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Abstract

We present a theoretical analysis of the energy recovery efficiency for quantum batteries
composed of many identical quantum cells undergoing noise. While the possibility of
using quantum effects to speed up the charging processes of batteries have been vastly
investigated, In order to traslate these ideas into working devices it is crucial to assess
the stability of the storage phase in the quantum battery elements when they are in
contact with environmental noise. In this work we formalize this problem introducing
a series of operationally well defined figures of merit (the work capacitances and the
Maximal Asymptotic Work/Energy Ratios) which gauge the highest efficiency one can
attain in recovering useful energy from quantum battery models that are formed by large
collections of identical and independent elements (quantum cells or q-cells). Explicit
evaluations of such quantities are presented for the case where the energy storing system
undergoes through dephasing and depolarizing noise.

Copyright S. Tirone et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

02-12-2022
04-07-2024
09-08-2024

Check for
updates

doi:10.21468/SciPostPhys.17.2.041

Contents

1 Introduction 2

2 Energy storage vs energy recovering in noisy quantum systems 3
2.1 Work extraction functionals for quantum systems 4
2.2 Optimal output work extraction functionals 6

3 Energy recovery from arrays of identical (noisy) q-cells 7
3.1 Asymptotic limits 10

4 Some useful properties 12

5 Noise models 14
5.1 Qubit dephasing channel 15

5.1.1 Ergotropic Capacitances and MAWER values 17
5.1.2 Dephasing channels in higher dimensions 18

1

https://scipost.org
https://scipost.org/SciPostPhys.17.2.041
mailto:salvatore.tirone@sns.it
mailto:raffaele.salvia@sns.it
mailto:schessa@illinois.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.17.2.041&amp;domain=pdf&amp;date_stamp=2024-08-09
https://doi.org/10.21468/SciPostPhys.17.2.041


SciPost Phys. 17, 041 (2024)

5.2 Depolarizing channel 18
5.2.1 Ergotropic Capacitances 19
5.2.2 MAWER values 22

6 Conclusions 22

A Capacitance and MAWER characterization 23
A.1 Existence of the ergotropic capacitance 23
A.2 Equivalence between ergotropic capacitances and total-ergotropy capacitances 24
A.3 Equivalence between ergotropic MAWER and total ergotropy MAWER 26

B Computation of E
(1)
(Dλ; E) and E

(1)
tot (Dλ; E) for depolarizing channels 27

References 28

1 Introduction

Quantum batteries are an emerging concept that aims to exploit quantum mechanical effects
to improve the energy storage capabilities at the nanoscale. These devices employ quantum
resources like coherence, entanglement and squeezing to boost properties like charging power,
storage capacity and stability. Realizing practical quantum batteries will require the optimiza-
tion of these quantum enhancements while accounting for the inevitable noise processes that
will deteriorate their overall performance. The possibility of improving the energetic effi-
ciency of present and future quantum devices [1–4] provides motivations for investigating the
concepts of work and heat in the quantum realm [5] and for developing alternative, quantum-
based architectures for energy storage [6, 7]. Such objects allocate energy in the states of
externally controllable quantum systems, hereafter identified with the conventional name of
Quantum Batteries, suggesting the possibility of achieving fast charging performances [7–12]
by exploiting inherent quantum effects such as dynamical entanglement. However, as also
happens in classical models, storing and recovering energy from a system are not necessarily
equivalent processes: different states of a quantum battery which are associated with the same
mean value of the stored energy may yield different throughput values in terms of the energy
(or at least of the useful part of the energy, i.e. work) one can recover from them. On top of
this, one has also to consider that in any realistic implementation quantum batteries will be
inevitably subjected to environmental noise. This, as the first experimental demonstrations
show [13–18], will typically mess up with the energy recovering process, not to mention the
storage itself. To solve this last problem various stabilization schemes have been proposed,
both passive and active [5,19–27] and other instances of specific noise effects in quantum bat-
teries have been studied, see e.g. [28–35]. Our work is complementary to these approaches
and aims to provide a recipe to address arbitrary noise models: we propose to mitigate noise
effects by initializing our quantum battery with the more error-resistant state possible. For
this purpose we define various measures that quantify how a selected state of a quantum bat-
tery is resilient to the detrimental action of a given noise model and use them to identify
the optimal candidates as input states for the energy recovery task. A similar endeavour was
tackled in Ref. [36,37] and mimics the optimization problem one faces in quantum communi-
cation [38–43] when designing information encoding strategies that are capable of mitigating
the detrimental effects of dissipation and decoherence.

In contrast to existing measures focused on transient power enhancement, our approach
emphasizes the long-term charging capabilities and energetic efficiency of noisy quantum bat-
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teries. Such new measures can incorporate constraints on resources like entanglement and
non-local operations [44] and shed light on the usefulness of quantum resources such as coher-
ence [45], providing guidance on optimal control. Furthermore, the framework we propose
complements the existing literature on quantum advantages by providing means to directly
compare the impact of different noise models on their realistic achievability.

Our analysis relies on functionals [36,37], e.g. the ergotropy, that we leverage in order to
quantify the maximum amount of useful energy (work) one can extract from a given state of
a quantum system, depending on the resources that we’re allowed to exploit for the task [46].
Among others, the ergotropy functional [47] is arguably the most widely studied. It represents
the maximum mean value of extractable energy that one can get from closed models where
the only allowed operations are modulations of the system Hamiltonian (no interactions with
external elements being allowed). We introduce figures of merit called “quantum work ca-
pacitances” and "maximal asymptotic work/energy ratios" (MAWER) to quantify the maximum
extractable work per quantum cell for a given noise model under different resource contraints.
For quantum batteries with a large number of cells, they quantify how the maximum achiev-
able extractable work per cell approaches a limit called work capacitance. Intuitively, the
capacitances gauge the batteries stability against noise during the charging, storage and dis-
charging processes. More explicitly, the work capacitance gives the maximum stable energy
density that can be stored per cell, while the MAWER quantifies the battery’s energy efficiency
as the number of cells increases. So together they characterize the scalable work output and
efficiency.

To show the capabilties of this framework, we provide the first attempt of evaluation of the
work capacitance and MAWER for two noise models: dephasing and depolarizing noise. For
dephasing, we show that entanglement provides no advantage, while for depolarizing noise
global operations are beneficial but entanglement is not. Our results help to identify optimal
charging strategies to maximize extractable work. For instance, for dephasing noise, separable
states perform just as well as entangled states; but for depolarizing noise, global operations
give an advantage.

The the manuscript is organized as follows.
In Sec. 2 we set up the notation and introduce the key concepts of work extraction functionals.
We formulate the constrained optimization problems that quantify the useful extractable work
of a quantum battery under noise.
In Sec. 3 we specialize this theoretical framework to model quantum batteries made of many
identical quantum cells undergoing local noise. The figures of merit called work capacitances
and MAWERs are introduced to characterize the batteries scalable work output and efficiency.
In Sec. 4 we establish some mathematical properties of the work extraction functionals that
will simplify the subsequent analysis. These results provide general insights into the behavior
of quantum batteries regardless of the specific noise model.
In Sec. 5 we apply the tools developed in the previous section to the analysis of two practical
noise models - dephasing and depolarizing. Exact solutions for the work capacitance and
MAWER reveal the existence of a quantum advantage by using quantum resources, and might
provide guidance for optimizing real quantum battery designs.
Conclusions are drawn in Sec. 6, while technical derivations are moved into the Appendices.

2 Energy storage vs energy recovering in noisy quantum systems

This section is devoted to the introduction of the fundamental theoretical tools that will be
used to characterize the energy recovery efficiency for noisy quantum battery models.
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2.1 Work extraction functionals for quantum systems

Consider a quantum system Q represented by a d-dimensional Hilbert space H and by a Hamil-
tonian Ĥ whose ground state energy is assumed to be zero without loss of generality. Being ρ̂
a state of Q, the energy it can store on average is given by the expectation value

E(ρ̂; Ĥ) := Tr
�

ρ̂Ĥ
�

. (1)

The energy that we can recover from ρ̂ does not necessarily equal E(ρ̂; Ĥ) and strongly de-
pends on the process that is implemented for the task. Following [36,46,47], we compute it in
terms of functionals W(ρ̂; Ĥ) describing the maximum amount of useful energy (work) that
an agent can recover from Q for a given set of allowed operations.

Ergotropy:– The first (and most fundamental) of these quantities is the ergotropy functional:

E(ρ̂; Ĥ) := max
Û∈U(d)

¦

E(ρ̂; Ĥ)−E(Ûρ̂Û†; Ĥ)
©

. (2)

As mentioned in the introduction, the ergotropy represents the maximum energy that an agent
can get from ρ̂ when the allowed transformations are given by the set U(d) of the unitary
operators acting on Q. The right-hand-side of Eq. (2) admits a closed expression in terms of
the passive counterpart of ρ̂. Explicitly, the density matrix ρ̂pass is obtained by operating on ρ̂
via a unitary rotation that transforms its eigenvectors {|λℓ〉}ℓ into the eigenvectors {|Eℓ〉}ℓ of
Ĥ, matching the corresponding eigenvalues in reverse order, i.e.

ρ̂ =
∑d
ℓ=1λℓ|λℓ〉〈λℓ|

Ĥ =
∑d
ℓ=1 Eℓ|Eℓ〉〈Eℓ|







7→ ρ̂pass :=
d
∑

ℓ=1

λℓ|Eℓ〉〈Eℓ| ,

(3)

where for all ℓ= 1, · · · , d − 1, we set λℓ ≥ λℓ+1 and Eℓ ≤ Eℓ+1. We can then write

E(ρ̂; Ĥ) = E(ρ̂; Ĥ)−E(ρ̂pass; Ĥ) = E(ρ̂; Ĥ)−
d
∑

ℓ=1

λℓEℓ . (4)

Total-ergotropy:– The second work extraction functional W(ρ̂; Ĥ) we aim to study is the
total-ergotropy Etot(ρ̂; Ĥ). The total ergotropy is a regularized version of the ergotropy E(ρ̂; Ĥ)
that emerges when considering scenarios where one has at disposal an arbitrary large number
of identical copies of the input state ρ̂. Formally it is defined as

Etot(ρ̂; Ĥ) := lim
n→∞

E(ρ̂⊗n; Ĥ(n))
n

, (5)

where for a fixed number of copies n, Ĥ(n) is the total Hamiltonian of the n copies of the system
obtained by assigning to each of them the same Ĥ (no interactions being included). One can

show [6,48] that the limit in Eq. (5) exists and corresponds to the maximum of E(ρ̂⊗n;Ĥ(n))
n with

respect to all possible n, implying in particular that Etot(ρ̂; Ĥ) is at least as large as E(ρ̂; Ĥ) (in
systems of dimension d = 2 we have E(ρ̂; Ĥ) = Etot(ρ̂; Ĥ) for all inputs [46], while in general
the strict inequality holds for dimension greater than 2). The total ergotropy Etot(ρ̂; Ĥ), as
shown in [6], can be expressed via a single letter formula that mimics Eq. (4):

Etot(ρ̂; Ĥ) = E(ρ̂; Ĥ)−E(β⋆)GIBBS(Ĥ) , (6)
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where for β ≥ 0 and Zβ(Ĥ) := Tr[e−β Ĥ] =
∑d
ℓ=1 e−βEℓ we can express

E
(β)
GIBBS(Ĥ) :=E(ρ̂β ; Ĥ) = −

d
dβ

ln Zβ(Ĥ) , (7)

and the mean energy of the thermal Gibbs state

ρ̂β := e−β Ĥ/Zβ(Ĥ) , (8)

of Q with effective inverse temperature β . Finally, β⋆ is chosen so that ρ̂β⋆ has the same von
Neumann entropy of ρ̂, i.e. Sβ⋆ = S(ρ̂) := −Tr[ρ̂ ln ρ̂], with

Sβ := −Tr[ρ̂β ln ρ̂β] = −β
d

dβ
ln Zβ(Ĥ) + ln Zβ(Ĥ) . (9)

The state ρ̂β has by construction the same entropy as ρ̂, and it is the state with the mini-
mum energy among the set of states with entropy S(ρ). So the total ergotropy represents the
maximum energy that can be extracted from the system by any transformation that keeps the
entropy constant. The total ergotropy Etot it is monotonically decreasing with the increasing
system entropy for states which have the same mean energy, i.e. given two iso-energetic states
ρ̂1 and ρ̂2 such that S(ρ̂1)≤ S(ρ̂2) it always holds that

Etot(ρ̂1; Ĥ)≥ Etot(ρ̂2; Ĥ) . (10)

Non-equilibrium free Energy:– The non-equilibrium free energy defines the maximum
amount of work obtainable from ρ̂ if Q can be put in thermal contact with an external bath of
fixed inverse temperature β ≥ 0. The non-equilibrium free energy of a state is defined as

Fβ(ρ̂; Ĥ) := E(ρ̂; Ĥ)−
1
β

S(ρ̂) , (11)

and for thermal equilibrium states in the form (8) it takes the form Fβ(ρ̂β ; Ĥ) = − 1
β log Zβ(Ĥ).

The resulting work extraction functional W(ρ̂; Ĥ) writes then as the free energy difference
between the initial state ρ̂ and the thermal state with inverse temperature β . That is

Wβ(ρ̂) := Fβ(ρ̂; Ĥ)−Fβ(ρ̂β ; Ĥ) = Fβ(ρ̂; Ĥ) +
log Zβ(Ĥ)

β
. (12)

Local Ergotropy:– Our final work extraction functional is introduced for the cases where,
as in the quantum battery models we will consider in Sec. 3, Q is a composite system formed
by a collection of individual elements. In this context we define the local ergotropy Eloc(ρ̂; Ĥ)
as the maximum work obtainable from ρ̂ when the unitary operations that can be performed
are bound to be local with respect to the many-body partitions of the system. Therefore it can
be computed by solving the following maximization problem

Eloc(ρ̂; Ĥ) := max
Û∈Uloc(d)

¦

E(ρ̂; Ĥ)−E(Ûρ̂Û†; Ĥ)
©

, (13)

withUloc(d) being the subset ofU(d) formed by local transformations. Apart from some special
cases [49] no closed expressions are known for Eq. (13): by construction it is clear however
that Eloc(ρ̂; Ĥ) is certainly not larger than E(ρ̂; Ĥ).
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2.2 Optimal output work extraction functionals

By construction all the quantities W(ρ̂; Ĥ) defined in the previous sections are positive
semidefinite and are strictly smaller than E(ρ̂; Ĥ), meaning that not all the energy stored
in ρ̂ can be recovered in general (for E(ρ̂; Ĥ) and Etot(ρ̂; Ĥ) this happens only if ρ̂ is a pure
state [47]). It is also worth observing that E(ρ̂; Ĥ), Etot(ρ̂; Ĥ), and Fβ(ρ̂; Ĥ) are invariant
under the group of energy preserving unitary transformations

UEP := {V̂ ∈ U(d) : [V̂ , Ĥ] = 0} , (14)

i.e. the set formed by operators that in the eigen-energy basis of the model (see Eq. (3)) can
be expressed as

V̂ =
d
∑

ℓ=1

eiφℓ |Eℓ〉〈Eℓ| , (15)

with φℓ real parameters. Indeed since E(ρ̂pass; Ĥ) and E(ρ̂β ; Ĥ) are invariant under any uni-
tary transformation acting on ρ̂, and E(ρ̂; Ĥ) is by construction invariant under all elements of
UEP , for the ergotropy, the total-ergotropy, and the non-equilibrium free-energy we can write

W(ρ̂; Ĥ) =W(V̂ ρ̂V̂ †; Ĥ) , ∀V̂ ∈ UEP . (16)

Equation (16) implies in particular that these work functionals behave as constants of motion
under the evolution induced by the system Hamiltonian Ĥ. The same property holds true also
for the local ergotropy, at least for the special cases where the Hamiltonian of the joint system
does not include interactions (this follows from the fact that Eq. (16) applies to Eloc(ρ̂; Ĥ) if
we restrict V̂ to the subset of local elements of UEP). The situation of course changes when
the dynamics of the system is perturbed by some external disturbance, e.g. induced by a
coupling of Q with an external bath. Under these conditions there is no guarantee that the
extractable energy one could get at the beginning of the process would be the same as the one
obtainable from a deteriorated version ρ̂out of the initial state ρ̂, with ρ̂out := Λ(ρ̂) and being
Λ the completely positive and trace-preserving (CPTP) channel [38] describing the action of
the noisy evolution. To evaluate the efficiency of the energy release process in such a context
we compute the maximum values that our work extraction functionals assume after the action
of the noisy channel Λ, under the condition that the input states ρ̂ are constrained to some
fixed subset of allowed configurations. In particular, given E ∈ [0, Ed], being Ed the highest
eigenvalue of the considered Hamiltonian, we introduce the energy shell subsets

SE :=
�

ρ̂ : E(ρ̂; Ĥ) = E
	

, (17)

SE :=
�

ρ̂ : E(ρ̂; Ĥ)≤ E
	

=
⋃

0≤E′≤E

SE′ , (18)

and define the quantities

W(Λ; E) :=max
ρ̂∈SE

W(Λ(ρ̂); Ĥ) , (19)

W(Λ; E) :=max
ρ̂∈SE

W(Λ(ρ̂); Ĥ)

= max
0≤E′≤E

W(Λ; E′)≥W(Λ; E) , (20)

which gauge the maximum output work of the model per fixed input energy. Specifically
W(Λ; E) assumes a sharp energy constraint that allows only states with energy that exactly
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matches the threshold E, while W(Λ; E) allows for the possibility of using also initial configu-
rations with input energy smaller than E. For the special case where Q is a composite system
we will also consider the possibility of further restricting the allowed states to non-entangled
configurations, defining

Wsep(Λ; E) := max
ρ̂sep∈SE

W(Λ(ρ̂sep); Ĥ) , (21)

Wsep(Λ; E) := max
ρ̂sep∈SE

W(Λ(ρ̂sep); Ĥ)

= max
0≤E′≤E

Wsep(Λ; E′) , (22)

with ρ̂sep being the separable states contained in SE and SE . As graphically shown in Fig. 1
this allows us to identify four different scenarios which, similarly to what happens in quantum
metrology and quantum communication [50, 51], are separated in terms of the locality con-
straints that are assumed at the level of state preparation and at the level of the output states
manipulation processes.

3 Energy recovery from arrays of identical (noisy) q-cells

We now focus on the case of quantum battery models consisting of a collection of n identi-
cal and independent elements (q-cells). Each cell us represented by a d-dimensional Hilbert
space H and characterized by a local Hamiltonian ĥ :=

∑d
i=1 εi |i〉〈i| with ordered eigenvalues

ε1 ≤ ε2 ≤ ... ≤ εd that, via proper reshifting and renormalization, can be assumed to fulfil
the conditions ε1 = 0 and εd = 1. Similarly to what was done for the single q-cell scenario
discussed before we can now address the multi-cell protocols. Here ρ̂(n) will be a joint (possi-
bly correlated) state of the quantum battery with ρ̂(n)j the reduced density matrix of the j-th

q-cell, Ĥ(n) :=
∑n

j=1 ĥ j will be instead the quantum battery Hamiltonian with ĥ j local Hamil-

tonian terms (notice that with the convention we have fixed E(ρ̂(n); Ĥ(n)) ∈ [0, n]). We can
consequently evaluate the energy that the battery stores on average as

E(ρ̂(n); Ĥ(n)) := Tr
�

ρ̂(n)Ĥ(n)
�

=
n
∑

j=1

Tr
�

ρ̂
(n)
j ĥ j

�

, (23)

As a noise model for the whole system we will assume each q-cell undergoing the same CPTP
transformation. Given ρ̂(n) the input state of the quantum battery, its output will be described
by the density matrix

ρ̂
(n)
out = Λ

⊗n(ρ̂(n)) . (24)

With such a choice our energy-constrained figures of merit in Eq. (19) and Eq. (21) rewrite as

W(n)(Λ; E) := max
ρ̂(n)∈S(n)E

W(Λ⊗n(ρ̂(n)); Ĥ(n)) , (25)

W(n)
sep(Λ; E) := max

ρ̂
(n)
sep∈S

(n)
E

W(Λ⊗n(ρ̂(n)sep); Ĥ(n)) , (26)

where as usual W stands for any of the work-extractional functionals defined above.
In the following we set the maximum energy of a single q-cell as 1, so given E ∈ [0, n],

we have S
(n)
E :=
�

ρ̂(n) : E(ρ̂(n); Ĥ(n))≤ E
	

. In a similar fashion we also define W(n)
(Λ; E),
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a) b)

c) d)

separable input

separable input

local operations local operations

global ops. allowed

entangled input allowed

entangled input allowed

global ops. allowed

Figure 1: Schematic representation of different work extraction protocols for multi-
partite models. In the scheme the green elements represent the different subsystems
that compose the quantum battery, while red elements describe the operations be-
ing performed to recover the stored energy after the noise has perturbed the system.
Panel a): the energy is charged on separable states of the q-cells (no entanglement),
and it is recovered using only local operations. Panel b) entangled input states are
allowed, but the energy release process is still mediated by local operations. Panel
c) separable input states are used as input (no entanglement) but global operations
are allowed. Panel d) completely unconstrained scenario: entanglement is allowed
at the state preparation stage and global operations are permitted. In terms of the of
the classification introduced in Sec. 3.1, Csep,loc(Λ; e) of Eq. (46) is the capacitance of
the scheme a); Cloc(Λ; e) of Eq. (45) is the one of the scheme b); Csep(Λ; e) of Eq. (44)
is the one for c); and finally CE(Λ; e) of Eq. (43) is the one for d).

and W(n)
sep(Λ; E) as the associated quantities obtained by restricting the optimization only

over input that exactly match the energy constraint E, i.e. over the elements of the subset

S
(n)
E :=
�

ρ̂(n) : E(ρ̂(n); Ĥ(n)) = E
	

. In the following we specialize the definitions (25) and
(26) to the specific figures of merit that we will use in the following sections:
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E (n)(Λ; E) := max
ρ̂(n)∈S(n)E

E(Λ⊗n(ρ̂(n)); Ĥ(n)) , (27)

E (n)(Λ; E) := max
ρ̂(n)∈S

(n)
E

E(Λ⊗n(ρ̂(n)); Ĥ(n)) , (28)

E (n)sep(Λ; E) := max
ρ̂
(n)
sep∈S

(n)
E

E(Λ⊗n(ρ̂(n)sep); Ĥ(n)) , (29)

E (n)sep(Λ; E) := max
ρ̂
(n)
sep∈S

(n)
E

E(Λ⊗n(ρ̂(n)sep); Ĥ(n)) , (30)

E (n)loc (Λ; E) := max
ρ̂(n)∈S(n)E

Eloc(Λ
⊗n(ρ̂(n)); Ĥ(n)) , (31)

E (n)loc (Λ; E) := max
ρ̂(n)∈S

(n)
E

Eloc(Λ
⊗n(ρ̂(n)); Ĥ(n)) . (32)

Finally for the local and separable case we define

E (n)sep,loc(Λ; E) := max
ρ̂
(n)
sep∈S

(n)
E

Eloc(Λ
⊗n(ρ̂(n)sep); Ĥ(n)) , (33)

E (n)sep,loc(Λ; E) := max
ρ̂
(n)
sep∈S

(n)
E

Eloc(Λ
⊗n(ρ̂(n)sep); Ĥ(n)) . (34)

For the sake of clarity we also show the definitions for the output total ergotropy, starting by
definition (5) we have

E (n)tot (Λ; E) := max
ρ̂(n)∈S(n)E

Etot(Λ
⊗n(ρ̂(n)); Ĥ(n))

= max
ρ̂(n)∈S(n)E

lim
k→∞

E([Λ⊗n(ρ̂(n))]⊗k; Ĥ(nk))
k

, (35)

E (n)tot (Λ; E) := max
ρ̂(n)∈S

(n)
E

Etot(Λ
⊗n(ρ̂(n)); Ĥ(n))

= max
ρ̂(n)∈S

(n)
E

lim
k→∞

E([Λ⊗n(ρ̂(n))]⊗k; Ĥ(nk))
k

. (36)

It is straightforward to see that for every n, E and Λ we have that E (n)tot (Λ; E) ≥ E (n)(Λ; E),
but in App. A.2 we prove that limn→∞ E (n)(Λ; E)/n = limn→∞ E (n)tot (Λ; E)/n for any quantum
channel Λ.
Moreover, we also explicitly define the quantities related to the work extraction in presence of
a thermal bath:

F (n)
β
(Λ; E) := max

ρ̂(n)∈S(n)E

Fβ(Λ⊗n(ρ̂(n)); Ĥ(n)) , (37)

F (n)β (Λ; E) := max
ρ̂(n)∈S

(n)
E

Fβ(Λ⊗n(ρ̂(n)); Ĥ(n)) . (38)

We remark again here that the quantities with the bar are calculated on states which have
precisely an average energy of E, while the others are computed on states with average energy
less or equal than E. So in the second case the set on which we maximize our figure of merit
is strictly bigger.
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3.1 Asymptotic limits

While E and n can in general be treated as independent terms, when studying quantum bat-
tery models with a large number of q-cells it makes sense to envision two different scenarios.
Intuitively, we can imagine a quantum battery factory whose aim is to produce asymptoti-
cally large quantities of batteries: the main realistic constraints would be associated to state
preparation/processing and amount of energy available.
In the first case we’d might be interested in understanding the maximum amount of extractable
work per single cell (or per channel uses, from the noisy channel perspective) not focusing on
the amount of energy that goes in the cells: if the battery state preparation/management is
more challenging than gathering the energy, knowing the scaling w.r.t. n could be of more
practical notice.
In the second case instead, we’d probably be more interested in knowing the amount of work
we can extract per unit of energy we input in the cells: if for practical reasons we have that
preparing/managing the cells is easy, we can assume to be able to distribute the input energy
on an arbitrarily large number of cells and in that case the knowledge of the scaling w.r.t. the
amount of input energy might be of higher interest.

Work Capacitances:– The first scenario refers to the cases where the threshold E is compa-
rable to n. To characterize these protocols we study the quantities in Eq. (25) and Eq. (26)
fixing the ratio E/n to a constant value e ∈ [0,1]. In particular, given the work extraction
functional W , we define the associated work capacitance as

CW(Λ; e) := limsup
n→∞

W(n)(Λ; E = ne)
n

, (39)

which gauges the maximum work that one can extract per q-cell element when, on average,
each one stores up to a fraction e of the total input energy. It should be noticed that, due to
the energy rescaling we established in our analysis, one has that CW(Λ; e) is guaranteed to be
non-negative and not larger than 1, i.e.

0≤ CW(Λ; e)≤ 1 , (40)

with CW(Λ; e) = 0 implying the impossibility of extracting useful energy from the quantum
battery, and CW(Λ; e) = 1 corresponding to the ideal work extraction performances. Notice
also that, given e′ ≤ e, since the hierarchic order S(n)E=ne′ ⊆S

(n)
E=ne holds for all n, we have that

CW(Λ; e) is a monotonically non-decreasing function of e

CW(Λ; e′)≤ CW(Λ; e) , (41)

with the maximum value

CW(Λ) := CW(Λ; e= 1) , (42)

corresponding to case where the optimization of the work functional is performed dropping
the input energy constraint.

For all of the functionals that we take into consideration the evaluation of Eq. (39) is
challenging. This is due to the possibility of super-additive effects for quantum batteries made
of quantum cells which are initially entangled which each other. Using definition (37) for the
non-equilibrium free-energy we obtain, by virtue of Eq. (12):

Cβ(Λ; e) := limsup
n→∞

Fβ(Λ; ne)

n
+

log Zβ(ĥ)

β
.
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By inspection we notice that the calculation of the above expression is closely related to the
minimal output entropy problem since the only non-trivial term is given by the output free
energy.
In what follows we will focus in particular on the ergotropy capacitance, by definition (27)

CE(Λ; e) := lim sup
n→∞

E (n)(Λ; ne)
n

. (43)

To estimate the role played in energy release process by the different type of available resources
(e.g. entangled inputs and work-extraction global operations), we also define a collection of
constrained versions of CE(Λ; e). In particular, following the schematic of Fig. 1, we introduce
the separable-input ergotropic capacitance using definition (29),(31) and (33)

Csep(Λ; e) := limsup
n→∞

E (n)sep(Λ; ne)

n
, (44)

the local ergotropy capacitance

Cloc(Λ; e) := lim sup
n→∞

E (n)loc (Λ; ne)

n
, (45)

and the separable-input, local ergotropy capacitance

Csep,loc(Λ; e) := limsup
n→∞

E (n)sep,loc(Λ, ne)

n
. (46)

Simple resource counting arguments impose a (partial) hierarchy between these terms, i.e.

CE(Λ; e)≥ Cloc(Λ; e), Csep(Λ; e)≥ Csep,loc(Λ; e) . (47)

Notice however that no ordering has been selected between Cloc(Λ; e) and Csep(Λ; e) since a
priori there is no clear indication of whether for a given channel Λ the use of global resources
is more beneficial at the state preparation stage or at the end of the energy release process.

As shown in App. A.1, the lim supn→∞ in the above definitions correspond to simple
limn→∞ or, equivalently, to supn≥1. Most importantly in App. A.2 we prove that, despite the

fact that for all finite n, Etot(Λ⊗n(ρ̂(n));Ĥ(n))
n is always greater than or equal to E(Λ⊗n(ρ̂(n));Ĥ(n))

n , in the
large n limit the gap between these two rates goes to zero. Accordingly, while in principle one
can introduce total-ergotropy equivalents Ctot(Λ; e) and Ctot,sep(Λ; e) of CE(Λ; e) and Csep(Λ; e)
respectively, by replacing E with Etot in the right-hand-side of the corresponding definitions,
such terms coincide with the quantities reported above, i.e.

Ctot(Λ; e) = CE(Λ; e) , Csep,tot(Λ; e) = Csep(Λ; e) . (48)

The same equivalence does not apply to Eqs. (45) and (46): as a matter of fact in these cases,
replacing the ergotropy with the total-ergotropy will lead to quantities that for some channels
are provably different from Cloc(Λ; e) and Csep,loc(Λ; e) – an example of this fact will be pro-
vided in App. A.2. Since however the introduction of local capacitances based on a functional
that explicitly makes use of global operation makes little sense operationally, in what follows
we won’t discuss this possibility.
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MAWER:– In the second scenario the number of q-cells composing the quantum battery is
treated as a free resource to store a finite energy amount E. In the limit in which the number
of q-cells is very large compared to the total energy to store (that is, E/n→ 0), it’s reasonable
to expect some advantage in the ratio between input energy and output ergotropy: with the
number of cells we are also extending the number of strategies to perform energy injection
and extraction, hence we can hope for better efficiencies. In order to evaluate the performance
of such schemes we employ the Maximal Asymptotic Work/Energy Ratio (MAWER) defined as

JE(Λ) := limsup
E→∞

�

sup
n≥1

E (n)(Λ; E)
E

�

. (49)

It is worth observing that the supremum over n in the above expression can be computed as
a limn→∞ (this is a consequence of the monotonicity discussed in the next section). Notice
also that, at variance with the capacitances defined in the previous paragraph, the MAWER
JE(Λ) can diverge: explicit examples will be given in Sec. 5. Finally, similarly to Eq. (48),
one can show that the limit on right-hand-side of Eq. (49) can be evaluated by replacing the
optimization of the ergotropy with the total-ergotropy – see Appendix A.3.

4 Some useful properties

In the following sections we study the output ergotropy functionals defined in Sec. 2 for a
variety of CPTP channels. To simplify the analysis we’ll exploit a series of useful properties
that we enlist below.

Property 0 [Monotonicity]:– By construction all our work extraction functionals W(n)(Λ; E)
are monotonically increasing both w.r.t. n and E, i.e.

W(n)(Λ; E)≥W(n′)(Λ; E′) , ∀n≥ n′, ∀E ≥ E′ . (50)

On the contrary, there is no guarantee that for fixed n W(n)
(Λ; E) is increasing with E (an

explicit counter-example for the ergotropy E is provided in Section 5.1).

Property 1 [Optimality of pure states]:– In Ref. [36] it was shown that for fixed input en-
ergy E, the maximum values of the ergotropy, total-ergotropy, and of the non-equilibrium free
energy attainable at the output of any quantum channel can always be achieved by a pure
state. In what follows we’ll exploit this fact by restricting the maximization in Eq. (25) just to
the pure states in S

(n)
E .

Property 2 [Super-additivity]:– As the input energy of the system is an extensive quantity,
and local unitary transformations acting on a subset of n quantum cells of a quantum battery
define a proper subset of U(dn), one can easily show that for both the ergotropy and the total-
ergotropy, given any couple of integers n1 and n2, we have

W(n1+n2)(Λ; E1 + E2)≥W(n1)(Λ; E1) +W(n2)(Λ; E2) , (51)

for all E1 ∈ [0, n1], E2 ∈ [0, n2], and

W(n1n2)(Λ; E)≥ n2W(n1)(Λ; E/n2) , (52)
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for all E ∈ [0, n1n2].
The fundamental ingredient to prove properties in Eq. (51) and Eq. (52) is the super-

addittivity of the ergotropy and total ergotropy for factorized, indepedent systems, i.e. the
inequality

W(ρ̂A⊗ ρ̂B; ĤA+ ĤB)≥W(ρ̂A; ĤA) +W(ρ̂B; ĤB) , (53)

which follows by restricting the maximization over the unitaries acting on the joint system AB
to tensor product unitaries acting locally on A and B.

To prove Eq. (51) observe then that, given ρ̂(n1) ∈ S
(n1)
E1

and ρ̂(n2) ∈ S
(n2)
E2

, we have that

ρ̂(n1) ⊗ ρ̂(n2) ∈S(n1+n2)
E1+E2

. Therefore we can write

W(n1+n2)(Λ; E1 + E2)≥W(Λ⊗(n1+n2)
�

ρ̂(n1) ⊗ ρ̂(n2)
�

; Ĥ(n1+n2))

=W(Λ⊗(n1)(ρ̂(n1))⊗Λ⊗n2(ρ̂(n2)); Ĥ(n1+n2))

≥W(Λ⊗n1(ρ̂(n1)); Ĥ(n1)) +W(Λ⊗n2(ρ̂(n2)); Ĥ(n2)) , (54)

where in the second inequality we applied Eq. (53). Taking hence the supremum over all
possible choices of ρ̂(n1) and ρ̂(n2), we finally arrive to Eq. (51).

The proof of the inequality of Eq. (52) follows a similar path: observe that for n1 integer
and E1 ∈ [0, n1], given a generic ρ̂(n1) ∈ S(n)E1

, we have that (ρ̂(n1))⊗n2 ∈ S(n1n2)
n2E1

. Accordingly
we can write

W(n1n2)(Λ; n2E1)≥W(Λ⊗n1n2
�

(ρ̂(n1))⊗n2
�

; Ĥ(n1n2))

=W(
�

Λ⊗n1(ρ̂(n1))
�⊗n2; Ĥ(n1n2))

≥ n2W((Λ⊗n1(ρ̂(n1))); Ĥ(n1)) , (55)

where in the third line we invoked once more Eq. (53). Taking now the supremum with respect
to all ρ̂(n) ∈S(n1)

E1
we finally get

W(n1n2)(Λ; n2E1)≥ n2W(n1)(Λ; E1) , (56)

which corresponds to Eq. (52) once we set E = n2E1.
It is finally worth stressing that the super-additivity showed by inequalities (51) and (52)

also holds for the functionals W(n)
(Λ; E) and W(n)

tot (Λ; E). This is proved by observing that by

construction these quantities can be expressed as in Eq. (25) by replacing S
(n)
E with S

(n)
E .

Property 3 [Covariance]:– An important simplification applies for noise models that are
well-behaved under unitary transformations that leave the system Hamiltonian invariant, i.e.
the transformations identified by the following

Definition 1. A CPTP channel Λ is said to be n-covariant under energy preserving transforma-
tions, if for all V̂ (n) ∈ U(n)EP there exists Ŵ (n) ∈ U(n)EP such that

Λ⊗n ◦UV̂ (n) = UŴ (n) ◦Λ⊗n , (57)

where UV̂ (n)(·) := V̂ (n)(·)V̂ (n)† is the CPTP map associated with V̂ (n), being ◦ the composition of
super-operators.

Notice in particular that if Λ is n-covariant then it’s also m-covariant for all m integers
smaller than n, sinceU(m)EP induces a proper subgroup inU(n)EP (on the contrary ifΛ is m-covariant
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then it is not necessarily n-covariant). What is most relevant for us is that, given a n-covariant
channel Λ, the maximization in Eq. (25) can be saturated by states that in the eigen-energy
basis {|Eℓ〉}ℓ are represented by a matrix with non-negative terms. To see this recall that from
Property 1 it follows that the maximum in Eq. (25) is achieved by one of the pure states of
S
(n)
E . Let hence ρ̂(n) = |ψ(n)〉〈ψ(n)| be one of such states, with |ψ(n)〉 =

∑dn

ℓ=1ψ
(n)
ℓ
|Eℓ〉. Define

now V (n) ∈ U(n)EP with phase terms as in Eq. (15) equal to minus the phases of the amplitudes

probabilities ψ(n)
ℓ

of |ψ(n)〉, i.e. φℓ := −arg(ψ(n)
ℓ
). By construction the vector

|ψ(n)p 〉= V (n)|ψ(n)p 〉=
dn
∑

ℓ=1

|ψ(n)
ℓ
||Eℓ〉 , (58)

is still a pure state of S(n)E , whose density operator ρ̂(n)p := |ψ(n)〉〈ψ(n)| has matrix represen-

tation with elements 〈Eℓ|ρ̂(n)p |Eℓ′〉 = |ψ
(n)
ℓ
ψ
(n)
ℓ′
| that are explicitly non-negative. Furthermore,

since the channel is n-covariant, we can write

W(Λ⊗n(ρ̂(n)p ); Ĥ(n)) =W(Λ⊗n ◦UV̂ (n)(ρ̂
(n)); Ĥ(n))

=W(UŴ (n) ◦Λ⊗n(ρ̂(n)); Ĥ(n))

=W(Λ⊗n(ρ̂(n)); Ĥ(n)) , (59)

where Ŵ (n) is the element of U(n)EP defined in Definition 1 and where in the second line we
invoked Eq. (16).

Property 4 [Ergotropic Equivalence]:– The analysis of the maximum output ergotropy
functional can in part be simplified by the introduction of the following

Definition 2. Two CPTP channels Λ and Λ′ are said to be ergotropically equivalent if

E (n)(Λ′; E) = E (n)(Λ; E) , ∀n, ∀E ∈ [0, n] . (60)

One can easily verify that channels which are ergotropically equivalent are also equivalent
in terms of the total ergotropy, and have the same ergotropy capacitances and MAWERs, i.e.

CE(Λ; e) = CE(Λ
′; e) , JE(Λ) = JE(Λ

′) . (61)

A first example of a couple of ergotropically equivalent channels is obtained whenΛ is a generic
transformation and Λ′ = UV̂ ◦ Λ for some V̂ ∈ U(1)EP – the identity in Eq. (60) is then a trivial

consequence of the fact that V̂⊗n is an element of U(n)EP (Λ
′)⊗n and of Eq. (16). A slightly more

sophisticated example is instead represented by couples of maps whereΛ is a 1-covariant chan-
nel and Λ′ = Λ ◦ UV̂ where again V̂ ∈ U(1)EP – in this case Eq. (60) can be established by using
Eq. (57) to express Λ′ = UŴ ◦Λ to reduce the analysis to the first example.

5 Noise models

To test the effectiveness of the new framework described above, here we analyze the energy
release efficiency for instances of CPTP maps. We choose two among the fundamental noise
models in the landscape of quantum information and communication: the qubit dephasing
channel and the depolarizing channel, and we proceed by studying the associated maximum
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ergotropic functionals defined in the previous sections. The qubit examples explored here
were chosen as illustrative cases due to their broad relevance for current quantum computing
platforms. However, we emphasize that the formalism itself imposes no restrictions and can be
readily applied to more complex quantum battery implementations once the noise processes
are characterized.
In the case of the dephasing channel we derive all the quantities defined the previous section
and we obtain simple formulas due to the structure of the channel; if the input consists of
only two qubits we show that we can find an advantage with entangled input states. For
the depolarizing channel we manage to compute the ergotropic capcitances and the MAWER
exploiting the symmetries of the channel under unitary rotations; for qudit inputs (d ≥ 3)
we find that the MAWER goes to infinity, it is a consequence of the fact that in this particular
scenario the channel charges the state.

5.1 Qubit dephasing channel

As a first example we consider the case of quantum batteries made of two-levels quantum
systems (d = 2) and affected by the detrimental action of a dephasing channel ∆κ [39, 52]
acting on the coherences of the energy eigenvectors of the local Hamiltonian ĥ, i.e.

∆κ(|i〉〈i|) =|i〉〈i| , for i = 0, 1, (62)

∆κ(|0〉〈1|) =
p

1− κ|0〉〈1|=∆†
κ(|1〉〈0|) , (63)

with κ ∈ [0,1] the dephasing parameter of the model (κ = 1 corresponding to the complete
dephasing).

We start noticing that since such map does not change the mean energy of the input states,
so the following upper bound holds:

E (n)(∆κ; E)≤ E , ∀n , ∀E . (64)

Furthermore, since ∆k simply rescales the matrix elements of the input state when expressed
in the energy eigenbasis, one can easily verify that the channel is n-covariant for all n. Accord-
ingly in solving the maximization in Eq. (25) we can restrict the analysis to pure states as in
Eq. (58), which in the energy eigenbasis have positive amplitude probabilities. If our quantum
battery consists of a single q-cell scenario (n= 1) for E ∈ [0,1] this identifies the vector

|ψ(1)E 〉 :=
p

1− E |0〉+
p

E |1〉 , (65)

as the optimizer state leading to

E (1)(∆κ; E) = E (1)(∆κ; E) = E −
1
2

�

1−
Æ

1− 4κE(1− E)
�

. (66)

The second identity follows from Eq. (4) and from the fact that ∆κ(|ψ
(1)
E 〉〈ψ

(1)
E |) admits

λ1,2 =
1
2 ±

1
2

p

1− 4κE(1− E) as eigenvalues; the first identity instead is a consequence of

the fact that E (1)(∆κ; E) is monotonically increasing for E ∈ [0, 1] – see First Panel of Fig. 2.
To address the case of a quantum battery comprising an arbitrary number n of q-cells, we

observe that given an integer k ≤ n, the product states of the form |1〉⊗k ⊗ |0〉n−k are left
invariant by Λ⊗n: using such inputs we can hence saturate the upper bound of Eq. (64) at
least for E = k, i.e.

E (n)(∆κ; E = k) =E (n)(∆κ; E = k) = k , (67)
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Figure 2: Study of the output maximum ergotropy per site E (n)(∆κ; E) for two-level
quantum batteries evolving under the action of a dephasing channel ∆κ. First panel

Single site scenario (n = 1): in this case E (1)(∆κ; E) is given in Eq. (66). Notice
that for E = 1 (i.e. when no energy constraint is imposed on the input state of
the quantum battery), the function saturates to the maximum stored energy value,

i.e. E (1)(∆κ; 1) = 1; Second panel two-sites scenario (n = 2). Here the optimal

value of E (2)(∆κ; E) is obtained solving the optimization numerically. As in the case
n = 1 case, the quantity appears to be monotonically increasing in E, indicating

that E (2)(∆κ; E) = E (2)(∆κ; E). Third panel Entanglement boost: difference between

E (2)(∆κ; E) and the optimal output ergotropy E (2)SEP(∆κ; E) obtained by restricting the
optimization over the set of separable input states. The red dashed lines highlight
the area in the parameter space where the entangled input states have an advantage
over the separable input strategy.

for all k ∈ {0, 1, · · · , n} – see Fig. 3. For values of E that are not integers the calculation is
less immediate and we are not able to provide closed expressions for E (n)(∆κ; E). A numerical
study of the special case of n = 2 – Fig. 2 Second Panel –reveals that, at variance with what
observed in the derivation of Eq. (67), in general the optimal input states will involve some
degree of entanglement. This is explicitly shown in the third panel of Fig. 2 where we report

the difference between the value E (2)(∆κ; E) obtained by performing an optimization over all

possible input states, and the optimal output ergotropy E (2)SEP(∆κ; E) obtained by restricting the
maximization over the set of separable input states – see Eq. (21). As evident from the plot a
gap can be seen when κ is sufficiently large and E is close to the values 0.5 and 1.5. For such
choices we have numerical evidences that the optimal state corresponds to the non-factorized
vector |ψ(2)E 〉 :=

p

1− E/2 |00〉+
p

E/2 |11〉.
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Figure 3: Maximal output ergotropy per q-cell copies E (n)(∆κ; E = n/2)/n at the
output of the completely dephasing channel ∆κ=1 as a function of n: for n even this
quantity saturates to the maximum 1 (see Eq. (67)); for even n the plotted values
are the result of a numerical optimization.

5.1.1 Ergotropic Capacitances and MAWER values

For arbitrary n and E, an analytical lower bound for E (n)(∆κ; E) can be obtained by expressing
E in terms of its integer part ⌊E⌋, and using the super-additivity in Eq. (51) together with
Eqs. (67) and (66):

E (n)(∆κ; E)≥ E (n−1)(∆κ; ⌊E⌋) + E (1)(∆κ;∆E) = ⌊E⌋+ E (1)(∆κ;∆E) = E −δE , (68)

with ∆E := E − ⌊E⌋ ∈ [0, 1] and

δE :=
1
2
(1−
Æ

1− 4κ∆E(1−∆E)) ∈ [0,∆E] .

Observing that by construction δE is smaller than 1, from the above inequality and from
Eq. (64) we get the following inequalities

e≥ E (n)(∆κ;ne)
n ≥ e− 1/n , (69)

1≥ E (n)(∆κ;E)
E ≥ 1− 1/E , (70)

which finally translate to closed expressions for the ergotropic capacitance and for the MAWER
of the model

CE(∆κ; e) =e , ∀e ∈ [0, 1] , (71)

JE(∆κ) =1 . (72)

We remark that, as the lower bound in Eq. (68) is attainable using separable states of the form

|1〉⊗⌊E⌋ ⊗ |0〉⊗(n−⌊E⌋−1) ⊗ |ψ(1)
e′
〉, (73)

here |ψ(1)
e′
〉 is defined as in Eq. 65 and e′ = E − ⌊E⌋; despite the advantages reported in the

previous section in the finite n regime, the asymptotic values of Eq. (69) and Eq. (70) can be
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obtained without the explicit use of entangled input states. Furthermore as the energy recovery
from the input state in Eq. (73) only requires local operations, for the dephasing channels
we have that all the channel capacitances coincide leading to a collapse of the hierarchy of
inequalities in Eq. (47), i.e.

CE(∆κ; e) = Cloc(∆κ; e) = Csep(∆κ; e) = Csep,loc(∆κ; e) . (74)

This collapse of the hierarchy reveals a key physical property of the dephasing noise: the sta-
bility of the stored energy against dephasing is not enhanced by quantum correlations across
cells or non-local control at the level of work extraction operations.

For what concerns the free energy we find a relation that is analogous to Eq. (68)

F (n)
β
(∆κ; E)≥ F (n−1)

β
(∆κ; ⌊E⌋) +F (1)

β
(∆κ;∆E) = ⌊E⌋+F (1)

β
(∆κ;∆E) . (75)

The lower bound in Eq. (75) is attainable with the state in Eq. (73) so we have that

e≥
F (n)
β
(∆κ; ne)

n
≥ e− 1/n , (76)

due to the above inequality we finally obtain the following expression for the free energy
capacitance:

Cβ(∆κ; e) = e+
log Zβ(ĥ)

β
. (77)

As expected, the presence of an additional resource - the heat bath - allows for the retrieval
of more work than what would be possible to extract without it, in a fully analogous way to
what happens for noiseless work extraction processes [46].

5.1.2 Dephasing channels in higher dimensions

The results reported above can be generalized to noisy quantum batteries composed by q-cells
of arbitrary dimension d > 2, irrespective of the spectrum of the local Hamiltonian ĥ and of
the specific structure of the dephasing coefficients one can assign to the various off-diagonal
terms. In particular, identifying with |0〉 and |1〉 the ground and maximal energy state of a
single q-cell, one can use the state in Eq. (73) to show that the bounds of Eqs. (69) and (70)
still apply, from which Eqs. (72) and (74) can then be easily recovered.

5.2 Depolarizing channel

The depolarizing channel is one of the simplest and most studied - because of its symmetries
- noise models in quantum information theory: specifically, it is covariant w.r.t. the action
of any unitary transformation [52, 53]. In the qubit setting it describes, depending on a
probability parameter, the simultaneous action of bit-flip, phase-flip and bit-phase-flip errors.
More generally for a qudit system the depolarizing channel Dλ induces a mapping that can be
expressed by the following:

Dλ(ρ̂) := λρ̂ + (1−λ)Tr[ρ̂]
1̂

d
, (78)

where 1̂ is the identity operator and λ ∈ [−1/(d2 − 1), 1] is a noise parameter that char-
acterizes the transformation. In particular for λ ∈ [0, 1] the map represents an incoherent
mixture between the input state and the completely mixed state of the model; while for
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λ ∈ [−1/(d2−1), 0) it induces an inversion with respect to the identity operator: in the qubit
case for instance it results in a universal NOT in the Bloch sphere combined with a contraction
of the Bloch vector [54].

Simple algebra reveals that Dλ induces a linear transformation of the input energy of the
system. Specifically being ρ̂(n) ∈ S

(n)
E an input state of energy E, we have that its output

D⊗n
λ
(ρ̂(n)) is an element of S(n)E′ with ĥ the Hamiltonian of a single q-cell and

E′ := λE + (1−λ)n
Tr[ĥ]

d
, (79)

that allows us to replace Eq. (64) with

E (n)(Dλ; E)≤ λE + (1−λ)n
Tr[ĥ]

d
, ∀n , ∀E . (80)

We notice also that, as in the case of the dephasing channel ∆κ, also Dλ is n-covariant so that
we can always restrict the optimization in Eq. (27) to pure vectors of the form of the one in
Eq. (58). As shown in App. B this implies that, in the case of a quantum battery with a single
q-cell (n= 1), irrespective of the dimensionality of the model, the maximum output ergotropy
at energy less or equal than E is attained by pure states with average energy E, so it is given
by

E (1)(Dλ; E) = E (1)(Dλ; E) = λE + D(λ) , (81)

with D(λ) a discontinuous function being equal to 0 for λ≥ 0, assuming instead the value −λ
for λ < 0. Accordingly we get

E (1)(Dλ; E) =

¨

E (1)(Dλ; E) = λE , for λ≥ 0,

E (1)(Dλ; 0) = |λ| , for λ≤ 0,
(82)

where we exploit the fact that the expression in Eq. (81) is non-decreasing (non-increasing)
w.r.t. E for positive (negative) λ values – see top panels of Fig. 4. In a similar way we get

E (1)tot (Dλ; E) =λE + Dtot(λ; ĥ) , (83)

E (1)tot (Dλ; E) =

�

λE + Dtot(λ; ĥ) , for λ≥ 0,
Dtot(λ; ĥ) , for λ≤ 0,

(84)

where Dtot(λ; ĥ) is a constant term only depending on the spectrum of the single-site Hamil-
tonian ĥ and on the noise parameter λ – see top panels of Fig. 4 and App. B for details. The
simple form of E (1)(Dλ; E) and E (1)(Eλ; E) is a consequence both of the symmetry of the depo-
larizing channel, since it commutes with any unitary transformation, and of the equation (79),
which tells us that the output energy is just a function of solely the input energy of the state.

We stress that also in this case the maximum for E (1)tot (Dλ; E) is attained by any pure input state
that fulfils the energy constraint. We notice also that, while non evident by the formula, in the
special case of d = 2 (qubit) Dtot(λ; ĥ) corresponds to D(λ) and Eqs. (83) and (84) reduce to
Eqs. (81) and (82).

5.2.1 Ergotropic Capacitances

Also for this channel we are able to compute the capacitances and the MAWERs of the model.
The key argument follows from the result of King presented in Ref. [53] which shows that the
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Figure 4: Upper panel: plot of the single site, maximum output ergotropy E (1)(Dλ; E)
for the depolarizing channel (see Eq. (82)). As shown in Eq. (96) the plot represents
the local egotropy capacitance Cloc(Λ; e) and the separable local ergotropy capac-
itance Csep,loc(Λ; e). Lower panel: plot of the single site, maximum output total-

ergotropy functional E (1)tot (Dλ; E) for the case of q-cells of dimension d = 5 with non-
degenerate, equally spaced energy spectra (see Eq. (84)). As shown in Eq. (90)
the plot on the right represents the egotropy capacitance CE(Λ; e) and the separable-
input ergotropy capacitance Csep(Λ; e).

minimal entropy at the output of a multi-use depolarizing channel is additive, i.e. that for any
n and for any given ρ(n) state of n q-cells one has

S(D⊗n
λ (ρ

(n)))≥ S((Dλ(|ψ〉〈ψ|))⊗n) = nS(Dλ(|ψ〉〈ψ|)) = nSd(λ) , (85)

with |ψ〉 a generic pure input state of a single q-cell, and Sd(λ) being the associated output
entropy (see Eq. (B.7) of App. B). Notice that due to the special symmetry of Dλ, the specific
choice of |ψ〉 doesn’t matter: in particular, if ρ(n) belongs to the energy constrained subset

S
(n)
E by identifying |ψ〉 with the vector |ψE/n〉 which has mean energy E/n, we can ensure

that also |ψE/n〉〈ψE/n|⊗n belongs to the same set. Accordingly for all n ∈ N and E ∈ [0, n] we
have

min
ρ̂(n)∈S

(n)
E

S(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= Sd(λ) , (86)

which, exploiting the monotonicity of the total ergotropy as in Eq. (10), leads to

max
ρ̂(n)∈S

(n)
E

Etot(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= Etot(Dλ(|ψE/n〉〈ψE/n|)) = E (1)tot (Dλ; E/n) , (87)

and

max
ρ̂(n)∈S(n)E

Etot(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= E (1)tot (Dλ; E/n) , (88)
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with E (1)tot (Dλ; E/n) and E (1)tot (Dλ; E/n) defined as in Eqs. (83) and (84). In a similar fashion,
exploiting the fact that |ψE/n〉〈ψE/n|⊗n is separable we can also write

max
ρ̂
(n)
sep∈S

(n)
E

Etot(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= E (1)tot (Dλ; E/n) . (89)

Replacing Eqs. (88) and (89) in the right-hand-side of Eqs. (A.8) and (A.9) and using the
identities in Eq. (48) we can then conclude that

CE(Dλ; e) =Csep(Dλ; e) = E (1)tot (Dλ; e) . (90)

Consider next the case of Cloc(Dλ; e) and Csep,loc(Dλ; e). Observe that for a generic ρ̂(n) ∈S
(n)
E

we can write

Eloc(D⊗n
λ (ρ̂

(n)); Ĥ(n)) =
n
∑

j=1

E(Dλ(ρ̂(n)j ); ĥ) , (91)

where given j ∈ {1, · · · , n}, ρ̂(n)j is the reduced density matrix of ρ̂(n) associated with the j-th

q-cell, whose input energies E j = E(ρ̂(n)j ; ĥ) fulfil
∑n

j=1 E j = E. Invoking Property 1 we can
now write

E(Dλ(ρ̂(n)j ); ĥ)≤ E(Dλ(|ψE j
〉〈ψE j
|); ĥ) = E (1)(Dλ; E j) , (92)

with |ψE j
〉 a single-site pure state with input energy that exactly matches E j and with

E (1)(Dλ; E j) the optimal value given by Eq. (81). Replacing Eq. (92) into Eq. (91) we can
hence write

Eloc(D⊗n
λ (ρ̂

(n)); Ĥ(n))≤
n
∑

j=1

E (1)(Dλ; E j) = nE (1)(Dλ; E/n) , (93)

where in the last step we used the functional dependence of E (1)(Dλ; E) upon E as expressed
by Eqs. (83) and (84). Notice that the upper bound is a value that Eloc(D⊗n

λ
(ρ̂(n)); Ĥ(n)) can

attain on S
(n)
E by using as input the separable state |ψE1

〉⊗|ψE2
〉⊗· · ·⊗ |ψEn

〉. Accordingly we
can write

max
ρ̂
(n)
sep∈S

(n)
E

Eloc(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= E (1)(Dλ; E/n) , (94)

and hence

max
ρ̂
(n)
sep∈S

(n)
E

Eloc(D⊗n
λ
(ρ̂(n)); Ĥ(n))

n
= E (1)(Dλ; E/n) , (95)

which inserted in Eqs. (45) and (46) leads to

Cloc(Dλ; e) = Csep,loc(Dλ; e) = E (1)(Dλ; e) . (96)

Equations (90) and (96) show that for d > 2, in the case of depolarizing channels, the use of
entangled states does not improve the energy extraction process, while the possibility of using
global operations can provide an advantage.

An analogous result can be found in the case of the free energy. The depolarizing channel
is covariant under any unitary transformation and thanks to Eq. (85) we can show that

F (n)
β
(Dλ; ne)

n
= F (1)

β
(Dλ; e) = λe+

(1−λ)
d

Tr
�

ĥ
�

− Sd(λ) , (97)
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so the corresponding capacitance can be evaluated as

Cβ(Dλ; e) = F (1)
β
(Dλ; e) +

log Zβ(ĥ)

β
. (98)

This result shows that also in the presence of a thermal bath the energy release process is not
boosted by input entangled states.

5.2.2 MAWER values

To evaluate the MAWER for the depolarizing channel we can use the identities in Eqs. (A.25),
(88) and (84). For λ < 0 these tell us that JE(Dλ) is unbounded, i.e.

JE(Dλ) = limsup
E→∞

�

sup
n≥1

nDtot(λ; ĥ)
E

�

=∞ . (99)

For λ ≥ 0 we need to distinguish the case d = 2 from the rest. If d > 2 , since Dtot(λ; ĥ) > 0
we get that once again JE(Dλ) diverges

JE(Dλ) = limsup
E→∞

�

sup
n≥1

n[E/n+ Dtot(λ; ĥ)]
E

�

=∞ . (100)

For d = 2 on the contrary since Dtot(λ; ĥ) = D(λ) = 0, we get

JE(Dλ) = limsup
E→∞

�

sup
n≥1

nE/n
E

�

= λ . (101)

6 Conclusions

In this work we have analyzed the efficiency of work extraction for Quantum Batteries formed
by a collection of identical and independent quantum cells (each one of them being described
by a noisy quantum system). For this purpose, we have introduced a theoretical framework
that allows us to understand the action of quantum effects in the noisy energy storage scenario.
Specifically, we have defined the work capacitance and maximal asymptotic work/energy ra-
tio (MAWER) to characterize the scalable work output and efficiency of quantum batteries
operating under noise. These figures of merit provide an operationally meaningful assessment
of stability and robustness against noise during cyclic charging and discharging protocols. As
opposed to prior approaches focused on charging power on short timescales, our formalism
reveals the possible long-term benefits of quantum battery designs in the presence of noise.

We have been able to identify some general properties of the optimal initial state both for
the work capacitances and the MAWERs. We have applied our methods to two instances of
relevant noise models (dephasing and depolarizing noise), in both of these situations we have
been able to identify the optimal initial state. In this special setting we managed to show that
in the limit of quantum batteries composed by infinite q-cells the most prominent role is played
by the power of global operations, while for a fixed number of q-cells input entanglement can
be beneficial, as in the case of the dephasing channel.
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A Capacitance and MAWER characterization

In Sec. A.1 we prove that the lim sup in Eqs. (43) and (A.8) correspond to regular limits. In
Sec. A.2 derive the identity stated in Eq. (48). Finally in Sec. A.3 we show that in the definition
of the MAWER the limit on the right-hand-side of Eq. (49) can be evaluated by replacing the
optimization of the ergotropy functional with the total-ergotropy.

A.1 Existence of the ergotropic capacitance

In this section we show that for both the ergotropy and the total-ergoropy functions, the limit
for n→∞

w(n)e :=
W(n)(Λ; E = ne)

n
, (A.1)

exists finite for all e ∈ [0, 1], and that it corresponds to the maximum value these functionals
assume with respect to n. This implies that the limsup in both Eqs. (43) and (A.8) can be
replaced with the limit, yielding the identities

CW(Λ; e) = lim
n→∞

w(n)e (Λ) = sup
n≥1

w(n)e (Λ) . (A.2)

The fundamental tool to prove Eq. (A.2) is the weakly-increasing property which we define
as follows:

Definition 3. A real function fn on the set of integer number, is said to be Weakly-Increasing
(W-I) if the following properties hold true:

fnk ≥ fn , (A.3)

fn+k ≥
n

n+ k
fn +

k
n+ k

fk , (A.4)

for all n and k integers.

Observe that in the case of w(n)e (Λ), Eqs. (A.3) and (A.4) hold as direct consequences of
Eqs. (52) and (51) respectively. Indeed we can write

w(nk)
e (Λ) =

W(nk)(Λ; nke)
nk

≥
W(n)(Λ; ne)

n
= w(n)e (Λ) , (A.5)

and

w(n+k)
e (Λ) =

W(n+k)(Λ; (n+ k)e)
n+ k

≥
W(n)(Λ; ne) +W(k)(Λ; ke)

n+ k

=
n

n+ k
w(n)e (Λ) +

k
n+ k

w(k)e (Λ) . (A.6)

Now, simple algebraic considerations show that any limited W-I function fn admits (finite)
limit as n goes to infinity, and that such limit corresponds to its supremum value with respect
to n, i.e.
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Lemma 1. Let fn be a real function defined on the integers which is finite. If fn is W-I then we
have

lim
n→∞

fn = sup
n≥1

fn , (A.7)

(the existence of the supremum being ensured by the finiteness of fn).

Since w(n)e (Λ) is finite by definition (it assumes values on the interval [0,1]), Eq. (A.2)
follows as a consequence of Lemma 1.

A.2 Equivalence between ergotropic capacitances and total-ergotropy capaci-
tances

Here we prove Eq. (48) which implies that the total-ergotropy capacitance and the separable-
input ergotropic capacitance defined as

Ctot(Λ; e) := limsup
n→∞

max
ρ̂(n)∈S(n)E=ne

Etot(Λ⊗n(ρ̂(n)); Ĥ(n))
n

, (A.8)

Csep,tot(Λ; e) := limsup
n→∞

max
ρ̂
(n)
sep∈S

(n)
E=ne

Etot(Λ⊗n(ρ̂(n)sep); Ĥ(n))

n
, (A.9)

coincide with the original values given in Eqs. (43) and (44) respectively.
Let’s start by observing that since the total-ergotropy of a state provides a natural upper

bound for its ergotropy we have that Ctot(Λ; e) and Csep,tot(Λ; e) are always greater than or
equal to C(Λ; e) and Ctot(Λ; e) respectively, i.e.

Ctot(Λ; e)≥ CE(Λ; e) , Csep,tot(Λ; e)≥ Csep(Λ; e) . (A.10)

In order to prove the identities in Eq. (48) it’s hence sufficient to verify that the reverse in-
equalities are also valid. To show this observe that, given n integer and ρ̂(n) ∈S(n)E=ne, we can
write

Etot(Λ⊗n(ρ̂(n)); Ĥ(n))
n

= lim
N→∞

E(
�

Λ⊗n(ρ̂(n))
�⊗N

; Ĥ(nN))

nN

= lim
N→∞

E(Λ⊗nN ((ρ̂(n))⊗N ); Ĥ(nN))
nN

≤ lim
N→∞

max
ρ̂(nN)∈S(nN)

E=nNe

E(Λ⊗nN ((ρ̂(nN))); Ĥ(nN))
nN

≤ lim
N→∞

E (nN)(Λ; nN E)
nN

= CE(Λ; e) , (A.11)

where in the third passage we used the fact that (ρ̂(n))⊗N ∈S(nN)
E=nNe. Taking hence the supre-

mum over all ρ̂(n) ∈S(n)E=ne and then taking the limit n→∞ we get

Ctot(Λ; e)≤ CE(Λ; e) , (A.12)

which, together with Eq. (A.10), proves the first of the identities of Eq. (48). The proof of
the second one follows in a similar way noticing that, given ρ̂(n)sep a separable state of S(n)E=ne,

one has that (ρ̂(n)sep)
⊗N is a separable state of S(nN)

E=nNe: this allows us to replicate the steps in
Eq. (A.11) obtaining

Etot(Λ⊗n(ρ̂(n)sep); Ĥ(n))

n
≤ Csep(Λ; e) . (A.13)
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Taking then the max over all possible ρ̂(n)sep ∈S
(n)
E=ne and sending n→∞ we hence get

Csep,tot(Λ; e)≤ Csep(Λ; e) , (A.14)

which together with Eq. (A.10) gives the second identity of Eq. (48).

We now prove that the equivalent of Eq. (48) does not hold for the local total ergotropy
capacitance for separable inputs. In other words we show that replacing E with Etot in the
right-hand-side of Eqs. (45) and (46) will in general lead to quantities which are different
from Cloc(Λ; e) and Csep,loc(Λ; e) respectively. We can name these new objects the local total-
ergotropy capacitance

Cloc,tot(Λ; e) := lim sup
n→∞

max
ρ̂(n)∈S(n)E=ne

Eloc,tot(Λ⊗n(ρ̂(n)); Ĥ(n))

n
, (A.15)

and the separable-input local total-ergotropy capacitance

Csep,loc,tot(Λ; e) := limsup
n→∞

max
ρ̂
(n)
sep∈S

(n)
E=ne

Eloc,tot(Λ⊗n(ρ̂(n)sep); Ĥ(n))

n
. (A.16)

Formally speaking, Csep,loc,tot(Λ; e) allows for unitary transformations that are local with respect
to the different q-cells but global on the collections of copies of each one of them – see Fig. 5.

To derive this result consider the special case in which Λ is a replacement channel inducing
the transformation

Λ(ρ̂) = Tr[ρ̂] ρ̂0 , ∀ρ̂ , (A.17)

being ρ̂0 a fixed q-cell state. By construction any input state of n q-cells ρ̂(n) (included the
separable configurations) will be transformed in the density matrix ρ̂⊗n

0 . Hence for all n and
ρ̂(n) we have

Eloc(Λ⊗n(ρ̂(n)); Ĥ(n))
n

=
Eloc(ρ̂⊗n

0 ; Ĥ(n))

n
= E(ρ̂0; ĥ) , (A.18)

which follows from the additivity of the local ergotropy for independent (i.e. non interacting)
tensor product states, and

Etot(Λ⊗n(ρ̂(n)); Ĥ(n))
n

=
Etot(ρ̂⊗n

0 ; Ĥ(n))

n
= Etot(ρ̂0; ĥ) , (A.19)

which instead follows from the additivity property of the total ergotropy for independent tensor
product states. Similarly we also have

Eloc,tot(Λ⊗n(ρ̂(n)); Ĥ(n))

n
=

Eloc,tot(ρ̂⊗n
0 ; Ĥ(n))

n
=

Etot(ρ̂⊗n
0 ; Ĥ(n))

n
= Etot(ρ̂0; ĥ) , (A.20)

where in the second identity we used the fact that the locality constraint on different q-cells is
irrelevant when computing the total-ergotropy of tensor product states.

Replacing Eq. (A.18) into Eqs. (45) and (46) gives

Cloc(Λ; e) = Csep,loc(Λ; e) = E(ρ̂0; ĥ) , (A.21)

while replacing Eq. (A.20) in Eqs. (A.15) and (A.16) gives

Cloc,tot(Λ; e) = Csep,loc,tot(Λ; e) = Etot(ρ̂0; ĥ) , (A.22)
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Figure 5: Schematic representation of the type of operations implicitly allowed in
the definition of Cloc,tot(Λ; e) and Csep,loc,tot(Λ; e). In this scheme the green elements
are the n q-cells that compose the quantum battery (they can be initialized either
in correlated quantum states or in separable ones). The orange elements represent
identical copies of the quantum battery (ideally we have an infinite number of them).
The agent is allowed to operate on the system by acting with unitaries (red vertical
elements in the figure) that may couple a given q-cell with all its copies; however,
couplings connecting a given q-cell and its copies with a different q-cell and its copies
are not allowed.

(notice that from Eq. (A.19) follows that Etot(ρ̂0; ĥ) also corresponds to the value of CE(Λ; e)
and Csep(Λ; e)). Choosing ρ̂0 so that E(ρ̂0; ĥ) < Etot(ρ̂0; ĥ) (a condition that can be fulfilled
if d > 2) we can consequently show that there is a finite gap between the total-ergotropy
versions of the local and separable-input local capacitances. In particular, by identifying ρ̂0
with a passive but not completely passive state of the system, we have

Cloc(Λ; e) =Csep,loc(Λ; e) = 0 , (A.23)

Cloc,tot(Λ; e) =Csep,loc,tot(Λ; e)> 0 . (A.24)

A.3 Equivalence between ergotropic MAWER and total ergotropy MAWER

Here we show that the MAWER defined in Eq. (49) can be computed by replacing the ero-
gotropy with the total-ergotropy, i.e.

JE(Λ) = Jtot(Λ) := lim sup
E→∞

�

sup
n≥1

E (n)tot (Λ; E)
E

�

. (A.25)

Since for each n and E we have E (n)tot (Λ; E)≤ E (n)(Λ; E), it is clear that JE(Λ)≤ Jtot(Λ): thus to
prove Eq. (A.25) we only need to show that also the opposite is true. For this purpose consider
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ρ̂(n) ∈S(n)E and observe that

Etot(Λ⊗n(ρ̂(n)); Ĥ(n))
E

= lim
N→∞

E(Λ⊗nN ((ρ̂(n))⊗N ); Ĥ(nN))
N E

≤ lim
N→∞

E (nN)(Λ; N E)
N E

≤ lim
N→∞

sup
M≥1

E (M)(Λ; N E)
N E

≤ lim sup
E′→∞

sup
M≥1

E (M)(Λ; E′)
E′

= JE(Λ) . (A.26)

Taking the max over all possible states ρ̂(n) ∈S(n)E we then obtain:

E (n)tot (Λ; E)
E

≤ JE(Λ) , (A.27)

which is valid for all n and E. Then, taking first the sup over n and successively the limsup
over E, we finally obtain

Jtot(Λ)≤ JE(Λ) , (A.28)

that gives the thesis. We remark that the derivation applies also in those cases where

supn≥1
E (n)(Λ;E)

E and supn≥1
E (n)tot (Λ;E)

E diverge.

B Computation of E
(1)
(Dλ; E) and E

(1)

tot(Dλ; E) for depolarizing
channels

Here we derive Eq. (81). For this purpose observe that, being |ψ〉 a pure state with input mean
energy equal to E, the spectrum of ρ̂′ :=Dλ(|ψ〉〈ψ|) of Eq. (78) has two distinct eigenvalues:

λ1 :=λ+ (1−λ)/d (non degenerate),

λ2 :=(1−λ)/d (with degeneracy d − 1), (B.1)

so that

ρ̂′ = λ1|ψ〉〈ψ|+λ2Π̂⊥ , (B.2)

where Π̂⊥ := 1̂− |ψ〉〈ψ| is the projector on the d − 1 subspace orthogonal to |ψ〉. Notice also
that for λ ≥ 0 we have λ1 ≥ λ2. From Eq. (3) it hence follows that in this case the passive
counterpart of ρ̂′ is the density matrix

ρ̂′pass(≥) := λ1|ε1〉〈ε1|+λ2

d
∑

ℓ=2

|εℓ〉〈εℓ|(λ1 −λ2)|ε1〉〈ε1|+λ21̂ , (B.3)

which has mean energy E(ρ̂′pass(≥); Ĥ) = λ2Tr[ĥ] (remember that the eigenvalues of ĥ obey
the ordering 0 = ε1 ≤ ε2 ≤ ... ≤ εd = 1). Accordingly in this case the output ergotropy of the
state |ψ〉 writes

E(ρ̂′; ĥ) = E(ρ̂′; Ĥ)−λ2Tr[ĥ] = λE +
(1−λ)

d
Tr[ĥ]−λ2Tr[ĥ] = λE , (B.4)
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which, being independent from the specific choice of |ψ〉, leads to Eq. (81) for λ≥ 0. For λ < 0
the role of λ1 and λ2 gets inverted with λ2 becoming the largest, i.e. λ2 ≥ λ1. Accordingly
Eq. (B.3) must be replaced by

ρ̂′pass(<) := λ2

d−1
∑

ℓ=1

|εℓ〉〈εℓ|+λ1|εd〉〈εd |= r(λ1 −λ2)|εd〉〈εd |+λ21̂= −λ|εd〉〈εd |+λ21̂ ,

(B.5)

leading to E(ρ̂′pass(<); Ĥ) = −λ+λ2Tr[ĥ] and

E(ρ̂′; ĥ) = λE +
(1−λ)

d
Tr[ĥ] +λ−λ2Tr[ĥ] = λ(E − 1) = |λ|(1− E) , (B.6)

which proves Eq. (81) for λ < 0.
The value of the single-site maximum output total ergotropy term E (1)tot (Dλ; E) proceeds in

a similar fashion. The starting point is the observation that for all pure input states |ψ〉 we
have that the corresponding output entropy doesn’t depend on the input energy E, i.e.

S(ρ̂′) = Sd(λ) := −λ1 log2λ1 −λ2(d − 1) log2λ2 , (B.7)

with λ1,2 defined as in Eq. (B.1). Given hence

Zβ(ĥ) := Tr[e−β ĥ] =
d
∑

ℓ=1

e−βεℓ , (B.8)

the partition function of a single q-cell, and

E
(β)
GIBBS(ĥ) :=−

d
dβ

ln Zβ(ĥ) , (B.9)

Sβ :=− β
d

dβ
ln Zβ(Ĥ) + ln Zβ(Ĥ) , (B.10)

the associated Gibbs state mean energy and entropy, we can write

Etot(ρ̂
′; ĥ) =E(ρ̂′; ĥ)−E(β⋆)GIBBS(ĥ) = λE +

(1−λ)
d

Tr[ĥ]−E(β⋆)GIBBS(ĥ) , (B.11)

with β⋆ a function of λ and d, obtained by solving the equation

Sβ⋆ = Sd(λ) . (B.12)

Equation (83) finally follows by setting

Dtot(λ; ĥ) :=
(1−λ)

d
Tr[ĥ]−E(β⋆)GIBBS(ĥ) . (B.13)
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