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Abstract

Model independent techniques for constructing background data templates using gen-
erative models have shown great promise for use in searches for new physics processes
at the LHC. We introduce CURTAINsF4F, a major improvement to the CURTAINs method
by training the conditional normalizing flow between two side-band regions using max-
imum likelihood estimation instead of an optimal transport loss. The new training ob-
jective improves the robustness and fidelity of the transformed data and is much faster
and easier to train. We compare the performance against the previous approach and
the current state of the art using the LHC Olympics anomaly detection dataset, where
we see a significant improvement in sensitivity over the original CURTAINs method. Fur-
thermore, CURTAINsF4F requires substantially less computational resources to cover a
large number of signal regions than other fully data driven approaches. When using an
efficient configuration, an order of magnitude more models can be trained in the same
time required for ten signal regions, without a significant drop in performance.
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1 Introduction

The search for new physics phenomena is one of the cornerstones of the physics programme
at the Large Hadron Collider (LHC). The unparalleled energy and intensity frontier provided
by the LHC provides a huge range of phase space where new signatures may be observed.
The ATLAS [1] and CMS [2] collaborations at the LHC perform a wide array of searches for
new particles beyond the standard model (BSM) of particle physics. Many of these searches
target specific models, however, due to the vast possibilities of models and particles, dedicated
searches cannot be performed for all possible scenarios.

Model independent searches aim to provide a broad sensitivity to a wide range of potential
BSM scenarios without targetting specific processes. A key technique used in many searches
is the bump hunt. Under the assumption that a new BSM particle is localised to a certain mass
value, a bump hunt scans over an invariant mass distribution looking for excesses on top of
a smooth background. Bump hunts were crucial in the observation of the Higgs boson by the
ATLAS and CMS collaborations [3,4]. However, despite the success at finding the Higgs boson,
there is little evidence for any BSM particles at either experiment [5–10]. With advances
in machine learning (ML) many new model independent methods have been proposed to
enhance the sensitivity to BSM physics [11–29] including approaches which aim to improve
the sensitivity of the bump hunt itself [30–37].

In this work we improve upon the CURTAINs approach [35] by replacing the optimal trans-
port loss used to train a flow between two complex distributions with maximum likelihood
estimation. In order to evaluate the likelihood of the complex distributions on either side of
the normalizing flow, we use the Flows for Flows technique introduced in Ref. [38] and applied
to physics processes in Ref. [39]. This new configuration is called CURTAINsF4F.

We apply CURTAINsF4F to the LHC Olympics (LHCO) R&D dataset [40], a community chal-
lenge dataset for developing and comparing anomaly detection techniques in high energy
physics [23]. We compare it to the previous iteration of CURTAINs, as well as to a current
state of the art data driven approach CATHODE [32]. We evaluate the performance both in
terms of improved signal sensitivity, but also in the required computational time to train the
background models for a number of signal regions.

2 Dataset

We evaluate the performance of CURTAINsF4F using the LHC Olympics R&D dataset.
The LHCO R&D dataset [40] comprises background data produced through QCD dijet

production, with signal events arising from the all-hadronic decay of a massive particle to
two other massive particles W ′ → X (→ qq̄)Y (→ qq̄), each with masses mW ′ = 3.5 TeV,
mX = 500 GeV, and mY = 100 GeV. Both processes are simulated with Pythia 8.219 [41] and
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interfaced to Delphes 3.4.1 [42] for detector simulation. Jets are reconstructed using the
anti-kT clustering algorithm [43] with a radius parameter R = 1.0, using the FastJet [44]
package. In total there are 1 million QCD dijet events and 100 000 signal events.

Events are required to have at least one R= 1.0 with pseudrapidity |η| < 2.5, and trans-
verse momentum pJ

T > 1.2 TeV. The top two leading pT jets are selected and ordered by de-
creasing mass. In order to remove the turn on in the mJJ distribution arising from the jet
selections, we only consider events with mJJ > 2.8 TeV. To construct the training datasets we
use varying amounts of signal events mixed in with the QCD dijet data.

To study the performance of our method in enhancing the sensitivity in a bump hunt, we
use the input features proposed in Refs. [30–32,35]. These are

mJJ , mJ1
,∆mJ = mJ1

−mJ2
,τJ1

21,τJ2
21, and∆RJJ ,

where τ21 is the N-subjettinness [45] ratio of a large radius jet, and ∆RJJ is the angular
separation of the two jets in the detector η−φ space.

3 Method

CURTAINsF4F follows the same motivation and approach as the original CURTAINs method
presented in Ref. [35]. In bump hunt searches, data are categorised into non overlapping signal
(SR) and side-band (SB) regions on a resonant distribution (mJJ). In CURTAINs, a conditional
Invertible Neural Network (cINN) is trained to learn the mapping from data drawn from one
set of mJJ values to a target set of values. The cINN is trained using the SB regions and applied
to transport data from the SB to the SR.

However, the approach improves upon CURTAINs by using a maximum likelihood loss on
the transported data instead of an optimal transport loss between the batch of data and a batch
of target data.

3.1 Flows for Flows architecture

A normalizing flow trained with maximum likelihood estimation requires an invertible neural
network and a base distribution with an evaluable density. The standard choice for the base
distribution is a standard normal distribution. The loss function for training the normalizing
flow fφ(z) from some distribution x ∼ X to the base distribution z ∼ pprior is given from the
change of variables formula

log pθ ,φ(x) = log pθ ( f
−1
φ (x))− log
�

�

�det(J f −1
φ
(x))
�

�

� ,

where J is the Jacobian of fφ . In the conditional case this extends to

log pθ ,φ(x |c) = log pθ
�

f −1
φ(c)(x |c)
�

− log
�

�

�det(J f −1
φ(c)(x |c)

)
�

�

� , (1)

where c are the conditional properties, θ are the parameters of the base distribution and φ
are the parameter of the normalizing flow.

In Eq. (1), the base density term log pθ
�

f −1
φ(c)(x |c)
�

introduces a problem for training
CURTAINs with maximum likelihood estimation. As the network is trained between two regions
sampled from some non-analytically defined distribution, the probability of the transformed
data is unknown. As a result, an optimal transport loss was used instead.

However, the base density of a normalizing flow can be chosen as any distribution for which
the density can be evaluated. Therefore, we can train an additional normalizing flow to learn
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the conditional density pθ
�

f −1
φ(c)(x |c)
�

of the target data distribution. The normalising flow for
learning the base distribution is trained in advance and is used to define the loss in Equation 1,
and we refer to this as the base flow fφ . We can then train another normalising flow to learn
the transformation between the two distiritbutions using what we refer to as the top flow fγ.
In CURTAINsF4F the conditional properties of the top flow are a function of the input (x) and
target (y) conditional properties cx and cy . For the base flow only a single conditional property
c is needed. The correspondence between the top normalizing flow and the base distributions
in Flows for Flows is shown in Fig. 1.

Figure 1: The Flows for Flows architecture for a conditional model [46]. Data x
(y) are drawn from the initial distribution with conditional values cx (cy) and trans-
formed to new values cy (cx) in a cINN fγ(cx , cy) conditioned on cx and cy . The
probability of the transformed data points are evaluated using a second normalizing
flow for the base distribution fφ′(cy ) ( fφ(cx )). In the case where x and y are drawn
from the same underlying distribution p(x , c), the same base flow fφ can be used. φ
and φ′ are the parameters of the base flow, and γ represents the parameters of the
top flow.

3.2 Training CURTAINsF4F

As with the original training method, CURTAINsF4F can be trained in both directions. The
forward pass transforms data from low to higher target values of mJJ , whereas the inverse
pass transforms data from high to lower target values. When training between two distinct
arbitrary distributions in both directions, a base flow is required for each distribution.

In principle, CURTAINsF4F could be trained between data drawn from the low mJJ SB (SB1)
to the high mJJ SB (SB2), as performed with CURTAINs. However, as data no longer need to
be compared to a target batch, it is possible to train with both SBs combined in a simplified
training.

Data are drawn from both SBs and target mJJ values (mtarget) are randomly assigned to
each data point using all mJJ values in the batch. Data are passed through the network in
a forward or inverse pass depending on whether mtarget is larger or smaller than their initial
mJJ (minput). The network is conditioned on a function of minput and mtarget with the two

values ordered in ascending order ( f (mlow
j j , mhigh

j j )). This function could be, for example, the

concatenation of or difference between mlow
j j and mhigh

j j .
The probability term is evaluated using a single base flow trained on the data from SB1 and

SB2. The loss for the batch is calculated from the average of the probabilities calculated from
the forward and inverse passes. A schematic overview for a single pass through the network
is shown in Fig. 2.
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cINN

Figure 2: A schematic overview of the training procedure for CURTAINsF4F for an
event where the target mJJ value is greater than the input value. A single conditional
normalizing flow is used for the base flow, conditioned on the target mJJ value mtarget,
to determine pθ (z|mtarget). The top normalizing flow is conditioned on a function of
the input (minput) and target (mtarget) mJJ values. For the case where mtarget < minput,
an inverse pass of the network is used and the conditioning property is calculated as
f (mtarget, minput).

Implementation

The CURTAINsF4F architecture comprises two conditional normalizing flows, the base flow and
the top flow. The base flow learns the conditional density of the training data which is used
to train the top flow. The top flow in turn transforms data from initial values of mJJ to target
values.

The base flow is trained on the side-band data with a standard normal distribution as
the target prior. It is conditioned on mJJ . The top flow is trained between data drawn from
the side-bands. The transformation is conditioned on ∆mJJ = mhigh

JJ − mlow
JJ . The base flow

consists of ten autoregressive transformations using RQ splines, defined by four bins. The top
flow consists of eight coupling transformations using RQ splines, defined by four bins. They are
trained separately using the Adam optimiser and a cosine annealing learning rate scheduler.
Each are trained for 100 epochs with a batch size of 256.

3.3 Generating background samples

To transform the data from the side-bands into the signal region, we assign target mJJ values
corresponding to the SR to the data in each side-band. The target values mtarget are drawn
from a function of the form

f (z) = p1 (1− z)p2 zp3 , (2)

where z = mJJ/
p

s, with parameters pi learned by performing a fit to the side-band data. Data
from SB1 (SB2) are transformed in a forwards (inverse) pass through the top flow with∆mJJ .

The background template can be oversampled by assigning multiple target mJJ values to
each data point. This has been found to improve the performance of CWOLA classifiers.
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Due to the bidirectional nature of the cINNs, it is also possible to generate validation sam-
ples in regions further away from the SR. These outer-bands can be used to optimise the
hyperparameters of the top flow in CURTAINsF4F.

3.4 Comparison to CURTAINs

CURTAINsF4F has a much simpler training procedure than in the original CURTAINs.
In CURTAINs, the Sinkhorn loss [47] was used to train the network, with the distance mea-

sured between a batch of data sampled from the target region and the transformed data. The
target mJJ values for the transformed data were chosen to match the values in the target
batch. However, there was no guarantee that the minimum distance corresponded to the pair-
ing of the transformed event with the event in the target batch with the corresponding mtarget
value. Furthermore, the loss itself ignored the mJJ values as the input data and target data
in the batch with the corresponding mJJ target value are not necessarily events that should
look the same for the same mJJ value. Although successful, this approach introduced a lot of
stochasticity, and required a large number of epochs to converge.

Due to the new loss, the training in CURTAINsF4F no longer needs to be between two
discrete regions. This has the added benefit that it removes the need for splitting the SBs and
alternating between training CURTAINs between SB1 and SB2, and within each side-band.

Finally, in CURTAINs the network was trained and updated alternating batches in the for-
ward and inverse directions. In CURTAINsF4F a single batch has both increasing and decreasing
target mJJ values. As such the network weights are updated based on the average of the loss
in both the forward and inverse directions for each individual batch.

Due to the additional base flow, CURTAINsF4F is no longer defined by a single model trained
for each SR. This introduces an extra model which needs to be trained and optimised. We
observe, however, that overall training both the base flow, and top flow between SB data is
less than required to train the cINN in CURTAINs.

The additional time required to train the base flow can also be minimised. When training
CURTAINsF4F for multiple SRs, a single base flow can be trained using all available data for all
possible mJJ values. For each SR, the network would only be evaluated for values in SB1 and
SB2, and only minimal bias would be introduced from data in the SR. This reduces the overall
computational cost incurred when evaluating multiple signal regions.

3.5 Comparison to other approaches

This approach is one of several using normalizing flows as density models for background
estimation for extending the sensitivity of bump hunts. Many of these methods, including
CURTAINs and CURTAINsF4F, produce background samples for use with CWOLA bump hunt-
ing [30, 48]. In CWOLA bump hunting, classifiers are trained on data from a hypothesised
signal enriched region (the SR) and a signal depleted region (the SBs). Cuts are applied onto
the classifier score to reduce the amount of background and, in the presence of signal, enhance
the sensitivity.

• In ANODE [31], conditional normalizing flows are trained to learn the probability of
the signal and background from data drawn from the SBs and SR respectively. The
normalizing flows are conditioned on mJJ , and the ratio of the probabilities is used as a
likelihood test.

• In CATHODE [32], a conditional normalizing flow is trained on all SB data conditioned on
mJJ . Samples with mJJ corresponding to the distribution of data in the SR (extrapolated
from a side-band fit in mJJ) are generated using the normalizing flow. These generated
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samples form a synthetic background sample which together with the SR data are used
in a CWOLA approach [30,48].

• In FETA [37], the Flows for Flows approach is used to train a conditional normalizing
flow between background data in a monte carlo (MC) simulated sample and the data
in the side-bands, as a function of mJJ . This flow is used to transport the MC events
from the SR to the data space, and account for mismodelling observed in the simulated
distributions. A CWOLA classifier is trained on the transported MC and the SR data.

• LACATHODE [36] addresses the problem of distribution sculpting resulting from the
choice of input features. Here the CWOLA classifier is trained on the base density of
CATHODE, by first passing the SR data through the CATHODE conditional normalizing
flow and using samples drawn from the prior base distribution. This approach is com-
plementary to any method training a conditional normalizing flow, such as CURTAINsF4F
and FETA.

• Although not applied in the context of bump hunt searches, ABCDNN [49] uses normaliz-
ing flows to extrapolate data from one region to another, similar to FETA. However, here
the flows are trained with the maximum mean discrepancy loss, similar to the approach
in CURTAINs though it does not interpolate to unknown conditional values.

4 Results

The main measure of performance for background estimation approaches is by how much they
improve the sensitivity to a signal in a CWOLA bump hunt [30].

We define a SR centred on the signal process with a width of 400 GeV, which contains a
substantially large fraction of the signal events. For CURTAINsF4F and CURTAINs, we use side-
bands 200 GeV either side of the SR to train the methods. Only these regions are used to train
the base flow for CURTAINsF4F. For CATHODE, the whole mJJ distribution either side of the SR
is considered as the SB region. This corresponds to side-bands of widths 500 GeV and 900 GeV.

Weakly supervised classifiers are trained to separate the generated background samples
from data in the SR. For CURTAINs, CURTAINsF4F, and CATHODE, an oversampling factor of
four is used to generate the backround samples in the SR, at which point the performance
reaches saturation. In CURTAINs and CURTAINsF4F this is with respect to the transported SB
data, whereas for CATHODE it is based on the yields in the SR.

As a reference, a fully supervised classifier trained to separate the signal from background
in this region, and an idealised classifier trained with a perfect background estimation are also
shown. The idealised classifier is trained for both equal numbers of background in each class
(Eq-Idealised) and an oversampled background (Over-Idealised).

A k-fold training strategy with five folds is employed to train all classifiers. Three fifths are
used to train the classifier, with one fifth for validation and the final fifth as a hold out set. The
classifiers comprise three hidden layers with 32 nodes and ReLU activations. They are trained
for 20 epochs with the Adam optimiser and a batch size of 128. The initial learning rate is
10−4 but is annealed to zero following a cosine schedule.

4.1 Comparison of performance

Figure 3 shows the background rejection and significance improvement for CWOLA classifiers
trained using the different background estimation models as the cut on the classifier is varied.
Here 3,000 signal events have been added to the QCD dijet sample, of which 2,214 fall within
the SR. CURTAINsF4F shows significant improvement over the original CURTAINs method, and
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now matches the CATHODE performance across the majority of rejection and signal efficiency
values. This is despite being trained on a much smaller range of data. CURTAINs still dis-
plays better significance improvement at very high rejection values, however this is in a region
dominated by the statistical uncertainty.
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Figure 3: Background rejection as a function of signal efficiency (left) and signifi-
cance improvement as a function of background rejection (right) for CURTAINs (red),
CURTAINsF4F (orange), CATHODE (blue), Supervised (black), Eq-Idealised (green,
solid), and Over-Idealised (green, dashed). All classifiers are trained on the sample
with 3,000 injected signal events, using a signal region 3300≤ mJJ < 3700 GeV. The
lines show the mean value of fifty classifier trainings with different random seeds
with the shaded band covering 68% uncertainty. A supervised classifier and two ide-
alised classifiers are shown for reference.

In Fig. 4 the significance improvement for each method is calculated as a function of the
number of signal events added to the sample. Here both the signal fraction and raw num-
ber of signal events in the SR are reported. The significance improvement is shown for two
fixed background rejection values, rather than the maximum significance improvement, due to
the sensitivity to fluctuations in the high background rejection regions where there are much
lower statistics. The performance of CURTAINsF4F is improved across all levels of signal in
comparison to the original CURTAINs method, and performs equally well as CATHODE.

4.2 Dependence on side-band width

In CURTAINsF4F, 200 GeV wide side-bands are used to train the networks and learn a local
transformation. With leakage of signal into the side-bands or changing background compo-
sition, it could be beneficial to have narrower or wider SBs, and there is no set prescription
for which is optimal. Figure 5 shows the impact on performance of varying the widths from
100 GeV up to all data not contained in the signal region (max width). For the 100 GeV wide
side-bands a noticeable drop in performance is observed in the significance improvement and
ROC curves. However at a background rejection of ∼ 103 all other side-band widths have sim-
ilar levels of rejection. At higher levels of background rejection training on larger side-bands,
and thus more data, results in better performance than the default CURTAINsF4F model with
widths of 200 GeV. It should be kept in mind that as the width of the side-bands increase, the
required training time increases. For these comparisons no hyperparameter optimisation has
been performed and the default values are used for all models.

In Fig. 6 the performance of CURTAINsF4F and CATHODE are shown for the case where
each model is trained on either 200 GeV wide SBs or the max width. For CURTAINsF4F the
difference in performance is mostly at high background rejection whereas CATHODE has a drop
in performance at all values.
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Figure 4: Significance improvement at a background rejection of 102 (left) and 103

(right) as a function of signal events in the signal region 3300 ≤ mJJ < 3700 GeV,
for CURTAINsF4F (orange), CURTAINs (red), CATHODE (blue), Supervised (black), Eq-
Idealised (green, solid), and Over-Idealised (green, dashed). The lines show the
mean value of fifty classifier trainings with different random seeds with the shaded
band covering 68% uncertainty. A supervised classifier and two idealised classifiers
are shown for reference.
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Figure 5: Background rejection as a function of signal efficiency (left) and signif-
icance improvement as a function of background rejection (right) for CURTAINsF4F
trained with varying width side-bands, ranging from 100 GeV to the maximum width
possible (SB1: 500 GeV, SB2: 900 GeV). All classifiers are trained on the sample with
3,000 injected signal events, using a signal region 3300≤ mJJ < 3700 GeV. The lines
show the mean value of fifty classifier trainings with different random seeds with the
shaded band covering 68% uncertainty.
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Figure 6: Background rejection as a function of signal efficiency (left) and
significance improvement as a function of background rejection (right) for
CURTAINsF4F (orange) and CATHODE (blue). Two side-band widths are used to train
the two methods, 200 GeV side-bands (solid) and the maximum width (dashed, SB1:
500 GeV, SB2: 900 GeV). All classifiers are trained on the sample with 3,000 injected
signal events, using a signal region 3300 ≤ mJJ < 3700 GeV. The lines show the
mean value of fifty classifier trainings with different random seeds with the shaded
band covering 68% uncertainty. The Over-Idealised classifier (green) is shown for
reference.

4.3 Required training time

For a bump hunt or sliding window search, numerous models need to be trained which can
result in a high demand on computing resources. As a result, the granularity of a search may
be restricted in line with overall computational time. Therefore, a key measure of methods
like CURTAINsF4F and CATHODE is how quick the models are to train.

In Table 1 the required time to train the two approaches for one SR are shown for con-
vergence and for one epoch. CATHODE has an advantage over CURTAINsF4F in that only one
normalizing flow is trained. The total training time required for CURTAINsF4F is much reduced
in comparison to CURTAINs and is slightly faster than CATHODE for the default configurations.
This is largely due to CURTAINsF4F being able to generate a SR template by training on much
narrower sidebands, whereas CATHODE trains on a much wider SB by default.

Table 1: Comparison of the required time to train CURTAINs, CURTAINsF4F, and
CATHODE. All models are trained on the same hardware with epoch and total training
time representative of using an NVIDIA® RTX 3080 graphics card. For CURTAINsF4F
two numbers are shown for the epoch time and number of epochs due to the two
normalizing flows which need to be trained. Default side-band widths are used for
all models, around the nominal signal region.

Time / epoch
[s]

N epochs Total time
[min]

CURTAINs 10 1000 167
CATHODE 78 100 129

CURTAINsF4F 32/32 100/100 107
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4.4 Reducing computational footprint

When applying the models to multiple signal regions in a bump hunt, new models need to
be trained for each step. For CATHODE this involves training a complete model each time.
However, due to the modular nature of CURTAINsF4F, if the base flow is trained on the whole
spectrum, only the top flow needs to be trained with each step. It is important to note that
the top flow only requires the densities of data in the sidebands (evaluated using the base
flow) during the training, and any signal contamination in the data elsewhere is not an issue.
With this modular training scheme, as soon as more than one SR is considered, CURTAINsF4F
requires substantially less computational resources for a similar level of performance as can
be seen in Table 2.

Additionally, the transformation learned by the top flow in CURTAINsF4F is known to be a
smaller shift than for the base flow or in CATHODE. The top flow can thus also be optimised
for speed without sacrificing as much performance and does not require the same expressive
architecture as used by default.

The default CURTAINsF4F configuration is compared to an efficient implementation in
which a single base flow is trained on all data, and the top flow is optimised for speed. The
base flow has the same architecture as the default configuration. After a minimal hyperparam-
eter scan, we find that the efficient top flow can be made with two coupling transformations
using RQ splines, rather than eight, with each now defined by six bins instead of four. We find
that the performance of the efficient configuration is comparable to the default configuration,
with a significant reduction in training time. The top flow is trained for 20 epochs with a
batch size of 256. All other hyperparameters remain unchanged and side-bands of 200 GeV
are used to train the top flow and produce the background template in the SR. The potential
reduction in computation time for using CURTAINsF4F in a sliding window search is presented
in Table 2. With the efficient configuration more than one hundred signal regions can be eval-
uated with CURTAINsF4F transformers for the same computational cost as ten with the default
configuration.

In Fig. 7 the significance improvement when using the efficient configuration is compared
to the default CURTAINsF4F model for 3000 injected signal events. The performance as a
function of the number of injected signal events is shown in Fig. 8. No significant decrease in
performance is observed.
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Figure 7: Background rejection as a function of signal efficiency (left) and signifi-
cance improvement as a function of background rejection (right) for CURTAINsF4F
using the default (orange) and efficient (purple) training configurations. All classi-
fiers are trained on the sample with 3,000 injected signal events, using a signal region
3300 ≤ mJJ < 3700 GeV. The lines show the mean value of fifty classifier trainings
with different random seeds with the shaded band covering 68% uncertainty.
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Table 2: Comparison of the required time to train the base flow and top flow in
CURTAINsF4F. The default configuration comprises the base flow and top flow trained
on 200 GeV side-bands. The efficient configuration has a single base flow trained on
all data, and a top flow trained on 200 GeV side-bands and optimised for the fastest
training time. All models are trained on the same hardware with epoch and total
training time representative of using an NVIDIA® RTX 3080 graphics card. An ex-
trapolation of the required total time to train a complete CURTAINsF4F model for one
and ten signal regions are also shown for the two configurations. The extrapolated
time for 125 signal regions is also shown for the efficient configuration, requiring
less time than ten signal regions with the default configuration.
† Timing is for the nominal side-bands, this would vary as the signal region changes
due to total number of training events.

Time / epoch
[s]

N epochs Total time
[min]

Default

Base 32.4† 100 54
Top flow 31.5† 100 53

One Signal Region 107
(Extrapolated†) Ten Signal Region 1070

Efficient

Base 104.2 100 174
Top flow 21.3† 20 7

One Signal Region 181
(Extrapolated†) Ten Signal Region 244
(Extrapolated†) 125 Signal Region 1049
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Figure 8: Significance improvement at a background rejection of 102 and 103 as
a function of signal events in the signal region 3300 ≤ mJJ < 3700 GeV for
CURTAINsF4F using the default (orange) and efficient (purple) training configura-
tions. The lines show the mean value of fifty classifier trainings with different ran-
dom seeds with the shaded band covering 68% uncertainty.
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5 Conclusions

In the original CURTAINs method, a distance based optimal transport loss was used to train a
conditional invertible neural network. In this work we have shown that the performance can
be improved significantly by moving to a maximum likelihood estimation loss, using the Flows
for Flows methodology. The performance levels reached by CURTAINsF4F are state-of-the-art,
and can do so training on less data from narrower side-bands than the previous state of the art.

By only modifying the training procedure, other advantages of CURTAINs are preserved.
Additional validation regions further away from the signal region can be used to optimise the
hyperparameters of both the normalizing flow and classification networks.

Furthermore, in order to address background sculpting resulting from the classifiers, the
latent approach introduced in LACATHODE can be performed using the base flow. With the
original CURTAINs method, an additional normalizing flow would need to be trained on the
signal region data for each signal region.

Finally, for a single signal region CURTAINsF4F requires similar computing resources as
other leading approaches, with almost half the required training time in comparison to the
original CURTAINs method. However, when moving to a sliding window bump hunt, the overall
computing resources required for CURTAINsF4F is reduced by a large factor. On the LHCO R&D
dataset over one hundred signal regions can be trained for the same computing resources as
otherwise required for ten signal regions. This could be of particular interest for large scale
searches which are limited by the computational cost to cover a larger number of signal regions,
such as those in Refs. [50,51] amongst others.
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A Additional results

In Fig. 9 the maximum significance improvement for the default models is shown, rather than
at fixed background rejection values.

An investigation on the sensitivity of CURTAINsF4F to the amount of oversampling is shown
in Fig. 10. At a factor of four (default) the performance saturates.

In Table 3 the extrapolated times are computed using the faster top flow but with a new
base flow for each signal region. Although there is a significant time improvement over the
default configuration, the efficient implementation still almost three times faster for ten signal
regions, and a factor of seven more signal regions can be trained in just over 1000 minutes.
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Figure 9: Maximum significance improvement as a function of signal events in
the signal region 3300 ≤ mJJ < 3700 GeV, for CURTAINs (red), CURTAINsF4F (or-
ange), CATHODE (blue), Supervised (black), Eq-Idealised (green, solid), and Over-
Idealised (green, dashed). The lines show the mean value of fifty classifier trainings
with different random seeds with the shaded band covering 68% uncertainty. A su-
pervised classifier and two idealised classifiers are shown for reference.
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Figure 10: Background rejection as a function of signal efficiency (left) and signif-
icance improvement as a function of background rejection (right) for CURTAINsF4F
trained with varying amounts of oversampling using 200 GeV side-bands All classi-
fiers are trained on the sample with 3,000 injected signal events, using a signal region
3300 ≤ mJJ < 3700 GeV. The lines show the mean value of fifty classifier trainings
with different random seeds with the shaded band covering 68% uncertainty.
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Table 3: The required time to train the base flow and top flow in CURTAINsF4F using
the faster top flow but a base flow for each signal region. The base flow and top flow
trained on 200 GeV side-bands. The models are trained on the same hardware with
epoch and total training time representative of using an NVIDIA® RTX 3080 graphics
card. An extrapolation of the required total time to train a complete CURTAINsF4F
model for one and ten signal regions are also shown for the two configurations.
†Timing is for the nominal side-bands, this would vary as the signal region changes
due to total number of training events.

Time /
epoch [s]

N epochs Total time
[min]

Faster

Base 32.4† 100 54
Top flow 21.3† 20 7

One Signal Region 61
(Extrapolated†) Ten Signal Region 610
(Extrapolated†) 17 Signal Region 1037

B Hyperparameters

Table 4: Hyperparameters for training the flows in CURTAINsF4F.

Base distribution Top flow (default) Top flow (efficient)

Number of RQ splines 10 8 2
Number of bins per spline 4 4 6

Transformation Autoregressive Coupling Coupling
Blocks per spline 2 2 6

Hidden nodes per block 128 32 64

Number of epochs 100 100 20
Batch size 256 256 256
Optimiser Adam Adam Adam

Initial learning rate 1e-4 1e-4 1e-4
Cosine annealing True True True
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