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Abstract

Recent advances in cold-atom platforms have made real-time dynamics accessible, re-
newing interest in the motion of superfluid vortices in two-dimensional domains. Here
we show that the energy and the trajectories of arbitrary vortex configurations may be
computed on a complicated (curved or bounded) surface, provided that one knows a
conformal map that links the latter to a simpler domain (like the full plane, or a circular
boundary). We also prove that Hamilton’s equations based on the vortex energy agree
with the complex dynamical equations for the vortex dynamics, demonstrating that the
vortex trajectories are constant-energy curves. We use these ideas to study the dynamics
of vortices in a two-dimensional incompressible superfluid with an elliptical boundary,
and we derive an analytical expression for the complex potential describing the hydro-
dynamic flow throughout the fluid. For a vortex inside an elliptical boundary, the orbits
are nearly self-similar ellipses.
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1 Introduction

Quantized vortices are fundamental topological excitations of superfluids, such as liquid 4He-
II [1], dilute one- and two-component Bose-Einstein condensates (BECs), and two-component
fermionic mixtures [2, 3]. At low temperatures, these systems become nearly ideal fluids
with negligible viscosity and dissipation. As a result, superfluid vortices obey the dynami-
cal equations of classical hydrodynamics [4, 5] augmented with the condition of quantized
vorticity [6,7].

Three-dimensional vortex lines have various bending modes that complicate the analysis
of their dynamics. The situation becomes much simpler in two dimensions because only trans-
lational motion remains. In addition, for dilute-gas BECs, the typical diameter of the vortex
cores is much less than all other length scales like the trap size or intervortex separation. Hence
these vortices act like point vortices, with the x and y coordinates as canonically conjugate
variables and first-order equations of motion.

In the 1960s, experiments with rotating superfluid He-II [8,9] stimulated theoretical stud-
ies of equilibrium two-dimensional (2D) vortex states in cylinders [10] and annuli [11]. More
recently, some of us have studied the dynamics of quantized vortices on nonplanar 2D sur-
faces [12–15] relying on a complex potential that exploits the properties of conformal trans-
formations.

It is useful to describe a superfluid system at low temperature with a macroscopic conden-
sate wave function Ψ(r ) =

p

n(r )eiΦ(r ) in terms of two real fields, the number density n(r )
and the phase Φ(r ). The latter determines the two-dimensional superfluid velocity through
v = ħh∇Φ/M , with M the atomic mass. The flow is then irrotational ∇ × v = 0 everywhere
except at the phase singularities associated with the vortex cores.

Many cold-atom experimental platforms are able to produce essentially uniform sys-
tems [16,17], with negligible local changes of the density in the bulk of the superfluid. In the
absence of sound waves from acoustic excitations, the continuity equation for particle conser-
vation, ∂t n+∇ · (nv) = 0, implies that the flow is effectively incompressible, with ∇ · v = 0.
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As a consequence, such a two-dimensional flow may also be described by the stream function
χ(r ), in terms of which the superfluid velocity in the x y plane becomes v = (ħh/M)ẑ ×∇χ.

We now have two distinct representations of the hydrodynamic velocity v . When written
out in detail, the cartesian components of v satisfy the Cauchy-Riemann equations. Hence χ
and Φ can be interpreted as the real and imaginary parts of an analytic function of a complex
variable z = x + i y . In this way, we construct the complex potential defined as

F(z) = χ(r ) + iΦ(r ) , (1)

with r the two-dimensional position vector. The Cauchy-Riemann conditions give the follow-
ing compact representation of the hydrodynamic flow velocity:

vy + ivx =
ħh
M

dF(z)
dz

. (2)

Early experiments on rotating 4He-II used circular containers with rotationally invariant
walls. For such a geometry, surface roughness at the wall triggers the nucleation of vortices,
which then migrate into the bulk of the superfluid. In contrast, a rotating elliptical boundary
pushes the superfluid, imparting angular momentum even though the flow remains irrotational
for slow rotations. As the rotation rate increases, however, isolated vortices eventually appear
within the container [18]. These predictions found a solid confirmation in experimental stud-
ies of vortex states in rotating superfluid 4He-II for three elliptical containers with different
eccentricities [19].

Reference [18] focused on the energy and angular momentum of a vortex in an elliptical
boundary, with no consideration of the associated vortex dynamics, which was experimentally
inaccessible at that time. More recently, the creation of cold-atom BECs has allowed direct
real-time studies of vortex dynamics [20–22]. In this context, we study here the motion of
two-dimensional superfluid vortices outside and inside a stationary elliptical boundary. An
additional motivation is the recent experimental accessibility of such configurations using dig-
ital micromirror devices (DMDs) [17,23–27].

Previous studies of vortices [18] or two-dimensional point charges [28] with elliptical
boundaries have used standard methods of mathematical physics with elliptic coordinates
[29], leading to real solutions expressed as infinite series whose convergence requires detailed
analysis. Here, instead, we rely on complex variables and conformal maps to solve the same
problems, giving explicit solutions expressed in terms of well-known functions of mathematical
physics.

The recent study [28] of two-dimensional point charges outside and inside an elliptical
boundary obtained infinite series for the electrostatic potential and focused on finding equiv-
alent sets of charged images. The similar problem of point vortices with the same geometry is
far richer. In addition to determining the stream function χ for the vortices (analogous to the
electrostatic potential for the charges), the dynamics of the vortices is also of great interest,
particularly because of experiments with dilute-gas BECs. In addition, our complex formalism
also gives the phase pattern Φ of the vortices (analogous to the electric field lines).

Reference [30] used a conformal transformation to relate the energy of a vortex on a curved
surface to the corresponding energy on a simpler surface through the metric properties of the
conformal map relating the two surfaces. Section 2 reviews and extends this technique to
obtain the complex dynamics of a single vortex inside a general closed boundary in terms of
the complex dynamics in the simpler geometry. We also show that these dynamical equations
agree with the real Hamilton’s equations based on the energy as a function of the coordinates
of the vortex. In Sec. 3, we study a single vortex both inside and outside a circular boundary,
which serves as our simple geometry. Section 4 presents the Joukowsky transformation and
its analytic properties that play an important role in our analysis. In Sec. 5 we study a single
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superfluid vortex outside a two-dimensional elliptical boundary. In the subsequent Sec. 6 we
solve the more intricate problem of a single vortex in an elliptical domain. We obtain an ex-
plicit analytical expression for the complex potential, leading to the equations of motion for
a vortex inside an elliptical boundary. Their numerical solution gives the vortex trajectories,
which are approximately but not exactly elliptical. We also generalize to a multivortex con-
figuration, showing results for a symmetric vortex dipole. Finally, in Sec. 7, we summarize
and suggest possible future extensions of our work. Appendix A presents an alternative (but
equivalent) treatment of a vortex inside an ellipse, based on a direct transformation from a
circle to the ellipse.

2 Conformal maps and basic physical properties

We here study the behaviour of a single positive quantized vortex either inside or outside a
quite general curved boundary. It is convenient to solve this problem with a conformal map
from a simpler standard boundary (for example a circle) to the general boundary (for example
an ellipse). Let z be the complex plane with the standard boundary and w be the complex
plane with the general boundary. Assume that w(z) is the conformal map from the standard
boundary to the general boundary, with inverse z(w). Infinitesimal displacements on the two
surfaces are related by

dz = eσ(w)dw , (3)

which defines the space-dependent complex scale factor

dz(w)
dw

= z′(w) = eσ(w) or, equivalently, σ(w) = ln
�

z′(w)
�

. (4)

Reference [30] studies a real infinitesimal displacement with a real scale factor eω(w). They
are essentially the same, with ω(w) = Reσ(w). In the z plane, a vortex at z0 has the com-
plex potential Fz(z; z0) that is known explicitly. The corresponding complex potential for the
general boundary in the w plane is

Fw(w; w0) = Fz[z(w); z(w0)] . (5)

2.1 Energy of a single vortex

Since the energy Ez =
1
2 nM

∫

d2r |v |2 in the z plane is purely kinetic, it is simple to find
Ez of a single vortex using the stream function χ = Re Fz(z; z0) and the relation for the
flow velocity v = (ħh/M) n̂ × ∇χ, where n̂ is the unit normal to the z plane. Specifically,
Ez =

1
2ħhn

∫

d2r v · n̂ ×∇χ. Some vector manipulations lead to

Ez =
ħhn
2

∫

d2r [−∇ · (χn̂ × v)−χn̂ · (∇× v)] . (6)

In the first term, the divergence theorem gives integrals of the form
∮

d l · vχ around
each boundary. The stream function on the jth boundary takes the constant value χ j and
the remaining line integral is a positive or negative integer n j times 2πħh/M , where the line
integral is in the positive sense and the sign of n j depends on the sense of the flow around the
boundary.

The second term involves the vorticity ∇ × v = (2πħh n̂/M)δ(2)(r − r0), centered at the
vortex position, where the stream function diverges logarithmically. The integral thus reduces
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to a sum of two terms evaluated inside the vortex core (0-subscript):
∫

d2rχn̂ · (∇× v) =

∫

0

d2r n̂ · (∇× v) (χ − ln |r − r0|) +
∫

0

d2r n̂ · (∇× v) ln |r − r0|

=
2πħh
M

lim
r→r0

[χ(r )− ln |r − r0|] ,

(7)

where we assume that the vortex has a small hollow core excluding the vorticity at its center.
A combination of these results gives

Ez =
πħh2n

M

 

∑

j

n jχ j − χ̃z
0

!

, (8)

where χ̃z
0 = Re limz→z0

[Fz(z; z0)− ln(z − z0)] is the regularized stream function. A completely

analogous formula holds for the energy in the w plane Ew = (πħh2n/M)
�

∑

j n jχ j − χ̃w
0

�

.
Now consider the difference Ew − Ez . The conformal transformation conserves both the

quantization integers n j and the circulation constants χ j , so that

Ew − Ez =
πħh2n

M

�

χ̃z
0(z(w0))− χ̃w

0 (w0)
�

= −πħh
2n

M
Re lim

w→w0
ln
�

z(w)− z(w0)
w−w0

�

.

The second line is obtained using the definitions of the regularized stream functions, together
with the properties of the conformal map which ensure that the terms involving the full com-
plex potential cancel. Writing w = w0 + δ and expanding z(w) ≈ z(w0) + δ z′(w0) gives the
very simple and general result

Ew = Ez −
πħh2n

M
Reσ(w0) , (9)

where σ(w) is the scale factor defined in Eq. (4).

2.2 Dynamics of a single vortex

For a general complex potential F(z), Eq. (2) gives the hydrodynamic velocity including the
circulating flow around the vortex itself. This latter flow does not affect the vortex dynamics
and must be subtracted off. In this way, the vortex in the z plane obeys the dynamical equation

iż∗0 =
ħh
M

�

dFz(z; z0)
dz

− 1
z − z0

�

z→z0

, (10)

where ∗ denotes complex conjugation. Similarly, the vortex at w0 in the w plane has the
dynamical equation

iẇ∗0 =
ħh
M

�

dFw(w; w0)
dw

− 1
w−w0

�

w→w0

. (11)

Here, however, we have a conformal map w(z) relating the two planes, so that the complex
potential in the w plane becomes Fw(w; w0) = Fz[z(w); z(w0)]. As a result, we can write

dFw(w; w0)
dw

= z′(w)
dFz (z(w); z(w0))

dz
,
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giving

iẇ∗0 = z′(w0) iż
∗
0 +
ħh
M

�

z′(w)
z(w)− z(w0)

− 1
w−w0

�

w→w0

, (12)

where ż∗0 has to be understood as a function of w0. We again write w = w0 + δ and expand
z(w)− z(w0)≈ δz′(w0) +

1
2δ

2z′′(w0). The final result becomes

iẇ∗0 = iż∗0 eσ(w0) +
ħh

2M
σ′(w0) , (13)

where σ′(w0) = (dσ(w)/dw)w0
. Integration of this complex equation would give the time-

dependent vortex dynamics {x0(t), y0(t)}.

2.2.1 Verification of Hamilton’s equations

Hamilton’s equations for vortex dynamics with a closed boundary have the familiar form

ẋ0 =
∂ Ew/(2πħhn)
∂ y0

, ẏ0 = −
∂ Ew/(2πħhn)
∂ x0

, (14)

involving Ew(x0, y0). Here, we verify that they are equivalent to the complex dynamics in
Eq. (13).

The stream function is the real part of the complex potential, so that the general expres-
sion (8) for the energy has the form Ew = (πħh2n/M)ReEw(w0, w∗0). In general, Ew(w0, w∗0) is
a complex function of both w0 and w∗0. With w0 = x0 + i y0 and w∗0 = x0 − i y0, Hamilton’s
equations become

2M ẏ0

ħh
= −Re

�

∂ Ew

∂ w0
+
∂ Ew

∂ w∗0

�

and
2M ẋ0

ħh
= −Im

�

∂ Ew

∂ w0
− ∂ Ew

∂ w∗0

�

,

from which the basic result immediately follows:

ẏ0 + i ẋ0 = iẇ∗0 = −
ħh

2M

�

∂ Ew

∂ w0
+

�

∂ Ew

∂ w∗0

�∗�
. (15)

Equation (9) shows that Ew(w0, w∗0) = Ez[z(w0), z∗(w∗0)]−σ(w0), where Ez(z, z∗) follows
from the real part of the complex potential Fz(z; z0). Hence Eq. (15) becomes

iẇ∗0 =−
ħh

2M

�

∂ Ez(z, z∗)
∂ z

�

�

�

�

z(w0)

dz(w0)
dw0

+

�

∂ Ez(z, z∗)
∂ z∗

�

�

�

�

z∗(w∗0)

dz∗(w∗0)
dw∗0

�∗
−σ′(w0)

�

=iż∗0 eσ(w0) +
ħh

2M
σ′(w0) .

(16)

This complex dynamical equation is the same as Eq. (13). Since Hamilton’s equations conserve
the energy, the equivalence with Hamilton’s equations ensures that the vortex orbits are closed
and the same as the closed curves of constant energy.

2.3 Generalization to configurations with multiple vortices

For a collection of Nv vortices with charges c j located at positions w j the vorticity reads

∇× v = (2πħh n̂/M)
∑Nv

j=1 c jδ
(2)(r − r j), and the above relations readily generalize to

Ew = Ez −
πħh2n

M

Nv
∑

j=1

c2
j Reσ(w j) , (17)
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and

iẇ∗j = iż∗j eσ(w j) +
ħh c j

2M
σ′(w j) . (18)

Reference [30] obtained our Eq. (17) in their Eq. (85), but the approach outlined above seems
simpler and more direct. In contrast, our relation (18) for the vortex velocity is new, since
Ref. [30] explicitly excluded vortex dynamics from its consideration. Interestingly, the contri-
butions to the energy arising from the scale factors are independent of the sign of the vortices.

2.4 Example: Conformal map from a plane to the surface of a cylinder

The conformal map z±(w) = e±iw takes the flat z plane to the curved w surface of a cylinder
with unit radius. We write w = x + i y so that z±(w) = e±i x e∓y . This transformation is 2π
periodic in x , which is the angular direction around the cylinder, while y becomes the axial
direction along the length of the cylinder. Appendix A of Ref. [12] discusses this transformation
in more detail. Here, we note that z′±(w0) = eσ

±(w0) = ±ie±iw0 , so that σ±(w0) = ±iπ/2± iw0.
Since a single vortex in an unbounded z plane remains stationary, the term iż∗0 in Eq. (13)

vanishes, leaving the result iẇ∗0 = i ẋ0 + ẏ0 = ±iħh/(2M). This means that the vortex pre-
cesses uniformly around the cylinder with quantized speed ±ħh/(2M) in either direction at
fixed height y0, as found in Ref. [12] by a different method. This example is interesting be-
cause the motion of the vortex arises solely from the scale factor.

Similarly, the interaction energy of a vortex dipole at z1 and z2 on the z plane is
Ez = (2πħh2n/M)Re ln(z1 − z2). The interaction energy of a dipole with vortices at w1 and w2
on the surface of a cylinder is readily found using Eq. (17) to be

Ew =
2πħh2n

M

§

Re ln [z+(w1)− z+(w2)]−
1
2

Re
�

σ+(w1) +σ
+(w2)

�

ª

=
2πħh2n

M
Re ln

h

sin
�w1 −w2

2

�i

+ const .

(19)

This result coincides with the one found via a more complicated route in Eq. (27) of Ref. [12].

3 Single vortex with a circular boundary

We now apply this general formalism, with the z plane containing a circular boundary of
radius R and the w plane containing an elliptical boundary. In this section, we review the
elementary solutions for a single vortex at z0 both inside and outside a circular boundary of
radius R [5]. They rely on a single opposite-sign image vortex at z′0 = R2/z∗0 on the opposite
side of the circular boundary. The following section then describes the Joukowsky conformal
transformation that maps concentric circles in the z plane to confocal ellipses in the w plane.

3.1 Vortex dynamics

As noted above, the complex potential for a vortex with a circular boundary involves a single
opposite-sign image. We now present the two cases of a vortex inside/outside the circular
boundary, which require an image vortex outside/inside the boundary.

3.1.1 Vortex inside circular boundary

The complex potential for a positive vortex on the z plane inside a circular boundary of radius
R is

Finside−circle(z; z0) = ln(z − z0)− ln
�

z − z′0
�

. (20)
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The first term of Eq. (20) describes circulating flow around the vortex and does not contribute
to the vortex dynamics. As a result, only the second term is relevant and we have the complex
dynamical equation

iż∗0 =
ħh

Mz0

|z0|2
R2 − |z0|2

. (21)

For this interior vortex the uniform precession rate is

θ̇0 =
ħh

M(R2 − r2
0 )

. (22)

3.1.2 Vortex outside circular boundary

The complex potential for a positive vortex on the z plane outside the circular boundary is

Foutside−circle(z; z0) = ln(z − z0)− ln
�

z − z′0
�

+ n0 ln z . (23)

Here the last term represents an n0-fold quantized circulation around the origin, where n0 is a
general integer. Note that the circulation ni around the circular boundary at radius R includes
both the central vortex and the negative image at distance R2/r0 < R, giving ni = n0−1, using
the general notation from Sec. 2.1. It is straightforward to find the precession rate for a vortex
outside the circular boundary, that is

θ̇0 =
ħh

M r2
0

�

n0 −
r2
0

r2
0 − R2

�

=
ħh

M r2
0

�

ni −
R2

r2
0 − R2

�

. (24)

This result reproduces Eq. (B8) in Ref. [12].

3.2 Energy of one vortex

We now use Eq. (8) to find the energy Ez of a single vortex with a circular boundary. Specifi-
cally, we need the stream function

χcircle(r ; r0) = Re Fcircle(z; z0) = n0 ln r + ln |r − r0| − ln |r − r ′0| , (25)

with r = (r,θ ) in polar coordinates and similarly for r0 = (r0,θ0) and r ′0 = (R
2/r0,θ0).

For an exterior vortex, there are two boundaries: an outer circle at R∞ where nout = n0
and χout = n0 ln R∞; and an inner circle at R where nin = −n0+1 and χin = n0 ln R+ ln(r0/R).
In addition, we need χ̃z

0 = n0 ln r0 − ln |r0 − R2/r0|. Substitution into Eq. (8) gives the energy

Ecircle =
πħh2n

M

�

n2
0 ln

�

R∞
R

�

− 2n0 ln
� r0

R

�

− ln R+ ln
�

�r2
0 − R2

�

�

�

. (26)

As a check on this expression, Ecircle depends only on r0. Conservation of energy and Hamilton’s
equations confirm that the vortex moves on closed circular orbits with angular velocity (22)
or (24).

4 Joukowsky map

The Joukowsky map [31] usually appears in connection with airfoil design. Here, instead, we
focus on its simpler property of mapping a family of concentric circles into a family of confocal
ellipses. Specifically, we study the Joukowsky map from the z plane to the w= x + i y plane

w=
1
2

�

z + z−1
�

. (27)
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Consider the circle z = Reiθ , with R > 1. The Joukowsky transformation maps this circle
in the z plane into the parametric curve x = 1

2(R+R−1) cosθ and y = 1
2(R−R−1) sinθ in the w

plane. Eliminating θ gives the ellipse x2/a2 + y2/b2 = 1 with semimajor axis a = 1
2(R+ R−1)

and semiminor axis b = 1
2(R− R−1). The inverse relations are R = a + b and R−1 = a − b. In

addition we have a2 − b2 = 1 so that the ellipse has focal points at w= ±1.
Note that the limit R→∞ yields a large circle while the limit R→ 1 yields a flat ellipse

encircling the focal line. This discussion holds for any R, so that the Joukowsky transformation
maps a family of concentric circles in the z plane into a family of confocal ellipses in the w
plane.

The Joukowsky transformation has several interesting properties:

1. The function (27) has a simple pole at z = 0. The differential dw = w′(z)dz gives
the element of squared length |dw|2 = |w′(z)|2|dz|2. The transformation is conformal
everywhere except at z = ±1 where w′(z) = 1

2(1− z−2) vanishes. These points map to
the focal points at w= ±1.

2. The Joukowsky transformation is symmetric under the interchange z↔ z−1. This in-
version symmetry means that the outer circle at R and the inner circle at the inversion
radius R−1 form the boundaries of an annulus. In addition, two points in the z plane,
one outside the unit circle and the other inside the unit circle, both map into the same
point in the w plane.

3. It will be important to consider the inverse function z(w), and it is straightforward to
find the two roots z±(w) = w±pw2 − 1. As expected from the inversion symmetry, we
have z+(w) z−(w) = 1. We choose to put a branch cut between the focal points at w= ±1
with the function z+(w) real and positive for w→ +∞ along the positive real axis. The
two roots z±(w) form two Riemann sheets; each region |z| < 1 and |z| > 1 maps onto
the whole w plane.

5 Vortex outside an elliptical boundary

It is now easy to use the results of Sec. 2 to find the energy and dynamics of a single vortex
outside an elliptical boundary by combining the Joukowsky transformation with the corre-
sponding results for a vortex outside a circular boundary. Since the vortex is outside, the
relevant root has the + sign, and we use the notation

Z(w) = w+
p

w2 − 1 . (28)

Here the procedure is straightforward because the branch cut of the inverse function Z(w) lies
in the excluded interior region of the ellipse. As shown in the following Sec. 6, the situation for
a vortex inside the elliptical boundary requires a more careful treatment because the branch
cut lies inside the physical region.

5.1 Complex potential for a vortex outside an elliptical boundary

We start from the complex potential Eq. (23) and use the Joukowsky map to find

Foutside−ellipse(w; w0) = Fcircle (Z(w);Z(w0))

= n0 lnZ(w) + ln [Z(w)− Z(w0)]− ln

�

Z(w)− (a+ b)2

Z(w0)∗

�

. (29)
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The real part is the stream function and the imaginary part is the phase function. Figure 1
uses these real functions to plot the stream lines and phase pattern for two cases: n0 = 0 and
n0 = 1. These figures have all the expected features and verify that the proposed Joukowsky
mapping from a circle to an ellipse is correct.

Majic [28] used elliptic coordinates to study the potential of a two-dimensional point
charge outside an elliptical grounded conducting surface. The resulting real expression was
an infinite series, in contrast to the real part of the complex potential in Eq. (29), which is a
simple sum of three logarithms. Moreover, our formalism has the advantage of giving not only
the streamlines, but also the phase plots. As shown below, it yields many other physical results
such as the vortex dynamics and the vortex self energy Eoutside−ellipse, all expressed explicitly
in terms of well-known mathematical functions.
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y
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Figure 1: Real and imaginary parts of Eq. (29) giving streamlines (black lines) and
phase (colour coding, and white lines) for a vortex outside of an ellipse (indicated
respectively by the bright green dot and the black thick contour). The ellipse has
aspect ratio b/a = 0.6, and its two foci are joined by the red dashed line. Left panel:
n0 = 0, meaning circulation ni = −1 around the elliptical boundary. Right panel:
n0 = 1, meaning circulation ni = 0 around the elliptical boundary.

5.2 Energy of a vortex outside an elliptical boundary

Equation (9) applies directly here, using Eq. (26) for Ez . For the circular boundary, the radial
position is r0 = |z0| with R = a + b and R∞ = a∞. The inverse transformation in Eq. (28)
gives dZ(w)/dw= Z(w)/

p
w2 − 1, so that σ(w) = lnZ(w)− ln

�

w2 − 1
�

/2. In this way, we find
the compact result for the energy of a vortex at w0 outside an elliptical boundary

Eoutside−ellipse =
πħh2n

M

�

n2
0 ln

� a∞
a+ b

�

− 2n0 ln
� |Z(w0)|

a+ b

�

− ln(a+ b)

+ ln
�|Z(w0)|2 − (a+ b)2

�

+
1
2

ln |w2
0 − 1| − ln |Z(w0)|

�

.
(30)

Equipotential curves of this energy for n0 = 0 are closed vortex orbits around the elliptical
boundary, as shown in Fig. 2. To understand this figure, we consider a single vortex at a small
distance d ≪ a outside the elliptical boundary. If d is much smaller than the local radius of
curvature, then the boundary is effectively flat. In this case, the condition of tangential flow at
the boundary requires an opposite-sign image at a distance d inside the boundary. The vortex
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and its effective image dominate the complex potential, which then approximates that of a
vortex dipole with separation 2d. The energy has a logarithmic dependence∝ ln(2d), and
the translational velocity is∝ 1/(2d) [5]. Considering the simple case w0 = a+ d and Taylor
expanding up to linear order in d/a ≪ 1, one can see that the logarithmic behaviour of the
energy arises from the first term in the second line of Eq. (30). Conservation of energy requires
that d remains constant, so that the corresponding closed constant-energy curve follows the
shape of the boundary. The increased density of contour lines near the boundary reflects the
increasingly rapid precession near the elliptical surface, as expected from Hamilton’s equa-
tions.

The situation is quite different for a vortex far from the boundary, as seen from Fig. 2,
where such curves become circular. In the limit |w0| ≫ 1, in fact, |Z(w0)| ≈ 2|w0| and
1
2 ln |w2

0 − 1| ≈ ln |w0|, so that the energy (30) reduces to Eq. (26) for a vortex outside a
circular boundary.

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 2: Contours of equal energy for a flow with n0 = 0 around an ellipse with
aspect ratio b/a = 0.6. The energy varies monotonically from large negative values
(dark blue) to large positive ones (light orange).

5.3 Dynamics of a vortex outside an elliptical boundary

We now combine Eq. (21) for the dynamics of a single vortex outside a circle of radius R
with the general relation (13) to find the dynamical equation for a vortex outside an elliptical
boundary with given semiaxes a and b. Since

σ′(w) = − 1
Z(w)(w2 − 1)

=
1p

w2 − 1

�

1− wp
w2 − 1

�

,

we find

iẇ∗0 =
ħh

M
q

w2
0 − 1



n0 −
|Z(w0)|2

|Z(w0)|2 − (a+ b)2
+

1
2

 

1− w0
q

w2
0 − 1

!



 . (31)

For this vortex outside an elliptical boundary, our work in Sec. 2.2.1 ensures that Hamilton’s
equations give the same vortex dynamics as here in Eq. (31). Hence the closed vortex orbits
coincide with the contours of equal energy in Fig. 2.
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6 Vortex inside an elliptical boundary

As seen previously, the complex potential for a single vortex at z0 = r0eiθ0 inside a circu-
lar boundary is slightly simpler than that for a single vortex at z0 outside the same circular
boundary, but only because the external position allows the possibility of additional n0-fold
central circulation. For both inside and outside positions, a single image at z′0 = r ′0eiθ0 is re-
quired, where r ′0 = R2/r0. Since r0r ′0 = R2, the original vortex and its image are always on
opposite sides of the circular boundary.

Surprisingly, a single vortex inside an elliptical boundary is considerably more complicated
because the inverse Joukowsky transformation z±(w) = w±pw2 − 1 has a branch cut along
the focal line joining w = ±1. This branch cut does not affect a vortex outside an elliptical
boundary because the allowed region excludes the singularity. In contrast, the branch cut lies
in the middle of the allowed region for a vortex inside an elliptical boundary, and a direct use
of Eq. (28) to describe a vortex inside an ellipse would lead to a discontinuous potential along
the focal line, as seen inside the translucent white region in Fig. 1.

As mentioned in Sec. 4, the Joukowsky map (27) has inversion symmetry for z ↔ z−1,
which has profound consequences for a vortex inside an elliptical boundary. Specifically, any
conformal transformation involving a vortex inside a circular boundary R must retain the same
symmetry, so that the allowed region in the z plane becomes the interior of an annulus bounded
by concentric circles R−1 and R. The left panel of Fig. 3 shows this annulus in the z plane with
black outer boundary at R and black inner boundary at R−1. The black dashed line has unit
radius and splits the annulus into two separate regions; yellow for |z|> 1 and blue for |z|< 1.
A vortex at position z0 in the yellow region and its inverse at z−1

0 in the blue region both map
to a single vortex at w0 inside the elliptical boundary, as shown in the right panel of Fig. 3.

The Joukowsky map takes both the inner and outer circles of radii R−1, R to the ellipse
with semiaxes a = 1

2(R+R−1) and b = 1
2(R−R−1). In addition, the circle |z|= 1 maps onto the

flat ellipse that is a closed loop infinitesimally close to the focal line of the ellipse w ∈ [−1, 1].
In this Section we find the complex potential in the z plane that maps into a vortex inside

an ellipse via the (inverse) Joukowsky transformation. We then combine this result with the
general formulas derived in Sec. 2 to obtain the total energy and the dynamics of a single
vortex and a vortex dipole inside an elliptical boundary. In Appendix A we provide a different
but surprisingly equivalent derivation of these results, based on a direct map from the unit
circle to the ellipse.

6.1 Complex potential and flow field

Consider a (positive) vortex at position w0 inside an ellipse with major semiaxis a and minor
semiaxis b =

p
a2 − 1. The dimensionless circulation (in units of ħh/M) around the ellipti-

cal boundary is Γext = +2π, while the one along the flat ellipse (surrounding the focal line)
is ΓFE = 0. The analogous complex potential on the z plane for a vortex in an annulus at
z0 = w0 +

q

w2
0 − 1 must lead to the same circulations along the corresponding boundaries.

Hence the complex potential on the z plane must feature a circulation Γ (R) = 2π on the outer
boundary of the annulus and Γ (1) = 0 on the unit circle.

Physically, the hydrodynamic flow for a vortex inside an elliptical boundary should be
smooth throughout the interior because it is basically a quadrupolar distortion of that for a
circular boundary. Hence we must require that the flow be smooth and continuous across the
focal line. The focal line of the ellipse on the w plane is the image of the unit circle on the
z plane. A smooth potential on the ellipse therefore requires an extra boundary condition on
the z plane: on the unit circle, we require F

�

z = eiθ
�

= F
�

z = e−iθ
�

. In this way, when the
Joukowsky transformation maps the unit circle onto the focal line, the potential will remain
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b

1−1
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Figure 3: The Joukowsky transformation maps concentric circles into confocal el-
lipses. Curves with the same colour are related by the conformal transformation.
The outer boundary at R and the inner boundary at R−1 form an annulus on the z
plane. The unit circle (black-dashed) is mapped into the degenerate flat ellipse sur-
rounding the focal line. Yellow and blue-shaded regions in the left panel represent,
respectively, the two Riemann sheets |z| > 1 and |z| < 1 within the annulus: each
of these regions maps into the interior of the ellipse in the w plane (right panel), so
that the same ellipse maps back to two corresponding circles with inverse-symmetric
radii. Similarly, the Joukowsky transformation sends the two points z0 and z−1

0 to a
single point w0. The ensemble of points with polar coordinates ±θ0 inside the annu-
lus, i.e. two semi-lines in the z plane, is mapped to one branch of a hyperbola in the
w plane (brown curves).

smooth across the focal line. On the unit circle where |z|= 1, the latter expression is equivalent
to F(z) = F(z−1). We therefore seek a potential such that F(z) = F(z−1) everywhere, which
will automatically satisfy the extra requirement at |z|= 1.

Moreover, as seen in Fig. 3, on the z plane we also need to impose two hard-wall boundary
conditions: not only at |z| = R, but also at |z| = R−1. In other words, we need to solve the
problem on an annulus with inner and outer radii Rin = R−1 and Rout = R.

The complex potential for a single (positive) vortex at position z0 inside an annulus of radii
R−1 < 1< R, as derived in Refs. [11,12], reads

Fannulus,single(z; z0) = ln





ϑ1

�

− i
2 ln

�

z
z0

�

, q
�

ϑ1

�

− i
2 ln

� zz∗0
R2

�

, q
�



 , (32)

where ϑ1(z, q) denotes the first Jacobi theta function, and its nome q ≡ Rin/Rout = R−2 < 1 can
be rewritten in terms of the parameters of the ellipse as q = (a−b)2. In particular, this potential
yields a flow with circulation on the outer boundary only: i.e. Γ (R) = 2π, and Γ (R−1) = 0.

Then, the simplest recipe to obtain a potential symmetric under the exchange z↔ z−1 is
to write

Fannulus(z; z0) = Fannulus,single(z; z0) + Fannulus,single

�

z−1; z0

�

. (33)

To understand the physical meaning of this complex potential, we use the quasiperiodicity
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of the Jacobi ϑ1 function1 to show that (apart for an irrelevant constant) Eq. (33) may be
conveniently rewritten as

Fannulus(z; z0) = Fannulus,single(z; z0) + Fannulus,single

�

z; z−1
0

�− ln(z) . (34)

The first two terms in the latter equation correspond to the flows generated by a positive
vortex at z0 and by its positive symmetric partner located at z−1

0 . Each of these terms induces
2π circulation at the outer boundary |z| = R, and 0 at the inner one |z| = R−1. The last
term in the equation represents a negative vortex at the origin of the z plane, which removes
2π circulation everywhere. As a result, the combination of the three terms yields Γ (R) = 2π
and Γ (R−1) = −2π. Furthermore, the unit circle contains two vortices with opposite sign, so
that the circulation along it vanishes, namely Γ (1) = 0. This behaviour reflects the built-in
symmetry z↔ z−1, ensuring that Fannulus

�

eiθ
�

= Fannulus

�

e−iθ
�

. Summarizing, the complex
potential (33) satisfies all the requested conditions [the circulations Γ (R) = +2π, Γ (1) = 0
and the symmetry which guarantees continuity across the flat ellipse] in the simply connected
region 1 ≤ |z| ≤ R. In this way, the Joukowsky map projects the latter region in a one-to-one
fashion onto the whole ellipse, with no ambiguity.

The panels on the left side of Fig. 4 show the streamlines χ(r ) = Re Fannulus(z; z0), the
phase field Φ(r ) = Im Fannulus(z; z0) and the superfluid velocity field v(r ) [obtained from
Eq. (2)] of this two-vortex configuration on the annulus in the z plane.

As a final step, it is convenient to introduce the compact notation from Eq. (28)

Z≡ Z(w) = w+
p

w2 − 1 , Z0 ≡ Z(w0) . (35)

As a result, the complex potential for a single vortex inside the ellipse in the w plane has the
following analytical expression:

Fellipse(w; w0) = Fannulus (z = Z; z0 = Z0)

= ln





ϑ1

�

− i
2 ln

�

Z
Z0

�

, q
�

ϑ1

�− i
2 ln

�

qZZ∗0
�

, q
�



+ ln





ϑ1

�

− i
2 ln

�

1
ZZ0

�

, q
�

ϑ1

�

− i
2 ln

�

q
Z∗0
Z

�

, q
�



 .
(36)

The result (36) satisfies the correct boundary conditions of the superfluid flow in the w plane
of the ellipse as it is clear in the panels on the right of Fig. 4, showing the streamlines, phase
field and superfluid velocity field based on the complex potential (36).

We recall that a single vortex inside an annulus requires an infinite set of image vor-
tices [11] to ensure that the superfluid flow is tangent at both the boundaries. The same
situation holds for a single vortex inside an elliptical domain, as it is clear from our previ-
ous reasoning, based on the combination of the complex potential for an annulus with the
Joukowsky transformation. In particular, we have verified that the infinite set of image vor-
tices generated (outside the elliptical container) by Eq. (36) agrees with the set of images
found in Ref. [28]. Our derivation, however, seems simpler and more straightforward, since it
involves only the three Eqs. (32, 33, 36).

6.2 Total energy for a single vortex

The total energy for a vortex inside an ellipse may be computed very simply using the rela-
tion (9) which connects the energy on two surfaces linked by a conformal transformation. In
our case, the w plane has the elliptical boundary with semiaxes a and b, and the z plane has
the annulus with inner and outer radii R−1 and R.

1ϑ1(z ±πτ, q) = −q−1e∓2izϑ1(z, q), where the parameter τ is related to the nome q by q ≡ eiπτ.
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Figure 4: Left column: streamlines (black lines) and phase (colour coding and white
lines) [top panel] and velocity field [bottom panel] associated with two vortices at
positions z0, z−1

0 inside the planar annulus. The annulus has outer and inner radii
R= 2, R−1 = 1/2, the dashed line representing the unit circle. The polar coordinates
for the vortex at complex position z0 = r0eiθ0 are r0 = 1.35, θ0 = π/4.
Right column: streamlines, phase and velocity field associated with a single vortex
at w0 inside the ellipse. The ellipse has eccentricity b/a = 0.6, and the cartesian
coordinates of the vortex at position w0 are x0 ≈ 0.74, y0 ≈ 0.22.

To compute the energy of a vortex in the annulus with the inverse map in Eq. (28), we
must use only the “outer" region 1 ≤ |z| ≤ R. This region contains a single vortex at position
z0 and the circulations around the inner (r = 1) and outer (r = R) boundaries are, respectively,
Γin = 0 and Γout = 2πħh/M . The energy of the annulus is obtained from Eq. (8) as

Eannulus
0 =

πħh2n
M

�

(+1)χout − 0χin − χ̃z
0

�

=
πħh2n

M

�

χout − χ̃z
0

�

. (37)

We recall that the stream function is the real part of the complex potential (33). First, we
compute the constant boundary term

χout = Re
�

Fannulus

�

z = Reiθ ; z0

��

= ln(
p

q|z0|) . (38)

After that, using

lim
z→z0

ln
�

ϑ1

�

− i
2

ln
�

z
z0

�

, q
��

= lim
z→z0

ln(z − z0)− ln

�

− 2z0

iϑ′1 (0, q)

�

,
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the regularized stream function reads:

χ̃z
0 = Re

§

lim
z→z0
[Fannulus(z; z0)− ln(z − z0)]

ª

= − ln

�

2|z0|
ϑ1

�− i
2 ln

�

q|z0|2
�

, q
�

iϑ′1(0, q)

�

−Re ln





ϑ1

�

− i
2 ln

�

q
z∗0
z0

�

, q
�

ϑ1 (i ln z0, q)



 .
(39)

Substituting into Eq. (37), we obtain

Eannulus
0

πħh2n/M
= ln

�

2
p

q|z0|2
ϑ1

�− i
2 ln

�

q|z0|2
�

, q
�

iϑ′1(0, q)

�

+Re ln





ϑ1

�

− i
2 ln

�

q
z∗0
z0

�

, q
�

ϑ1 (i ln z0, q)



 . (40)

Finally, after recalling the scale factor σ(w) = lnZ(w)− ln
p

w2 − 1 and Z0 = w0 +
q

w2
0 − 1,

Eq. (9) yields the total energy for a vortex inside an ellipse:

Eellipse
0

πħh2n/M
=

Eannulus
0

πħh2n/M
−Reσ(w0)

= ln

�

2
p

q|Z0|
ϑ1

�− i
2 ln

�

q|Z0|2
�

, q
�

iϑ′1(0, q)

�

+Re ln





q

w2
0 − 1

ϑ1

�

− i
2 ln

�

q
Z∗0
Z0

�

, q
�

ϑ1 (i lnZ0, q)



 .

(41)

For numerical calculations one needs to define the branch cut for the square root appearing in
those expressions using:

p

w2 − 1≡
Æ

|w− 1||w+ 1|exp
�

i
2
(arg(w− 1) + arg(w+ 1))

�

.

Some constant-energy contours are shown in the left panel of Fig. 5.

6.3 Vortex trajectories

The velocity of a vortex at position z0 given by the complex potential (33) is:

iż∗0 =
ħh
M

lim
z→z0

�

dFannulus(z; z0)
dz

− 1
z − z0

�

=
ħh
M

i
2z0



i +
ϑ′1 (i ln z0, q)

ϑ1 (i ln z0, q)
+
ϑ′1
�− i

2 ln
�

q|z0|2
�

, q
�

ϑ1

�− i
2 ln (q|z0|2) , q

� −
ϑ′1
�

− i
2 ln

�

q
z∗0
z0

�

, q
�

ϑ1

�

− i
2 ln

�

q
z∗0
z0

�

, q
�



 .
(42)

Then, the velocity for a vortex at position w0 inside the ellipse follows directly from Eq. (13)
as:

iẇ∗0 =
ħh

2M

(

− w0

w2
0 − 1

+
i

q

w2
0 − 1

�

ϑ′1 (i lnZ0, q)

ϑ1 (i lnZ0, q)
+

+
ϑ′1
�− i

2 ln
�

q |Z0|2
�

, q
�

ϑ1

�− i
2 ln

�

q |Z0|2
�

, q
� −
ϑ′1
�

− i
2 ln

�

q
Z∗0
Z0

�

, q
�

ϑ1

�

− i
2 ln

�

q
Z∗0
Z0

�

, q
�











.

(43)

We numerically integrated these complex dynamical equations for various initial conditions
along the positive real axis, giving the closed trajectories shown in the right panel of Fig. 5. As
proved in Sec. 2.2.1, these orbits are also contours of constant energy, and we checked that they
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indeed coincide with the curves shown in the left panel of Fig. 5. Note that these orbits differ
greatly from the confocal ellipses in the right panel of Fig. 3. Instead they resemble nested
self-similar ellipses, which is not surprising because the elliptical boundary is a quadrupolar
distortion of a circle. Thus the closed trajectories for the elliptical boundary should resemble
a set of nested circles with quadrupolar distortions.
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Figure 5: Left: constant-energy contours for a vortex inside an ellipse with aspect
ratio b/a = 0.6. The thick black line denotes the outer boundary with a = 5/4 and
b = 3/4. The vortex energy is negative and it decreases moving from the centre
towards the boundary. Right: trajectories of a single vortex inside the same elliptical
boundary for various initial positions on the positive horizontal axis. Coloured dots
denote the starting point of the different trajectories, which are obtained from nu-
merical solution of the equations of motion (43).

In detail, however, the situation is more complicated. For a circular boundary, the rota-
tional symmetry ensures conservation of angular momentum, so that all vortex trajectories
are circles. In contrast, an elliptical boundary does not conserve angular momentum because
the boundary is invariant only under a finite rotation by ±π. If we use an angular Fourier ex-
pansion for the trajectory, only even harmonics can occur, and the nonlinear dynamical equa-
tions couple the various Fourier amplitudes. As a result, the orbits are not strictly ellipses.
More quantitatively, for a given trajectory we extract the maximum value of the coordinates
(xmax, ymax) and the period T . Figure 6 shows (x0/xmax)2 + (y0/ymax)2 evaluated along the
five closed trajectories in the right frame of Fig. 5. The quantity (x0/xmax)2+(y0/ymax)2 devi-
ates from the value 1 that it would have for a pure ellipse, displaying a periodic, anharmonic
dependence on the polar angle θ0 ∈ [0,2π]. As follows from its definition, the maximum
value of 1 is reached at positions (±xmax, 0) and (0,±ymax). The minimum value and the cor-
responding deviation from 1 differ for each case, but it always remains small (less than 1%).
Starting from the smallest trajectory (blue curve), the amplitude of the oscillation increases
(purple and green), until it reaches its maximum for the trajectory with xmax = 1 (red), which
is the one passing through the foci of the ellipse. Then, for 1 < xmax < a (orange curve),
deviations from 1 progressively decrease due to the influence of the elliptic boundary.

The numerical evaluation of the period T for each trajectory then gives the mean precession
frequency 〈Ω〉 = 2π/T . Figure 7 shows 〈Ω〉 as a function of the initial position along the
positive horizontal axis, for three values of the aspect ratio of the boundary. As the aspect
ratio approaches 1, the mean precession frequency converges to the red solid curve, which
corresponds to the result for a single vortex inside a disk of radius a [see Eq. (22)], namely
Ω(x0) = (ħh/M)(a2 − x2

0)
−1. Importantly, the mean angular velocity is always positive, hence

a positive vortex can only move in the counterclockwise direction, independent of its initial
position. This result is similar to the circular boundary, while it differs from the case of a
vortex inside an annulus, where the precession frequency can be both positive and negative,

17

https://scipost.org
https://scipost.org/SciPostPhys.17.2.039


SciPost Phys. 17, 039 (2024)

0.0 0.5 1.0 1.5 2.0

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

θ0/π

(x
0
/x
m
ax
)2
+
(y
0
/y
m
ax
)2

xmax=0.25

xmax=0.50

xmax=0.75

xmax=1.0

xmax=1.15

Figure 6: Quantity (x0/xmax)2+(y0/ymax)2 as a function of the polar angle θ0 along
a closed vortex trajectory inside an ellipse with b/a = 0.6. The different curves
refer to five trajectories with various initial positions (x0(0), y0(0)) = (xmax, 0) on
the positive horizontal axis. Each case shows a periodic deviation from the value 1
that is expected for a pure ellipse.

depending on its position relative to the inner and outer boundaries. Physically, this latter
behaviour reflects the influence of the nearest image, which lies beyond the closest boundary.
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Figure 7: Dependence of the mean precession frequency on the initial position along
the positive horizontal axis for three different aspect ratios b/a of the elliptical
boundary. The red solid curve is the result for a circular boundary of radius a.

6.4 Example of a multivortex configuration: a symmetric dipole

We now summarize the straightforward generalization to Nv vortices at positions w j = w(z j)
and with charges c j ( j = 1, . . . , Nv). We recall that, for a single positive vortex inside the ellipse,
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the complex potential in the z plane is given by Eq. (33). Now, we can apply the superposition
principle and start with the following complex potential:

Fannulus(z; {z j}) =
Nv
∑

j=1

c j

�

Fannulus,single(z; z j) + Fannulus,single(z
−1; z j)

�

. (44)

To compute the total energy, we evaluate first the constant value of the stream function along
the outer boundary of the annulus

χout = Re Fannulus

�

z = Reiθ ; {z j}
�

, (45)

and then the regularized stream function at the j th vortex core

χ̃z
j = Re lim

z→z j

�

Fannulus(z; {z j})− c j ln
�

z − z j

��

. (46)

The z↔ z−1 symmetry ensures that the circulation around the boundary |z| = 1 is equal to
zero, while the circulation around the outer boundary is Γout =

∑Nv
j=1 2πħh c j/M . A generaliza-

tion of Eq. (37) gives the total energy of these Nv-vortices in the 1≤ |z| ≤ R region:

Eannulus
Nv

πħh2n/M
=

Nv
∑

j=1

c j

�

χout − χ̃z
j

�

. (47)

The total energy in the w plane is finally obtained from Eq. (17) as:

Eellipse
Nv

πħh2n/M
=

Eannulus
Nv

πħh2n/M
−

Nv
∑

j=1

c2
j Reσ(w j) . (48)

We now consider a vortex dipole oriented symmetrically with respect to the focal line:

w1 = w0 , w2 = w∗0 , c1 = −c2 = 1 .

Equation (44) gives the complex potential from which one can easily compute the streamlines
and phase field shown in the left panel of Fig. 8.
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Figure 8: Left: streamlines (black lines) and phase (colour coding and white lines)
associated with a symmetric vortex dipole inside the ellipse. This configuration con-
sists of a positive vortex at position w0 (red dot) and a negative one that is symmetric
with respect to the focal line at position w∗0 (green dot). Right: constant-energy con-
tours for the same symmetric vortex dipole. Colour coding is the same as in Fig. 5.
The elliptical boundary has aspect ratio b/a = 0.6.
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The total energy of this configuration (as a function of cartesian coordinates {x0, y0})
comes out from Eq. (48) as:

Eellipse
dipole

πħh2n/M
=2 ln

�

2
i

ϑ1

�− i
2 ln

�

q|Z0|2
�

, q
�

ϑ1

� i
2 ln q, q

�

ϑ1

�− i
2 ln

�|Z0|2
�

, q
�

ϑ′1 (0, q)

�

+ 2 Re ln





q

w2
0 − 1

ϑ1

�

− i
2 ln

�

q
Z∗0
Z0

�

, q
�

ϑ1

� i
2 ln

�

qZ2
0

�

, q
�

ϑ1

�

− i
2 ln

�

Z∗0
Z0

�

, q
�

ϑ1

� i
2 ln

�

Z2
0

�

, q
�



 .

(49)

A plot of constant-energy contours is shown in the right panel of Fig. 8. The trajectories are
qualitatively similar to the ones described by a vortex dipole inside a circular boundary, which
have been experimentally observed in Ref. [32].

7 Conclusions and outlook

An earlier paper by one of us [18] studied the low-lying equilibrium states of rotating super-
fluid He-II in an elliptical cylinder, using real elliptic coordinates with infinite series for the re-
sulting analytic solutions. Here, instead, we relied on complex variables and conformal maps
that permit a unified description of general bounded and curved two-dimensional surfaces.
Reference [30] developed this formalism to relate the energy of vortices on a complicated
surface to the corresponding energy on a simple surface through the metric of the conformal
map connecting them. Here we demonstrated that a similar derivation yields the dynamical
equations of vortices on general two-dimensional surfaces with boundaries. We also verified
that Hamilton’s equations (based on the energy of the vortex) reproduce the vortex dynamics
obtained with our complex formalism (based on conformal maps).

A circular boundary with radius R served as our model system because it is easy to derive
the dynamics and energy of a vortex on either side of that boundary. To study vortex dynamics
for an elliptical boundary, we used the Joukowsky map that takes a family of concentric circles
into a family of confocal ellipses. This map worked well for a single vortex outside an elliptical
boundary, giving the complex potential and the vortex orbits that are also the constant-energy
curves.

The problem of a vortex inside an elliptical boundary became more intricate because the
Joukowsky map introduced a branch cut along the line joining the two focal points of the
ellipse. When combined with the inversion symmetry of the Joukowsky transformation, as
seen in Fig. 3, the single circular boundary became an annulus with inner and outer boundaries
at R−1 and R. The application of the Joukowsky map then provided the complex potential
for a vortex inside an elliptical boundary, along with physical properties like the energy and
trajectories. A straightforward generalization for multiple vortices allowed us to study the
behaviour of a symmetric vortex dipole inside an elliptical boundary.

After this work was nearly completed, we belatedly discovered an earlier different confor-
mal map from the interior of a circle to the interior of an ellipse. This transformation, due to
Schwarz (1869), involved Jacobian elliptic functions. We discuss its properties in Appendix A,
where we verify that this map yields the same results found with the Joukowsky map.

As a future extension of this work, one could investigate how a finite massive core af-
fects the vortex dynamics. The time-dependent variational Lagrangian method successfully
described massive vortices in a disk [33–35] and in an annulus [36]. It would be interesting
to verify that a massive vortex in an elliptical boundary exhibits similar behaviour. Another
natural extension of our research would be to study vortex lattices in elliptical containers, and
their normal modes and instabilities.
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A Flow inside an ellipse via direct mapping from the circle

We provide here an alternative and equivalent derivation of the complex potential, energy
and velocity of a vortex inside an ellipse, based on the direct conformal transformation from
a circle to an ellipse.

A.1 Derivation of the map circle↔ ellipse

0 κ 1

0

1

zx

z y

unit circle

0 1κ-1/2

0

κ-1/2

ηx

η
y

expanded circle

0 π

2

0

c

ζx

ζ y

rectangle

1 a

0

b

wx

w
y

ellipse

Figure 9: The three conformal transformations mapping the unit circle on the z
plane (panel 1) to a bigger circle on the η plane (panel 2) to a rectangle on the ζ
plane (panel 3) and finally to an ellipse on the w plane (panel 4). Dots of identical
colours and the red, blue and magenta segments are sent to each other by the various
maps. The map ζ(η) has a branch cut along the magenta segment (from η = 1 to
η= 1/

p
κ), but this branch cut is glued seamlessly when one inserts ζ(η) into w(ζ).

The map from the unit circle on the z plane to an ellipse with major and minor semi-axes a
and b (and foci at positions w= ±1) on the w plane was found by Schwarz in 1869 [37], and
much later also re-derived in Ref. [38]. Here we outline a simple derivation of it. Consider
the following three conformal transformations:

1. η(z) = z/
p
κ stretches the plane radially. We will see that 0 < κ < 1, so the unit circle

becomes a bigger circle of radius 1/
p
κ.

2. ζ(η) = αF
�

arcsin(η)|κ2
�

takes a circle with radius 1/
p
κ to a rectangle centered at the

origin, with its top-right corner at complex position α(K + iK ′). Here α is a number,
F(φ|m) is the elliptic integral of the first kind with parameter m (and modulus κ=

p
m),

K ≡ F
�

π
2 |m

�

is the corresponding complete integral, and K ′ ≡ F
�

π
2 |m′

�

with m′ = 1−m
the complementary parameter. We set α = π

2K , so that the top-right corner of the rect-

angle appears at ζ = π
2 + i c, with c = π

2
K ′
K . The aspect ratio K ′

K of this rectangle yields

the nome q through q = exp
�

−πK ′
K

�

= e−2c . This map is a variant of the well-known
Schwarz-Christoffel map [39].
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3. w(ζ) = sin(ζ) maps a rectangle with top-right corner at ζ = π/2+ i c to an ellipse with
semi-axes a = cosh(c), b = sinh(c), and foci at w= ±1. Noting that sin(ζ) = i sinh(−iζ),
this map is a rotated version of the familiar relation for the elliptic coordinates
w= sinh(ζ).

The action of the three maps is shown in Fig. 9. The transformation from the circle to the
ellipse is now obtained very simply concatenating the three maps:

w(z) = w(ζ(η(z))) = sin





π F
�

arcsin
�

zp
κ

�
�

�κ2
�

2K



 , (A.1)

where we recall that K ≡ F
�

π
2 |κ2

�

. The modulus κ of the transformation controls the aspect
ratio of the final ellipse. It has to be found imposing that the transformation sends z = 1 to
w= a [see the green dot in Fig. 9], which amounts to solving

w(ζ(η(z)))|z=1 = a . (A.2)

Quite surprisingly, the latter equation has an analytical solution. Consider the known relation

κ≡
�

ϑ2(0,q2)
ϑ3(0,q2)

�2
, (A.3)

which gives the modulus κ in terms of the nome q of Jacobi Theta functions. The last step is
to realize that for an ellipse with foci at w= ±1 we have

q = e−2c = [cosh(c)− sinh(c)]2 = (a− b)2 = (a− b)/(a+ b) , (A.4)

which implies that κ is given by Eq. (A.3) with q ≡ (a− b)/(a+ b). Since 0< q < 1, it follows
that 0< κ < 1.

A.2 Complex potential, energy and core velocity of a single vortex

With the conformal map in Eq. (A.1), it is now straightforward to derive the properties of a
single vortex inside an ellipse. Using F(arcsin(v)|m) = arcsn(v|m) and K = arcsn(1|m), where
arcsn(v|m) denotes the inverse of Jacobi’s elliptic function sn(v|m), the inverse map from the
ellipse to the unit circle is found to be

z(w) =
p
κ sn

�

2K arcsin(w)
π

�

�

�

�

κ2

�

. (A.5)

The complex potential for a vortex at w0 inside an ellipse is then obtained from Eq. (23) as

Fellipse,dir(w; w0) = ln
�

z(w)− z(w0)
z(w)− 1/z(w0)∗

�

, (A.6)

with z(w) given by Eq. (A.5).
To obtain the energy of a vortex inside the ellipse, we first compute the energy of a vortex

in the unit circle. Setting R = 1 and n0 = 1 in Eq. (26) we obtain Ecircle =
πħh2n

M ln
�

1− |z0|2
�

.
Using Eq. (9), the energy for a vortex at w0 inside the ellipse then follows immediately,

Eellipse = Ecircle −
πħh2n

M
Reσ(w0) . (A.7)

where the scale factor σ(w) is computed inserting Eq. (A.5) into Eq. (4).
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Similarly, the complex velocity of a vortex inside the unit circle is given by Eq. (21) and

reads iż∗0 =
ħh

Mz0

� |z0|2
1−|z0|2

�

. The complex velocity of a vortex inside the ellipse readily follows
using Eq. (13),

iẇ∗0 = iż∗0 eσ(w0) +
ħh

2M
σ′(w0) . (A.8)

Numerical evaluation of Eqs. (A.6), (A.7) and (A.8) shows that these expressions coincide
precisely with Eqs. (36), (41) and (43), even though they look radically different.
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