµ+ A+O(e−µ) , (45)

with A, B and C being functions of k,ζ1,ζ2, generalizing the result of the undeformed case
[29]. The O(e−µ) refers to all the non-perturbative terms. Up to these exponentially small
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corrections, plugging (45) into (41) and performing the integral, one express Z(N) as an Airy
function

Z(N) = eA C−1/3 Ai[C−1/3(N − B)] . (46)

This expression encodes a resummation of all the perturbative 1/N corrections, but is valid
for any value of k, up to exponentially small terms, that correspond to instanton effects in
M-theory.

The coefficients B and C are obtained from the perturbative part of n(E), accessible via the
WKB expansion. One can efficiently derive them by expanding the distribution operator, seen
as a function of the Hamiltonian Ĥ, around HW (Q, P) and then taking its Wigner transform.
Explicitly, one gets

n(E) = Tr n̂(E)W =

∫

HW (Q,P)≤E

dQdP
2πħh

+
∞
∑

r=1

1
r!

∫

dQdP
2πħh

Grδ
(r−1)(E −HW ) , (47)

where
Gr =

�

(Ĥ −HW (q, p))r
�

W
. (48)

The above expression has a simple physical interpretation: the first term accounts for the
quantum corrections to the Fermi surface, namely the region in the phase space such that
HW (P,Q) ≤ E, due to the ħh corrections to the Hamiltonian, and the second is the standard
semiclassical expansion of the density of eigenvalues.

The coefficient C can be easily derived in the thermodynamic limit: it is only sensible to
the leading term in n(E) that is proportional to the semiclassical volume of the Fermi surface,
which goes as E2. Perturbative WKB corrections in Z are of order (ħh d

dE )
2, and cannot affect

the leading behavior, so C is left untouched. Following the same logic, they affect B, but only
ħh corrections to the Hamiltonian up to the second order play a role. An explicit calculation
leads to the expressions of (26) for B and C [53]. The computation of A is instead sensible to
the terms of order e−E into n(E). However, building on numerical results and analogy with
topological string theory, an exact expression was found [53,70], that is

A=
1
4
(AABJM(k(1+ ζ1)) +AABJM(k(1− ζ1)) +AABJM(k(1+ ζ2)) +AABJM(k(1− ζ2))) , (49)

with AABJM the constant map function

AABJM(k) =
2ζ(3)
π2k

�

1−
k3

16

�

+
k2

π2

∫ ∞

0

d x
x

ekx − 1
log
�

1− e−2x
�

= (50)

= 2ζ′(−1)−
1
6

log
k

4π
−
ζ(3)
8π2

k2 +
1
3

∫ ∞

0

d x
ekx − 1

�

3

x sinh2 x
−

3
x2
+

1
x

�

.

Let us now discuss the case of Wilson loops in the superconformal limit, i.e., in the absence
of mass deformations [38]. The relevant quantities can be read from the deformed case by set-
ting to zero ζ1 and ζ2. We use the following expression for the single particle grand-canonical
partition function

ρGC =
Ξ

eĤ−µ + 1
= Ξπ∂µ

�

csc
�

π∂µ
�

θ (µ− Ĥ)
�

, (51)

which also implies

〈O〉GC = ΞTr
� O

eĤ−µ + 1

�

≡ Ξπ∂µ csc
�

π∂µ
�

nO(µ) , (52)
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where nO(µ) is implicitly defined by (52). Its explicit form in the language of the Wigner
transform, which is the most convenient for concrete calculations, is

nOn
(µ)=

∫

dQdP
2πħh

θ (µ−HW ) e
n(Q+P)

k +
∑

r≥1

(−1)r

r!
d r−1

dµr−1

∫

dQdP
2πħh

δ(µ−HW ) Gr e
n(Q+P)

k , (53)

where again we expanded nO(µ) around HW . We stress that, unlike the case of the partition
function, there is a technical complication because one has to consider all the ħh corrections.
That is, we have to consider an infinite series of terms of the form

U (n)(Q)(T ′(P))n , T (n)(P)(U ′(Q))n . (54)

Nevertheless, in the superconformal case the computation for the Wilson loop can be carried
on [38] and leads to

nOn
(µ) =

k
2πnħh

e
2nµ

k in
�

2µ−
iπk
2
− kHn

�

, (55)

where Hn is the n-th harmonic number. It is not hard to see that this expression, after some
manipulations leads again to a combination of Airy functions and its derivative. However, we
do not need those explicit results here. The interested reader can find them in the Appendix
B, where we discuss the zero mass limit of the results we are about to derive.

4 Wilson loops in the mass-deformed theory

We are ready now to obtain the explicit expressions (25) and (27) for the BPS Wilson loops in
the mass-deformed theory. As explained before, we know that calculating the vev of 1/6-BPS
Wilson loop with winding number n in the Fermi gas approach corresponds to inserting

On =
n
∑

i=1

enλi , (56)

in the matrix integral. As shown before, we pose λi =
x i
k and we have that Q+ P = x: the vev

of 1/6-BPS Wilson loop is obtained by inserting the operator

On = exp
�n x

k

�

= exp
�

n(Q+ P)
k

�

. (57)

It is interesting, at this point, to remark on the difference between the present computation and
the one for the latitude Wilson loops in ABJM [24]: in that case, the deformation parameter
modifies the operator itself representing the Wilson loop. On the contrary, here, the operator
is unchanged, while the bulk theory is deformed.

In practice, we extend the derivation of [38] to the presence of the real masses ζ1,ζ2. Even
if the underlying logic is similar, we report the main steps of the computations, emphasizing
the differences due to the presence of the masses. Interested readers can find additional tech-
nical details in the Appendix A.

4.1 Warm up: recovering the leading exponential term

As a first step, to fix the ideas and to compare against the findings of Section 2, we shall exam-
ine the strict large N limit. The regime N →∞ corresponds to the standard thermodynamic
limit of the statistical system, where the Hamiltonian takes the rather simple form

HW (Q, P) =
|P| − ζ2P

2
+
|Q|+ ζ1Q

2
, (58)

14

https://scipost.org
https://scipost.org/SciPostPhys.17.2.035


SciPost Phys. 17, 035 (2024)

that makes straightforward to evaluate nOn
(µ) directly from the first term of (53). We plug

the above expression into (52), to find the grand canonical vev of the 1/6–BPS Wilson loop.
The explicit result reads as

1
Ξ
〈On〉GC =

e
2nµ

k(1−ζ2)

nπζ(2− ζ)
csc
�

2nπ
k(1− ζ2)

�

−
e

2nµ
k(1+ζ1)

nπζ(2+ ζ)
csc
�

2nπ
k(1+ ζ1)

�

, (59)

where we recall that ζ ≡ ζ1 + ζ2. Next, we can compute the canonical vev in the thermo-
dynamic limit by performing a standard saddle-point approximation in (42), now suitably
normalized. It is enough to evaluate the grand canonical vev (59) for the value µ⋆, deter-
mined by requiring that the grand canonical average N(µ), seen as a function of µ, is equal to
the canonical constant value N

µ∗ = π

√

√kN
2

q

(1− ζ2
1)(1− ζ

2
2) . (60)

We substitute µ⋆ into (59) and find

〈W 1/6
n 〉 ≈ e

nπ
1−ζ2

q

2N
k

q

(1−ζ2
1)(1−ζ

2
2)

csc
�

2nπ
k(1−ζ2)

�

nπζ(2− ζ)
− e

nπ
1+ζ1

q

2N
k

q

(1−ζ2
1)(1−ζ

2
2)

csc
�

2nπ
k(1+ζ1)

�

nπζ(2+ ζ)
. (61)

We finally compare this expression with (22), obtained independently from continuous eigen-
value distribution. Even if the computations of the prefactors are not fully reliable in both
cases, we observe an exact correspondence in the leading exponential behaviour.10 We think
that the matching of the two exponential factors, obtained from two unrelated techniques, is
a non-trivial cross-check of our results.

4.2 The full perturbative computation: the number of states

We face the more challenging problem of computing and resumming all the perturbative quan-
tum 1/N corrections, neglecting the exponentially small factors. The central goal of this sec-
tion is the explicit computation of (53). Since the task is somewhat involved, we divide the
computation into different steps.

4.2.1 The number of states: part I

We begin with some preliminary observations about the structure of the integrals to be evalu-
ated. First of all, we split (53) in two contributions, namely

n(1)On
(µ) =

∫

dQdP
2πħh

θ (µ−HW ) e
n(Q+P)

k ,

n(2)On
(µ) =

∑

r≥1

(−1)r

r!
d r−1

dµr−1

∫

dQdP
2πħh

δ(µ−HW ) Gr e
n(Q+P)

k .
(62)

They represent, respectively, the integration of the operator that corresponds to the Wilson
loop (57) over the Fermi surface and over the quantum corrected boundary of the Fermi sur-
face, defined by HW (q, p) = µ. Then, following [29], it is useful to split the Fermi surface
into regions where the semiclassical approximation either for T (p) or U(q) makes sense. For

10Expanding the full result (25) we find a mismatch even with the massless case of [38]. Presumably, the
thermodynamic argument is too naive to reproduce the coefficients of the exponentials. For (22), see the discussion
in the corresponding section.

15

https://scipost.org
https://scipost.org/SciPostPhys.17.2.035


SciPost Phys. 17, 035 (2024)

instance, if we select a region where P is of order µ, we can approximate T (P) in (31) with
its leading term for large P, i.e.

T (P)≃
|P| − ζ2P

2
. (63)

In turn, the quantum Hamiltonian restricted to that region takes the form [38]

HW (Q, P) = T (P) + U(Q)−
iħh
2

T ′(P)U ′(Q) +
∑

m≥1

B2m

(2m)!
(iħh)2mU (2m)(Q)(T ′(P))2m , (64)

where B2m are the Bernoulli numbers. The important observation is that higher order correc-
tions in (64), apart from the first one in ħh, contain terms that are exponentially suppressed in
the large µ limit, as for large Q the derivatives of U(Q) behave as

U (2m)(Q) = O(e−µ) , m≥ 1 . (65)

We can neglect all these contributions in many parts of the computation. Using the same
arguments, in the region where Q ∼ µ, it is possible to argue that the Hamiltonian is corrected
only by terms of the form (U ′(Q))2mT (2m)(P) and that those corrections are exponentially small
for m≥ 1.

Of course, the delicate point is to correctly identify the relevant regions. In the massless
case, they were expressed in terms of a point of the massless Fermi surface with P ∼ µ+O(ħh)
and Q ∼ µ + O(ħh) + O(e−µ). We modify that ansatz, and select a special point on the Fermi
surface imposing the additional constraint that it must respect the symmetry for the exchange
ζ1↔−ζ2. The most natural point (Q∗, P∗) with these properties in our case is

P∗ =
µ

1− ζ2
+

iħh
8
(1+ ζ1) , Q∗ =

µ

1+ ζ1
+

iħh
8
(1− ζ2) +O(e−µ) .11 (66)

In the massless limit, we smoothly recover the choice of [38]. See Fig. 1 for a graphical
representation, to which we refer also in the following considerations.

In the first quadrant, the point (Q∗, P∗) divides the boundary of the Fermi surface into two
segments, selecting regions a and b whose area is

Vola =

∫ Q∗

0

P(µ,Q) dQ , Volb =

∫ P∗

0

Q(µ, P) dP − P∗Q∗ , (67)

and where P(µ,Q) and Q(µ, P) are local solutions of the approximated quantum Hamiltonian,
defined by

HW = T (P) + U(Q)−
iħh
2

U ′(Q)T ′(P) +O(ħh2) . (68)

The boundary of the region a is determined by P ≥ P∗, that is P(µ,Q) ≥ µ
1−ζ2

, while on the
boundary of region b we have that Q(µ, P)≥ µ

1+ζ1
. Extending the very same argument on the

other quadrants, we can define two further regions: region I as

P > P∗ , −Q̃∗ ≤Q ≤Q∗ . (69)

and region II as
Q >Q∗ , −P̃∗ ≤ P ≤ P∗ . (70)

where the exact expressions of Q̃∗ and P̃∗ are not relevant to our computation. In these regions,
we can safely assume

region I : e−P < e−
µ

1−ζ2 ,

region II : e−Q < e−
µ

1+ζ1 .
(71)

11As in [38], we perform a Wick rotation such that iħh is real.
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Figure 1: The quantum Fermi surface.

Namely, exponentially small terms in P and Q are bounded by exponentially small terms in µ
and we can neglect terms of the form T (m)(P) and U (m)(Q) (for m ≥ 2) in regions I and II,
respectively. As proven in [29] and explained above, contributions of the form U (m)(Q) and
T (m)(P) give exponentially small corrections in regions I and II, respectively. In the end, the
relevant part of the integral can be evaluated by taking into account the contributions from
two new regions, denoted by A and B, and then subtracting their complement in the bulk
region that was overcounted. The two new regions are defined as

region A : P > 0 , −Q̃∗ ≤Q ≤Q∗ ,

region B : Q > 0 , −P̃∗ ≤ P ≤ P∗ ,

bulk region : −P̃∗ ≤ P ≤ P∗ , −Q̃∗ ≤Q ≤Q∗ .

(72)

Examining the Fermi surface in Fig. 1, it is evident that the overcounted region can be confined
to the rectangle in the first quadrant, where 0 ≤ P ≤ P∗ and 0 ≤ Q ≤ Q∗. Indeed, any
other additional contribution from the bulk of the Fermi surface introduces only negligible
exponentially small terms.

To see these arguments in practice and make the above discussion concrete, we compute
the contribution from region A. Here, the kinetic term can be written as

T (P) =
P
2
(1− ζ2) +O(e−µ) , (73)

and the Fermi surface is defined by

µ= HW =
P
2
(1− ζ2) + U(Q)−

iħh
4
(1− ζ2)U

′(Q) +O(e−µ) . (74)
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Solving for P we get

P(µ,Q) =
2µ

(1− ζ2)
−

2U(Q)
(1− ζ2)

+
iħh
2

U ′(Q) =
2µ

(1− ζ2)
−
�

2HW

(1− ζ2)
− P

�

. (75)

In the first term n(1)On
(µ) of (62), the θ (µ−HW ) implies that the integration is restricted to the

region
HW ≤ µ ⇔ P ≤ P(µ,Q) . (76)

Therefore, keeping only the leading terms, we get from the region A

n(1,A)
On
(µ) =

∫ Q∗

−Q̃∗

dQ
2πħh

e
nQ
k

∫ P(µ,Q)

0

dP e
nP
k =

k
2πnħh

e
2nµ

k(1−ζ2)

∫ Q∗

−Q̃∗

dQ e
n(Q+P)

k e−
2n

k(1−ζ2)
HW . (77)

The evaluation of n(2,A)
On
(µ) is more subtle as it is sensible to the infinite tower of higher

order corrections of HW . We can solve this problem by implementing the following identity

δ(µ−HW (Q, P)) =
1

| ∂ HW (Q,P)
∂ P |

δ(P − P(µ,Q)) =
2

1− ζ2
δ(P − P(µ,Q)) , (78)

into (62). For instance, in region A, we can integrate over P and the expressions for n(2)On
(µ)

for region A reduces to

n(2,A)
On
(µ) =

k
2nπħh

e
2nµ

k(1−ζ2)
∑

r≥1

(−1)r

r!

�

2n
k(1− ζ2)

�r ∫ Q∗

−Q̃∗

dQ Gr e
n(Q+P)

k e−
2n

k(1−ζ2)
HW . (79)

Still, we need to compute efficiently the generating functional of the Wigner-Kirkwood correc-
tions, namely

e−tHW
⋆ = (e−tĤ)W =

�∞
∑

r=0

(−t)r

r!
Gr

�

e−tHW . (80)

Extending the regularization introduced in [38], we found the explicit expression in Appendix
A for the specific value t = 2n

k(1−ζ2)
. The result is

e
− 2n

k(sgn(P)−ζ2)
HW

⋆ = e−
n
k |P|+

nπi
2 (1+ζ1)−

nζ1
k(sgnP−ζ2)

Q−n log
�

2sinh Q
k(sgnP−ζ2)

�

. (81)

The sum in (79) can be safely done in terms of the generating functional (80) and (81), finally
obtaining a compact formula for the number of eigenstates in the region A

n(A)On
(µ) =

k
2nπħh

e
2nµ

k(1−ζ2) e
nπi
2 (1+ζ1)

∫ Q∗

−Q̃∗

dQ e
nQ
k

e−
nζ1

k(1−ζ2)
Q

�

2 sinh Q
k(1−ζ2)

�n . (82)

4.2.2 The number of states: part II

The explicit evaluation of the integral (82) is non-trivial. As done in [38], we can send the
lower integration limit to −∞ up to exponentially small terms, that we are neglecting anyway.
To simplify the computation, we make the substitution

u= e
Q

k(1−ζ2) , du=
1

k(1− ζ2)
e

Q
k(1−ζ2) dQ , (83)
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and we get

n(A)On
(µ) =

k2

2nπħh
(1− ζ2) e

2nµ
k(1−ζ2) in(1+ζ1)

∫ u∗

0

du
un(1−ζ1−ζ2)−1

(u− u−1)n
, (84)

with the explicit expression of u∗ given by

u∗ = exp
�

Q∗
k(1− ζ2)

�

= exp
�

µ

k(1+ ζ1)(1− ζ2)
+

iπ
4

�

. (85)

It is useful to notice that the integral in (84) is of the form [24]

Ia,b =

∫ u∗

0

du
ua−1

(u− u−1)b
=
(−1)−b

a+ b
ua+b
∗ 2F1(b,

a+ b
2

;
a+ b

2
+ 1; u2

∗) . (86)

with a = n(1 − ζ1 − ζ2) and b = n. In order to simplify our result, it is possible to remove
exponentially subleading terms in µ exploiting identities for the hypergeometric functions. We
use the identity

2F1(α,β ,γ, z) =
(−z)−α Γ (γ)Γ (β −α)
Γ (β)Γ (γ−α) 2F1(α,α− γ+ 1;α− β + 1; z−1) +

+
(−z)−β Γ (γ)Γ (α− β)
Γ (α)Γ (γ− β) 2F1(β ,β − γ+ 1;−α+ β + 1; z−1) ,

(87)

and we expand each term in a power series: since we are neglecting exponentially small terms
(i.e. terms∝ z−1 = e−2µ), we can consider only the first term in the expansion

2F1(α,β ,γ, z−1)≈ 1+O(z−1) . (88)

After some manipulations that involve identities of gamma functions, we obtain the final ex-
pression for the number of eigenstates in region A

n(A)On
(µ) =

k2(1− ζ2)
2nπħh

e
2nµ

k(1−ζ2) in(1+ζ1)

�

−
1
nζ

u−nζ
∗ +

(−1)
n
2ζ

n!(2− ζ)
Γ

�

1+ n−
nζ
2

�

Γ

�

n
ζ

2

�

�

. (89)

From symmetry considerations, the contribution from region B is expected to be the same
found for the region A with ζ1↔−ζ2. The explicit computation is a simple generalization of
the one we have done before, and we recover

n(B)On
(µ) =

k2(1+ ζ1)
2nπħh

e
2nµ

k(1+ζ1) in(1−ζ2)

�

1
nζ

unζ
∗ +

(−1)−
n
2ζ

n!(2+ ζ)
Γ

�

1+ n+
nζ
2

�

Γ

�

−n
ζ

2

�

�

. (90)

As discussed before, to arrive at the final result, we should still subtract the contribution of the
bulk region. Its computation is straightforward and gives

n(bulk)
On

(µ) =

∫ Q∗

−Q̃∗

∫ P∗

−P̃∗

dQdP
2πħh

e
n(Q+P)

k ≈
k2

2πħhn2
e

n
k (Q∗+P∗) =

=
k2

2πħhn2
exp

�

nµ
k

�

1
1+ ζ1

+
1

1− ζ2

�

+
inħh
8k
(2+ ζ1 − ζ2)

�

.

(91)

In conclusion, putting together all the different pieces,12 the leading expression of the total
number of eigenstates can be rewritten in this form

nOn
(µ) = A(k,ζ1,ζ2) e

nµ
k

�

1
1+ζ1

+ 1
1−ζ2

�

+ B1(k,ζ1,ζ2) e
2nµ

k(1−ζ2) + B2(k,ζ1,ζ2) e
2nµ

k(1+ζ1) =

= B1(k,ζ1,ζ2) e
2nµ

k(1−ζ2) + B2(k,ζ1,ζ2) e
2nµ

k(1+ζ1) ,
(92)

12We choose the argument of ζ1, ζ2 to be such that log(−1) = −iπ. This reproduces the correct limit ζ1,2 → 0
and known results for the Bremsstrahlung we will present in Section 6.
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since the first coefficient A(k,ζ1,ζ2) is zero, while B1 and B2 are

B1(k,ζ1,ζ2) =
k2

2nπħh
(1− ζ2)

in(1−ζ2)

n!(2− ζ)
Γ

�

1+ n−
nζ
2

�

Γ

�

n
ζ

2

�

,

B2(k,ζ1,ζ2) =
k2

2nπħh
(1+ ζ1)

in(1+ζ1)

n!(2+ ζ)
Γ

�

1+ n+
nζ
2

�

Γ

�

−n
ζ

2

�

.

(93)

4.3 The full perturbative computation: 1/6−BPS Wilson loop

Having obtained a formula for the number of states, we proceed with the calculation of the
vev of the Wilson loop. We need to compute the r.h.s. of

1
Ξ
〈On〉GC = π∂µ csc

�

π∂µ
�

nOn
(µ) . (94)

Using the Taylor series of csc function, it is straightforward to attain the result

1
Ξ
〈On〉GC =B1(k,ζ1,ζ2)

2πn
k(1− ζ2)

csc
�

2nπ
k(1− ζ2)

�

e
2nµ

k(1−ζ2)+

+B2(k,ζ1,ζ2)
2πn

k(1+ ζ1)
csc
�

2nπ
k(1+ ζ1)

�

e
2nµ

k(1+ζ1) .
(95)

As discussed before, we proceed with the calculation of the vev of the 1/6–BPS Wilson loop

〈W 1/6
n 〉=

1
2πiZ

∫

dµ e−µN 〈On〉GC , (96)

with Z being the partition function found in (46). Substituting all the explicit expressions, the
integral (96) is performed, giving a combination of Airy functions

〈W 1/6
n 〉=

i−nζ2+1

2
B̂1(k,ζ1,ζ2)

Ai
�

C−1/3
�

N − B − 2n
k(1−ζ2)

��

Ai
�

C−1/3 (N − B)
� +

+
inζ1−1

2
B̂2(k,ζ1,ζ2)

Ai
�

C−1/3
�

N − B − 2n
k(1+ζ1)

��

Ai
�

C−1/3 (N − B)
� ,

(97)

where the relevant coefficients have been presented in (26). As expected, this vev has the same
symmetry ζ1↔−ζ2 of the matrix model. Notice that the non-perturbative term A, appearing
in the partition function, simplifies against the same term in the normalization and the vev of
the Wilson loop does not depend on it [69].

In the limit ζ1,ζ2→ 0, the expression simplifies and we get the same result derived in [38].
The explicit computation is contained in Appendix A. We will comment on the structure of this
result after having derived also the vev of the 1/2–BPS Wilson loop in the next section.

4.4 The full perturbative computation: 1/2−BPS Wilson loop

To compute the vev of the fermionic Wilson loop, we exploit the formula (12). As explained
in Section 1.2, the 〈Ŵ 1/6

n 〉 is computed from 〈W 1/6
n 〉 simply by complex conjugation, even in

the presence of mass deformations. The expression for the 1/6–BPS Wilson loop, 〈Ŵ 1/6
n 〉, is

quickly obtained from (25) by taking the complex conjugate of the coefficients in front of the
Airy functions. Using that

(−1)n
�

i−nζ2+1

2
B̂1(k,ζ1,ζ2)

�∗

= (−1)−nζ2

�

i−nζ2+1

2
B̂1(k,ζ1,ζ2)

�

,

(−1)n
�

inζ1−1

2
B̂2(k,ζ1,ζ2)

�∗

= (−1)nζ1

�

inζ1−1

2
B̂2(k,ζ1,ζ2)

�

,

(98)
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and that

i−nζ2+1

2
(1− (−1)−nζ2) = sin

�

nπζ2

2

�

,
inζ1−1

2
(1− (−1)nζ1) = sin

�

nπζ1

2

�

, (99)

we arrive at

〈W 1/2
n 〉= B̂1(k,ζ1,ζ2) sin

�

nπζ2

2

� Ai
�

C−1/3
�

N − B − 2n
k(1−ζ2)

��

Ai
�

C−1/3 (N − B)
� +

+B̂2(k,ζ1,ζ2) sin
�

nπζ1

2

� Ai
�

C−1/3
�

N − B − 2n
k(1+ζ1)

��

Ai
�

C−1/3 (N − B)
� .

(100)

We notice that, thanks to the power of i in front of the sin function, 〈W 1/2
n 〉 is real if n is odd

and is imaginary if n is even, as expected from the identity (12).
Another interesting observation regards the form of the vevs: as in the non-deformed case, the
general form is a ratio of two Airy functions, whose coefficients and arguments are modified
by the presence of masses. We can check our final results by expanding (97) and (100) for
large values of N . In this limit, the two ratios lead to two different exponential behaviour,
precisely as observed in (22), derived from the eigenvalue distribution at large N , and in (61),
estimating the thermodynamic limit of the Fermi gas.

5 Strong coupling expansions in different regimes

In light of a physical interpretation of our results at strong coupling, we briefly recall some
salient features of three-dimensional BPS Wilson loops from the AdS/CFT correspondence
perspective. Subsequently, we will present the explicit expansions of the Fermi gas results
obtained in the mass-deformed theory, discussing two relevant strong coupling limits.

5.1 Wilson loops and holography in the superconformal case

To begin with, we limit ourselves to the massless case, in which ABJM theory is dual to the
M-theory on the background AdS4×S7/Zk. In the large N limit, the common radius L of AdS4
and S7 is a function of the gauge theory parameters

�

L
ℓp

�6

= 32π2kN , (101)

where ℓp is the 11d Planck length. When N is large and k fixed, the M-theory is well approxi-
mated by the 11d SUGRA. In this regime, one can compute quantum corrections performing a
perturbative 1/N expansion. We refer to them as the M-theory limit and M-theory expansion,
respectively.

Another interesting limit of the correspondence can be identified as follows. We can think
of S7 as the Hopf fibration over CP3, where the fiber is the M-theory circle S1 acted by the
Zk. If k is large enough, that is k≫ N

1
5 with N →∞, the M-theory circle shrinks to zero size

and the dual configuration becomes the perturbative type IIA string theory on the background
AdS4×CP3. In the stringy regime, observables admit the genus expansion in the string coupling
gs =

2πi
k

F(λ, gs) =
∑

g≥0

Fg(λ) g2g−2
s , (102)
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where λ≡ N
k is the ’t Hooft parameter of the gauge theory, and related to the string length ℓs

via

λ=
1

32π2

�

L
ℓs

�4

. (103)

The genus expansion is nothing but the 1/N ’t Hooft expansion in gauge theory as gs =
2πiλ

N .
We shall refer to this regime as the type IIA limit.

Both the M-theory and ’t Hoof expansion apply to the expectation values of BPS Wilson
loops, allowing for precision tests of the AdS/CFT correspondence [41]. Indeed, if one lim-
its to the maximally supersymmetric case, BPS Wilson loops in the fundamental representa-
tion are dual to a fundamental string ending along the path of the Wilson loop at the AdS
boundary [46]. In the M-theory limit, the fundamental string is uplifted to an M2-brane ex-
tending through the M-theory circle [41]. One can also include the bosonic Wilson loops in
this framework. The crucial point is that one has to smear the maximally symmetric solu-
tion for the fundamental string over a CP1 ⊂ CP3 to reproduce the reduced SU(2) × SU(2)
R-symmetry [16,48].

On the following, we shall compute the leading terms of the M-theory and the genus ex-
pansion for BPS Wilson loops in the presence of the mass deformations. We believe that similar
holographic interpretations persist in the deformed theory and computational checks can be
carried on also in this case. This is analogous, for instance, to the case of 4d N = 4 SYM with
a mass deformation [71,72]. Gravitational backgrounds corresponding to ABJM with masses
turned on were described and analyzed e.g. in [42,57,73]. However, we are not aware of any
results for BPS Wilson loops in the dual theory. We are confident that our computations could
provide a first result in that direction, calling for future comparisons on the holographic side.

5.2 The genus expansion

We would like to compute the ’t Hooft expansion of the deformed vev of the 1
2–BPS Wilson

loop in the strong coupling limit λ ≫ 1, with both the deformations turned on. This corre-
sponds to the genus expansion in type IIA superstring theory. We make the substitution k = N

λ

and expand in powers of 1/N , obtaining results that are valid in the strong ’t Hooft coupling
regime λ≫ 1.

The Wilson loop vevs have a genus expansion of the form

〈W 1/6,1/2
n 〉=

∞
∑

g=0

g2g−1
s 〈W 1/6,1/2

n 〉g , (104)

where gs is related to the Chern-Simons coupling gs =
2πi

k . We would like to compute the
first term in eq. (104) for 1

2–BPS Wilson loop, that corresponds to the genus zero or planar
vev. Using the expansion for large arguments of the Airy function, recalling ζ ≡ ζ1 + ζ2, and
defining

B̃1(ζ1,ζ2) =
�

1− (−1)−nζ2
� B1(k,ζ1,ζ2)

k
=

= in−1 sin
�

nπζ2

2

�

(1− ζ2)
2nπ2(2− ζ)n!

Γ

�

nζ
2

�

Γ

�

1+ n−
nζ
2

�

,
(105)
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we obtain

〈W 1/2
□ 〉g=0,ζ1,2 ̸=0 = 2πi B̃1(ζ1,ζ2) e

nπ
1−ζ2

q

2λ(1−ζ2
1)(1−ζ

2
2)
�

1−
nπ
q

2(1− ζ2
1)(1− ζ

2
2)

48(1− ζ2)
p
λ

+

+
n2π2(1− ζ2

1)(1+ ζ2)

2304(1− ζ2)λ
−

nπ
q

(1− ζ2
1)(1− ζ

2
2)

165888
p

2 (1− ζ2)λ3/2

�

72+
n2π2(1+ ζ2)(1− ζ2

1)

(1− ζ2)

��

+

+(ζ1↔−ζ2) +O(λ−2) ,

(106)

that is symmetric under the interchange ζ1 ↔ −ζ2 as expected. We observe the presence
of two different exponential behaviour and of a non-trivial series in 1/

p
λ around them. We

envisage that the exponents should correspond to different saddle-points of the fundamental
string action suspended in the relevant gravitational background. From the one-loop determi-
nants around such solutions, the first term of the 1/

p
λ series could be hopefully recovered.

In the limit of ζ1,ζ2→ 0 we find the expansion

〈W 1/2
□ 〉g=0,ζ1,2=0 = 2πin enπ

p
2λ

�

1
4nπ

−
p

2

192
p
λ
+

nπ
9216λ

−
(n2π2 + 72)

663552
p

2 λ3/2

�

, (107)

which is consistent with the results of [38], obtained in the undeformed case.

5.3 The M-theory limit beyond the leading order

The M-theory limit probes a different regime compared to the ’t Hooft limit of the previous sec-
tion. This limit is used to make contact with the eleven dimensional M-theory and is obtained
keeping k fixed while expanding in powers of 1/N (so N →∞).

The result with two deformations turns out to be

〈W 1/2
□ 〉ζ1,2 ̸=0 = B̂1(k,ζ1,ζ2) sin

�

nπζ2

2

�

e
nπ

1−ζ2

q

2 N
k (1−ζ

2
1)(1−ζ

2
2)
�

1−
f (k,ζ1,ζ2)p

N
+

+
1

2N

�

n
k(1− ζ2)

+ f 2(k,ζ1,ζ2)
�

�

+ (ζ1↔−ζ2) +O(N−3/2) ,

(108)

with

f (k,ζ1,ζ2) =
πn
��

1− ζ2
1

� �

1− ζ2
2

�

k2 + 4
�

ζ2
1 + ζ

2
2 − 6(ζ2

1 − 1) (ζ2 + 1)n+ 2
��

24
p

2 (1− ζ2)
q

�

1− ζ2
1

� �

1− ζ2
2

�

k3/2
. (109)

Also this expansion, as expected, is symmetric under ζ1 ↔ −ζ2. In the limit ζ1,ζ2 → 0 we
recover the known result:

〈W 1/2
□ 〉ζ1,2=0 =

in−1

2
csc
�

2nπ
k

�

enπ
q

2N
k

�

1−
nπ(k2 + 24n+ 8)

24
p

2 k3/2
p

N
+

+

�

n
2k
+

n2π2(k2 + 24n+ 8)2

2304 k3

�

1
N

�

+O(N−3/2) ,

(110)

As explained in section 5 and proven recently in the undeformed case in [41], this limit
allows to obtain information regarding the classical action and the one-loop fluctuations of a
wrapped M2 brane in the dual 11d superstring theory with a mass-deformed AdS background.
The holographic computation has not been performed to the best of our knowledge, and the
calculation using the deformed metric involves some subtleties [42]. We limit ourself to ob-
serve that, also at the leading order in N , our result is modified by the masses in a non-trivial
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way. Both the exponential prefactors, including the argument of the 1
sin coefficients, that still

remains, are modified by ζ1,ζ2. The direct computation in M-theory would be an interesting
application of AdS/CFT correspondence, generalizing in the deformed background the analy-
sis of [41].

6 Wilson loops as conformal defects and integrated correlators

In this section, we present a second relevant application of our results, framing them in the
context of defect conformal field theories. To begin with, we describe the Wilson loops from a
slightly different corner, namely as a conformal defect. The insertion of a BPS Wilson line in the
massless ABJM model breaks the conformal group into the one-dimensional conformal group
SL(2,R), which fixes the line supporting the Wilson loop. All the relative details, including
those on the superalgebra structure, can be found in [23]. Therefore, the BPS Wilson-loop
described in Section 1.1 are examples of conformal defects [74].

The diminished symmetry combined with the possibility of defect operators -those that
live on the defect- enlarges the set of observables. A simple but distinctive example of this
is the appearance of non-vanishing one-point functions. For example, the most general form
of a defect correlator of a single scalar operator OJ (x) of dimension ∆J compatible with the
residual symmetry is

〈OJ (x)〉W ≡
〈OJ (x)W 〉

W
=

hOJ

r∆OJ
, (111)

where 〈〉W indicates defect correlators with the Wilson loop normalized w.r.t. the vev of the
Wilson loop and hOJ

are constants containing all the physical information.13

Unlike previous works on the defect theory in ABJM focused on correlation functions of
defect operators [23,76,77], we shall analyze bulk operators with defects and compute some
coefficients hOJ

.14 Our strategy is based on relating them to the exact result for the Wilson
loop in the presence of mass deformations. The underlying idea is to treat the masses as small
relevant perturbations around the defect CFT defined by the 1

2–BPS Wilson loop in ABJM. Then,
the mass derivatives of the mass-deformed vev provide information about the corresponding
conformal defect theory. In the next section, we will make such an argument precise.

6.1 The strategy

The underlying method to establish the precise relation between defect CFT data and mass
deformations in ABJM can be preliminarily introduced without the Wilson loop. Thus, we
look for a relation between the mass-deformed partition function Z[m] and bulk CFT data
where, for future convenience, we set

ζ1 = 2imr , ζ2 = 0 . (112)

In the language of Section 1.1 the corresponding deformation is a real mass deformation,15

realized at the linearized level by a ∆= 1 operator J and a ∆= 2 operator K , namely

S[m] = SABJM +m

∫

d3 x
�

i
r

J(x) + K(x)
�

+O(m2) , (113)

13Because of such a normalization, we assume that defect correlation functions for the Wilson line can be com-
puted equivalently using the Wilson line or the Wilson circle. Indeed, even if the vev of the circle operator is
affected by a conformal anomaly [75]

14See [78] for an alternative approach based on integrability.
15The analytic continuation in the deformation parameter of the results obtained with the Fermi gas is subtle.

However, as argued in [79], it is well-defined for small masses. That is enough to perform mass derivatives.
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where O(m2) contains contact terms usually fixed by gauge invariance and supersymmetry.
To probe the undeformed ABJM model, we look at derivatives of the mass-deformed par-

tition function and then set the mass to zero. At least at the linearized level, one has the
relation

1
Z
∂ n

∂mn
Z[m]

�

�

�

�

m=0
=

∫

d3 x1 . . . d3 xn 〈Lmass(x1) . . .Lmass(xn)〉. (114)

where we have defined Lmass(x) =
i
r J(x)+K(x). This type of observables are called integrated

correlators [12,58,80]. Of course, they can be defined for any deformations of a given CFT, but
they are hard to handle, especially at strong coupling because of short distances singularities
affecting the r.h.s. of (114). Moreover, additional terms from the non-linear part of S[m] may
contribute to (114).

If the supersymmetry is large enough [81], we can circumvent all these difficulties and
extract physical information from (114). The way to see that, is to use the following cohomo-
logical Ward identity and write the mass dependent part of the action Smass as [61,62]

Smass ≡
∫

S3

Lmass = δV − i4πr2m

∮

S1

dτJ (τ) , (115)

where V is a functional whose explicit expression is not needed and J is the operator

J (τ) = U I(τ)V̄J (τ)Tr
�

CI(τ)C̄
J (τ)

�

,

U I(τ) =
1
p

2

�

e−
i
2τ, 0 , e

i
2τ, 0

�I
, V̄I(τ) =

1
p

2

�

e
i
2τ, 0 , −e−

i
2τ, 0

�

I
,

(116)

where τ is the coordinate of a great circle on S3. Crucially, the OPE of J (τ) is non-singular
[11]. Therefore, using (115), we can replace the 3d integrated correlators of (114) with the
much more tractable integrated correlation functions of J . Then, we get the exact relation

�

i
4πr2

�n 1
Z
∂ n

∂mn
Z[m]

�

�

�

�

m=0
=

∮

S1

dτ1· · ·
∮

S1

dτn 〈J (τ1) . . .J (τn)〉 . (117)

As already discussed in Section 3, the l.h.s. of (117) can be computed with high precision,
for example, with the Fermi gas. Then, (117) provides a powerful way to compute correlators
and extract CFT data [12,14,58,82].

Now, we are in business to apply the same type of technology, but with the addition of a
BPS Wilson line [60,83,84]. The crucial point is that the Ward identity (115) depends only on
the supercharge corresponding to δ. Therefore, we can use it also in the presence of operators
commuting with the supercharge. From that perspective, the configuration with 1

2–BPS Wilson
loop on a linked great circle with the one supporting the operators J (τ) preserves the relevant
supercharge and allows us to extend the machinery to defect correlation functions [60].16

In practice, we can start with the expectation value of the mass-deformed Wilson loop.
Taking the mass derivatives lowers the complicated 3d integrated correlators, exactly as in
(114), with the addition of the Wilson loop. The Ward identity of (115) reduces it to the 1d
correlators in the presence of the Wilson loop. Then, we can write down the exact relation

�

i
4πr2

�n 1
W
∂ n〈W 〉[m]
∂mn

�

�

�

�

m=0
=

∮

S1

dτ1 · · ·
∮

S1

dτn〈J (τ1) . . . J (τn)〉W , (118)

where 〈W 〉[m] is the vev of the Wilson loop in ABJM, computed in the Section 3. Equation
(118) provides a window to explore defect correlation functions in ABJM, even in the non-
perturbative regime.

16The method does not apply to the bosonic Wilson loop, as it is not annihilated by δ.
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In the rest of the section, we apply the above ideas in two explicit examples, namely the
first and second derivatives of the Wilson loop. In both cases, we will use (118) to extract the
relevant defect CFT data.

6.2 The Bremsstrahlung

Let us begin with the simplest integrated correlator, namely the first derivative of 〈W 〉[m],
which has a precise physical interpretation as the Bremsstrahlung function B [60]

B =
i

8π2r
1

〈W 1/2
□ 〉

∂

∂m
〈W 1/2
□ 〉

�

�

�

�

m=0

. (119)

This quantity measures the energy emitted by the charged probe, whose worldline is described
by the Wilson loop.

Equation (119) heavily relies on conformal invariance and supersymmetry. Using con-
formal invariance, we can interpret the Bremsstrahlung as the two-point function of the dis-
placement multiplet, namely the defect operator associated with the non-conservation of the
components of the stress tensor orthogonal to the defect [85]

∂µTµi(x) = −δW (x
i)Di , 〈Di(t)D j(0)〉W = δi j 12B

|t|2∆D
. (120)

where the index x i indicates the components orthogonal to the defect, placed in x i = 0, δW (x i)
is a delta function localized on the defect and t is the coordinate along the defect. Moreover,
because of the N = 6 SUSY, the operator J is part of the stress tensor multiplet, thus implying
that its one-point function is proportional to that of the stress tensor, which is a measure of the
backreaction of the Wilson loop to a small deformation [21]. That intuition is made formal by
a supersymmetric Ward identity establishing a precision relation among the one-point function
of the stress tensor and the Bremsstrahlung [86], ultimately leading to our expression (119).

To evaluate (119), we consider the single-winding Wilson loop and perform the analytic
continuation of (112). The explicit expression reads

〈W 〉(m) = −
1
2

csc
�

2π
k(1+ 2imr)

� Ai
�

C−
1
3

�

N − B − 2
k(1+2imr)

��

Ai
�

C−
1
3 (N − B)

� . (121)

From that, we obtain a compact formula for the Bremsstrahlung

B(k, N) = −
1

4π2





�

2π
k

�2/3 Ai′
h

� 2
π2k

�−1/3 �
N − k

24 −
7

3k

�

i

Ai
h

� 2
π2k

�−1/3 �
N − k

24 −
7

3k

�

i +
2π
k

cot
�

2π
k

�



 . (122)

The result agrees with all the previous derivations in the literature [24,87–90]. That is another
strong evidence of the correctness of our methods.

6.3 A new one-point function

Next, we exploit the formula (118), combined with the OPE and SUSY considerations, to
extract a new defect one-point function. Even if we limit ourselves to consider the simplest
example, namely the second derivative, in principle, one could look at higher derivatives and
compute the one-point function of higher dimensional operators. From that perspective, our
setup is the 3d analog of [91,92].
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We shall implement the OPE of J into defect correlators. That OPE is particularly tractable
because of supersymmetry. Specifically, J is annihilated by a supercharge Qβ , provided that
the operators are inserted into a great circle linked with the Wilson loop. That is the same
kinematical configuration and the same supercharge such that (118) holds. Therefore, if we
implement the OPE into a defect correlator, only operators in that cohomology of Qβ contribute
to the correlation function, significantly simplifying our task. In this way, instead of considering
the full OPE of the stress-tensor multiplet [14,58], we limit ourselves to its protected part.

The cohomology of Qβ was fully characterized: the only operators contributing to the OPE
are Lorentz scalars, whose dimensions are equal to a specific combination of the R-charge [11].
Then, the most general OPE reads as

J ×J = λ01+λ2X , 17 (123)

where 1 is the identity operator, and X is an operator of dimension two, whose explicit form
is not needed,18 and λ0, λ2 are OPE coefficients. The operator X is normalized as follows

〈XX 〉= 1
r4

. (124)

The OPE coefficients can be connected to the integrated correlators without the Wilson
line of (117). Let us express some of the findings from [14, 58] in our notation. First of all,
taking the vev of (123), we see that λ0, which is also proportional to the central charge of the
theory, is proportional to the second mass derivative

λ0 = −
�

1
8π2r2

�2 ∂ 2
mZ[m]

Z
. (125)

Subsequently, it is possible to connect λ2 and the fourth mass derivative by iteratively applying
the OPE (123) twice to the correlation function of four J . This results in the exact formula

λ2
2 =

�

1
8π2r

�4 ∂ 4
mZ[m]

Z
− r4λ2

0 , (126)

which is equivalent, for example, to Eq. (3.10) of [14], up to a normalization.
Let us now discuss correlators with the Wilson loop. If we apply the bulk OPE in the

presence of a defect, one-point functions are no longer vanishing. Then, we can relate these
defect correlation functions to defect CFT data. Let us illustrate the case of the two-point
functions 〈JJ 〉W . With the Wilson loop, the only extra contribution is

〈X 〉W =
hX
r2

. (127)

Then, if we evaluate the OPE inside 〈JJ 〉W , we find an exact relation for hX

hX = r2 〈JJ 〉W −λ0

λ2
. (128)

17In principle, J itself could appear in the OPE. However, it has been argued from symmetry and kinematical
considerations that this is not the case [14,58,93]. That amounts to saying that the three-point function 〈JJJ 〉
is zero, as it can be readily checked in ABJM using the formula (117).

18Presumably, X is a linear combination of a single and double trace operators built out of two couples U I CI and
V̄I C̄

I , with U I and V̄I defined in (116). The precise linear combination could be determined by solving the mixing
problem between the single and double trace operators. A similar situation is described in more detail for the case
k = 1 in [13].
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Expressing all the CFT data in terms of mass derivatives and using (118), we find the explicit
expression for hX

hX =
∂ 2

mZ[m]
Z − ∂ 2

mW [m]
W

s

∂ 4
mZ[m]

Z −
�

∂ 2
mZ[m]

Z

�2
.19 (129)

In the following, we present explicit results for hX at weak and strong coupling.

Weak coupling The first interesting limit is the weakly coupled limit k≫ 1. In this regime,
the theory is weakly coupled and comparable with standard Feynman diagrams computations.
These comparisons provide highly non-trivial tests for the whole formalism and can clarify
subtle and interesting aspects, such as the framing anomaly in Chern-Simons matter theories
[94]. The first non-vanishing term is of order 1/k2. Borrowing the results of [60,82], we get

hX =
p

2π2N

k2
p

1+ N2
. (130)

Strong coupling For the strong coupling computations, we consider the derivatives of the
Fermi gas result. As for the vev of the Wilson loop in Section 5, we analyze the M-theory and
’t Hooft limit. We will briefly list the necessary expressions

Z = eAC−
1
3 Ai

�

C−
1
3 (N − B)

�

, (131)

with

C =
2

π2k(1+ 4r2m2)
, B =

π2C
3
−

1
6k

�

1+
1

1+ 4r2m2

�

+
k

24
, (132)

and

A(mr) =
1
4
(AABJM(k+ 2imr) +AABJM(k− 2imr) + 2AABJM(k)) . (133)

AABJM is the constant map function defined in (50). We find the following large k expansion
instrumental to expand derivatives in the ’t Hooft limit [70]

AABJM(k) = 2ζ′(−1)−
1
6

log
k

4π
−
ζ(3)
8π2

k2 +
∞
∑

g=2

4g B2g B2g−2

4g(2g − 2)(2g − 2)!

�

2πi
k

�2g−2

.

The expression for the Wilson loop with n = 1 was already written in (121). It is now not so
hard to study both the M-theory limit and the ’t Hooft expansion. For the M-theory expansion
we find

hX = −
1
p

2
+

3π
q

1
N

k3/2
+

3
�

k− 4π cot
�2π

k

��

p
2k2N

(134)

+

� 1
N

�3/2 ��
18+π2

�

k2 + 48π
�

π
�

cos
�4π

k

�

+ 3
�

csc2
�2π

k

�

− 2k cot
�2π

k

��

− 160π2
�

16πk5/2

+
k
�

18A′′(0) + k2 − 94
�

− 4π
�

k2 − 52
�

cot
�2π

k

�

8
p

2k3N2
+O(N−

5
2 ) .

19The expression for hX suffers from a sign ambiguity coming from reading λ2 from (126). One potential
resolution is to look at the three-point function of 〈JJX 〉, but that goes beyond our goals. For the purposes here,
it is assumed that λ2 > 0.

28

https://scipost.org
https://scipost.org/SciPostPhys.17.2.035


SciPost Phys. 17, 035 (2024)

We find that the natural form of the ’t Hooft expansion is

hX =
∑

g≥0

�

2πi
k

�2g

h(g)X . (135)

with

h(0)X = −
1
p

2
, (136)

h(1)X = −
3

4π
p
λ
+

3

4
p

2π2λ
−

1
64πλ3/2

−
9

32π3λ3/2
+

1

32
p

2π2λ2

−
1

2048πλ5/2
−

9
512π3λ5/2

+
1

768
p

2π2λ3
+O(λ−7/2) .

Notice that even if the genus zero term does not depend on λ, this result does not extend to
weak coupling. As k becomes large, instantons are no longer negligible and presumably lead
to the result of (130). However, it should be possible to recover that result from a string or
M-theory computation.

7 Conclusions and future directions

In this paper we have generalized the Fermi gas computations of BPS Wilson loops in the case
of mass-deformed ABJM theories. We have presented the explicit ’t Hooft and M-theory expan-
sions that could be confronted with string and M-theory holographic calculations. From our
expressions, we have derived the one-point and the two-point functions of a class of topolog-
ical operators in the background of the 1/2–BPS Wilson loop, using the cohomological Ward
identity of [60]. Emphasis has been given to the possible use of these results in the bootstrap
program for the related DCFT and, as an example, we have computed a new one-point function
of an operator of dimension two, appearing in the topological OPE. On the other hand, our
computations could be considered just a starting point for a series of investigations, possibly
going in different directions.

Non-perturbative effects A natural continuation of this work would be to explore the non-
perturbative contributions to the BPS Wilson loops from the Fermi gas perspective. Instan-
ton corrections to the vacuum expectation value of 1/6–BPS Wilson loops in ABJM theory
have been considered in [69],20 where it was found that the membrane instanton corrections
are determined by the refined topological string in the Nekrasov-Shatashvili limit. The pole
cancellation mechanism between membrane instantons and worldsheet instantons, originally
discovered in [35] for the partition function, works also in the Wilson loop case. Actually,
the non-perturbative structure of the mass-deformed partition function was already studied
in [53] and the pole cancellation mechanism was claimed not to work in this case, calling for
a better understanding of the instanton contributions. A different and maybe related open
question is the possibility of a phase transition at large N , at a critical value of the deforma-
tion parameters [54, 55, 64, 65] for real valued masses. Moreover, [95] found evidence of a
second-order phase transition for an infinite tower of values of the rank of the gauge group.
The analysis presented in [79] suggests that non-perturbative contributions are no longer sup-
pressed at the transition point and Wilson loops should sensibly change their behavior in the
new regime.

20It was also noticed there some discrepancy with the results presented in [38]. The author kindly communicated
to one of us (L.G.) similar disagreements with the computations performed in [24]. It would be nice to understand
better the sources of these discrepancies, in light of our new calculations.
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Holography To the best of our knowledge, no holographic computation of BPS Wilson loops
has been performed up to now in the deformed theory: our expansions provide precise expres-
sions to be verified both for type IIA string and M-theory computations. Recent analog tests
have been performed at M-theory level for the undeformed theory [41], while some aspects of
the dual deformed holographic theory have been explored in [57]. It would also be interesting
to explore the dual description of the correlation functions of chiral primaries in the presence
of the Wilson line, confronting the results in the topological limit.

Ward identities and OPE The study of ABJM theory in the presence of a 1/2–BPS Wilson
line has mostly focused on the perspective of defect operators [23,76,77]. Instead, defect cor-
relators with bulk operators are largely unexplored. As a primary step, it would be interesting
to have a reformulation of all the 3d multiplets from the point of view of the BPS Wilson line.
This is the starting point to derive Ward identities for the correlation function of bulk local
operators, which are a crucial ingredient for engineering the superconformal bootstrap. The
analog four-dimensional construction has been presented in [96,97] and a possible strategy in
three dimensions could be an extension of the formalism developed in [93]. One could then
try to explore bulk-to-boundary OPE in this setting and use some constraints coming from the
topological correlators. For instance, one can think of the Bremsstrahlung function as the OPE
coefficient of the stress tensor with the defect identity. No bulk-to-boundary OPE is known for
ABJM, even in the protected case. In the latter situation, one could get a non-perturbative
universal condition as in [11]. For the non-protected case, a similar bootstrap problem can be
found in [98].

Integrated correlators We derived a result for 〈W 〉(m1, m2) with two masses. Expression
like ∂m1

∂m2
〈W 〉(m1, m2) lead to integrated correlators of the form

∫

d3 x

∫

dτ〈Lmass(x)J (τ)〉W , (137)

withLmass(x) being the three-dimensional Lagrangian for the real mass deformations. Because
the OPE of that is not necessarily limited to protected operators, these seem to be the most
interesting objects to put severe constraints on CFT data.

That analysis may find remarkable applications in computing scattering amplitudes of
gravitons by extended objects in string or M-theory [83]. Indeed, one should be able to ex-
press integrated correlators as Mellin amplitudes [99]. Then, provided that a flat space limit
exists [100], one could send the AdS radius to infinity and recover the flat space amplitude.
Using our result, it is likely that one can learn something about M2-branes or fundamental
strings in type IIA beyond the SUGRA approximation.
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A Derivation of the generating functional of the Wigner-Kirkwood
corrections Gr

In this appendix, we provide technical details on the computation of the Wilson loop with the
Fermi gas. In particular, we explain how to deal with the infinite corrections to the Hamil-
tonian. Those corrections are encoded in the generating functional of the Wigner-Kirkwood
corrections Gr , whose computation is our final goal

e−tHW
⋆ = (e−tĤ)W =

�∞
∑

r=0

(−t)r

r!
Gr

�

e−tHW . (A.1)

For our purposes, explained in Section 3, it is sufficient to work with a simplified form of the
kinetic term

T (P) = aP =
1
2
(sgn(P)− ζ2)P , (A.2)

throughout the computation. The method is an extension of the procedure introduced in the
massless case in [38]. Here, we review it, considering directly the presence of the masses.

To begin with, we consider a generating functional of the form

e−tHW
⋆ = e−tG(Q)

⋆ ⋆ e−taP
⋆ , (A.3)

Using the BCH formula, we write it as

e−tHW
⋆ = e−tG(Q)

⋆ e
iħh
2

←
∂Q

→
∂P e−taP

⋆ = exp
�

−taP − te
ξt
2 ∂ G(Q)

�

, (A.4)

with ∂ = ∂Q, and ξ= −iaħh. We also used a property of the ⋆-product known as Bopp shifts

f1(q, p) ⋆ f2(q, p) = f1

�

q, p−
iħh
2

→
∂ Q

�

f2

�

q, p+
iħh
2

←
∂ Q

�

, (A.5)

and the fact that

e−
iħhta

2

→
∂ Q f (Q) = f

�

Q−
iħhta

2

�

. (A.6)

To get the explicit form of G(Q), we expand the star product and compare the result to the
Hamiltonian in the form of (64). Applying the log⋆ to the expression below

e−tHW
⋆ = e−tG(Q)

⋆ ⋆ e−taP
⋆ = exp⋆

�

− taP − t
∑

m≥0

cm(−iaħht)mG(m)(Q)
�

, (A.7)

we derive, after some manipulations, the form of G(Q) in terms of U(Q)

G(Q) =
1
t

1− e−tξ∂

1− e−ξ∂
U(Q) . (A.8)

At this stage, the generating function of all the Gr reads as

e−tHW
⋆ = exp

�

−taP −
e

tξ
2 ∂ − e−

tξ
2 ∂

1− e−ξ∂
U(Q)

�

. (A.9)
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Let us now rewrite it in a more convenient form for our upcoming computations. Using the
formula (A.6), we recast the second term in the following way

e
tξ
2 ∂ − e−

tξ
2 ∂

1− e−ξ∂
U(Q) =

∑

l≥0

Bl(−1)l

l!
ξl−1∂ l−1

�

U
�

Q+
ξt
2

�

− U
�

Q−
ξt
2

��

, (A.10)

where the element l = 0 is taken to be

1
ξ
∂ −1

�

U
�

Q+
ξt
2

�

− U
�

Q−
ξt
2

��

= t
∞
∑

g=0

1
(2g + 1)!

�

tξ
2

�2g

U (2g)(Q) . (A.11)

Applying the second term (A.10) to the expression for the potential in the semiclassical limit
|Q| →∞

U(Q) =
ζ1

2
Q+
|Q|
2
+O(e−|Q|) , (A.12)

we see that the only contribution comes from the terms l = 0, 1, as U (n) for n ≥ 2 are expo-
nentially suppressed when |Q| ≫ 1. In particular, for l = 0 the only relevant term is for g = 0
since U (2)(Q) =O(e−|Q|). Its expression is

1
ξ
∂ −1

�

U
�

Q+
ξt
2

�

− U
�

Q−
ξt
2

�

�

= t
�

ζ1

2
Q+
|Q|
2

�

. (A.13)

For the l = 1 contribution, we should separate the cases of different sign of Q. In fact, it can
be recast in

ξt
4

�

ζ1 + sgn(Q)
�

, ∀ Q ̸= 0 . (A.14)

Next, one should take into account corrections to the semiclassical limit. As explained in
Section 3, we need the expression for the canonical density matrix for the following value of
the parameter t

t =
2n

k(sgn(P)− ζ2)
⇒

ξt
2
= −nπi . (A.15)

With this value, it is easy to see that the deformations do not affect the large Q behavior.
Namely, we can write

U(Q) =
|Q|+ ζ1Q

2
+ Ũ(Q) , Ũ(Q) = log

�

1+ e−Q
�

. (A.16)

Therefore, we can safely extend the procedure of [38] to our case and argue that, for any Q,
the first and second term of (A.10) are that of (A.13) and (A.14), respectively. We stress that
the result holds only for the specific choice tξ= −2nπi.

Then, since we can write

U
�

Q+
ξt
2

�

− U
�

Q−
ξt
2

�

=
ξt
4

�

ζ1 + sgn(Q)
�

, (A.17)

the quantity resumming all the corrections is

S(Q) = 1
1− e−ξ∂

�

ζ1 + sgn(Q)
�

=
∑

l≥0

Bl(−1)l

l!
ξl−1∂ l−1

�

ζ1 + sgn(Q)
�

=

=
1
ξ

�

ζ1Q+ |Q|
�

+
1
2

�

ζ1 + sgn(Q)
�

+O(ξ) .
(A.18)
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To calculate S(Q), we proceed in the same way as in [38]: we take the derivative w.r.t. Q and
multiply both sides by 1− e−ξ∂ , so that

T (Q) = S ′(Q) =
ζ1

ξ
+

1
1− e−ξ∂

�

δ(Q) +δ(−Q)
�

. (A.19)

The second term was already computed in [38] and, borrowing their expression, we obtain

T (Q) = i
θ

coth
�

πQ
θ

�

+
ζ1

ξ
=

i
θ

�

coth
�

πQ
θ

�

+ ζ1

�

, (A.20)

where we set
ξ≡ −iθ = −iaħh= −iπk(sgn(P)− ζ2) . (A.21)

Next, we integrate T (Q) w.r.t. Q to obtain the expression for S(Q)

S(Q) = i
θ

∫

dQ
�

coth
�

πQ
θ

�

+ ζ1

�

=
i
π

log
�

2 sinh
�

πQ
θ

�

�

+
iζ1

θ
Q+ c , (A.22)

where c is the integration constant to be fixed in agreement with the expression (A.18) in the
semiclassical limit. We guess the following expression for S(Q)

S(Q) = 1
2

�

1+ ζ1

�

+
i
π

log
�

2sinh
�

πQ
θ

�

�

+
iζ1

θ
Q . (A.23)

For Q > 0, this can be written as

S(Q) = 1
2

�

1+ ζ1

�

+
Q
ξ

�

1+ ζ1

�

+
i
π

log
�

1− e−
2πQ
θ

�

, (A.24)

while for Q < 0

S(Q) = 1
2

�

− 1+ ζ1

�

+
Q
ξ

�

− 1+ ζ1

�

+
i
π

log
�

1− e
2πQ
θ

�

. (A.25)

These two expressions can be combined ∀ Q ̸= 0 in

S(Q) = 1
ξ

�

|Q|+ ζ1Q
�

+
1
2

�

ζ1 + sgn(Q)
�

+
i
π

log
�

1− e−
2π|Q|
θ

�

. (A.26)

For Q ̸= 0, and ξ small, we can expand the latter expression in

S(Q)≈ 1
ξ

�

|Q|+ ζ1Q
�

+
1
2

�

ζ1 + sgn(Q)
�

, (A.27)

consistently with (A.18).
We conclude that, for the simplified Hamiltonian

e−HW
⋆ = e−U(Q)

⋆ ⋆ e−aP
⋆ , (A.28)

the canonical density matrix with t = 2n
k(sgn(P)−ζ2)

is given by (in the general case of P with
either positive or negative sign)

exp⋆

�

−
2n

k(sgn (P)− ζ2)
HW

�

= exp [−ta|P|+ nπiS(Q)] =

= exp
�

−
n
k
|P|+

nπi
2

�

1+ ζ1

�

−
nζ1

k(sgn P − ζ2)
Q− n log

�

2sinh
Q

k(sgn P − ζ2)

�

�

.
(A.29)
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with the natural regularization procedure explained above. For ζ1 = ζ2 = 0 it recovers the
result found in [38], as expected.

Now we should repeat the same calculations for an Hamiltonian with a simplified potential
term

U(Q) = bQ , with b =
1
2
(sgn(Q) + ζ1) , (A.30)

to derive the expression for the generating functional of the Wigner-Kirkwood corrections for
region B. Following the same steps of the computation above, it is not hard to derive that

exp⋆

�

−
2n

k(sgn(Q) + ζ1)
HW

�

=

= exp
�

−
n
k
|Q|+

nπi
2

�

1− ζ2

�

+
nζ2

k(sgnQ+ ζ1)
P − n log

�

2sinh
P

k(sgnQ+ ζ1)

�

�

.
(A.31)

B Explicit computation of limζ1,2→0〈W 1/6
n 〉

In this appendix, we shall perform the limit ζ1,ζ2 → 0 of the vevs of BPS Wilson loop in eq.
(25). The aim is to prove that the result coincides with the one directly derived in [38] in
the massless case. The limit is somewhat non-trivial due to the 1/ζ singularity of the factor
Γ (nζ/2) for small values of ζ. Because of this 1/ζ behaviour, we must keep into account all
the linear corrections in ζ1 and ζ2.

We compute the limit of the various factors of (25) one by one. Let us begin with the
singular one. The terms with the Gamma functions have the following expansion

Γ

�

1+ n∓
nζ
2

�

Γ

�

±n
ζ

2

�

= Γ (n+ 1)
�

±
2
nζ
−Hn

�

, (B.1)

where γ is the Euler gamma and Hn are the harmonic numbers. Combining it with the follow-
ing expansions

in(1±ζ1,2) = in

�

1±
iπnζ1,2

2

�

, (B.2)

csc

�

2nπ
k(1± ζ1,2)

�

= csc

�

2nπ
k
∓

2nπζ1,2

k(1± ζ1,2)

�

≈ csc
�

2nπ
k

�

�

1±
2nπζ1,2

k
cot

�

2nπ
k

�

�

, (B.3)

1
2± ζ

=
1
2
∓
ζ

4
, (B.4)

we get the ζ→ 0 limit of the coefficients

i−nζ2+1

2
B̂1(k,ζ1,ζ2) =

in

4π
csc
�

2nπ
k

��

2
nζ
−Hn +

1
n
−

iπζ2

ζ
−

4πζ2

kζ
cot

�

2nπ
k

��

+O(ζ) ,

inζ1−1

2
B̂2(k,ζ1,ζ2) =

in

4π
csc
�

2nπ
k

��

−
2
nζ
−Hn +

1
n
−

iπζ1

ζ
−

4πζ1

kζ
cot

�

2nπ
k

��

+O(ζ) , (B.5)

where we did not include the O(ζ) terms because the limit of the Airy function does not contain
additional singular terms.
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Let us turn to those contributions. It is easy to see that the limit of the denominator is
trivial up to O(ζ2) corrections, that is

Ai

�

C−1/3

�

N −
k

24
−

2+ ζ2
1 + ζ

2
2

6k(1− ζ2
1)(1− ζ

2
2)

��

= Ai
�

C̃−1/3
�

N −
k

24
−

1
3k

��

+O(ζ2) , (B.6)

with C̃ = 2
π2k . For the Airy functions in the numerator, we have to include also O(ζ) terms.

The expansions are

Ai
�

C−1/3

�

N −
k

24
−

(2+ ζ2
1 + ζ

2
2)

6k(1− ζ2
1)(1− ζ

2
2)
−

2n
k(1− ζ2)

�

�

= (B.7)

= Ai
�

C̃−1/3
�

N −
k

24
−

6n+ 1
3k

�

�

−
2nζ2

k
C̃−1/3 Ai′

�

C̃−1/3
�

N −
k

24
−

6n+ 1
3k

�

�

+O(ζ2) ,

and, for symmetry arguments,

Ai
�

C−1/3

�

N −
k

24
−

(2+ ζ2
1 + ζ

2
2)

6k(1− ζ2
1)(1− ζ

2
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−

2n
k(1+ ζ1)

�

�

= (B.8)

= Ai
�

C̃−1/3
�

N −
k

24
−

6n+ 1
3k

�

�

+
2nζ1

k
C̃−1/3 Ai′

�

C̃−1/3
�

N −
k

24
−

6n+ 1
3k

�

�

+O(ζ2) .

Putting all together, we see that the divergent terms of O(ζ−1) cancel in a non-trivial way
and we are left with

〈W 1/6
n 〉= −C̃−1/3A1(k)

Ai′
�

C̃−1/3
�

N − k
24 −

6n+1
3k

�

�

Ai
�

C̃−1/3
�

N − k
24 −

1
3k

��

+A2(k)
Ai
�

C̃−1/3
�

N − k
24 −

6n+1
3k

�

�

Ai
�

C̃−1/3
�

N − k
24 −

1
3k

�� +O(ζ) ,

(B.9)

where

A1(k) =
2πn

k
csc
�

2πn
k

�

β1(k) ,

A2(k) =
2πn

k
csc
�

2πn
k

���

k
2n
−π cot

�

2πn
k

��

β1(k) + β2(k)
�

,

β1(k) =
in

2π2n
, β2(k) = −

k
4π2n

in+1
�π

2
− iHn

�

.

(B.10)

That is the same result found in the ABJM limit in [38].
A similar analysis can be carried on for the 1/2–BPS Wilson loop. Following the same

steps, one finds again that the limit ζ→ 0 gives back the result of [38].
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