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Abstract

Frenkel, Lepowsky, and Meurman constructed a vertex operator algebra (VOA) asso-
ciated to any even, integral, Euclidean lattice. In the language of physics, these are
examples of chiral conformal field theories (CFT). In this paper, we define non-chiral
vertex operator algebra and some associated notions. We then give a construction of
a non-chiral VOA associated to an even, integral, Lorentzian lattice and construct their
irreducible modules. We obtain the moduli space of such modular invariant non-chiral
CFTs based on even, self-dual Lorentzian lattices of signature (m,n) assuming the valid-
ity of a technical result about automorphisms of the lattice. We finally show that Narain
conformal field theories in physics are examples of non-chiral VOA. Our formalism helps
us to identify the chiral algebra of Narain CFTs in terms of a particular sublattice and
give us the decomposition of its partition function into sum of characters.
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1 Introduction

The study of vertex (operator) algebras started with the work of Borcherds [1] and Frenkel,
Lepowsky, and Meurman [2] in relation to Monstrous Moonshine and two dimensional con-
formal field theory. The first non-trivial examples of the theory were constructed starting from
an even, integral Euclidean lattice, see [3, 4] for a more physical construction. These are ex-
amples of what are called chiral conformal field theory in physics, see Subsection 1.1.1 for an
introduction. There are ample examples of non-chiral conformal field theories which cannot
be described mathematically in the language of vertex operator algebra. One large class of
such theories is the Narain CFTs based on even, self-dual Lorentzian lattices.

In this paper, we define the notion of non-chiral vertex operator algebra and study various
related notions. Our definition is based on the notion1 of full field algebras introduced by Huang
and Kong in [7] and full vertex algebras introduced by Moriwaki in [8]. We use formal calculus
as well as complex analysis to formulate our axioms. We replace the Jacobi identity axiom of
vertex (operator) algebras by a locality axiom which is general enough to imply the duality
and hence operator product expansion of vertex operators. Various well-known examples of
non-chiral conformal field theories in physics are examples of our definition. More concretely,
we construct a class of examples of non-chiral VOAs based on Lorentzian lattices which cover

1See also [5,6] for some earlier, related but different, discussion on non-chiral VOAs.
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the moduli space of Narain CFTs as examples of our definition. We then define modules and
intertwiners of non-chiral VOAs on the lines of [9]. In the rest of this section, we describe a
dictionary between non-chiral VOAs of this paper and the notion of (non-chiral) conformal
field theory in physics.

1.1 The dictionary from non-chiral VOA to non-chiral CFTs

In this section, we give a dictionary between conformal field theories as generally understood
in physics and the non-chiral vertex operator algebra definition in this paper. This dictionary,
for the case of chiral conformal field theory, is well-known to experts. We extend it to the
case of non-chiral VOA. We start by describing the defining data of a conformal field theory in
physics.

1.1.1 Physical definition of a CFT

We begin with the Belavin-Polyakov-Zamalodchikov (BPZ) definition of a conformal field the-
ory [10]. We follow [11–16] for this exposition.

A bosonic CFT is an inner product space H which2 is decomposable as a direct sum of
tensor product

H =
⊕

h,h̄
h−h̄∈Z

V (h, c)⊗ V (h̄, c̄) , (1)

of irreducible highest weight modules of Virc ×Virc̄ , where where Virc and Virc̄ are two copies
of the Virasoro algebra with central charge c, c̄:

[Lm, Ln] = (m− n)Lm+n +
c

12
m
�

m2 − 1
�

δm+n,0 ,

�

L̄m, L̄n

�

= (m− n)L̄m+n +
c̄

12
m
�

m2 − 1
�

δm+n,0 ,
�

Lm, L̄n

�

= 0 ,

(2)

such that the following are satisfied:

1. Identity property: There is a unique vector |0〉 ∈ V (0, c)⊗V (0, c̄)which is invariant under
the sl(2)× sl(2)-subalgebra of Virc × Virc̄ generated by L0, L̄0, L±1, and L̄±1.

2. For each vector α ∈ H there is an operator φα(z, z̄) acting on H , parameterized by
z ∈ C. Also, for every operator φα there exists a conjugate operator φα∨ , partially
characterized by the requirement that the operator product expansion (OPE) of φα and
φα∨ contains a descendant of the identity operator.

3. Ln property: For α ∈ V (h, c)⊗ V (h̄, c̄) a highest weight state of the (Virc × Virc̄)-action,
we have

[Ln,φα(z, z̄)] =
�

zn+1 d
dz
+ h(n+ 1)zn

�

φα(z, z̄) ,

�

L̄n,φα(z, z̄)
�

=
�

z̄n+1 d
dz̄
+ h̄(n+ 1)z̄n

�

φα(z, z̄) ,
(3)

for real numbers h and h̄.
2Physically, one always has a Hilbert space.
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4. Duality Property: The inner products



0
�

�φα1
(z1, z̄1) . . .φαn

(zn, z̄n)
�

�0
�

exist for
|z1| > . . . > |zn| > 0 and admit an unambiguous real-analytic continuation, indepen-
dent of ordering,3 to Cn \ {z1, . . . , zn = 0,∞; zi = z j}.

5. Modular invariance property: The torus partition function and correlation functions,
given in terms of traces exist and are modular invariant.

These axioms do not characterise a CFT but are necessary for a well defined CFT. A particular
subset of operators which only depend only on z or z̄ are of interest. Such operators are called
chiral (z dependent) and anti-chiral (z̄ dependent) operators. The maximal set of chiral and
anti-chiral operators form an algebra which we denote by A and A respectively.4 For any
CFT, 1 ∈ A ⊗A , T (z) ∈ A and T (z̄) ∈ A where T and T are the holomorphic and anti-
holomorphic stress tensor with modes Ln and L̄n respectively. Let {Oi(z)} be a basis of A .
The OPE of chiral operators takes the form

Oi(z)O j(w) =
∑

k

ci jk

(z −w)hi jk
Ok(w) , (4)

for some coefficients ci jk where hi jk = hi+h j−hk. By the usual contour integral manipulations
we can write the above OPE as the algebra of modes:

�

Oi
n,O j

m

�

=
∑

k

ci jk(n, m)Ok
n+m , (5)

where
O j(z) =

∑

m

O j
mz−m−h j . (6)

Similar OPE holds for anti-chiral operators. The algebra (5) of modes of operators in A is
called the chiral algebra and the algebra of modes of operators in A is called the anti-chiral
algebra of the CFT. Since the OPE of (anti-)holomorphic operators is equivalent to the alge-
bra of their modes, we will use the same symbol (A )A for the (anti-)chiral algebra and the
algebra of (anti-)holomorphic operators. In the following, we will only speak of the chiral
algebra but all statements hold for anti-chiral algebra equally well. The chiral algebra of any
CFT contains the (universal enveloping algebra of) Virasoro algebra since the stress tensor is
always a chiral operator. Other examples of chiral algebra include the affine Kac-Moody alge-
bra [17] and the W3 algebra [18]. Only the zero mode the of chiral operator O(z) commute
with the Hamiltonian (L0 + L̄0) and are hence called the symmetry-generating algebra. In the
inner product space (1), one can talk about subspacesHi which form irreducible representa-
tions of the chiral algebra A . For this reason the full chiral algebra is sometimes also called
the spectrum-generating algebra. We can thus decompose the physical Hilbert spaceH as:

H =
⊕

i,ī

Ni,īHi ⊗H ī , (7)

whereHi ,H ī are irreducible representations ofA ,A respectively and Ni,ī ∈ N0 = N∪{0}, the
set of non-negative integers, is the number of timesHi⊗H ī appears inH . For the index value

3For Fermionic fields, one has to keep track of signs while commuting them past each other.
4 Note that there can be subsets ofA andA which closes among themselves. Notable example is the set with

identity operator and the stress tensor. In the following, whenever we speak of (anti-)chiral algebra, we mean the
maximal algebra of (anti-)holomorphic fields. In mathematical terminology, A ,A , with some added structure,
are vertex operator algebras and the theory of (A ) A and its irreducible representations is called a (anti-)chiral
conformal field theory.
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i, ī = 0, we takeH0 andH 0 to be the subspace ofH which contains states corresponding to
A andA respectively modulo the null states. Hence, Ni,0 = δi,0, N0,ī = δ0,ī .

5

Let us now describe the relation between the two decompositions (1) and (7). A general
state |h, h̄〉 ∈ H is called a Virasoro primary of conformal dimension (h, h̄) if

L0|h, h̄〉= h|h, h̄〉 , L̄0|h, h̄〉= h̄|h, h̄〉 ,

Ln|h, h̄〉= L̄n|h, h̄〉= 0 , n> 0 .
(8)

This follows from the OPE

T (z)φ(w, w̄) =
h

(z −w)2
φ(w, w̄) +

∂wφ(w, w̄)
z −w

+ hol. ,

T (z̄)φ(w, w̄) =
h̄

(z̄ − w̄)2
φ(w, w̄) +

∂w̄φ(w, w̄)
z̄ − w̄

+ anti-hol. ,
(9)

whereφ(w, w̄) is the operator corresponding to the |h, h̄〉. One can identify the state |h, h̄〉with

|h, h̄〉 ≡ lim
z,z̄→0

φ(z, z̄)|0〉 . (10)

We will consider |h, h̄〉 as the tensor product of states |h〉, |h̄〉: |h, h̄〉 ≡ |h〉 ⊗ |h̄〉. The Verma
modules V (h, c) and V (h̄, c̄) is given by

V (h, c) := SpanC{L−n1
. . . L−nk

|h〉 : n1, . . . , nk > 0, k ∈ N} ,

V (h̄, c̄) := SpanC{ L̄−n1
. . . L̄−nk

|h̄〉 : n1, . . . , nk > 0, k ∈ N} .
(11)

The commutators (2) and the Virasoro primary condition makes the Verma module
V (h, c)⊗ V (h̄, c̄) into a (Virc ×Virc̄)-representation. In general, this representation is reducible
and one has to quotient out singular or null states6 from these Verma modules to make them
irreducible. We will assume that this has already been done and that V (h, c) ⊗ V (h̄, c̄) is an
irreducible (Virc × Virc̄)-module. Note that from the OPE (9) we must have h̄ = 0 (h = 0) for
a chiral (anti-chiral field). Now we can identifyH0 ⊗H 0 as

H0 ⊗H 0
∼=

�

⊕

h∈S
V (h, c)

�

⊗

 

⊕

h̄∈S

V (h̄, c̄)

!

⊂H , (12)

where

S := {h ∈ Z : |h〉 ⊗ |0〉 ≡ |h, 0〉 ∈ H } ,

S := {h̄ ∈ Z : |0〉 ⊗ |h̄〉 ≡ |0, h̄〉 ∈ H } .
(13)

A chiral primary is a Virasoro primary |h, h̄〉 satisfying

Om|h, h̄〉=Om|h, h̄〉= 0 , m> 0 , (14)

and is an eigenstate of O0 and O0 for every O ∈A and O ∈A, the operator corresponding to
it will be called the chiral primary field. Then each irreducible factor in (7) is a subspace of a

5This is again not true if we take A and A to be some strictly smaller subalgebra of the maximal chiral
algebra. For example, in the c = 8

10 three state Potts CFT , if we take the chiral algebra to be Virasoro, then
there is a conformal dimension (3,0) and (0,3) representation of the Virasoro algebra present in the theory and
hence N3,0 = 1, N0,3 = 1 [19]. But since these fields are holomorphic and antiholomorphic respectively, according
to our definition, they are included in A ,A respectively and the chiral algebra is extended to W3 algebra, first
constructed in [18]. Several such examples are constructed in [20].

6A singular or null state is a vector which is not a highest weight vector but is annihilated by Ln, L̄n, n > 0,
see [21, Section 7.1.3] for a detailed discussion.
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Verma module constructed over a chiral primary by the modes of every chiral and anti-chiral
operator.

One can then talk about characters of the CFT defined for each irreducible factorHi⊗H ī:

χi,ī(τ, τ̄) = TrHi⊗H ī
qL0−

c
24 q̄ L̄0−

c̄
24 , q = e2πiτ , q̄ = e−2πiτ̄ , (15)

where τ ∈H := {x + i y ∈ C : y > 0} is in the upper half plane. From the fact thatHi ⊗H ī is
built over some highest vector |hi , h̄i〉, we see that the character has the form

χi,ī(τ, τ̄) = qhi−
c

24 q̄h̄i−
c̄

24

∞
∑

n,m=0

a(n)ā(m)qnq̄m , (16)

for some integers a(n), ā(m). Thus we can separate the character into chiral and anti-chiral
characters:

χi,ī(τ, τ̄) = χi(τ)χ ī(τ̄) , (17)

where

χi(τ) = qhi−
c

24

∞
∑

n=0

a(n)qn , χ ī(τ̄) = q̄h̄i−
c̄

24

∞
∑

m=0

ā(m)q̄m . (18)

The partition function of the CFT is then given by sum over chiral characters

Z(τ, τ̄) := TrH qL0−
c

24 q̄ L̄0−
c̄

24 =
∑

i,ī

Ni,īχi(τ)χ ī(τ̄) . (19)

Modular invariance of the partition function implies that the chiral characters form a weight-
zero weakly holomorphic vector valued modular form.7 Using this property of chiral char-
acters, one can classify CFTs with finitely many primary fields and given central charge [16,
23–29]. A CFT is said to admit a holomorphic factorization if the partition function and its
correlation functions decompose into a product of an analytic function of τ and an analytic
function of τ̄. If a CFT admits a holomorphic factorization, then the CFT is a tensor product
of a chiral and an anti-chiral CFT (see Footnote 4). A non-chiral conformal field theory does
not admit a holomorphic factorization and hence cannot be factorized as a tensor product of a
chiral and an anti-chiral CFT. Thus to give a mathematical formulation of such CFTs, we want
to treat the chiral and anti-chiral algebras on equal footing. This motivates the terminology
non-chiral vertex operator algebras defined in this paper.

1.1.2 Non-chiral vertex operator algebras

We now briefly describe the notion of non-chiral vertex operator algebras studied in this paper.
We refer to Section 2 for precise and detailed discussions. Just as vertex operator algebras,
we start with a vector space V which is (R × R)-graded. We have the vertex operator map
YV : V −→ End(V ){x , x̄} where x , x̄ are two formal variables. We require the existence of a
vacuum vector 1 and conformal vectors ω, ω̄ such that YV (1, x , x̄) = 1 and the coefficients
of the formal series for YV (ω, x , x̄), YV (ω̄, x , x̄) satisfies two copies of the Virasoro algebra.
The vertex operators are required to satisfy certain translation and L(0) axioms similar to
VOAs. It turns out that that the Jacobi identity for VOAs is difficult to formulate for non-
chiral VOAs [8]. The appropriate locality axiom is motivated from full field algebras of [7].
Roughly speaking, locality of vertex operators says that the matrix elements of the product
YV (v, z1, z̄1)YV (w, z2, z̄2) and YV (v, z1, z̄1)YV (w, z2, z̄2), defined when |z1| > |z2| and |z2| > |z1|
respectively, are equal to the same function, which is multi-valued and analytic in z1, z̄1, z2, z̄2

7See for example [22] for the definition of vector valued modular forms.
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Table 1: Dictionary between a CFT and non-chiral VOA.

Non-chiral CFT Non-chiral VOA

Chiral space of statesH0 ⊗H 0 (12) (R×R)-graded vector space V (32)

State-operator map α 7→ φα (2) on Page 3 Vertex operator map v 7→ YV (v, x , x̄) (35)

Stress tensor T (z), T (z̄) Conformal vertex operators YV (ω, x), YV (ω̄, x̄) (46)

Duality of operators (4) on Page 3 Locality of vertex operators Def. 2.1 (9)

Chiral and anti-chiral algebra (5) Chiral and anti-chiral algebra (93)

Irreducible representationHi ⊗H ī ofA ⊗A Irreducible module (W, YW ) of non-chiral VOA (V, YV ) Def. 4.1

Characters χi,ī(τ, τ̄) (15) Graded dimension χW (τ, τ̄) (303)

Chiral primary operator φα for α ∈Hi ⊗H i Intertwiner Y (i,ī)
(i,ī)(0,0)

(w, x , x̄) of type
� (i,ī)
(i,ī)(0,0)

�

Def. 4.2

and single valued when z̄1, z̄2 are complex-conjugates of z1, z2, defined on C4 minus a diagonal
subset. This version of locality turns into a statement of analytic continuation of matrix ele-
ments for chiral vertex operators and allows us to use contour integration for manipulating the
modes of the vertex operators. Moreover, locality allows us to prove duality of vertex operators
which in turn gives us the operator product expansion of the product of two vertex operators.
Modules and intertwiners of a non-chiral VOA are then defined analogous to modules of a
VOA.

1.1.3 The dictionary

Let us now describe the dictionary between non-chiral VOA and its modules and a non-chiral
CFT. Given a bosonic CFT, its chiral and anti-chiral algebra is a non-chiral VOA according to
our definition. Note that our notion of non-chiral VOA allows for more general structure in the
sense that the chiral algebra of a CFT always has the structure of a tensor product H0 ⊗H 0
as described above but non-chiral VOAs are allowed to have more general vector spaces. The
chiral and anti-chiral operators are identified with the vertex operators of the VOA. For general
non-chiral VOA, chiral and anti-chiral vertex operators form only a subsector of the set of vertex
operators, see Definition 2.2 and Theorem 2.1 below. Next, the irreducibles Hi ⊗H ī must
be identified with modules of the VOA. Again in our generic construction we allow for the
modules to have more general structure rather than a tensor product. The chiral primary field

corresponding to an irreducible Hi ⊗H ī is identified with the intertwiner Y (i,ī)
(i,ī)(0,0)

(w, x , x̄)

of type
� (i,ī)
(i,ī)(0,0)

�

where (0,0) indicates the VOA as a module for itself. The state-operator
correspondence for the space (7) corresponds to the vertex operator map for the VOA and

its modules along with the intertwining operators of type
� (i,ī)
(i,ī)(0,0)

�

. The full dictionary is
summarised in Table 1. We hope to expand the dictionary to include fusion rules and rationality
on the CFT side to the notion of tensor product of modules and (strong) regularity of non-chiral
VOAs in a future publication.

1.2 Lorentzian lattice vertex operator algebra (LLVOA)

One of the main constructions of this paper is a concrete example of a non-chiral VOA based
on an even integral Lorentzian lattice. The construction is similar to Euclidean lattice VOAs
but differs in that it also has anti-holomorphic part. We call it the Lorentzian lattice vertex
operator algebra (LLVOA). The modules for a non-chiral VOA introduced in this paper can
be defined analogous to modules for usual VOAs. In fact, we are able to construct modules
for the LLVOA in one to one correspondence with certain cosets of the lattice. Collecting the
VOA and its modules, we define the partition function of the non-chiral CFT (see Definition

7
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4.3) thus obtained. We call such CFTs Lorentzian lattice conformal field theory (LLCFT). We
find that the modules of the LLVOA constructed using the cosets of the lattice give rise to
a modular invariant partition function. We further attempt to classify all possible modular
invariant LLCFTs based on even, integral self-dual Lorentzian lattices of a given signature.
This leads us to a conjecture about automorphisms of Lorentzian lattices which we prove for
signature (m, m) but are unable to prove for general signature (m, n) with m ̸= n. Following
the physics terminology, we call the equivalence classes of LLCFTs based on Lorentzian lattices
as the moduli space of LLCFTs. As expected from physical arguments, the moduli space in
signature (m, n) is given by (see Theorem 5.5)

Mm,n
∼=

O(m, n,R)
O(m,R)×O(n,R)×O(m, n,Z)

. (20)

The paper is organised as follows: in Section 2, we introduce the notion of non-chiral VOA
and prove some elementary consequences of the definition. Then in Section 3, we construct
the LLVOA and prove that it is an example of a non-chiral VOA. In Section 4 we define the
notion of modules and intertwining operators and prove some important consequences and
results required later. In Section 5 we construct the modules of LLVOAs. We formulate a precise
conjecture about automorphism of Lorentzian lattices and under that assumption, prove that
the moduli space of LLCFTs in signature (m, n) is given by (20). Finally in Section 6 we review
the physical construction of Narain CFTs and comment on their relation to LLVOAs. Appendix
A deals with the independence of central extensions of lattices on the chosen basis of the
lattice. Appendix C contains some technical results about modules of Heisenberg algebras and
Appendix D contains the proof of Conjecture 1 for the special case m= n.

2 Non-chiral vertex operator algebra

2.1 Formal calculus

We begin by collecting some notatations about formal calculus. The reader is referred to [2,
Chapter 3,8] and [30, Chapter 2] for more details.

Let x be a formal variable. For a vector space V , we define the following:

V [x] =

(

∑

n∈N0

vn xn : vn ∈ V, where only finitely many vn ̸= 0

)

, (21)

V [[x]] =

(

∑

n∈N0

vn xn : vn ∈ V

)

, (22)

V{x}=

¨

∑

n∈F
vn xn : vn ∈ V

«

, (23)

where N0 = N ∪ {0} and F is an arbitrary field of characteristic not 2. We will mostly be
interested in the case F = R or C. For a complex number s ∈ C and formal variables x1, x2,
we will define

(x1 + x2)
s :=

∞
∑

n=0

�

s
n

�

x s−n
1 xn

2 , (24)

where the binomial coefficient is defined as
�

s
n

�

=
s(s− 1) · · · (s− n+ 1)

n!
. (25)
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Note, in a series like this, we will always have non-negative integral powers of the second
variable. With this formula, one can check that

�

1−
x1

x2

�s

x s
2 = (x2 − x1)

s . (26)

If we replace x1, x2 by complex variables z1, z2 then by definition [31]

(z1 − z2)
s := exp(s log(z1 − z2)) ,

(z2 − z1)
s := exp(s log(z2 − z1)) .

(27)

Using the fact that

log(1− z) = −
∞
∑

n=0

zn

n
, |z|< 1 , (28)

and the identity8

(−1)k
�

s
k

�

=
k
∑

ℓ=1

(−s)ℓ

ℓ!

∑

n1+···+nℓ=k
n1,...,nℓ≥1

1
n1 · · ·nℓ

, (29)

it is easy to see that9

(z1 − z2)
s = exp(s log(z1 − z2)) =

∑

n≥0

�

s
n

�

(−1)nzs−n
1 zn

2 , |z1|> |z2| ,

(z2 − z1)
s = exp(s log(z2 − z1)) =

∑

n≥0

�

s
n

�

(−1)nzs−n
2 zn

1 , |z2|> |z1| ,
(30)

which is consistent with the definition (24). Let f (x) =
∑

vn xn ∈ V [[x , x−1]], then we have
the formal version of Taylor’s theorem:

ex0
d

d x f (x) = f (x + x0) . (31)

One can prove this by expanding both sides and comparing terms of equal power of x , x0. As
before, we need to expand the RHS in non-negative integral powers of x0.

2.2 Definition of non-chiral VOA

Let
V =

∐

(h,h̄)∈R×R

V(h,h̄) , (32)

be an R×R-graded complex vector space vector space. Let

V =
∏

(h,h̄)∈R×R

V(h,h̄) , (33)

denote the algebraic completion of V . Let

V ′ =
∐

(h,h̄)∈R×R

V ′
(h,h̄)

, (34)

be the contragradient of V where V ′
(h,h̄)

is the dual of V(h,h̄). A series
∑

fn in V is said to

be absolutely convergent if for every f ′ ∈ V ′ the series
∑

|〈 f ′, fn〉| is convergent. Here,
〈 f ′, fn〉= f ′( fn) ∈ C is just the action of the linear functional on f ′ on fn.

8This identity can be proven by using the relation (1− x)s = exp(s log(1− x)) for any real x with |x | < 1 and
s ∈ C.

9Another way of proving this identity is to use Taylor’s theorem.
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Definition 2.1. A non-chiral vertex operator algebra of central charge (c, c̄) is a quintuple
(V, YV ,ω, ω̄,1) where V is an R × R-graded complex vector space and YV is a linear map,
called the vertex operator map,

YV : V ⊗ V −→ V{x , x̄} ,
u⊗ v 7−→ YV (u, x , x̄)v ,

(35)

or equivalently a map

YV :C× ×C× −→ Hom
�

V ⊗ V, V
�

,

(z, z̄) 7−→ YV (·, z, z̄) : u⊗ v 7−→ YV (u, z, z̄)v ,
(36)

which is multi-valued and analytic if z, z̄ are independent complex variables and single valued
when z̄ is the complex conjugate of z. The vertex operator YV (u, x , x̄) is expanded as a formal
power series

YV (u, x , x̄) =
∑

m,n∈R
um,n x−m−1 x̄−n−1 ∈ End(V ){x±1, x̄±1} , (37)

and when u ∈ V(h,h̄), it can also be expanded as

YV (u, x , x̄) =
∑

m,n∈R
xm,n(u)x

−m−h x̄−n−h̄ ∈ End(V ){x±1, x̄±1} , (38)

so that
xm,n(u) = um+h−1,n+h̄−1 , m, n ∈ Z . (39)

We call xm,n(u) the modes of the vertex operators YV (u, x , x̄). The degree (h, h̄) is called the
conformal weight of u ∈ V(h,h̄) and we write

wt(u) = h , wt(u) = h̄ . (40)

The vector 1 ∈ V(0,0) is called the vacuum vector and ω ∈ V(2,0), ω̄ ∈ V(0,2) are chiral and anti-
chiral conformal vectors respectively. This data is required to satisfy the following properties:

1. Identity property: The vertex operator corresponding to the vacuum vector acts as iden-
tity, i.e.

YV (1, x , x̄)u= u , ∀ u ∈ V . (41)

2. Grading-restriction property: For every (h, h̄) ∈ R×R,

dim(V(h,h̄))<∞ , (42)

and there exists M ∈ R, such that

V(h,h̄) = 0 , for h< M , or h̄< M . (43)

3. Single-valuedness property: For every homogenous subspace V(h,h̄)

h− h̄ ∈ Z . (44)

4. Creation property: For any v ∈ V

lim
x , x̄→0

YV (v, x , x̄)1= v , (45)

that is YV (v, x , x̄)1 involves only non-negative powers of x , x̄ and the constant term is v.
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5. Virasoro property: The vertex operators YV (ω, x , x̄) and YV (ω̄, x , x̄), called conformal
vertex operators, have Laurent series in x , x̄ given by

T (x) := YV (ω, x , x̄) =
∑

n∈Z
L(n)x−n−2 ,

T̄ ( x̄) := YV (ω̄, x , x̄) =
∑

n∈Z
L̄(n) x̄−n−2,

(46)

where L(n), L̄(n) are operators which satisfy the Virasoro algebra with central charge c, c̄
respectively:

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
m
�

m2 − 1
�

δm+n,0 ,

�

L̄(m), L̄(n)
�

= (m− n)L̄(m+ n) +
c̄

12
m
�

m2 − 1
�

δm+n,0 ,
(47)

and
�

L(m), L̄(n)
�

= 0 . (48)

6. Grading property: The operator (L(0), L̄(0)) is the grading operator on V , that is for
v ∈ V(h,h̄)

L(0)v = hv , L̄(0)v = h̄v . (49)

7. L(0)-property:

[L(0), YV (u, x , x̄)] = x
∂

∂ x
YV (u, x , x̄) + YV (L(0)u, x , x̄) ,

[ L̄(0), YV (u, x , x̄)] = x̄
∂

∂ x̄
YV (u, x , x̄) + YV (L̄(0)u, x , x̄) .

(50)

8. Translation property: For any u ∈ V

[L(−1), YV (u, x , x̄)] = YV (L(−1)u, x , x̄) =
∂

∂ x
YV (u, x , x̄) ,

�

L̄(−1), YV (u, x , x̄)
�

= YV

�

L̄(−1)u, x , x̄
�

=
∂

∂ x̄
YV (u, x , x̄) .

(51)

9. Locality property: For u1, . . . , un ∈ V , there is an operator-valued function10

mn(u1, ..., un; z1, z̄1, ..., zn, z̄n) ,

defined on11

{(z1, . . . , zn, z̄1, . . . , z̄n) ∈ C2n | zi , z̄i ̸= 0, zi ̸= z j , z̄i ̸= z̄ j} , (52)

which is multi-valued and analytic when z̄1, ..., z̄n are viewed as independent variables
and is single-valued when z̄1, ..., z̄n are equal to the complex conjugates of z1, ..., zn.
Moreover, for any permutation σ ∈ Sn, the product of vertex operators

YV

�

uσ(1), zσ(1), z̄σ(1)
�

· · ·YV

�

uσ(n), zσ(n), z̄σ(n)
�

, (53)

is the expansion of mn (u1, . . . , un; z1, z̄1, . . . , zn, z̄n) in the domain
�

�zσ(1)
�

� >
�

�zσ(2)
�

� > · · · > |zσ(n)| > 0. Here, z̄σ(1), ..., z̄σ(n) are complex conjugates of
zσ(1), ..., zσ(n) respectively. If a function mn satisfying above properties exists, we say
that the vertex operators
YV (u1, z1, z̄1) , . . . , YV (un, zn, z̄n) are mutually local with respect to each other.

10We thank Yi-Zhi Huang for discussions on this point.
11The matrix elements of this operator are called correlation functions in Physics.
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We will often denote the non-chiral VOA by (V, YV ) or simply by V .

Remark 2.1. Let us compare the definition of non-chiral VOA with full vertex algebra of [8].
The definition of full vertex algebra in [8] requires the locality of only 2-point correlation
function and invokes bootstrap equations for the locality of multi-point correlation functions. In
principal, requiring bootstrap equations imply the locality of multi-point correlation functions.
We take the latter approach to be completely explicit.

Remark 2.2. For a homogeneous vector u ∈ V(h,h̄), the sum in (37) and (38) runs only over
the set {(m, n) ∈ R2| m− n ∈ Z}. To see this, first note that the L(0)-property 7 implies the
commutator

�

L(0), xm,n(u)
�

= −mxm,n(u) ,
�

L̄(0), xm,n(u)
�

= −nxm,n(u) .
(54)

Equivalently,
�

L(0), um,n

�

= (h−m− 1)um,n ,
�

L̄(0), um,n

�

= (h̄− n− 1)um,n .
(55)

This implies that
wt xm,n(u) = −m , wt xm,n(u) = −n ,

wt um,n = h−m− 1 , wt um,n = h̄− n− 1 .
(56)

The single-valuedness property 3 implies that m− n ∈ Z in both the sums. We will thus write
the expansions of the vertex operators as

YV (u, x , x̄) =
∑

m,n∈R
(m−n)∈Z

um,n x−m−1 x̄−n−1 ∈ End(V ){x , x̄}

=
∑

m,n∈R
(m−n)∈Z

xm,n(u)x
−m−h x̄−n−h̄ .

(57)

Remark 2.3. The single-valuedness property 3 implies that the vertex operators (35) is single-
valued. To prove this, we must show that

YV (u, z, z̄) = YV (u, e2πiz, e−2πi z̄) . (58)

From Remark 2.2, we have

YV (u, e2πiz, e−2πi z̄) =
∑

m,n∈R
(m−n)∈Z

um,nz−m−1z̄−n−1e2πi(−m+n)

= YV (u, z, z̄) .

(59)

Remark 2.4. For v ∈ V(h,h̄), if in the expansion (38) the index runs over m ∈ Z− h, n ∈ Z− h̄,
then assuming that z, z̄ are independent complex variables, we can use Cauchy’s residue the-
orem to write

xr,s(v) =
1

(2πi)2

∮ ∮

dzdz̄ YV (v, z, z̄)zr+h−1z̄s+h̄−1 , (60)

where the contour of the integration is a circle around z = 0 and z̄ = 0 respectively.

Remark 2.5. The creation property implies also the injectivity condition, i.e.

YV (v, x , x̄) = 0 , implies v = 0 , for v ∈ V . (61)
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2.3 Some consequences of the definition

We now prove some consequences of the definition. These are well-known for VOAs, see [2,9].

Lemma 2.1. For any v ∈ V , we have

YV (v, x , x̄)1= e x̄ L̄(−1)ex L(−1)v . (62)

Proof. We use the translation property 8 and Taylor’s theorem (31). For another formal vari-
able x0, x̄0, Taylor’s theorem gives

YV

�

ex L(−1)e x̄ L̄(−1)v, x0, x̄0

�

= ex d
d x e x̄ d

d x̄ YV (v, x0, x̄0) = YV (v, x + x0, x̄ + x̄0) . (63)

Now applying this operator on 1, taking limit x0, x̄0→ 0 we get

lim
x0, x̄0→0

YV

�

ex L(−1)e x̄ L̄(−1)v, x0, x̄0

�

1= lim
x0, x̄0→0

YV (v, x + x0, x̄ + x̄0)1 , (64)

and then using (45) we obtain (62).

Lemma 2.2. For any v ∈ V we have

ex2 L(−1)e x̄2 L̄(−1)YV (v, x1, x̄1)e
−x2 L(−1)e− x̄2 L̄(−1) = YV (v, x1 + x2, x̄1 + x̄2) . (65)

Proof. Using the BCH formula (224) and translation property 8, we have

ex2 L(−1)YV (v, x1, x̄1)e
−x2 L(−1) =

∞
∑

n=0

[(x2 L(−1))n, YV (v, x1, x̄1)]
n!

=
∞
∑

n=0

1
n!

xn
2
∂ n

∂ xn
1

YV (v, x1, x̄1)

= ex2
∂
∂ x1 YV (v, x1, x̄1)

= YV (v, x1 + x2, x̄1) ,

(66)

where in the last step we used Taylor’s theorem (31). Similarly we have

e x̄2 L̄(−1)YV (v, x1, x̄1)e
− x̄2 L̄(−1) = YV (v, x1, x̄1 + x̄2) . (67)

Since L(−1) and L̄(−1) commute, the result follows.

We now prove skew-symmetry which will be useful in proving the duality of vertex opera-
tors.

Lemma 2.3. For any u, v ∈ V , we have

YV (u, z, z̄)v = ezL(−1)ez̄ L̄(−1)YV (v,−z,−z̄)u . (68)

Proof. Using Lemma locality property 9, 2.1 and Lemma 2.2, we have

YV (u, z, z̄)YV (v, z′, z̄′)1∼ YV (v, z′, z̄′)YV (u, z, z̄)1

= YV (v, z′, z̄′)ez̄ L̄(−1)ez L(−1)u

= ez̄ L̄(−1)ez L(−1)YV (v, z′ − z, z̄′ − z̄)u .

(69)

Now taking z′, z̄′→ 0 and using the creation property, we obtain the required result.
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The following proposition shows the uniqueness of vertex operators. The proof is on the
lines of [3].

Proposition 2.1. Let U : V −→ V{x , x̄} be a linear operator which is local with respect to every
other vertex operator, in the sense of Property 9, and satisfies

U(x , x̄)1= e x̄ L̄(−1)ex L(−1)v , (70)

for some v ∈ V , then
U(z, z̄) = YV (v, z, z̄) , (71)

for a non-zero complex number z.

Proof. For any w ∈ V , from Lemma 2.1 and locality property 9 we have

U(z1, z̄1)e
z̄2 L̄(−1)ez2 L(−1)w= U(z1, z̄1)YV (w, z2, z̄2)1

∼ YV (w, z2, z̄2)U(z1, z̄1)1

= YV (w, z2, z̄2)e
z̄1 L̄(−1)ez1 L(−1)v

= YV (w, z2, z̄2)YV (v, z1, z̄1)1

∼ YV (v, z1, z̄1)YV (w, z2, z̄2)1 ,

(72)

where ∼ indicates equality up to analytic extension in the sense of Property 9. Now taking
z2, z̄2→ 0 we obtain,

U(z1, z̄1)w= YV (v, z1, z̄1)w . (73)

As the two operators in (73) are equal for all w ∈ V , they are equal as operators.

We now prove the duality of vertex operators. For VOA, this is proved in [3,32].

Proposition 2.2. For any v, w ∈ V we have

YV (v, z1, z̄1)YV (w, z2, z̄2) = YV (YV (v, z1 − z2, z̄1 − z̄2)w, z2, z̄2) , (74)

in the domain |z1|> |z2|> |z1 − z2|> 0, where the RHS is defined by

YV (YV (v, z1− z2, z̄1− z̄2)w, z2, z̄2) =
∑

m,n∈R
(m−n)∈Z

YV (vm,n ·w, z2, z̄2)(z1− z2)
−m−1(z̄1− z̄2)

−n−1 . (75)

Proof. The proof is on the lines of [32, Page 23]. For any u ∈ V, we have

YV (v, z1, z̄1)YV (w, z2, z̄2)e
z̄3 L̄(−1)ez3 L(−1)u

= YV (v, z1, z̄1)YV (w, z2, z̄2)YV (u, z3, z̄3)1

∼ YV (u, z3, z̄3)YV (v, z1, z̄1)YV (w, z2, z̄2)1

= YV (u, z3, z̄3)YV (v, z1, z̄1)e
z̄2 L̄(−1)ez2 L(−1)w

= YV (u, z3, z̄3)e
z̄2 L̄(−1)ez2 L(−1)YV (v, z1 − z2, z̄1 − z̄2)w

= YV (u, z3, z̄3)YV (YV (v, z1 − z2, z̄1 − z̄2)w, z2, z̄2)1

∼ YV (YV (v, z1 − z2, z̄1 − z̄2)w, z2, z̄2)YV (u, z3, z̄3)1 ,

(76)

where we used Lemma 2.1, Lemma 2.2, and Locality property 9. Now taking z3, z̄3 → 0 and
using Proposition 2.1, we obtain the duality relation. Note that the sum on the RHS of (75)
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converges. Indeed for any u ∈ V , using skew-symmetry12

(Lemma 2.3) we have

YV (YV (v,z1 − z2, z̄1 − z̄2)w, z2, z̄2)u

=
∑

m,n∈R
(m−n)∈Z

YV (vm,n ·w, z2, z̄2)(z1 − z2)
−m−1(z̄1 − z̄2)

−n−1u

=
∑

m,n∈R
(m−n)∈Z

ez̄2 L̄(−1)ez2 L(−1)YV (u,−z2,−z̄2)vm,n ·w(z1 − z2)
−m−1(z̄1 − z̄2)

−n−1

= ez̄2 L̄(−1)ez2 L(−1)YV (u,−z2,−z̄2)
∑

m,n∈R
(m−n)∈Z

vm,n ·w(z1 − z2)
−m−1(z̄1 − z̄2)

−n−1

= ez̄2 L̄(−1)ez2 L(−1)YV (v,−z2,−z̄2)YV (u, z1 − z2, z̄1 − z̄2)w .

(77)

Since the RHS of the last line is well defined in |z2| > |z1 − z2|, the operator
YV (YV (v, z1 − z2, z̄1 − z̄2)w, z2, z̄2) is well defined in |z2|> |z1 − z2|.

Proposition 2.2 shows that a product of two vertex operators can be written as a sum of
single vertex operator:

YV (v, z1, z̄1)YV (w, z2, z̄2) =
∑

m,n∈R
(m−n)∈Z

YV (vm,n ·w, z2, z̄2)(z1 − z2)
−m−1(z̄1 − z̄2)

−n−1. (78)

In physics, we usually ignore the non-singular terms in the expansion above and call it the
operator product expansion.

Remark 2.6. The sum in the operator product expansion has finitely many terms with negative
powers of (z1 − z2) and (z̄1 − z̄2). To see this, we first expand the vertex operator YV (v, x , x̄)
for v ∈ V(h,h̄) as

YV (v, x , x̄) =
∑

m,n∈R
(m−n)∈Z

xm,n(v)x
−m−h x̄−n−h̄ . (79)

Since
wt xm,n(v) = −m , wt xm,n(v) = −n , (80)

for w ∈ V(h′,h̄′) we have
xm,n(v) ·w ∈ V(h′−m,h̄′−n) . (81)

Due to the grading-restriction property 2, there exists M ∈ Z such that

xm,n(v) ·w= 0 , m, n> M . (82)

Thus the operator product expansion is upper truncated.

Proposition 2.3. The operator product expansion of the conformal vertex operator T (x) with
itself is given by

T (x1)T (x2) =
c
2

1
(x1 − x2)4

+
2 T (x2)
(x1 − x2)2

+
1

(x1 − x2)
∂

∂ x2
T (x2) + G1(x1, x2) ,

T̄ ( x̄1)T̄ ( x̄2) =
c̄
2

1
( x̄1 − x̄2)4

+
2 T̄ ( x̄2)
( x̄1 − x̄2)2

+
1

( x̄1 − x̄2)
∂

∂ x̄2
T̄ ( x̄2) + G2( x̄1, x̄2) ,

T (x1)T̄ ( x̄2) = G3(x1, x̄2) ,

(83)

where G1(x1, x2), G3(x1, x2) ∈ End(V )[[x±1
2 , (x1−x2)]], G2( x̄1, x̄2) ∈ End(V )[[ x̄±1

2 , ( x̄1− x̄2)]].

12We thank Yi-Zhi Huang for clarification on this point.
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Proof. The proof is straightforward using the Virasoro algebra (47), see [33, Chapter 3] for
more details.

Of particular interest are the chiral and anti-chiral vertex operators.

Definition 2.2. A vector u ∈ V is called a chiral (anti-chiral) vector if the corresponding vertex
operator YV (u, x , x̄) belongs in End(V ){x±1} (End(V ){ x̄±1}) or equivalently only depends on
z (z̄). Such vertex operators will be called chiral (anti-chiral) vertex operators.

Remark 2.7. From the translation property 8 we see that the vertex operator corresponding
to v is chiral if and only if L̄(−1)v = 0 and anti-chiral if and only if L(−1)v = 0. The algebra
of the modes of chiral (anti-chiral) vertex operators is called the chiral (anti-chiral) algebra in
physics, see Corollary 2.11.

Remark 2.8. In the locality property 9 involving a chiral (resp. anti-chiral) vertex operator
YV (u1, z1)(resp. YV (u1, z̄1)) and another vertex operator YV (u2, z2, z̄2), we will often denote
the function m by

R(YV (u1, z1)YV (u2, z2, z̄2)) (resp. R(YV (u1, z̄1)YV (u2, z2, z̄2))) , (84)

so that

R(YV (u1, z1)YV (u2, z2, z̄2)) =

¨

YV (u1, z1)YV (u2, z2, z̄2) , for |z1|> |z2| ,
YV (u2, z2, z̄2)YV (u1, z1) , for |z2|> |z1| ,

(85)

and

R(YV (u1, z̄1)YV (u2, z2, z̄2)) =

¨

YV (u1, z̄1)YV (u2, z2, z̄2) , for |z1|> |z2| ,
YV (u2, z2, z̄2)YV (u1, z̄1) , for |z2|> |z1| ,

(86)

respectively. In physics, this is called radial ordering. Here z2, z̄2 are complex conjugates of
each other.

Lemma 2.4. Let u, v be homogeneous chiral and anti-chiral vector. Then the associated chiral
and anti-chiral vertex operator has an expansion of the form

YV (u, x) =
∑

n∈Z
xn(u)x

−n−(wt u−wt u) ∈ End(V )[[x±1]] ,

YV (v, x̄) =
∑

n∈Z
x̄n(v) x̄

−n−(wt v−wt v) ∈ End(V )[[ x̄±1]] ,
(87)

where
xn(u) := xn−wt u,−wt u(u) , x̄n(v) := x−wt v,n−wt v(v) . (88)

Proof. From the expansion (57), we see that YV (u, x , x̄) will be independent of x̄ if and only
if

xm,n(u) = 0 , unless n= −wt u . (89)

But as m− n ∈ Z we then have

xm,n(u) = 0 , unless n= −wt u , m ∈ Z−wt u . (90)

This gives us the required expansion. The proof for anti-chiral vector v is similar. The fact
that YV (u, x) ∈ End(V )[[x±1]], YV (v, x̄) ∈ End(V )[[ x̄±1]] follows from the single-valuedness
property 3.
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Remark 2.9. By the above lemma, for chiral and anti-chiral vertex operators, the requirements
in Remark 2.4 is satisfied and hence we can write

xn(u) =
1

2πi

∮

dz YV (u, z)zn+(wt u−wt u)−1 ,

x̄n(v) =
1

2πi

∮

dz̄ YV (v, z̄)z̄n+(wt v−wt v)−1 ,

(91)

where u, v are chiral and anti-chiral vectors respectively and the contour of integration is a
circle around z = 0, z̄ = 0 respectively.

We now derive the commutator of the modes of two vertex operators and the Borcherd’s
identity [1].

Theorem 2.1. Let ui ∈ V(hi ,h̄i) and u j ∈ V(h j ,h
′
j)
(vi ∈ V(h′i ,h̄′i) and v j ∈ V(h′j ,h̄′j)) be homogeneous

chiral (resp. anti-chiral) vectors with corresponding vertex operators

YV (ui , x) =
∑

n∈Z
xn(ui)x

−n−(hi−h̄i) , YV (u j , x) =
∑

n∈Z
xn(u j)x

−n−(h j−h̄ j) ,

YV (vi , x̄) =
∑

n∈Z
x̄n(vi) x̄

−n−(h̄′i−h′i) , YV (v j , x̄) =
∑

n∈Z
x̄n(v j) x̄

−n−(h̄′j−h′j) .
(92)

Then the vectors xp(ui) ·u j and x̄p(vk) · vℓ are chiral and anti-chiral vectors respectively. Further,
we have

[xn(ui), xk(u j)] =
∑

p≥−(hi−h̄i)+1

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

xk+n(xp(ui) · u j) ,

[ x̄n(vi), x̄k(v j)] =
∑

p≥−(h̄′i−h′i)+1

�n+ (h̄′i − h′i)− 1

p+ (h̄′i − h′i)− 1

�

x̄k+n( x̄p(vi) · v j) ,

[xn(ui), x̄k(v j)] = 0 .

(93)

In particular,

[L(n), xk(ui)] =
∑

p≥−1

�

n+ 1
p+ 1

�

xk+n(L(p) · ui) ,

[L(n), x̄k(vi)] = 0 ,

[ L̄(n), x̄k(vi)] =
∑

p≥−1

�

n+ 1
p+ 1

�

x̄k+n(L̄(p) · vi) ,

[ L̄(n), xk(ui)] = 0 .

(94)

More generally, for m ∈ Z and m+ ∈ Z≥0 we have the Borcherd’s identity:
∑

r≥0

�

m
r

�

�

(−1)r xn+m−r(ui)xk+r(u j)− (−1)m+r xk+m−r(u j)xn+r(ui)
�

=
∑

p≥1−(hi−h̄i)

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

xk+n+m+h̄i−h̄ j
(xp+m(ui) · u j) , (95)

∑

r≥0

�

m
r

�

�

(−1)r x̄n+m−r(vi) x̄k+r(v j)− (−1)m+r x̄k+m−r(v j) x̄n+r(vi)
�

=
∑

p≥1−(h̄′i−h′i)

�n+ (h̄′i − h′i)− 1

p+ (h̄′i − h′i)− 1

�

x̄k+n+h′i−h′j
( x̄p+m(vi) · v j) , (96)
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∑

r≥0

�

m+
r

�

�

(−1)r xn+m+−r(ui) x̄k+r(v j)− (−1)m++r x̄k+m+−r(v j)xn+r(ui)
�

= 0 . (97)

Proof. We first show that xp(ui)·u j and x̄p(vk)·vℓ are chiral and anti-chiral vectors respectively.
Indeed by the translation property 8

[ L̄(−1), xp(ui)] = 0 , (98)

which implies that
L̄(−1) · (xp(ui) · u j) = xp(ui) · L̄(−1)u j = 0 . (99)

Similarly
L(−1) · ( x̄p(vk) · vℓ) = 0 . (100)

Now, we will follow the usual contour integration procedure, see for example [33, Section
3.3.10]. First note that

YV (ui , z1)YV (u j , z2), YV (u j , z2)YV (ui , z1), R(YV (ui , z1)YV (u j , z2)) , (101)

are single-valued and analytic in z1, z2 since their partial derivative with respect to z̄1, z̄2 is
zero. So we can use Cauchy’s residue theorem to integrate over z1, z2 on any contour. Now
let r1 > r2 > r3 > 0 be real numbers. Let Ca

i (z) denote a contour in the variable zi , in
counterclockwise direction, of radius a and centered around z. Further, C r

i := C r
i (0). Let

f (z1, z2) be a rational function analytic in z1, z2 with poles only at z1 = 0, z2 = 0, z1 = z2. The
integrals

∮

C
r2
2

dz2

∮

C
r1
1

dz1 YV (ui , z1)YV (u j , z2) f (z1, z2) ,

and

∮

C
r2
2

dz2

∮

C
r3
1

dz1 YV (u j , z2)YV (ui , z1) f (z1, z2) ,
(102)

are well-defined. By the locality property 9 and the OPE (75), we see that
∮

C
r2
2

dz2

∮

C
r1
1

dz1 YV (ui , z1)YV (u j , z2) f (z1, z2)−
∮

C
r2
2

dz2

∮

C
r3
1

dz1 YV (u j , z2)YV (ui , z1) f (z1, z2)

=

∮

C
r2
2

dz2

∮

C
r1
1 −C

r3
1

dz1 R(YV (ui , z1)YV (u j , z2)) f (z1, z2)

=

∮

C
r2
2

dz2

∮

Cδ1 (z2)
dz1 YV (YV (ui , z1 − z2)u j , z2) f (z1, z2)

=

∮

C
r2
2

dz2

∮

Cδ1 (z2)
dz1

∑

p∈Z
YV (xp(ui) · u j , z2)(z1 − z2)

−p−(hi−h̄i) f (z1, z2) , (103)

where δ is some small real number, see [33, Section 3.3.10] for details of the change in contour.
If we now choose

f = zn+(hi−h̄i)−1
1 z

k+(h j−h̄ j)−1
2 , (104)

then using (91) the LHS is13 [xn(ui), xk(u j)] while Cauchy’s residue theorem gives the RHS to
be

∮

C
r2
2

dz2

∑

p≥−(hi−h̄i)+1

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

YV (xp(ui) · u j , z2)z
k+(h j−h̄ j)+n−p−1
2 , (105)

13There is a factor of (2πi)2 which cancels on both sides, so we ignore it.
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where we used the identity

∮

Cδ1 (z2)
dz1

zn+(hi−h̄i)−1
1

(z1 − z2)p+(hi−h̄i)
=
�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

zn−p
2 . (106)

Note, that it is necessary that (hi − h̄i) ∈ Z, which is true by the single valuedness property 3,
for (106) to hold. Finally, using (91) and the fact that

xp(ui).u j ∈ Vh j−p+h̄i ,h̄i+h̄ j
, (107)

the RHS becomes
∑

p≥−(hi−h̄i)+1

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

xk+n(xp(ui) · u j) . (108)

The second commutator is similar. To prove the third commutator, note that since

∂z̄1
R(YV (ui , z1)YV (v j , z̄2)) = ∂z2

R(YV (ui , z1)YV (v j , z̄2)) = 0 , (109)

R(YV (ui , z1)YV (v j , z̄2)) cannot have any dependence on (z1 − z2) or (z̄1 − z̄2). Moreover, from
the proof of the OPE in Proposition 2.2, we see that it cannot also have (z1 − z̄2) dependence
as well. This implies that the contour integral on the RHS of (103) vanishes and we get

[xm(ui), x̄n(v j)] = 0 . (110)

The three Borcherd’s identity follow by using

f1 = zn+(hi−h̄i)−1
1 z

k+(h j−h̄ j)−1
2 (z1 − z2)

m ,

f2 = z̄
n+(h̄′i−h′i)−1
1 z̄

k+(h̄′i−h′i)−1
2 (z̄1 − z̄2)

m ,

f3 = zn+(hi−h̄i)−1
1 z̄

k+(h̄ j−h′j)−1

2 (z1 − z̄2)
m ,

(111)

where for the second Borcherd’s identity, we need to integrate against dz̄1, dz̄2 on the curves
C r1

z̄1
, C r2

z̄2
respectively and for the third Borcherd’s identity, we need to integrate against dz1, dz̄2

on the curves C r1
z1

, C r2
z̄2

respectively.

Remark 2.10. For n= 0,−1 in (94) we obtain the L(0)-property 7 and the translation property
8 of chiral vertex operators. Note that we already used these properties in proving the OPE.

Remark 2.11. The commutator of the modes of chiral and anti-chiral vertex operators is
closed. The algebra in (93) thus obtained is called the chiral and anti-chiral algebra respec-
tively of the non-chiral VOA (V, YV ).

Definition 2.3. Let (V, YV ) be a non-chiral VOA with central charge (c, c̄). The graded dimen-
sion or character of V is defined by

χV (τ, τ̄) := TrV qL(0)− c
24 q̄ L̄(0)− c̄

24 =
∑

(h,h̄)∈R×R

�

dim V(h,h̄)

�

qh− c
24 q̄h̄− c̄

24 , (112)

where q = e2πiτ, q̄ = e−2πiτ̄ and τ ∈H := {τ= x + i y : y > 0}.

Note that the single-valuedness property implies that χV (τ+ 1, τ̄+ 1) = χV (τ, τ̄) if

c − c̄ = 24k , (113)
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for some integer k.
Let (V1, YV1

,ωV1
, ω̄V1

,1V1
), (V2, YV2

,ωV2
, ω̄V2

,1V2
) be two non-chiral VOAs with the same

central charge. Then a map f : V1 → V2 is called a non-chiral VOA homomorphism if it is a
grading-preserving linear map such that

f (YV1
(u, x , x̄)v) = YV2

( f (u), x , x̄) f (v) , for u, v ∈ V1 , (114)

or equivalently,

f
�

un,m · v
�

= f (u)n,m f (v) , for u, v ∈ V1 , n, m ∈ R , (115)

and such that
f (1V1

) = 1V2
, f (ωV1

) =ωV2
, f (ω̄V1

) = ω̄V2
. (116)

An isomorphism of non-chiral VOAs is a bijective homomorphism. An endomorphism of a
non-chiral VOA V is a homomorphism from V to itself, and an automorphism of V is a bijec-
tive endomorphism. In particular, an automorphism can be defined as a linear isomorphism
f : V → V such that

f ◦ YV (v, x , x̄) ◦ f −1 = YV ( f (v), x , x̄) , for v ∈ V ,

f (ω) =ω , f (ω̄) = ω̄ .
(117)

It follows that f is grading-preserving and f (1V ) = 1V .
It is easy to see that the graded dimension of isomorphic non-chiral VOAs are identical.

3 Lorentzian lattice vertex operator algebra (LLVOA)

In this section, we will construct a non-chiral vertex operator algebra corresponding to an
even, integral Lorentzian lattice Λ ⊂ Rm,n. In the first subsection, we recall some basic facts
about Lorentzian lattices and set up the notations for the rest of the paper. We also record some
results we will need later. In the next subsection, we gather the ingredients needed to construct
a non-chiral vertex operator algebra, i.e. we will construct a vector space VΛ associated to the
lattice, a vertex operator map YVΛ for this vector space, a vacuum 1, and conformal vectorsωL ,
ωR. In the last subsection, we will prove that (VΛ, YVΛ ,ωL ,ωR,1) is a non-chiral VOA, which
we will call the Lorentzian lattice vertex operator algebra (LLVOA).

3.1 Lorentzian lattices

We begin with some basic definitions. Let Rm be the Euclidean space equipped with a symmet-
ric bilinear form 〈·, ·〉m. Let Rm,n denote the (m+ n)-dimensional vector space Rm+n equipped
with the symmetric bilinear form

x ◦ x ′ := 〈 x⃗ , x⃗ ′〉m − 〈 y⃗ , y⃗ ′〉n , (118)

where
x = (x1, . . . , xm, y1, . . . , yn)≡ ( x⃗ , y⃗) , (119)

and similarly x ′. We will omit the subscript on 〈·, ·〉m to make the notation lighter.

Definition 3.1. 1. A d = (m + n)-dimensional Lorentzian lattice of signature (m, n) is a
subset Λ ⊂ Rm,n which is also a free Z-module spanned by m + n vectors λ j ∈ Rm,n,
1≤ j ≤ m+ n, linearly independent in Rm,n. More explicitly

Λ=

(

m+n
∑

j=1

n jλ j : n j ∈ Z

)

. (120)
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{λ j}m+n
j=1 is called an integral basis of Λ. When n = 0 we call Λ a Euclidean lattice. We

will simply refer them as lattices when we do not need to specify their signature.

2. The dual lattice of a lattice Λ, denoted by Λ⋆, is defined as

Λ⋆ = {x ′ ∈ Rm,n : x ◦ x ′ ∈ Z ∀ x ∈ Λ} . (121)

The lattice Λ is said to be integral if Λ ⊆ Λ⋆, i.e. x ◦ y ∈ Z for all x , x ′ ∈ Λ and self-dual
if Λ= Λ⋆. The lattice Λ is said to be even if

x ◦ x = || x⃗ ||2 − || y⃗||2 ∈ 2Z , (122)

for all x = ( x⃗ , y⃗) ∈ Λ, where || x⃗ ||2 := 〈 x⃗ , x⃗〉.

3. A generator matrix for Λ is an (m+ n)× (m+ n) matrix such that the Z-span of its rows
is Λ.

4. A lattice homomorphism of two lattices f : Λ −→ Λ̃ of the same signature is simply a
Z-module morphism which also preserves the bilinear form:

f (x ) ◦ f (x ′) = x ◦ x ′ , ∀ x , x ′ ∈ Λ . (123)

A bijective lattice homomorphism is called a lattice isomorphism. Two lattices are said
to be isomorphic if there exists a lattice isomorphism between them.

5. An automorphism of the lattice Λ is a lattice isomorphism from the Λ to itself. The group
of all automorphisms (the group operation being composition) is called the automor-
phism group of Λ and denoted by Aut(Λ).

A generator matrix for the lattice Λ in (120) is given by

GΛ =





λ1
1 λ2

1 · · · λm+n
1

...
... · · ·

...
λ1

m+n λ1
m+n · · · λm+n

m+n



 , (124)

where λi = (λ1
i , . . . ,λm+n

i ) is a basis vector of Λ. It is not hard to show that two generator
matrices GΛ,G′Λ generate the same lattice if and only if they are related by an (m+n)×(m+n)
unimodular matrix14 U ∈ GL(m+ n,Z):

GΛ = UG′Λ . (125)

Indeed U is the change of basis matrix between the primed and unprimed generator matrices
since it is invertible and since it is also integral, it preserves the lattice. If we take the symmetric
bilinear form 〈·, ·〉 on Rm,Rn to be the standard inner product, that is,

〈 x⃗ , x⃗ ′〉=
m
∑

i=1

x i x ′i , (126)

where x⃗ = (x1, . . . , xm) ∈ Rm and similarly x⃗ ′ and analogous inner product on Rn, then a
lattice isomorphism between lattices of signature (m, n) can be identified with an element of
O(m, n,R) where O(m, n,R) is the group of matrices, A, satisfying

AT gm,nA= gm,n , gm,n =

�

1m 0
0 −1n

�

. (127)

We have the following theorem:

14A matrix U is called unimodular if det(U) = ±1.
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Theorem 3.1. [34, Chapter V] An even, self-dual lattice of signature (m, n) exists if and only
if (m− n) ≡ 0 mod 8. Moreover, there is a unique such lattice when n ≥ 1 up to an O(m, n,R)
transformation.

The canonical choice of an even, self-dual lattice of signature Rm,n, denoted by IIm,n, is

IIm,n =

¨

(a1, . . . , am+n) ∈ Rm,n : ai ∈ Z or ai ∈ Z+
1
2

,
m+n
∑

i=1

ai ∈ 2Z

«

. (128)

For m+ n ∈ 4Z, a generator matrix for this lattice is

GIIm,n
=



































1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

0 0 · · · 0 0 −1
0 0 · · · 0 0 −1
...

... · · ·
...

...
...

0 0 · · · 0 0 −1
0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
0 0 · · · 0
1
2

1
2 · · ·

1
2

1 0 · · · 0 0 −1
0 1 · · · 0 0 −1
...

... · · ·
...

...
...

0 0 · · · 1 0 −1
0 0 · · · 0 0 2
1
2

1
2 · · ·

1
2

1
2

1
2



































. (129)

We will use this lattice to elucidate many of the notations which we now introduce. Consider
a d-dimensional even, integral, Lorentzian lattice Λ ⊂ Rm,n with Lorentzian inner product,
denoted as before by ◦, where m+ n= d. We will often write a vector λ ∈ Λ as λ= (αλ,βλ),
where αλ ∈ Rm and βλ ∈ Rn. Then we can write

λ1 ◦λ2 = 〈αλ1 ,αλ2〉 − 〈βλ1 ,βλ2〉 ∈ Z . (130)

Note that in general 〈αλ1 ,αλ2〉, 〈βλ1 ,βλ2〉 ̸∈ Z. We define the Z-modules

Λ1 = {αλ |λ= (αλ,βλ) ∈ Λ for some βλ ∈ Rn} ⊂ Rm ,

Λ2 = {βλ |λ= (αλ,βλ) ∈ Λ for some αλ ∈ Rm} ⊂ Rn .
(131)

Let {λi ≡ (αλi ,βλi )}di=1 be a basis of Λ. Then it is easy to see that

Λ1 = SpanZ{α
λi}di=1 , Λ2 = SpanZ{β

λi}di=1 . (132)

Note that in general Λ1 and Λ2 are not lattices, they are just finitely generated Z modules
possibly with non-trivial torsion. For the lattice IIm,n in (129), it is easy to see that

(IIm,n)1 = Zm
⋃

�

Z+
1
2

�m

,

(IIm,n)2 = Zn
⋃

�

Z+
1
2

�n

.
(133)

We further identify even, integral, Euclidean sublattices of Λ as follows:

Λ0
1 := {(α, 0) ∈ Λ |α ∈ Rm} ,

Λ0
2 := {(0,β) ∈ Λ |β ∈ Rn} .

(134)
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These can be identified naturally with submodules of Λ1 and Λ2 respectively. Clearly, Λ0
1,Λ0

2
are sublattices of Λ since any submodule of a finitely generated free module over a principal
ideal domain is free. We also introduce the notation

Λ0 := Λ0
1 ⊕Λ

0
2 . (135)

Note that the direct sum of Λ0
1 and Λ0

2 is meaningful as they are two Z-modules. For the lattice
IIm,n in (129), (IIm,n)0 = (IIm,n)01 ⊕ (IIm,n)02 is easily seen to be generated by

G(IIm,n)0 :=

�

Gm 0m×n
0n×m Gn ,

�

, (136)

where

Gm :=













1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...

...
... · · ·

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 2













m×m

, (137)

and Gn is defined similarly. It is useful to characterize the automorphisms of Λ. We will take
the symmetric bilinear form on Rm,Rn to be the standard inner product for brevity. We have
the following important result.

Theorem 3.2. Let Λ ∈ Rm,n be an integral Lorentzian lattice. Then Aut(Λ)∼= OΛ(m, n,Z) where

OΛ(m, n,Z) := {A∈ GL(m+ n,Z) : G−1
Λ AGΛ ∈ O(m, n,R)} . (138)

Proof. Choose an integral basis {λi} of Λ. Then the group of Z-module automorphisms of Λ
can be identified with GL(m + n,Z). Now given any λ,λ′ ∈ Λ there exists coulumn vectors
n⃗, n⃗′ ∈ Zm+n such that λ= n⃗TGΛ and λ′ = n⃗

′TGΛ. Any module automorphism A∈ GL(m+n,Z)
acts by

A(λ) = n⃗T AGΛ . (139)

For A to preserve inner product, we must have

A(λ) ◦ A(λ′) = n⃗T AGΛgm,nGT
ΛAT n⃗′ ,

= n⃗TGΛgm,nGT
Λ n⃗′ ,

(140)

which implies
AGΛgm,nGT

ΛAT = GΛgm,nGT
Λ . (141)

Since {λi} is a basis for Rm,n and A must preserve the inner products of λi ’s, we must have
that A= GΛOG−1

Λ for some O ∈ O(m, n,R).

3.2 Construction of the LLVOA

Let Λ ⊂ Rm,n be a d = (m+ n)-dimensional Lorentzian lattice. We denote by C[Λ] the group
algebra of the lattice Λ and denote the element λ ∈ Λ embedded in C[Λ] by eλ. The multipli-
cation in C[Λ] is defined15 by

eλ1 · eλ2 = eλ1+λ2 . (142)

Define the vector space
hi := Λi ⊗Z C , i = 1,2 , (143)

15Technically speaking, C[Λ] is the group algebra of the formal group eΛ := {eλ : λ ∈ Λ} with group multiplica-
tion given by eλ1 · eλ2 = eλ1+λ2 , i.e. C[Λ] = C[eΛ]
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and extend the bilinear form on Λi to hi C-linearly. Here Λi is defined as in (131). We define
the Lie algebra

ĥ :=

�

⊕

r,s∈Z
(h1 ⊗ t r)⊕ (h2 ⊗ t̄ s)

�

⊕ (Ck⊕Ck̄) . (144)

Introduce the notation

α(r) := α⊗ t r , β(s) := β ⊗ t̄ s , α ∈ h1,β ∈ h2 . (145)

The non-zero Lie bracket on ĥ is

[α(r1),α
′(r2) ] = r1




α,α′
�

δr1+r2,0 k ,

[β(s1),β
′(s2) ] = s1




β ,β ′
�

δs1+s2,0 k̄ .
(146)

Note that
ĥ= ĥ⋆1 ⊕ ĥ

⋆
2 ⊕ ĥ

0
1 ⊕ ĥ

0
2 , (147)

where ĥ⋆1, ĥ⋆2 are the standard Heisenberg algebras associated to the abelian Lie algebras h1,h2
respectively [2, Chapter 1] and

ĥ0
1 := h1 ⊗ t0 ∼= h1 , ĥ0

2 := h2 ⊗ t̄0 ∼= h2 . (148)

Define

ĥ− :=

�

⊕

r,s<0

(h1 ⊗ t r)⊕ (h2 ⊗ t̄ s)

�

, ĥ0 := (h1 ⊗ t0)⊕ (h2 ⊗ t̄0)⊕Ck⊕Ck̄ ,

ĥ+ :=

�

⊕

r,s>0

(h1 ⊗ t r)⊕ (h2 ⊗ t̄ s)

�

.

(149)

Note that
ĥ= ĥ− ⊕ ĥ0 ⊕ ĥ+ . (150)

We now define the space

VΛ := S(ĥ−)⊗C[Λ0
1 ⊕Λ

0
2] , (151)

where Λ0
1 and Λ0

2 is defined as in (134) and for any Lie algebra g, S(g) is the symmetric algebra
for g, and C[Λ0

1⊕Λ
0
2]≡ C[Λ0] is considered as a subspace of C[Λ]. The space VΛ is generated

by elements of the form

�

α1(−m1) ·α2(−m2) · · ·αk(−mk) · β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)
�

⊗ e(α,β) , (152)

for mi , m̄i > 0, k, k̄ ≥ 0, (α,β) ∈ Λ0, αi ∈ h1, and βi ∈ h2. The space VΛ is a natural module of
ĥ−. We define the action of ĥ0 on C[Λ], and hence on C[Λ0], by

α′(0)eλ = 〈α′,αλ〉eλ ,

β ′(0)eλ = 〈β ′,βλ〉eλ ,
(153)

where α′(0) ∈ ĥ0
1, β ′(0) ∈ ĥ0

2. The central elements k and k̄ act on C[Λ] as identity. Let ĥ+ act
on C[Λ] by 0. We can extend the action of these subspaces of ĥ to VΛ by using the Lie bracket
given in (146). This makes VΛ into an ĥ-module.
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We define a Z-bilinear map ε : Λ×Λ→ Z, which acts on the basis as [35]

ε
�

λi ,λ j

�

=

¨

λi ◦λ j , i > j ,

0 , i ≤ j ,
(154)

where {λi}m+n
i=1 is an integral basis of Λ. The action of ε on general vectors is defined by the

Z-bilinearity of ε. Consider Λ̂= Z2 ×Λ, with the multiplication on it given by

(θ ,λ) · (τ,λ′) =
�

θτ (−1)ε(λ,λ′),λ+λ′
�

. (155)

We now consider the Z2 central extension of the lattice Λ:

0 −→ Z2 −→ Λ̂ −→ Λ −→ 0 . (156)

We denote elements (1,λ), (θ , 0) ∈ Λ̂ by eλ = (1,λ) and θ = (θ , 0) respectively. Then it is
easy to check that

(θ ,λ) = θ eλ = eλθ , (157)

and
eλeµ = (−1)ε(λ,µ) eλ+µ . (158)

Using the above relation, it can be shown that (see Lemma A.1 for proof)

eλeµ = (−1)λ◦µ eµ eλ . (159)

This property requires that the lattice be even and integral. Note that we chose an integral
basis of Λ to define the central extension. In Appendix A we show that a cocycle ε̃ defined
analogous to (154) for a different choice of basis is cohomologous to ε, and hence gives rise
to an isomorphic central extension. Λ̂ acts on C[Λ] as follows

(θ ,λ′)eλ = θ (−1)ε(λ
′,λ) eλ+λ

′
. (160)

In particular for (θ ,λ′) = (1,λ′) = eλ′ , we have

eλ′ e
λ = (−1)ε(λ

′,λ) eλ+λ
′
. (161)

Note that the same cocycle ε restricted to Λ0

ε : Λ0 ×Λ0 −→ Z , (162)

defines a central extension Λ̂0 := Z2 ×Λ0 ⊂ Λ̂:

0 −→ Z2 −→ Λ̂0 −→ Λ0 −→ 0 . (163)

Moreover, the action (160) restricted to Λ̂0 makes C[Λ0] into a Λ̂0-module. This makes VΛ
into a Λ̂0-module where Λ̂0 acts only on C[Λ0]. Let x , x̄ be formal variables. For any vector
λ= (αλ,βλ), define the operators xα

λ
, x̄β

λ
by the following actions

xα
λ

(u⊗ eλ
′
) = x 〈α

λ,αλ
′
〉(u⊗ eλ

′
) ,

x̄β
λ

(u⊗ eλ
′
) = x̄ 〈β

λ,βλ
′
〉(u⊗ eλ

′
) ,

(164)

where u ∈ S(ĥ−),λ′ ∈ Λ0. Note that xα
λ
, x̄β

λ
acts as xα

λ(0), x̄β
λ(0). For λ = (αλ,βλ) ∈ Λ0,

define the vertex operators

YVΛ(e
λ, x , x̄) :=

�

exp

�

−
∑

r<0

αλ(r)
r

x−r

�

exp

�

−
∑

r>0

αλ(r)
r

x−r

�

×exp

�

−
∑

r<0

βλ(r)
r

x̄−r

�

exp

�

−
∑

r>0

βλ(r)
r

x̄−r

��

eλxα
λ

x̄β
λ

.

(165)

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.047


SciPost Phys. 17, 047 (2024)

From the Lie bracket in (146), it is easy to show

[αλ(r),βλ(s)] = 0 , (166)

for all r, s ∈ Z, so that the order of exponentials with αλ(r) and βλ(r) does not matter. For a
formal variable x , we introduce the notation

αλ(x) =
∑

r>0

αλ(r)x−r−1

︸ ︷︷ ︸

αλ(x)+

+
∑

r<0

αλ(r)x−r−1

︸ ︷︷ ︸

αλ(x)−

+αλ(0)x−1 . (167)

Similarly, we can also define βλ( x̄). We define the formal integration as the map by
∫

d x x r =
x r+1

r + 1
, r ̸= −1 . (168)

We can then write the vertex operator as

YVΛ(e
λ, x , x̄) = exp

�∫

d x αλ(x)−
�

exp

�∫

d x αλ(x)+
�

× exp

�∫

d x̄ βλ( x̄)−
�

exp

�∫

d x̄ βλ( x̄)+
�

eλ xα
λ

x̄β
λ

.

(169)

For a general vector v of the form (152), the vertex operator is defined as

YVΛ(v, x , x̄) = ⦂
k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x)
d xmr−1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄)
d x̄ m̄s−1

�

YVΛ(e
λ, x , x̄)⦂ ,

(170)
where the normal ordering ⦂⦂ is defined as

⦂αλ(p)αλ
′
(q)⦂= ⦂αλ

′
(q)αλ(p)⦂=

¨

αλ(p)αλ
′
(q) , p ≤ q ,

αλ
′
(q)αλ(p) , p ≥ q ,

⦂αλ(p)eλ′⦂= ⦂eλ′ α
λ(p)⦂= eλ′ α

λ(p) ,

⦂ xα
λ

eλ′⦂= ⦂eλ′ x
αλ⦂= eλ′ x

αλ ,

(171)

and similarly for βλ and x̄β
λ
. The vertex operator for general vectors in VΛ is defined by linear

extension to all of VΛ.

Remark 3.1. Using the central extension (156), (170) can be used to define vertex opera-
tors even if eλ ∈ C[Λ]. These vertex operators will act on vectors of the form (152) with
eλ ∈ C[Λ] rather than C[Λ0]. This will be crucial when we construct module vertex operators
and intertwining operators on the modules of VΛ.

The vacuum vector is given by 1 = e0. The conformal vector is constructed below, see
(187).

3.3 Proof of axioms

We now prove that (VΛ, YVΛ ,ωL ,ωR,1) is a non-chiral VOA.

Proof of identity property 1: From the definition (165), it is clear that YVΛ(1, x , x̄) = e0 = 1.

Proof of grading-restriction property 2: The grading on VΛ is given by defining the conformal
weight of vector v of the form (152) by

hv =
〈α,α〉

2
+

k
∑

i=1

mi , h̄v =
〈β ,β〉

2
+

k̄
∑

j=1

m̄ j , (172)
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where mi and m̄ j are positive integers appearing in (152). Note that for eλ with λ=(α,β)∈Λ0,
we have (α, 0) ∈ Λ, (α, 0)◦(α, 0) = 〈α,α〉 ∈ 2Z+. Then we have that hv , h̄v ≥ 0 so that V(h,h̄) = 0
for h or h̄< 0, i.e. M = 0 in (43).

Similarly, 〈β ,β〉 ∈ 2Z+, which implies that both hv and h̄v are positive integers.16

We will now show that dim(V(h,h̄)) <∞. Note that Λ0
1 and Λ0

2 are lattices. It suffices to
show that there exist only finitely many vectors of the form (152), satisfying the conditions in
(172). We first show that for any h, h̄ ∈ R the number of distinct λ= (α,β) ∈ Λ0 satisfying

〈α,α〉 ≤ 2h , and 〈β ,β〉 ≤ 2h̄ , where α ∈ Λ0
1,β ∈ Λ0

2 , (173)

can be only finitely many. Consider the sets

X1 = {α ∈ Λ0
1 | 〈α,α〉 ≤ 2h} , (174)

X2 = {β ∈ Λ0
2 | 〈β ,β〉 ≤ 2h̄} , (175)

which have finite cardinality, say N1 and N2, due to the fact that Λ0
1 and Λ0

2 are discrete. Then
the set

X = {λ= (α,β) ∈ Λ0 | 〈α,α〉 ≤ 2h, 〈β ,β〉 ≤ 2h̄} , (176)

is finite because the map

X −→ X1 × X2 ,

λ= (α,β) 7−→ (α,β) ,
(177)

is injective. More precisely #X ≤ N1N2. Now, as there are only finitely many combinations of
positive integers {mi}ki=1 and {m̄i}k̄i=1 such that

hv −
〈α,α〉

2
=

k
∑

i=1

mi , h̄v −
〈β ,β〉

2
=

k̄
∑

j=1

m̄ j , (178)

hence there are only finitely many generating vectors possible, which implies that
dim(Vh,h̄)<∞.

Proof of single-valuedness property 3: For the general vector v of the form (152) we have

hv − h̄v =
〈α,α〉 − 〈β ,β〉

2
+

k
∑

i=1

mi −
k̄
∑

j=1

m̄ j

=
λ ◦λ

2
+

k
∑

i=1

mi −
k̄
∑

j=1

m̄ j ∈ Z ,

(179)

where we used the fact that Λ is an even Lorentzian lattice.

Proof of creation property 4: We want to show that for any state v ∈ VΛ,

lim
x , x̄→0

YVΛ(v, x , x̄)1= v . (180)

Let us first consider the case when v = eλ, then the YVΛ operator is given in (165). One then
has to expand the exponentials, we ignore the terms when αλ(n) and βλ(n) have n > 0, as

16Note that this argument also works for a general eλ ∈ C[Λ] with λ ∈ Λ since 〈α,α〉, 〈β ,β〉 ≥ 0 even in this
case.
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they annihilate C[Λ0]. The two exponentials that remain will only have positive powers of x
and x̄ , which vanish when we take the limit. Hence

lim
x , x̄→0

YVΛ(e
λ, x , x̄)1= eλ · 1 . (181)

Here, we used the fact that 1 = e0 so that the action of xα
λ
( x̄β

λ
) on this is by identity, since

〈αλ, 0〉= 0
�

〈βλ, 0〉= 0
�

. Hence

lim
x , x̄→0

YVΛ(e
λ, x , x̄)1= eλ e0 = (−1)ε(0,λ)eλ = eλ , (182)

where we have used (154), (160) and that eλ = (1,λ). We now prove (180) for a general
vector v of the form (152). The normal ordering in the definition (170) and the fact that ĥ+

annihilates C[Λ0] forces the product to take the form

dmr−1αr(x)
d xmr−1

→
∑

pr≤−mr

(mr − 1)!αr(pr)x
−pr−mr , (183)

and
d m̄s−1βs( x̄)

d x̄ m̄s−1
→

∑

qs≤−m̄s

(m̄s − 1)!βs(qs) x̄
−qs−m̄s . (184)

Thus we have

⦂
k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x)
d xmr−1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄)
d x̄ m̄s−1

�

YVΛ(e
λ, x , x̄) ⦂ 1

→
∑

p1≤−m1
...

pk≤−mk

⦂α1(p1)α2(p2) . . .αk(pk)x
−(p1+...pk)−(m1+···+mk)

×
∑

q1≤−m̄1
...

qk̄≤−m̄k̄

β1(q1)β2(q2) . . .βk̄(qk̄) x̄
−(q1+...qk̄)−(m̄1+···+m̄k̄)YVΛ(e

λ, x , x̄) ⦂ 1 . (185)

When we take x , x̄ → 0 only the pr = −mr , qs = −m̄s terms in the sum survives. Combining
this fact with the proof of (180) for v = eλ, we get

lim
x , x̄→0

YVΛ(v, x , x̄)1=
�

α1(−m1) ·α2(−m2) · · ·αk(−mk)β1(−m̄1) · β2(−m̄2) · · ·βℓ(−m̄k̄)
�

⊗ eλ

= v , (186)

where we also use the fact that YVΛ(e
λ, x , x̄) can only contribute terms with xn and x̄m, where

n and m are greater than 0.

Proof of Virasoro property 5: The conformal vector is given by

ωΛ :=
1
2

dim(h1)
∑

i=1

�

ui(−1)2
�

⊗ 1 +
1
2

dim(h2)
∑

i=1

�

vi(−1)2
�

⊗ 1≡ωL +ωR , (187)

where ui ∈ Λ1 ⊗Z C, vi ∈ Λ2 ⊗Z C are orthonormal basis of h1 and h2 respectively:17

〈ui , u j〉= δi, j , 〈vi , v j〉= δi, j . (188)

17Note that a different choice of orthonormal basis will give isomorphic LLVOAs. Indeed if {u′i} and {v′j} are
orthonormal bases of h1 and h2 respectively, different from {ui} of and {v j}. Then the map f : VΛ −→ VΛ which
acts trivially on C[Λ0] and maps ui 7→ u′i , vi 7→ v′i is a non-chiral VOA isomorphism.
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Since an integral basis of Λ is also a basis of Rm,n, it is clear that dim(h1) = m and dim(h2) = n.
One can check that the conformal vertex operator is given by

YVΛ(ω, x , x̄) = YVΛ(ωL , x , x̄) + YVΛ(ωR, x , x̄)

=
∑

p∈Z
LΛ(p)x

−p−2 +
∑

p∈Z
L̄Λ(p) x̄

−p−2 , (189)

where the Virasoro generators are given by [2, Section 8.7]

LΛ(p) =
1
2

m
∑

i=1

∑

k∈Z
⦂ui(k)ui(p− k)⦂ ,

L̄Λ(p) =
1
2

n
∑

i=1

∑

k∈Z
⦂vi(k)vi(p− k) ⦂ .

(190)

Using the Lie brackets
�

ui(p), u j(q)
�

= pδi, j δp+q,0 k ,
�

vi(p), v j(q)
�

= pδi, j δp+q,0 k̄ ,
(191)

one can show that the Virasoro generators indeed satisfy the Virasoro algebra (47) with central
charge m= dim(h1), n= dim(h2) respectively, see [2, Chapter 2].

Proof of grading property 6: From (190) and normal ordering (171), we have

LΛ(0) =
1
2

m
∑

i=1

∑

r∈Z
⦂ui(r)ui(−r)⦂=

m
∑

i=1

∑

r>0

ui(−r)ui(r) +
1
2

ui(0)
2,

L̄Λ(0) =
1
2

n
∑

i=1

∑

r∈Z
⦂vi(r)vi(−r)⦂=

n
∑

i=1

∑

r>0

vi(−r)vi(r) +
1
2

vi(0)
2 .

(192)

Then for v ∈ VΛ of the form (152), using the Lie bracket (191) and the action (153), we have

LΛ(0)v =
k
∑

j=1

�

· · ·

�

m j

m
∑

i=1

〈ui ,α j〉ui(−m j)

�

· · ·

�

⊗ eλ +
1
2

m
∑

i=1

〈ui ,α〉2v

=
k
∑

j=1

m j

�

· · ·α j(−m j) · · ·
�

⊗ eλ +
1
2

m
∑

i=1

〈〈ui ,α〉ui ,α〉v

=





k
∑

j=1

m j +
〈α,α〉

2



 v ,

(193)

where we used the fact that {ui} is an orthonormal basis of h1. Similarly

L̄Λ(0)v =





k̄
∑

j̄=1

m̄ j̄ +
〈β ,β〉

2



 v . (194)
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Proof of L(0)-property 7: Let (α,β) ∈ Λ0. Then

�

LΛ(0),α(x)
±�=

1
2

∑

r∈Z±

∑

s∈Z

m
∑

i=1

[⦂ui(s)ui(−s)⦂,α(r)] x−r−1

=
1
2

∑

r∈Z±

m
∑

i=1

�

∑

s≥1

[ui(−s)ui(s),α(r)] +
�

ui(0)
2,α(r)

�

+
∑

s≤−1

[ui(s)ui(−s),α(r)]

�

x−r−1

=
1
2

∑

r∈Z±

∑

s ̸=0

�

sα(−s)δs+r,0 − nα(s)
�

δr−s,0 x−r−1

=
∑

r∈Z±

∑

s ̸=0

nα(−s)δs+r,0 x−r−1

= −
∑

r∈Z±

rα(r)x−r−1 ,

(195)

where we used

m
∑

i=1

[ui(−s)ui(s),α(r)] =
m
∑

i=1

ui(−s) [ui(s),α(r)] + [ui(−s),α(r)]ui(s)

=
m
∑

i=1

�

s 〈ui ,α〉δs+r,0ui(−s)− s 〈ui ,α〉δr−s,0ui(s)
�

= sα(−s)δs+r,0 − sα(s)δr−s,0 .

(196)

Rearranging terms, we get

�

LΛ(0),α(x)
±�= x

dα(x)±

d x
+α(x)± . (197)

Similarly
�

L̄Λ(0),β( x̄)
±�= x̄

d
d x̄
β( x̄)± + β( x̄)± . (198)

Note that the same proof also shows that

[LΛ(0),α(x)] = x
d

d x
α(x) +α(x) ,

�

L̄Λ(0),β( x̄)
�

= x̄
d

d x̄
β( x̄) + β( x̄) .

(199)

Next using (197) we have
�

LΛ(0),

∫

d x α(x)±
�

=

∫

d x
�

LΛ(0),α(x)
±�

=

∫

d x
�

x
d

d x
α(x)± +α(x)±

�

= xα(x)±,

(200)

where we used integration by parts for the formal integration. Similarly
�

L̄Λ(0),

∫

d x̄ β( x̄)±
�

= x̄β( x̄)± . (201)
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By BCH formula (224) we have

LΛ(0)exp

�∫

d x α(x)±
�

= exp

�

−
∫

d x α(x)±
� ∞
∑

n=0

1
n!

��∫

d x α(x)±
�n

, LΛ(0)

�

= exp

�∫

d x α(x)±
�

LΛ(0) +
∞
∑

n=1

1
n!

��

−
∫

d x α(x)±
�n

, LΛ(0)

�

.

(202)
By (200) and the fact that [α(r),α(s)] = 0 for r, s ≤ 0 or r, s ≥ 0, we get

�

LΛ(0), exp

�∫

d x α(x)±
��

= x exp

�∫

d x α(x)±
�

α(x)± . (203)

Similarly
�

L̄Λ(0), exp

�∫

d x̄ β(x)±
��

= x̄ exp

�∫

d x̄ β( x̄)±
�

β( x̄)± . (204)

Finally, it is clear that for λ′ =
�

α′,β ′
�

and u ∈ S
�

h−
�

we have

[LΛ(0), eλxα]
�

u⊗ eλ
′�

= (−1)ε(λ,λ′)
�


α+α′,α+α′
�

2
−




α′,α′
�

2

�

x〈α,α′〉
�

u⊗ eλ+λ
′�

=
�

〈α,α〉
2
+



α,α′
�

�

(−1)ε(λ,λ′)x〈α,α′〉
�

u⊗ eλ+λ
′�

=
�

〈α,α〉
2

eλxα + eλx
d

d x
xα
�

�

u⊗ eλ
′�

.

(205)

Putting all this together, we obtain

�

LΛ(0), YVΛ

�

eλ, x , x̄
��

= x
d

d x

�

exp

�∫

d x α(x)−
�

exp

�∫

d x α(x)+
��

× exp

�∫

d x̄ β( x̄)−
�

exp

�∫

d x̄ β( x̄)+
�

eλxα x̄β

+ exp

�∫

d x α(x)−
�

exp

�∫

d x α(x)+
�

× exp

�∫

d x̄ β( x̄)−
�

exp

�∫

d x̄ β( x̄)+
�

×
�

〈α,α〉
2

eλxα + eλx
d

d x
xα
�

= x
d

d x
YVΛ

�

eλ, x , x̄
�

+
〈α,α〉

2
YVΛ

�

eλ, x , x̄
�

.

(206)

Similarly
�

L̄Λ(0), YVΛ

�

eλ, x , x̄
��

= x̄
d

d x̄
YVΛ

�

eλ, x , x̄
�

+
〈β ,β〉

2
YVΛ

�

eλ, x , x̄
�

. (207)

For general vertex operators, we observe that
�

LΛ(0),
d r

d x r
α(x)

�

=
d r

d x r

�

x
d

d x
α(x) +α(x)

�

=
d r−1

d x r−1

�

d
d x
α(x) + x

d2

d x2
α(x)

�

+
d r

d x r
α(x)

= x
d r

d x r
α(x) + (r + 1)

d r

d x r
α(x) .

(208)
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This implies that for a general vector of the form (152) we have

�

LΛ(0), YVΛ(v, x , x̄)
�

= x
d

d x
YVΛ(v, x , x̄) +

� k
∑

i=1

mi +
〈α,α〉

2

�

YVΛ(v, x , x̄)

= x
d

d x
YVΛ(v, x , x̄) + YVΛ (LΛ(0)v, x , x̄) .

(209)

Similarly
�

L̄Λ(0), YVΛ(v, x , x̄)
�

= x̄
d

d x̄
YVΛ(v, x , x̄) + YVΛ

�

L̄Λ(0)v, x , x̄
�

. (210)

Proof of translation property 8: Observe that

[LΛ(−1),α(−r)] =
1
2

m
∑

i=1

∑

s∈Z
[⦂ui(s)ui(−1− s)⦂,α(−r)]

=
1
2

m
∑

i=1

∑

s∈Z
[ui(−1− s)ui(s),α(−r)]

=
1
2

m
∑

i=1

∑

s∈Z

�

ui(−1− s)[ui(s),α(−r)] + [ui(−1− s),α(−r)]ui(s)
�

=
1
2

m
∑

i=1

∑

s∈Z

�

sδs−r,0〈ui ,α〉ui(−1− s)− (1+ s)δr+s+1,0〈ui ,α〉ui(s)
�

=
1
2

�

r α(−1− r)− (−r)α(−1− r)
�

= r α(− r − 1) .

(211)

Using the above commutator, it is easy to see that

LΛ(−1)
�

α1(−m1) · · ·αk(−mk)β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)
�

⊗ e(α,β)

=
m
∑

i=1

�

α1(−m1) · · ·αk(−mk)β1(−m̄1) · · ·βk̄(−m̄k̄)
�

⊗ LΛ(−1)e(α,β)

+
k
∑

i=1

mi

�

α1(−m1) · · ·αi(−1−mi) · · ·αk(−mk)β1(−m̄1) · · ·βk̄(−m̄k̄)
�

⊗ e(α,β).

(212)

Now since

LΛ(−1)e(α,β) =
1
2

m
∑

i=1

∑

s∈Z
⦂ui(s)ui(−1− s) ⦂ e(α,β)

=
m
∑

i=1

ui(0)ui(−1)e(α,β)

=
m
∑

i=1

〈ui ,α〉ui(−1)e(α,β)

= α(−1)e(α,β) ,

(213)

hence we get the action of LΛ(−1) on generating vectors v of the form (152) to be:

LΛ(−1)v =
k
∑

i=1

mi

�

α1(−m1) · · ·αi(−1−mi) · · ·αk(−mk)β1(−m̄1) · · ·βk̄(−m̄k̄)
�

⊗ e(α,β)

+
�

α(−1)α1(−m1) · · ·αi(−1−mi) · · ·αk(−mk)β1(−m̄1) · · ·βk̄(−m̄k̄)
�

⊗ e(α,β) .
(214)

The proof of the translation property now follows from exact same calculation as in [35, Propo-
sition 2.2].
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3.3.1 Proof of locality of vertex operators

In this section, we will prove the locality of two vertex operators and defer the proof of product
of multiple vertex operators to Appendix B.

Proposition 3.1. The vertex operators YVΛ(e
λ, x , x̄) for λ ∈ Λ0 satisfy the locality property 9.

More precisely there exists, multi-valued, operator-valued functions f (z1, z2) and g(z̄1, z̄2) ana-
lytic in z1, z2 and z̄1, z̄2 respectively with possible singularities at {(z1, z2)∈C2 | z1, z2 ̸=0, z1 ̸=z2},
such that f (z1, z2)g(z̄1, z̄2) is single-valued when z̄1, z̄2 are the complex conjugates of z1, z2 re-
spectively and equals

YVΛ(e
λ, z1, z̄1)YVΛ(e

λ′ , z2, z̄2) , when |z1|> |z2| ,

YVΛ(e
λ′ , z2, z̄2)YVΛ(e

λ, z1, z̄1) , when |z2|> |z1| .
(215)

Proof. We will closely follow the proofs of results in [35, Section 2]. We begin by proving that
�

α(x1),α
′(x2)

�

= 〈α,α′〉
�

(x2 − x1)
−2 − (−x2 + x1)

−2
�

,
�

β( x̄1),β
′( x̄2)

�

= 〈β ,β ′〉
�

( x̄2 − x̄1)
−2 − (− x̄2 + x̄1)

−2
�

,
(216)

where λ= (α,β),λ′ = (α′,β ′). We have
�

α(x1),α
′(x2)

�

=
∑

r,s∈Z
[α(r),α′(s)]x−r−1

1 x−s−1
2

=
∑

r,s∈Z
〈α,α′〉 r δr+s,0 x−r−1

1 x−s−1
2

= −〈α,α′〉
∑

s∈Z
s x s−1

1 x−s−1
2

= −〈α,α′〉
∂

∂ x1

∑

s∈Z
x s

1 x−s−1
2

= −〈α,α′〉
∂

∂ x1

�

(x1 − x2)
−1 − (−x2 + x1)

−1�

= 〈α,α′〉
�

(x1 − x2)
−2 − (−x2 + x1)

−2� .

(217)

Note that this commutator is also true for complex variables x1 = z1, x2 = z2. Indeed from
(30)

α(z1)α
′(z2) = ⦂α(z1)α(z2) ⦂+〈α,α′〉

∑

s∈Z
sz−s−1

1 zs−1
2

= ⦂α(z1)α(z2) ⦂+
〈α,α′〉
(z1 − z2)2

, |z1|> |z2| ,
(218)

and

α′(z2)α(z1) = ⦂α′(z2)α(z1) ⦂−〈α′,α〉
∑

s∈Z
sz−s−1

2 zs−1
1

= ⦂α′(z2)α(z1) ⦂−
〈α′,α〉
(z2 − z1)2

, |z2|> |z1| .
(219)

It is easy to see that
⦂α(z1)α

′(z2)⦂= ⦂α′(z2)α(z1)⦂ , (220)

which gives us the commutator. In particular
�

α(z1),α
′(z2)

�

= 0 . (221)
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The other Lie bracket in (216) can be proved similarly. Using (216), we can show that18

�

α′ (x2)
− , e

∫

α(x1)
+d x1

�

=
〈α,α′〉
x1 − x2

e
∫

α(x1)
+d x1 . (222)

Integrating both sides of (222) gives us
�

−
∫

α′ (x2)
− d x2, e

∫

α(x1)
+d x1

�

=
�

〈α,α′〉 log (x1 − x2)− 〈α,α′〉 log x1

�

e
∫

α(x1)
+d x1

= 〈α,α′〉 ( log(x1 − x2)− log(x1) )e
∫

α(x1)
+d x1 = 〈α,α′〉 log

�

1−
x2

x1

�

e
∫

α(x1)
+d x1 .

(223)
One can write analogous formulas for [β ′( x̄1)±, exp

�∫

β(x2)∓
�

]. Using the BCH identity

exp(X )Y exp(−X ) =
∞
∑

s=0

[(X )s, Y ]
s!

, (224)

where
[X s, Y ] = [X . . . , [X , [X

︸ ︷︷ ︸

s times

, Y ]] . . .] , [X 0, Y ]≡ Y , (225)

we get

exp

�

−
∫

d x2 α
′(x2)

−
�

exp

�∫

d x1 α(x1)
+

�

exp

�∫

d x2 α
′(x2)

−
�

=
�

1−
x2

x1

�〈α,α′〉
exp

�∫

d x1 α(x1)
+

�

.

(226)

To show the locality of vertex operator, we will also require the identities

xα1 eλ′ = x 〈α,α′〉
1 eλ′ x

α
1 ,

x̄β2 eλ′ = x̄ 〈β ,β ′〉
2 eλ′ x̄

β
2 ,

(227)

the first of which is shown below

xα1 eλ′ (u⊗ eλ
′′
) = (−1)ε(λ

′,λ′′) xα1 (u⊗ eλ
′+λ′′) = (−1)ε(λ

′,λ′′) x 〈α,α′〉+〈α,α′′〉
1 (u⊗ eλ

′+λ′′) ,

eλ′ x
α
1 (u⊗ eλ

′′
) = x 〈α,α′′〉

1 eλ′ (u⊗ eλ
′′
) = (−1)ε(λ

′,λ′′)x 〈α,α′′〉
1 (u⊗ eλ

′+λ′′) .
(228)

We now have19

YVΛ(e
λ, x1, x̄1)YVΛ(e

λ′ , x2, x̄2)

= exp

�∫

α(x1)
−
�

exp

�∫

α(x1)
+

�

exp

�∫

β( x̄1)
−
�

exp

�∫

β( x̄1)
+

�

eλxα1 x̄β1

× exp

�∫

α′(x2)
−
�

exp

�∫

α′(x2)
+

�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β ′( x̄2)
+

�

eλ′ x
α′

2 x̄β
′

2 .

(229)

18we will use exp and e interchangeably.
19We will often write

∫

d x α(x) =
∫

α(x) to simplify the expressions.
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Now, utilizing (166) and the fact that eλ, xα1 , and x̄β1 commute with exponential of integrals

= exp

�∫

α(x1)
−
��

exp

�∫

α(x1)
+

�

exp

�∫

α′(x2)
−
��

exp

�∫

α′(x2)
+

�

× exp

�∫

β( x̄1)
−
��

exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
−
��

exp

�∫

β ′( x̄2)
+

�

eλxα1 x̄β1 eλ′ x
α′

2 x̄β
′

2 .

(230)

After which we use (226) and (227) to write

=
�

1−
x2

x1

�〈α,α′〉�

1−
x̄2

x̄1

�〈β ,β ′〉
x 〈α,α′〉

1 x̄ 〈β ,β ′〉
1 exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
−
�

× exp

�∫

α(x1)
+

�

exp

�∫

α′(x2)
+

�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

× exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
+

�

eλeλ′ x
α
1 x̄β1 xα

′

2 x̄β
′

2 .

(231)

Finally we use (26) to collect terms to get

= (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
−
�

exp

�∫

α(x1)
+

�

× exp

�∫

α′(x2)
+

�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
+

�

× eλeλ′ x
α
1 x̄β1 xα

′

2 x̄β
′

2

≡ (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 F(x1, x2)F̄( x̄1, x̄2) ,
(232)

where we used (166), (226) and (227) and F(x1, x2)F̄( x̄1, x̄2) contains the operator part of
YVΛ(e

λ, x1, x̄1)YVΛ(e
λ′ , x2, x̄2). Similarly we have

YVΛ(e
λ′ , x2, x̄2)YVΛ(e

λ, x1, x̄1)

= (x2 − x2)
〈α,α′〉 ( x̄2 − x̄1)

〈β ,β ′〉 exp

�∫

α′(x2)
−
�

exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
+

�

× exp

�∫

α(x1)
+

�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
+

�

exp

�∫

β( x̄1)
+

�

× (−1)λ◦λ
′
eλeλ′ x

α
1 x̄β1 xα

′

2 x̄β
′

2

= (−1)λ◦λ
′
(x2 − x1)

〈α,α′〉 ( x̄2 − x̄1)
〈β ,β ′〉 F(x1, x2)F̄( x̄1, x̄2) , (233)

where we used (159). Note that (−x1+ x2)〈α,α′〉 = (x2− x1)〈α,α′〉 when20 〈α,α′〉 ≥ 0. To prove
locality, we take complex variables x1 = z1, x2 = z2 and x̄1 = z̄1, x̄2 = z̄2. Note that when
we plug complex variable in place of formal variable, we must consider (x1− x2)s as a formal
series so that

YVΛ(e
λ, z1, z̄1)YVΛ(e

λ′ , z2, z̄2) =

 

∑

p≥0

(−1)pz〈α,α′〉−p
1 zp

2

! 

∑

q≥0

(−1)qz̄〈β ,β ′〉−q
1 z̄q

2

!

× F(z1, z2)F̄(z̄1, z̄2) ,

(234)

20Recall that when s ∈ C, (−x1 + x2)s is to be expanded in positive integral powers of x2 as in (24).
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and similarly YVΛ(e
λ′ , z2, z̄2)YVΛ(e

λ, z1, z̄1). To complete the proof of locality, consider the op-
erator valued functions

f (z1, z2) = exp
�

〈α,α′〉 log(z1 − z2)
�

F(z1, z2) ,

g(z̄1, z̄2) = exp
�

〈β ,β ′〉 log(z̄1 − z̄2)
�

F̄(z̄1, z̄2) .
(235)

Then by (30) for |z1|> |z2| we see that

f (z1, z2)g(z̄1, z̄2) =

 

∑

p≥0

(−1)pz〈α,α′〉−p
1 zp

2

! 

∑

q≥0

(−1)qz̄〈β ,β ′〉−q
1 z̄q

2

!

F(z1, z2)F̄(z̄1, z̄2) . (236)

For |z2|> |z1| we have

f (z1, z2)g(z̄1, z̄2) = exp
�

〈α,α′〉 log(−(z2 − z1))
�

exp
�

〈β ,β ′〉 log(−(z̄2 − z̄1))
�

= eiπ(〈α,α′〉−〈β ,β ′〉) exp
�

〈α,α′〉 log(z2 − z1)
�

exp
�

〈β ,β ′〉 log(z̄2 − z̄1)
�

F(z1, z2)F̄(z̄1, z̄2)

= (−1)λ◦λ
′

 

∑

p≥0

(−1)pz〈α,α′〉−p
2 zp

1

! 

∑

q≥0

(−1)qz̄〈β ,β ′〉−q
2 z̄q

1

!

F(z1, z2)F̄(z̄1, z̄2) ,

(237)

where we used the fact that in the principal branch of logarithm to write

log(−z) = log |z|+ i(π+Arg(z)) , log(−z̄) = log |z| − i(π+Arg(z)) , (238)

with
−π < π+Arg(z)< π . (239)

Remark 3.2. From the calculations above, it is easy to see that the following formal commu-
tativity axiom holds for the vertex operators: there exists K , K̄ ∈ N such that

(x1 − x2)
K( x̄1 − x̄2)

K̄
�

YVΛ(e
λ, x1, x̄1), YVΛ(e

λ′ , x2, x̄2)
�

= 0 . (240)

Indeed we have
�

YVΛ(e
λ, x1, x̄1), YVΛ(e

λ′ , x2, x̄2)
�

=
�

(x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉

−(−1)λ◦λ
′
(x2 − x1)

〈α,α′〉 ( x̄2 − x̄1)
〈β ,β ′〉

�

F(x1, x2)F̄( x̄1, x̄2)

=
�

(x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉

− (−x2 + x1)
〈α,α′〉 (− x̄2 + x̄1)

〈β ,β ′〉
�

F(x1, x2)F̄( x̄1, x̄2) .

(241)

Since (α,β), (α′,β ′) ∈ Λ0, we have 〈α,α′〉, 〈β ,β ′〉 ∈ Z and we can choose K , K̄ ∈ N large
enough such that

K + 〈α,α′〉 ∈ N , K̄ + 〈β ,β ′〉 ∈ N . (242)

We then get

(x1 − x2)
K( x̄1 − x̄2)

K̄
�

YVΛ(e
λ, x1, x̄1), YVΛ(e

λ′ , x2, x̄2)
�

=
�

(x1 − x2)
K+〈α,α′〉 ( x̄1 − x̄2)

K̄+〈β ,β ′〉 − (−x2 + x1)
K+〈α,α′〉 (− x̄2 + x̄1)

K̄+〈β ,β ′〉
�

F(x1, x2)F̄( x̄1, x̄2)

=
�

(x1 − x2)
K+〈α,α′〉 ( x̄1 − x̄2)

K̄+〈β ,β ′〉 − (x1 − x2)
K+〈α,α′〉 ( x̄1 − x̄2)

K̄+〈β ,β ′〉
�

F(x1, x2)F̄( x̄1, x̄2)

= 0 .
(243)
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We now prove the locality for general vertex operators.

Theorem 3.3. The vertex operators YVΛ(v, x , x̄), where v is the general vector of VΛ, satisfy
the locality property 9. More precisely there exists, multi-valued, operator-valued functions
f (z1, z2) and g(z̄1, z̄2) analytic in z1, z2 and z̄1, z̄2 respectively with possible singularities at
{(z1, z2) ∈ C2 | z1, z2 ̸= 0, z1 ̸= z2}, such that f (z1, z2)g(z̄1, z̄2) is single-valued when z̄1, z̄2 are
the complex conjugates of z1, z2 respectively and equals

YVΛ(v, z1, z̄1)YVΛ(w, z2, z̄2) , when |z1|> |z2| ,
YVΛ(w, z2, z̄2)YVΛ(v, z1, z̄1) , when |z2|> |z1| .

(244)

Proof. We will prove the locality for the spanning set of vectors of the form (152). Explicitly,
we will prove the locality for vertex operators of the form

YVΛ(v, x , x̄) = ⦂
k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x)
d xmr−1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄)
d x̄ m̄s−1

�

YVΛ(e
λ, x , x̄)⦂ ,

YVΛ(w, x , x̄) = ⦂
ℓ
∏

p=1

ℓ̄
∏

q=1

�

1
(np − 1)!

dnp−1α′p(x)

d xnp−1

��

1
(n̄q − 1)!

d n̄q−1β ′q( x̄)

d x̄ n̄q−1

�

YVΛ(e
λ, x , x̄)⦂ ,

(245)

see [36] for a similar calculation. Following the exact same steps as in the proof of [35, Eq.
(2.14)] with appropriate modifications, we can show that

�

α′ (x1)
+ , e

∫

α(x2)
−d x2

�

=
�

〈α,α′〉
x1 − x2

−
〈α,α′〉

x1

�

e
∫

α(x1)
−d x1 . (246)

Differentiating on both the sides of (246) with respect to x1 we obtain
�

1
s!

dsα′ (x1)
+

d x s
1

, e
∫

α(x2)
−d x2

�

= (−1)s
�

〈α,α′〉
(x1 − x2)s+1

−
〈α,α′〉
x s+1

1

�

e
∫

α(x1)
−d x1 . (247)

Differentiating both sides of (222) with respect to x2 we obtain
�

1
s!

dsα′ (x2)
−

d x s
2

, e
∫

α(x1)
+d x1

�

=
〈α,α′〉

(x1 − x2)s+1
e
∫

α(x1)
+d x1 . (248)

Analogous formula holds for [β ′( x̄1)±, exp
�∫

β(x2)∓
�

]. In addition, we need

α(0)eλ′ x
α′ = 〈α,α′〉eλ′ xα

′
+ eλ′ x

α′α(0) , λ′ = (α′,β ′) . (249)

This follows from the following calculation: for u ∈ S(ĥ−), λ′ = (α′,β ′),λ′′ = (α′′,β ′′) we
have

α(0)eλ′ x
α′
�

u⊗ eλ
′′�

= (−1)ε(λ
′,λ′′)x 〈α

′,α′′〉〈α,α′ +α′′〉
�

u⊗ eλ
′+λ′′

�

= (−1)ε(λ
′,λ′′)x 〈α

′,α′′〉〈α,α′〉
�

u⊗ eλ
′+λ′′

�

+ (−1)ε(λ
′,λ′′)x 〈α

′,α′′〉〈α,α′′〉
�

u⊗ eλ
′+λ′′

�

= 〈α,α′〉eλ′ xα
′ �

u⊗ eλ
′′�

+ eλ′ x
α′α(0)

�

u⊗ eλ
′′�

.

(250)

Analogous formulas for β(0)eλ′ x̄β
′
is

β(0)eλ′ x̄
β ′ = 〈β ,β ′〉eλ′ x̄β

′
+ eλ′ x̄

β ′β(0) , (251)
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which can be proved as follows:

β(0)eλ′ x̄
β ′
�

u⊗ eλ
′′�

= (−1)ε(λ
′,λ′′) x̄ 〈β

′,β ′′〉 〈β ,β ′ + β ′′〉
�

u⊗ eλ
′+λ′′

�

=
�

(−1)ε(λ
′,λ′′) x̄ 〈β

′,β ′′〉 〈β ,β ′〉
�

u⊗ eλ
′+λ′′

�

+ (−1)ε(λ
′,λ′′) x̄ 〈β

′,β ′′〉 〈β ,β ′′〉
�

u⊗ eλ
′+λ′′

��

= 〈β ,β ′〉eλ′ x̄β
′ �

u⊗ eλ
′′�

+ eλ′ x̄
β ′β(0)

�

u⊗ eλ
′′�

.

(252)

Let us now consider the product of two vertex operators, as in (244). Using the normal order-
ing from (171) we have

YVΛ(v, x1, x̄1)YVΛ(w, x2, x̄2) = exp

�∫

α(x1)
−
�

exp

�∫

β( x̄1)
−
�

× ⦂
k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x1)

d xmr−1
1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄1)

d x̄ m̄s−1
1

�

⦂

× exp

�∫

α(x1)
+

�

exp

�∫

α′(x2)
−
�

exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
−
�

eλxα1 x̄β1

× ⦂
ℓ
∏

p=1

ℓ̄
∏

q=1

 

1
(np − 1)!

dnp−1α′p(x2)

d x
np−1
2

! 

1
(n̄q − 1)!

d n̄q−1β ′q( x̄2)

d x̄
n̄q−1
2

!

⦂

× exp

�∫

α′(x2)
+

�

exp

�∫

β ′( x̄2)
+

�

eλ′ x
α′

2 x̄β
′

2 ,

(253)

where we have used that eλxα1 x̄β1 commutes with the exponential of integrals and the expo-
nential of α and β commute with each other. Now, using (226) we get

YVΛ(v, x1, x̄1)YVΛ(w, x2, x̄2) =
�

1−
x2

x1

�〈α,α′〉�

1−
x̄2

x̄1

�〈β ,β ′〉
exp

�∫

α(x1)
−
�

exp

�∫

β( x̄1)
−
�

× ⦂
k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x1)

d xmr−1
1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄1)

d x̄ m̄s−1
1

�

⦂

× exp

�∫

α′(x2)
−
�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

α(x1)
+

�

exp

�∫

β( x̄1)
+

�

eλxα1 x̄β1

× ⦂
ℓ
∏

p=1

ℓ̄
∏

q=1

 

1
(np − 1)!

dnp−1α′p(x2)

d x
np−1
2

! 

1
(n̄q − 1)!

d n̄q−1β ′q( x̄2)

d x̄
n̄q−1
2

!

⦂

× exp

�∫

α′(x2)
+

�

exp

�∫

β ′( x̄2)
+

�

eλ′ x
α′

2 x̄β
′

2 .

(254)

Further, using (247), (248), (249), and (251) successively on the product in normal order,

38

https://scipost.org
https://scipost.org/SciPostPhys.17.2.047


SciPost Phys. 17, 047 (2024)

(227), and the formal variable identity (26) we get

YVΛ(v, x1, x̄1)YVΛ(w, x2, x̄2) = (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉

× exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
−
�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

× ⦂
k
∏

r=1

�

1
(mr − 1)!

dmr−1αr(x1)

d xmr−1
1

+ (−1)mr−1

�

〈α′,αr〉
(x1 − x2)mr

−
〈α′,αr〉

xmr
1

�

�

×
k̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1βs( x̄1)

d x̄ m̄s−1
1

+ (−1)m̄s−1

�

〈β ′,βs〉
( x̄1 − x̄2)m̄s

−
〈β ′,βs〉

x̄ m̄s
1

��

⦂

× ⦂
ℓ
∏

p=1





1
(np − 1)!

dnp−1α′p(x2)

d x
np−1
2

−
〈α,α′p〉

(x1 − x2)
np
− (−1)np−1

〈α,α′p〉

x
np

2





×
ℓ̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′q( x̄2)

d x̄
n̄q−1
2

−
〈β ,β ′q〉

( x̄1 − x̄2)
n̄q
− (−1)n̄q−1

〈β ,β ′q〉

x̄
n̄q

2



⦂

× exp

�∫

α(x1)
+

�

exp

�∫

β( x̄1)
+

�

exp

�∫

α′(x2)
+

�

exp

�∫

β ′( x̄2)
+

�

× eλeλ′ x
α
1 x̄β1 xα

′

2 x̄β
′

2 .

(255)

Next we have

YVΛ(w, x2, x̄2)YVΛ(v, x1, x̄1) = (x2 − x1)
〈α,α′〉 ( x̄2 − x̄1)

〈β ,β ′〉 (−1)λ◦λ
′

× exp

�∫

α(x1)
−
��∫

α′(x2)
−
�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

× ⦂
ℓ
∏

p=1





1
(np − 1)!

dnp−1α′p(x2)

d x
np−1
2

+ (−1)np−1

�

〈α′,αp〉
(x2 − x1)

np
−
〈α′,αp〉

x
np

2

�





×
ℓ̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′q( x̄2)

d x̄
n̄q−1
2

+ (−1)n̄q−1

 

〈β ′,βq〉

( x̄2 − x̄1)
n̄q
−
〈β ′,βq〉

x̄
n̄q

2

!



⦂

× ⦂
k
∏

r=1

�

1
(mr − 1)!

dmr−1αr(x1)

d xmr−1
1

−
〈α′,αr〉
(x2 − x1)mr

− (−1)mr−1 〈α
′,αr〉
xmr

1

�

×
k̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1βs( x̄1)

d x̄ m̄s−1
1

−
〈β ′,βs〉
( x̄2 − x̄1)m̄s

− (−1)m̄s−1 〈β
′,βs〉

x̄ m̄s
1

�

⦂

× exp

�∫

α(x2)
+

�

exp

�∫

β( x̄2)
+

�

exp

�∫

α′(x1)
+

�

exp

�∫

β ′( x̄1)
+

�

× eλeλ′ x
α
1 x̄β1 xα

′

2 x̄β
′

2 ,

(256)

where we used (159). Now, let us take x1, x2, x̄1 and x̄2 to be complex numbers z1, z2, z̄1 and
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z̄2 respectively. Then we can rewrite (256) as

YVΛ(w, z2, z̄2)YVΛ(v, z1, z̄1) = (z2 − z1)
〈α,α′〉 (z̄2 − z̄1)

〈β ,β ′〉 (−1)λ◦λ
′

× exp

�∫

α(z1)
−
��∫

α′(z2)
−
�

exp

�∫

β(z̄1)
−
�

exp

�∫

β ′(z̄2)
−
�

× ⦂
k
∏

r=1

�

1
(mr − 1)!

dmr−1αr(z1)

dzmr−1
1

−
〈α′,αr〉
(z2 − z1)mr

− (−1)mr−1 〈α
′,αr〉
zmr

1

�

×
k̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1βs(z̄1)

dz̄m̄s−1
1

−
〈β ′,βs〉
(z̄2 − z̄1)m̄s

− (−1)m̄s−1 〈β
′,βs〉

z̄m̄s
1

�

⦂

× ⦂
ℓ
∏

p=1





1
(np − 1)!

dnp−1α′p(z2)

dz
np−1
2

+ (−1)np−1

�

〈α′,αp〉
(z2 − z1)

np
−
〈α′,αp〉

z
np

2

�





×
ℓ̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′q(z̄2)

dz̄
n̄q−1
2

+ (−1)n̄q−1

 

〈β ′,βq〉

(z̄2 − z̄1)
n̄q
−
〈β ′,βq〉

z̄
n̄q

2

!



⦂

× exp

�∫

α(z2)
+

�

exp

�∫

β(z̄2)
+

�

exp

�∫

α′(z1)
+

�

exp

�∫

β ′(z̄1)
+

�

× eλeλ′z
α
1 z̄β1 zα

′

2 z̄β
′

2 .

(257)

Here it is important that we understand (z1 − z2)s as the power series since we obtained it by
replacing x1 → z1, x2 → z2 in (x1 − x2)s which is a formal series. In this step we have used
the fact that the two normal ordered products commute. To see this, note that the normal
ordered product can be written as the product without normal order plus a multiple of the
central element k, k̄ using (146). Then since α(z1) and α′(z2) commute by (216), hence their
derivatives and normal ordered products commute too.

Now the operators in (255) and (256) are the same. Thus locality follows if we can show
that the functions appearing in (255) and (256) are the expansions of a single smooth function
in the domains |z1| > |z2| and |z2| > |z1| respectively. We have already proved in Proposition
3.1 that the functions (z1 − z2)

〈α,α′〉 (z̄1 − z̄2)
〈β ,β ′〉 and (−1)λ◦λ

′
(z2 − z1)

〈α,α′〉 (z̄2 − z̄1)
〈β ,β ′〉, un-

derstood as power series as explained above, are the expansion of the function

exp
�

〈α,α′〉 log(z1 − z2)
�

exp
�

〈β ,β ′〉 log(z̄1 − z̄2)
�

. (258)

It remains to prove that the functions appearing in the normal ordered products are also ex-
pansions of a single smooth function. It can easily be checked that the functions

(−1)mr−1

�

〈α′,αr〉
(z1 − z2)mr

−
〈α′,αr〉

zmr
1

�

, |z1|> |z2| , (259)

and

−
〈α′,αr〉
(z2 − z1)mr

− (−1)mr−1 〈α
′,αr〉
zmr

1

, |z2|> |z1| , (260)

are the expansions of the function

(−1)mr−1

�

〈α′,αr〉
exp(mr log(z1 − z2))

−
〈α′,αr〉

zmr
1

�

, (261)

in the respective domains except for poles at z1 = z2 and z1 = 0.
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Remark 3.3. A similar calculation as in Remark 3.2 shows that formal commutativity holds
for general vertex operators:

(x1 − x2)
K( x̄1 − x̄2)

K̄
�

YVΛ(v, x1, x̄1), YVΛ(w, x2, x̄2)
�

= 0 , (262)

with v, w ∈ VΛ.

Remark 3.4. The proof of locality goes through even if we take vertex operators corresponding
to vectors of the form (152) with eλ ∈ C[Λ] (see Remark 3.1 for definition of such vertex
operators). This requires Λ to be an integral Lorentzian lattice. It is worth noting that formal
commutativity fails to hold for general vertex operators since 〈α,α〉, 〈β ,β〉 ̸∈ Z in general.

The graded dimension of the LLVOA can be easily computed. Using the structure of the
vector space VΛ and the general discussion in [2, Section 1.10], we find that

χVΛ(τ, τ̄) =
1

η(τ)mη(τ)
n

∑

(α,β)∈Λ0

q
〈α,α〉

2 q̄
〈β ,β〉

2 , (263)

where η(τ) is the Dedekind eta function

η(τ) = q
1
24

∞
∏

n=1

(1− qn) . (264)

We now give explicit examples of isomorphisms and automorphisms of the LLVOA.

Theorem 3.4. Let (VΛ, YΛ,ωL ,ωR,1VΛ) and (VΛ̃, YΛ̃, ω̃L , ω̃R,1VΛ̃)be LLVOAs corresponding to
lattices Λ, Λ̃ ⊂ Rm,n. Suppose Λ and Λ̃ are related by an O(m,R)×O(n,R)-transformation, then
the two LLVOAs are isomorphic (VΛ, YΛ)∼= (VΛ̃, YΛ̃).

Proof. Suppose f : Λ −→ Λ̃ is the isomorphism relatingΛ and Λ̃, then for any λ= (αλ,βλ) ∈ Λ

f (αλ,βλ) = (O1 ·αλ, O2 · βλ) , (265)

where O1 and O2 lie in O(m,R) and O(n,R) respectively. Further from the action (265), it is
clear that f (Λ0

1) = Λ̃
0
1 and f (Λ0

2) = Λ̃
0
2 and further that the restrictions to Λ0

1,Λ0
2 are norm-

preserving isomorphisms. Using f we can define the maps

fi : Λi −→ Λ̃i , i = 1,2 ,

αλ 7→ O1 ·αλ , βλ 7→ O2 · βλ ,
(266)

which are norm-preserving maps when we consider Λ1 and Λ̃1 (Λ2 and Λ̃2) as subspaces of
Rm (Rn).

Since an integral basis of Λ and Λ̃ is also a basis of Rm,n, it is clear that the dimension

dim(h1) = dim(h̃1) = m, dim(h2) = dim(h̃2) = n , (267)

where
hi = Λi ⊗Z C , h̃i = Λ̃i ⊗Z C , i = 1,2 , (268)

this implies that the central charges of the two LLVOAs are the same. We then extend f1: h1→ h̃1
and f2 : h2→ h̃2 by C-linearity and observe that the bilinear form on hi ’s are preserved under
this map. We then extend f1 and f2 to ĥ1, ĥ2, by mapping k and k̄ back to themselves.
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Consider the orthonormal bases, which were chosen when defining the conformal vectors
ωL ,ωR, ω̃L , and ω̃R, i.e. {ui}mi=1, {vi}ni=1 and {ũi}mi=1, {ṽi}ni=1 of h1, h̃1 and h2, h̃2 respectively so
that

ωL =
1
2

m
∑

i=1

�

ui(−1)2
�

⊗ 1VΛ , ωR =
1
2

n
∑

i=1

�

vi(−1)2
�

⊗ 1VΛ ,

ω̃L =
1
2

m
∑

i=1

�

ũi(−1)2
�

⊗ 1VΛ̃ , ω̃R =
1
2

n
∑

i=1

�

ṽi(−1)2
�

⊗ 1VΛ̃ .

(269)

Define the isomorphism of complex vector spaces

h1 −→ h̃1 , h2 −→ h̃2 ,

ui 7→ ũi , v j 7→ ṽ j , i = 1, . . . , m , j = 1, . . . , n .
(270)

Denote by α̃ ∈ h̃1, β̃ ∈ h̃2 the image of α ∈ h1,β ∈ h2 under the above map. Define the map
ψ : VΛ −→ VΛ̃ by

ψ
�

α1(−m1) ·α2(−m2) · · ·αk(−mk)β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)⊗ e(α,β)
�

= α̃1(−m1) · α̃2(−m2) · · · α̃k(−mk) β̃1(−m̄1) · β̃2(−m̄2) · · · β̃k̄(−m̄k̄)⊗ e( f1(α), f2(β)) .
(271)

Clearly
ψ(1VΛ) = 1VΛ̃ , ψ(ωi) = ω̃i , where i = L, R . (272)

Since fi is norm preserving, from (172) it is clear that ψ is grading preserving. We now check
that (114) is satisfied. Let us first check (114) for u = eλ

′
and v of the form (152). From the

definition (37) we see that

YVΛ(e
λ′ , x , x̄)v =

�

exp

�

−
∑

s<0

αλ
′
(s)

s
x−s

�

exp

�

−
∑

s>0

αλ
′
(s)

s
x−s

�

exp

�

−
∑

s<0

βλ
′
(s)

s
x̄−s

�

× exp

�

−
∑

s>0

βλ
′
(s)

s
x̄−s

��

eλ′ x
αλ
′

x̄β
λ′

v

= (−1)ε(λ
′,λ)x 〈α

λ′ ,αλ〉 x̄ 〈β
λ′ ,βλ〉

�

exp

�

−
∑

s<0

αλ
′
(s)

s
x−s

�

exp

�

−
∑

s>0

αλ
′
(s)

s
x−s

�

× exp

�

−
∑

s<0

βλ
′
(s)

s
x̄−s

�

exp

�

−
∑

s>0

βλ
′
(s)

s
x̄−s

��

×α1(−m1) ·α2(−m2) · · ·αk(−mk) · β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)⊗ eλ
′+(α,β) .

(273)

Now expanding the exponentials, we obtain a linear combination of terms of the form

αλ
′
(n1) ·αλ

′
(n2) · · ·αλ

′
(np) · βλ

′
(n̄1) · βλ

′
(n̄2) · · ·βλ

′
(n̄p̄)

×α1(−m1) ·α2(−m2) · · ·αk(−mk) · β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)⊗ eλ
′+(α,β)

× (−1)ε(λ
′,λ)x 〈α

λ′ ,αλ〉 x̄ 〈β
λ′ ,βλ〉xℓ x̄ ℓ̄ ,

(274)

with ni , n̄i ∈ Z, p, p̄ ≥ 0 and the sum is over ℓ, ℓ̄ with

ℓ= −
p
∑

i=1

ni , ℓ= −
p̄
∑

i=1

n̄i . (275)
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Now we can use the Heisenberg algebra (191) to commute the operators αλ
′
(ni),βλ

′
(n̄i) with

n j , n̄ j > 0 past other operators and then annihilate eλ
′+(α,β). The result will be a vector of the

form (152) with some factors of the form 〈αλ
′
,αλ

′
〉, 〈αλ

′
,αi〉 and 〈βλ

′
,βλ

′
〉, 〈βλ

′
,β j〉. Thus

under the map ψ in (271), we see that ψ(YVΛ(e
λ′ , x , x̄)v) is a linear combination of terms as

on the right hand side of (271) with factors of the form

(−1)ε(λ
′,λ)x 〈α

λ′ ,αλ〉 x̄ 〈β
λ′ ,βλ〉 , 〈αλ

′
,αλ

′
〉 , 〈αλ

′
,αi〉 , 〈βλ

′
,βλ

′
〉 , 〈βλ

′
,β j〉 ,

= (−1)ε(λ
′,λ)x

¬

f1(αλ
′
), f1(αλ)

¶

x̄
¬

f2(βλ
′
), f2(βλ)

¶

,
¬

f1(α
λ′), f1(α

λ′)
¶

,
¬

f1(α
λ′), f1(αi)

¶

¬

f2(β
λ′), f2(β

λ′)
¶

,
¬

f2(β
λ′), f2(β j)

¶

,

(276)

where by equality we mean the first term in L.H.S is equal to the first term on R.H.S, and so on.
Further, we used the fact that f1, f2 are norm preserving maps to show this equality. Consider
now the LLVOA obtained from the lattice Λ̃ but with the central extension ˆ̃Λ of Λ̃ constructed
from the cocycle ε̃ using the integral basis { f (λi)}m+n

i=1 of Λ̃ where {λi}m+n
i=1 is the integral basis

of Λ used to define the cocycle for Λ̂. By Proposition A.2, central extensions corresponding to
cocycles defined using different bases of Λ̃ are equivalent, thus the LLVOA constructed using
those central extensions are isomorphic. Hence, we may assume that the cocycle ε̃ for the
central extension ˆ̃Λ is defined by (154) using the basis { f (λi)}m+n

i=1 of Λ̃. Now, following the
same calculation as above and using the map ψ, it is clear that YVΛ̃(e

f (λ′), x , x̄)ψ(v) is given
by the exact same linear combinations terms of the form of the right hand side of (271) as for
YVΛ̃(e

f (λ′), x , x̄)ψ(v) but with factors

(−1)ε̃( f (λ
′), f (λ))x

¬

f1(αλ
′
), f1(αλ)

¶

x̄
¬

f2(βλ
′
), f2(βλ)

¶

,
¬

f1(α
λ′), f1(α

λ′)
¶

,
¬

f1(α
λ′), f1(αi)

¶

¬

f2(β
λ′), f2(β

λ′)
¶

,
¬

f2(β
λ′), f2(β j)

¶

.
(277)

Now, consider any λ′ =
∑

i ciλi , λ=
∑

i diλi ∈ Λ, observe that

ε̃( f (λ′), f (λ)) =
m+n
∑

i, j=1

cid j ε̃( f (λi), f (λ j)) =
m+n
∑

i, j=1

cid j ε̃( f (λi), f (λ j))

=
m+n
∑

i, j=1

cid j ε(λi ,λ j) = ε(λ
′,λ) ,

(278)

where the third equality follows from the fact that f is norm-preserving. Using the fact that
ε(λ′,λ) = ε̃( f (λ′), f (λ)) we see that the factors in (277) are equal to the factors on the R.H.S
of (276), and hence

YVΛ̃(ψ(e
λ′), x , x̄)ψ(v) =ψ(YVΛ(e

λ′ , x , x̄)v) . (279)

When we take u to be a more general vector, the corresponding vertex operator has products
of operators which can again be expanded and dealt with as above. This completes the proof
of the proposition.

Corollary 3.1. Let f ∈ Aut(Λ) such that f (Λ0
i ) = Λ

0
i , i = 1,2. Then f can be extended to an

automorphism of the LLVOA associated to Λ.

Proof. We define the map
ψ(eλ) = e f (λ) , λ ∈ Λ0 . (280)

Then define ψ : VΛ −→ VΛ analogous to (271) which acts as identity on the factors αi(−mi)
and β j(−m̄ j) and as (280) on C[Λ0]. It can be checked that ψ defines an automorphism of
the LLVOA VΛ by following the same calculation as in Theorem 3.4.
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From Corollary 3.1, automorphisms of the lattice whuch preserve Λ0
i , i = 1,2 can be

extended to automorphisms of the LLVOA. We then propose the following

Conjecture 1. Any automorphism f ∈ Aut(Λ) preserves Λ0
i , i = 1,2.

We prove this conjecture for m = n in Appendix D. Although we were not able to prove
this conjecture for m ̸= n there are physical reasons to believe this conjecture: T-duality group
in string theory acts by automorphism of a reference Lorentzian lattice [37]. By definition, T-
duality must preserve the chiral and anti-chiral algebra of the CFT. In our formalism, the chiral
and anti-chiral algebra is identified with the algebra of modes of the chiral and anti-chiral ver-
tex operators of non-chiral VOA (see Table 1), thus the automorphism of the reference lattice
must act as automorphism of the LLVOA. This physical consideration supports the conjecture.
We will assume the truth of this conjecture and derive the moduli space of LLVOAs later in
Section 5 below.

4 Modules and intertwining operators

4.1 Modules

We now define modules of a non-chiral VOA.

Definition 4.1. Let (V, YV ,ω, ω̄,1) be a non-chiral VOA. A module for V is a tuple (W, YW )
where W is an (C × C)-graded complex vector space, YW is a linear map, called the module
vertex operator map,

YW : V ⊗W −→W{x , x̄} ,
u⊗w 7−→ YW (u, x , x̄)w ,

(281)

or equivalently a map

YW :C× ×C× −→ Hom
�

V ⊗W, W
�

,

(z, z̄) 7−→ YW (·, z, z̄) : u⊗w 7−→ YW (u, z, z̄)w ,
(282)

which is multi-valued and analytic if z, z̄ are independent complex variables and single valued
when z̄ is the complex conjugate of z. As before the vertex operator YW (u, x , x̄) for u ∈ V(h,h̄)
is expanded as a formal power series

YW (u, x , x̄) =
∑

m,n∈C
(m−n)∈Z

uW
m,n x−m−1 x̄−n−1

=
∑

m,n∈C
(m−n)∈Z

xW
m,n(u)x

−m−h x̄−n−h̄ ∈ End(W ){x , x̄} .
(283)

The following properties must be satisfied:

1. Identity property: The vertex operator corresponding to the vacuum vector acts as iden-
tity, i.e.

YW (1, x , x̄)w= w , ∀ w ∈W . (284)

2. Grading-restriction property: For every21 (h, h̄) ∈ C×C,

dim(W(h,h̄))<∞ , (285)

21Note that h, h̄ are not complex conjugates of each other. We will explicitly specify this when this is the case.
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there exists M ∈ R, such that

W(h,h̄) = 0 , for Re(h)< M , or Re(h̄)< M . (286)

3. Single-valuedness property: For every homogenous subspace W(h,h̄):

h− h̄ ∈ Z . (287)

4. Virasoro property: The vertex operators YW (ω, x , x̄) and YW (ω̄, x , x̄), called conformal
vertex operators, have Laurent series in x , x̄ given by

YW (ω, x , x̄) =
∑

n∈Z
LW (n)x−n−2 ,

YW (ω̄, x , x̄) =
∑

n∈Z
L̄W (n) x̄−n−2 ,

(288)

where LW (n), L̄W (n) are operators which satisfy the Virasoro algebra (47) with central
charge c, c̄ respectively.

5. Grading property: For w ∈W(h,h̄)

LW (0)w= hw , L̄W (0)w= h̄w . (289)

6. LW(0)-property:

[LW (0), YW (u, x , x̄)] = x
∂

∂ x
YW (u, x , x̄) + Y (L(0)u, x , x̄) ,

[ L̄W (0), YW (u, x , x̄)] = x̄
∂

∂ x̄
YW (u, x , x̄) + YW (L̄(0)u, x , x̄) .

(290)

7. Translation property: For any u ∈ V

�

LW (−1), YW (u, x , x̄)
�

= YW (L(−1)u, x , x̄) =
∂

∂ x
YW (u, x , x̄) ,

�

L̄W (−1), YW (u; x , x̄)
�

= YW

�

L̄(−1)u, x , x̄
�

=
∂

∂ x̄
YW (u, x , x̄) . (291)

8. Locality and duality property: The module vertex operators must be local, that is given
n module vertex operators YW (ui , zi , z̄i), i = 1, . . . , n, there exists an operator-valued
function mn(u1, . . . , un, z1, . . . , zn, z̄1, . . . , z̄n) satisfying the requirements in Property 9 of
Definition 2.1. Moreover, for u1, u2 ∈ V ,

YW (u1, z1, z̄1)YW (u2, z2, z̄2) ,

YW (u2, z2, z̄2)YW (u1, z1, z̄1) ,

YW (YV (u1, z1 − z2, z̄1 − z̄2)u2, z2, z̄2) ,

(292)

are the expansions of a function m2(u1, u2, z1, z̄1, z2, z̄2) in the sets given by |z1|> |z2|>0,
|z2| > |z1| > 0, and |z2| > |z1 − z2| > 0, respectively, where z̄1, z̄2 are the complex
conjugates of z1 and z2 respectively. Also m is an End(W )-valued function, linear in
u1, u2, defined on

{(z1, z2) ∈ C2 | z1, z2 ̸= 0, z1 ̸= z2} , (293)

multi-valued and analytic when z̄1, z̄2 are viewed as independent variables and is single-
valued when z̄1, z̄2 are equal to the complex conjugates of z1, z2 respectively. We say that
the module vertex operators YW (u1, z1, z̄1) and YW (u2, z2, z̄2) satisfy locality and duality
with respect to each other if they satisfy (292).
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Remark 4.1. The module for non-chiral VOA defined here is related to the notion of module
in [2] and [9], and ordinary module in [38].

Remark 4.2. The equality of only the first two expressions of (292) is the usual locality of
two module vertex operators and the equality of first and third expressions in (292) is called
duality of module vertex operators. From Proposition 2.2, we see that locality implies duality
for vertex operators of a non-chiral VOA, while for module vertex operators, Proposition 4.1
below gives a sufficient condition for locality to imply duality in terms of existence of a certain
intertwining operator (see Definition 4.2).

Chiral and anti-chiral module vertex operators are defined analogous to chiral and anti-
chiral vertex operators. For v ∈ VΛ with conformal weights (h, h̄), we will expand the module
vertex operator YW (v, x , x̄) as in (283). As in Lemma 2.4, for chiral and anti-chiral vectors
u ∈ V(h,h̄), v ∈ V(h′,h̄′), we expand the module vertex operators as

YW (u, x) =
∑

m∈Z
xW

m (u)x
−m−(h−h̄) ,

YW (v, x̄) =
∑

m∈Z
x̄W

m (v) x̄
−m−(h̄′−h′) .

(294)

The proof of Theorem 2.1 goes through even for module vertex operators. We record the result
for later reference.

Theorem 4.1. Let ui ∈ V(hi ,h̄i) and vi ∈ V(h′i ,h̄′i) be homogeneous chiral and anti-chiral vectors
respectively with corresponding vertex operators

YW (ui , x) =
∑

n∈Z
xW

n (ui)x
−n−(hi−h̄i) ,

YW (v j , x̄) =
∑

n∈Z
x̄W

n (vi) x̄
−n−(h̄′i−h′i) .

(295)

Then we have

[xW
n (ui), xW

k (u j)] =
∑

p≥−(hi−h̄i)+1

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

xW
k+n(xp(ui) · u j) ,

[ x̄W
n (vi), x̄W

k (v j)] =
∑

p≥−(h̄′i−h′i)+1

�n+ (h̄′i − h′i)− 1

p+ (h̄′i − h′i)− 1

�

x̄W
k+n( x̄p(vi) · v j) ,

[xW
n (ui), x̄W

k (v j)] = 0 .

(296)

In particular,

[LW (n), xW
k (ui)] =

∑

p≥−1

�

n+ 1
p+ 1

�

xW
k+n(L

W (p) · ui) ,

[LW (n), x̄W
k (vi)] = 0 ,

[ L̄W (n), x̄W
k (vi)] =

∑

p≥−1

�

n+ 1
p+ 1

�

x̄W
k+n(L̄

W (p) · vi) ,

[ L̄W (n), xW
k (ui)] = 0 .

(297)
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More generally, for m ∈ Z we have the Borcherd’s identity

∑

r≥0

�

m
r

�

�

(−1)r xW
n+m−r(ui)x

W
k+r(u j)− (−1)m+r xW

k+m−r(u j)x
W
n+r(ui)

�

(298)

=
∑

p≥1−(hi−h̄i)

�

n+ (hi − h̄i)− 1

p+ (hi − h̄i)− 1

�

xW
k+n+m+h̄i−h̄ j

(xp+m(ui) · u j) , (299)

∑

r≥0

�

m
r

�

�

(−1)r x̄W
n+m−r(vi) x̄

W
k+r(v j)− (−1)m+r x̄W

k+m−r(v j) x̄
W
n+r(vi)

�

(300)

=
∑

p≥1−(h̄′i−h′i)

�n+ (h̄′i − h′i)− 1

p+ (h̄′i − h′i)− 1

�

x̄W
k+n+m+h′i−h′j

( x̄p+m(vi) · v j) , (301)

∑

r≥0

�

m
r

�

�

(−1)r xW
n+m−r(ui) x̄

W
k+r(v j)− (−1)m+r x̄W

k+m−r(v j)x
W
n+r(ui)

�

= 0 . (302)

The graded dimension or character of a module W of a non-chiral VOA is defined similar
to that of the VOA:

χW (τ, τ̄) = TrW qLW (0)− c
24 q̄ L̄W (0)− c̄

24 =
∑

(h,h̄)∈C×C

�

dim W(h,h̄)

�

qh− c
24 q̄h̄− c̄

24 . (303)

Let (W, YW ) be a module of a non-chiral VOA V . A V -submodule of W is a vector subspace
W1 ⊂W such that the vertex operator map restricts to a map on W1:

YW : V ⊗W1 −→W1{x , x̄} ,
u⊗w 7−→ YW (u, x , x̄)w ,

(304)

and is a V -module in its own right. A V -module is called irreducible if it has no non-zero
proper submodules. Irreducible modules are also called simple modules. Direct sum of two
V -modules is another V -module with the obvious definition of vertex operator map. A homo-
morphism between two V -modules (W1, YW1

) and (W2, YW2
) is a grading preserving linear map

f : W1 −→W2 satisfying

f (YW1
(v, x , x̄)w) = YW2

(v, x , x̄) f (w) , ∀ v ∈ V, w ∈W1 . (305)

The notion of isomorphisms and automorphisms are defined analogous to the non-chiral VOA.
Again, isomorphic modules have identical graded dimension. A semi-simple V -module is a
V -module isomorphic to the direct sum of finitely many simple V -modules.

4.2 Intertwining operators

In this section, we define intertwining operators and study some of their properties.

Definition 4.2. Let (V, YV ,ω, ω̄,1) be a non-chiral vertex operator algebra and let (Wi , Yi),
�

Wj , Yj

�

and (Wk, Yk) be three V -modules. An intertwining operator of type
�

Wi
WjWk

�

is a linear
map

Y : Wj ⊗Wk −→Wi{x , x̄} ,
w( j) ⊗w(k) 7→ Y(w( j), x , x̄)w(k) ,

(306)

or equivalently a map

Y : C× ×C× −→ Hom
�

Wj ⊗Wk, W i

�

,

(z, z̄) 7−→ Y(·, z, z̄) : w( j) ⊗w(k) 7−→ Y(w( j), z, z̄)w(k) ,
(307)
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which is multi-valued and analytic if z, z̄ are independent complex variables and single valued
when z̄ is the complex conjugate of z. The intertwining operator Y(w( j), x , x̄) is expanded as

Y(w( j), x , x̄) =
∑

n,m∈C
(w( j))n,m x−n−1 x̄−m−1 ∈ Hom (Wk, Wi) {x , x̄} . (308)

The following properties must be satisfied:

1. L(0)-property: For any w( j) ∈Wj

[L(0),Y(w( j), x , x̄)] = x
∂

∂ x
Y(w( j), x , x̄) + Yj(L

Wj (0)w( j), x , x̄) ,

[ L̄(0),Y(w( j), x , x̄)] = x̄
∂

∂ x̄
Y(w( j), x , x̄) + Yj(L̄

Wj (0)w( j), x , x̄) ,
(309)

where the commutator on the LHS is understood to be

[L(0),Y(w( j), x , x̄)] = LWi (0)Y(w( j), x , x̄)−Y(w( j), x , x̄)LWk(0) ,

[ L̄(0),Y(w( j), x , x̄)] = L̄Wi (0)Y(w( j), x , x̄)−Y(w( j), x , x̄)L̄Wk(0) .
(310)

2. Translation property: For any w( j) ∈Wj

[L(−1),Y(w( j), x , x̄)] = Y
�

LWj (−1)w( j), x , x̄
�

=
∂

∂ x
Y(w( j), x , x̄) ,

[ L̄(−1),Y(w( j), x , x̄)] = Y
�

L̄Wj (−1)w( j), x , x̄
�

=
∂

∂ x̄
Y(w( j), x , x̄) ,

(311)

where the commutativity is understood as above.

3. Locality property: The module vertex operators and the intertwiner must be local, that
is given vectors u1, . . . , un−1 ∈ V, w( j) ∈ Wj , there exists an operator-valued function
mn(u1, . . . , un−1, w( j), z1, . . . , zn, z̄1, . . . , z̄n) satisfying the requirements in Property 9 of
Definition 2.1. Here, the product of vertex operators in (53) is replaced by

Yi

�

uσ(1), zσ(1), z̄σ(1)
�

· · ·Yi

�

uσ(a−1), zσ(a−1), z̄σ(a−1)
�

Y
�

w( j), za, z̄a

�

×Yk

�

uσ(a+1), zσ(a+1), z̄σ(a+1)
�

· · ·Yk

�

uσ(n), zσ(n), z̄σ(n)
�

.
(312)

We will denote the intertwining operator by

Y i
jk or Y Wi

WjWk
,

when we need to indicate its type.

Remark 4.3. The vertex operator map YV (·, x , x̄) acting on a non-chiral VOA V is an example
of an intertwining operator of type

�

V
V V

�

and YW (·, x , x̄) acting on a V -module W is an example
of an intertwining operator of type

�

W
VW

�

.

Remark 4.4. Following the proof of (54) and using the L(0)-property 1 along with the grading-
restriction property 2 of modules, one can show the following lower truncation property for
intertwiners: for w( j) ∈Wj and w(k) ∈Wk,

(w( j))n,mw(k) = 0 , for n, m sufficiently large. (313)
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Proposition 4.1. Let (V, YV ) be a non-chiral VOA and (W, YW ) be a V -module. Suppose there
exists an intertwining operator of type Y W

W V where (V, YV ) is considered as a module for itself.
Suppose further that the intertwining operator satisfies

lim
x , x̄→0

Y W
W V (w, x , x̄)1= w , w ∈W . (314)

Then the locality property of module vertex operators implies the duality property (see Remark
4.2 for terminology):

YW (u, z1, z̄1)YW (v, z2, z̄2) = YW (YV (u, z1 − z2, z̄1 − z̄2)v, z2, z̄2) , u, v ∈ V . (315)

In particular, we have the OPE:

YW (u, z1, z̄1)YW (v, z2, z̄2) =
∑

m,n∈C
YW (um,n · v, z2, z̄2)(z1 − z2)

−m−1(z̄1 − z̄2)
−n−1 , (316)

where um,n ∈ End(V ) defined using the expansion (37).

Proof. The proof is analogous to the proof of Proposition 2.2. Let w ∈W be an arbitrary vector.
First note that (314) along with the translation property 2 implies that Lemma 2.1 is true for
the intertwiner Y W

W V (w, x , x̄):

Y W
W V (w, x , x̄)1= e x̄ L̄(−1)ex L(−1)w . (317)

Then we have

YW (u, z1, z̄1)YW (v, z2, z̄2)e
z̄3 L̄(−1)ez3 L(−1)w

= YW (u, z1, z̄1)YW (v, z2, z̄2)Y W
W V (w, z3, z̄3)1

= Y W
W V (w, z3, z̄3)YV (u, z1, z̄1)YV (v, z2, z̄2)1

= Y W
W V (w, z3, z̄3)YV (YV (u, z1 − z2, z̄1 − z̄2)v, z2, z̄2)1

= YW (YV (u, z1 − z2, z̄1 − z̄2)v, z2, z̄2)Y W
W V (w, z3, z̄3)1 ,

(318)

where we used the locality property of intertwiner Y W
W V and the duality of vertex operators in

Proposition 2.2. Now taking the limit z3, z̄3→ 0 gives the required result.

4.3 Non-chiral CFT and modular invariance

Given a non-chiral VOA (V, YV ) with the set of all isomorphism classes of simple modules
{(Wi , YWi

)}, one can construct a non-chiral CFT by taking the non-chiral VOA and a subset of
the simple modules.22 Note that one is allowed to choose copies of the same module.

Definition 4.3. A non-chiral VOA (V, YV ) along with a subset {(Wα, YWα)}α∈I of simple mod-
ules, with possibly (Wα, YWα)

∼= (Wβ , YWβ ) for some α,β ∈ I , will be called a non-chiral CFT.

Two non-chiral CFTs are said to be equivalent if the underlying non-chiral VOAs and their
simple modules are isomorphic. Note that the isomorphism is allowed to permute the (non-
trivial) modules but not the non-chiral VOA which is considered as a module for itself.

22A crucial requiremnt in choosing what subset of simple modules to include is to make sure that the OPE
of appropriate intertwiners between modules closes in the sense that the right hand side of the OPE contains
interwiners and vertex operators for modules which are included in the subset we choose. We will explore these
fusion rules for intertwiners in a future work. For the purposes of this paper, we will work with the simplistic
definition given below.
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Let {Wα}α∈I with W0
∼= V being the non-chiral VOA V considered as a module for itself be

a non-chiral CFT. The torus partition function of the non-chiral CFT is defined by

ZV (τ, τ̄) :=
∑

i∈I

χWi
(τ, τ̄) . (319)

It is clear that equivalent non-chiral CFTs have identical partition function.
A non-chiral CFT is called modular invariant if its torus partition function is modular in-

variant:
ZV (γτ,γτ̄) = ZV (τ, τ̄) , γ ∈ SL(2,Z) , (320)

where

γτ=
aτ+ b
cτ+ d

, γτ̄=
aτ̄+ b
cτ̄+ d

, γ=

�

a b
c d

�

∈ SL(2,Z) . (321)

Given a non-chiral CFT, its torus partition function need not be modular invariant. Modular
invariance is a physical requirement and it puts strong constraints on which modules of a
non-chiral VOA is allowed to construct the non-chiral CFT.

5 Moduli space of non-chiral CFTs over Lorentzian lattices

5.1 Construction of modules of LLVOA

Given any [µ] = [(µ1,µ2)] ∈ Λ/Λ0 be a coset. We will construct a module for the LLVOA
corresponding to this coset. First observe that there is a one-to-one correspondence between
cosets Λ/Λ0 and C[Λ]/C[Λ0] given by the map

[µ] 7→ C[µ+Λ0] = eµ ·C[Λ0] = SpanC{e
µ+λ : λ ∈ Λ0} . (322)

Using the coset C[µ+Λ0], define the vector space

Wµ := S(h−)⊗C[µ+Λ0] . (323)

Note that Wµ is generated by elements of the form

w :=
�

α1(−m1) ·α2(−m2) · · ·αk(−mk)β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)
�

⊗ e(µ1,µ2)+(α,β) ,
(324)

for mi , m̄ī > 0, k, k̄ ≥ 0, (α,β) ∈ Λ0. The vertex operator map is exactly the same as for
(YVΛ , VΛ):

YWµ(·, x , x̄) = YVΛ(·, x , x̄) . (325)

Note that YWµ(·, x , x̄) acts on Wµ for which the required action of ĥ0,k, k̄ onC[µ+Λ0] is defined

in (153).The action of xα, x̄β is defined exactly the same as in (164) and the action of Λ̂0 on
C[µ+Λ] is given in (161). The grading on Wµ is given by defining the conformal weights of w
in (324) to be

h=
〈µ1 +α,µ1 +α〉

2
+

k
∑

i=1

mi , h̄=
〈µ2 + β ,µ2 + β〉

2
+

k̄
∑

j=1

m̄ j . (326)

Remark 5.1. In view of (325), the modes x
Wµ
m,n(u) of the vertex operator YWµ(u, x , x̄) is the

same as the mode xm,n(u) of YVΛ(u, x , x̄) but now acting on Wµ, see Remark 3.1.

Theorem 5.1. For every [µ] ∈ Λ/Λ0, the tuple (Wµ, YWµ) is a VΛ-module.
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Proof. We prove the properties in Section 4 to show (Wµ, YWµ) is a VΛ-module. The proof of
Properties 1 through 7, except Property 2 are exactly the same as in the case of the LLVOA,
which we had shown in Subsection 3.3.
Now, it can be seen that h and h̄ in (326) are both positive numbers, as mi are positive integers
and the bilinear forms, inherited from Rm and Rn, on Λ1 and Λ2 are positive definite. Hence,
M = 0 for Property 2. To show dim(W(h,h̄)) <∞, we show that for any h, h̄ ∈ R the number
of distinct λ= (α,β) ∈ Λ0 satisfying

〈µ1 +α,µ1 +α〉 ≤ 2h , and 〈µ2 + β ,µ2 + β〉 ≤ 2h̄ , where α ∈ Λ1,β ∈ Λ2 , (327)

can be only finitely many. We basically mimic the proof for the grading restriction property for
the LLVOA, noting that µ1 +Λ1 and µ2 +Λ2 are also discrete.
The proof of the locality of module vertex operators is same as for the LLVOA case. We prove
the duality property. We will show that there exists an intertwining operator of type YWµ

WµVΛ
satisfying the hypothesis of Proposition 4.1. Indeed, for w ∈ Wµ of the form (324), consider
the operator

Y Wµ
WµVΛ
(w, x , x̄) = ⦂

k
∏

r=1

k̄
∏

s=1

�

1
(mr − 1)!

dmr−1αr(x)
d xmr−1

��

1
(m̄s − 1)!

d m̄s−1βs( x̄)
d x̄ m̄s−1

�

×Y Wµ
WµVΛ
(eµ+(α,β), x , x̄)⦂ ,

(328)

where
Y Wµ

WµVΛ
(eµ+(α,β), x , x̄) = YVΛ(e

µ+(α,β), x , x̄) . (329)

The operators appearing in the intertwiner above act on VΛ in the obvious way. The axioms of
intertwiners along with the hypothesis of Proposition 4.1 for Y Wµ

WµVΛ
follows from the general

proofs in Subsection 3.3.

We now show that these modules are irreducible.

Proposition 5.1. Any VΛ-module (W, YW ) is also an (ĥ⋆1 ⊕ ĥ
⋆
2)-module, where ĥ⋆i are Heisenberg

algebras associated to hi .

Proof. For any α ∈ h1, consider α(−1)⊗ 1 ∈ VΛ. The corresponding vertex operator is

YW (α(−1)⊗ 1, x , x̄) := αW (x) :=
∑

n∈Z
αW (n)x−n−1 . (330)

This implies that W is also an ĥ⋆1-module. Similarly considering the vector β(−1)⊗1 ∈ VΛ and
its vertex operator, we see that W is also an ĥ⋆2-module.

Remark 5.2. When W=Wµ is the module of the LLVOA corresponding to the coset [µ]∈Λ/Λ0,
then αW (x)=α(x) and αW (n)=α(n), see Remark 5.1.

Theorem 5.2. For [µ] ∈ Λ/Λ0, the VΛ-module (Wµ, YWµ) is irreducible.

Proof. Suppose W ⊂ Wµ is a VΛ-submodule. Then W is also an (ĥ⋆1 ⊕ ĥ⋆2)-module. By Theo-
rem C.2

W ∼= S(ĥ−1 )⊗ S(ĥ−2 )⊗ΩW
∼= S(ĥ−)⊗ΩW , (331)

where ΩW is the vacuum space of W , see Appendix C for definition. Since the vacuum space
of Wµ is C[µ+Λ0] we have

ΩW ⊂ C[µ+Λ0] =
⊕

λ∈µ+Λ0

Ceλ . (332)
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Since W is invariant under α(0),β(0) for all α ∈ h1,β ∈ h2 and Ceλ are eigenspaces for
α(0),β(0), we must have

ΩW = C[M] , (333)

for some non-empty subspace M ⊂ µ+Λ0. Finally note that for any λ ∈ Λ0 we have

eλ = exp

�

−
∫

d x αλ(x)−
�

exp

�

−
∫

d x̄ βλ( x̄)−
�

YVΛ(e
λ, x , x̄)

× exp

�

−
∫

d x αλ(x)+
�

exp

�

−
∫

d x̄ βλ( x̄)+
�

x−α
λ

x̄−β
λ

.

(334)

Noting that x−α
λ
, x̄−β

λ
acts as x−α

λ(0), x̄−β
λ(0) respectively, we see that W must be invariant

under eλ for all λ ∈ Λ0. This means that M = µ+Λ0 since {eλ : λ ∈ Λ0} acts transitively on
C[µ+Λ0].

The graded dimension for the module Wµ for any [µ] ∈ Λ/Λ0 can be easily calculated. As
for LLVOA, we obtain

χWµ(τ, τ̄) =
1

η(τ)mη(τ)
n

∑

(α,β)∈µ+Λ0

q
〈α,α〉

2 q̄
〈β ,β〉

2 . (335)

Using (263) and (335), we see that the partition function of the non-chiral CFT consisting of
the LLVOA (VΛ, YVΛ) and its modules23 {(Wµ, YWµ)}[µ]∈Λ/Λ0

is given by

ZVΛ(τ, τ̄) =
∑

[µ]∈Λ/Λ0

χWµ(τ, τ̄)

=
1

η(τ)mη(τ)
n

∑

(α,β)∈Λ

q
〈α,α〉

2 q̄
〈β ,β〉

2 .
(336)

5.2 Moduli space of modular invariant non-chiral CFTs over Lorentzian lattices

Given a Lorentzian lattice Λ ⊂ Rm,n, we have constructed a non-chiral vertex operator algebra
based on Λ and constructed a set of its irreducible modules. In general, these non-chiral CFTs,
consisting of the LLVOA and its irreducible modules, are not modular invariant. To construct
a modular invariant non-chiral CFT we restrict to even self-dual lattices and only consider the
irreducible modules constructed here which are in 1-1 correspondence with the cosets Λ/Λ0.
We call such CFTs as Lorentzian lattice CFTs (LLCFTs). Indeed, we have the following theorem.

Theorem 5.3. Let Λ ∈ Rm,n be an even self-dual lattice such that m− n ≡ 0 mod 24. Then the
LLCFT consisting of the LLVOA VΛ and its modules {Wµ}[µ]∈Λ/Λ0

is a modular invariant non-chiral
CFT.

Proof. The partition function of the non-chiral CFT in the statement of the theorem is given
by24 (336):

Zmod
VΛ
(τ, τ̄) :=

1

η(τ)mη(τ)
n

∑

(α,β)∈Λ

q
〈α,α〉

2 q̄
〈β ,β〉

2

=
1

η(τ)mη(τ)
nΘΛ(τ, τ̄) ,

(337)

23We stress that these are not all the modules of the LLVOA. But if we want the non-chiral CFT to be modular
invariant, we need to restrict to this set of modules, see Theorem 5.3.

24We are using a different notation for the partition to emphasize modular invariance.
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where ΘΛ(τ, τ̄) is the Siegel-Narain theta function [39,40] associated to the lattice Λ. Invari-
ance under τ→ τ+ 1:

Zmod
VΛ
(τ+ 1, τ̄+ 1) = Zmod

VΛ
(τ, τ̄) , (338)

follows from m− n≡ 0 mod 24 because

η(τ+ 1) = e2πi/24η(τ) . (339)

Invariance under the modular transformation:

Zmod
VΛ

�

−
1
τ

,−
1
τ̄

�

=
e−iπm−n

4

p

|detGΛ|
τm/2τ̄n/2(−iτ)−m/2(iτ̄)−n/2 1

η(τ)mη(τ)
n

∑

(α,β)∈Λ⋆
q
〈α,α〉

2 q̄
〈β ,β〉

2

= Zmod
VΛ
(τ, τ̄) ,

(340)

follows from the fact that Λ is unimodular and self-dual. Here we used the modular transfor-
mation of the Dedekind eta function:

η

�

−
1
τ

�

=
p

−iτη(τ) , (341)

and the modular transformation of the Siegel-Narain theta function [39,41].

We now want to classify all LLCFTs based on Lorentzian lattices of signature (m, n) up to
isomorphism. Following the physics convention, we call the set of isomorphism classes the
moduli space of modular invariant LLCFTs over Lorentzian lattices and denote it by Mm,n.

Theorem 5.4. Under the assumptions of Theorem 3.4, the LLCFTs based on Λ, Λ̃ are isomorphic.

Proof. Let (Wµ, YWµ)[µ]∈Λ/Λ0
and (W̃µ, ỸW̃µ)[µ]∈Λ̃/Λ̃0

be the isomorphism classes of irreducible
modules of the corresponding LLVOAs (VΛ, YVΛ) and (VΛ̃, YVΛ̃). By Theorem 3.4 the two LLVOAs
are isomorphic. It now suffices to show that for 0 ̸= [µ] ∈ Λ/Λ0, there exists 0 ̸= [ν] ∈ Λ̃/Λ̃0
such that

(Wµ, YWµ)
∼= (W̃ν, ỸW̃ν) . (342)

Pick a representative µ ∈ [µ] and let ν= f (µ). Then define the map

ϕ : Wµ −→ W̃ν
�

α1(−m1) ·α2(−m2) · · ·αk(−mk)β1(−m̄1) · β2(−m̄2) · · ·βk̄(−m̄k̄)
�

⊗ e(µ1,µ2)+(α,β)

7→
�

α̃1(−m1) · α̃2(−m2) · · · α̃k(−mk) β̃1(−m̄1) · β̃2(−m̄2) · · · β̃k̄(−m̄k̄)
�

⊗ e( f1(µ1+α), f −2(µ2+β) ,
(343)

where fi : Λi −→ Λ̃i , i = 1,2 is defined as in (266) and extended to fi : ĥi −→ ˆ̃hi by C-

linearity. Here ˆ̃hi is constructed as in (143) and (144) for Λ̃. This map is grading preserving
since f1, f2 are norm-presering on Λ1,Λ2 respectively. One can now show that ϕ now defines
an isomorphism of modules of isomorphic LLVOA by following the same calculations as in the
proof of Theorem 3.4.

It is known that all even self-dual Lorentzian lattices of signature (m, n) are related by an
O(m, n,R) transformation [34]. Thus the set of all non-chiral CFTs based on Lorentzian lattices
in signature (m, n) can be identified with O(m, n,R). But in view of Theorem 5.4, many of the
lattices determine isomorphic LLCFTs. Moreover, for any LLCFT based on Λ, from Corollary
3.1, one can identify a discrete subgroup of O(m, n,R) which acts as automorphisms of the
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LLCFT. If we believe the truth of Conjecture 1, then we can identify this discrete subgroup of
O(m, n,R) as the automorphism group of the lattice. More precisely, from Theorem 3.2 it is
easy to see that the discrete subgroup is isomorphic to GΛOΛ(m, n,Z)G−1

Λ ⊂ O(m, n,R). This
subgroup, somewhat inaccurately, but conventionally [37,42] is denoted by O(m, n,Z). Thus
we have the following theorem.

Theorem 5.5. Assuming Conjecture 1, the moduli spaceMm,n of modular invariant LLCFTs based
on Lorentzian lattices of signature (m, n) is isomorphic to

Mm,n
∼=

O(m, n,R)
O(m,R)×O(n,R)×O(m, n,Z)

, (344)

where O(m,R) × O(n,R) acts on O(m, n,R) by right multiplication and O(m, n,Z) acts by left
multiplication.

Proof. Choose a reference Lorentzian lattice Λref with generator matrix Gref. Then the set of
all Lorentzian lattices can be identified with O(m, n,R) under the map25

O 7→ GrefO . (345)

From above discussion, the non-chiral CFT based on GrefO and GrefOO with
O ∈ O(m,R) × O(n,R) is isomorphic. Thus we must quotient out by the right action of
O(m,R)×O(n,R) on O(m, n,R). Also automorphisms of Λref, which is isomorphic to a discrete
subgroup of O(m, n,R) and denoted by O(m, n,Z), act by right multiplication on Gref. So we
must quotient by the left action of O(m, n,Z) on O(m, n,R). This gives the required structure
of the moduli space.

Remark 5.3. In deriving the moduli space of LLCFTs based on Lorentzian lattices, we imposed
modular invariance as a requirement. This was crucial in restricting the lattices to self-dual
ones. If we lift the modular invariance requirement, we obtain more general non-chiral CFTs
recently discussed in [43] and called generalised Narain theories.26

Remark 5.4. At a general point in the moduli space (344), the sublattice Λ0 is trivial and the
LLVOA is simply S(ĥ−) ∼= S(ĥ−1 )⊗ S(ĥ−2 ). The chiral and anti-chiral algebra is then generated
by the vertex operators

ui(x) =
∑

r∈Z
ui(r)x

−r−1 , v j( x̄) =
∑

r∈Z
vi(r) x̄

−r−1 , i = 1, . . . m , j = 1, . . . , n , (346)

corresponding to states {ui(−1) · 1}mi=1 and {vi(−1) · 1}ni=1 where {ui}, {vi} are orthonormal
basis of ĥ1, ĥ2 respectively. All other chiral vertex operators are given by products of derivatives
of ui(x), v j( x̄) (see (170)). In physics, these are called Kac-Moody currents and their modes
generate U(1)m×U(1)n Kac-Moody algebra in the LLCFT. Thus at a generic point in the moduli
space, the chiral and anti-chiral algebra is extended from Virasoro to U(1)m × U(1)n Kac-
Moody algebra. At certain points in the moduli space where Λ0 ̸= 0, the chiral and anti-chiral
algebra is further extended to some enhanced symmetry algebra.27 It would be interesting
to identify the chiral and anti-chiral algebra at these special points in the moduli space with
known algebras.

25Recall that in our convention, lattice vectors are written as rows rather than columns.
26We thank Masahito Yamazaki for discussion on this point.
27We thank Anatoly Dymarsky for discussions on this point.
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Remark 5.5. The double coset structure (344) of the moduli space of LLCFTs was also obtained
in [8]. While the discussion of the result is complete in [8], it has not been explicitly checked
that these theories are example of non-chiral CFTs defined in this paper. As discussed above,
the proof of the moduli space structure of LLCFTs requires the truth of Conjecture 1 in our
formalism. Such conditions do not appear in [8] since the proof of the double coset structure
(344) is given using current-current deformation of full vertex algebra in [8].

6 Narain CFT

Narain CFTs are a large class of conformal field theories which are constructed by compactify-
ing free bosons on a torus and coupling them to a background antisymmetric B-field. Narain
CFTs naturally appear in string theory when we perform toroidal compactification of strings in
multiple directions. In this section, we will describe these CFTs and explain how they provide
physical examples of the non-chiral VOA we constructed in Section 3. We restrict to m = n
case for this discussion.

6.1 Construction of Narain CFTs

We describe the construction of Narain CFTs. The exposition is based on [44, Section 4.1]
and [37, Section 8.4].

Let Γ ⊂ Rn be an n-dimensional Euclidean lattice and 2πΓ be the rescaled lattice. Let
Tn ≡ Rn/(2πΓ ) be the n-dimensional torus obtained by imposing the equivalence relation

x ∼ x ′ ⇐⇒ x − x ′ ∈ 2πΓ . (347)

We then consider n bosons Xµ, µ= 1, . . . , n on a two dimensional surface (worldsheet) moving
on the torus Tn (target space). Alternatively, Xµ can be considered as coordinates on the torus
Tn. Note that

Xµ ∼ Xµ + 2πeµ , e⃗ ∈ Γ . (348)

Let us parameterize the worldsheet by σ, t. Then the action for the CFT is given by

S =
1

4πα′

∫

d t

∫

dσ (Ẋ 2 − X ′2 − 2BµνẊµX ′ν) , (349)

where

Ẋ 2 =
n
∑

µ=1

ẊµẊµ , X ′2 =
n
∑

µ=1

X ′µX ′µ , (350)

with dot indicating derivative with respect to t and prime with respect to σ, Bµν is an anti-
symmetric matrix and α′ is a coupling constant (called Regge slope in string theory). The
equation of motion for Xµ is given by

Ẍµ − X ′′µ = 0 , (351)

which is the wave equation in 2 dimensions with solutions

X (σ, t) = XµL (t +σ) + XµR (t −σ) . (352)

Here X L , XR are called the left moving and right moving components. We now take the σ
coordinate on the worldsheet to be periodic, σ ∼ σ+ 2π so that

Xµ(t,σ+ 2π) = Xµ(t,σ) + 2πeµ , e⃗ ∈ Γ . (353)

55

https://scipost.org
https://scipost.org/SciPostPhys.17.2.047


SciPost Phys. 17, 047 (2024)

The periodicity implies that we have a Fourier expansion of the form

XµL (t +σ) =
xµ

2
+α′

pµL
2
(t +σ) +

i
2

∑

n̸=0

aµn
n

e−in(t+σ) ,

XµR (t −σ) =
xµ

2
+α′

pµR
2
(t −σ) +

i
2

∑

n̸=0

bµn
n

e−in(t−σ) ,

(354)

where
α′

2
(p⃗L − p⃗R) = e⃗ ∈ Γ , (355)

so that

Xµ(t,σ) = XµL (t +σ) + XµR (t −σ)

= xµ +
α′

2

�

pµL + pµR
�

t + e⃗σ+
i
2

∑

n̸=0

�

aµn
n

e−in(t+σ) +
bµn
n

e−in(t−σ)
�

,
(356)

satisfies the periodicity (353). Note that the total momenta given by

Pµ =
1

2πα′

∫ 2π

0

dσ
�

Ẋµ − BµνX ′ν
�

=
α′

2

�

pµL + pµR
�

− Bµνeν , (357)

must be a vector of the dual lattice Γ ⋆ defined as

Γ ⋆ :=
�

e⃗ ∈ Rn | e⃗ · e⃗′ ∈ Z,∀ e⃗′ ∈ Γ
	

, (358)

since X (t,σ) is only defined up to arbitrary shifts by 2πe⃗ for e⃗ ∈ Γ . We have

pµL =
α′Pµ + (Bµν +δµν) eν

α′
, pµR =

α′Pµ + (Bµν −δµν) eν
α′

. (359)

Thus the set of vectors28 λ= (p⃗L , p⃗R) ∈ Rn,n form a lattice Λ ⊂ Rn,n. Moreover

λ ◦λ := ∥pL∥
2 − ∥pR∥

2 =
4
α′

P⃗ · e⃗ . (360)

We now fix α′ = 2, so that λ ◦λ ∈ 2Z. Next for any λ,λ′ ∈ Λ

λ ◦λ′ = p⃗L · p⃗′L − p⃗R · p⃗′R
= P⃗ ′ · e⃗+ P⃗ · e⃗′ ∈ Z .

(361)

So Λ is an even29 Lorentzian lattice. In fact, Λ is self dual [44]. A generator matrix for Λ in
the coordinates [45]

λ= (α,β) , α=
p⃗L + p⃗Rp

2
, β =

p⃗L − p⃗Rp
2

, (362)

is

GΛ =
1
p

2

�

2γ⋆ 0
γB γ

�

, (363)

28We again take the lattice vectors to be rows in Rn,n.
29Note that an even lattice is necessarily integral.
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where γ and γ⋆ =
�

γ−1
�T

are the generator matrices for Γ and Γ ⋆ respectively. Upon quanti-
sation, we impose the commutators

[aµn , aνm] = nδn+m,0δ
µν , [bµn , bνm] = nδn+m,0δ

µν , [aµn , bνm] = 0 ,

[xµ, pµL ] = [x
µ, pνR] = iδµν .

(364)

For every (p⃗L , p⃗R) ∈ Λ we have a primary operator given by

VpL ,pR
(z, z̄) = ⦂ei p⃗L ·X⃗ L(z)+i p⃗R·X⃗R(z̄)⦂ , (365)

where z = ei(i t+σ), z̄ = ei(i t−σ) which is obtained by Wick rotating t → i t. The normal ordering
is defined via

⦂ aµn aνm⦂= ⦂aνm aµn⦂=

¨

aνm aµn , m≤ n ,

aµn aνm , m≥ n ,

⦂ aµmpνL⦂= ⦂pνL aµm⦂= aµmpνL ,

⦂ xµ aνn⦂= ⦂aνn xµ⦂= aνn xµ ,

⦂ xµpνL⦂= ⦂pνL xµ⦂= xµpνL ,

(366)

and similarly for bµn , pµR . The Virasoro generators are given by

Ln =
1
2

∑

m∈Z
⦂am · an−m⦂ , L̄n =

1
2

∑

m∈Z
⦂bm · bn−m ⦂ . (367)

It is an easy exercise to show that Ln, L̄n satisfy the Virasoro algebra with central charge
(c, c̄) = (n, n). The OPE of these primary operators takes the form [37, Section 8.4]

VpL ,pR
(z, z̄)Vp′L ,p′R

(w, w̄)∼ (z −w)pL ·p′L (z̄ − w̄)pR·p′R VpL+p′L ,pR+p′R
(w, w̄) . (368)

From the OPE we see that as the first vertex operator circles around the second, it picks up a
factor of e2πi(pL ·p′L−pR·p′R). So for the OPE to be single valued, one requires the lattice Λ to be
integral.

The torus partition function of the theory is

Z(τ, τ̄) =
1

|η(τ)|2n

∑

(p⃗L ,p⃗R)∈Λ

q∥p⃗L∥
2/2q̄∥p⃗R∥

2/2 , q = e2πiτ, q̄ = e−2πiτ̄ , (369)

where η(τ) is the Dedekind eta function

η(τ) = q
1
24

∞
∏

n=1

(1− qn) , (370)

and τ is the moduli of the torus. Here τ, τ̄ are complex conjugates of each other. The partition
function (369) is modular invariant since Λ is self-dual. This construction gives a CFT for any
even, self-dual Lorentzian lattice Λ ⊂ Rn,n of signature (n, n), this is called the Narain CFT
associated to the lattice Λ.

It is easy to see that the partition function is invariant under an orthogonal action on
p⃗L , p⃗R separately. Thus two Narain CFT associated on lattices Λ,Λ′ are equivalent if Λ,Λ′

is related by the right action of O(n,R)×O(n,R), where O(n,R) ⊂ GL(n,R) acts on Rn and
preserves the Euclidean inner product. Next, any two Lorentzian lattices are related by the left
action of O(n, n,R), where O(n, n,R) ⊂ GL(2n,R) acts on Rn,n and preserves the Lorentzian
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inner product of signature (n, n). But note that if two lattices are related by an O(n, n,Z)-
transformation then the two lattices are the same. Thus the moduli space of Narain CFTs is
given by the quotient

O(n, n,R)
O(n,R)×O(n,R)×O(n, n,Z)

, (371)

where the first two factors in the denominator act on the right and relate physically equivalent
lattices to each other while the last factor acts on the left.

It is immediate to see from the dictionary between conformal field theory in physics and
our notion of non-chiral CFT described in Subection 1.1 that Narain CFTs are simply LLCFTs
based on a Lorentzian lattice of signature (n, n). The moduli space structure (371) is then a
special case of Theorem 5.5. The general case m ̸= n also appears in toroidal compactification
of heterotic string theory, see [40, 46–48] for details. Our general result in Theorem 5.5 is
a more mathematical statement of the moduli space of Narain compactifications for general
signature, see [49] for more details from physical viewpoint.

Finally we note that [44] gives a construction of Lorentzian lattices of signature (n, n) from
stabiliser codes. Our construction of LLVOA then completes the parallel with the construction
of VOAs from codes. The code-Narain CFT correspondence has been explored extensively
recently [50–54]. It would be interesting to study their implications on LLVOAs.

7 Conclusion and future directions

In this paper, we have initiated a mathematically rigorous study of non-chiral VOAs and pre-
sented the construction of a non-trivial example of our definition, namely the Lorentzian lattice
vertex operator algebra and its modules. We also showed the relevance of the construction by
demonstrating that Narain CFTs which appear in string compactifications are physical exam-
ples of our construction. In this section, we sketch some future directions of the study.

(1) Rationality, regularity, and C2-cofiniteness: We have defined the notion of non-chiral
VOA. It is natural to introduce the notion of rationality , regularity, and strong regularity
as in the theory of vertex operator algebras. One would also like to define the notion of
C2-cofiniteness and and see if C2-cofiniteness and rationality implies regularity as in [38].
The main result that we would like to prove is the theorem of Zhu [55]: assuming that the
graded dimensions of the irreducible modules factorise into a product of holomorphic and
anti-holomorphic function, we would like to prove that the set of (anti-)holomorphic charac-
ters of a C2-cofinite VOA with certain additional properties is a representation of SL(2,Z).
To be more precise, we would like to prove that if the graded characters decompose as
χWi
(τ, τ̄) = χWi

(τ)eχWi
(τ), then there exists a representation ρ(γ)i j , eρ(γ)i j of SL(2,Z) such

that

χWi

�

aτ+ b
cτ+ d

�

=
∑

i

ρ(γ)i jχWj
(τ) ,

eχWi

�

aτ+ b
cτ+ d

�

=
∑

i

eρ(γ)i j eχWj
(τ) , γ=

�

a b
c d

�

∈ SL(2,Z) .
(372)

Note that if the non-chiral CFT is modular invariant then we would also have that

eρ(γ)†ρ(γ) = 1 , for all γ ∈ SL(2,Z) . (373)

Furthermore, we would like to classify all irreducible modules of the LLVOA on the lines of
Dong [56] and obtain conditions on the Lorentzian lattice so that the associated LLVOA is,
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rational, regular and strongly regular. The first result in this direction is due to Katrin Wend-
land [57], see also [45] for some recent progress from physical viewpoint.

(2) Modular tensor categories and the Verlinde conjecture: In conformal field theory in
physics, one expects the Verlinde conjecture [58] to hold even for non-chiral CFTs. In [12],
Moore and Seiberg showed that Verlinde conjecture follows from the axioms of a rational
conformal field theory which they defined. Their axioms had an important associativity as-
sumption. Huang [59] established the associativity (axiom in [12]) from the axioms of vertex
operator algebra and its modules. It required the introduction of the notion of tensor product
of modules [60]. Huang also proved the Verlinde conjecture using the definition of tensor
product of modules of a VOA and the associativity theorem.

We would like to define a similar notion of tensor product of modules for non-chiral VOA
and then prove the associativity theorem and Verlinde conjecture. Additionally, one of the
main results of [12] was the realisation that conformal field theories can be understood as
generalisation of group theory - the chiral (anti-chiral) algebra and its modules along with
intertwining operators forms a category called a modular tensor category [61]. Huang proved
that the vertex operator algebras and their modules are examples of braided tensor categories
[62]. We would like to follow a similar approach and establish these results for non-chiral
VOAs. We discuss these questions for the LLCFT in the sequel paper [63].
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A Lattice central extensions

In this appendix, we collect some results about central extensions and refer the reader to [2,
Chapter 5] for more details. Recall that a central extension of G by A is a short exact sequence

0 −→ A
ι
−→ Ĝ

−
−→ G −→ 0 , (A.1)

such that ι(A) is contained in the center Z(Ĝ) of Ĝ. Here − denotes the surjective (projection)
map. We sometimes call Ĝ as the central extension of G by A. Two central extensions Ĝ and Ĝ′

are said to be equivalent if there exists an isomorphism ψ : Ĝ −→ Ĝ′ such that the following
diagrams commute

0 A Ĝ G 0

0 A Ĝ′ G 0 .

ι −

ι −

ψ
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We now specialize to an abelian group G, written additively, and A= Z2 = {±1}. A 2-cocycle
is a bilinear map ε : G × G −→ Z2 satisfying

ε(a, b) + ε(a+ b, c) = ε(b, c) + ε(a, b+ c) . (A.2)

A 2-cocycle ε is called a 2-coboundary if there exists η : G −→ Z2 such that

ε(a, b) = η(a+ b)−η(a)−η(b) , a, b ∈ G . (A.3)

Two 2-cocycles differing by a 2-coboundary are said to be cohomologous. A 2-cocycle deter-
mines a central extension Ĝ of G by Z2 as follows:

Ĝ = Z2 × G = {(θ , a) : θ ∈ Z2, a ∈ G} , (A.4)

with group operation

(θ , a) · (τ, b) =
�

θτ (−1)ε(a,b), a+ b
�

. (A.5)

A 2-coboundary determines a central extension equivalent to the trivial extension Z2×G (i.e.
the direct product ofZ2 and G) and two cohomologous 2-cocycles determine equivalent central
extensions. It turns out that equivalence classes of central extensions is classified by the group
cohomology H2(G,Z2) which is the quotient of 2-cocycles by 2-coboundaries ( [2, Proposition
5.1.2]).

We define the commutator map c : G × G −→ Z2 of a central extension Ĝ by the relation

(−1)c(ā,b̄) = aba−1 b−1 , a, b ∈ Ĝ . (A.6)

The following proposition will be useful.

Proposition A.1. [2, Proposition 5.2.3] Two central extensions of G by Z2 are equivalent if and
only if their commutator maps are the same.

Let us now consider the Lorentzian lattice Λ as an abelian group. Let Λ̂ be the central
extension of Λ by Z2 determined by the cocycle ε defined in (154).

Lemma A.1. The commutator function c : Λ× Λ → Z2 for the central extension Λ̂ in (156) is
given by c(µ1,µ2) = µ1 ◦µ2 mod 2Z.

Proof. We use the notation eλ = (1,λ), like in Section 3. Using the group operation (A.5), it
can be shown that

eµ1
eµ2
= (−1)ε(µ1,µ2) eµ1+µ2

,

eµ2
eµ1
= (−1)ε(µ2,µ1) eµ1+µ2

.
(A.7)

Using the above equations, the commutator function is seen to be

(−1)c(µ1,µ2) = eµ1
eµ2

e−1
µ1

e−1
µ2
= (−1)ε(µ1,µ2)−ε(µ2,µ1) . (A.8)

If we take the basis of the lattice to be given by {λi}m+n
i=1 , then we have say

µ1 =
m+n
∑

i=1

ci λi , µ2 =
m+n
∑

i=1

di λi , ci , di ∈ Z . (A.9)

Using this, we can write

(−1)ε(µ1,µ2)−ε(µ2,µ1) = (−1)

m+n
∑

i, j=1
ci d jε(λi ,λ j)−ci d jε(λ j ,λi)

=
m+n
∏

i, j=1

(−1)ci d j(ε(λi ,λ j)−ε(λ j ,λi)) . (A.10)
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Using (154), each term in the above product can be written as

(−1)ci d j(ε(λi ,λ j)−ε(λ j ,λi)) =











(−1)ci d j λi◦λ j , i > j ,

(−1)−ci d j λi◦λ j = (−1)ci d j λi◦λ j , i < j ,

1= (−1)ci d j λi◦λi , i = j ,

(A.11)

where the equality in i < j case follows as (−1)n = (−1)−n, when n ∈ Z, and the equality in
case i = j follows as the lattice is even. Hence, we can simplify (A.10) as

(−1)ε(µ1,µ2)−ε(µ2,µ1) =
m+n
∏

i, j=1

(−1)ci d j λi◦λ j = (−1)µ1◦µ2 = (−1)c(µ1,µ2) . (A.12)

Hence, we conclude c(µ1,µ2) = µ1 ◦µ2 mod 2Z.

Proposition A.2. Let {λ̃i}m+n
i=1 be a basis of Λ different from {λi}m+n

i=1 . Then the cocycle
ε̃ : Λ×Λ −→ Z2 defined as in (154)

ε̃(λ̃i , λ̃ j) =

¨

λ̃i ◦ λ̃ j , i > j ,

0 , otherwise,
(A.13)

and extended toΛ byZ-bilinearity, determines a central extension equivalent to the one determined
by ε.

Proof. From Lemma A.1, the commutator maps of ε and ε̃ are the same. Thus by Proposition
A.1, the two central extensions are equivalent.

B Locality of product of multiple vertex operators

In this appendix, we show that that the product of multiple vertex operators of LLVOA and its
modules exists and is local in the sense of the locality property 9.

We first prove the existence and locality for product of three vertex operators. For three
vectors eλ, eλ

′
, eλ

′′
∈ C[Λ], we want to calculate the product

YVΛ(e
λ, x1, x̄1)YVΛ(e

λ′ , x2, x̄2)YVΛ(e
λ′′ , x3, x̄3) . (B.1)

From (232) and (169), we have

YVΛ(e
λ, x1, x̄1)YVΛ(e

λ′ , x2, x̄2)YVΛ(e
λ′′ , x3, x̄3)

= (x2 − x3)
〈α′,α′′〉 ( x̄2 − x̄3)

〈β ′,β ′′〉 YVΛ(e
λ, x1, x̄1)exp

�∫

α′(x2)
−
�

exp

�∫

α′′(x3)
−
�

× exp

�∫

α′(x2)
+

�

exp

�∫

α′′(x3)
+

�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β ′′( x̄3)
−
�

× exp

�∫

β ′( x̄2)
+

�

exp

�∫

β ′′( x̄3)
+

�

eλ′eλ′′ x
α′

2 x̄β
′

2 xα
′′

3 x̄β
′′

3

= (x2 − x3)
〈α′,α′′〉 ( x̄2 − x̄3)

〈β ′,β ′′〉 exp

�∫

α(x1)
−
�

exp

�∫

α(x1)
+

�

× exp

�∫

β( x̄1)
−
�

exp

�∫

β( x̄1)
+

�

eλ xα1 x̄β1 exp

�∫

α′(x2)
−
�

exp

�∫

α′′(x3)
−
�

× exp

�∫

α′(x2)
+

�

exp

�∫

α′′(x3)
+

�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β ′′( x̄3)
−
�

× exp

�∫

β ′( x̄2)
+

�

exp

�∫

β ′′( x̄3)
+

�

eλ′eλ′′ x
α′

2 x̄β
′

2 xα
′′

3 x̄β
′′

3 . (B.2)
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Now using (226) and (227) we get

YVΛ(e
λ, x1, x̄1)YVΛ(e

λ′ , x2, x̄2)YVΛ(e
λ′′ , x3, x̄3)

= (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 (x1 − x3)
〈α,α′′〉 ( x̄1 − x̄3)

〈β ,β ′′〉 (x2 − x3)
〈α′,α′′〉 ( x̄2 − x̄3)

〈β ′,β ′′〉

× exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
−
�

exp

�∫

α′′(x3)
−
�

exp

�∫

α(x1)
+

�

× exp

�∫

α′(x2)
+

�

exp

�∫

α′′(x3)
+

�

exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

× exp

�∫

β ′′( x̄3)
−
�

exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
+

�

exp

�∫

β ′′( x̄3)
+

�

× eλ eλ′eλ′′ x
α
1 x̄β1 xα

′

2 x̄β
′

2 xα
′′

3 x̄β
′′

3

≡ (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 (x1 − x3)
〈α,α′′〉 ( x̄1 − x̄3)

〈β ,β ′′〉 (x2 − x3)
〈α′,α′′〉 ( x̄2 − x̄3)

〈β ′,β ′′〉

× F(x1, x2, x3)G( x̄1, x̄2, x̄3) . (B.3)

Substituting complex variables x1 = z1, x2 = z2 and x3 = z3, it is easy to show that the right
hand side of (B.3) is the expansion of the function

exp
�

〈α,α′〉 log(z1 − z2)
�

exp
�

〈β ,β ′〉 log(z̄1 − z̄2)
�

exp
�

〈α,α′′〉 log(z1 − z3)
�

× exp
�

〈β ,β ′′〉 log(z̄1 − z̄3)
�

exp
�

〈α′,α′′〉 log(z2 − z3)
�

exp
�

〈β ′,β ′′〉 log(z̄2 − z̄3)
�

× F(z1, z2, z3)G(z̄1, z̄2, z̄3) ,

(B.4)

in the region |z1| > |z2| > |z3|. Following the same arguments as in Section 3.3.1, we see
that the three vertex operators satisfy locality for transpositions (12), (23) ∈ S3. For the
transposition (13) ∈ S3, we get a sign (−1)λ◦λ

′+λ′◦λ′′+λ◦λ′′ from the exchange of operators
eλ′′ eλ′eλ→ eλ eλ′eλ′′ . This sign can be used to show that the functions appearing in (B.3) after
the permutation z1↔ z3 is the expansion of the function (B.4) in the region |z3|> |z2|> |z1|.
Since S3 is generated by the three permutations (12), (23), (13), the locality property holds for
any permutation in S3.

The proof for an arbitrary number of vertex operator is entirely similar.
We now prove locality for general vectors of the form (152). We first want to calculate

YVΛ(u, x1, x̄1)YVΛ(v, x2, x̄2)YVΛ(w, x3, x̄3) , (B.5)

with vectors u, v, w of the form (152):

u=
�

α1(−l1) ·α2(−l2) · · ·αk(−lk) · β1(−l̄1) · β2(−l̄2) · · ·βk̄(−l̄k̄)
�

⊗ e(α,β) ,

v =
�

α′1(−m1) ·α′2(−m2) · · ·α′ℓ(−mℓ) · β ′1(−m̄1) · β ′2(−m̄2) · · ·β ′ℓ̄(−m̄ℓ̄)
�

⊗ e(α
′,β ′) ,

w=
�

α′′1 (−n1) ·α′′2 (−n2) · · ·α′′m(−nm) · β ′′1 (−n̄1) · β ′′2 (−n̄2) · · ·β ′′m̄(−n̄m̄)
�

⊗ e(α
′′,β ′′) ,

(B.6)

and we further use the notation that λ= (α,β),λ′ = (α′,β ′), and λ′′ = (α′′,β ′′). Using (255),

62

https://scipost.org
https://scipost.org/SciPostPhys.17.2.047


SciPost Phys. 17, 047 (2024)

we have

YVΛ(u, x1, x̄1)YVΛ(v, x2, x̄2)YVΛ(w, x3, x̄3) = (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 YVΛ(u, x1, x̄1)

× exp

�∫

α′(x2)
−
�

exp

�∫

α′′(x3)
−
�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β ′′( x̄3)
−
�

× ⦂
ℓ
∏

r=1

�

1
(mr − 1)!

dmr−1α′r(x2)

d xmr−1
2

+ (−1)mr−1

�

〈α′′,α′r〉
(x2 − x3)mr

−
〈α′′,α′r〉

xmr
2

�

�

×
ℓ̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1β ′s( x̄2)

d x̄ m̄s−1
2

+ (−1)m̄s−1

�

〈β ′′,β ′s〉
( x̄2 − x̄3)m̄s

−
〈β ′′,β ′s〉

x̄ m̄s
2

��

⦂

× ⦂
m
∏

p=1





1
(np − 1)!

dnp−1α′′p (x3)

d x
np−1
3

−
〈α′,α′′p 〉

(x2 − x3)
np
− (−1)np−1

〈α′,α′′p 〉

x
np

3





×
m̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′′q ( x̄3)

d x̄
n̄q−1
3

−
〈β ′,β ′′q 〉

( x̄2 − x̄3)
n̄q
− (−1)n̄q−1

〈β ′,β ′′q 〉

x̄
n̄q

3



⦂

× exp

�∫

α′(x2)
+

�

exp

�∫

β ′( x̄2)
+

�

exp

�∫

α′′(x3)
+

�

exp

�∫

β ′′( x̄3)
+

�

× eλ′eλ′′ x
α′

2 x̄β
′

2 xα
′′

3 x̄β
′′

3 .

(B.7)

Now using the general expression for vertex operator (37) and the relations (247), (248),
(249), and (251) successively on the product in normal order, along with relations (226),(227)
and the formal variable identity (26), we obtain

YVΛ(u, x1, x̄1)YVΛ(v, x2, x̄2)YVΛ(w, x3, x̄3)

= (x1 − x2)
〈α,α′〉 ( x̄1 − x̄2)

〈β ,β ′〉 (x1 − x3)
〈α,α′′〉 ( x̄1 − x̄3)

〈β ,β ′′〉 (x2 − x3)
〈α′,α′′〉 ( x̄2 − x̄3)

〈β ′,β ′′〉

× exp

�∫

α(x1)
−
�

exp

�∫

α′(x2)
−
�

exp

�∫

α′′(x3)
−
�

× exp

�∫

β( x̄1)
−
�

exp

�∫

β ′( x̄2)
−
�

exp

�∫

β ′′( x̄3)
−
�

× ⦂
k
∏

i=1

�

1
(li − 1)!

d li−1αi(x1)

d x li−1
1

+ (−1)li−1

�

〈α′,αi〉
(x1 − x2)li

−
〈α′,αi〉

x li
1

+
〈α′′,αi〉
(x1 − x3)li

−
〈α′′,αi〉

x li
1

��

×
k̄
∏

j=1





1

(l̄ j − 1)!

d l̄ j−1β j( x̄1)

d x̄
l̄ j−1
1

+ (−1)l̄ j−1





〈β ′,β j〉

( x̄1 − x̄2)
l̄ j
−
〈β ′,β j〉

x̄
l̄ j

1

+
〈β ′′,β j〉

( x̄1 − x̄3)
l̄ j
−
〈β ′′,β j〉

x̄
l̄ j

1







⦂

× ⦂
ℓ
∏

r=1

�

1
(mr − 1)!

dmr−1α′r(x2)

d xmr−1
2

+ (−1)mr−1

�

〈α′′,α′r〉
(x2 − x3)mr

−
〈α′′,α′r〉

xmr
2

−
〈α,α′r〉

xmr
2

�

−
〈α,α′r〉

(x1 − x2)mr

�

×
ℓ̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1β ′s( x̄2)

d x̄ m̄s−1
2

+ (−1)m̄s−1

�

〈β ′′,β ′s〉
( x̄2 − x̄3)m̄s

−
〈β ′′,β ′s〉

x̄ m̄s
2

−
〈β ,β ′s〉

x̄ m̄s
2

�

−
〈β ,β ′s〉

( x̄1 − x̄2)m̄s

�

⦂

× ⦂
m
∏

p=1





1
(np − 1)!

dnp−1α′′p (x3)

d x
np−1
3

−
〈α′,α′′p 〉

(x2 − x3)
np
−
〈α,α′′p 〉

(x1 − x3)
np
− (−1)np−1

�

〈α′,α′′p 〉

x
np

3

+
〈α,α′′p 〉

x
np

3

�





×
m̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′′q ( x̄3)

d x̄
n̄q−1
3

−
〈β ′,β ′′q 〉

( x̄2 − x̄3)
n̄q
−
〈β ,β ′′q 〉

( x̄1 − x̄3)
n̄q
− (−1)n̄q−1

 

〈β ′,β ′′q 〉

x̄
n̄q

3

+
〈β ,β ′′q 〉

x̄
n̄q

3

!



⦂
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× exp

�∫

α(x1)
+

�

exp

�∫

α′(x2)
+

�

exp

�∫

α′′(x3)
+

�

× exp

�∫

β( x̄1)
+

�

exp

�∫

β ′( x̄2)
+

�

exp

�∫

β ′′( x̄3)
+

�

× eλeλ′eλ′′ x
α
1 x̄β1 xα

′

2 x̄β
′

2 xα
′′

3 x̄β
′′

3 . (B.8)

To prove locality, we substitute formal variables with complex numbers x i → zi , x̄ i → z̄i ,
i = 1, 2,3. We can write

YVΛ(u, z1, z̄1)YVΛ(v, z2, z̄2)YVΛ(w, z3, z̄3)

= f (z1, z2, z3, z̄1, z̄2, z̄3)× exp

�∫

α(z1)
−
�

exp

�∫

α′(z2)
−
�

exp

�∫

α′′(z3)
−
�

× exp

�∫

β(z̄1)
−
�

exp

�∫

β ′(z̄2)
−
�

exp

�∫

β ′′(z̄3)
−
�

× ⦂
k
∏

i=1

�

1
(li − 1)!

d li−1αi(z1)

dz li−1
1

+ f1,i(z1, z2, z3)

� k̄
∏

j=1





1

(l̄ j − 1)!

d l̄ j−1β j(z̄1)

dz̄
l̄ j−1
1

+ g1, j(z̄1, z̄2, z̄3)



⦂

× ⦂
ℓ
∏

r=1

�

1
(mr − 1)!

dmr−1α′r(z2)

dzmr−1
2

+ f2,r(z1, z2, z3)

�

ℓ̄
∏

s=1

�

1
(m̄s − 1)!

d m̄s−1β ′s(z̄2)

dz̄m̄s−1
2

+ g2,s(z̄1, z̄2, z̄3)

�

⦂

× ⦂
m
∏

p=1





1
(np − 1)!

dnp−1α′′p (z3)

dz
np−1
3

+ f3,p(z1, z2, z3)





m̄
∏

q=1





1
(n̄q − 1)!

d n̄q−1β ′′q (z̄3)

dz̄
n̄q−1
3

+ g3,q(z̄1, z̄2, z̄3)



⦂

× exp

�∫

α(z1)
+

�

exp

�∫

α′(z2)
+

�

exp

�∫

α′′(z3)
+

�

× exp

�∫

β(z̄1)
+

�

exp

�∫

β ′(z̄2)
+

�

exp

�∫

β ′′(z̄3)
+

�

eλeλ′eλ′′z
α
1 z̄β1 zα

′

2 z̄β
′

2 zα
′′

3 z̄β
′′

3 , (B.9)

in the domain |z1|> |z2|> |z3|, where

f (z1, z2, z3, z̄1, z̄2, z̄3)

= exp
�

〈α,α′〉 log(z1 − z2)
�

exp
�

〈β ,β ′〉 log(z̄1 − z̄2)
�

exp
�

〈α,α′′〉 log(z1 − z3)
�

× exp
�

〈β ,β ′′〉 log(z̄1 − z̄3)
�

exp
�

〈α′,α′′〉 log(z2 − z3)
�

exp
�

〈β ′,β ′′〉 log(z̄2 − z̄3)
�

,

f1,i(z1, z2, z3) = (−1)li−1
� 〈α′,αi〉

exp(li log(z1 − z2))
−
〈α′,αi〉

exp(li log z1)

+
〈α′′,αi〉

exp(li log(z1 − z3))
−
〈α′′,αi〉

exp(li log z1)

�

,

g1, j(z̄1, z̄2, z̄3) = (−1)l̄ j−1

�

〈β ′,β j〉

exp
�

l̄ j log(z̄1 − z̄2)
� −

〈β ′,β j〉

exp
�

l̄ j log z̄1

�

+
〈β ′′,β j〉

exp
�

l̄ j log(z̄1 − z̄3)
� −

〈β ′′,β j〉

exp
�

l̄ j log z̄1

�

�

, (B.10)
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f2,r(z1, z2, z3) = (−1)mr−1

�

〈α′′,α′r〉
exp(mr log(z2 − z3))

−
〈α′′,α′r〉

exp(mr log z2)
−

〈α,α′r〉
exp(mr log z2)

�

−
〈α,α′r〉

exp(mr log(z1 − z2))
,

g2,s(z̄1, z̄2, z̄3) = (−1)m̄s−1

�

〈β ′′,β ′s〉
exp(m̄s log(z̄2 − z̄3))

−
〈β ′′,β ′s〉

exp(mr log(z̄2))
−

〈β ,β ′s〉
exp(mr log(z̄2))

�

−
〈β ,β ′s〉

exp(m̄s log(z̄1 − z̄2))
,

f3,p(z1, z2, z3) = −
〈α′,α′′p 〉

exp
�

np log(z2 − z3)
� −

〈α,α′′p 〉

exp
�

np log(z1 − z3)
�

− (−1)np−1

�

〈α′,α′′p 〉

exp
�

np log z3

� +
〈α,α′′p 〉

exp
�

np log z3

�

�

,

g3,q(z̄1, z̄2, z̄3) = −
〈β ′,β ′′q 〉

exp
�

n̄q log(z̄2 − z̄3)
� −

〈β ,β ′′q 〉

exp
�

n̄q log(z̄1 − z̄3)
�

− (−1)n̄q−1

�

〈β ′,β ′′q 〉

exp
�

n̄q log z̄3

� +
〈β ,β ′′q 〉

exp
�

n̄q log z̄3

�

�

.

(B.11)

One can check that under any permutation σ ∈ S3 of the vertex operators, the product is given
by the right hand side of (B.9) in the domain |zσ(1)|> |zσ(2)|> |zσ(3)|.

For more than three vertex operators, the locality can be proved in a similar way.

C Heisenberg algebras and their representations

In this appendix, we prove some properties of Heisenberg algebras which is used in the paper.
See [2, Section 1.7] for definitions. We start with some results about Lie algebras.

C.1 Preliminaries

Let U be a left R-module and D = EndR(U) be the ring of R-linear endomorphisms of U . One
can consider U as a left D-module by defining

ϕ · u= ϕ(u) , ϕ ∈ D , u ∈ U . (C.1)

The D-linear (in)dependence of a subset of U is defined in an obvious way. A D-linear operator
on U is a map f : U −→ U such that

f (ϕ · u− v) = ϕ · f (u)− f (v) = ϕ( f (u))− f (v) , ϕ ∈ D , u, v ∈ U . (C.2)

Theorem C.1. (Jacobson Density Theorem, [64, Theorem 13.14]) Let U be a simple left R-
module and write D = EndR(U). Let α be any D-linear operator on U and let X ⊆ U be any
finite D-linearly independent subset. Then there exists an element r ∈ R such that r x = αx for
all x ∈ X .

Finally, we will need a generalisation of Schur’s lemma to countably-infinite dimensional
representations.

Lemma C.1. (Dixmier’s Lemma, [65, Lemma 100]) Suppose V is a vector space over C of count-
able dimension and that S ⊂ End(V ) acts irreducibly. If T ∈ End(V ) commutes with every element
of S, then T is a scalar multiple of the identity operator.
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Proposition C.1. Let g1,g2 be two complex Lie algebras (possibly countably infinite dimensional).
Then every irreducible (g1⊕g2)-module which contains an irreducible g1 or g2-module is isomor-
phic to the tensor product of two irreducible g1,g2-modules. Conversely, the tensor product of
irreducible g1,g2-modules of countable dimension is an irreducible (g1 ⊕ g2)-module.

Proof. Let V be an irreducible (g1⊕g2)-module and suppose Y ⊆ V is an irreducible g2-module.
X = Homg2

(Y, V ) is the space of g2-linear maps from Y to V , i.e.

X = {φ : Y → V |φ(g2 · v −w) = g2 ·φ(v)−φ(w), ∀g2 ∈ g2, v, w ∈ Y } . (C.3)

Then X is a g1-module under the bilinear map

(g1,φ) 7→ g1 ·φ : y 7→ g1 · (φ(y)) . (C.4)

It is easy to see that X ⊗ Y is a (g1 ⊕ g2)-module with the action

(g1, g2) · (φ ⊗ y) = (g1 ·φg)⊗ y +φ ⊗ (g2 · y) . (C.5)

Moreover the natural map from X ⊗ Y to V

φ ⊗ y 7→ φ(y) , (C.6)

is a (g1 ⊕ g2)-module map. We first show the map (C.6) is non-zero. Take φ = id : Y → V ,
which clearly lies in X , then id⊗ y 7→ id(y) = y . Hence, the (non-zero) image of this (g1⊕g2)-
module map, (C.6), is a (g1 ⊕ g2)-module. As V is an irreducible (g1 ⊕ g2)-module, the image
is entire V , and the map (C.6) is surjective. Finally, we show this map is injective. Indeed
suppose φ ⊗ v 7→ φ(v) = 0. Then it suffices to show that either v = 0 or φ = 0. Suppose
v ̸= 0. By g2-linearity of φ, we see that

0= g2 ·φ(v) = φ(g2 · v) , ∀g2 ∈ g2 . (C.7)

By irreducibility of Y , we see thatφ = 0. This implies that V ∼= X⊗Y as (g1⊕g2)-modules, and
that the latter is also an irreducible module. As X⊗Y is an irreducible (g1⊕g2)-module, X must
be an irreducible g1 module. Similar arguments apply when Y is an irreducible g1-module.

To prove the converse, we follow [66]. We want to show that if X , Y are irreducible g1,g2-
modules, then X ⊗ Y with (g1 ⊕ g2)-action defined by

(g1, g2) · (x ⊗ y) = (g1 · x)⊗ y + x ⊗ (g2 · y) , (C.8)

is an irreducible (g1 ⊕ g2)-module. Suppose M ⊂ X ⊗ Y be a non-trivial (g1 ⊕ g2)-submodule.
It suffices to show that M contains non-trivial pure tensors and then the irreducibility of X , Y
will imply that M = X ⊗ Y . Let us assume that x ⊗ y is a pure tensor in M . The irreducibility
of X , Y guarantees that g1 · x = X and g2 · y = Y , which guarantees that x ⊗Y and X ⊗ y ⊂ M .
Consider any pure tensor x̃ ⊗ ỹ ∈ V , we know that x̃ ⊗ y belongs in M . Applying only g2 on
this vector, we can show that x̃ ⊗ ỹ ∈ M , which implies that M = X ⊗ Y , since pure tensors
span X ⊗ Y .

We now show that M contains a pure tensor. Since any g-module is also a U(g)-module,
our strategy is to produce a pure tensor from an arbitrary vector in M using the action of an
element of U(g1 ⊕ g2). Start with an arbitrary non-zero vector

v =
n
∑

i=1

x i ⊗ yi ∈ M . (C.9)
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Without loss of generality, we may choose {x i} to be linearly independent over C and yi ̸= 0
for all i. By Dixmier’s Lemma (or Schur’s lemma when X , Y are finite dimensional), we have

EndU(g1) (X )
∼= C , EndU(g2) (Y )

∼= C . (C.10)

In the statement of Jacobson Density Theorem, choose U = X , R = U(g1), hence
D = EndU(g1)(X ) = C, due to (C.10). Thus, let us take {x1, x2, . . . , xn}, which is a finite
D-linearly independent subset. Consider a C- linear map α, such that

αx i =

¨

x1 , i = 1 ,

0 , i > 1 .
(C.11)

We can then use Jacobson Density Theorem to conclude that there exists u ∈ U(g1) such that

αx i = ux i , ∀1≤ i ≤ n . (C.12)

Hence, for u⊗ 1 ∈ U(g1)⊗ U(g2)∼= U (g1 ⊕ g2),

(u⊗ 1)v = x1 ⊗ y1 , (C.13)

which is a pure tensor.

C.2 Modules of direct sum of Heisenberg algebras

We now prove some basic results about the modules of direct sum of Heisenberg algebras. We
will use the notations of [2, Chapter 1] in this section.

For a Z-graded vector space
g=

⊕

n∈Z
gn , (C.14)

we will write
g+ :=

⊕

n>0

gn , g− :=
⊕

n<0

gn , g0 := g0 . (C.15)

Let g1,g2 be two Heisenberg algebras with central elements k and k̄ respectively. Analogous
to the Ck condition for a module of a Heisenberg algebra (see [2, Page 23]), we define the
Ck,k̄ condition for an (R×R)- graded module V of the direct sum g1 ⊕ g2 of two Heisenberg
algebras g1,g2. We say that V satisfies the Ck,k̄ condition if

1. k and k̄ act on V by multiplication with k and k̄ respectively.

2. There exist M1, M2 ∈ R, such that Vm,n = 0, if either m> M1 and n> M2.

The vacuum space of V , denoted by ΩV ⊂ V , is a subspace of non-zero vectors such that any
v ∈ ΩV satisfies (g+1 ⊕ g+2 ) · v = 0. Let M(k), M(k̄) denote the unique (up to isomorphism)
irreducible module of g1,g2 respectively. In particular, we have [2, Section 1.7]

M(k)∼= S(g−1 ) , M(k̄)∼= S(g−2 ) . (C.16)

Then we have the following proposition.

Proposition C.2. Let g1,g2 be two Heisenberg algebras with central elements k, k̄ respectively.
Then the following are true:

1. M(k) ⊗ M(k̄) is the unique (up to isomorphism) irreducible (g1 ⊕ g2)-module satisfying
condition Ck,k̄.
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2. The vacuum space ΩM(k)⊗M(k̄) is one-dimensional and

ΩM(k)⊗M(k̄) = C(1M(k) ⊗ 1M(k̄)) . (C.17)

3. For any (g1 ⊕ g2)-module satisfying condition Ck,k̄, the (g1 ⊕ g2)-module generated by a
vacuum vector is equivalent to M(k)⊗M(k̄).

Proof. (1) Any (g1 ⊕ g2)-module is in particular a g2-module and hence completely reducible
by [2, Proposition 1.7.2]. Thus it contains an irreducible g2-module. By Proposition C.1,
every such irreducible (g1⊕g2)-module is isomorphic to a tensor product X⊗Y where X , Y are
irreducible g1,g2-module respectively. By [2, Proposition 1.7.2]we have X⊗Y ∼= M(k)⊗M(k̄).

(2) Since M(k), M(k̄) satisfies the conditions Ck,Ck̄ of [2, Page 23], it is clear that M(k)⊗M(k̄)
satisfies the condition Ck,k̄. The vacuum space of M(k)⊗M(k̄) is easily seen to be the tensor
product of the vacuum spaces of M(k) and M(k̄) respectively and hence is one-dimensional.

(3) Let V be any (g1 ⊕ g2)-module satisfying condition Ck,k̄. Let v ∈ V and consider the
(g1 ⊕ g2)-submodule of V

{(g1, g2) · v : (g1, g2) ∈ g1 ⊕ g2} . (C.18)

It is easily seen that this gives an irreducible (g1⊕g2)-module and is isomorphic to M(k)⊗M(k̄)
by (1).

We now have the following theorem.

Theorem C.2. Any (g1 ⊕ g2)-module is completely reducible and is isomorphic to copies of
M(k)⊗M(k̄). More precisely, for any such module V , the (well-defined) canonical linear map

f : U(g1 ⊕ g2)⊗U(b1⊕b2) ΩV −→ V ,

u⊗ v 7→ u · v , u ∈ U(g1 ⊕ g2), v ∈ ΩV ,
(C.19)

is a (g1 ⊕ g2)-module isomorphism. In particular, the linear map

M(k)⊗M(k̄)⊗C ΩV
∼= U(g−1 ⊕ g

−
2 )⊗C ΩV −→ V ,

u⊗ v 7→ u · v , u ∈ U(g−1 ⊕ g
−
2 ), v ∈ ΩV ,

(C.20)

defines a (g1 ⊕ g2)-module isomorphism, ΩV now regarded as a trivial (g1 ⊕ g2)-module.

Proof. We closely follow [2] for this proof. First, we show the f in (C.19) is an injective map.
Note that from the action of f , it is clear that f is injective on 1⊗ΩV ,→ U(g1⊕g2)⊗U(b1⊕b2)ΩV .
Let K be the kernel of f . Then it is easy to see that K is a (g1 ⊕ g2)-submodule of
U(g1 ⊕ g2) ⊗U(b1⊕b2) ΩV and has a grading induced from U(g1 ⊕ g2) ⊗U(b1⊕b2) ΩV . Thus K
satisfies the condition Ck,k̄. It follows that it has a vacuum vector, say v ∈ K . But then v ∈ ΩV
because the vacuum space of U(g1 ⊕ g2)⊗U(b1⊕b2) ΩV is precisely ΩV . Since f (v) = 0, it con-
tradicts the fact that f is injective on ΩV .

We now prove the surjectivity of f . Suppose V/Im( f ) ̸= 0. Since Im( f ) is a (g1 ⊕ g2)-
submodule of V , V/Im( f ) is naturally a (g1⊕g2)-module and satisfies the condition Ck,k̄ since
V does. Then there exists a vacuum vector w ∈ V/Im( f ). Let w = [v] for some v ∈ V . It
follows that v ̸∈ Im( f ) and

x1i · v, x2i · v ∈ Im( f ) , i ∈ Z+ , (C.21)
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since x1i · [v], x2i · [v] = 0. Moreover, due to the Ck,k̄ property, there exists i0, j0 ∈ Z+ such
that

x1i · v, x2 j · v = 0 , for all i > i0, j > j0 . (C.22)

We will now show that there exists t ∈ Im( f ) such that

xki · t = xki · v , for all i ∈ Z+ , and k ∈ {1, 2} . (C.23)

This will imply that t − v is a vacuum vector but t − v ∈ V \ ΩV , since t − v ̸∈ Im( f ) and
ΩV ⊂ Im( f ), which is a contradiction. To this end, choose a basis {ωγ}γ∈Γ (Γ an index set) of
ΩV . Then by injectivity of f and the first isomorphism theorem

Im( f )∼=
∐

γ∈Γ
U(g1 ⊕ g2)⊗U(b1⊕b2) Cωγ . (C.24)

Let s1
iγ, s2

jγ be the component of x1i · v, x2 j · v respectively under this decomposition. Then for
any i, i′, j, j′ ∈ Z+ we have

x1i x1i′ · v = x1i′ x1i · v , x2i x2i′ · v = x2i′ x2i · v , (C.25)

as the Lie Bracket is zero on g+1 and g+2 . This implies that for all γ ∈ Γ

x1i · s1
i′γ = x1i′ · s1

iγ , x2 j · s2
j′γ = x2 j′ · s2

jγ . (C.26)

It is also clear from (C.22) that

s1
iγ = s2

jγ = 0 , for all i > i0, j > j0 . (C.27)

Moreover there is a finite subset Γ0 ⊂ Γ such that

s1
iγ = s2

jγ = 0 , for all γ ∈ Γ \ Γ0 , (C.28)

since any vector in Im( f ), in particular x1i · v and x2i · v, has a finite decomposition in (C.24).
Now, fix a γ ∈ Γ0 and identify U(g1 ⊕ g2)⊗U(b1⊕b2) Cωγ as the polynomial algebra over gener-
ators y1i , y2i . Then (C.26) implies that

∂

∂ y1i
s1
i′γ =

∂

∂ y1i′
s1
iγ ,

∂

∂ y2 j
s2

j′γ =
∂

∂ y2 j′
s2

jγ , i, i′, j, j′ ∈ Z+ . (C.29)

Since s1
iγ, s2

jγ = 0 for i > i0, j > j0, it is clear from (C.29) that s1
iγ, s2

jγ lie in the polynomial
algebra generated by finitely many y1i , y2 j respectively for i ≤ i0, j ≤ j0. Thus there exists
s1, s2 in these algebras such that

k
∂

∂ y1i
s1 = s1

iγ , k̄
∂

∂ y2i
s2 = s2

iγ , (C.30)

for i ≤ i0, j ≤ j0 and hence for all i, j ∈ Z+. We then take t1
γ = s1, t2

γ = s2 and put

t :=
∑

γ∈Γ
(t1
γ + t2

γ) . (C.31)

Note that x2 j · t1
γ = x1i · t2

γ = 0 and hence (C.23) holds.
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D Proof of conjecture 1 for m = n case

Suppose Λ ⊂ Rm,m is an even, self-dual Lorentzian lattice. We want to show that for any
f ∈ Aut(Λ) we have

f (Λ0
1) = Λ

0
1 , f (Λ0

2) = Λ
0
2 . (D.1)

We will prove this in a series of results.

Lemma D.1. Let Λ and Λ̃ be two Lorentzian lattice related by an O(m,R)×O(m,R) transfor-
mation O, i.e.

GΛ̃ = GΛO . (D.2)

Then we have
Aut(Λ̃) = OAut(Λ)O−1 . (D.3)

Moreover Aut(Λ) preserves Λ0
i if and only if Aut(Λ̃) preserves Λ̃0

i , where i ∈ {1, 2}.

Proof. Let f ∈ Aut(Λ), then f̃ = O f O−1 ∈ Aut(Λ̃). Thus OAut(Λ)O−1 ⊆ Aut(Λ̃). The reverse
containment is similar.

Now suppose Aut(Λ̃) preserves Λ̃0
1. For any (α, 0) ∈ Λ0

1, we have f (α, 0) = (O−1 f̃ O)(α, 0)
for some f̃ ∈ Aut(Λ̃). Since O, O−1 preserves 〈α,α〉 and 〈α,α〉 for any (α,β) ∈ Λ it is clear that

f (α, 0) = (α′, 0) ∈ Λ0
1 . (D.4)

Similarly, f preserves Λ0
2. The converse is analogous.

Theorem D.1. Let Λ ⊂ Rm,m be any even, self-dual Lorentzian lattice, then their exists an
O(m,R) × O(m,R) transformation which relates Λ to a Lorentzian lattice ΛS with generator
matrix of the form

GΛS
=

�

γ⋆ γ⋆

γ B+1
2 γ B−1

2

�

, (D.5)

where B is an anti-symmetric matrix, γ is the generator matrix for a lattice Γ in Rm, and γ⋆ is
the generator matrix for the dual lattice Γ ⋆.

Proof. We will use the result of [44, Appendix C] for the proof of this theorem. Let {ei}2m
i=1 be

the standard basis of Rm,m. Then we change the basis of Rm,m from standard basis to the basis
{ fi}2m

i=1:

fi =
ei + em+ip

2
,

fm+i =
ei − em+ip

2
,

(D.6)

where i ∈ {1, . . . , m}. Let GΛ and eGΛ be the generator matrix for Λ in the {ei} and { fi} basis
respectively. Now from Appendix C of [44], by an O(m,R)×O(m,R) transformation, we can
transform Λ into the lattice ΛS with generator matrix30

eGΛS
=

1
p

2

�

2γ⋆ 0
γB γ

�

, (D.7)

in the { fi} basis for some antisymmetric matrix B. Changing the basis of Rm,m back to the
standard basis {ei} amounts to right multiplying the generator matrix (D.7) by

�

1p
2

1p
2

1p
2
− 1p

2

�

, (D.8)

30Note that in our convention, the rows of the generator matrix are basis for the lattice while in [44] it is the
columns.
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where 1 is the m×m identity matrix. This gives the generator matrix in (D.5).

We now have the following important theorem.

Theorem D.2. Let ΛS ⊂ Rm,m be the Lorentzian lattice with generator matrix GΛS
given in (D.5).

Then Aut(ΛS) preserves (ΛS)0i , i = 1,2.

Proof. Let {αi}mi=1 be an integral basis of Γ and {α⋆i }
m
i=1 be the basis of Γ ⋆ dual to {αi}mi=1, i.e.

m
∑

k=1

(αi)
k(α⋆j )

k = δ j
i ,

m
∑

k=1

(α⋆k)
i(αk)

j = δ j
i . (D.9)

Here the superscript j over the vector denotes the jth component of the vector in the standard
basis of Rm. A general vector λ ∈ ΛS can be written as λ= (α,β) where

α j =
m
∑

i=1

mi(α
⋆
i )

j +
1
2

m
∑

i=1

� m
∑

k=1

B jk(αi)
k + (αi)

j

�

ni ,

β j =
m
∑

i=1

mi(α
⋆
i )

j +
1
2

m
∑

i=1

� m
∑

k=1

B jk(αi)
k − (αi)

j

�

ni ,

(D.10)

and mi , ni ∈ Z. In vector notation we have

α⃗= m⃗Tγ⋆ + n⃗T
�

γ
B +1

2

�

,

β⃗ = m⃗Tγ⋆ + n⃗T
�

γ
B −1

2

�

.
(D.11)

We then have

〈α,α〉=
m
∑

i, j=1



mim j〈α⋆i ,α⋆j 〉+ 2×
1
2

min j

m
∑

k,ℓ=1

Bkℓ(α
⋆
i )

k(α j)
ℓ + 2×

1
2

min j〈α⋆i ,α j〉

+
1
4

m
∑

k,ℓ,p=1

ninpB jk(αi)
kB j,ℓ(αp)

ℓ + 2×
1
4

m
∑

k,ℓ=1

ninℓB jk(αi)
k(αl)

j +
1
4

nin j〈αi ,α j〉





= m⃗T g−1m⃗+
m
∑

i, j,k,ℓ,p,q=1

min j(α
⋆
i )

p(α⋆q)
p(αq)

kBkℓ(α j)
ℓ + m⃗T n⃗

+
1
4

m
∑

i, j,k,ℓ,p,u,v,s,t=1

ninp(α
⋆) ju(αu)

sBsk(αi)
k(α⋆) jv(αv)

t Btℓ(αp)
ℓ +

1
4

n⃗T gn⃗

= m⃗T g−1m⃗+ m⃗T bg−1n⃗+ m⃗T n⃗−
1
4

n⃗T bg−1bn⃗+
1
4

n⃗T gn⃗

= m⃗T g−1m⃗+ m⃗T bg−1n⃗+ m⃗T n⃗+
1
4

n⃗T (g− bg−1b)n⃗ , (D.12)

where m⃗, n⃗ ∈ Zm are column vectors, gi j = 〈αi ,α j〉 and g⋆i j = g−1
i j = 〈α

⋆
i ,α⋆j 〉 are the Gram

matrices of Γ and Γ ⋆ respectively and bi j = (αi)kBkℓ(α j)ℓ is the antisymmetric matrix B in the
{αi} basis of Rm. In the last step we used (D.9) and the fact that B and b are antisymmetric.
In terms of matrices we have

g= γγT , g⋆ = γ⋆(γ⋆)T = (γT )−1γ−1 = g−1 ,

b= γBγT , B = γ−1bγ⋆ .
(D.13)
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Similarly we have

〈β ,β〉= m⃗T g−1m⃗+ m⃗T bg−1n⃗− m⃗T n⃗+
1
4

n⃗T (g− bg−1b)n⃗ . (D.14)

From [67, Chapter 10], we have that the following transformations generate the group
O(m, m,Z):

(1) m⃗↔ n⃗ , and 2g−1↔
1
2

�

g− bg−1b
�

,

bg−1↔−g−1b ,

(2) m⃗→ m⃗−Nn⃗ , and b→ b+ 2N ,

(D.15)

where N is an arbitrary anti-symmetric matrix with integer entries. These transformations
must be understood in the following way: a transformation on the lattice can be implemented
in two ways, first by action on the integer coordinates (m⃗T , n⃗T ) and second, by acting on
the generator matrix GΛS

from the left. The transformations in (D.15) is a composition of
both of these. To show that these transformations indeed generate the automorphism group
OΛS
(m, m,Z) we need to show that these transformations leave the inner product invariant

and preserves the lattice. It is easy to check that under these transformations the 〈α,α〉 and
〈β ,β〉 are preserved [67]. In particular these transformations preserve the Lorentzian inner
product. We now show that these transformations preserve the lattice. Let us start with (1).
It is clear that m⃗↔ n⃗ preserves the lattice. We now check that the transformation on the
generator matrix preserves the lattice. First note that from (D.15) we get31

g−1↔
1
4

�

g− bg−1b
�

,

b↔ 4
�

b− gb−1g
�−1

. (D.16)

From these transformations, we want to find how γ and γ⋆ transform. Using the fact that b is
antisymmetric, we guess the transformation to be

γ↔±2 (γ± bγ⋆)⋆=:± γ± ,

γ⋆↔±
1
2
(γ± bγ⋆) =:± γ⋆± .

(D.17)

It is easy to check that (D.17) reproduces the first equation in (D.16). These are all the solu-
tions to the first equation in (D.15) but as we will show below, only two of them preserve the
lattice. We also see that under the second equation of (D.16) we have

B = γ−1bγ⋆↔ (γ+ bγ⋆)T
�

b− gb−1g
�−1
(γ+ bγ⋆) =: B′. (D.18)

We claim that the following two transformations on the generator matrix preserve the lattice:

(i) GΛS
=

�

γ⋆ γ⋆

γ B+1
2 γ B−1

2

�

→ G(i)
ΛS

:=

�

γ⋆+ −γ⋆−
γ+

B′+1
2 −γ−

B′−1
2

�

,

(ii) GΛS
=

�

γ⋆ γ⋆

γ B+1
2 γ B−1

2

�

→ G(ii)
ΛS

:=

�

−γ⋆+ γ⋆−
−γ+

B′+1
2 γ−

B′−1
2

�

.

(D.19)

31Note that we are assuming that b and B are invertible in writing this transformation but one can also write
the transformation in a nonsingular way even when b is not invertible [48]. The manipulations below will also be
modified in a nonsingular way.
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We now do some manipulations to prove our claim. We have

γ⋆+ =
1
2
(γ+ bγ⋆) =

1
2
γ
�

B +1
�

. (D.20)

Similarly

γ⋆− = −
1
2
γ
�

B −1
�

. (D.21)

Next we have

γ+
B′ +1

2
= 2 (γ+ bγ⋆)⋆





(γ+ bγ⋆)T
�

b− gb−1g
�−1
(γ+ bγ⋆) +1

2





=
�

b− gb−1g
�−1
(γ+ bγ⋆) + (γ+ bγ⋆)⋆ .

(D.22)

Observe that
�

b− gb−1g
�−1
(γ+ bγ⋆) =

�

b− gb−1g
�−1
(γ+ γB)

=
�

b− gb−1g
�−1
γ(1+ B)

=
�

γ−1b+ γ−1gb−1g
�−1
(1+ B)

=
�

BγT − γT b−1γγT
�−1
(1+ B)

=
�

BγT − (γB)−1γγT
�−1
(1+ B)

=
��

B − B−1
�

γT
�−1
(1+ B)

= γ⋆
�

B − B−1
�

(1+ B) .

(D.23)

Next note that
B − B−1 = (1+ B)

�

1− B−1
�

. (D.24)

Then we get
�

b− gb−1g
�−1
(γ+ bγ⋆) = γ⋆

�

1− B−1
�−1

= γ⋆
�

(B −1)B−1
�−1

= −γ⋆B(1− B)−1.

(D.25)

We also have
(γ+ bγ⋆)⋆ =

�

γ(1+ B)
�⋆

= γ⋆(1− B)−1.
(D.26)

Putting all this together we get

γ+
B′ +1

2
= γ⋆ . (D.27)

Similarly we have

γ−
B′ −1

2
= γ⋆

�

�

B − B−1
�−1
(1− B)− (1+ B)−1

�

. (D.28)

We now use
B − B−1 = −(1− B)

�

1+ B−1
�

, (D.29)

to get

γ−
B′ −1

2
= −γ⋆ . (D.30)
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From (D.20), (D.21), (D.27) and (D.30) we see that

G(i)
ΛS
=

�

γ B+1
2 γ B−1

2
γ⋆ γ⋆

�

=

�

0 1

1 0

�

GΛS
. (D.31)

Since
�

0 1
1 0

�

is determinant −1 and integral, the transformation (i) of (D.19) preserves the
lattice. Similarly we have

G(ii)
ΛS
=

�

−γ B+1
2 γ B−1

2
−γ⋆ γ⋆

�

=

�

0 −1
−1 0

�

GΛS
, (D.32)

and hence preserves the lattice. The full transformation (1) of (D.15) acting on the integer
coordinates as well as the generator matrix can be written as a transformation acting only on
the integer coordinates as follows:

(i) (m⃗T , n⃗T )→ (m⃗T , n⃗T ) , (ii) (m⃗T , n⃗T )→ (−m⃗T ,−n⃗T ) . (D.33)

This generates a Z2 subgroup of the automorphism group OΛS
(m, m,Z). Obviously these trans-

formations preserve 〈α,α〉 and 〈β ,β〉 and hence the full Lorentzian norm. One could check
directly that other choices in (D.17) does not preserve the lattice.

Now, we will show that the second transformation in (D.15) preserves the lattice too. Using
the transformation of b→ b+ 2N, we obtain

γB = bγ⋆→ bγ⋆ + 2Nγ⋆ = γB + 2Nγ⋆ . (D.34)

We can input the above relation into the generator matrix to see how it transforms:

GΛS
=

�

γ⋆ γ⋆

γ B+1
2 γ B−1

2

�

→ G′ΛS
:=

�

γ⋆ γ⋆

γ B+1
2 +Nγ⋆ γ B−1

2 +Nγ⋆

�

. (D.35)

From the above equation it follows that

G′ΛS
=

�

1 0
N 1

�

GΛS
. (D.36)

Again since
�

1 0
N 1

�

is unimodular and integral, this transforamtion preserves the lattice. The
transformation on integer coordinates in (2) of (D.15) can also be nicely represented as

(m⃗T , n⃗T )→ ((m⃗−Nn⃗)T , n⃗T ) = (m⃗+ n⃗T N, n⃗T ) = (m⃗T , n⃗T )

�

1 0
N 1

�

, (D.37)

where we have used that N is an anti-symmetric integral matrix. To get the complete trans-
formation on the integer coordinates fixing without transforming the generator matrix, we
compose these two transformations to see that

(m⃗T , n⃗T )→ (m⃗T , n⃗T )

�

1 0
N 1

� �

1 0
N 1

�

= (m⃗T + 2n⃗T N, n⃗T ) . (D.38)

As N is integral, we see that the transformed vector lies on the lattice again. Checking that
this transformation preserves the norm is a straightforward computation.

Thus all automorphisms of ΛS will preserve 〈α,α〉 and 〈β ,β〉. Now suppose (α, 0) ∈ (ΛS)01
maps to (α′,β ′) ∈ ΛS under some automorphism. Since 〈β ′,β ′〉 = 0 and the norm on Rm is
positive definite, we conclude that β ′ = 0 and the automorphism preserves (ΛS)01. Similarly
(ΛS)02 is also preserved under any automorphims of ΛS .

Combining Theorem D.2, Theorem D.1 and Lemma D.1 proves Conjecture 1 for m = n
case. We remark that the methods of this Appendix clearly do not apply to m ̸= n case. One
needs new tricks to prove the general result.
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