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Abstract

Chiral magnetohydrodynamics is devoted to understanding the late-time and long-
distance behavior of a system with an Adler-Bell-Jackiw anomaly at finite temperatures.
The non-conservation of the axial charge is determined by the topological density E⃗ · B⃗;
in a classical hydrodynamic description this decay rate can be suppressed by tuning the
background magnetic field to zero. However it is in principle possible for thermal fluc-
tuations of E⃗ · B⃗ to result in a non-conservation of the charge even at vanishing B-field;
this would invalidate the classical hydrodynamic effective theory. We investigate this by
computing the real-time susceptibility of the topological density at one-loop level in mag-
netohydrodynamic fluctuations, relating its low-frequency limit to the decay rate of the
axial charge. We find that the frequency-dependence of this susceptibility is sufficiently
soft as to leave the axial decay rate unaffected, validating the classical hydrodynamic de-
scription. We show that the susceptibility contains non-analytic frequency-dependence
which is universally determined by hydrodynamic data. We comment briefly on possi-
ble connections to the recent formulation of the ABJ anomaly in terms of non-invertible
symmetry.
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1 Introduction

We begin by briefly stating the problem. A chiral plasma belongs to the same universality class
(in the context of global symmetry) as that of massless Dirac fermions coupled to dynamical
QED at finite temperatures [1–6]. The global symmetry structure of the chiral plasma can be
summarized as follows [7],

∂µJµν = 0 , Jµν ≡
1
2
εµνρσFρσ , (1)

∂µ jµA = k εµνρσJµνJρσ , (2)

where the first equation states that magnetic field lines are conserved (as Jµν measures the
magnetic flux) and the second equation is the usual Adler-Bell-Jackiw anomaly expressed in
terms of the conserved 2-form current Jµν. Here jµA is the non-conserved axial 1-form current
and k is the anomaly coefficient, which is k ≡ 1

16π2 in the precise case of a single Dirac fermion.
We can define the electric and magnetic fields, in the usual way as in electrodynamics, in terms
of the components of the 2-form current as follows: J0i = Bi . Thus, El =

1
2εi jl J

i j . Let us denote
the topological density by the operator

Q(x) = εµνρσFµνFρσ . (3)

The non-conservation equation for the axial charge then reads

∂µ jµA = −kQ(x) . (4)

The fact that the right-hand side of this expression involves a dynamical operator Q(x) rather
than a fixed external source (as in the case of a ’t Hooft anomaly) distinguishes chiral MHD
from the well-understood problem of the hydrodynamics of systems with ’t Hooft anomalies
[8,9] (see [10] for a review). In particular, this non-conservation equation leads one to expect
that in a thermal state the axial charge should decay exponentially in time as nA ∼ e−ΓAt .

In a formal limit where the anomaly coefficient k is taken to be small, the decay rate for
the axial charge is given by the following formula:

ΓA = lim
Ω→0

k2

χAΩ
Im GR

QQ(Ω, p⃗ = 0) , (5)

where χA is the axial charge susceptibility and GR
QQ(Ω, p⃗) is the retarded correlation function

of the topological density.1 This can be obtained from the memory matrix formalism; see

1We are grateful to L. Delacretaz for suggesting this route for calculation [11].
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Appendix A for a brief review and references. This expression is perturbative in k but makes
no assumptions on the dynamics of the degrees of freedom entering the topological charge
density. Let us now explore some implications of this formula.

First, we note that in elementary language, Q(x) = 8E⃗ · B⃗. Let us consider a state with a
background magnetic field B⃗ ̸= 0 pointing along the z axis, and study only the fluctuations of
the electric field about the equilibrium (i.e. assuming that B⃗ does not fluctuate). We then find
the following expression for the axial charge decay rate, in terms of the retarded correlation
function of the electric field operator E

ΓA =
64k2B2

χA
lim
Ω→0

1
Ω

Im GR
Ez ,Ez
(Ω) . (6)

This formula was derived from an effective theory for chiral MHD in [12]. In particular, we
note that the resistivity ρ of the plasma is defined in terms of a Kubo formula for the electric
field, as explained in [13]. Thus this expression states that the axial charge relaxation rate is:

ΓA =
64k2B2ρ

χA
. (7)

This expression can be understood from elementary arguments involving a quasiparticle de-
scription [14], and has also been verified in a holographic model [7]. It has also been sub-
ject to numerical investigation in classical simulations [14,15], where in particular the recent
work [16] displays precise agreement with the effective field theory formula (7).

Importantly, this expression states that as the magnetic field B is taken to zero, the lifetime
of the axial charge is arbitrarily long. Indeed it is this parametric separation of scales that
implicitly lies behind the extensive literature treating the axial charge density using hydrody-
namics [1–6]. We note the recent works [12, 17] treat this problem from an effective theory
viewpoint.

Upon reflection, however, this is a somewhat strong statement – in particular, the right
hand side of (5) does not obviously appear to vanish at zero B. One may imagine that the
thermal fluctuations of the topological density E⃗ · B⃗ would create a nonzero decay rate which
would become the dominant decay channel when the applied magnetic field is sufficiently
small. This would lead to a crossover between the classical result (5) at moderately strong B
and some nonzero fluctuation-driven effect at small B. If the decay rate does not vanish at zero
B, it would have significant consequences: it would mean that at sufficiently long time scales
the axial charge simply does not exist as a hydrodynamic degree of freedom. In particular,
it would suggest that classical discussions of chiral magnetohydrodyanmics – including the
effective field theories described in [12,17] – are unstable towards the inclusion of fluctuations.

One might be tempted to argue that the right-hand side of (5) is likely to vanish as fol-
lows: the infrared limit of the correlation function is presumably related to the integral of the
Euclidean correlation function of Q(τ, x⃗) over all Euclidean spacetime. But we know that Q is
a total derivative:

Q = ∂µKµ Kµ ≡ εµνρσAνFρσ , (8)

and thus the integral will receive contributions only from field configurations with nontrivial
topological structure. However in an Abelian gauge theory with vanishing background B field
there are no U(1) instantons, and thus the integral is zero. The argument phrased above is
somewhat heuristic and it seems to us that it depends sensitively on boundary conditions at
infinity. We were unable to formulate a completely satisfactory version of this argument, and
indeed the art of extrapolating real-time dynamical physics from Euclidean non-perturbative
data is quite subtle (see e.g. [18]).

In this work we thus directly compute the leading contribution to the decay rate ΓA from
thermal fluctuations by evaluating the Kubo formula (5) in the state with zero background
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magnetic field from magnetohydrodynamics. In particular, we will evaluate the contribution
to the retarded correlation function Q(x) = 8E⃗ ·B⃗ arising from a one-loop calculation where the
propagating degrees of freedom are diffusive MHD waves, the leading low-frequency degrees
of freedom in the MHD plasma. Importantly, we will demonstrate explicitly that these fluctua-
tions do result in a nontrivial real-time correlation function GR

QQ(Ω) for the topological density
– which we calculate as a function of frequency Ω – but that this function vanishes quickly
enough at small frequency that it does not result in a non-vanishing fluctuation-driven decay
rate. This is consistent with the heuristic argument above, and (to this order) is consistent
with safe use of the effective hydrodynamic description.

The work performed in this paper has previously appeared in the PhD thesis of Arpit Das
(see Chapter 7 of [19]).

2 One-loop hydrodynamic fluctuations

In this section, we compute the finite-frequency real-time topological susceptibility arising
from magnetohydrodynamic fluctuations. In particular, we are interested in computing the
retarded correlation function

GR
QQ(Ω) = −i

∫

d td3 xeiΩt Tr
�

e−βH[Q( x⃗ , t),Q(0)]
�

θ (t) . (9)

where the operator Q = 8E⃗ · B⃗. We will now write the retarded correlation function above in
terms of correlation function of E⃗ and B⃗; those can then be evaluated using an appropriate
model for the dynamics.

A convenient way to proceed is to express the retarded correlation function in terms of the
Euclidean finite-temperature correlation function GE

QQ(iΩl), which is defined on a discrete set

of Euclidean Matsubara frequncies iΩl =
2πiZ
β . The retarded correlation function at real Ω is

related to the Euclidean one by the usual formula

GR
QQ(Ω) = GE

QQ(iΩl = Ω+ iε) . (10)

The Euclidean correlator can be explicitly written as:

GE
QQ(iΩl) =

∫ β

0

dτ

∫

d3 xe−iΩlτ〈Q(τ, x⃗)Q(0)〉 . (11)

To proceed, we use Q(x) = 8E⃗ · B⃗. We also assume all correlations in the fluid are Gaussian.
This is a reasonable starting point, as generally in hydrodynamics it is expected that the current
densities – which in this case are precisely the components of B⃗ and E⃗ are themselves weakly
coupled at long distances so that a classical treatment is valid.2

This assumption means that we can factorize the correlators in Euclidean space as follows:

�

E⃗ · B⃗
�

(x)
�

E⃗ · B⃗
�

(0)
�

=δpqδrs
�

〈Ep(x)Er(0)〉 〈Bq(x)Bs(0)〉+〈Ep(x)Bs(0)〉 〈Bq(x)Er(0)〉
�

. (12)

Note that in this expression we have assumed that there is no background topological density,
i.e. 〈E⃗ · B⃗〉= 0; this follows from CP invariance of the thermal state.

This can be conveniently interpreted as a Feynman diagram bubble evaluated in Euclidean
spacetime, where the propagators of the bubble are the two-point correlators 〈Ep(x)Er(0)〉 etc.,

2In low-dimensional hydrodynamics there are known examples where non-linearities are relevant in the IR (see
e.g. [20] for a review) but to our knowledge this is not expected to be the case for (3+1)d MHD.
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see Fig. 1. Indeed, expressed in this form the problem has a great deal of formal similarity to
the classic problem of evaluating (e.g.) a one-loop conductivity in terms of the propagators of
the microscopic charged degrees of freedom – in both cases we are interested in determining
the correlation function of an operator (i.e. Q) which is a bilinear in terms of fields with
quadratic – and known – correlations (i.e. E⃗ and B⃗).

<latexit sha1_base64="ONjla3XZIa9Uo1hNzJWxmzd3Jpw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegEDxGMA9MljA76SRDZmeXmVklLPkLLx4U8erfePNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqLSPJL3ZhyjH9KB5H3OqLHSQ5V0nrA3QFLtFktu2Z2BLBMvIyXIUOsWvzq9iCUhSsME1brtubHxU6oMZwInhU6iMaZsRAfYtlTSELWfzi6ekBOr9Eg/UrakITP190RKQ63HYWA7Q2qGetGbiv957cT0r/yUyzgxKNl8UT8RxERk+j7pcYXMiLEllClubyVsSBVlxoZUsCF4iy8vk8ZZ2bsoe3fnpcp1FkcejuAYTsGDS6jALdSgDgwkPMMrvDnaeXHenY95a87JZg7hD5zPH2gzkBg=</latexit>

F ^ F
<latexit sha1_base64="ONjla3XZIa9Uo1hNzJWxmzd3Jpw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegEDxGMA9MljA76SRDZmeXmVklLPkLLx4U8erfePNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqLSPJL3ZhyjH9KB5H3OqLHSQ5V0nrA3QFLtFktu2Z2BLBMvIyXIUOsWvzq9iCUhSsME1brtubHxU6oMZwInhU6iMaZsRAfYtlTSELWfzi6ekBOr9Eg/UrakITP190RKQ63HYWA7Q2qGetGbiv957cT0r/yUyzgxKNl8UT8RxERk+j7pcYXMiLEllClubyVsSBVlxoZUsCF4iy8vk8ZZ2bsoe3fnpcp1FkcejuAYTsGDS6jALdSgDgwkPMMrvDnaeXHenY95a87JZg7hD5zPH2gzkBg=</latexit>
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G(i!m)

Figure 1: A bubble diagram representing the frequency sum in (13). Here G(ω)
schematically represents either GEi E j

(ω) or GEi B j
(ω).

Following the standard approach for that problem,3 it is convenient to write the expression
in (Euclidean) frequency space, where we find that it becomes

GE
QQ(iΩl)=64T
∑

iωm

∫

d3p
(2π)3
�

GE
Ei E j
(iΩl+iωm)G

E
Bi B j
(iωm)+GE

Ei B j
(iΩl+iωm)G

E
Bi E j
(iωm)
�

. (13)

The above expression includes the same sum over the index structure that is present in (12).
We now note that we do not have access to the Euclidean correlation functions of the elec-

tric and magnetic fields GE
Ei B j

etc. in any suitable form. However from magnetohydrodynamics
we do have access to the Lorentzian spectral densities for these correlations at small real fre-
quencies.4 It is thus convenient to rewrite this expression in terms of these spectral densities,
which can be done using standard finite-temperature techniques (reviewed in Appendix B) to
obtain:

GE
QQ(iΩl) = −64
∫ d3p
(2π)3
∫ dω1

2π
dω2
2π

�

f (ω1)− f (ω2)
ω1−ω2−iΩl

�

(ρEi E j
(ω1)ρBi B j

(ω2) +ρEi B j
(ω1)ρBi E j

(ω2)) , (14)

whereρEE andρEB are the spectral densities associated with the retarded correlation functions
of E⃗ and B⃗, i.e.

ρEi E j
(ω, p) = −

1
π

Im GR
Ei E j
(ω, p) , (15)

and similarly. Here f (x) is the Bose distribution function:

f (ω) =
1

eβω − 1
. (16)

We have reduced the problem to evaluating integrals over these spectral densities. We now
discuss these correlation functions.

2.1 Kinematics of plasma correlations

In the remainder of this section, we discuss the tensor structure of the correlators 〈BB〉, 〈EE〉
and 〈EB〉, expressing them in terms of scalar functions of momenta and frequencies and de-
scribing what is known about them from magnetohydrodynamics.

3See e.g. [21] or a review in a holographic context in [22].
4It is in general not trivial to analytically continue approximate expressions from real to Euclidean frequencies.
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2.1.1 Tensor structure of correlators

In this work we are interested in fluctuations about the plasma at finite temperature with
zero background magnetic field B⃗0 = 0. We will restrict attention to a parity-invariant theory.
Here we record the constraints on the correlation functions arising from parity invariance and
magnetic flux conservation.

The most general possible tensor decomposition of the retarded correlation functions is,




Ei E j

�

= A(ω, |p⃗|)δi j + X (ω, |p⃗|)
pi p j

p2
+ U(ω, |p⃗|)εi jk

pk

|p⃗|
,




BiB j

�

= C(ω, |p⃗|)δi j + Y (ω, |p⃗|)
pi p j

p2
+ V (ω, |p⃗|)εi jk

pk

|p⃗|
,




EiB j

�

= M(ω, |p⃗|)δi j + N(ω, |p⃗|)
pi p j

p2
+ K(ω, |p⃗|)εi jk

pk

|p⃗|
,

(17)

where we remind ourselves that p2 above denote the square of the norm of the 3-vector: p⃗.
At times we will use the short-hand notation for the above scalar functions, Zω to denote
Z(ω, |p⃗|).

Noting that E⃗ is a vector and B⃗ a pseudo-vector under parity, the scalar coefficient functions
Uω, Vω, Mω and Nω are all odd under parity and thus vanish in a parity-invariant state. Thus,
Aω, Xω and Cω, Yω will be expressed in terms of the diagonal components of the 〈Ei E j〉 and
〈BiB j〉 correlators, respectively. On the contrary, Kω will be expressed in terms of the off-
diagonal components of the 〈EiB j〉.

To impose the constraints from conservation of Jµν, let us assume a plane wave basis of
the form ei(p⃗· x⃗−ωt). Without loss of generality, in this section we take the spatial momentum
to be aligned along the z-direction, that is, pz ̸= 0 implying, p2 = p2

z and |p⃗| = pz . Now let us
look at the various components of Eq. (1). Individually, the temporal and z components give:
J0z = 0. The remaining spatial components, that is for i ∈ {x , y}, we get:

J zi =
ω

pz
J0i , (18)

Using Eq. (18) and the definition of E⃗, B⃗ in terms of the components of the 2-form current,
we can find expressions for the scalar functions, given in Eq. (17), in terms of the relevant
two-point functions of the form 〈JµνJρσ〉.

Let us first look at the 〈BiB j〉 correlator. Since J0z = 0, we have 〈BzBz〉 = 0. This implies,
Cω + Yω = 0. From the diagonal x , y-components, we find Cω = 〈BiBi〉, where i ∈ {x , y}.
Following a similar analysis for the 〈Ei E j〉 correlator, we get from its diagonal z-component:
Aω + Xω = 〈Ez Ez〉. Its remaining diagonal components give: Aω = 〈Ei Ei〉. Finally, we can use
Eq. (18) to relate Aω and Cω as follows,

Cω =
p2

ω2
Aω . (19)

The value of the scalar function Kω is yet to be determined. This can be done by looking
at the cross correlator:




EiB j

�

, which we do next. First of all, note that for i ̸= j we have,




EiB j

�

= Kεi jk
pk

|p⃗|
=



B j Ei

�

,



Bi E j

�

= −Kεi jk
pk

|p⃗|
= −



EiB j

�

.

Now since any correlator with Bz in it vanishes, as J0z = 0, we have from above that any
correlator with Ez in it should also vanish. This is because these correlators just differ from
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each other by a minus sign. So, for non-vanishing cross correlators of the form:



EiB j

�

, we
must have i, j ̸= z. Choosing i, j = x , y , we get,



Ex By

�

= Kω =



J yzJ0y
�

= −
ω

pz




J0y J0y
�

= −
ω

pz




By By

�

= −
ω

pz
Cω = −

pz

ω
Aω , (20)

where the third equality results from Eq. (18) and the last equality comes from Eq. (19).
Thus, to conclude, we have the following expressions for the correlators of E⃗ and B⃗:




Ei E j

�

= A(ω, |p⃗|)δi j + X (ω, |p⃗|)
pi p j

p2
,




BiB j

�

=
p2

ω2
A(ω, |p⃗|)
§

δi j −
pi p j

p2

ª

,




EiB j

�

= −A(ω, |p⃗|)εi jk
pk

ω
.

(21)

So far our considerations have been purely kinematical. We now turn to the specific dy-
namics of the finite-temperature plasma; now the low-frequency limits of these functions can
be obtained from magnetohydrodynamics.

A general formulation of magnetohydrodynamics in terms of higher-form symmetry was
given in [13]. In particular, the transverse channel Aω contains the physics of diffusion of
magnetic field lines, and the precise correlator needed was recorded in [23].

GR
J zx ,J zx (ω, pz)MHD = A(ω, |p⃗|)MHD =

−iω2ρ

ω+ iDp2
, (22)

Here ρ is the resistivity of the plasma, and D the diffusion constant for magnetic field lines. It
can be expressed in terms of the resistivity and magnetic permeability5 Ξ of the plasma as

D =
ρ

Ξ
. (23)

The longitudinal channel X appears only in the electric field channel and controls the physics
of Debye screening. It is not expected to have any universal hydrodynamic structure, and is
presumably analytic in frequency and momenta at low frequencies. We will see explicitly that
it does not contribute at this order to the correlations of the topological density Jµν J̃

µν.

2.2 Computation of correlator

Now we are set to compute the factors in the momentum space version of Eq. (12). The first
term in this factor which consists of same pairing correlators is given as,

δi jδkl
�

〈Ei Ek〉ω1
〈B jBl〉ω2

�

=
p2

ω2
2

δi jδkl
�§

Aω1δik + Xω1
pi pk

p2

ª§

Aω2

�

δ jl −
p j pl

p2

�ª�

=
2p2

ω2
2

Aω1Aω2 , (24)

A similar computation for the second term, which consists of cross-correlators, gives,

δi jδkl
�

〈EiBl〉ω1




B j Ek

�

ω2

�

= δi jδkl
§

−Aω1εilm
pm

ω1

ª§

−Aω2εk jn
pn

ω2

ª

= Aω1Aω2
pmpn

ω1ω2
ε jkmεk jn = −

2p2

ω1ω2
Aω1Aω2 . (25)

5The magnetic permeability can formally be thought of as the 1-form charge susceptibility, i.e. the thermody-
namic quantity that measures the amount of magnetic field created by an applied field.
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Now we can compute the product of spectral densities as given in Eq. (14), using the above
eqautions and Eq. (15).

ρEi E j
(ω1)ρBi B j

(ω2) =
1
π2

2p2

ω2
2

aω1 aω2 , ρEi B j
(ω1)ρBi E j

(ω2) = −
1
π2

2p2

ω1ω2
aω1 aω2 . (26)

where aω = Im Aω.

2.3 Correlation of topological density

We now compute the correlator of the topological density (14). More precisely, we will explic-
itly compute the following frequency-dependent quantity

ΓA(Ω) =
k2

χAΩ
Im GR

QQ(Ω, p⃗ = 0) . (27)

Evaluated at Ω = 0 this determines the decay rate of the axial charge, as explained in (5).
However in this section we will compute its full frequency dependence.

From Eq. (14) we have,

Im GR
QQ(Ω) = −64

∞
∫

−∞

d3p
(2π)3

∞
∫

−∞

dω1
2π

dω2
2π

�

f (ω1)− f (ω2)
π

�

δ(ω1 −ω2 −Ω)
2p2

ω1ω
2
2
(ω1 −ω2)aω1 aω2 . (28)

To obtain the above we used Ωl = −iΩ+ ϵ to go to real frequencies in Eq. (14) and used the
identity,

Im
�

1
ω1 −ω2 −Ω− iϵ

�

= πδ(ω1 −ω2 −Ω) .

Next we evaluate theω1 integral and replaceω2 byω for notational simplicity. Then we have
(see Eq. (5)):

ΓA(Ω) = −
64k2

χA

1
Ω







∞
∫

0

4πp2dp
(2π)3

∞
∫

−∞

dω
4π3

[ f (ω+Ω)− f (ω)]
2p2

(ω+Ω)ω2
Ω aω+Ωaω







, (29)

where we have changed to polar coordinates in momentum space using d3p = 4πp2dp.
Given an explicit expression for aω, the above expression is in principle exact (again, as-

suming only Gaussian correlations in the plasma). To obtain an explicit answer, we now com-
pute the contribution arising from hydrodynamic fluctuations alone, i.e. we set aω equal to its
results from the MHD correlator from Eq. (22). In a given UV complete theory, this is not the
full answer, as aω will not agree with the MHD result at high frequencies; however we expect
that it should capture the dominant infrared contribution. Plugging in the MHD value (22)
for aω, we find,

ΓA(Ω) = −
64k2

χA

1
Ω







∞
∫

0

4πp2dp
(2π)3

∞
∫

−∞

dω
4π3

[ f (ω+Ω)− f (ω)]
2p2

(ω+Ω)ω2
Ω

×
�

ω2ρ

ω2 + D2p4

��

(ω+Ω)2ρ
(ω+Ω)2 + D2p4

��

. (30)

Simplifying this result we find:

ΓA(Ω) = −
16k2ρ2

π5χ
A

∞
∫

−∞
dω

�

[ f (ω+Ω)− f (ω)]ω(ω+Ω)2
∞
∫

0
dp p4

[(ω+Ω)2+D2p4][ω2+D2p4]

�

. (31)
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This integral is even in Ω, as can be seen from the change of variables ω → −ω and the
identity f (x)+ f (−x) = −1. This is expected from (5) and the fact that the imaginary part of
the retarded correlator of the bosonic operator Q is an odd function of frequency.

Next, evaluating the p-integral we find

ΓA(Ω) = −
16k2ρ2

2
p

2π4D
5
2χA

∞
∫

−∞

dω [ f (ω+Ω)− f (ω)]
ω(ω+Ω)2

Ω(2ω+Ω)

�Æ

|ω+Ω| −
Æ

|ω|
�

. (32)

The remaining integral over ω is not trivial and displays interesting structure in Ω. For
concreteness we first study the case Ω > 0. Let us denote the integrand in (32) by L(ω,Ω).
We begin by noting that the integrand is now non-analytic as a function ofω andω+Ω, arising
from singularities in the integrand of (31) at small p when either of these frequencies vanish.
We must thus separate the ω integral into the following three ranges

ω ∈ (−∞,−Ω)∪ (−Ω, 0)∪ (0,∞) . (33)

First let us perform the integration for ω ∈ (0,∞), i.e. the integral of interest is:

I+(Ω) =

∞
∫

0

dω [ f (ω+Ω)− f (ω)]
ω(ω+Ω)2

Ω(2ω+Ω)

�p
ω+Ω−

p
ω
�

. (34)

We wish to extract the dependence on Ω in the limit that Ω≪ β . This integral is convergent
and can readily be done numerically; however obtaining an analytical handle on the small Ω
limit of this integral is subtle. To see this note that expansion of the integrand in powers of Ω
leads to an expression which is analytic in Ω. Naively, proceeding this way one is led to believe
that ΓA is also analytic in Ω. However, this is not the case; if we attempt to proceed naively, the
integral over each term in the Taylor expansion in Ω fails to converge near ω = 0, indicating
that the integral itself not analytic as a function of Ω though the integrand is.

We thus need to carefully extract this non-analytic dependence of the decay rate on Ω. To
do this we use the fact that there is a hierarchy of scales Ω ≪ β−1 to introduce a cut-off Λ
such that Ω ≪ Λ ≪ β−1. With this, we can separate the integral in Eq. (34) into an IR part
ω ∈ (0,Λ) and a UV part ω ∈ (Λ,∞). The non-analytic dependence on Ω will come from the
IR part. At the end of the calculation we will show that nothing depends on Λ.

To do the IR part, we expand the integrand about β → 0, and work to all orders in Ω. We
then integrate the resulting expansion for the range: ω ∈ (0,Λ). We find the following result,
which we have presented in a series expansion in Ω.

I+(Ω)IR =

�

−
p
Λ

2β
+
βΛ5/2

120
−
β3Λ9/2

4320
+O
�

Λ13/2
�

�

Ω+

�

5
6β
−

π

4
p

2β
−

sinh−1(1)

2
p

2β

�

Ω3/2

+

�

1

8β
p
Λ
+

5βΛ3/2

288
−

3β3Λ7/2

4480
+O
�

Λ11/2
�

�

Ω2

+

�

−
1

24βΛ3/2
−

19β3Λ5/2

28800
+
β5Λ9/2

24192
+O
�

Λ13/2
�

�

Ω3

+

�

139β
10080

−
βπ

192
p

2
−
β sinh−1(1)

96
p

2

�

Ω7/2

+

�

11
640βΛ5/2

+
5β

1536
p
Λ
−

13β3Λ3/2

55296
+O
�

Λ7/2
�

�

Ω4 +O(Ω5) , (35)

Note the presence of a non-analytic series of terms starting at O(Ω 3
2 ). An interesting thing to

note is that, in the above equation, the analytic terms in O depend upon the cut-off Λ, while
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the non-analytic pieces are independent of Λ, and are exact expressions which are functions of
β . This suggests that the analytic pieces will receive contributions from the UV part while the
non-analytic pieces are exact. Also, in the above equation there seems to be IR divergences in
the analytic pieces about Λ= 0. As we will see below these will be cancelled from the UV part
of the integral; of course the final answer cannot depend on Λ.

We now turn to the UV part of the integral ω ∈ (Λ,∞). Here we can simply expand the
integrand in powers of Ω; the integral over each term will converge, with any putative IR
divergences cutoff by Λ. So, the UV limit of integration is simpler; expanding the integrand
we find:

L+(ω,Ω)
Ω→0
−−→−

eβωβω3/2

4(1− eβω)2
Ω+

β
p
ω

64

�

2βω coth
�

βω

2

�

− 5
�

csch
�

βω

2

�2

Ω2

−
β2pω

768
csch
�

βω

2

�4

(4βω (2+ cosh (βω))− 15sinh (βω))Ω3

+
β
�

4β3ω3
�

11 cosh
�

βω
2

�

+cosh
�

3βω
2

��

−5(3+16β2ω2+(−3+8β2ω2) cosh(βω)) sinh
�

βω
2

��

192 e
−5βω

2 (1−eβω)5ω3/2
Ω4

+O(Ω5) . (36)

The linear in Ω piece in the above expansion is free of any IR divergences and can be imme-
diately integrated over the full range, ω → (0,∞). The term in Ω2 is slightly more subtle;
integrating it over ω ∈ (Λ,∞) we find that the leading dependence on Λ is − 1

8βΛ1/2 , which
indeed precisely cancels the Λ-dependent divergent term in the quadratic piece in Eq. (35). We
have explicitly verified that a similar cancellation takes place for the terms up to O(Ω4), and
on general grounds it must happen to all orders in the Ω expansion. Next we can numerically
integrate the UV part, term by term in the range ω ∈ (Λ,∞) and finally take Λ→ 0.

Note that, the non-analytic pieces are controlled only by the IR integral while the analytic
pieces received contribution both from the IR and the UV parts of the integral. Hence, in this
sense, the non-analytic pieces are universal.

We may treat the remaining two pieces of the integral in (33) in the same way; we leave
the details of these integrals to the Appendix C. Now gathering everything together we find
the Ω-dependence of the integral for Ω> 0 to be:

ΓA(Ω) =
16k2ρ2

2
p

2π4D
5
2χA

�

π

2
p

2β
Ω3/2 −

0.3236
p

β
Ω2 +

πβ

96
p

2
Ω7/2 − 0.00518β3/2Ω4 +O(Ω6)

�

,

(37)

where the numerical coefficients of the analytic pieces are obtained by numerical integration
and hence are approximate values. On the contrary, the numerical coefficients of the non-
analytic pieces are exact values which do not receive UV corrections, and their dependence on
the IR data ρ and D is expected to be universal.

We now recall that our computation above assumed Ω > 0. Note that, due to the non-
analytic dependence on Ω, strictly speaking we do not know the behavior of the integral for
Ω < 0, though the answer is constrained by known transformation properties of the spectral
density. We explicitly compute the 1-loop integral for Ω < 0 in Appendix C.2 and show that
indeed ΓA(−Ω) = ΓA(Ω) as required. So, for Ω ∈ R, the decay rate is given as,

ΓA(Ω) =
16k2ρ2

2
p

2π4D
5
2χ

A

§

π

2
p

2β
|Ω|3/2 − 0.3236p

β
Ω2 + πβ

96
p

2
|Ω|7/2 − 0.00518β3/2Ω4 +O(Ω6)

ª

, (38)

which is now manifestly even.
Finally, we may note that Eq. (38) implies that ΓA(Ω → 0) = 0. We see that the 1-loop

contribution to the decay rate itself vanishes in the vanishing magnetic field limit. We discuss
the implications of this result further in the conclusion.
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3 Discussion

Above we presented an explicit calculation of the real-time topological susceptibility – i.e. the
retarded correlation function GR

QQ of the operator Q = 8E⃗ · B⃗ – arising from hydrodynamic fluc-
tuations about an equilibrium with vanishing magnetic field B⃗ = 0 in a magnetohydrodynamic
plasma.

In the presence of a finite B field a classical calculation leads to ΓA ∼
B2ρ
χA

at zero frequencies,
as shown in (7). The goal of this calculation was to determine the leading fluctuation-induced
contribution to the decay rate at vanishing B field. If this is non-zero, then strictly speaking in
the infrared limit axial charge should not be considered a hydrodynamic variable.

Importantly, however, we found after a calculation that the resulting correlation function
vanishes at low frequencies, as shown explicitly in (37). This has the immediate implication
that in a chiral plasma, the decay rate of axial charge (as computed to one-loop order in
hydrodynamics) remains zero if background magnetic field is zero, i.e. the classical analysis
here is trustworthy. In our analysis we have also computed the first few terms in a small
frequency expansion in Ω; it is interesting to note that the presence of gapless diffusive modes
results in a non-analytic dependence on Ω, though this dependence begins at O(Ω 3

2 ) and so is
soft enough not to contribute to the decay rate itself.

It is interesting to compare this to corresponding results for a non-Abelian plasma, where
the quantity analogous to (5) is the Chern-Simons diffusion rate, i.e. the low-frequency limit
of the correlation function of the non-Abelian topological density Tr(F a

µν F̃ aµν). This quantity
has been extensively studied both at weak-coupling [24–26] and from holography [27], and
is certainly not zero.

A universal way to understand the difference between the Abelian and non-Abelian case
is the following: in the Abelian case studied here the topological density in question can be
understood as a bilinear in a conserved 2-form current Jµν = 1

2ε
µνρσFρσ, i.e. the anomaly

equation (2) reads:
∂µ jµA = k εµνρσJµνJρσ . (39)

This 2-form current is associated with the continuous U(1) 1-form symmetry that protects
magnetic flux conservation in electrodynamics [28]. The presence of this continuous 1-form
symmetry gives a great deal of extra structure to this problem. This structure is not present
for non-Abelian gauge theory, where at most we have a discrete 1-form symmetry. At a cal-
culational level, it was the presence of this continuous symmetry current (and its subsequent
realization in thermal equilibrium) which allowed us to obtain non-trivial constraints on the
infrared physics from magnetohydrodynamics.

More generally, it has recently been shown that a precise characterization of the anomaly
(39) is possible in terms of non-invertible symmetries [29, 30] (see [31–37] for reviews on
this subject): i.e. there still exist topological operators that count axial charge, but these
operators no longer obey a standard group composition law, and there is no longer a simple
conserved current. Our understanding of the dynamical consequences of such non-invertible
symmetries is still in its infancy. However it seems that one way to understand the calculation
above is that the finite temperature dynamics of a charge density protected by a non-invertible
symmetry is somewhat constrained – for example, it will not relax to nothingness unless an
external magnetic field is applied. This result is philosophically consistent with [38], which
showed that at zero temperature a form of Goldstone’s theorem applies to such non-invertible
symmetries in that there is a protected gapless mode when the symmetry is spontaneously
broken.

This suggests that the calculation above could be reorganized to make the role played
by the non-invertible symmetry more manifest. One possible way to do so would be to use
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at one-loop level the effective theories constructed in [12, 17], which realize the symmetries
more directly. It would be very interesting to obtain a robust argument for the vanishing of
this relaxation rate to all loop order in hydrodynamics. Another direction for future work is
to compare our results for GR

QQ(ω) to real-time lattice computations such as those in [14,15],
where one might hope that the non-analytic dependence on Ω in (37) – which are in principle
fully determined by hydrodynamic data – could be verified from the lattice. We hope to return
to this in the future.
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A Memory matrix review

For a system at finite temperature T that undergoes a generic time evolution, it is common to
assume that most of the operators O will decay away at late times as encoded by the retarded
Green’s function GR

OO(t) ∼ exp(−ΓO t). For a theory with a hydrodynamic description, it is
implicitly assumed that there are only a few ‘long-lived’ operators where Γ−1

O is much larger
than a typical time scale (set by temperature and other macrocopic quantities), namely the
conserved charge densities. Often, it is assumed that all other, non-conserved, operators have
already decayed away by the late times at which the hydrodynamic descriptions is applicable.
However, it is sometimes possible to have a situation where the lifetimes Γ−1

O of non-conserved
operators are parametrically large enough such that they can interfere with the hydrodynamic
modes.

When there are only a few of these long-lived operators, the memory matrix formalism [39]
(see also [40–42] for a more recent discussion) is a powerful tools to understand the correlation
functions of such systems. In particular, it allows one to extract the decay rate, or inverse-
lifetime, of long-lived operators in terms of simple 2-point correlation functions:

ΓO =
1
χOO

lim
ω→0

1
ω

ImGR
ȮȮ(ω, p⃗ = 0) , (A.1)

with Ȯ ≡ ∂tO and χOO is the susceptibility of the operator O.
For completeness, we review the derivation of this formula. The starting point is to realize

that one can formally define an inner product between operators

CAB(t − t ′) = (A(t)|B(t ′) = (A|e−i(t−t ′)L|B)≡ T

∫ 1/T

0

dλ〈A(t)B(t ′ + iλ)〉 , (A.2)

with 〈...〉 is the average over either quantum or thermal fluctuation and L = [H,◦] is the
Liouville operator. The relations between CAB, and its Laplace transformed C̃AB(ω), can be
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shown related to the standard correlation functions via

CAB(0) = (A|B)≡ TχAB , C̃AB(ω) = (A|
i

ω− L
|B) =

T
iω

�

GR
AB(ω)− GR

AB(0)
�

. (A.3)

This translation to the inner product allows one to employ standard linear algebra techniques
to show that, for a long-lived operator O

C̃OO(ω) =
∑

AB

χOA

�

1
−iωχ + (N +M)

�

AB
χBO , (A.4)

where the sum is done over sets of long-lived operators A, B and where the matrix NAB = (A|Ḃ)
vanishes in a theory with time-reversal symmetry. The matrix MAB is the memory matrix de-
fined via

MAB(ω) =
i
T
(Ȧ|q

1
ω− qLq

|Ḃ) , (A.5)

where q is the projector that satisfies q|A) = 0 when A is the long-lived operator and q|A) = |A)
when it is not. By relating the Laplace-transformed C̃AB(ω) in (A.4) to (A.3), one can see that
the decay rate encoded by a pole GOO(ω)∼ (iω−ΓO)−1 can be obtained by diagonalising the
matrix (χ−1M)AB.

This formalism can be readily applied to a system with ABJ anomaly, provided that we
assume the hydrodynamic description so that the energy E, momentum P⃗ and the magnetic
field B⃗ are the only conserved quantities and that the axial charge density nA is long-lived. At
zero magnetic field and zero axial charge density, one can show that the only non-vanishing
‘overlap’ of these operators are

(nA|nA) = TχA , (Bi|B j) = TχBδ
i j , (A.6)

where χA,χB are the axial charge and magnetic susceptibility respectively. Thus, we easily
obtain the correlation of axial charge density

C̃nAnA
(ω) =

χA

−iω+MnAnA
/χA

. (A.7)

It is clear that decay rate is controlled by the memory matrix MnAnA
(ω → 0) which can be

written as

MnAnA
(ω→ 0) =

1
T

lim
ω→0
(ṅA|

i
ω− L

|ṅA) =
1
T

lim
ω→0

C̃ṅAṅA
(ω) = lim

ω→0

1
ω

ImGR
ṅAṅA
(ω) , (A.8)

where we use the fact that ṅA = kQ = 8k(E⃗ · B⃗) is not a long-lived operator (due to the r.h.s.
containing the non-conserved electric field E⃗) and thus q|ṅA) = |ṅA). Upon converting (A.7)
back to the retarded correlation function via (A.3) and extract the decay rate ΓA from the pole
GR

nAnA
(ω) ∼ (ω− ΓA)−1, we are then able to express the decay rate in terms of the correlation

function of Q as in (5).

B Finite temperature conventions and Matsubara sums

Here we collect some identities that are useful for performing the frequency integrals in the
main text. All of these results are standard, and further background can be found e.g. in [43].

Consider a quantum field theory with a bosonic Hermitian operator O(t, x⃗). We study the
theory in the thermal state with temperature β−1. There are various basic two-point functions
for O, including the Euclidean correlation function,

GE(τ, x⃗)≡ 〈O(τ, x⃗)O(0)〉 , (B.1)
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and the retarded real-time correlation function

GR(t, x⃗) = −iθ (t)Tr
�

e−βH[O(t, x⃗),O(0)]
�

. (B.2)

The Euclidean correlation function in frequency space can be written in terms of the spectral
density ρ(Ω):

GE(iωn) =

∫

dΩ
2π

ρ(Ω)
iωn +Ω

. (B.3)

We may also obtain the retarded correlator from the Euclidean one by evaluating the latter at
a real frequency:

GR(Ω) = GE(iωl = Ω+ iε) . (B.4)

Inserting (B.3) into (B.4) and using the identity

Im
�

1
x − iε

�

= πδ(x) , (B.5)

we conclude that the imaginary part of GR(ω) directly measures the spectral density.

Im GR(ω) = −πρ(ω) . (B.6)

It is shown in [43] that for a bosonic operator ρ(ω) is an odd function of ω, and furthermore
is positive for positive ω, i.e. ωρ(ω)> 0.

B.1 Performing Matsubara sums

We will need to perform a loop sum over Euclidean frequencies. Here we review a standard
trick to express such sums in terms of the corresponding spectral densities, following the dis-
cussion in [22]. Consider summing over a set of discrete Matsubara frequencies iΩm =

2πm
β ,

m ∈ Z. We can express this in terms of a contour integral over a contour C in the complex ω
plane, i.e.

T
∑

iωm

→
1

2πi

∫

C
dω

1
2

coth
�

βω

2

�

. (B.7)

Here the hyperbolic function in the integrand has poles at each of the discrete Matsubara
frequencies along the imaginary axis, and the contour C is a series of disjoint circles which
encircles each of these poles.

To see an application of this, consider evaluating the following sum, where iΩl is a Mat-
subara frequency and ω1,2 are two real frequencies:

S(iΩl ,ω1,ω2) = T
∑

iωm

1
i(ωm +Ωl)−ω1

1
iωm −ω2

(B.8)

From above we see that this can be written as the following contour integral:

S(iΩl ,ω1,ω2) =
1

2πi

∫

C
dω

1
2

coth
�

βω

2

�

1
ω+ iΩl −ω1

1
ω−ω2

. (B.9)

Now consider deforming the contour C into two parallel lines, one running down the imag-
inary ω axis at infinitesimal real positive ω and the other running up the imaginary ω axis
at infinitesimal real negative ω. We can now attempt to deform these lines away to infinity.
At large |ω| the integrand behaves as |ω|−2. The contribution to the integrand at infinity can
be neglected, and the full integral arises from the contribution at the non-Matsubara poles of
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the integrand, which appear only at ω = ω1 − iΩl and ω = ω2. Performing the integral by
residues we find

S(iΩl ,ω1,ω2) = −
1
2

�

coth
�

β(ω1 − iΩl)
2

�

− coth
�

βω2

2

��

1
ω1 − iΩl −ω2

, (B.10)

which after some algebra can be seen to be equal to

S(iΩl ,ω1,ω2) = −
f (ω1)− f (ω2)
ω1 − iΩl −ω2

, (B.11)

where we have used the fact that eiβΩl = 1 on a Matsubara frequency. Here f (ω) is the Bose
distribution function:

f (ω) =
1

eβω − 1
. (B.12)

Let us now use this form to perform a frequency sum. In the bulk of the text we will find
ourselves needing to calculate sums of the form

F(iΩl) = T
∑

iωm

GE
1 (iΩl + iωm)G

E
2 (iωm) , (B.13)

where here GE
1,2(iΩ) are two (possibly different) Euclidean propagators. It is very convenient

to express this in terms of the spectral densities ρ1,2(ω) associated with these propagators. To
do this, we first use (B.3) and then perform the sum over iωm using (B.11) to find

F(iΩl) = −
∫

dω1

2π
dω2

2π
( f (ω1)− f (ω2))

ρ1(ω1)ρ2(ω2)
ω1 − iΩl −ω2

. (B.14)

This expression is used to obtain (14) in the main text.

C Details of the 1-loop integration

C.1 Ω> 0

Here we give details of the remaining parts of the 1-loop integration with Ω> 0.
As described around (33), the frequency integral in (32) must be split up into three parts

ω ∈ (−∞,−Ω)∪ (−Ω, 0)∪ (0,∞) . (C.1)

The last integral was performed in detail in the bulk of the text. In this Appendix we perform
the other two using the same methods. We begin with ω ∈ (−Ω, 0). To do this integral let us
perform the following change of variable: ω→−ω and then perform the integration over the
positive range: ω ∈ (0,Ω). The integral of interest is:

I−1 (Ω) =

Ω
∫

0

dω [ f (Ω−ω)− f (−ω)]
ω(Ω−ω)2

Ω(2ω−Ω)
�p
Ω−ω−

p
ω
�

, (C.2)

To do the above integral, we expand the integrand about β → 0 and then integrate term by
term. We get,

I−1 (Ω) =
(−2+

p
2 sinh−1(1))
2β

Ω3/2 +
β(−26+ 15

p
2sinh−1(1))

1440
Ω7/2

+
β3(214− 105

p
2 sinh−1(1))

2419200
Ω11/2 . (C.3)
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As expected the above integral is non-analytic in Ω and these pieces, as discussed before, do
not receive any UV corrections.

Next let us move on to performing the integration over the range: ω ∈ (−∞,−Ω). As
before let us do the variable change: ω→ −ω and then the integration has to be performed
over the range: ω ∈ (Ω,∞). The integral of interest is:

I−2 (Ω) =

∞
∫

Ω

dω [ f (Ω−ω)− f (−ω)]
ω(Ω−ω)2

Ω(2ω−Ω)
�p
ω−Ω−

p
ω
�

, (C.4)

We can perform the above integration using the methods employed to do the integration in
Eq. (34). We obtain the following results.

I−2 (Ω)IR =

�p
Λ

2β
−
βΛ5/2

120
+
β3Λ9/2

4320
+O
�

Λ13/2
�

�

Ω+

�

1
6β
−

π

4
p

2β
−

sinh−1(1)

2
p

2β

�

Ω3/2

+

�

1

8β
p
Λ
+

5βΛ3/2

288
−

3β3Λ7/2

4480
+O
�

Λ11/2
�

�

Ω2

+

�

1
24βΛ3/2

+
19β3Λ5/2

28800
−
β5Λ9/2

24192
+O
�

Λ13/2
�

�

Ω3

+

�

43β
10080

−
βπ

192
p

2
−
β sinh−1(1)

96
p

2

�

Ω7/2

+

�

11
640βΛ5/2

+
5β

1536
p
Λ
−

13β3Λ3/2

55296
+O
�

Λ7/2
�

�

Ω4 +O(Ω5) . (C.5)

Comparing Eq. (C.5) with Eq. (35) we see that, for the analytic pieces: the terms with odd
powers of Ω are of opposite signs and the terms with even powers of Ω have the same sign.

C.2 Ω< 0

Here we work out the 1-loop integration with Ω< 0. For simplicity, let us define t = −Ω with
t > 0. From Eq. (32) we get,

ΓA(−t) = −
16k2ρ2

2
p

2π4D
5
2χA

∞
∫

−∞

dω [ f (ω− t)− f (ω)]
ω(ω− t)2

(−t)(2ω− t)

�Æ

|ω− t| −
Æ

|ω|
�

.

(C.6)

From the structure of the square-root above we see that the integral should be integrated over
the following intervals,

ω ∈ (−∞, 0)∪ (0, t)∪ (t,∞) .

Contrast this to the intervals in the Ω > 0 case. Both are mirror images of each other. Now
let us do the integral over the range, ω ∈ (−∞, 0). This integral, after a change of variable:
ω→−ω becomes,

ΓA(−t) =
16k2ρ2

2
p

2π4D
5
2χA

∞
∫

0

dω [ f (−ω− t)− f (−ω)]
ω(ω+ t)2

t(2ω+ t)

�p
ω+ t −

p
ω
�

= −
16k2ρ2

2
p

2π4D
5
2χA

∞
∫

0

dω [ f (ω+ t)− f (ω)]
ω(ω+ t)2

t(2ω+ t)

�p
ω+ t −

p
ω
�

,

(C.7)
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where to get to the second equality we used the identity: f (−x) = −1− f (x). Note that the
above integral is the same as the integral in Eq. (34).

Similarly, using the above identity, one can show that ΓA(−t) for ω ∈ (0, t) matches with
the integral in Eq. (C.2) and ΓA(−t) for ω ∈ (t,∞) matches with the integral in Eq. (C.4).
Thus, we find ΓA(Ω) = ΓA(−Ω), as expected.
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