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Abstract

We consider a system of N spinless fermions, interacting with each other via a power-
law interaction ε/rn, and trapped in an external harmonic potential V(r ) = r2/2, in
d = 1, 2, 3 dimensions. For any 0 < n < d + 2, we obtain the ground-state energy EN of
the system perturbatively in ε, EN = E(0)N + εE(1)N + O

�

ε2
�

. We calculate E(1)N exactly, as-
suming that N is such that the “outer shell” is filled. For the case of n = 1 (corresponding
to a Coulomb interaction for d = 3), we extract the N ≫ 1 behavior of E(1)N , focusing on
the corrections to the exchange term with respect to the leading-order term that is pre-
dicted from the local density approximation applied to the Thomas-Fermi approximate
density distribution. The leading correction contains a logarithmic divergence, and is
of particular importance in the context of density functional theory. We also study the
effect of the interactions on the fermions’ spatial density. Finally, we find that our result
for E(1)N significantly simplifies in the case where n is even.
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1 Introduction

1.1 Fermions in traps

The spectacular experimental developments in manipulating cold atoms (bosons or fermions)
[1,2], allow to probe in great detail the quantum many-body physics, both for interacting and
noninteracting systems. Cold gases display nontrivial behavior even in the zero-temperature
limit, due to the quantum nature of the particles [3–5]. These properties are experimen-
tally accessible, for instance using Fermi quantum microscopes [6–8]. The experiments often
involve inhomogeneous environments, such as optical traps, and this has led to a renewed
theoretical interest in the problem of fermions and bosons in confining external potentials. In
these systems, not only a large variety of confining potentials can be realized [1,6–10], but the
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nature and the strength of the interactions between the particles can also be tuned [1, 9]. In
particular, there is a lot of interest recently in long-range interactions, including experimental
realizations [11]. Moreover, the non-interacting limit can be reached. The idealized model
of noninteracting fermions in a trap has thus been reexamined. In a confining potential, the
Fermi gas is supported over a finite domain and its mean density is not, in general, spatially
uniform. Due to the Pauli principle and the inhomogeneous setting, it exhibits non trivial
spatio-temporal quantum correlations. The simplest approximation based on free fermions
with a slowly varying density fails near the edge of the gas, where the density vanishes. More
elaborate methods have been developed to handle non-interacting fermions in inhomogeneous
environments, such as the inhomogeneous bosonisation [12], mostly to describe the bulk of
the gas, or exact methods which can also describe the edge [13–15], based on the theory of
determinantal point processes, much developed in random matrix theory [16–18]. In fact, in
some favorable cases in one space dimension, d = 1, or in some particular situations in d = 2,
exact mappings to random matrices exist [19–21,23,24], which lead to exact solutions.

By contrast, the case of interacting fermions in a confining potential is far more difficult to
tackle. A fundamental question, which will be our main focus here, is to determine the many-
body ground-state energy: In the noninteracting case, it is simply obtained as the sum of single-
body energy levels associated to the external potential. In the interacting case even addressing
that basic question is quite difficult, and studying other properties such as the density of the
gas is even more challenging. For a large number N ≫ 1 of fermions, both the ground-state
energy and the density of the gas can be obtained, in the leading-order, using the celebrated
Thomas-Fermi approximation. In some extremely special cases, the many-body Schrödinger
problem in presence of an external trap remains integrable in presence of interactions, and
all eigenenergies can be found exactly. This is the case for instance for the Calogero model,
which describes N spinless fermions in a harmonic trap in dimension d = 1 with inverse-square
interactions [25,26]. Remarkably, this is also a case where a mapping to random matrices exists
in presence of interactions, i.e. the joint distribution of the positions of the fermions coincides,
up to scaling factors, with that of the eigenvalues of an N×N random matrix sampled from the
Gaussian β ensemble [27]. However, there is a considerable gap in the literature regarding
the extension of these results, obtained in special cases, to more general settings (i.e., general
trapping potentials, interactions, space dimensions and nonzero temperature).

1.2 An example: the atom

One important example of fermions in an external potential is the case of the electrons in an
atom. In the early eighties [29, 30], Schwinger applied semiclassical methods to the ground-
state energy of neutral atoms, disregarding relativistic effects, and found that [31]

E ≃ −0.768745 Z7/3 + 1
2 Z2 − 0.269900 Z5/3 , (1)

where Z is the atomic number (Hartree atomic units are used; see [32] for a mathematical
proof). The leading term here results from the Thomas-Fermi approximation, which balances
the effects of the nuclear attraction, the kinetic energy of the electrons (to leading order), and
their mutual repulsion, treated at the Hartree level. The next term, the Scott correction [29],
arises from the quantization of the deepest energy levels. The Z5/3 term is where the exchange
energy begins to contribute [30] (in fact, 9/11 of this term is due to the exchange energy, Ex,
with the remaining 2/11 due to corrections to the kinetic energy; correlations only contribute
to the Z ln Z and higher order terms not shown in (1), see below). Schwinger noted the
“unreasonable utility” of such asymptotic expansions [29]: the expression above, despite being
derived for Z →∞, is accurate to better than 1% for all Z > 5, and better than 10% for all
Z , down to Z = 1. Indeed, the coefficients of the next term in the series, which is much more
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involved as it describes oscillations in Z , are more than an order of magnitude smaller than
the leading coefficient above [31].

A significantly higher accuracy is achieved with the density functional theory (DFT), even
when applied using its most basic version, the so-called local density approximation (LDA)
[33]. However, typical applications, such as the binding energy of a molecule — the difference
between its ground-state energy and that of the separate atoms — require still higher accu-
racy, and the LDA has been supplemented by various additional approximate terms, achieving
considerable improvements. Understanding and gauging the accuracy of the different ap-
proximations can be difficult, as they often involve uncontrolled approximations. Only fairly
recently, in 2009 [34], the use of an asymptotic expansion for the inaccuracy of the LDA was
suggested. This inaccuracy is dominated by its exchange part [35], ∆Ex = Ex − ELDA

x . At first,
an expansion in powers of Z1/3 was sought, but this expansion in fact begins with a logarithmic
term [36,37],

∆Ex ≃ −BZ ln Z − C Z (2)

(this expression too is accurate to better than 10% for all Z). The values of the coefficients
are B = 1/(4π2) and C ≃ 0.056. A comparison of this with Schwinger’s expression above
provides a very clear specification of the accuracy of the LDA for total energies, identifying a
major challenge for improved DFT approximations.

Despite the fact that B is known precisely, it remains enigmatic. It was originally expected
that corrections to the LDA would follow from an expansion in weak gradients [33], and the
leading coefficient of the gradient expansion approximation, µGE = 10/81, was carefully de-
rived by applying perturbation theory to the homogeneous electron gas [38] (here the per-
turbation is an inhomogeneous external potential, not the interaction). This gives the correct
qualitative result, but is quantitatively wrong. The actual value of B is known only from nu-
merical studies [36]. One such study was performed for the Bohr atom — a system of nonin-
teracting electrons moving in the Coulomb potential of a nucleus, and thus having analytically
known hydrogenic wavefunctions. Considering the interaction between electrons perturba-
tively to leading order, accurate values of the exchange energy could be obtained analytically
for “atoms” with very large numbers of electrons. Fitting these to an asymptotic expansion
yielded coefficients with several-digit accuracy, allowing one to guess at the exact values of
the coefficient B of the Z ln Z term. Confirmation of these values was obtained by fixing the
value of B and observing how much easier it became to fit the remaining higher-order coeffi-
cients in the expansion. For the Bohr atom, the overall result is Bo = 1/(3π2).

The gradient expansion indicates that there are two logarithmic contributions for the Bohr
atom: one from a

∫

dr/r integration over the region Z−1 ≪ r ≪ Z−1/3, and another from
a
∫

dr/(rc − r) integration over the region Z−5/9 ≪ rc − r ≪ Z−1/3, where rc = (18/Z)1/3

is the radius at the edge of the electron distribution, where the chemical potential is equal
to the nuclear potential (both the very inner and the very outer limits are determined by
the wavelength of the electrons at the Fermi level; Z−1/3 is the scale of the overall density
distribution). The second contribution is three times smaller than the first, and is absent from
real atoms, for which screening drastically reduces the electric field at the edge of the electron
distribution, explaining the difference between B and Bo. Note that the homogeneous electron
gas, and any distribution obtainable from it by the weak perturbations considered in Ref. [38],
possess neither a divergent potential, which leads to the inner logarithmic integration, nor a
sharp edge, which leads to the outer one. Thus, a quantitative explanation of the values of B
and Bo is still lacking.

Note that for heavy, neutral atoms, the atomic number Z plays a double role: On the one
hand, it is the number of fermions (electrons). On the other hand, Z−1 is the ratio between
the strength of the electron-electron interactions and the electron-nucleus interactions. As
explained below, in much of the remainder of this paper we will assume that the number of
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fermions N is large and the strength ε of the interactions between them is weak, but we will
not assume a connection between the two parameters N and ε.

As DFT is the method of choice for treating many-electron systems (see, e.g., [39]), and is in
very wide use (scores of thousands of publications per year), the above gives ample motivation
to study additional systems and to focus on the leading corrections to the exchange energy,
seeking logarithmic contributions in particular. A specific example will be provided below, and
the implications for DFT will be studied and reported separately [40].

1.3 Aim of the present work, and outline

In this paper we provide a significant step in the direction of understanding the general quan-
titative behavior of the ground state energy of fermions in external potentials. To obtain an-
alytical results we consider here only the case of the harmonic trap, but we are able to treat
general power-law interactions in arbitrary space dimensions. We focus here on the expres-
sion for the ground state energy which is predicted to first order in perturbation theory in the
interactions, i.e. we assume that these are weak (∼ ε). However, for this first order predic-
tion, we obtain the full exact result, valid for any number of fermions N , corresponding to a
filled highest energy shell. This is achieved using methods of determinantal point processes.
We then study the large-N behavior and from the exact result we obtain the corresponding
series expansions in powers of N to a high order. These series turn out to be numerically very
accurate, and they contain interesting logarithmic terms. There is much to learn from finding
interpretation for these terms. Here we only discuss the leading term; the identification of the
semiclassical expression for the leading logarithmic correction will be studied in a separate
publication [40].

The remainder of the paper is organized as follows. In Section 2 we precisely define the
model under study and give a summary of our main findings. In Section 3 we perform the exact
calculation of the ground-state energy, to leading order in perturbation theory with respect to
the interaction strength. We then study the N ≫ 1 asymptotic behavior. In Section 4 we
obtain the leading-order effect of the interactions at N ≫ 1 using semiclassics. In Section 5,
for the sake of completeness, we calculate the leading-order effect of the interactions on the
gas density at N ≫ 1 using the Thomas-Fermi approximation. In Section 6 we obtain explicit
exact results for some special cases of the interaction, where certain simplifications occur:
these recover, and extend (to first order in the interaction) the result for the Calogero model.
In Section 7 we summarize and discuss our results. Some of the more technical calculations
are given in the appendices.

2 Model, definitions and summary of main results

The system that we study consists of N identical, trapped interacting spinless fermions of unit
mass in d dimensions (the effects of spin degeneracy g0 are straightforward to incorporate if
necessary). The Hamiltonian of the system is

Ĥ =
N
∑

i=1

�

p2
i

2
+ V (xi)

�

+ ε
∑

1≤i< j≤N

W
�

xi ,x j

�

, (3)

where V (x) is the trapping potential and W (x,y) is the interaction term. Our goal is to
perturbatively study the effect of the interaction on the system. In most of what follows,
we consider the case of the harmonic trapping potential for which analytical results can be
obtained. Although we derive an intermediate formula valid for general interaction W (x,y),
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our explicit results are obtained for the case where the interaction is a decaying power law,
i.e., we focus on

V (x) =
x2

2
, W (x,y) = |x− y|−n , (4)

where we have chosen units such that ħh and the stiffness of the potential are both equal to
unity, and we denote the modulus of the vector x by x . Our main goal is to calculate the
ground-state energy of this many-body system, which we achieve in the weakly-interacting
(i.e., small-ε) limit. We begin by analyzing the system in the absence of interactions, ε = 0
and then apply first order perturbation theory to calculate the leading-order correction in ε.

2.1 Noninteracting case

In the noninteracting case, ε = 0, the single-body energy levels of the harmonic potential are
given by Ek1,...,kd

= k1 + · · · + kd +
d
2 , where ki = 0, 1,2, . . . . The many-body ground state is

obtained by filling up the N lowest single energy levels, so that the ground-state energy E(0)N
is straightforward to compute. We denote the Fermi energy µ as the energy of the highest
occupied level,

µ= M − 1+
d
2

, (5)

where M = 1,2, . . . . In this paper we only consider the case where the highest occupied level
is fully occupied so that the many-body ground state of the non-interacting problem is non-
degenerate (filled shell). This restricts the allowed values for N . By counting single-body
energy levels one finds that [41]

N =
M
∑

k=1

�

k+ d − 2
d − 1

�

=
�

M + d − 1
d

�

=















M , d = 1 ,

M(M+1)
2 , d = 2 ,

M(M+1)(M+2)
6 , d = 3 .

(6)

On the other hand, the many-body ground state energy is the sum of the individual energy
levels so1

E(0)N =
M
∑

k=1

�

k− 1+
d
2

��

k+ d − 2
d − 1

�

=
M(2M + d − 1)

2(d + 1)

�

M + d − 1
d − 1

�

=















M2

2 , d = 1 ,

M(M+1)(2M+1)
6 , d = 2 ,

M(M+1)2(M+2)
8 , d = 3 .

(7)

Eqs. (6) and (7) give E(0)N as a function of N .
The ground state wave function Ψ0 (x1, · · · ,xN ) is also straightforward to find. It is given

by the N × N Slater determinant constructed from the N lowest single-body energy wave
functions,

Ψ0 (x1, · · · ,xN ) =
1
p

N !
det

1≤i, j≤N
ψi

�

x j

�

. (8)

The latter (after relabeling the indices, i→ k1, . . . , kd) are given by

ψk1,...,kd
(x) =

d
∏

j=1

e−x2
j /2

�

1
p
π2k j k j!

�1/2

Hk j

�

x j

�

(9)

1The combinatorial identity used in Eq. (7), i.e., moving from the first line of the equation to the second, is easy
to prove by induction on M .
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with 0 ≤ k1 + · · · + kd ≤ M − 1, where Hi is the ith Hermite polynomial and we denote
x= (x1, . . . , xd).

Much is known about the spatial properties of trapped noninteracting fermions, see e.g.
[15] for details and derivations. We now recall some of these properties which will prove useful
to us later when we treat the interacting case. One can write the joint PDF of the fermions’
positions as a single N × N determinant2

|Ψ0 (x1, · · · ,xN )|
2 =

1
N !

det
1≤i, j≤N

KN

�

xi ,x j

�

(10)

of a matrix whose entries are given by the so-called kernel

KN (x,y) =
N
∑

i=1

ψ∗i (x)ψi (y) . (11)

This, together with the “reproducing” property of the kernel
∫

KN (x,y)KN (y,z) dy = KN (x,z) (12)

makes the joint PDF of x1, · · · ,xN a determinantal point process [15,42,43]. Here and below
∫

dy denotes the d-dimensional integral over Rd . As a result, one can express the k−point
correlation function

Rk (x1, · · · ,xk) =
N !

(N − k)!

∫

dxk+1 · · · dxN |Ψ0 (x1, · · · ,xN )|
2 (13)

as a k× k determinant
Rk(x1, · · · ,xk) = det

1≤i, j≤k
KN (xi ,x j) . (14)

This property enables one to calculate spatial properties of the fermions directly from the
kernel. Consider, for instance, fermions’ number density

R1 (x) = NρN (x) =

® N
∑

i=1

δ (x−xi)

¸

0

, (15)

where 〈· · · 〉0 denotes the expectation value with respect to the ground state Ψ0. Note that the
density is normalized such that

∫

NρN (x) dx = N . Then the density is given, due to (14)
with k = 1, by

NρN (x) = KN (x,x) . (16)

Similarly, for k = 2, (14) gives the two-point function

R2 (x,y) =

*

∑

1≤i ̸= j≤N

δ(x−xi)δ(y −x j)

+

0

= KN (x,x)KN (y,y)−KN (x,y)KN (y,x) . (17)

2Note that, since the eigenfunctions (9) are real, the absolute value in Eq. (10) and the complex conjugate in
Eq. (11) are in fact unnecessary for the particular case treated in the present work.
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2.2 Interacting case and summary of main results

For nonzero interaction ε > 0, the problem becomes significantly harder to solve. How-
ever, in the limit ε → 0, one can apply regular perturbation theory to obtain the expansion
EN = E(0)N + εE(1)N +O

�

ε2
�

of the many-body ground state energy. E(1)N is given by the expec-
tation value of the interaction term in the Hamiltonian in the unperturbed ground state:

E(1)N =

*

∑

1≤i< j≤N

W
�

xi ,x j

�

+

0

. (18)

Now, rewriting this in the form3

E(1)N =
1
2

∫

dxdyR2 (x,y)W (x,y) (19)

and then using Eq. (17), we reach

E(1)N =
1
2

∫

dxdyW (x,y) [KN (x,x)KN (y,y)− KN (x,y)KN (y,x)] . (20)

One can separate this expression into two terms

E(1)N = (FN − GN )/2 , (21)

where

FN =

∫

dxdyKN (x,x)KN (y,y)W (x,y) (22)

and

GN =

∫

dxdyKN (x,y)KN (y,x)W (x,y) (23)

are the direct and exchange terms, respectively, provided that each of the two integrals (22)
and (23) converges. As we will show below, in the case of the pure power law interaction
W (x,y) = |x− y|−n the integral (20) converges for n < d + 2, while the integrals (22) and
(23) converge separately provided the stronger condition n< d holds. These divergences sig-
nal a breakdown of perturbation theory and can be cured by adding a small scale cutoff to the
interaction, an extension not studied here. Below we restrict to the case n< d + 2.

Our main results are as follows. We calculate E(1)N exactly for any N for which the energy
shells are all full (see above), and for power law interaction W (x,y) = |x − y|−n for any
0 < n < d + 2 (note that n can be a real number). The explicit formula are given in Eqs. (52)
and (53) below, as well as in Eqs. (55) and (56), where M is related to N by Eq. (6), and
E(1)N = 1

2(FM − GM ).
For n = 1, which we refer to hereafter as the Coulomb interaction (since it indeed cor-

responds to the electrostatic interaction in d = 3 and also in lower-dimensional systems em-
bedded in three-dimensional space), we analyze the asymptotic behavior of E(1)N at N ≫ 1. In
d = 1, we find that

E(1)N ≃
8
p

2 N3/2 (3 ln N + 3γ− 14+ 18 ln2)
9π2

, (24)

3The factor 1/2 in Eq. (19) is there because in Eq. (17) the sum is over i ̸= j, whereas in Eq. (18) it is over
i < j.
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where γ = 0.577 . . . is the Euler constant. For d > 1 we can analyze the direct and exchange
terms separately (because they do not diverge). In d = 2, we obtain

FN ≃
1024× 21/4N7/4

315π
+

25/4N3/4

45π
, (25)

GN ≃
1

π
p

2

�

64× 21/4

15
N5/4 +

3 ln (2N) + 6c2 − 8
12× 23/4

N1/4

�

, (26)

and in d = 3 we find

FN ≃
131072× 21/3N11/6

17325× 31/6π2
−

128× 22/3N7/6

945× 35/6π2
+

67
p

N

2100
p

3π2
, (27)

GN ≃
2
π2

�

64× 22/331/6

35
N7/6 +

5 ln (6N) + 15c3 − 176

30
p

3

p
N

�

, (28)

where

c2 = 6 ln 2+ γ−
13
6

, c3 = 6 ln 2+ γ+
47
6

. (29)

Notable in Eqs. (24), (26) and (28) are the terms with ln N in the expansions, on which we
will comment in further detail below. The above formula are valid up to corrections which
decay at large N , and the above series are displayed (as a function of N and of M) with higher
accuracy in Section 3 below.

We also obtained explicit exact results for other integer values n > 1, as well as their
corresponding large-N behaviors to high accuracy. The case n= d is technically delicate, and
is treated in Appendix B, with explicit results for the cases n= d = 1,2, 3. For even n, certain
simplifications arise; We obtain explicit results for the cases (d = 1, n = 2), (d = 3, n = 2),
(d = 3, n = 4) and (d = 2, n = 3) in section 6. Finally, we have obtained an intermediate
formula (41) valid for a larger class of interactions, which allows in principle to analyze also
these cases (not performed here).

3 Ground-state energy in the weakly interacting case: Exact re-
sults and large-N asymptotic behavior

3.1 General exact formula for E(1)N

To compute the correction E(1)N to the ground state energy in (20) for harmonic confinement,
we will use an exact formula for a generating function of the kernel, denoted Kz (x,y) below,
which allows to conveniently perform the spatial integration in any dimension, for any n. The
formula is a generalization of Mehler’s formula and is given in Eq. (2) in [44]. It reads (in our
notation)

Kz (x,y) =
∞
∑

M=1

zMKM (x,y)

=
z

1− z
1

πd/2 (1− z2)d/2
exp

�

4zx · y −
�

1+ z2
� �

x2 + y2
�

2 (1− z2)

�

, (30)

where we are now using M for the label of the kernel, i.e. we denote from now on

KM (x,y) = KN (x,y) , (31)
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where N and M are related by Eq. (6).
Let us consider a translationally invariant interaction W (x,y) = W (x− y), and define

the spatial integrals, for M1, M2 ≥ 1

QM1,M2
=

∫

dxdyW (x− y)
�

KM1
(x,x)KM2

(y,y)−KM1
(x,y)KM2

(y,x)
�

, (32)

as well as its generating function

Q(z1, z2) =
∑

M1,M2≥1

QM1,M2
zM1

1 zM2
2

=

∫

dxdyW (x− y)
�

Kz1
(x,x)Kz2

(y,y)−Kz1
(x,y)Kz2

(y,x)
�

, (33)

that we will compute explicitly below. The quantity we are interested in can be retrieved from
the coefficient zM

1 zM
2 of the power series expansion of the generating function,

FM − GM =QM ,M = Q (z1, z2)|zM
1 zM

2
, (34)

where for simplicity here and below we use the same letter so that

GN = GM(N), FN = FM(N) , (35)

where the relation between N and M was given above in (6). Note that while the FM , GM
are obtained here for any M ≥ 1, the FN , GN are obtained only for the specific values of N
corresponding to filled shells (the full dependence in N ≥ 1 may be much more complex
[31,45] and is out of reach at present).

Note that Q(z1, z2) contains the information both about the direct term and the exchange
term, hence we will obtain FM and GM from a single calculation of Q(z1, z2). The manipulations
performed below on Q will be such that the terms corresponding to FM and to GM will remain
separate.

Let us introduce the center of mass and relative coordinate

a=
x+ y

2
, b= x− y . (36)

Inserting the expression (30) into (33) we obtain

Q(z1, z2) =
z1

1− z1

1

πd/2(1− z2
1)d/2

z2

1− z2

1

πd/2(1− z2
2)d/2

×
∫

dadbW (b)exp
�

−2
1− z1z2

(1+ z1)(1+ z2)
a2
�

×
�

exp

�

−
(1− z1z2)b2

2(1+ z1)(1+ z2)
+

2(z1 − z2)a · b
(1+ z1)(1+ z2)

�

− exp

�

−
(1− z1z2)b2

2(1− z1)(1− z2)

��

. (37)

Integrating over the position of the center of mass a we obtain a relatively simple and sym-
metric expression

Q(z1, z2) =
1

(2π)d/2
z1z2

(1− z1z2)d/2
1

((1− z1)(1− z2))
1+d/2

×
∫

dbW (b)

�

exp

�

−
(1− z1)(1− z2)

1− z1z2

b2

2

�

− exp

�

−
1− z1z2

(1− z1)(1− z2)
b2

2

��

, (38)
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where we used
∫

dae−Aa2+Ba·b = (πA )
d/2eb

2B2/(4A). Note that the coefficient of the term z1z2
in the expansion of Q(z1, z2) vanishes since it corresponds to N = M = M1 = M2 = 1, i.e. to a
single fermion with no interactions, F1 − G1 = 0.

Until now formula (38) is exact for any interaction potential W (b) such that the integral
converges. In (38) the first term corresponds to the direct term (leading to FM ) and the second
to the exchange term (leading to GM ).

There are a number of interaction potentials for which (38) can be evaluated exactly. The
simplest one is a Gaussian interaction, W (b) = exp(− t

2b
2), for which the integral is a simple

Gaussian integral. Let us first write a formula for any potential of the form

W (b) =

∫ +∞

0

d t f (t)exp
�

−
t
2
b2
�

. (39)

Note that W (b) is the laplace transform of f (t)with Laplace parameter s = b2/2. This contains
the case of the power law potential W (b) = |b|−n on which we will focus below. Indeed one
has for n> 0, from the known Laplace transform of a power-law function,

|b|−n =

∫ +∞

0

d t

t1−n/22n/2Γ
� n

2

� e−
t
2b

2
. (40)

Note that the case of long-range potentials with n< 0 can also be studied (e.g. for −1< n< 0
replacing e−

t
2b

2
→ e−

t
2b

2
− 1 and so on), but will not be considered here. One obtains

Q(z1, z2) =

∫ +∞

0

d t f (t)I(t, z1, z2) , (41)

I(t, z1, z2) =
z1z2

(1− z1z2)d/2
1

((1− z1)(1− z2))
1+d/2

(42)

×
�

�

t +
(1− z1)(1− z2)

1− z1z2

�−d/2

−
�

t +
1− z1z2

(1− z1)(1− z2)

�−d/2�

.

Let us now specify to the power law potential W (b) = |b|−n which corresponds to
f (t) = tn/2−1

2n/2Γ ( n
2 )

and which leads to further simplification. For d > n we can use the iden-

tity for u> 0 [41]
1

Γ
� n

2

�

∫ +∞

0

d t
t1−n/2(t + u)d/2

=
Γ ( d−n

2 )

Γ ( d
2 )u

d−n
2

. (43)

It can be extended for d + 2> n by analytic continuation, since we only need

1

Γ
� n

2

�

∫ +∞

0

d t
t1−n/2

�

1
(t + u)d/2

−
1

(t + 1/u)d/2

�

=
Γ ( d−n

2 )

Γ ( d
2 )

�

u
n−d

2 − u
d−n

2

�

, (44)

with

u=
(1− z1)(1− z2)

1− z1z2
. (45)

The l.h.s of (44) is a convergent integral for d + 2 > n and the r.h.s. is analytic in the same
domain, its value for d = n being simply −2(ln u)/Γ (n/2). Using these identities we obtain
the generating function for the power law interactions as

Q(z1, z2) =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

z1z2

�

[(1− z1)(1− z2)]
n
2−1−d(1− z1z2)

− n
2

− [(1− z1)(1− z2)]
− n

2−1(1− z1z2)
n
2−d
�

, (46)
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valid jointly for d + 2 > n, and where the first term is the direct term and the second the
exchange term, each being valid only for d > n. The simplicity of the result (46), consisting
only of powers of z1z2, (1− z1)(1− z2) and (1− z1z2), allows one to extract the coefficients
and their asymptotics, see below.

Now we will extract the exact expressions for FM and GM from the relation (34), i.e. from
the coefficient of (z1z2)M in the power-series expansion of Q(z1, z2). Consider the first term
in (46). It can be decomposed into two factors from which we first separately extract the
coefficient of (z1z2)M . For the first factor we use the identity

z(1− z)a =
∑

k≥1

(−1)k+1
�

a
k− 1

�

zk , (47)

where
�

a
k

�

=
Γ (a+ 1)

Γ (k+ 1)Γ (a− k+ 1)
(48)

is the generalized binomial coefficient. Applying it with a = −n/2 and z = z1z2 implies that

z1z2(1− z1z2)
− n

2

�

�

�

(z1z2)M
= (−1)M+1
�

−n/2
M − 1

�

, (49)

which gives the decomposition of the first factor. To deal with the second factor we use the
identities

(1− z)b =
∑

p≥0

(−1)p
�

b
p

�

zp , (50)

[(1− z1) (1− z2)]
b
�

�

diag =
∑

p≥0

�

b
p

�2

(z1z2)
p = 2F1 (−b,−b, 1, z1z2) , (51)

where the second line follows from the first (here O|diag means that we retain only the terms of
the form (z1z2)p in O), and 2F1(· · · ) denotes the hypergeometric function [41]. For b = n

2−1−d
it gives the coefficient of (z1z2)M in the second factor. Putting now the two factors together
we obtain, for d > n

FM =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

M
∑

k=1

(−1)k+1
�

−n/2
k− 1

�� n
2 − 1− d

M − k

�2

, (52)

and

GM =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

M
∑

k=1

(−1)k+1
� n

2 − d
k− 1

��− n
2 − 1

M − k

�2

. (53)

If considering the combination FM −GM the formula can be extended to d+2> n as discussed
above.

We can also use the identity

M
∑

k=1

(−1)k+1
�

a
k−1

��

b
M−k

�2

=
�

b
M−1

�2

3F2(−a, 1−M , 1−M ; b−M + 2, b−M + 2;1) , (54)

where 3F2(· · · ) denotes the (generalized) hypergeometric function [41], to obtain closed ex-
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pressions

FM =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

�

−d + n
2 − 1

M − 1

�2

× 3F2

�

1−M , 1−M ,
n
2

;−d −M +
n
2
+ 1,−d −M +

n
2
+ 1; 1
�

, (55)

GM =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

�

− n
2 − 1

M − 1

�2

× 3F2

�

1−M , 1−M , d −
n
2

;−M −
n
2
+ 1,−M −

n
2
+ 1;1
�

. (56)

An alternative representation of the result can be obtained by calculating the generating
function

Q (z) =
∑

M≥1

(FM − GM )z
M , (57)

which can be obtained directly from (46) and (51) since by definition, for any a(y) =
∑

k ak yk

and b(y) =
∑

k bk yk one has
∑

M [a(y)b(y)]|yM zM = a(z)b(z). One obtains

Q (z) =
Γ
� d−n

2

�

Γ
� d

2

�

2n/2
z
�

2F1

�

d + 1−
n
2

, d + 1−
n
2

, 1, z
�

(1− z)−n/2

− 2F1

�

1+
n
2

, 1+
n
2

, 1, z
�

(1− z)n/2−d
�

, (58)

where the first term gives the direct term and the second gives the exchange term.

3.2 d = 2, 1/|x | interaction (n= 1)

For d = 2 and for n= 1 (the 1/|x | interaction), Eqs. (52), (53) (55),(56) read

FM =
s

π

2

M
∑

k=1

(−1)k+1
� −1

2

k− 1

�� −5
2

M − k

�2

=
s

π

2

�

−5
2

M − 1

�2

3F2

�

1−M , 1−M ,
1
2

;−M −
1
2

,−M −
1
2

; 1
�

, (59)

GM =
s

π

2

M
∑

k=1

(−1)k+1
� −3

2

k− 1

�� −3
2

M − k

�2

=
s

π

2

�

−3
2

M − 1

�2

3F2

�

1−M , 1−M ,
3
2

;−M +
1
2

,−M +
1
2

;1
�

. (60)

In order to analyze their behavior at N ≫ 1 (or equivalently, M ≫ 1), it is convenient to
consider the generating function (58), which reads Q(z) =QF (z)−QG(z) with

QF (z) =
∑

M≥1

FM zM =
s

π

2 2F1

�

5
2

,
5
2

, 1, z
�

z
(1− z)1/2

, (61)

QG(z) =
∑

M≥1

GM zM =
s

π

2 2F1

�

3
2

,
3
2

,1, z
�

z
(1− z)3/2

. (62)

We will now study their (divergent) behavior near z = 1 and extract from it the large M
expansion of FM and GM .
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Let us start with GM to illustrate the method. We will use that
∑

M≥1

M szM = Li−s(z) ,
∑

M≥1

M s ln(M)zM = ∂sLi−s(z) , (63)

together with the expansion of the polylogarithm function Li−s(z) near z = 1. The structure of
this expansion is recalled in Appendix A. For s > −1 the leading behavior of the polylogarithm
at z = 1 is divergent with

Li−s(z)≃ Γ (s+ 1)(1− z)−(s+1) . (64)

Let us denote η= 1− z. The generating function (62) has the expansion for small η > 0

QG(z) =
2
q

2
π

η7/2
−

5
p

2πη5/2
+
−2 ln(η) + 11+ ln(256)

16
p

2πη3/2
−
−2 lnη− 5+ 8 ln2

64
p

2π
p
η

+O (
p
η) . (65)

Note that there is no constant, i.e. O(η0) term, and more generally there are only ηp+1/2

terms with integer p in the series (with logarithmic components beginning at the third term) .
If these expansion coefficients can be reproduced from the expansion near η= 0 of the “trial"
linear combination

Qtrial
G (z) = a5/2Li−5/2(z) + a3/2Li−3/2(z) + (a1/2 + b1/2∂s)Li−1/2(z)

+ (a−1/2 + b−1/2∂s)Li1/2(z) +O(
p
η) , (66)

where the a j , b j are to be determined, then one can conclude that

GM=a5/2M5/2+ a3/2M3/2+
�

a1/2 + b1/2 ln M
�

M1/2+
�

a−1/2 + b−1/2 ln M
�

M−1/2+ o
�

M−1/2
�

.
(67)

Using Mathematica one finds that there is a unique set of coefficients which reproduces (65)
up to and including the term 1/

p
η, which leads to (for d = 2 and n= 1)

GM=
1

π
p

2

�

32
15

M5/2 +
8
3

M3/2 +
1
4
(ln M + c2)M

1/2 +
1
16
(ln M + c′2)M

−1/2
�

+ o(M−1/2) , (68)

with c2 = 6 ln 2+ γ− 13
6 and c′2 = 6 ln2+ γ− 17

6 .

Remark. One can push the procedure to higher order, e.g. introducing a−3/2 and b−3/2

terms. The next order correction is then found to be 1
π
p

2
1

2048(ln M + c′′2 )M
−3/2 with

c′′2 = 6 ln2 + γ + 281
20 . Note that the series for Qtrial

G (z), when pushed to higher orders, also
contain terms ηp with positive integer powers, p ≥ 0. Since there appear to be no such
terms in the series for QG(z), it implies that in addition to the correction terms of the form
M−p/2(ln M + c), p > 1, there are corrections to (68) which cancel such terms. These correc-
tions, since they lead to analytic terms ηp with positive integer, must decay faster than any
power law in 1/M .

Let us now write GM as a function of N . For the 2D HO, one has

N =
M (M + 1)

2
=⇒ M =

−1+
p

1+ 8N
2

.

Plugging this into (68), one obtains, as a function of the number of fermions N ,

GN ≃
1

π
p

2

�

64× 21/4

15
N5/4 +

N1/4 (ln N + γ2)
4× 23/4

+
N−3/4
�

49 ln N + γ′2
�

4096× 23/4

�

, (69)

with γ′2 = 637 ln 2+ 98γ− 9877
30 . It is interesting to note that in this expansion, terms of order

N3/4 and N−1/4 are absent (they cancel out).
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Figure 1: (a) GN vs. N for the HO in d = 2. Markers are exact results (60) (where
N(M) is given by Eq. (6)). Solid line is the asymptotic behavior (26). (b) Markers
are the exact result (60) minus the leading-order term (∝ N5/4) in (26), rescaled by
N1/4, and solid line is the factor that multiplies N1/4 in the remaining term in (26).
Note the semi-log scaling in (b).

Similarly, let us now analyze the N ≫ 1 behavior of the direct term. The expansion of
QF (z) near z = 1 has a very similar form

QF (z) =
16
q

2
π

3η9/2
−

28
q

2
π

3η7/2
+

17

2
p

2πη5/2
−

13

24
p

2πη3/2
+
−36 ln(η)− 53+ 72 ln 4

1536
p

2π
p
η

+O (
p
η) .

(70)
Hence, we can use a similar trial form as in (66), except that we need to include a nonzero
a7/2 term. Applying the same method and using Mathematica we find

FM =
1

π
p

2

�

512M7/2

315
+

128M5/2

45
+

10M3/2

9
−

M1/2

18

+
3

128
(ln M + d2)M

−1/2 +O(M−3/2 ln M)
�

, (71)

with d2 = 6 ln 2+ γ− 1451
540 . Expressed in terms of the number of fermions N this leads to

FN =
1024× 21/4N7/4

315π
+

25/4N3/4

45π
+

3
256π23/4

(ln N +δ2)N
−1/4 +O(N−3/4) , (72)

with δ2 = 13 ln 2 + 2γ − 133
18 . The first few terms in these expansions are those which are

reported in Eqs. (25) and (26) of the introduction. We compare the leading and subleading
terms of GN to the exact result (60) in Fig. 1, showing excellent agreement. Indeed, the large-
N approximation works surprisingly well even for small N . For the case of a single (spinless)
fermion, N = 1, the exact result (60) is

p

π/2 = 1.2533 . . . , while the approximation (26)
yields 1.2479 . . . , i.e., it is accurate to within less than 0.5%. In fact, even just the leading
order term in (26) gives a reasonable approximation, 32× 23/4/(15π) = 1.1420 . . . , which is
within 10% of the exact result. We also checked the next-order term in the expansion of GN
[the last term in Eq. (69)], and performed analogous comparisons of FN with the asymptotic
behaviors, also finding excellent agreement (not shown).
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3.3 d = 3, 1/|x | interaction (n= 1)

Similarly, for d = 3 and for n= 1 the direct and exchange terms are given by

FM =

√

√ 2
π

M
∑

k=1

(−1)k+1
�

−1/2
k− 1

�� −7
2

M − k

�2

=

√

√ 2
π

�

−7
2

M − 1

�2

3F2

�

1−M , 1−M ,
1
2

;−M −
3
2

,−M −
3
2

;1
�

, (73)

GM =

√

√ 2
π

M
∑

k=1

(−1)k+1
� −5

2

k− 1

�� −3
2

M − k

�2

=

√

√ 2
π

�

−3
2

M − 1

�2

3F2

�

1−M , 1−M ,
5
2

;−M +
1
2

,−M +
1
2

;1
�

, (74)

respectively, while the generating function (58) reads Q(z) =QF (z)−QG(z) with

QF (z) =
∑

M≥1

FM zM =

√

√ 2
π

2F1

�

7
2

,
7
2

; 1; z
�

z
p

1− z
, (75)

QG(z) =
∑

M≥1

GM zM =

√

√ 2
π

2F1

�

3
2

,
3
2

;1; z
�

z
(1− z)5/2

. (76)

The same method as in the previous section leads to

GM =
p

2
π2

�

64M7/2

105
+

32M5/2

15
+

M3/2 (ln M + c3)
6

+
1
4

M1/2(ln M + c′3) +
125

3072
M−1/2(ln M + c′′3 ) +O(M−3/2 ln M)

�

, (77)

with

c3 = 6 ln 2+ γ+
47
6

, c′3 = 6 ln 2+ γ−
13
6

, c′′3 = 6 ln2+ γ−
6851
2500

. (78)

One also obtains

FM =
1

π2
p

2

�

65536M11/2

155925
+

32768M9/2

14175
+

20864M7/2

4725
+

448M5/2

135

+
1903M3/2

2700
−

307
5400

M1/2 +
5

512
(ln M + d3)M

−1/2 +O(M−3/2 ln M)
�

, (79)

with d3 = 6 ln 2+ γ− 549893
283500 .

Let us now express these results as a function of N . In d = 3 one has N = M(M+1)(M+2)
6

which leads to M = ν
32/3 +

1
ν31/3 − 1 with ν =

�

27N +
p

3(243N2 − 1)
�1/3

. Substituting in the
above expressions one finds

GN =
2
π2

�

64× 22/331/6N7/6

35
+

N1/2 (ln N + γ3)

6
p

3

+
7× 35/6

1024× 22/3
(ln N + γ′3)N

−1/6 +O(N−1/2 ln N)
�

, (80)

with γ3 = ln(3) + 19 ln(2) + 3γ− 117
10 , and γ′3 = ln(3) + 19 ln 2+ 3γ− 145499

11340 , and

FN =
1
π2

�

131072× 21/3N11/6

17325× 31/6
−

128× 22/3N7/6

945× 35/6
+

67N1/2

2100
p

3

+
5

1536× 22/3 × 31/6
(ln N +δ3)N

−1/6 +O(N−1/2 ln N)
�

, (81)
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Figure 2: (a) GN vs. N for the HO in d = 3. Markers are exact results (74) (where
N(M) is given by Eq. (6)). Solid line is the asymptotic behavior (28). (b) Markers
are the exact result (74) minus the leading-order term (∝ N7/6) in (28), rescaled by
N1/2, and solid line is the factor that multiplies N1/2 in the remaining term in (28).
Note the semi-log scaling.

with δ3 = ln(3) + 19 ln 2 + 3γ − 96340693
7654500 . The first few terms in these expansions are those

which are reported in Eqs. (27) and (28) of the introduction. We compare the leading and
subleading terms of GN to the exact result (74) in Fig. 2, showing excellent agreement. Again
we find that the large-N approximations work very well even for small N : For N = 1, the
exact result (74) is

p

2/π= 0.79788 . . . . In comparison, the leading-order term in (28) yields
128×22/331/6

35π2 = 0.70639 . . . and the full expression (28) evaluates to 0.79024 . . . , i.e., within
13% and 1% of the exact result, respectively. We also checked the next-order term in the
expansion of GN , including the O(N−1/6) term in (80), and performed analogous comparisons
of FN with the asymptotic behaviors, e.g. checking the first five terms in (79), with excellent
agreement found here as well (not shown).

3.4 d = n= 1

The general case n = d is a little delicate from a technical point of view (the limit n → d in
the general results for n < d + 2 must be taken carefully), and is treated in Appendix B. For
n= d = 1, we obtain

E(1)N =
N
∑

k=1

2
p

2Γ
�

k− 1
2

�

Γ
�

−k+ N + 3
2

�2 �
2H−k+N+ 1

2
−Hk− 3

2
− 4+ ln 4
�

π2Γ (k)Γ (−k+ N + 1)2
, (82)

where the Hk ’s denote harmonic numbers, i.e., Hk =ψ (k+ 1)+γ where ψ(z) = d
dz lnΓ (z) is

the digamma function. Extracting the large-N behavior from Eq. (82) (see Appendix B for the
details) we obtain Eq. (24) reported above. In the next section, we rederive the asymptotic
behavior (24) using approximate methods.

4 Calculating E(1)N for n= 1 and N ≫ 1 via leading-order semiclas-
sics

We would now like to gain some understanding of the physical origin of the terms in the large-
N behaviors reported above. Of particular interest is the exchange energy GN for n = 1 and
d = 2,3. The Dirac extension of the Thomas-Fermi model [46,47], gives the leading-order term
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in GN from the semiclassical approximation (for completeness, we reproduce this result below;
See also Ref. [48] for a proof that this is accurate for finite interactions). The first logarithmic
correction to this result is not easily obtained from known corrections to the semiclassical
approximation, and will be studied separately [40]. We also consider the case n = d = 1.
Here, one cannot write E(1)N = (FN − GN )/2 as the difference between direct and exchange
energies (because they each diverge), so the analysis is quite different. The approximations
used in this section do not rely on the exact solvability of the model, and therefore may be
useful for studying other models too (e.g., with anharmonic trapping potentials).

4.1 d = 2 and d = 3

It is easy to reproduce the leading-order large-N behaviors of our results. In general d, in the
absence of interactions, the semiclassical large-N formula for the density is (e.g. [4,5])

NρN (x)≃
(µ− V (x))d/2+
(2π)d/2 Γ
�

1+ d
2

� . (83)

Here and below we denote (x)+ = max {x , 0}. The spatial domain defined by V (x) < µ is
referred to as the bulk of the Fermi gas, while its boundary, given by V (x) = µ, is called the
edge. At microscopic |x− y| in the bulk, the kernel (11) takes the scaling form

KN (x,y)≃
1

ℓ (x)d
Kbulk

d

�

|x− y|
ℓ (x)

�

, (84)

where

ℓ (x) = [NρN (x)γd]
−1/d , γd =

Sd

d
= πd/2Γ

�

d
2
+ 1
�

. (85)

The scaling function is

Kbulk
d (x) =

Jd/2 (2x)

(πx)d/2
, (86)

where Jd/2 is the Bessel function. At the origin, the scaling function takes the value
Kbulk

d (0) = 1/γd .
By plugging these approximations into Eqs. (22) and (23), one can calculate the leading-

order large-N behaviors of the direct and exchange terms FN and GN , respectively. One finds
that the exchange term is given, in d = 2, for general trapping potential, by (see Appendix C)

GN ≃
16

3π2

∫

ℓ (x)−3 dx=
16

3π2

∫

[πNρN (x)]
3/2 dx . (87)

Similarly, for d = 3 it is given by

GN ≃
34/3

41/3π1/3

∫

[NρN (x)]
4/3 dx , (88)

in agreement4 with e.g., Eq. (4) in [36].

4The numerical coefficient 34/3

41/3π1/3 in our Eq. (88) differs from the corresponding coefficient in Eq. (4) in [36],

which is 34/3

4π1/3 , because in the present work we take the fermions to be spinless, whereas in [36] they have spin
1/2. This results in factor of 2 differences in the definitions of the density and of the exchange energy [recall also
the factor 1/2 in (21)].
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For the harmonic trapping potential, after plugging in the semiclassical density (83), the
integrals (87) and (88) can be calculated (see Appendix C) and one obtains

GN ≃







16
p

2
15π µ

5/2 , d = 2 ,

64
p

2µ7/2

105π2 , d = 3 ,
(89)

in perfect agreement with the leading-order terms in Eqs. (68) and (77), respectively, using
that µ= M − 1+ d/2, see (5). One can similarly calculate the direct term using semiclassical
approximations , by plugging the density (83) into (22). This is a straightforward but technical
calculation which we perform in Appendix D. The result is

FN ≃







256
p

2
315π µ

7/2 , d = 2 ,

32768
p

2
155925π2µ

11/2 , d = 3 ,
(90)

in perfect agreement with the leading-order terms in Eq. (71) and (79), respectively.

4.2 d = 1

In d = 1, we cannot separate the direct and exchange terms as we did for d = 2,3. The
semiclassical density (83) reads

NρN (x)≃
p

2 (µ− V (x))+
π

≃
p

(2N − x2)+
π

. (91)

At x ≃ y in the bulk of the fermi gas, i.e., for x − y ∼ 1/
p

N , that is of the order of the inter-
particle distance in the bulk, the kernel is well approximated by the celebrated sine kernel

KN (x , y)≃
sin (kF (x)|x − y|)

π|x − y|
, (92)

where kF (x) =
p

2 (µ− V (x)) is the local Fermi momentum.
We are now ready to evaluate the integral (20). First of all, since the integrand in (20) is

invariant under exchanging x and y , it is sufficient to integrate only over y < x (and multiply
the final result by 2). We partition the remaining integration domain into two subdomains:
(i) x ≃ y , and (ii) x and y that are far from each other. Thus we write E(1)N = I1 + I2 where

I1 =

∫ ∞

−∞
d x

∫ x−ξ

−∞
d y

N2ρN (x)ρN (y)− KN (x , y)2

|x − y|
, (93)

I2 =

∫ ∞

−∞
d x

∫ x

x−ξ
d y

N2ρN (x)ρN (y)− KN (x , y)2

|x − y|
, (94)

and ξ is an intermediate “cutoff” 1/
p

N ≪ ξ≪
p

N (the result will not depend on the precise
choice of ξ). Next, we calculate each of I1 and I2 using the approximations for the density
and kernel given above (in I1 it turns out that the term KN (x , y)2 is negligible in the leading
order, see Appendix E for details):

I1 ≃
4
p

2 N3/2 (−6 lnξ+ 3 ln N − 14+ 21 ln 2)
9π2

, (95)

I2 ≃
4
p

2 N3/2 (6 lnξ+ 3 ln N + 6γ− 14+ 15 ln2)
9π2

. (96)
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Figure 3: E(1)N vs. N for the HO in d = 1 and Coulomb interaction n = 1. Markers
are exact result (82) and solid line is the large-N asymptotic behavior (24).

Summing these two equations we obtain Eq. (24) reported above which, as we anticipated,
does not depend on the choice of ξ. Eq. (24) is in good agreement with the exact result (82)
at large N , see Fig. 3.

5 Perturbed density in the cases d = 2, n= 1 and d = 3, n= 1

Besides altering the ground-state energy, the interaction term in the Hamiltonian also affects
other properties of the system, and in particular, the density. One approach for finding the
modified density at N ≫ 1 is to use semiclassical approximations with an effective potential
that is given by the sum of the external potential and the effect of the interactions (for the case
d = 3, n = 1 one recovers the usual Thomas-Fermi approximation). This is a fairly standard
procedure. It was performed, e.g., in Refs. [49, 50] in the context of quantum dots in d = 2
for general trapping potentials and interaction strengths, for n = 1 [50] and for n = 0+ (i.e.,
logarithmic interactions) [49]. Nevertheless, for completeness we present the results of this
calculation here in our (relatively simple) setting, for the cases d = 2, n= 1 and d = 3, n= 1.

In the limit N ≫ 1, this procedure gives an integral equation for the density (in presence
of interactions) NρN and the effective potential Veff (x), through the two equations

NρN (x) ≃
(µeff − Veff (x))

d/2

(2π)d/2 Γ
�

1+ d
2

� , (97)

Veff (x) = V (x) + ε

∫

NρN (y)W (x,y) dy, (98)

where µeff is found from the normalization
∫

NρN (x) dx= N of the density (so µ also changes
due to the interaction).

Eqs. (97) and (98) are valid provided that the number of particles is large (N ≫ 1) but
they do not rely on the assumption that the interaction term is small. However, if we add
the assumption ε→ 0, the integral equation simplifies considerably. In Appendix F, we solve
the Thomas-Fermi equations to first order in ε. In d = 2, we obtain (in terms of the rescaled
variable X = x/

p

2µ)

NρN

�p

2µX
�

≃
µ
�

1− X 2
�

+
p

2εµ3/2
� 64

45π − v1 (X )
�

2π
, (99)
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with

v1(X ) =
4(X − 1)

9π

�

�

X 2 − 2
�

E
�

−
4X

(X − 1)2

�

− (X + 1)2K
�

−
4X

(X − 1)2

��

, (100)

where E(m) and K(m) are the complete elliptic integrals of first and second kind, respectively
[41]. In d = 3, (and n = 1), a special simplification occurs: The integral equation for the
Coulomb potential can be transformed into the differential Poisson equation (more generally,
this simplification occurs if n= d − 2). Using this (see Appendix F), we obtain

NρN (x)≃
p

2
3π2

�

(µ− V (x))3/2 +
3
2
ε
Æ

µ− V (x)

�

32768× 21/3N5/6

4725× 31/6π2
− V1 (x)

��

, (101)

where

V1 (x) =
4
p

2
3π

�

µ3

4
p

2x
arctan

�

x
p

2µ− x2

�

+
1

120

√

√

µ−
x2

2

�

33µ2 + 2x4 − 13µx2
�

�

. (102)

Incidentally, this calculation also enables us to obtain the leading-order behavior of E(1)N at
large N , from the relation dEN/dN ≃ µeff which follows from the fact that µeff plays the role
of an effective chemical potential. In Appendix F we calculate µeff in d = 2,3 and show that
it indeed coincides with the derivatives of the leading-order terms in Eqs. (25) and (27) with
respect to N .

6 Simplifications in special cases

In this section we give some explicit results for the cases in which n is even (and the space
dimension d is an integer). In these cases, the result (58) simplifies considerably, because the
hypergeometric function 2F1 (a, a, 1, z) simplifies for integer a into rational functions. Taking
into account the constraint n< d+2, one finds the relevant cases in physical spatial dimension
are n = 2, d ∈ {1, 2,3}, and n = 4, d = 3. The case n = d = 2 is delicate, and treated in the
Appendix B. We also point out at the end of this Section a remarkable symmetry which allows
to obtain the result for d = 2, n = 3 with no further calculation. We now consider the various
cases in detail.

6.1 The case d = 1, n= 2

The case d = 1 and n= 2 corresponds to the Calogero-Sutherland model [25,26]. In that case
the many-body ground state is known exactly, and can be obtained for instance via an exact
mapping to Gaussian random matrix ensembles. The ground-state energy reads [27]

EN =
β

4
N (N − 1) +

N
2

, (103)

where ε= β (β − 2)/4. The noninteracting case, ε= 0, corresponds to β = 2, and expanding
the exact result in small ε, one finds

EN =
1
2

N2 +
ε

2
N (N − 1) +O
�

ε2
�

. (104)

The leading-order term is in agreement with Eqs. (6) and (7), and the O(ε) term is in agree-
ment with our perturbative result, as we now show. Indeed, Eq. (58) reads, for n= 2, d = 1,

Q (z) =
2z2

(1− z)3
=
∞
∑

M=1

M (M − 1) zM , (105)
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from which one immediately extracts

E(1)M =
M (M − 1)

2
, (106)

which, using N = M , coincides with the O(ε) term in Eq. (104).

6.2 The cases d = 3, n= 2 and d = 3, n= 4

Let us consider d = 3 and n = 2. In this case, the condition n < d holds, and thus one can
separate the two terms in Eq. (58), to obtain

QF (z) =
z
�

z2 + 4z + 1
�

(1− z)6
, QG(z) =

z(z + 1)
(1− z)5

, Q(z) =
2z2(z + 2)
(1− z)6

, (107)

which immediately leads to the polynomial forms

FM =
1
60

M(M + 1)(M + 2)
�

3M2 + 6M + 1
�

, (108)

GM =
1

12
M(M + 1)2(M + 2) (109)

and

E(1)M =
1
2
(FM − GM ) =

1
120
(M − 1)M(M + 1)(M + 2)(3M + 4) . (110)

Consider now d = 3 and n= 4. Amazingly, one again finds that Eq. (58) gives

Q(z) =
2z2(z + 2)
(1− z)6

, (111)

which is identical to the case d = 3, n = 2 (although now it is obtained via an analytical
continuation which in that case is simple). This immediately implies that for d = 3 and n= 4
the energy correction E(1)M is still given by the formula (110). Using the relation (6) between
N and M , we find that the large-N expansion of the result (110) is

E(1)N =
35/3N5/3

10× 21/3
−

31/3N4/3

25/3
−

N2/3

12× 61/3
+

N1/3

60× 62/3
−

N−1/3

1620× 61/3
+ . . . . (112)

Here, as we found also above for the case n = 1, it is interesting to note that it appears that
there are terms “missing” from this expansion, namely the O(N1) and O(N0) terms.

In fact, more generally there is a similar surprising relation between the cases (d, n1) and
(d, n2) if d = (n1 + n2)/2. Indeed, when evaluating Eq. (58) in these two cases one finds that
the terms in the square brackets are simply exchanged, so one finds that the functions Q(z)
differ only by a multiplicative constant:

Q (z) |d,n1

Q (z) |d,n2

= −2(n2−n1)/2
Γ
�

d−n1
2

�

Γ
�

d−n2
2

� . (113)

As a result, the corresponding E(1)N ’s for the two cases differ by the exact same multiplicative
constant. In the particular case d = 3, n1 = 2, n2 = 4 considered above, this constant is unity.
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6.3 The case d = 2, n= 3

Using Eq. (113) together with our results for d = 2, n = 1, we can immediately obtain the
solution to the case d = 2 and n = 3. The constant of proportionality in Eq. (113) (for
d = 2, n1 = 1, n2 = 3) again turns out to equal unity, and thus we obtain the rather remarkable
result

E(1)N |d=2,n=3 = E(1)N |d=2,n=1 , (114)

where, to remind the reader, E(1)N |d=2,n=1 was calculated in subsection 3.2.

7 Discussion

To summarize, we studied a system of N fermions trapped in a harmonic potential in general
spatial dimension d, with power-law interactions which we assumed are weak (∝ ε). As-
suming that N is such that the highest energy shell is full, we calculated the exact first-order
correction εE(1)N to the many-body ground state energy of the system. Wherever possible, we

wrote E(1)N as the difference between a direct and an exchange term, and calculated each of
the two terms separately.

Focusing on the particular case of the Coulomb interaction∝ 1/r, we analyzed the N ≫ 1
behavior of E(1)N , and found that, as expected, in d > 1 the leading order of the exchange term
coincides with the result of the LDA — the Dirac expression for exchange — applied to the
simple semiclassical-limit result for the density distribution. Interestingly, we found that the
subleading correction to this term embodies a logarithmic divergence, as is known to be the
case for electrons in atoms [36] (both neutral atoms and the Bohr atom). It would be useful
to better understand the physical origin of each of the terms in the large-N expansion of E(1)N
that we obtained here. In particular, the leading logarithmic correction to exchange is of direct
relevance to DFT, and a separate study of it is forthcoming [40].

In this context of DFT, the efficiency of the large-N expansion for exchange is noteworthy.
Even for the smallest value of N considered, a single full shell (N = 1), the leading term
captures the exchange energy to within 13% for d = 3 using a single large-N coefficient, and
to within 1% using two additional large-N coefficients, those of the first logarithmic correction
and the corresponding power-of-N term. (the corresponding results for d = 2 are 10% and
0.5%, respectively.

We also studied the leading-order effect of the interaction on the gas density at N ≫ 1.
It would be interesting to continue and extend our analysis by investigating the effect of the
interactions on other properties of the interacting gas, such as the correlation energy, correla-
tions of the density in real space and/or in momentum space, extreme-value statistics, counting
statistics and entanglement entropy [14,27,52–55].

Several additional directions for future research remain. For instance, it would be inter-
esting to extend our results to the case in which N is such that the highest energy shell is only
partly occupied, and degenerate perturbation theory becomes relevant. In this case, it is rea-
sonable to expect additional correction terms with oscillations as a function of N in analogy
with atomic physics [31,45].

It would be very interesting to extend our results to other trapping potentials, e.g., to
atoms. While the exact method that we introduced may only be applied to special, exactly
solvable cases, the approximate methods used here (especially in one spatial dimension) are
expected to be more broadly applicable. Indeed, they may very well prove useful to extend
our results to other cases (e.g., other trapping potentials and/or interactions) that do not have
some underlying exactly solvable mathematical structure.
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We gave explicit results for the case of power-law interactions W (x,y) = |x− y|−n. How-
ever, since E(1)N is linear with respect to the interaction term W (x,y), our results may be
immediately extended to any interaction that can be written as the sum of such power laws. It
would be interesting to extend our results even further, to more general types of interactions.
The intermediate formula (41) that we obtained, which is valid for a large class of interactions,
should provide a path in that direction, e.g. it allows to introduce a small scale cutoff.

One could try to extend our analysis to higher orders in the interaction strength ε, or
even try to go beyond the weakly-interacting regime. However, this appears to represent a
significant challenge.

Finally, it is worth noting that, for d = 1, the noninteracting case can be exactly mapped
to GUE random matrices (or equivalently, to a gas of classical particles at thermal equilibrium
trapped by an external harmonic potential and interacting logarithmically) [19]. As a result,
E(1)N can be interpreted as the expectation value of the observable W =

∑

1≤i< j≤N W
�

λi ,λ j

�

where λ1, . . . ,λN are the eigenvalues of a random GUE matrix. Such observables represent a
natural extension to the “linear statistics"

∑N
i=1 U (λi) that are often studied in random matrix

theory and/or in the study of interacting classical gases [58,59]. In these contexts, as well as
in the context of trapped fermions, it could be interesting to extend our results by studying the
higher moments, and full distribution, of such observables W .
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A Series expansion of polylogarithms

Let us recall here the structure of the expansions of the polylogarithm functions Li−s(z) and
their derivative with respect to s near z = 1, as needed in the text.

With z = 1− x one has for s > 0 and non-integer, and x > 0 (see [60] combined with the
expansion of (− ln(1− x))−s−1)
∑

n≥1

nszn = Li−s(z) = As(x) + Bs(x), (A.1)

As(x) = Γ (s+ 1)x−(s+1)

�

1+
∑

n≥1

cn,s xn

�

, (A.2)

c1,s =
1
2
(−s− 1) , c2,s =

1
24
(s+ 1)(3s− 2) , c3,s = −

1
48
(s− 2)(s− 1)(s+ 1), (A.3)

Bs(x) = ζ(−s) +
∑

n≥1

(−x)n

n!

n
∑

m=1

S(m)n ζ(−s−m) , (A.4)
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where S(m)n are Stirling’s number of the first kind. Taking a derivative w.r.t. s one finds
∑

n≥1

ns ln(n)zn = ∂sLi−s(z) = Ãs(x) + B̃s(x) , (A.5)

Ãs(x) = Γ (s+ 1)x−(s+1)
�

ψ(0)(s+ 1)− ln x +
1
2
(s+ 1)x
�

ln x −ψ(0)(s+ 2)
�

−
1
24

x2(s+ 1)
�

(3s− 1) ln x − 3sψ(0)(s+ 2) + 2ψ(0)(s+ 2)− 3
�

+O
�

x3
�

�

, (A.6)

B̃s(x) = −ζ′(−s)−
∑

n≥1

(−x)n

n!

n
∑

m=1

S(m)n ζ′(−s−m) . (A.7)

B General case n= d

B.1 Exact result

In this Appendix we perform the analytical continuation to obtain the result for n = d. We
give explicit formulae for n= d = 1,2, 3.

Let us return to the formula (52) and (53) valid for d > n. Let us write the difference,
expressing the binomial coefficients in terms of Γ functions. One obtains

FM − GM =
Γ ( d−n

2 )

2n/2Γ ( d
2 )

M
∑

k=1

(−1)k+1 Ak,M (d, n)

Γ (k)Γ (−k+M + 1)2
, (B.1)

Ak,M (d, n) =
Γ
�

1− n
2

�

Γ
� n

2 − d
�2

Γ
�

−k− n
2 + 2
�

Γ
�

−d + k−M + n
2

�2

−
Γ
�

− n
2

�2
Γ
�

−d + n
2 + 1
�

Γ
�

−d − k+ n
2 + 2
�

Γ
�

k−M − n
2

�2 . (B.2)

However this form is not suited to perform the limit n = d. Instead we transform all the Γ
functions using Γ (x) = π/(sin(πx)Γ (1−x)), and simplify all the sine functions using explicitly
that k and M are integers. This leads to

Ak,M (d, n) = (−1)k
�

Γ
�

d + k− n
2 − 1
�

Γ
�

−k+M + n
2 + 1
�2

Γ
� n

2 + 1
�2
Γ
�

d − n
2

�

−
Γ
�

k+ n
2 − 1
�

Γ
�

d − k+M − n
2 + 1
�2

Γ
� n

2

�

Γ
�

d − n
2 + 1
�2

�

. (B.3)

Plugging Eq. (B.3) into (B.1), one can now take the limit n= d and one finds

FM − GM = −
M
∑

k=1

2−
d
2−1dΓ
� d

2 + k− 1
�

Γ
� d

2 − k+M + 1
�2

Γ
� d

2 + 1
�4
Γ (k)Γ (−k+M + 1)2

×
�

d
�

−2H d
2−k+M +H d

2+k−2 +H d
2−1

�

+ 4
�

, (B.4)

where Ha = ψ(a + 1) + γ is the Harmonic number and ψ(x) = d
d x lnΓ (x) the digamma

function.
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For n= d = 1 one finds

FM − GM =
M
∑

k=1

4
p

2Γ
�

k− 1
2

�

Γ
�

−k+M + 3
2

�2 �
2H−k+M+ 1

2
−Hk− 3

2
− 4+ ln 4
�

π2Γ (k)Γ (−k+M + 1)2
, (B.5)

coinciding with Eq. (82) of the main text. For n= d = 2 one finds

FM − GM =
M
∑

k=1

(−k+M + 1)2 (2H−k+M+1 −Hk−1 − 2) , (B.6)

and for n= d = 3 one finds

FM − GM =
M
∑

k=1

32
p

2Γ
�

k+ 1
2

�

Γ
�

−k+M + 5
2

�2 �
6H−k+M+ 3

2
− 3Hk− 1

2
− 10+ ln 64
�

27π2Γ (k)Γ (−k+M + 1)2
. (B.7)

B.2 Large-N asymptotic behaviors

We start with Eq. (58), which we write here again for convenience:

Q (z) =
Γ
� d−n

2

�

Γ
� d

2

�

2n/2
z
�

2F1

�

d + 1−
n
2

, d + 1−
n
2

, 1, z
�

(1− z)−n/2

− 2F1

�

1+
n
2

, 1+
n
2

, 1, z
�

(1− z)n/2−d
�

. (B.8)

Let us begin by analyzing the case n= d = 1. We first set n= 1. Then we write the expansion
of Q(z) in powers of η= 1− z. It has the form

Q(z) = η−d−3/2(a0(d) +ηa1(d) + . . . ) +η−2d−1/2(b0(d) +ηb1(d) + . . . )

+ η−1/2(c0(d) + c1(d)η+ . . . ) + e0 + e1η+ . . . (B.9)

Each coefficient has poles at d = 1, however the first two series degenerate into each others,
up to logarithms, in the limit d → 1. Adding all terms of a given order in the η expansion in
that limit we find that all poles in d − 1 cancel and one obtains a finite limit, which reads

Q(z) =
4
p

2(− lnη− 2+ 4 ln 2)
π3/2η5/2

−
p

2(−5 lnη− 8+ 20 ln 2)
π3/2η3/2

+O

�

1
p
η

�

. (B.10)

Surprisingly we find that the first two terms can be reproduced by the series expansion of

Q(z) = b3/2∂sLi−s(1−η)|s=3/2 + a3/2Li−3/2(1−η) +O

�

1
p
η

�

, (B.11)

a3/2 =
16
p

2
�

−14
3 + γ+ ln64
�

3π2
, b3/2 =

16
p

2
3π2

, (B.12)

which implies that for d = n= 1 one has

FM − GM =
�

a3/2 + b3/2 ln M
�

M3/2 +O
�

M−1/2, M−1/2 ln M
�

, (B.13)

i.e. the term O(M1/2, M1/2 ln(M)) vanishes. Note that the leading-order terms coincide with
the result (24) reported above.
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Figure 4: (a) FM −GM vs. M for n= d = 2. Markers represent the exact result (B.6),
rescaled by M3. Solid line is the corresponding leading-order asymptotic behavior
1
3

�

ln M + γ− 5
6

�

in Eq. (B.17). (b) Markers are the exact result (B.6) minus the three
leading-order terms [up to and including the O(M)] in Eq. (B.17), and solid line is
the next-order term, 1/24= 0.4166 . . . .

For n= d = 2 we first set n= 2. The we perform the expansion in η= 1− z for general d.
Since it is a bit tricky to obtain we reproduce it here. One finds

−QG(z) =
2

2− d
η−2−d

�

1−
3
2
η+

η2

2

�

, (B.14)

QF (z) = −
πη−2d csc(2πd)

(d − 2)Γ (2− 2d)Γ (d)2

�

1−
d + 1

2
η

+
(d − 1)
�

d2 − 2
�

η2

8d − 12
+
(d − 2)(d − 1)
�

d2 − 3
�

η3

72− 48d
+O
�

η4
�

�

+
π csc(2πd)

(d − 2)ηΓ (1− d)2Γ (2d)
+ c0 + c1η+ . . . (B.15)

[where csc(x) = 1/ sin(x)]. Taking the limit d → 2, all poles cancel and this simplifies into

Q(z) = −
2(lnη− 1)

η4
+

3 lnη− 4
η3

+
2− lnη
η2

+O(1) . (B.16)

Note that the term O(1/η) cancels and that there is no O(lnη) term (the O(η4) term in the
third line of (B.14) vanishes for d = 2). Using our standard method we finally obtain

FM−GM =
�

ln M + γ−
5
6

�

M3

3
+
�

ln M + γ−
1
2

�

�

M2

2
+

M
6

�

+
1
24
−

ln M
90M

+O
�

1
M

�

, (B.17)

see Fig. 4. In terms of N we obtain for n= d = 2

FN−GN =
p

2
3

N3/2 (ln N +λ2)+
N1/2

24
p

2

�

ln N +λ′2
�

+
1
12
−

79

11520
p

2

ln N
p

N
+O
�

1
p

N

�

, (B.18)

with λ2 = ln2+ 2γ− 5
3 and λ′2 = ln2+ 2γ− 7.

Applying the same procedure for n= d = 3 we find

Q(z) =
2
p

2
π3/2

�

16(−3 lnη− 5+ 6 ln4)
9η11/2

−
4(−21 lnη− 29+ 42 ln4)

9η9/2
(B.19)

+
−17 lnη− 14+ 34 ln4

4η7/2
+

13 lnη− 20− 26 ln 4
48η5/2

+
22 lnη− 127− 44 ln 4

6144η3/2
+
−690 lnη− 1951+ 1380 ln4

122880
p
η

+O (
p
η)
�

.
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Figure 5: (a) FM − GM vs. M for n = d = 3. Markers represent the exact result
(B.7), rescaled by M9/2. Solid line is the corresponding leading-order asymptotic

behavior 2
p

2
π2

512(ln M+γ− 1651
315 +ln 64)

2835 in Eq. (B.20). (b) Markers are the exact result
(B.7) minus the four leading-order terms [up to and including the O(M3/2])] in
Eq. (B.20), rescaled by

p
M , and solid line is the corresponding next-order term,

2
p

2
π2

353
p

M(ln M+γ+ 20395
2118 +ln 64)

69120 .

This leads to

FM − GM =
2
p

2
π2

�512M9/2
�

ln M + γ− 1651
315 + ln64
�

2835
(B.20)

+
256
315

M7/2
�

ln M + γ−
527
105

+ ln64
�

+
158
135

M5/2
�

ln M + γ−
5594
1185

+ ln 64
�

+
5
9

M3/2
�

ln M + γ−
64
15
+ ln 64
�

+
353
p

M
�

ln M + γ+ 20395
2118 + ln64
�

69120

−
821
�

ln M + γ− 15037
4926 + ln64
�

46080
p

M
+O(M−3/2 ln M)

�

,

see Fig. 5. In terms of N we obtain for n= d = 3

FN − GN =
2
p

2
π2

�

1024
945

√

√2
3

N3/2 (ln N +λ3) +
2× 25/6N5/6

105× 31/6

�

ln N +λ′3
�

−
437N1/6

11520× 65/6

�

ln N +λ′′3
�

�

+O
�

ln N
N1/2

�

(B.21)

with λ3 = ln3+19 ln2+3γ− 1651
105 , λ′3 = ln3+19 ln 2+3γ− 842

35 , λ′′3 = ln3+19 ln 2+3γ− 64541
4370 .
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C Semiclassical calculation of the exchange term in d = 2 and
d = 3

C.1 General trapping potential

Plugging the bulk approximation (84) for the kernel into the definition (23) of the exchange
term GN , we obtain

GN =

∫∫

KN (x,y)2

|x− y|
dxdy ≃
∫∫

1

ℓ (x)2d
Kbulk

d

�

|x− y|
ℓ (x)

�2 1
|x− y|

dxdy =

=

∫∫

1

ℓ (x)2d
Kbulk

d

�

|x− y|
ℓ (x)

�2 1
ℓ (x)

ℓ (x)
|x− y|

dxℓd (x)
dy
ℓd (x)

=
︸︷︷︸

u=y−x
ℓ(x)

=

∫

1

ℓ (x)d+1
dx

∫ Kbulk
d (|u|)2

|u|
du . (C.1)

For d = 2, Eq. (C.1) becomes

GN ≃
∫

ℓ (x)−3 dx

∫ ∞

0

Kbulk
2 (u)2 2πdu . (C.2)

The u integral can be calculated exactly,
∫ ∞

0

Kbulk
2 (u)2 2πdu= 2π

∫ ∞

0

�

J1 (2u)
πu

�2

du=
16

3π2
. (C.3)

So we get

GN ≃
16

3π2

∫

ℓ (x)−3 dx . (C.4)

We can recast this in terms of the density, using

γ2 = πΓ (2) = π =⇒ ℓ (x) = [NρN (x)γ2]
−1/2 = [πNρN (x)]

−1/2 , (C.5)

so we get the general formula for d = 2

GN ≃
16

3π2

∫

ℓ (x)−3 dx=
16

3π2

∫

[πNρN (x)]
3/2 dx , (C.6)

coinciding with Eq. (87) of the main text.

In d = 3 Eq. (C.1) becomes

GN ≃
∫

ℓ (x)−4 dx

∫ ∞

0

Kbulk
3 (u)2 4πudu . (C.7)

The integral over u can be calculated exactly:

∫ ∞

0

Kbulk
3 (u)2 4πudu= 4

∫ ∞

0

J3/2 (2u)2

(πu)2
du=

4
π3

. (C.8)

So we have the semiclassical result

GN ≃
4
π3

∫

ℓ (x)−4 dx , (C.9)
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which we can recast in terms of the density, using γ3 = π3/2 [Γ (3/2+ 1)] = π3/2 3
p
π

4 = 3π2

4 ,
and

ℓ (x) = [NρN (x)γ3]
−1/3 (C.10)

as

GN ≃
4
π3

∫

[NρN (x)γ3]
4/3 dx=

34/3

41/3π1/3

∫

[NρN (x)]
4/3 dx , (C.11)

which is Eq. (88) of the main text.

C.2 Explicit results for the harmonic trapping potential

In d = 2, for the harmonic oscillator V (r) = r2/2, the semiclassical density (83) reads

NρN (x)≃
1

2π
(µ− V (x))+ , (C.12)

where µ is found from the normalization. The edge is at redge =
p

2µ so

N ≃
∫

p
2µ

0

2πrNρN (r) dr =
µ2

2
=⇒ µ≃ (2N)1/2 . (C.13)

And now, using the general formula (87) for d = 2, we obtain

GN ≃
16

3π2

∫

[πNρN (x)]
3/2 dx≃

16
3π2

∫

p
2µ

0

[πNρN (r)]
3/2 2πrdr

≃
16

3π2

∫

p
2µ

0

�

π
1

2π

�

µ−
r2

2

��3/2

2πrdr =
16
p

2
15π

µ5/2 , (C.14)

which is the first line of (89) of the main text.

In d = 3, for the harmonic oscillator V (r) = r2/2, the semiclassical density (83) reads

NρN (r) =
p

2
3π2

�

µ−
r2

2

�3/2

+
, (C.15)

where µ is again found from the normalization. The edge is at redge =
p

2µ so

N =

∫

p
2µ

0

4πr2NρN (r) dr ≃
µ3

6
=⇒ µ≃ (6N)1/3 . (C.16)

And now, using the general formula (88) for d = 3, we obtain

GN ≃
34/3

41/3π1/3

∫

[NρN (x)]
4/3 dx≃

34/3

41/3π1/3

∫

p
2µ

0

4πr2

� p
2

3π2

�

µ−
r2

2

�3/2�4/3

dr

=
64
p

2µ7/2

105π2
, (C.17)

which is the second line of (89) of the main text.
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D Semiclassical calculation of the direct term in d = 2 and d = 3

Here we calculate the direct term FN , in the large-N limit by using semiclassical approximations
, for d = 2 and d = 3 and a Coulomb interaction n= 1.

D.1 d = 2

Plugging (for d = 2) the semiclassical density (83) NρN (x) ≃
1

2π (µ− V (x)) into Eq. (22),
we get

FN =

∫∫

NρN (x)NρN (y)
|x− y|

dxdy ≃
1

4π2

∫∫

|x|,|y|≤
p

2µ

�

µ− x2

2

��

µ− y2

2

�

|x− y|
dxdy . (D.1)

Changing the integration variables, x=
p

2µX, y =
p

2µY , this becomes

FN ≃
µ7/2

p
2π2

∫∫

|X|,|Y |≤1

�

1− X 2
� �

1− Y 2
�

|X −Y |
dXdY

=
µ7/2

p
2π2

∫∫

|X|,|Y |≤1

�

1− X 2
� �

1− Y 2
�

p

X 2 + Y 2 − 2X Y cosφ
dXdY , (D.2)

where φ is the angle between X and Y , X · Y = X Y cosφ. Using polar coordinates, this
integral becomes:

FN ≃
µ7/2

p
2π2

∫ 1

0

2πX dX

∫ 1

0

Y dY

∫ 2π

0

dφ

�

1− X 2
� �

1− Y 2
�

p

X 2 + Y 2 − 2X Y cosφ
, (D.3)

where the factor of 2π comes from the integration over the polar angle of X. Changing the
order of integration, we now perform the integrals over X and Y to obtain

FN ≃
p

2µ7/2

π

∫ 2π

0

dφ
1

210

�

30cos(2φ) + (34− 20cosφ − 30 cos(2φ))
Æ

2− 2 cosφ

+ (15 cos(3φ)− 47 cosφ) ln

� p

1− cosφ
p

2+
p

1− cosφ

�

− 42

�

. (D.4)

Integrating now over φ, we obtain FN ≃
256
p

2
315π µ

7/2, which is the first line of (90) of the main
text.

D.2 d = 3

We rewrite the direct term (22) as

FN≡
∫∫

NρN (x)NρN (y)
|x− y|

dxdy =

∫

dxNρN (x)JN (x) , JN (x) =

∫

dy
NρN (y)
|x− y|

. (D.5)

Since ρN (x) = ρN (x) is rotationally symmetric, so is JN (x) = JN (x). We now use that in
d = 3, ∇2 (1/ |x|) = −4πδ (x). Thus, applying the Laplace operator to JN we obtain

∇2JN (x) =
1
x2

d
d x

�

x2 dJN

d x

�

= −4π

∫

dyNρN (y)δ
3 (x− y) = −4πNρN (x) . (D.6)
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We now use the semiclassical approximation for the density (83), which in d = 3 reads

NρN (x)≃
p

2
3π2

(µ− V (x))3/2 . (D.7)

Plugging this into Eq. (D.6), we obtain

1
x2

d
d x

�

x2 dJN

d x

�

≃ −
4
p

2
3π

�

µ−
x2

2

�3/2

. (D.8)

The solution to this differential equation is

JN (x)≃
4
p

2
3π

�

µ3

4
p

2x
arctan

�

x
p

2µ− x2

�

+
1

120

√

√

µ−
x2

2

�

33µ2 + 2x4 − 13µx2
�

�

, (D.9)

where we determined the integration constants by requiring that

JN (0) =

∫

d y
NρN (y)
|y|

=

∫

p
2µ

0

4πy

p
2

3π2

�

µ−
y2

2

�3/2

d y =
8
p

2µ5/2

15π
. (D.10)

Plugging Eqs. (D.7) and (D.9) into the expression for FN in (D.5), we obtain

FN ≃
∫

p
2µ

0

p
2

3π2

�

µ−
x2

2

�3/2
4
p

2
3π

×

�

µ3

4
p

2x
arctan

�

x
p

2µ− x2

�

+
1

120

√

√

µ−
x2

2

�

33µ2 + 2x4 − 13µx2
�

�

4πx2d x

=

∫ 1

0

p

2µ dX
8µ5X
�

X 2 − 1
�

135π2

×
�

X
�

8X 6 − 34X 4 + 59X 2 + 48
p

1− X 2 − 33
�

− 15
p

1− X 2arctan
�

X
p

1− X 2

��

=
32768

p
2

155925π2
µ11/2 , (D.11)

which is the second line of (90) of the main text.

E Semiclassical calculation of E(1)N for d = n= 1 (at N ≫ 1)

At macroscopic x − y , one has N2ρN (x)ρN (y)≫ KN (x , y)KN (y, x). Neglecting the second
term in the integral (93) we find that

I1 ≃
p

2N

∫ 1

−1

dX

∫ X−ξ/
p

2N

−1

dY
2N
p

(1− X 2) (1− Y 2)
π2 |X − Y |

, (E.1)

where we have used the semiclassical density (91) and changed the integration variables
x =
p

2N X , y =
p

2N Y . The integrals over Y in (E.1) can be calculated exactly by using

2
p

(1− X 2) (1− Y 2)
π2 |X − Y |

=
2i
π
∂Y

�

i
Æ

(1− X 2) (1− Y 2) + X
p

1− X 2 ln
�

Y + i
p

1− Y 2
�

+i
�

1− X 2
�

ln

�

2i
�p

(1− X 2) (1− Y 2) + X Y − 1
�

(1− X 2)3/2 (Y − X )

�

�

. (E.2)
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The result is rather cumbersome so we will not present it here, but in the limit ξ ≪
p

2N it
simplifies considerably and we obtain

I1 ≃
p

2N3/2

π2

∫ 1

−1

dX
�

�

1− X 2
� �

−2 lnξ+ ln(8N) + 2 ln
�

1− X 2
�

− 2
�

+
p

1− X 2X
�

π+ 2i ln
�

X + i
p

1− X 2
���

. (E.3)

The integral over X can now be performed exactly, leading to Eq. (95) of the main text.
We now calculate I2. Inserting the semiclassical density (91) and the sine kernel (92) into

the integral (94) and approximating ρN (y)≃ ρN (x) (which follows from x ≃ y), we obtain

I2 ≃
∫

p
2N

−
p

2N
d x

∫ x

x−ξ
d y

�

2N − x2

π2
−

sin2
�p

2N − x2 (x − y)
�

π2 (x − y)2

�

1
|x − y|

=

=

∫

p
2N

−
p

2N
d x

∫ 0

−ξ
dz

�

2N − x2

π2
−

sin2
�p

2N − x2 z
�

π2z2

�

1
|z|

. (E.4)

The integral over z can be solved exactly. Denoting A= 2N − x2, we obtain

I2 ≃
1

4π2ξ2

∫

p
2N

−
p

2N
d x
�

Aξ2 ln
�

16A2ξ4
�

− 4Aξ2Ci
�

2
p

Aξ
�

+ 2(2γ− 3)Aξ2

+ 2
p

Aξ sin
�

2
p

Aξ
�

− cos
�

2
p

Aξ
�

+ 1
�

, (E.5)

where Ci (z) = −
∫∞

z cos (t)/t d t is the cosine integral. Taking the leading-order asymptotic
behavior of the integrand at ξ≫ 1/

p
A∼ 1/

p
N , this expression simplifies considerably, to

I2 ≃
∫

p
2N

−
p

2N
d xA

2 ln
�

ξ
p

A
�

+ 2γ− 3+ ln(4)

2π2
. (E.6)

Finally, plugging back A= 2N − x2 and performing the integral over x , we obtain Eq. (96) of
the main text.

F Perturbed density

Here we will find the leading-order correction to the density due to the interactions in d = 2, 3
for n= 1 (Coulomb interactions). The starting point is the integral equation (97) and (98) of
the main text. We now solve these equations perturbatively in ε. At order 0 in ε, one simply
obtains µeff = µ, Veff (x) = V (x), and the density is NρN (x) ≃

1
(2π)d/2Γ(1+ d

2 )
(µ− V (x))d/2.

The leading-order ε > 0 correction can be obtained by plugging this density into Eq. (98)
which, for Coulomb interactions reads

Veff (x) = V (x) + ε

∫

NρN (y)
|x− y|

dy. (F.1)

From here onward, we treat the cases d = 2 and d = 3 separately.
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F.1 d = 2

For d = 2 the equation (F.1) reads (for the harmonic potential)

NρN (x)≃
µeff − Veff (x)

2π
, Veff (x) =

x2

2
+ ε

∫

NρN (y)
|x− y|

dy . (F.2)

In the limit of small ε, we obtain, by plugging in the unperturbed density NρN (x) ≃
µ−V (x)

2π ,
the following perturbative expression for the effective potential:

Veff

�p

2µX
�

= µX 2 +
p

2εµ3/2v1 (X) , v1 (X) =

∫

1− Y 2

2π |X −Y |
dY . (F.3)

The integral over Y can be solved exactly in polar coordinates, where φ is the angle between
X and Y

v1 (X) =

∫ 1

0

Y dY

∫ 2π

0

dφ
1− Y 2

2π
p

X 2 + Y 2 − 2X Y cosφ
=

= −
∫ 2π

0

dφ
24π

¦
Æ

X 2 − 2X cosφ + 1
�

7X 2 + 5X (3X cos(2φ) + 2cos(φ))− 8
�

+ 3X cosφ
�

5X 2 cos(2φ)− X 2 − 4
�

ln
�
Æ

X 2 − 2X cosφ + 1− X cosφ + 1
�©

(F.4)

=
4(X − 1)
�

�

X 2 − 2
�

E
�

− 4X
(X−1)2

�

− (X + 1)2K
�

− 4X
(X−1)2

��

9π
, (F.5)

where E(m) and K(m) are the complete elliptic integrals of first and second kind, respectively
[41]. The density is therefore given by

NρN

�p

2µX
�

≃
µeff −µX 2 −

p
2εµ3/2v1 (X )

2π
. (F.6)

It remains to determine µeff, which we do by requiring the normalization
N =
∫∞

0 2πxNρN (x) d x of the density. For this purpose, it is more convenient to use the
expression (F.4) for v1(X ). Then we can perform the integration first over X and then over φ
to obtain
∫ 1

0

X v1 (X ) d x =

∫ 2π

0

dφ
3600π

§

60sin
�

φ

2

�

[17− 15cos(2φ)]

+45 cos(3φ)
�

1− 5 ln
�

2sin
�

φ

2

�

− cosφ + 1
��

+ cosφ
�

−600sin
�

φ

2

�

+ 705 ln
�

2 sin
�

φ

2

�

− cosφ + 1
�

− 173
�

−
2 [cosφ ln (1− cosφ) + 1]

15

ª

=
32

45π
. (F.7)

Using this we can now find the normalization of the density:

N = 4πµ

∫ ∞

0

X NρN

�p

2µX
�

dX ≃ 2µ

∫ 1

0

X
�

µeff −µX 2 −
p

2εµ3/2v1 (X )
�

dX

= 2µ

�

µeff

2
−
µ

4
−

32
p

2εµ3/2

45π

�

, (F.8)
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which leads to

µeff ≃
N
µ
+
µ

2
+

64
p

2εµ3/2

45π
≃ µ+

64
p

2εµ3/2

45π
. (F.9)

Plugging this into Eq. (F.6), we obtain the density

NρN

�p

2µX
�

≃
µ
�

1− X 2
�

+
p

2εµ3/2
� 64

45π − v1 (X )
�

2π
, (F.10)

which is Eq. (99) in the main text.
As explained in the main text, this calculation also enables us to check our predictions for

the ground-state energy at leading order in large N , via the relation dEN/dN ≃ µeff. From

Eqs. (6) and (7) in d = 2, we have E(0)N ≃
2
p

2 N3/2

3 so
dE(0)N
dN ≃

p
2N , while from Eq. (25) we

have

E(1)N ≃
FN

2
≃

512× 21/4N7/4

315π
=⇒

dE(1)N

dN
≃

128× 21/4N3/4

45π
. (F.11)

Indeed, by plugging µ ≃
p

2N into Eq. (F.9) we find that µeff ≃
dE(0)N
dN + ε

dE(1)N
dN + O
�

ε2
�

as
expected.

F.2 d = 3

As noted in the main text, for n= d−2 the integral equation for the effective potential can be
transformed into a differential one. For d = 3 the Poisson equation may be obtained by taking
the Laplacian of Eq. (F.1), one obtains

∇2Veff (x) =∇2V (x)− 4πεNρN (x) , (F.12)

where we used that∇2 (1/ |x|) = −4πδ (x). For the harmonic oscillator, V (x) = x2/2 we get,
by plugging in the unperturbed (ε= 0) semiclassical density:

1
x2

d
d x

�

x2 d (Veff − V )
d x

�

≃ −ε
4
p

2
3π

�

µ−
x2

2

�3/2

. (F.13)

By integrating this equation we obtain the leading-order correction to the effective potential,

Veff (x) ≃
x2

2
+ εV1 (x) , (F.14)

V1 (x) =
4
p

2
3π

�

µ3

4
p

2x
arctan

�

x
p

2µ− x2

�

+
1

120

√

√

µ−
x2

2

�

33µ2+2x4−13µx2
�

�

,

(F.15)

where we determined the integration constants by requiring

Veff (0) = V (0) + ε

∫

NρN (y)
|y|

d y ≃ ε
∫

p
2µ

0

4πy

p
2

3π2

�

µ−
y2

2

�3/2

d y = ε
8
p

2µ5/2

15π
(F.16)

(which is Eq. (F.1) with x= 0). From the effective potential, we obtain the density:

NρN (x)≃
p

2
3π2

(µeff − Veff (x))
3/2 ≃

p
2

3π2

�

(µeff − V (x))3/2 −
3
2
ε
Æ

µeff − V (x)V1 (x)
�

. (F.17)
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We can now calculate µeff from the normalization of the density (F.17)

N ≃
∫

p
2µ

0

4πx2NρN (x) d x ≃
µ3

eff

6
− ε

8192
p

2µ9/2

14175π2
. (F.18)

which we invert to get

µeff ≃ (6N)1/3 + ε
32768× 21/3

4725× 31/6π2
N5/6 . (F.19)

Finally, plugging this back into Eq. (F.17), we obtain

NρN (x)≃
p

2
3π2

�

(µ− V (x))3/2 +
3
2
ε
Æ

µ− V (x)

�

32768× 21/3

4725× 31/6π2
N5/6 − V1 (x)

��

, (F.20)

which is Eq. (101) of the main text. To remind the reader, µ ≃ (6N)1/3 is the fermi energy at
ε= 0.

Let us check that the relation dEN/dN ≃ µeff holds. From Eqs. (6) and (7) in d = 3, we
have

E(0)N ≃
34/3N4/3

28/3
=⇒

dE(0)N

dN
≃

31/3N1/3

22/3
, (F.21)

and from Eq. (27) we have

E(1)N ≃
65536× 21/3N11/6

17325× 31/6π2
=⇒

dE(1)N

dN
≃

32768× 21/3N5/6

4725× 31/6π2
. (F.22)

Indeed, by comparing with Eq. (F.19), µeff ≃
dE(0)N
dN + ε

dE(1)N
dN +O
�

ε2
�

as expected.
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