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Abstract

Dense Hopfield networks with p-body interactions are known for their feature to prototype
transition and adversarial robustness. However, theoretical studies have been mostly
concerned with their storage capacity. We derive the phase diagram of pattern retrieval in
the teacher-student setting of p-body networks, finding ferromagnetic phases reminiscent
of the prototype and feature learning regimes. On the Nishimori line, we find the critical
amount of data necessary for pattern retrieval, and we show that the corresponding
ferromagnetic transition coincides with the paramagnetic to spin-glass transition of
p-body networks with random memories. Outside of the Nishimori line, we find that
the student can tolerate extensive noise when it has a larger p than the teacher. We
derive a formula for the adversarial robustness of such a student at zero temperature,
corroborating the positive correlation between number of parameters and robustness
in large neural networks. Our model also clarifies why the prototype phase of p-body
networks is adversarially robust.
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1 Introduction

Hopfield networks are artificial neural networks that model associative memory [1]. In the
Hopfield model, examplesσ ∈ {−1,1}N of memories ξµ ∈ {−1,1}N , µ = 1, . . . , M , are retrieved
by sampling the Gibbs distribution of a 2-body Hamiltonian H [σ|ξ] at a given temperature T [2].
Hopfield networks can be trained in a biologically plausible way using Hebb’s rule [1,3], which

leads to H [σ|ξ] = − 1
N

∑M
µ=1

�

∑N
i=1 ξ

µ
i σi

�2
. However, they can only store up to M ∼ O (N)

i.i.d. random memories in the limit of large N [1,4,5]. One way to find this scaling is to study
the phase diagram of H [σ|ξ] as a function of the temperature T and load α= M

N [5], where
the so-called ferromagnetic phase, which extends up to α ≈ 0.14, corresponds to accurate
retrieval.

Since Hopfield’s seminal work, several generalizations have been investigated in relation
to their critical storage capacity and retrieval capabilities. For example, parallel retrieval
has been studied in relation to pattern sparsity [6–10] or hierarchical interactions [11–15],
and non-universality has been shown with respect to more general pattern entries and unit
priors [16–22]. Efforts to overcome the O (N) limitation of the capacity led to the development
of a novel class of modern Hopfield networks [23–25], which are sometimes called dense due to
their faculty to store much more memories than the original Hopfield model [26]. These neural
networks surpass O (N) storage capacity by using higher-order interactions instead of the
original 2-body couplings [27–32]. In particular, Gardner [30] calculated the replica-symmetric
(RS) phase diagram of the Hamiltonian H [σ|ξ] = −

∑N
i1<...<ip=1 Ji1...ipσi1 ...σip with p-body

interactions Ji1...ip =
p!

N p−1

∑M
µ=1 ξ

µ
i1

...ξµip conditioned on i.i.d. random memories ξµ ∈ {−1, 1}N ,

finding a M =O
�

N p−1
�

storage capacity. These calculations were later extended to include
the effects of one-step replica symmetry breaking (1RSB) [33].

Although they draw a rather detailed picture of the retrieval of individual i.i.d. random
memories, these results are not the end of the story. First of all, 1RSB calculations allegedly
struggle to find the paramagnetic to spin-glass phase transition accurately at large p because of
numerical instability issues [33]. Second of all, dense Hopfield networks have been rapidly
gaining a renewed attention for reasons other than their storage capacity since a recent
paper [26] by Krotov and Hopfield (K & H), where they were used as a trainable machine
learning architecture. For instance, they have been related to transformers [23,34] and diffusion
models [35,36], and they were found to be significantly more explainable and adversarially
robust than feedforward neural networks with ReLU activation functions [26,37].
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One such aspect of dense Hopfield networks that is still poorly understood is their per-
formance as generative models for unsupervised learning, where they are trained over some
given dataset to reproduce its probability distribution. As far as we are aware, this problem has
not yet been studied theoretically for p-body models with p ≥ 3. However, it was studied for
the original 2-body Hopfield network by using the teacher-student setting [38] first described
in [16,17,39]. In the teacher-student setting, which is also called inverse problem in opposition
to the direct problem of random pattern retrieval, a student model H [ξ|σ] is trained with M
teacher examples σa ∼ H [σa|ξ∗] conditioned on the planted pattern ξ∗. In other words, the
student tries to infer the pattern ξ∗ of the teacher using a structured set of examples σa.

At finite load α = M
N , two regimes of pattern retrieval were found: example retrieval

(eR) and signal retrieval (sR). In the eR phase, the student tries to reconstruct ξ∗ by directly
retrieving the examples σa, which is a good strategy provided that they are strongly correlated
with ξ∗. In the sR phase, on the other hand, retrieval is done by extracting subtle cues from
weakly correlated examples. The two types of examples used in these two retrieval strategies
are respectively called prototypes and features of ξ∗ [26]. Interestingly, a prototype regime
and a feature regime were also observed by K & H in dense Hopfield networks trained to
classify real data [26], where it was found that the prototype regime is significantly more
adversarially robust than the feature regime. In other words, the prototype regime is more
resistant than the feature regime to small data perturbations that are specifically designed to
cause incorrect classification [40,41]. This prototype approach is arguably a big step towards
designing adversarially robust neural networks, a long-standing problem that still lacks a fully
satisfying solution [42–44].

In this work, we study the performance of p-body Hopfield networks in the teacher-student
setting, revealing a prototype regime and a feature regime as in the 2-body model. In Section
2, we review Gardner’s main results in studying p-body Hopfield models and summarize
what the rest of the literature on spin-glass models with p-body interactions tell us about
the paramagnetic to spin-glass phase transition in p-body Hopfield models. In Section 3, we
compute the phase diagram of these p-body models in the teacher-student setting. In Section
4.1, we discuss the transition to the retrieval phase in the inverse problem. In Section 4.2,
we compare this retrieval transition against the transition to the spin-glass phase in the direct
problem. Despite their different nature, we show that these two transitions are equivalent
on the Nishimori line where the teacher and the student have the same p and T [45–48]. In
Section 4.3, we discuss the phase diagram on the Nishimori line in more details. In Section
4.4 and Section 4.5, we discuss the phase diagram outside of the Nishimori line. First of all,
we investigate the effect of using an inference temperature different from the dataset noise.
Second of all, we reveal that using a larger p for the student than the teacher gives the student
an extensive tolerance against both teacher noise and pattern interference. Finally, in Section
4.6, we derive a closed-form expression that measures the adversarial robustness of the student
at zero temperature and explain what our results reveal about the nature of adversarial attacks.

2 Overview of Gardner’s results

Consider the p-body Hamiltonian

H [σ|ξ] = −
N
∑

i1<...<ip=1

Ji1...ipσi1 ...σip = −
p!

N p−1

N
∑

i1<...<ip=1

M
∑

µ=1

ξ
µ
i1

...ξµipσi1 ...σip , (1)

conditioned on a set of M = αN p−1

p! quenched memories ξµ ∈ {−1,1}N , µ= 1, . . . , M , sampled

i.i.d. from the Rademacher distribution 1
2

�

δ
�

ξ
µ
i − 1

�

+δ
�

ξ
µ
i + 1

��

. In the direct model, pat-
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terns σ are in turn sampled from the equilibrium Gibbs distribution P(σ|ξ) = Z−1e−βH[σ|ξ],
where β ≥ 0 is the inverse temperature and Z =

∑

σ e−βH[σ|ξ] is the system’s partition function.
The so-called direct problem studied by Gardner [30] consists of quantifying the performance
of this model as a method of memory retrieval. In that context, the overlap 1

N

∑

i ξ
µ
i σi is a

good measure of retrieval accuracy, and its expected value can be derived from the quenched
free entropy f = 1

N 〈log Z〉ξ in the thermodynamic limit N →∞. At finite p, Gardner used the
(non-rigorous) replica trick [49] to evaluate the RS approximation of f (see also Appendix B)
in terms of a variational principle of the form

f = lim
N→∞

1
N
〈log Z〉ξ = lim

N→∞,L→0

�

∂

∂ L

�

1
N

log



Z L
�

ξ

��

= Extr
m,k,q,k,r

f (m, k, q, r) ,

whose solution is

q =

∫

R
d x

1
p

2π
exp

�

−
1
2

x2
�

tanh2
�

β
�p
αr x + k

��

,

m=

∫

R
d x

1
p

2π
exp

�

−
1
2

x2
�

tanh
�

β
�p
αr x + k

��

,

r = pqp−1 ,

k = pmp−1 , (2)

and the order parameters m and q are to be interpreted as expected overlaps. To be more
precise, m can be shown to be the expected overlap of a retrieval attempt σ against one
memory in the thermodynamic limit, i.e. m = limN→∞


 1
N

∑

i ξ
µ
i σi

�

ξ,σ. Similarly, q is the

expected overlap between two retrieval attempts σ1 and σ2, i.e. q = limN→∞

 1

N

∑

i σ
1
i σ

2
i

�

ξ,σ

or equivalently q = limN→∞

 1

N

∑

i 〈σi〉
2
σ

�

ξ
. Intuitively, q measures the tendency of the system

to stay frozen in specific configurations rather than visiting all possible values of σ.
The resulting RS phase diagram (see Fig. 1) are derived from the value of the order

parameters as a function of three hyperparameters: the interaction order p, temperature
T = 1/β and load α= M p!

N p−1 . There are four different phases:

• In the Paramagnetic phase (P), the overlaps m and q both vanish. The network does not
retrieve any specific pattern: sampled configurations are completely random.

• In the Spin-Glass phase (SG), m vanishes but q > 0. In other terms, the network does not
retrieve individual stored memories but rather converges to spurious patterns depending
on all the memories in a non-trivial way.

• In the signal Retrieval phases (lR and gR), m ̸= 0 and q > 0, which means that the
network is able to retrieve the stored memories. lR and gR are respectively locally
stable and globally stable. In other words, local retrieval lR is only attainable from
initial conditions in a limited neighborhood of a memory ξµ, while global retrieval gR is
accessible from any initial conditions given enough time. These two phases are said to
be ferromagnetic.

Gardner also calculated the exact p→∞ phase diagram without making any assumptions
about replica symmetry [30]. In this limit, the resulting paramagnetic to spin-glass (P-SG)
phase transition occurs at a temperature TE(α) that coincides with the boundary of the region
where the total entropy of the paramagnetic phase becomes negative, given by β2α= 2 log2
(white dashed line in Fig. 1).

At finite p, Gardner’s results only tell us that the model cannot be in the paramagnetic phase
below TE(α). Therefore, a spin-glass transition should occur at a temperature Ts (α, p)≥ TE(α).
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Figure 1: RS phase diagrams of the direct models with p = 3 on the left and p = 10 on
the right. Accurate pattern retrieval is not possible in the paramagnetic phase (P) or in
the spin-glass phase (SG), but it is possible in the local retrieval phase (lR) and in the
global retrieval phase (gR). The ferromagnetic fixed point corresponding to accurate
pattern retrieval is globally stable in the gR phase, but locally stable in the lR phase.
The phase diagrams are inexact below the white dashed line where the total entropy of
the paramagnetic phase becomes negative. The black dotted line overlaying the p = 3
diagram is the (exact) 1RSB P-SG transition temperature Ts (α, 3), which is obtained
by rescaling by

p
2α the corresponding transition temperature of the spin-glass model

with p-body Gaussian interactions. The d1RSB transition Td (α, 3) is very close to
Ts (α, 3) throughout the displayed range of α. The white dotted line in the p = 3
plot is the temperature TG (α, 3) below which multiple steps of RSB are required to
compute the free entropy. It is also obtained by rescaling by

p
2α the corresponding

transition temperature of the Gaussian spin-glass model.

Since the RS spin glass solution of Eqs. (2) exists only below TE(α) (violet region in Fig. 1),
the spin-glass transition must be towards a RSB spin-glass phase.

Outside of the signal retrieval phases, the free entropy of the direct model is the same as
for the spin-glass model with p-body Gaussian interactions where the temperature is rescaled
by a factor of

p
2α [50, 51]. Therefore, the spin-glass and paramagnetic solutions are the

same in the direct model as in this Gaussian spin-glass model, and we expect the exact phase
diagrams of both models to be identical when the direct model is not in its signal retrieval
phases. According to previous work on the Gaussian model with finite p [51], a 1RSB solution
with m= k = 0 exists and is globally stable throughout a whole phase below Ts(α, p)≥ TE(α)
(see Fig. 1). This solution becomes unstable at a lower transition temperature TG(α, p)
(see Fig. 2), below which multiple steps of RSB are required. In the limit of p → ∞, it
holds that Ts(α, p) → TE(α) and TG(α, p) → 0. In other terms, the direct model becomes
1RSB, which is consistent with the fact that it is converging to a random energy model with
temperature rescaled by

p
2α [30, 50, 52]. Finally, we mention that this type of models

exhibits a random first order transition phenomenology [53–56]: there is in fact a range
of temperatures Ts(α, p) ≤ T ≤ Td(α, p) where the dynamics get trapped in an exponential
number of metastable clusters, with an emerging RSB structure that does not affect the free
energy (see Fig. 2). This range of temperatures thus defines a so-called dynamical 1RSB
(d1RSB) phase. Below Ts(α, p), the number of clusters is no longer exponential, and the system
undergoes the thermodynamic 1RSB phase transition that we mentioned previously. The critical
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temperatures TG(α, p), Ts(α, p) and Td(α, p) can all be obtained by standard RSB methods, but
the resulting saddle-point equations can be prone to numerical instability at large p [33]. In
Sections 4.2 and 4.3, we discuss an alternative way to obtain Ts(α, p) and Td(α, p).

3 Teacher-student setting

On our end, we study a dense Hopfield network with Hamiltonian (1) as a generative model
for unsupervised learning. In that context, the memories ξ are model parameters that have to
be trained in such a way that the examples of a given dataset {σa}Ma=1 result as typical network
configurations.

In particular, we study a controlled teacher-student setting in which the examples are
sampled from the probability distribution P (σa|ξ∗) of a so-called teacher dense Hopfield
network conditioned on a single planted pattern ξ∗ ∈ {−1, 1}N whose entries are quenched
Rademacher random variables. A student dense Hopfield network, also known as the inverse
model, then samples its own student pattern ξ from the posterior distribution

P (ξ|σ) =
P(ξ)

∏M
a=1 P (σa|ξ)
P(σ)

=
P(ξ)
P(σ)

M
∏

a=1

Z−1 exp (−βH[σa|ξ]) ,

where P (σa|ξ) is the Gibbs distribution of the direct model with a single memory ξ, and P (ξ)
is the prior on ξ that is chosen to be uniform. Since the direct model has only a single pattern,
Z does not depend on ξ (see Appendix C), and the posterior simplifies to

P (ξ|σ) = Z−1(σ)exp (−βH[ξ|σ]) .

In sum, the student posterior distribution is that of a dense Hopfield network where ξ plays the
role of the sampled pattern and the examples σ act like the M quenched memories. Our task,
called the inverse problem, consists of quantifying the student’s capability to infer the teacher
pattern, which we will also call the signal. Like Gardner, we calculate a free entropy of the
form f = 1

N 〈logZ〉σ in the thermodynamic limit N →∞. This time, however, the average
〈·〉σ is over a structured set of examples σ. In fact, we recall that, unlike the i.i.d. memories
studied by Gardner, the examples σa are sampled from the teacher distribution P (σa|ξ∗).

In general, the student does not have access to the teacher generative model. In our
controlled teacher-student setting, the student knows that the correct model for P (σa|ξ) is a
dense Hopfield network. Nevertheless, it does not necessarily have access to the interaction
order p∗ and inverse temperature β∗ used by the teacher. Therefore, we denote the student
hyperparameters by p and β and emphasize that they are not necessarily equal to p∗ and β∗.
As previously stated, we calculate the free entropy

f =
1
N
〈logZ〉σ = 2−N

∑

ξ∗

∑

σ

[Z∗]−M exp

 

β∗
p∗!

N p∗−1

M
∑

a=1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip

!

× log
∑

ξ

exp

 

β
p!

N p−1

M
∑

a=1

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

, (3)

in the thermodynamic limit N →∞. We then draw phase diagrams of the inverse problem
as a function of p∗, T ∗ = 1/β∗, p, T = 1/β and α, where α is M normalized to O (1). Unless
explicitly specified otherwise, we use α= M p!

N p−1 .
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3.1 Matched interaction orders

We first consider the case where p∗ = p and the only possible mismatch between the teacher
and student networks is in the inverse temperature, i.e. β∗ ̸= β . At low T ∗, the student’s task
is easy. In fact, below the critical temperature Tcrit of the direct problem with one pattern (see
Fig. 1, α= 0 axis), the teacher produces examples σa that cluster around ξ∗. Therefore, the
student can infer ξ∗ by aligning its pattern ξ with the examples σa. This retrieval strategy
works even when using a very small amount of examples (see [38]). Since the size of our
dataset is extensive, the retrieval accuracy is maximum in the thermodynamic limit. We call
this region the (accurate) example Retrieval phase (eR).

Conversely, when T ∗ is above Tcrit, the examples in the training set are very noisy and we
do not observe a finite overlap between σa and ξ∗ (see Fig. 1, α= 0 axis). In this regime, we
find that the RS approximation of the p∗ = p free entropy can be computed (see Appendix D)
in terms of the variational principle

f = Extr
m,k,q,r,q∗,r∗

�

β∗βα [q∗]p −
1
2
β2αqp + βmp − β∗βαr∗q∗

+
1
2
β2αrq−

1
2
β2αr − βmk+

1
2
β2α+ log2

+

∫

d x
1
p

2π
exp

§

−
1
2

x2
ª

¬

log
�

cosh
�

β
�p
αr x + β∗αr∗ + kz

���

¶

z

�

, (4)

whose solution is the saddle-point equations

q∗ =

∫

R
d x

1
p

2π
exp

�

−
1
2

x2
�

¬

tanh
�

β
�p
αr x + β∗αr∗ + kz

��

¶

z
,

q =

∫

R
d x

1
p

2π
exp

�

−
1
2

x2
�

¬

tanh2
�

β
�p
αr x + β∗αr∗ + kz

��

¶

z
,

m=

∫

R
d x

1
p

2π
exp

�

−
1
2

x2
�

¬

z tanh
�

β
�p
αr x + β∗αr∗ + kz

��

¶

z
, (5)

r∗ = p [q∗]p−1 ,

r = pqp−1 ,

k = pmp−1 ,

where z is a Rademacher random variable and α = M p!
N p−1 . As in the direct model described

in Section 2, the order parameters m and q have a clear interpretation in terms of expected
overlaps. m = limN→∞


 1
N

∑

i ξiσ
a
i

�

ξ∗,σ,ξ is the expected overlap of a retrieval attempt with an

example σa, and q = limN→∞

¬

1
N

∑

i 〈ξi〉
2
ξ

¶

ξ∗,σ
is the expected overlap between two retrieval

attempts. Similarly, q∗ is the expected overlap between the teacher and student patterns, i.e.
q∗ = limN→∞


 1
N

∑

i ξ
∗
i ξi

�

ξ∗,σ,ξ. Therefore, it is a good measure of inference performance. The
free entropy (Eq. 4) is expected to be exact in absence of mismatch between the teacher and
the student, i.e. β∗ = β . This condition is known as the Nishimori line [45–48]. Outside of the
Nishimori region, RSB corrections are expected. Like the direct problem, the inverse problem
with T ∗ > Tcrit has different phases characterized by the values of the order parameters:

• In the Paramagnetic phase (P), the overlaps m, q∗ and q all vanish.

• In the signal Retrieval phases (lR and gR), m= 0 but q∗ ̸= 0 and q > 0. lR and gR are
respectively locally stable and globally stable. In other words, local retrieval lR is only
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attainable from initial conditions in a limited neighborhood of ξ∗, while global retrieval
gR is accessible from any initial conditions given enough time. These two phases are also
said to be ferromagnetic.

• In the (inaccurate) example Retrieval phase (eR), m ̸= 0 and q > 0 but q∗ = 0.

• In the Spin-Glass phase (SG), q > 0 but q∗ and m vanish.

In sum, when T ∗ is above Tcrit, the student can only learn the teacher pattern in the signal
retrieval phases. In all the other phases, the student pattern is uncorrelated with the signal, being
either a random guess (P phase), aligned with a noisy example (inaccurate eR phase), or aligned
with a spurious low energy state (SG phase). We stress that we cannot have m ̸= 0 and q∗ ̸= 0
at the same time (accurate eR phase) when T ∗ > Tcrit because limN→∞


 1
N

∑

i ξ
∗
iσ

a
i

�

ξ∗,σ = 0
in that regime (see Fig. 1, α= 0 axis).

3.2 Mismatched interaction orders

We also investigate the T ∗ > Tcrit regime in the presence of a mismatch between the interaction
orders of the teacher and student networks, i.e. p∗ ̸= p. We focus on the case of p∗ = 2 and
even p ≥ 3 to study the consequences of fitting the teacher of [38] using a student with higher
order interactions. We find two different scaling regimes of the training set size M and inverse
temperature β∗ that make retrieval possible (see Appendix D):

• a large-noise scaling where β∗ ∼O
�

N2/p−1
�

and M ∼O
�

N p−1
�

, such that α = M p!
N p−1 and

λ= [β∗]p/2

(p/2)! N p/2−1 are finite;

• a finite-noise scaling where β∗ ∼ O (1) and M ∼ O
�

N p/2
�

, such that α = M(p/2+1)!
N p/2 is

finite.

In the large-noise scaling, we obtain saddle point equations similar to Eqs. (5) but with β∗

replaced by λ (see Appendix D). Conversely, the finite noise scaling leads to

q∗ =
¬

tanh (β [ηαr∗ + kz])
¶

z
,

m=
¬

z tanh (β [ηαr∗ + kz])
¶

z
, (6)

r∗ = p [q∗]p−1 ,

k = pmp−1 ,

where η generally depends on β∗ and p in a non-trivial way, but we find that η = 2[β∗]2

(1−2β∗)2
when

p = 4 (see Appendix D). These equations can also be derived by extrapolating the large-noise
equations to αlarge noise→ 0 and λ→∞ with fixed λαlarge noise = ηαfinite noise.

4 Results and Discussion

4.1 Retrieval transition at large interaction order

The paramagnetic solution of Eqs. (5) always exists and is globally stable in the part of the
phase diagram where the temperature T is relatively large and α = M p!

N p−1 is relatively small.
On the other hand, the gR phase exists when β2αp and β∗βαp are both large. In fact, in that
limit, q∗ = q = 1 is a fixed point of Eqs. (5). The critical line where gR becomes globally stable
instead of P is not clear from this analysis alone, but we can at least find it analytically in
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the limit of infinite p. As for the direct model, the free entropy and the total entropy of the
paramagnetic phase are respectively 1

2β
2α+ log 2 and −1

2β
2α+ log 2 [30]. At the same time,

the p→∞ free entropy takes the form

f = Extr

�

β∗βα θ (q∗ − 1)−
1
2
β2α θ (q− 1)− β∗βαr∗q∗ +

1
2
β2αrq−

1
2
β2αr +

1
2
β2α

+ log2+

∫

d x
1
p

2π
exp

§

−
1
2

x2
ª

log
�

cosh
�
Æ

β2αr x + β∗βαr∗
��

�

,

where θ (q− 1) := limp→∞ qp, q ∈ [0, 1], is the Heaviside step function jumping at q = 1, i.e.
θ(1) = 1 and θ(q) = 0 ∀q ∈ [0,1). In this limit, the ferromagnetic phase is characterized by
q = q∗ = 1, and its free entropy is then

f = β∗βα− β∗βαp+

∫

d x
1
p

2π
exp

§

−
1
2

x2
ª

log
�

2 cosh
�
Æ

β2αpx + β∗βαp
��

≈ β∗βα− β∗βαp+

∫

d x
1
p

2π
exp

§

−
1
2

x2
ª

�
Æ

β2αpx + β∗βαp
�

= β∗βα .

The corresponding total entropy is s = f − β ∂ f
∂ β = 0, as expected from a ferromagnetic phase

with q∗ = q = 1. On the Nishimori line, f = β∗βα becomes larger than the free entropy of the
paramagnetic phase, which triggers a phase transition, if and only if

T <

√

√ α

2 log2
, (7)

where TE =
q

α
2 log2 is also the temperature below which the total entropy of the paramag-

netic phase becomes negative. Outside of the Nishimori line, this inequality generalizes to
β∗βα > 1

2β
2α+ log2, leading to

β∗ −

√

√

[β∗]2 −
2 log 2
α

< β < β∗ +

√

√

[β∗]2 −
2 log2
α

,

while the temperature where the paramagnetic total entropy becomes negative stays the same.

4.2 Transition to the ordered phases: Universality

In the p→∞ limit, the transition towards gR of the inverse model on the Nishimori line is
identical to the exact P-SG transition of the direct model [30]. We claim that these two critical
lines are actually closely related for any p. In the Hopfield model with p = 2, they were already
shown to be identical [38]. We will now argue that they overlap for any p and β such that
T > Tcrit (see Figs. 2 and 1). In the case of p = 2, both lines can be obtained exactly from
the RS approximation of either the direct model or the inverse model, so there is no obvious
advantage to using this equivalence in calculations. In general, while the inverse problem
on the Nishimori line is replica symmetric, the direct problem is not, and the p ≥ 3 replica
symmetric P-SG transition is not exact. Moreover, even the critical line calculated using 1RSB
may be inaccurate due to numerical instability [33]. In this situation, the knowledge of the
gR transition in the replica-symmetric inverse problem can be used to locate the exact P-SG
transition of the direct problem, where symmetry breaking occurs.

For that purpose, we will argue that, given T > Tcrit, the direct model is in the paramagnetic
phase if and only if the inverse model is in the paramagnetic phase.
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The converse implication comes from the fact that since (see Appendix C)

P (σ) =
1

2MN

Z(σ)
〈Z〉

, (8)

the example distribution P (σ) of the inverse problem is contiguous [57] to the uniform
distribution, i.e. the memory distribution of the direct problem, when

lim
N→∞

§

logZ − log 〈Z〉
N

ª

= 0 . (9)

As determined in Appendix C and D, the annealed expression 1
N log 〈Z〉 is equal to the free

entropy of the paramagnetic phase. Therefore, when the inverse model is in the paramagnetic
phase, P (σ) is contiguous to the uniform distribution. This property is called quiet planting
and is known to occur more generally in mean-field paramagnets [58–61]. In our problem
setting, it means that if the inverse model is in the paramagnetic phase, then it is equivalent to
the direct model. In particular, if the inverse model is in the paramagnetic phase, then so is the
direct model. In more intuitive terms, the gR transition temperature of the inverse model must
be greater than or equal to the P-SG transition temperature of the direct model because the
ensemble of examples σa generated by the teacher model is on average at least as structured
as the set of i.i.d. random memories stored in the direct model.

For the direct implication, notice that the average replicated partition function of the direct
model in the paramagnetic phase can be approximated as (see Appendix E)




Z L
�

≈
1
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βN
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i
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∑

γ

∑
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∑

i1<...<ip
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...ξµipσ
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...σγip

�

∑

σ0

exp
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∑

µ∈Γ̄

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
0
i1

...σ0
ip

!

�

.

This expression is identical to the replicated partition function of the inverse model with
T > Tcrit, which therefore must also be in the paramagnetic phase.

As a consequence, when T > Tcrit, the P-SG transition line of the direct model must be
identical to the gR transition line of the inverse model on the Nishimori line.

4.3 Phase diagram on the Nishimori line

On the Nishimori line, the student is fully informed about the teacher generative model and
uses β = β∗ and p = p∗. In this scenario, thanks to the Nishimori identities [46], it is well
known that ξ∗ and ξ play symmetric roles and that q∗ = q. For the same reason, the overlaps
1
N

∑

i ξ
∗
i ξi and 1

N

∑

i ξ
1
i ξ

2
i have the same distribution. From the self-averaging of 1

N

∑

i ξ
∗
i ξi , it

follows that the system is expected to be replica symmetric, and Eqs. (4) and (5) are expected
to hold. Fig. (2) shows the phase diagrams obtained by solving the saddle-point equations
numerically on the Nishimori line. Both q∗ = q and the replica symmetry condition are verified.
In particular, numerical solutions of a few values of p ≥ 3 show that the gR transition occurs
at a higher T than the line β2α= 2 log2 where the total entropy of the paramagnetic phase
becomes negative. In other terms, the phase transition towards gR prevents the total entropy
from becoming negative when T decreases below

q

α
2 log 2 , which is consistent with the RS

solution being exact on the Nishimori line.
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Figure 2: Exact RS phase diagrams of inverse models on the Nishimori line, i.e. p∗ = p
and β∗ = β . the left, center and right plots respectively have p = 3, p = 4 and p = 10.
Accurate pattern retrieval is not possible in the paramagnetic phase (P), but it is
possible in the local retrieval phase (lR), in the global retrieval phase (gR) and in
the example retrieval phase (eR). The ferromagnetic fixed point corresponding to
accurate pattern retrieval is globally stable in the gR phase, but locally stable in the
lR phase. The critical temperature of the eR phase is the critical temperature Tcrit of
the direct problem with one pattern (see Fig. 1, α= 0 axis). The black dashed lines
mark the spurious continuation of the lR and gR phase boundaries through the eR
phase. The white dashed line is the p→∞ gR critical line calculated analytically
in Section 4.1. It matches the corresponding numerical phase boundary increasingly
well as p grows larger. The white dotted lines on the p = 3 plot mark the 1RSB and
d1RSB critical temperatures Ts (α, 3) and Td (α, 3) of the direct model (see Section
2). We truncated them below Tcrit for improved visibility. Ts (α, 3) and Td (α, 3) are
obtained by rescaling the corresponding critical temperatures found in [54] by

p
2α.

At low T , the student can learn efficiently within the accurate eR regime. In this phase,
learning is possible (q∗ ̸= 0) because the examples are correlated with the signal and the
student can retrieve it by simply being aligned with them (m ̸= 0).

At high T , learning is possible only if the amount of examples, i.e. the size of the dataset, is
sufficiently large. When α is too small, Eqs. (5) have only a paramagnetic fixed point because
the amount of information carried by the dataset is not large enough. Numerical solutions
suggest that the paramagnetic fixed point always exist and it is actually locally stable in the
whole high-temperature regime. When α is sufficiently large, the signal retrieval fixed point
appears as a locally stable attractor (lR phase). It becomes globally stable (gR phase) as the
size of the dataset is increased further or the student temperature decreases.

As per the previous Section, the critical boundary of the gR phase obtained by solving Eqs.
5 is identical to the 1RSB P-SG transition temperature Ts(α, p) of the direct model. Similarly,
we observe that the metastable lR phase coincides with the d1RSB phase of the direct model
(see Fig. 2). Our results are also consistent with the fact that Ts(α, p)→ TE(α) in the p→∞
limit. In fact, we find that the analytical limit boundary closely agrees with the numerical
solution of the saddle-point equations with p∗ = p = 10 and remains a good approximation
even down to p∗ = p = 4.

In the student model, σ plays a similar role as the weights of the trainable dense Hopfield
network model that K & H designed for classification of data [26]. In that context, ξ is analogous
to the test data whose labels are being predicted (see Fig. 3). In fact, the computation performed
by K & H’s model to recover labels is similar to the update rule used by the student to infer the
teacher pattern (see Appendix A). Moreover, the eR and gR phases are respectively reminiscent
of the prototype and feature regimes of K & H’s networks. Therefore, we believe that the
student can act as a toy model of label prediction in these two regimes.
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Figure 3: The first row of this diagram sketches how a p-body Hopfield network in
the teacher-student setting can reconstruct an incomplete pattern ξb to match the
teacher pattern ξ∗ by relying on the examples σ obtained from ξ∗. The second row
summarizes how a dense neural network trained by K & H can recover the labels y ′ of
the data x given the weights w learned from x [26]. Both models tackle similar tasks
using an approach where σ and ξb respectively play the same roles as w and (x , y ′).
The forward propagation algorithm used to generate y ′ is similar to the update rule
of the student (see [26] and Appendix A), but the backpropagation algorithm used to
learn w is very different from the update rule of the teacher.

Comparing instead the phase diagrams of our inverse model with that of the inverse 2-body
Hopfield model, we see that the eR and gR phases of the inverse p-body model with p ≥ 3 are
respectively analogous to the eR and sR (signal Retrieval) phases presented in [38]. One of
the key differences between p = 2 and p ≥ 3 is that the paramagnetic to signal retrieval phase
transition of the p-body model is second order for p = 2 but first order for p ≥ 3. On the one
hand, the second order phase transition of p = 2 indicates that its paramagnetic fixed point is
never locally stable and sets an unambiguous boundary between the sR phase where ξ∗ can
be recovered starting from any initial conditions and the paramagnetic phase where pattern
retrieval is impossible [61]. On the other hand, the first order phase transition of p ≥ 3 allows
the retrieval and paramagnetic regimes to coexist. The lR phase is locally stable precisely
because it coexists with the paramagnetic phase and has a lower free entropy. Meanwhile,
the gR phase also coexists with the paramagnetic phase, but has a larger free entropy. In the
presence of phase coexistence, an algorithm trying to retrieve ξ∗ starting from random initial
conditions can get stuck in the paramagnetic phase instead. In fact, it has been conjectured
that there is no algorithm with random initial conditions that can find such a ferromagnetic
fixed point in a tractable amount of time [61,62]. That kind of metastable region was thus
given the name hard phase [61,63]. In summary, we expect that p ≥ 3 models in the gR phase
can only recover partially corrupted patterns whereas p = 2 can recover them entirely.

Fig. (4) shows results from Monte Carlo simulations with p = 3, where L replicas of
the student pattern {ξb}Lb=1 are initialized to the teacher pattern ξ∗ corrupted by some
Rademacher noise ϵ. In other words, the initial values of ξb

i are sampled from the distri-
bution (1− ϵ)δ

�

ξi − ξ∗i
�

+ ϵ2 [δ (ξi + 1) +δ (ξi − 1)] with ϵ ∈ [0, 1]. The value of ϵ is tuned so
that the simulations start relatively close to the saddle-point solutions. As explained previously,
gR is a hard phase, so this initialization is necessary to make ξb converge to gR in a reasonable
amount of time. Additionally, it is also used to make ξb converge to the lR phase rather than
the P phase when desired. Once the simulations are over, the overlaps are averaged over all L
replicas. If we fix ϵ = 0, then the simulations generally converge to the lR phase when it is a
fixed point. If instead we initialize them to the saddle-point solutions by handpicking ϵ, then
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Figure 4: Monte-Carlo simulations of the p = 3 inverse model compared against RS
saddle-point solutions. The lR phase is included on the left and central plots, but not
on the right one. The left plot has ϵ = 0, and the two other ones have a handpicked
ϵ such that the simulations are initalized near the saddle-point solutions. The dots
are simulation data at a few values of α, and the lines are slices of the saddle-point
solutions at the same α. The teacher generates M = αN p−1

p! examples σa with N = 512
components each, and the simulation results are then averaged over L = 100 student
patterns. The simulation data is sometimes systematically shifted up with respect to
the saddle-point solution. This difference is notably visible on the central plot, right
after the fall from eR to gR when α= 3.

they stay near the initial overlaps. In either case, the simulations converge to eR when it is
globally stable. Some simulation data points might be systematically shifted up with respect to
the saddle-point solutions. However, this difference decreases with the system size N , so finite
size effects seem sufficient to explain it (see Fig. 9 in Appendix F). Overall, the Monte-Carlo
simulations are in very good agreement with the p = 3 overlap landscape obtained by solving
the saddle-point equations numerically.

4.4 Inference temperature vs dataset noise

In the two next Sections, we will discuss the phase diagram when the student is only partially
informed about the teacher generative model, i.e. when the Nishimori conditions do not hold.
We start with the case where p = p∗ but β ̸= β∗, i.e. the inference temperature T is different
from the dataset noise T ∗. As we argued in Section 3.1, the student accurately retrieves ξ∗

when T ∗ < Tcrit. On the other hand, we must solve the saddle-points equations (see Eqs. 5) to
study T ∗ > Tcrit.

We show the phase diagram of this region on Fig. (5). At high inference temperature T , the
situation is similar to Fig. (2): retrieval is possible if the data load α is sufficiently large, but
the paramagnetic phase is always locally stable. The situation is different when the inference
temperature is low. In that case, there are two phases that we did not see for β = β∗: the
inaccurate eR phase and the SG phase. When α is relatively small, the student falls in the
inaccurate eR phase. In this regime, it has finite overlap with one of the noisy examples and
cannot retrieve the signal ξ∗. When α is larger, the interference among the noisy examples
prevents the student to be aligned with them. In this regime, the SG phase, the student locally
converge to spurious patterns that are uncorrelated with the signal.

Accurate pattern retrieval is only possible in the lR and gR phases where α is so large that
the student can gather enough information from the dataset to become very close to ξ∗. The
phase diagrams indicate that pattern retrieval is optimal on the Nishimori line in the sense that
β = β∗ is the inverse temperature where the student needs the least examples to recover ξ∗.
In other words, the student’s performance is non-monotonic in T and peaks at T = T ∗. These
properties were also observed in the teacher-student setting of the p = 2 Hopfield network [38].
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Figure 5: RS phase diagrams of inverse models with p∗ = p and fixed β∗. The top
and bottom rows of plots respectively have p∗ = p = 3 and p∗ = p = 4. In the
same way, the left, central and right columns correspond to T ∗ = 1.5, T ∗ = 1.6 and
T ∗ = 1.7. Accurate pattern retrieval is not possible in the paramagnetic phase (P), in
the spin-glass phase (SG) or in the example retrieval phase (eR), but it is possible in
the local retrieval phase (lR) and in the global retrieval phase (gR). The ferromagnetic
fixed point corresponding to accurate pattern retrieval is globally stable in the gR
phase, but locally stable in the lR phase. Conversely, the SG fixed point is always
locally stable and leads the student to a frozen spurious signal. The white dashed line
indicates the Nishimori line β∗ = β . The black dashed lined is the gR phase boundary
on the Nishimori line. As explained in Section 4.3, we expect it to overlap the exact
SG phase transition.

Contrary to what one would expect to see on the exact phase diagram [45,46], the Nishimori
line T = T ∗ does not to cross a triple point on the RS phase diagram. The issue is that the RS
phase diagram is not exact outside of the Nishimori line. In particular, the SG phase boundary
is not exact. Outside of the retrieval regime, the free entropy of the inverse model is the same
as the direct model. Since the transition towards gR of the inverse model on the Nishimori
line overlaps the exact P-SG transition of the direct model (see Section 4.3), we deduce that
it must also overlap the exact P-SG transition of the inverse model outside of the gR phase.
Plotting it on the RS phase diagrams, we see that it indeed crosses the Nishimori line and the
gR phase boundary at the same point, which therefore becomes a triple point, as expected.

4.5 Interaction order and noise tolerance

So far, we assumed that the student is informed about the interaction order used by the teacher,
i.e. p = p∗. In this Section, we investigate the role of the student’s choice of p when the task
is to learn from a dataset sampled by a 2-body Hopfield network, i.e. p∗ = 2. We study two
different non trivial scalings regimes of M and β∗ that make pattern inference possible (see
Appendix D).
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Figure 6: RS phase diagrams of inverse models with p∗ = 2 and p = 4. The left
plot is for α = M(p/2+1)!

N p/2 , and β∗ = 1− 1p
2

such that η = 1 and the right plot is for

α= M p!
N p−1 and β∗ =

q

2λ
N with λ= β . Accurate pattern retrieval is not possible in the

paramagnetic phase (P) or in the example retrieval phase (eR), but it is possible in the
local retrieval phase (lR) and in the global retrieval phase (gR). The ferromagnetic
fixed point corresponding to accurate pattern retrieval is globally stable in the gR
phase, but locally stable in the lR phase. The black dashed lines mark the metastable
continuation of the eR, lR and gR phase boundaries through neighboring phases with
a larger free entropy. The paramagnetic total entropy becomes negative below the
white dashed line drawn on the right plot. However, the paramagnetic phase is no
longer globally stable at that temperature.

4.5.1 Large noise scaling

We first consider a large noise scaling where β∗ ∼O
�

N2/p−1
�

and M ∼O
�

N p−1
�

, such that

α=
M p!
N p−1

, and λ=
[β∗]p/2

(p/2)!
N p/2−1 ,

are finite. In this scaling, a p ≥ 3 network requires O
�

N p−2
�

more training examples than a
p = 2 network with finite load γ = M

N , but also has a higher tolerance to teacher noise. For
instance, a student with p = 4 interactions is able to retrieve the pattern of a teacher with
T ∗ ∼ O

�

N1/2
�

noise when it is shown enough examples M ∼ O
�

N3
�

to be in the gR phase
(see Fig. 6).

O
�

N1/2
�

noise tolerance was also observed in the p = 4 direct model, where it is a
consequence of the redundancy stemming from storing O (N)memories rather than the O

�

N3
�

needed to saturate the storage capacity [64]. Our p = 4 inverse model exploits a different
kind of redundancy by learning from O

�

N3
�

examples whereas p = 2 only needs O (N). In
other terms, both storing extensively less memories than the maximum allowed amount and
generating extensively more examples than the minimum required amount provide enough
redundancy to recover a pattern muddled in an extensive amount of noise. In both cases, there is
an O

�

N2
�

gap between the number of patterns used in the noise-tolerant and noise-susceptible
regimes. Going beyond p = 4, the inverse model has O

�

N1−2/p
�

noise tolerance as a function
of p. In particular, our theory predicts that the tolerance saturates at T ∗ ∼O (N) as p→∞,
but at the cost of using an intractable number of examples. This behavior is different from

15

https://scipost.org
https://scipost.org/SciPostPhys.17.2.040


SciPost Phys. 17, 040 (2024)

Figure 7: Monte-Carlo simulations (dashed lines) and RS saddle-point solutions (full
lines) of the inverse model in the large-noise scaling with p∗ = 2 and p = 4. The
teacher generates M = αN p−1

p! examples σa with N = 256 components each, and the
simulation results are then averaged over L = 100 student patterns. The student
patterns are all initialized to ξ∗.

the O
�

N1/2−p/4
�

tolerance of the direct p-body model in the noisy-learning regime studied
in [65]. In other terms, the dataset noise that we are facing is of a different nature than the
learning noise of [65]. In any case, it is interesting that both the direct and inverse models
are able to tolerate an extensive amount of noise. Overall, our results suggest that it could be
advantageous to use a student network with a relatively large p to learn from a large but noisy
dataset when the p∗ of the teacher generative model is unknown.

An unavoidable drawback of large teacher noise is that it always lead to uncorrelated
examples, which makes accurate example retrieval impossible. Instead, it is replaced by the
inaccurate example retrieval phase where the student has finite overlap m with a noisy example
generated by the teacher but no overlap with the signal (see Fig. 6). Depending on T and α,
this phase can be either globally stable or locally stable. For the sake of clarity, we plot only the
globally stable phase on our phase diagram in Fig. (6). The locally stable phase is arguably less
important to plot because it is identical to the locally stable ferromagnetic phase previously
reported in the direct model when assuming replica symmetry (see [33] and Fig. 1).

Given m = 0, the free entropy of the inverse model with p ≥ 3, p∗ = 2 and β = λ is the same
as on the Nishimori line (see Eq. 5 and Appendix D). As a direct consequence, the total entropy
is positive outside of the eR phase (see Fig. 6). Additionally, the p∗ = 2, p ≥ 3 phase diagrams
with β ̸= λ are identical to the p = p∗ phase diagrams with β ̸= β∗, which suggests that β = λ
is optimal for p∗ = 2, p ≥ 3 in the same sense as β = β∗ is optimal for p = p∗ (see Fig. 5).
Monte-Carlo simulations confirm that a student with p ≥ 3 is able to retrieve the pattern of a
teacher with p = 2 and T ∗ ∼ O

�

N1/2
�

(see Fig. 7). However, the lR phase transition is at a
higher T in the simulations than on the β = λ RS phase diagram (see Fig. 5), which means
that RSB is necessary to describe it accurately. One could check where replica symmetry holds
by evaluating the stability of the RS saddle point throughout the phase diagram.

4.5.2 Finite noise scaling

We also consider a different scaling regime where β∗ ∼O (1) and M ∼O
�

N p/2
�

, such that

α=
M(p/2+ 1)!

N p/2
,

is finite. In this finite-noise scaling, p ≥ 3 requires O
�

N p/2−1
�

more training examples than
p = 2, which is a lot less than the first scaling. For instance, a student with p = 4 needs O

�

N2
�
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examples to retrieve ξ∗. As before, the phase transitions are all first order, the overlap q∗

stays high throughout the gR and lR phase of p = 4 and gR is a hard phase. The saddle-point
equations (see Eqs. 6) are free from the pattern interference term

p
αr x present in their p∗ = p

counterparts (see Eqs. 5) until β∗ becomes so small that is approaches O
�

N2/p−1
�

. Therefore,
contrary to p∗ = p = 2, the network is never in the SG phase. Practically, it means that p ≥ 3
gives more freedom than p = 2 for tuning β and α. The only remaining restriction is that
choosing α and T too small puts the network into the inaccurate eR phase resulting from the
kz term (see Fig. 6). The saddle point equations can be derived without the RS ansatz because
they do not involve q and r. Consequently, we expect them to yield an exact solution. Like
on the Nishimori line, the total entropy of the paramagnetic phase is always positive, which is
consistent with the solution being exact.

4.6 Robustness against adversarial attacks

Inverse models with p∗ = 2 and p ≥ 3 offer an opportunity to study adversarial attacks in a
simple setting because their phase diagrams have regions where the signal retrieval phases
(gR and lR) overlap with the inaccurate eR phase. Recall that, in the lR phase, a noisy student
pattern ξ either converges to ξ∗ or falls in the paramagnetic phase, depending on the amount
of noise that ξ contains initially. The quantity of noise needed to prevent pattern retrieval
becomes smaller as one approaches the lR to P phase transition and the basin of attraction
of lR shrinks. Similarly, in the region of inaccurate eR where signal retrieval is metastable,
patterns ξ that are corrupted by replacing some of their entries ξi by the components σa

i of an
example σa may converge to σa when enough entries are replaced. The fraction ϵ of entries
that need to be replaced becomes smaller as the basin of attraction of inaccurate eR expands
and overtakes that of signal retrieval. In practice, an adversary can use this strategy to trick the
student into converging to a pattern other than ξ∗. This scenario is similar to an adversarial
attack targeting the input of K & H’s dense Hopfield network model because the student pattern
ξ plays a similar role in the inverse model as the test data in K & H’s dense Hopfield networks
(see Fig. 3, Section 4.3 and Appendix A). In that analogy, the examples σ are acting like the
neural network weights rather than taking the role of the training data.

We will now investigate what values of the perturbation size ϵ are a threat by deriving a
formula for the largest ϵ such that the student converges to the signal at zero temperature. This
largest ϵ will be denoted ϵ∗, and we expect it to be a good measure of adversarial robustness.
The saddle-point equations with T = 0 indicate that the student converges to one of the signal
retrieval phases if and only if k < ηαr∗ (see Eqs. 6). Sampling the initial conditions of ξi from
(1− ϵ)δ

�

ξi − ξ∗i
�

+ ϵ δ
�

ξi −σa
i

�

with ϵ ∈ [0, 1], we get

r∗ = p





1
N

(1−ϵ)N
∑

i=1

ξ∗i ξ
∗
i +

1
N

ϵN
∑

i=1

ξ∗iσ
a
i





p−1

,

k = p





1
N

(1−ϵ)N
∑

i=1

ξ∗iσ
a
i +

1
N

ϵN
∑

i=1

σa
i σ

a
i





p−1

.

By the law of large numbers, 1
ϵN

∑ϵN
i=1 ξ

∗
iσ

a
i and 1

(1−ϵ)N
∑(1−ϵ)N

i=1 ξ∗iσ
a
i are both typically close to

m∗ = 1
N

∑N
i ξ
∗
iσ

a
i ≈ 0 as N →∞. If we take σa to be a typical example, then r∗ and k reduce

to

r∗ ≈ p (1− ϵ)p−1 ,

k ≈ pϵp−1 .

17

https://scipost.org
https://scipost.org/SciPostPhys.17.2.040


SciPost Phys. 17, 040 (2024)

Figure 8: Monte-Carlo simulations of the overlap q∗ as a function of α and adversarial
attack size ϵ in the inverse model with p∗ = 2, β∗ = 1 − 1p

2
, p = 4, β =∞ and

N = 1024. The simulation results are averaged over L = 100 student patterns. On
the left plot, the inverse model is corrupted by an example σa that has a small overlap
with ξ∗ in absolute value. On the right plot, it is corrupted by the example that has
the largest overlap with ξ∗. The black line ϵ∗ = α1/3

α1/3+1 is our analytical formula for
the largest adversarial perturbation ϵ such that the student retrieves ξ∗ rather than
the example σa.

Substituting these expressions back in k < ηαr∗ yields

ϵp−1 < ηα (1− ϵ)p−1 ,

ϵ <
[ηα]

1
p−1

[ηα]
1

p−1 + 1
.

In other terms, the inverse model with p∗ = 2 and even p ≥ 3 is resistant to adversarial attacks

of size ϵ∗ = [ηα]
1

p−1

[ηα]
1

p−1 +1
and smaller. For p = 4, ϵ∗ is in good agreement with Monte-Carlo

simulations of the inverse model corrupted by a typical example (see Fig. 8). This comparison
is good evidence that our solution of the finite-noise scaling is indeed exact. Additionally, ϵ∗ is
a decent approximation of empirical robustness even when the inverse model is corrupted by
the example that has the largest overlap with ξ∗. A similar construction with the perturbation
sampled uniformly at random gives k ∼O

�

N1/2−p/2
�

≈ 0, so adversarial attacks are much more
efficient at fooling the model than random noise. Just like adversarial attacks targeting more
complicated neural networks [40,41], our example-based attack can be hard to detect at low ϵ
because a few adversarially perturbed entries ξi do not look very different from a low amount
of meaningless noise. Moreover, ϵ∗ grows monotonically with α, which is consistent with the
common observation that larger neural networks are also more adversarially robust [43,66–71].
At first glance, this effect can be counter-intuitive because adversarial vulnerability looks like a
form of overfitting [42]. In our model, however, all examples work together to stabilize the
lR phase, and the best way to push the student into the eR phase is to perturb it with a single
example. Therefore, it is not surprising that increasing α makes the student more robust. We
recall that the examples σ are a feature-based representation of ξ∗. Interestingly, it means that
the underlying mechanism of our example-based attack is conceptually similar to gradient-based
attacks targeting many common types of neural networks [42]. In fact, gradient-based attacks
find features stored in neural network weights and add them to the data in order to fool the
network [42,72–74]. It would be interesting to investigate, both empirically and theoretically, if
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only a small number of weights are involved in constructing these adversarial attacks. If it is the
case, it could explain why larger neural networks are often more robust. In general, we expect
this kind of one-example attack to be possible in any region of signal retrieval that overlaps
with the inaccurate eR phase. Using p ≠ p∗ may not be a necessary ingredient of adversarial
vulnerability in more general models with other sources of mismatch, but in our case it ensures
that the signal retrieval phases intersect the inaccurate eR phase. Conversely, the accurate eR
phase is by definition robust to adversarial attacks since retrieving an example σa is the same
as recovering ξ∗. This distinction clarifies why the dense Hopfield networks designed by K & H
are adversarially robust in the prototype phase despite being adversarially vulnerable in the
feature phase. In fact, K & H observed that adversarial attacks are unsuccessful in the prototype
phase specifically because they retrieve stored examples that are semantically meaningful [37].
In summary, our model yields two main results concerning adversarial examples. First of all, it
suggests a reason why large feature-based neural networks are more adversarially robust than
smaller ones. Second of all, it clarifies why dense Hopfield networks are much more robust in
the prototype phase than in the feature phase.

5 Conclusion

In this work, we derive the exact phase diagram of the p-dense networks in the teacher-
student setting [16,17,30,38]. On the Nishimori line, we find an example retrieval phase (eR)
and a global retrieval phase (gR) reminiscent of the prototype and feature regimes observed
empirically in dense Hopfield networks [26]. We show that the phase transition towards gR of
the inverse model overlaps the paramagnetic to spin-glass (P-SG) transition of the direct model,
which allows us to locate the P-SG transition much more precisely than before [30,33]. On
the other hand, we discover that inverse models outside of the Nishimori line are able to resist
an extensive amount of noise. In fact, a student with p ≥ 3 is able to learn from a teacher with
p∗ = 2 even when the teacher’s inverse temperature β∗ is as low as O

�

N2/p−1
�

. Moreover, such
a student is immune to pattern interference until β∗ reaches O

�

N2/p−1
�

. In this setting, we
derive a formula measuring the adversarial robustness of the student with p ≥ 3 and T = 0. We
then use this formula to describe how making a neural network larger can potentially increase
its robustness to adversarial attacks constructed with only a few learned weights [43,66–71].
Our model also clarifies why the prototype phase of dense Hopfield networks is adversarially
robust [37]. We compare our key results against Monte-Carlo simulations.

Dense networks with exponential interactions have been argued to be the p→∞ limit of
the p-body models [75]. It would be interesting to see if they can achieve O (N) noise tolerance
at the cost of an exponential number of training examples. More generally, studying exponential
models in the teacher-student setting would be an interesting extension of this work and could
be used to complement existing studies of the direct model [75,76]. A caveat of our model is
that the teacher has only one pattern. In fact, we would need to use a teacher with at least
two patterns to describe more completely the kind of adversarial attack aiming to misclassify
data. It should be possible to study this kind of teacher by using an approach similar to [77].
In particular, [16] and [77] argue that the performance of restricted Boltzmann machines with
a finite number P of i.i.d. planted patterns is independent of P in the teacher-student setting.
It would be interesting to investigate whether this characteristic also holds for p-body dense
networks. On the practical side, we highlight the untapped benefits of using p-body models to
either resist an extensive amount of noise in the feature phase or improve adversarial robustness
in the prototype phase. Overall, we stress that further investigations of dense Hopfield networks
could unlock their true potential.
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A Gardner’s Hamiltonian vs K & H’s Hamiltonian

Consider the generalized Hopfield Hamiltonian H [σ|ξ] = −
∑N

i1<...<ip=1 Ji1...ipσi1 ...σip with

p-body interactions Ji1...ip =
p!

N p−1

∑M
µ=1 ξ

µ
i1

...ξµip described by Gardner [30], where M indicates

the number of patterns ξµ used to construct J , and N denotes the number of components of
each pattern ξµ and example σ. In this Section, we will omit ξ in the argument of H [σ|ξ]
and write H [σ] instead for notational simplicity. Unless indicated otherwise, we will assume
a large number number of components N ≫ 1 and patterns M ∼ O

�

N p−1
�

. We will start
by comparing it to the dense Hopfield network Hamiltonian H [σ] = − 1

N p−1

∑

µ

�∑

i ξ
µ
i σi

�p

studied by K & H [26].
For that purpose, we rewrite H in the form H [σ] = − 1

p!

∑

i1 ̸=... ̸=ip
Ji1...ipσi1 ...σip by summing

over all permutations of {i1...ip} in place of the restricted set i1 < ...< ip and compensating for
double counting with the prefactor 1

p! . This manipulation leads to

H [σ] = −
1
p!

∑

i1 ̸=...̸=ip

Ji1...ipσi1 ...σip

= −
1

N p−1

∑

µ

∑

i1 ̸=...̸=ip

ξ
µ
i1

...ξµipσi1 ...σip .

On the other hand, K & H’s Hamiltonian may be rewritten

H [σ] = − 1
N p−1

∑

µ

�

∑

i

ξ
µ
i σi

�p

= −
1

N p−1

∑

µ

 

∑

i1

ξ
µ
i1
σi1

!

...

 

∑

ip

ξ
µ
ip
σip

!

= −
1

N p−1

∑

µ

∑

i1...ip

ξ
µ
i1

...ξµipσi1 ...σip ,

where the sum over i1...ip includes both the set of indices i1 ≠ ... ̸= ip found in H [σ] and other
configurations where some indices are equal. For example, the configuration i1 ̸= ... ̸= ip−1 = ip
contains the fewest equal indices after i1 ̸= ... ̸= ip. In other words, H [σ] can be expressed as
an expansion around H [σ], and the two Hamiltonians are equivalent when the normalized
residuals H[σ]−H[σ]

N vanish in the limit of large N . In this study, we encounter two cases which
bring different results.
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1 The Hamiltonians H [σ] and H [σ] are dominated by a few closely packed configurations
ξµ that have finite overlap 1

N

∑

i ξ
µ
i σi ∼O (1) with σ. We say that they are aligned with

σ.

2 The Hamiltonians H [σ] and H [σ] are dominated by many spread out configurations
ξµ that have microscopic overlap 1

N

∑

i ξ
µ
i σi ∼O

�

N−1/2
�

with σ. We say that they are
misaligned with σ

We use the expansion of H [σ] to discuss both the aligned case and the misaligned case. We
start by writing the i1 ̸= ... ̸= ip and i1 ̸= ... ̸= ip−1 = ip terms explicitly, which leads to the form

H [σ] = − 1
N p−1

∑

µ

∑

i1 ̸=...̸=ip

ξ
µ
i1

...ξµipσi1 ...σip

−
1
2

p(p− 1)
N p−1

∑

µ

∑

i1 ̸=...̸=ip−1

ξ
µ
i1

...
�

ξ
µ
ip−1

�2
σi1 ...

�

σip−1

�2
+ ... ,

because there are
�p

2

�

= p(p−1)
2 ways for the indices ip−1 and ip to be equal. This expression can

be summarized by H [σ] = H [σ] +H ′ [σ] + ..., where H ′ [σ] simplifies to

H ′ [σ] = −
1
2

p(p− 1)
N p−1

∑

µ

∑

i1 ̸=...̸=ip−1

ξ
µ
i1

...
�

ξ
µ
ip−1

�2
σi1 ...

�

σip−1

�2

= −
1
2

p(p− 1)
N p−2

∑

µ

∑

i1 ̸=...̸=ip−2

ξ
µ
i1

...ξµip−2
σi1 ...σip−2

= −
1
2

p!
N p−2

∑

µ

∑

i1<...<ip−2

ξ
µ
i1

...ξµip−2
σi1 ...σip−2

.

In the aligned case, H ′ [σ] is O (1) in N because the sum over i1 < ... < ip−2 is O
�

N p−2
�

.
The terms implied by the ellipsis are even smaller because their sums are resctricted by more
equality constraints. Therefore, the residuals H[σ]−H[σ]

N vanish in the limit of large N , and
the two Hamiltonians are equivalent. Conversely, we find that H [σ] and H [σ] differ from
each other in the misaligned case (see Appendix B for more details). Therefore, although the
phases of H [σ] that we obtain in this study are qualitatively similar to the ones observed by
K & H [26,37], the phase diagram of H [σ] must be compared against a simulation of H [σ]
rather than H [σ] in order to test our theory quantitatively.

To understand how to sample σ in both models, consider a Monte-Carlo simulation used
to find the statistical equilibrium of a spin ensemble σ with Hamiltonian G [σ]. To be more
specific, suppose σ is updated to a new state σ′ with a randomly selected spin σi flipped with
acceptance probability Pi =

1
1+exp[β(G[σ′]−G[σ])] for a large number of time-steps. This approach

works well for G [σ] = H [σ]. However, in the case of H [σ], we find that the simulation
only converges when we use the local field hi =

p!
N p−1

∑

µ ξ
µ
i

∑

i1<...<ip−1
ξ
µ
i1

...ξµip−1
σi1 ...σip−1

mentioned by Gardner [30] to approximate
H[σ′]−H[σ]

2σi
at large N . In other words, we iteratively

flip randomly chosen spins σi with acceptance probability Pi =
1

1+exp(2βhiσi)
for a large number

of time steps. For arbitrary p, it is not obvious how to compute hi quickly as a sub-routine of
the Monte-Carlo simulation. However, we find that both p = 3 and p = 4 have closed-formed
expressions that are easy to evaluate numerically in an efficient way. To be more precise,

• p = 3 leads to hi = 3
∑

µ ξ
µ
i

h
�

1
N

∑

j ξ
µ
j σ j

�2
− 1

N

i

,

• and p = 4 leads to hi = 4
∑

µ ξ
µ
i

�

1
N

∑

j ξ
µ
j σ j

�
h
�

1
N

∑

j ξ
µ
j σ j

�2
− 3

N

i

.
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For this reason and also because the number M ∼O
�

N p−1
�

of patterns ξµ used in a Monte-Carlo
simulations increases exponentially with p, we choose to simulate only p = 3 and p = 4.

The output of the neural network model that K & H designed for classification of data
is c j = tanh

�1
2β
�

H
�

σ′
�

−H [σ]
��

≈ tanh
�

βp
∑

µ ξ
µ
j

� 1
N

∑

i ξ
µ
i σi

�p−1�
. We omit the linear

rectifier present in the original paper [26] because the overlaps 1
N

∑

i ξ
µ
i σi are almost always

positive (see for example the Supplement of [78]). The predicted class is then j′ = argmax j {ci}.
Using 1− Pj =

1
1+exp[β(H[σ′]−H[σ])] instead of c j does not change j′ because 1− Pj and c j are

related by 1− Pj =
1
2

�

c j + 1
�

. When we evaluate Pi using H instead of H, this relation does
not always hold exactly. Rather, it should be considered an approximation.

B Direct model cumulant expansions

In the direct model, the average replicated partition function



Z L
�

takes the form:




Z L
�

=

*

∑

σ

exp

 

−β
L
∑

γ=1

H [σγ|ξ]

!+

,

with σ =
�

σ1 . . . σL
	

. Gardner simplifies it to




Z L
�

≈
�

∑

σ

exp

�

βN
∑

γ

∑

µ∈Γγ

�

1
N

∑

i

ξ
µ
i σ
γ
i

�p

+ β
∑

γ

∑

µ∈Γ̄

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip

��

,

(10)

where the sets Γγ contain the patterns ξµ that have macroscopic overlap with σγ, and their
complement Γ̄ = ∩γΓ̄γ consists of the remaining patterns. Two approximations are used to
obtain this expression:

•
∑

µ∈Γγ
p!

N p−1

∑

i1<...<ip
ξ
µ
i1

...ξµipσ
γ
i1

...σγip ≈ N
∑

µ∈Γγ

� 1
N

∑

i ξ
µ
i σ
γ
i

�p
because this part of

H [σγ|ξ] is aligned with σ (see Case 1 of Appendix A).

•
∑

µ∈Γ̄γ
p!

N p−1

∑

i1<...<ip
ξ
µ
i1

...ξµipσ
γ
i1

...σγip ≈
∑

µ∈Γ̄
p!

N p−1

∑

i1<...<ip
ξ
µ
i1

...ξµipσ
γ
i1

...σγip since Γ̄ con-

tains almost all of the elements in each Γ̄γ when N is large.

Gardner evaluates the contribution of the µ ∈ Γ̄ terms via a cumulant expansion, resulting in:

log

*

exp

 

β
∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip

!+

≈ β

*

∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip

+

+
1
2
β2

*





∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip





2
+

≈
1
2
β2

*





∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip









∑

δ

p!
N p−1

∑

j1<...< jp

ξ
µ
j1

...ξµjpσ
δ
j1

...σδjp





+

,
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because the product of independent spins ξµi1 ...ξµip averages to 0. The sums are then regrouped
to get

log

*

exp

 

β
∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip

!+

=
1
2
β2
�

p!
N p−1

�2
*

∑

γ

∑

δ

∑

i1<...<ip

∑

j1<...< jp

ξ
µ
i1
ξ
µ
j1

...ξµipξ
µ
jp
σ
γ
i1
σδj1

...σγipσ
δ
jp

+

.

Consider ξµi ξ
µ
j for an arbitrary pair of indices i and j. There are two cases.

• If i = j, then ξµi ξ
µ
j is deterministic and equal to 1.

• If i ̸= j, then ξµi ξ
µ
j can be either +1 and −1 with equal probabilities.

On the one hand, if in = jn for all n, then
D

ξ
µ
i1
ξ
µ
j1

...ξµipξ
µ
jp

E

= 1. On the other hand, if in ̸= jn

for some n, then
D

ξ
µ
i1
ξ
µ
j1

...ξµipξ
µ
jp

E

= 0 because ξµi1ξ
µ
j1

...ξµipξ
µ
jp

is still a product of independent

random spins once the deterministic variables are removed. These two cases can be summarized

by
D

ξ
µ
i1
ξ
µ
j1

...ξµipξ
µ
jp

E

= δi1 j1 ...δip jp , which then gives

log

*

exp

 

β
∑

γ

p!
N p−1

∑

i1<...<ip

ξ
µ
i1

...ξµipσ
γ
i1

...σγip

!+

=
1
2
β2
�

p!
N p−1

�2∑

γ

∑

δ

∑

i1<...<ip

∑

j1<...< jp

δi1 j1 ...δip jp σ
γ
i1
σδj1

...σγipσ
δ
jp

=
1
2
β2
�

p!
N p−1

�2∑

γ

∑

δ

∑

i1<...<ip

σ
γ
i1
σδi1

...σγipσ
δ
ip

≈
1
2
β2 p!

N p−1

1
N p−1

∑

γδ

�

∑

i

σ
γ
i σ
δ
i

�p

= β2 p!
N p−1

N
∑

γ<δ

�

1
N

∑

i

σ
γ
i σ
δ
i

�p

+
1
2
β2 p!

N p−1
LN .

The order n > 2 terms are subdominant in N and can be neglected when p ≥ 3 [30]. The
RS free entropy is then obtained through a standard approach to the replica method. Note
that Gardner’s Hamiltonian is misaligned with σ when the free entropy is dominated by this
cumulant expansion (see Case 2 of Appendix A). In the case of K & H’s Hamiltonian, we
must also take into account the correction H ′ [σ] = 1

2
p!

N p−2

∑

γ

∑

i1<...<ip−2
ξ
µ
i1

...ξµip−2
σ
γ
i1

...σγip−2

introduced in appendix A by imposing ip−1 = ip. In fact, a cumulant expansion of this expression
gives

log

*

exp

 

βp
∑

γ

1
2

p!
N p−2

∑

i1<...<ip−2

ξ
µ
i1

...ξµip−2
σ
γ
i1

...σγip−2

!+

≈
1
4
β2 p!

N p−2

p(p− 1)
N p−2

∑

γ<δ

�

∑

i

σ
γ
i σ
δ
i

�p−2

+
1
8
β2 p!

N p−2
L

=
1
4

p(p− 1)β2 p!
N p−1

N
∑

γ<δ

�

1
N

∑

i

σ
γ
i σ
δ
i

�p−2

+
1
8
β2 p!

N p−1
LN ,

23

https://scipost.org
https://scipost.org/SciPostPhys.17.2.040


SciPost Phys. 17, 040 (2024)

which contributes to the free energy on the same order in N as Gardner’s Hamiltonian. Therefore,
K & H’s Hamiltonian is not equivalent to Gardner’s Hamiltonian when the latter is misaligned
with σ (see Case 2). The index configurations with more equality constraints also contribute
to the free entropy on the same order in N because the factors of N that are lost to equality
constraints are restored when the sums get squared in the cumulant expansion.

p = 2 is the only positive integer such that Gardner’s Hamiltonian and Krotov’s Hamiltonian
are equivalent [5,30]. In the misaligned case with a single stored pattern ξ∗ (see Case 2), the
free entropy of p = 2 simplifies to

log (Z)
N

=
1
N

log

*

exp

(

β
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σ
γ
i1
σ
γ
i2

)+

+ log2

=
1
N

log

®

exp (−β)
∫

R
d x

1
p

2π
exp

¨

−
1
2

x2 + x

√

√

β
2
N

∑

i

ξ∗iσ
γ
i

«¸

+ log2

=
1
N

log

�

∫

R
d x

1
p

2π
exp

§

−
1
2

x2
ª

coshN

�

x

√

√

β
2
N

��

− β
1
N
+ log 2 ,

by using the Hubbard-Stratonovich transformation. At large N , it approximates to:

log (Z)
N
≈

1
N

log

�∫

d x
1
p

2π
exp

§

−
1
2

x2
ª�

1+ β
1
N

x2
�N�

− β
1
N
+ log2

≈
1
N

log

�∫

R
d x

1
p

2π
exp

§

−
1
2

x2
ª

exp
�

β x2
�

�

− β
1
N
+ log 2

=
�

−
1
2

log (1− 2β)− β
�

1
N
+ log 2 ,

thanks to the well-known limit limN→∞
�

1+ 1
N z
�N
= exp (z). This free entropy is consistent

with the one found in literature when α= 1
N [5].

C Teacher-student replicated partition function

Recall that the student samples its pattern from the posterior P (ξ|σ) = P(ξ)
∏

a P(σa|ξ)
P(σ) (see

Section 3). Given P (ξ) uniform, it can be rewritten as P (ξ|σ) =
∏

a P(σa|ξ)
∑

ξ

∏

a P(σa|ξ) , where P (σa|ξ)
is the distribution of the direct model with a single pattern ξ. To simplify P (ξ|σ) further,
we need to manipulate the partition function Z =

∑

σa exp (−βH [σa|ξ]) of P (σa|ξ) (see
Appendix A for the definition of H [σ|ξ]). Under the gauge transformation σa

i → ξiσ
a
i , we

may write

Z =
∑

σa

exp

 

β
p!

N p−1

∑

i1<...<ip

σa
i1

...σa
ip

!

,
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without changing the configurations of σa that we are summing over. Therefore, Z does not
depend on ξ, and we can factor it out of the sum

∑

ξ, which yields

P (ξ|σ) =

∏

a
1
Z exp

�

β
p!

N p−1

∑

i1<...<ip
ξi1 ...ξipσ

a
i1

...σa
ip

�

∑

ξ

∏

a
1
Z exp

�

β
p!

N p−1

∑

i1<...<ip
ξi1 ...ξipσ

a
i1

...σa
ip

�

=
exp

�

β
p!

N p−1

∑

a

∑

i1<...<ip
ξi1 ...ξipσ

a
i1

...σa
ip

�

∑

ξ exp
�

β
p!

N p−1

∑

a

∑

i1<...<ip
ξi1 ...ξipσ

a
i1

...σa
ip

� .

Therefore, we define the partition function of the inverse model to be Z =
∑

ξ exp (−βH [ξ|σ])
(again, see Appendix A for the definition of H [ξ|σ]). The Lth power of Z and its average then
take the form

Z L =
∑

ξ

∏

b

exp

 

β
p!

N p−1

∑

a

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

,




Z L
�

=
∑

σ

P (σ)
∑

ξ

exp

 

β
p!

N p−1

∑

ab

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

,

where b ∈
�

1 . . . L
	

label replicas in the set of patterns ξ =
�

ξ1 . . . ξL
	

inferred by the student.
Using the definition of conditional probability, we rewrite P (σ) as

P (σ) =
∑

ξ∗

P
�

σ
�

�ξ∗
�

P (ξ∗)

=
1

2N

∑

ξ∗

P
�

σ
�

�ξ∗
�

=
1

2N

∑

ξ∗

∏

a

P
�

σa
�

�ξ∗
�

,

where P (σ|ξ∗) has the same functional form as P
�

σ|ξb
�

, but has hyperparameters p∗ and β∗

in place of p and β . As we did for Z , we factor the partition function Z∗ of P (σa|ξ∗) out of the
sum, which yields

P (σ) =
1

2N

1

[Z∗]M
∑

ξ∗

∏

a

exp

 

β∗
p∗!

N p∗−1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

!

=
1

2N

Z∗

[Z∗]M
=

1
2MN

Z∗
�

2N/M−N Z∗
�M ,

where Z∗ =
∑

ξ∗ exp (−β∗H [ξ∗|σ]) is the partition function of the inverse model with inter-

action order p∗. Using
∑

σ P (σ) = 1, we immediately deduce that
�

2N/M−N Z∗
�M
= 〈Z∗〉.

Plugging P (σ) = 1
2MN

Z∗
〈Z∗〉 back in




Z L
�

then gives




Z L
�

=
1

2MN

1
〈Z∗〉

∑

ξ∗

∑

σ

exp

 

β∗
p∗!

N p∗−1

∑

a

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

!

∑

ξ

exp

 

β
p!

N p−1

∑

ab

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

.
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We simplify this expression to:




Z L
�

=
1

2MN

1
〈Z∗〉

∑

ξ∗

∑

σ

exp

�

β∗
p∗!

N p∗−1

∑

a∈Γ∗

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

+ β∗
p∗!

N p∗−1

∑

a∈Γ̄∗

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

�

∑

ξ

exp

�

β
p!

N p−1

∑

b

∑

a∈Γb

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

+ β
p!

N p−1

∑

b

∑

a∈Γ̄b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

≈
1

2MN

1
〈Z∗〉

∑

ξ∗

∑

σ

exp

�

β∗N
∑

a∈Γ∗

�

1
N

∑

i

ξ∗iσ
a
i

�p∗

+ β∗
p∗!

N p∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

�

∑

ξ

exp

�

βN
∑

b

∑

a∈Γb

�

1
N

∑

i

ξb
i σ

a
i

�p

+ β
p!

N p−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

,

where Γb represents the set of inputs σa which have macroscopic overlap with the pattern ξb,
and Γ̄ =

�

∩b Γ̄b
�

∩ Γ̄∗ contains almost all of the elements in each Γ̄b and Γ̄∗ for N →∞. The
reasoning used to build the sets Γ∗, Γb and Γ̄ is the same as outlined at the start of appendix B.

D Teacher-student free entropy

Assuming that the teacher is misaligned with σ (see Case 2 of Appendix A), the form of



Z L
�

obtained in appendix C simplifies to




Z L
�

≈
1

2MN

1
〈Z∗〉

∑

ξ∗ξ

∑

σ

exp

�

β∗
p∗!

N p∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

�

exp

�

βN
∑

b

∑

a∈Γb

�

1
N

∑

i

ξb
i σ

a
i

�p

+ β
p!

N p−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

.

In order to evaluate 〈Z∗〉=
�

2N/M−N Z∗
�M

, we recall that the teacher is a special case of the
direct model with a single memory (see Section 3). Since the teacher is in the misaligned case,
its free entropy is

log (Z∗)
N

=

¨
�

−1
2 log (1− 2β∗)− β∗

� 1
N + log 2 , p∗ = 2 ,

1
2 [β
∗]2 p∗!

N p∗−1 + log2+O
� 1

N3p∗/2−2)

�

, p∗ ≥ 3,
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as derived in Appendix B. Given α∗ = M p∗!
N p∗−1 , we use it to simplify log〈Z∗〉

N to

log 〈Z∗〉
N

=
M log

�

2N/M−N Z∗
�

N

=

¨

1
2

�

−1
2 log (1− 2β∗)− β∗

�

α∗ + log2 , p∗ = 2 ,
1
2 [β
∗]2α∗ + log2+O

� 1
N p∗/2−1

�

, p∗ ≥ 3 ,

which is the paramagnetic free entropy of a p∗-body Hopfield network [5,30]. Coming back to



Z L
�

, we fix order parameters q∗b, qbc and mb
a using the delta functions δ

�

Nq∗b −
∑

i ξ
∗
i ξ

b
i

�

,
δ
�

Nqbc −
∑

i ξ
b
i ξ

c
i

�

and δ
�

Nmb
a −

∑

i ξ
b
i σ

a
i

�

, which results in




Z L
�

=
1

2MN

1
〈Z∗〉

∑

ξ∗ξ

∑

σ

∫

R

∏

b

dq∗b
∏

b<c

dqbc
∏

b

∏

a∈Γb

dmb
a

δ

�

Nq∗b −
∑

i

ξ∗i ξ
b
i

�

δ

�

Nqbc −
∑

i

ξb
i ξ

c
i

�

δ

�

Nmb
a −

∑

i

ξb
i σ

a
i

�

exp

�

βN
∑

b

∑

a∈Γb

�

1
N

∑

i

ξb
i σ

a
i

�p

+ β∗
p∗!

N p∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

+ β
p!

N p−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

.

In Fourier space, this expression takes the form




Z L
�

=
1
〈Z∗〉

∑

ξ∗ξ

�∫

∏

b

dq∗bdr∗b
∏

b<c

dqbcdr bc
∏

b

∏

a∈Γb

dmb
adkb

a

exp

¨

β∗βα
∑

b

�

∑

i

ξ∗i ξ
b
i − Nq∗b

�

r∗b + β2α
∑

b<c

�

∑

i

ξb
i ξ

c
i − Nqbc

�

r bc

«

exp

�

β
∑

b

∑

a∈Γb

�

∑

i

ξb
i σ

a
i − Nmb

a

�

kb
a + βN

∑

b

∑

a∈Γb

�

1
N

∑

i

ξb
i σ

a
i

�p

+ β∗
p∗!

N p∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗

+ β
p!

N p−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

��

σ

,

where the sum over σ with a pre-factor of 1
2MN was replaced by the uniform average 〈〉σ.

Following the same reasoning as in appendix B, a second order cumulant expansion of the last
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two terms for any a ∈ Γ̄ yields

log

�

exp

�

β∗
p∗!

N p∗−1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗
+ β

p!
N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

��

≈
1
2
β2
�

p!
N p−1

�2∑

b ̸=c

∑

i1<...<ip

∑

j1<...< jp

ξb
i1
ξc

j1
...ξb

ip
ξc

jp

¬

σa
i1
σa

j1
...σa

ip
σa

jp

¶

+ β∗β
p∗!

N p∗−1

p!
N p−1

∑

b

∑

i1<...<ip∗

∑

j1<...< jp

¬

ξ∗i1
σa

i1
...ξ∗ip∗σ

a
ip∗
ξb

j1
σa

j1
...ξb

jp
σa

jp

¶

+
1
2
β2 p!

N p−1
LN +

1
2
[β∗]2

p∗!
N p∗−1

N .

When p∗ = p, it reduces to

log

�

exp

�

β∗
p∗!

N p∗−1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗σ

a
i1

...σa
ip∗
+ β

p!
N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

��

= β2 p!
N p−1

N
∑

b<c

�

1
N

∑

i

ξb
i ξ

c
i

�p

+ β∗β
p!

N p−1
N
∑

b

�

1
N

∑

i

ξ∗i ξ
b
i

�p

+
1
2
β2 p!

N p−1
LN +

1
2
[β∗]2

p!
N p−1

N ,

because
¬

σa
in
σa

jn

¶

= δin jn (see Appendix B for more details). On the contrary, the second order

expectation
D

ξ∗i1
σa

i1
...ξ∗ip∗σ

a
ip∗
ξb

j1
σa

j1
...ξb

jp
σa

jp

E

vanishes when p∗ ̸= p. In fact, spins come in pairs
¬

σa
in
σa

jn

¶

= δin jn only up to n≤min {p∗, p}, and the remaining single-spin averages
¬

σa
in

¶

= 0
make the second order expectation vanish.

We need to go beyond second order to treat p∗ ̸= p. We will focus on p∗ = 2 and p ≥ 3
to investigate the consequences of using a p-body model to learn examples generated by the
original 2-body Hopfield model. For simplicity, we take p even so that the spins of both terms
can be grouped in pairs at order p

2 +1, when the teacher term β∗ 2
N

∑

i1<i2
ξ∗i1
ξ∗i2
σa

i1
σa

i2
is raised

to the power of p
2 and the student term is raised to the power of 1. This restriction will simplify

some of the incoming calculations. To leading order in N , the cumulant generating function
reduces to

log

�

exp

�

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2
+ β

p!
N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

��

≈ log

�

*

exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

*

exp

(

β
p!

N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

)+

+

*

β
p!

N p−1

∑

b

∑

j1<...< jp

ξb
j1

...ξb
jp
σa

j1
...σa

jp
exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

�

,

where the last term encompasses the teacher-student coupling that allows retrieval to take
place. The teacher term

log

*

exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

≈ −
1
2

log (1− 2β∗)− β∗ ,
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and the student term

log

*

exp

(

β
p!

N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

)+

≈ β2 p!
N p−1

N
∑

b<c

�

1
N

∑

i

ξb
i ξ

c
i

�p

+
1
2
β2 p!

N p−1
LN ,

are both known from Appendix B. Later on, we will use log (z∗) and z∗ as shorthands for
−1

2 log (1− 2β∗)−β∗ and exp
�

−1
2 log (1− 2β∗)− β∗

�

, respectively. The coupling between the
teacher and the student can be rewritten as
*

β
p!

N p−1

∑

b

∑

j1<...< jp

ξb
j1

...ξb
jp
σa

j1
...σa

jp
exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

=

*

β
p!

N p−1

∑

b

∑

j1<...< jp

ξ∗j1
...ξ∗jpξ

b
j1

...ξb
jp
ξ∗j1

...ξ∗jpσ
a
j1

...σa
jp

exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

= β
p!

N p−1

∑

b

∑

j1<...< jp

ξ∗j1
...ξ∗jpξ

b
j1

...ξb
jp

*

ξ∗j1
...ξ∗jpσ

a
j1

...σa
jp

exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

,

because
�

ξ∗jn

�2
= 1 for every index jn. All interacting spin tuples of the form ξ∗j1 ...ξ∗jpσ

a
j1

...σa
ip

are statistically equivalent as long as j1 < ...< jp, so the teacher-student coupling simplifies to
*

β
p!

N p−1

∑

b

∑

j1<...< jp

ξb
j1

...ξb
jp
σa

j1
...σa

jp
exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

= β
p!

N p−1

∑

b

∑

i1<...<ip

ξ∗i1
...ξ∗ipξ

b
i1

...ξb
ip

*

p!
N p

∑

j1<...< jp

ξ∗j1
...ξ∗jpσ

a
j1

...σa
ip

exp

(

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

= V (β∗, p)β
p!

N p−1

∑

b

∑

i1<...<ip

ξ∗i1
...ξ∗ipξ

b
i1

...ξb
ip

,

where V (β∗, p) =
D

p!
N p

∑

j1<...< jp
ξ∗j1

...ξ∗jpσ
a
j1

...σa
ip

exp
�

β∗ 2
N

∑

i1<i2
ξ∗i1
ξ∗i2
σa

i1
σa

i2

�
E

does not de-

pend on the microscopic details of the system. In fact, it can be expressed as a combination of
the moments of z∗, which can all be derived from log (z∗). To leading order in N , the cumulant
generating function expands to

log

�

exp

�

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2
+ β

p!
N p−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

��

≈ −
1
2

log (1− 2β∗)− β∗ + β2 p!
N p−1

N
∑

b<c

�

1
N

∑

i

ξb
i ξ

c
i

�p

+
1
2
β2 p!

N p−1
LN

+ [1− 2β∗]1/2 exp (β∗)V (β∗, p)βN
∑

b

�

1
N

∑

i

ξ∗i ξ
b
i

�p

.

At this stage, we only need to find V (β∗, p) in order to solve the system. We focus on two
different scalings of M and β∗ that make the teacher-student coupling leading order in N :
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1 M ∼O
�

N p−1
�

and β∗ ∼O
�

N2/p−1
�

will be called the large-noise scaling.

2 M ∼O
�

N p/2
�

and β∗ ∼O (1) will be called the finite-noise scaling.

The student term vanishes in the first scenario but is leading order in the second one. The case
of the teacher-student coupling is more subtle. When β∗ is small, we may keep only the first
non-vanishing order of the exponential function present in the definition of V (β∗, p). Since p
is even, it leads to

V (β∗, p)≈
1

(p/2)!

*

p!
N p

∑

j1<...< jp

ξ∗j1
...ξ∗jpσ

a
j1

...σa
jp

 

β∗
2
N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

!p/2+

(11)

=
[β∗]p/2

(p/2)!
2p/2

N p/2

p!
2p/2

=
[β∗]p/2

(p/2)!
p!

N p/2
,

because there are
∏p/2

n=1

�2n
2

�

= p!
2p/2 spin pairings with non-zero expectation that satisfy the

inequality constraints. In the large-noise scaling, we set

λ=
[β∗]p/2

(p/2)!
N p/2−1 ∼O (1) ,

to get the asymptotically exact expression V
�

[(p/2)!]2/p N1−2/p, p
�

= λ p!
N p−1 . In the finite-noise

scaling, this expansion is only an order of magnitude approximation. However, it still indicates
that V (β∗, p) is O

�

N−p/2
�

when β∗ is O (1) in N . In other words, it shows that there is an

O (1) parameter η such that V (β∗ (η, p) , p) = η (p/2+1)!
N p/2 . We will now use the cumulants

∂ log(z∗)
∂ β∗ and ∂ log(z∗)

∂ β∗2
of z∗ to derive the value of η corresponding to p = 4. First of all, note that
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,
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by subtracting the diagonals where pairs of indices are equal. Therefore, 1
z∗ V (β

∗, p) reduces to

1
z∗

V (β∗, p) =

*

24
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(
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


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
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


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
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2
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*
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�

=
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+
�
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.

The cumulants evaluate to

∂ log (z∗)
∂ β∗

=
∂

∂ β∗

�

−
1
2

log (1− 2β∗)− β∗
�

=
2β∗

1− 2β∗
,

∂ log (z∗)
∂ β∗2

=
∂
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−
1
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log (1− 2β∗)− β∗
�

=
2
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,

so we obtain

1
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V (β∗, p) =
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�

2
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4 [β∗]2

(1− 2β∗)2
−
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�
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6
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2 [β∗]2
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.

In other terms, we find η= 2[β∗]2

(1−2β∗)2
when p = 4. In summary, depending on the scaling, the

teacher student coupling either simplifies to

1 βλα N
M

∑

b

� 1
N

∑

i ξ
∗
i ξ

b
i

�p
where α= M p!

N p−1 and λ= [β∗]p/2

(p/2)! N p/2−1 are finite,

2 or βηα N
M

∑

b

� 1
N

∑

i ξ
∗
i ξ

b
i

�p
where α= M(p/2+1)!

N p/2 and η are finite.

In either case, the result is similar to p∗ = p except for its pre-factor. We describe the rest of
the derivation only for p∗ = p because the p∗ = 2 and p ≥ 3 calculations are almost identical.
Putting the result of the p∗ = p cumulant expansion back in




Z L
�

, we get:
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,
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where α= M p!
N p−1 . The saddle point of




Z L
�

then evaluates to

log
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where the average over ξ∗ and σ is uniform. We use log〈Z∗〉
N = 1

2 [β
∗]2α+ log2 to simplify

log〈Z L〉
N to

log
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.

Assuming each ξb has macroscopic overlap with at most one pattern σa and using the replica-
symmetric ansatz q∗b = q∗, qbc = q, r∗b = r∗, r bc = r, mb

a = m, kb
a = k, the free entropy
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approximates to

f = lim
N→∞,L→0
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Furthermore, the Hubbard-Stratonovich transformation gives
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in order to simplify the free energy to
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After differentiating and taking the limit, we get
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In the case of p∗ = 2 and p ≥ 3 with finite α = M p!
N p−1 and λ = [β∗]p/2

(p/2)! N p/2−1, the free energy has
the same form but with β∗ replaced by λ. On the other other hand, the free energy with finite
α= M(p/2+1)!

N p/2 and η evaluates to:

f = Extr
m,k,q∗,r∗

�

βηα [q∗]p − βmp − βηαr∗q∗ − βmk+ log2+
¬

log [cosh (β [ηαr∗ + kz])]
¶

z

�

.

E Direct model RSB ansatz

Recall that the average replicated partition function of the direct model (see Eq. 10) takes the
form
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Introducing a new replica σ0, we rewrite it as
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where Z =
∑
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. Recall that, in the paramagnetic

phase, we have (see [30] and also Appendix B)
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so
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The O
� 1

N p/2−2

�

corrections vanish to leading order in N when we calculate the free entropy.
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F Monte-Carlo simulations for various system sizes

Figure 9: Monte-Carlo simulations of the p = 3 inverse model compared against
saddle-point solutions for different values of N . The lR phase is not included in these
plots. The left plot has N = 128, the center plot has N = 256, and the right plot has
N = 512. The dots are simulation data at a few values of α, and the lines are slices
of the saddle-point solutions at the same α. There are M = αN p−1

p! examples σa, and
simulation results are averaged over L = 100 student patterns. The simulation data
is sometimes systematically shifted up with respect to the saddle-point solution, but
the size of the difference tends to decrease with N . The shift is the most visible when
α = 6 and right after the fall from eR to gR when α = 3. As expected, the fluctuations
of the paramagnetic phase also decrease with N .
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