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Abstract

We study the quench dynamics of a two dimensional superconductor in a square lat-
tice of size up to 200×200 employing the self-consistent time dependent Bogoliubov-de
Gennes (BdG) formalism. In the clean limit, the dynamics of the order parameter for
short times, characterized by a fast exponential growth and an oscillatory pattern, agrees
with the Bardeen-Cooper-Schrieffer (BCS) prediction. However, unlike BCS, we observe
for longer times a universal exponential decay of these time oscillations. We show ex-
plicitly that the origin of this exponential decay is the full emergence of spatial inhomo-
geneities of the order parameter characterized by the exponential growth of its variance.
The addition of a weak disorder does not alter these results qualitatively. In this region,
the spatial inhomogeneities rapidly develop into an intricate spatial structure consisting
of ordered fragmented stripes in perpendicular directions where the order parameter is
heavily suppressed. As the disorder strength increases, the fragmented stripes gradually
turn into a square lattice of approximately circular spatial regions where the condensate
is heavily suppressed. A further increase of disorder leads to the deformation and ulti-
mate destruction of this lattice. We show these emergent spatial patterns are sensitive
to the underlying lattice structure. We explore suitable settings for the experimental
confirmation of these findings.
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1 Introduction

The spontaneous formation of patterns, defects and other spatial structures is a fascinating
phenomenon rather ubiquitous in nature. It can be observed in various contexts, from the vor-
tex pattern in superconducting thin films induced by a magnetic field [1] to the formation of
spatial structures in a driven Bose-Hubbard model [2]. A particularly interesting phenomenon
of defect formation, termed Kibble-Zurek mechanism [3, 4], is the spontaneous generation
of vortices as a result of a quench through a second-order phase transition which has been
observed both experimentally [5–7] and numerically [8–10] in a wide variety of physical sys-
tems.

In many of these situations, far from equilibrium dynamics triggers spatial instabilities
that eventually lead to pattern formation. In the context of superconductivity and super-
fluidity, although the study of nonequilibrium dynamics has received a lot of attention, the
spontaneous generation of spatial structures, either due to the Kibble-Zurek mechanism or of
different origin, has been modeled by employing phenomenological approaches such as the
time dependent Ginzburg-Landau [1, 11–13], the Gross-Pitaevskii equation [2, 8] or applied
holography [9,14] where the dynamics of the superconductor is mapped onto that of a gravi-
tational system.

It is expected that these phenomenological approaches will be qualitatively correct close
to a second order phase transition. However, the full non-linear structure of the time de-
pendent Bogoliubov-deGennes (BdG) equations [15, 16], due to the self-consistent condition
verified by the order parameter, is fully necessary for the quantitative description of the out
of equilibrium dynamics of a superconductor. A simpler problem, the quench dynamics of a
Bardeen-Cooper-Schrieffer (BCS) superconductor [17], first investigated in Ref. [18], has re-
ceived a lot of recent attention [19–24]. The conclusion of these studies is that details of the
dynamics of the order parameter amplitude depend on both the initial state and the quench
protocol, though a generic feature is the existence of oscillations in time. For an initial state
above the critical temperature, it has been argued [19,20,25] that these oscillations do not de-
cay with time, unless collision effects beyond BCS are taken into account. By contrast quenches
in the coupling constant within the superconducting state [20–22] lead to oscillations whose
amplitude typically decays either exponentially or as a power-law.
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A perturbative analytic treatment of the dynamics using the full time dependent BdG for-
malism, that accounts for spatial inhomogeneities, showed that eventually the order parameter
develops a simple oscillating spatial structure with a typical length directly related to the su-
perconducting coherence length [26]. This perturbative treatment cannot take into account
the full non-linear nature of the time evolution so the validity of these results is only assured
for relatively short time scales where these non-linear effects are small. A very similar pattern
of spatial oscillations has been reported in the quench dynamics of the order parameter of a
holographic superconductor [14]. More recently [27], the spontaneous formation of an intri-
cate spatial pattern resulting from the quench dynamic has been observed in the context of
charge density waves

Despite this considerable progress, the dynamics of a superconductor after a quench, es-
pecially the nature of the emergent spatial structures, is still an open problem. We note that
this is mostly due to technical challenges resulting from the combination of the non-linearity
induced by the self-consistent condition and the requirement of sufficiently large system sizes
in order to account for the emergent spatial structure from the quench dynamics. Moreover,
it is necessary to consider at least a two dimensional superconductor because fluctuations in
one dimension, even at low temperature, are too large to employ a mean field formalism.

In this paper, we address this problem by studying the quench dynamics of a two dimen-
sional superconductor by the full self-consistent time-dependent BdG formalism [28–30] in a
200× 200 square lattice that enables us to investigate in detail complex spatial patterns. We
have found that for no disorder and short times, in agreement with the BCS results, the order
parameter first grows exponentially and then has an oscillatory behavior. However, for longer
times, time oscillations in the order parameter are suppressed exponentially independently
of the quench protocol. The precursor of this behavior is the emergence of spatial inhomo-
geneities, beyond the reach of the BCS formalism, characterized by an exponential growth
of the variance in space of the order parameter which ultimately results in the appearance
of short stripes in the horizontal and vertical directions where the order parameter is heavily
suppressed. We believe our results are largely universal as these spatial patterns occur well af-
ter the quench ends. The addition of a weak disordered potential, modeling impurities which
are ubiquitous in experiments, does not change the above results qualitatively. As disorder
increases, the mentioned fragmented stripes gradually morphs into a square lattice of fake
vortices, namely, approximately circular regions where the amplitude of the order parameter
is very small but with a trivial phase. Finally, as the insulating transition is approached, the
lattice symmetry is eventually lost though the repulsion between fake vortices persists. In the
next section, we introduce the model and the computation scheme.

2 The model

In order to study the time evolution of a two dimensional superconductor after a temperature
quench, we employ the mean field time dependent BdG equations [28,29,31–34], which are
given by

�

K̂ ∆̂(ri , t)
∆̂∗(ri , t) −K̂∗

��

un(ri , t)
vn(ri , t)

�

= iħh
∂

∂ t

�

un(ri , t)
vn(ri , t)

�

, (1)

where
K̂un(ri) = −t i,i+δ

∑

δ

un(ri+δ) + (Vi −µ)un(ri) , (2)

δ stands for the nearest neighbors sites, and t i,i+δ is the hopping energy between the nearest
neighbors sites and we set t i,i+δ = 1 for simplicity. The onsite random potential Vi is uniformly
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distributed between [−V, V ], where V is the strength of the disordered potential. µ is the
chemical potential. This two parameters are in units of the hopping energy t i,i+δ.

To simulate the dynamical evolution, we solve the above equations by using the fourth or-
der Runge Kutta algorithm [29,35]with a sufficiently small time step d t that ensure the conver-
gence of the dynamics. To be more specific, we use d t = 0.1/∆0 for system size N = 200×200,
and d t = 0.01/∆0 for other smaller sizes where ∆0 is the value of the order parameter in the
clean limit at zero temperature. The occupation number is assumed to satisfy the Fermi-Dirac
distribution f (En) = [1 + exp(En/kB T )]−1 at each time-step during the dynamical process,
where T is temperature and kB = 1 is the Boltzmann constant. The time dependent order
parameter is then defined as,

∆(ri , t) = |U |
∑

n

un(ri , t)v∗n(ri , t)[1− 2 f (En)] , (3)

where U is the strength of the on-site, phonon induced, attractive electron-electron interaction,
leading to the superconducting state. The time dependent local density is given by

n(ri , t) = 2
∑

n

[|un(ri , t)|2 f (En) + |vn(ri , t)|2(1− f (En))] , (4)

For numerical convenience, we start from the equilibrium state at temperature Ti > Tc ,
namely, a vanishing order parameter which can be obtained from the exact solution of the BdG
equations [36–38]. We note that due to the maximum numerical accuracy that our calculation
can reach, even in the clean limit, the numerical error is of order 10−16. This numerical
error induces a very weak spatial dependence in the initial state even without disorder. This
numerical error is therefore the seed for the later emergence of spatial patterns if no disorder is
present. We stress that by no means these spatial patterns are a numerical artifact. Physically,
this seed has its origin in small thermal and quantum fluctuations that we are neglecting in
mean field formalism that we employ but are always present in experiments. The details of the
emergent spatial inhomogeneities induced by the quenched dynamics are largely independent
on the origin of the seed.

Indeed, we also checked the quenched dynamics starting with a random but normalized
initial state, in a smaller system size, leads to qualitatively similar results. We employ periodic
boundary conditions to minimize finite size effects. Time evolution is induced by lowering
the temperature T (t) from Ti > Tc to T f = 0.1Tc using the following linear quench protocol
[9,39],

T (t) =

�

Ti −τQ t, t i ≤ t ≤ t f
T f , t > t f

, (5)

where τQ, the slope of the quench, which characterizes the quench duration, has units
t2
i,i+δ/(ħhkB), t i = 0 is the starting time of the quench, and t f = (Ti − T f )/τQ is the quench

ending time corresponding to the final temperature T f . In our study, we let Ti = 1.2Tc . We
mostly focus on fast quenches leading to a non-adiabatic time evolution, so we set τQ = 50.
Since we are mostly interested in the generation of stable spatial patterns by the dynamics
which occurs for relatively long time scales after the quench stops, we expect our results to be
largely independent on the quench protocol. We quenched both the temperature and coupling
constant with different quench speeds, and obtained qualitatively similar patterns, indicating
that the quench dynamics is rather universal. More specifically, for zero disorder, we have
checked, see Appendix B and C, that a quench in the coupling constant leads to qualitatively
similar results for sufficiently long times. Moreover, since we aim to compare with the BCS
dynamics for short times, our quench results in a superconducting state which for no disorder
is still spatially homogeneous in the T ≲ Tc region.
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3 Quench dynamics of the order parameter: initial exponential
growth, time oscillations and its eventual suppression

We now proceed to study the dynamics of the condensate amplitude triggered by lowering the
temperature of the system from Ti > Tc to T f < Tc using the quench protocol Eq. (5). Since
one of our main goals is the modeling of stable spatial patterns of the order parameter in
the long time limit [26], we use the self-consistent time dependent BdG equations introduced
earlier which results in an initial spatially homogeneous evolution of the order parameter. We
shall see that a weak disordered potential does not change this picture substantially. This is
indeed a welcome feature as another aim of the paper is to compare for short times our results
with previous theoretical predictions using the simpler BCS approach that cannot account for
spatial inhomogeneities.
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Figure 1: The dynamics of the spatially averaged order parameter 〈∆(r )〉 (black dot),
normalized by ∆0 ∼ 0.83, together with an exponential fitting f (t) = a f exp(b f t)
(red line) at short times corresponding to temperatures slightly below the critical one
that marks the transition into the superconducting state. The other parameters are
system size N = 200×200, the coupling constant U = −3 and the chemical potential
is µ= −0.34 corresponding to a mean charge density 〈n〉 ≃ 0.875.

We first study the initial growth of the condensate as the system enters the superconducting
phase. We observe that the amplitude of the order parameter increases rapidly from zero as the
system enters the superconducting phase by lowering the temperature T < Tc . A careful fitting
of the numerical results, see Appendix A, indicates that the growth of the order parameter is
exponential in this region. This confirms that the quench is fast enough to induce a highly non-
adiabatic time evolution. An exponential growth is also observed, see Figure 1, in a relatively
broad range of disorder strengths with a growth rate, 0.86∼ 0.89, that is not very sensitive to
disorder and it is also similar (0.86) to that found in the clean limit.
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Figure 2: Time evolution, after spatial average, of the order parameter 〈∆(r )〉 in the
presence of a random potential for different values of the disorder strength V . The
other parameters are the same as in Figure 1.

The initial exponential growth of the spatial averaged order parameter amplitude, ob-
tained from the solution of the BdG equations Eq. (1), is followed, see Figure 2, by relatively
simple oscillations in time. At this early stage, we did not yet observe spatial inhomogeneity
in the clean limit, or even in the presence of a weak disordered potential V ≤ 0.1. The time
evolution of the order parameter within the simple BCS formalism [19–22,25], that by design
neglects spatial inhomogeneities, also shows oscillations in time whose details depend on both
the initial state and the quench protocol. More specifically, for an initial state of the order pa-
rameter characterized by uncorrelated phases in momentum space [25] or with a very small
initial value [20], which simulates the system above the critical temperature Tc , the lowering
of the temperature below Tc induces undamped periodic oscillations in the amplitude of the
order parameter. By contrast, for a quench in the coupling constant at zero temperature, and
therefore inside the superconducting phase [20–22], the amplitude of the order parameter
oscillations can decay either as a power-law or exponential way, or not decay at all, depending
on the values of the initial and final coupling constants. As expected, we have found excel-
lent agreement with the BCS prediction for the protocols that we have tested explicitly, see
Appendix C. This is not surprising as BCS theory and BdG theory should agree in the limit in
which the order parameter is spatially homogeneous.

The dynamics becomes more interesting for longer times. Results depicted in Figure 2
indicate that this simple dynamical regime ends rather abruptly due to the sharp exponential
suppression of the amplitude of these oscillations, which does not occur in the BCS dynamics
[19–22,25], see also Appendix C. The time scale of this suppression is sensitive to the addition
of a weak random potential. For a stronger disorder still deep in the metallic phase, the
oscillations are almost fully suppressed after a few periods. We show next, by employing the
mentioned time dependent BdG formalism, that the origin of that exponential suppression lies
in the development, even for no disorder, of spatial inhomogeneities in the order parameter.

In order to carry out a more quantitative analysis of the decay of the amplitude of the
order parameter, we define δ∆= (〈∆(r )〉peak−〈∆(r )〉valley)/∆0, see Figure 3, where peak and
valley refer to consecutive local maxima and minima of the oscillations in time of the order
parameter. For sufficiently short times, where the order parameter is spatially homogeneous,
the reduction of the amplitude δ∆ is consistent with a power-law decay. A fit with a power-
law decaying function ∼ t−γp yields γp ∼ 1.4 for weak or no disorder which illustrates that
this slow decay is not related to the presence of a random potential.

The power-law decay is followed by a much faster exponential decay ∼ exp(−γe t) even in
the clean limit. As is expected, γe becomes larger as disorder increases. Even for a relatively
weak disorder, V = 0.1, it is already about two times larger that in the clean limit. Quali-
tatively, the dependence of the crossover time between power-law and exponential decay on
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the disorder strength V ≪ 1 seems to be rather weak which reinforces the idea that disorder
does not play a leading role in this phenomenon. We investigate in more detail this region of
exponential suppression in the next section.
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Figure 3: Left y axis: the amplitude of the time oscillation δ∆ (black dots) of the or-
der parameter in the presence of different disorder strengths V and the corresponding
power-law y∝ t−γp (red line) and exponential fittings y∝ exp(−γe t) (blue line).
Right y axis: the variance of the order parameter Var[∆(r )]. We combine both results
using a double y axis plot in order to show explicitly that the exponential suppression
of time oscillations is induced by the exponential growth of spatial inhomogeneities.
Only when the spatial inhomogeneities become sufficiently large, because of the ex-
ponential growth of the variance, the exponential suppression of the time oscillations
occurs.

4 Exponential growth of emergent spatial inhomogeneities and
exponential suppression of time oscillations

We now carry out a comprehensive study of the full form of the exponential decay of the
order parameter oscillations in time aiming to relate this exponential suppression with the
emergence of spatial inhomogeneities in the order parameter even in the absence of disorder.

As a first step, we employ a simple oscillatory function with an exponential decay of the
amplitude [19,26] to fit the time dependent spatial averaged order parameter obtained from
the BdG formalism,

∆(t) =∆ f − A(∆ f + C + cos(ω(t − t0)∆0))/exp(γ(t − t0)∆0) , (6)

where ∆0 ∼ 0.83 is the value of the order parameter in the clean limit at zero temperature,
and ∆ f is the order parameter in the final equilibrium state after the quench. The four fitting
parameters are γ, the decay ratio of the amplitude, A, C and ω. As is shown in Figure 4,
for times right after the crossover to an exponential decay in δ∆ (see Figure 3) , we find a
very good agreement with the BdG results in the clean and weak disorder limit. We note that
in the BCS approach, the value of ω is sensitive to the initial state and the quench protocol
[19,20,40]. In our case, the fitting yieldsω∼ 0.3∆0 which is in the same ballpark as the BCS
prediction [40] for an initial state characterized by a very small order parameter with respect
to ∆0. In any case, we do not expect quantitative agreement because this frequency may also
be affected by the emergence of spatial inhomogeneities.

For earlier times, as expected, the decay of time oscillations is much slower so the fitting
is much worse. Moreover, we find that this exponential decay, even for no disorder, seems to
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Figure 4: The time dependence of the spatially averaged order parameter 〈∆(r )〉
(blue line) in the clean V = 0 and weak disorder regions V = 0.1. The red dash-dot
line is the best fitting, by Eq. (6), in the region of exponential decay of the am-
plitude of the time oscillations of the order parameter that follows the region of
slower power-law decay. As is observed in the inset plots of the spatial distribution
of the order parameter at times t1, t2, t3, this time scale is related to the formation
of spatial inhomogeneities. As was expected, the fitting parameter γ which charac-
terizes the exponential decay increases with increasing disorder. The system size is
N = 200×200, the coupling constant U = −3, and the chemical potential µ= −0.34.

be closely related with the emergence of spatial inhomogeneities in the order parameter. This
can be seen from the similarity between the time scale t2 in which the exponential suppression
of oscillations occurs and the time scale t3 in which spatial inhomogeneities, already existent
for t2, become substantial, see the insets of Figure 4. In other words, the emergence of spatial
inhomogeneities eventually, namely, when they are large enough, triggers the exponential
decay of oscillations in time that terminates approximately when the spatial inhomogeneities
are fully formed.

In order to establish a more quantitative relation between spatial inhomogeneities and
the exponential decay of time oscillations, we compute the variance of the order parameter
Var|∆(r )| = 〈∆2(r )〉 − 〈∆(r )〉2 as a function of time in the clean limit and in the presence
of weak disorder V ≤ 0.1. Results depicted in Figure 5 show a region of intermediate times
where the variance grows exponentially. We define te as the time in which this exponential
growth terminates because the spatial patterns are completely developed, see Figure 5a.

Another interesting feature of the time dependence of the spatial variance is the observa-
tion of a period of no growth, only for no disorder V = 0, right after the initial growth of the
condensate. This feature strongly suggests that the later exponential growth is independent
of the quench protocol. For V ̸= 0, the situation is different. The early exponential growth in
time of the amplitude of the order parameter is followed by the exponential growth of the vari-
ance which indicates that the seeds of spatial inhomogeneities due to disorder are amplified
exponentially by the dynamics of the BdG superconductor. The flat behavior of the variance
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Figure 5: Variance of the spatial inhomogeneities of the amplitude of the order pa-
rameter ∆(r , t) for different disorder strengths V . The starting of the exponential
growth observed for intermediate times occurs much earlier than the beginning of
the exponential suppression of the oscillations of the averaged order parameter.

for later times, after the exponential growth, confirms the earlier claim that the end of the
time oscillations is related to the approach to a quasi equilibrium state where the change with
time of the order parameter is heavily suppressed.

We have now all ingredients to compare explicitly to what extent the exponential growth
of the spatial inhomogeneities and the crossover between power-law and exponential decay
of oscillations in time are closely related. For that purpose, we depict in Figure 3, back to
back, the plots of δ∆(t), that characterizes the amplitude of time oscillations, and Var[∆(r)],
representing the exponential growth of the variance of the spatial inhomogeneities. For both,
the clean and the weak disordered case, V ≤ 0.1, the crossover to an exponential decay of
the oscillations precisely occurs when the exponential growth of the variance of spatial fluc-
tuations is close to its termination, namely, when it has reached a value sufficiently large to
have an impact on the quench dynamics. Therefore, td and te has a very similar dependence
on disorder and td is a bit larger than te in all cases as the exponential suppression does
not require a full development of spatial inhomogeneities described by te. These results fully
confirm that the oscillations in time of the order parameter are eventually suppressed expo-
nentially by the emergence of spatial inhomogeneities characterized by a variance that grows
exponentially. This is therefore a quite robust feature of the non-adiabatic dynamics of BdG
superconductors.

We turn to a quantitative investigation of the dependence on disorder of these results. For
that purpose, we show in Figure 6, the dependence on the strength of disorder V of td , the
typical crossover time between power-law and exponential decay of δ∆(t), and te the time at
which the exponential growth of the variance terminates. We observe that in the weak disorder
limit V ≤ 0.1 of interest, both typical times have not only similar values but also a simple
logarithmic dependence with the disorder strength, with a finite value for V = 0, confirming,
at least for weak disorder, that the exponential decay of the order parameter time oscillations
has its origin in spatial inhomogeneities induced by the quench dynamics with the disorder
potential playing the secondary role, at least in this region, of shifting the development of these
spatial pattern to earlier times. We note that the slightly larger value of te is expected because
the effect of the spatial inhomogeneities must be felt earlier, but not much earlier because the
growth is exponential, than the time at which the spatial inhomogeneities are fully formed.
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Figure 6: Typical crossover time td (blue rhombs), see Figure 3a, between the power-
law and exponential decay of the amplitude of the time oscillations of the order pa-
rameter as a function of the disorder strength V . Typical time te (red rhombs) signal-
ing the end of the exponential increase of the variance of the order parameter spatial
inhomogeneities depicted in Figure 5a. The solid lines are fits using the function
time= ad log(bd ×V + cd). We not only observe a similar logarithmic dependence in
both cases, with a finite value at V = 0, but td and te have similar values. Therefore,
the exponential growth of the spatial inhomogeneities induces the late exponential
decay of the amplitude of the time oscillations.

We now move to the quantitative description of the spatial patterns for sufficiently long
times when the system reaches the final quasi equilibrium state.

5 Long times: spontaneous formation of spatial patterns resulting
from the quench dynamics

The conclusion of the previous section is that, within the time dependent BdG formalism, time
oscillations of the order parameter are exponentially suppressed for sufficiently long times.
This is markedly different from the BCS result in which this specific exponential suppression
does not occur, because the order parameter is spatially homogeneous.

In this section, we present a detailed description of those stable, spontaneously formed,
spatial patterns, see Figure 7, together with its formation process, see Figure 8, as a function
of the disorder strength. Videos of the full time evolution are available here.1 We recall
that for no disorder, spatial inhomogeneities start to appear when the time oscillations are
significantly suppressed. Initially, see left column of Figure 8, they resemble soft periodic or
quasi-periodic domains where the order parameter amplitude is substantially smaller than in
the surroundings. For longer times, these domains become more pronounced and adopt the
shape of relatively thin finite-size stripes, organized in most cases in a perpendicular fashion.
These broken stripes have well defined centers where the suppression of the order parameter
is even stronger. This seems to be an equilibrium or quasi-equilibrium state because we do not
appreciate further changes even for much larger time scales. A small but finite disorder does
not change much the emergence of these spatial patterns.

1Videos showing the time evolution of the order parameter after a temperature quench for different disorder
strengths V are found in [41]
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Figure 7: Left column: the time dependence of the spatial averaged order parameter
〈∆(r )〉 for different disorder strengths V . Central column: spatial distribution of the
order parameter at time t4, see left column, corresponding with a quasi-equilibrium
state with intricate spatial patterns and a very weak time dependence. Right column:
structure factor Eq. (7) that reveals patterns in the spatial distribution of the order
parameter at time t4. The parameters are: system size N = 200 × 200, coupling
constant U = −3 and chemical potential µ= −0.34.
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Figure 8: The spatial distribution of the order parameter ∆(r ) at times t1, t2 and t3,
defined in Figure 7, corresponding to different stages of the time evolution before the
full quasi-equilibrium state (t4), and for different values of the disorder strength V .

In order to have a more quantitative description of this spatial structure, we have com-
puted the averaged gap correlation function 〈∆(r )∆(0)〉. Results depicted in Figure 9 show
oscillations with a typical length ℓp ∼ 12.5 in the clean limit, which is much larger than the
superconducting coherence length ξ0 ∼ 1 at thermal equilibrium. This is a strong indica-
tion that the pattern of spatial inhomogeneities, especially its periodicity, is due to the quench
dynamics.
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Figure 9: The static order parameter correlation function at time t4, defined in Fig-
ure 7, normalized by the spatial average of the square of the order parameter.
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As a further probe of the periodic nature of the spatial inhomogeneities, we compute the
structure factor,

S(q) =
∑

i j

∆(ri)∆(r j)exp(iq(ri − r j))/
∑

i

∆2(ri) , (7)

of the distribution of the order parameter for long times where the system seems to have
reached a quasi equilibrium state. We termed quasi-equilibrium state for two reasons, there
is still some residual time dependence and also the resulting state is very different from that
corresponding to the solution of the static BdG equations. As is shown in Figure 7, the spatial
patterns resulting from the out of equilibrium dynamics have a square crystal-like structure.
We have checked that the structure of this spatial pattern depends on the underlying lattice
structure. In the Appendix B, we obtain a Hexagonal pattern in the structure factor for a trian-
gular lattice system. Moreover, according to the Bragg pattern depicted in the right column of
Figure 7, the distance from the center to the peaks is around 0.25 in momentum space which
in real space corresponds to a typical length of the strips, or the fake vortex lattice, of about
ℓp ∼ π/0.25 = 12.56. This is consistent with the previous findings for the order parameter
spatial correlation function in Figure 9. The addition of a weak disorder potential does not
modify substantially these results.

5.25cm*6cm

2001000

100

200

0 200100 200100 200100 200100

0

−

+
𝛿𝛿𝑛𝑛(𝑟𝑟)𝑉𝑉 = 10−5𝑉𝑉 = 0 𝑉𝑉 = 0.5 𝑉𝑉 = 1.0 𝑉𝑉 = 2.0

Figure 10: The spatial variation of the charge density δn(r ) = n(r , t)−n(r , t = 0) at
time t4, defined in Figure 7. The spatial pattern of the charge density matches that
of the superconducting order parameter, especially when disorder is not very strong.

Results depicted in Figure 10 for the charge density variation δn(r ) further confirm the ex-
istence of spatial patterns consistent with the one found for the spatial structure of the order
parameter. Therefore, the observed stripe-like domains where the order parameter is sup-
pressed cannot be attributed to quantum coherence effects [37,42,43], but are rather related
to modulations of the charge density caused by the strong suppression of time oscillations.

5.1 From fragmented stripes to fake vortices

As disorder strength increases, but still deep in the metallic region, we observe a similar pe-
riodic pattern that does not yet seem much affected by disorder. Although the periodicity is
robust, see Figure 7, the shape of the domains where the order parameter is suppressed under-
goes a gradual change. The stripes becomes more fragmented until they become completely
disconnected. However, a rather strict periodicity of these patterns is still observed even for
substantially larger disorder V ≤ 0.5. The regions where the order parameter is suppressed
are now circular and with a typical length that is much larger than the superconducting coher-
ence length. As we said earlier, the phase of the order parameter is fixed in this region, so the
periodic suppression of the order parameter is not related to non-trivial topological properties.
For that reason, we have termed this spatial pattern fake vortex lattice. Both, the correlation
function 〈∆(r )∆(0)〉, see Figure 9, and the structure factor of the spatial distribution of the
superconducting order parameter, see Figure 7, confirm this lattice structure of the spatial
patterns.
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For 0.5 < V < 2, disorder effects become gradually more pronounced. The periodic pat-
tern of the fake vortex is gradually deformed though clear vortex repulsion is still observed
even when V = 1.0. The latter is confirmed by an explicit calculation of the structure form
factor, see Figure 7, that still shows a clear circular pattern. This is also confirmed in the or-
der parameter correlation function 〈∆(r )∆(0)〉, see Figure 9, where the vestiges of a lattice
structure resulting in vortex repulsion show up as a valley at |r | = 8 and a peak at |r | = 16
for a relatively large strength V = 1.0 of the random potential.

In the strong disorder limit, close or around the transition V ∼ 2, the spatial distribution of
the order parameter is mostly controlled by disorder. It becomes highly inhomogeneous, has
no specific periodic pattern but it seems that some vortex-like structures remain. For instance,
the gap correlation function 〈∆(r )∆(0)〉, see Figure 9, only has short correlations in space and
the Fourier transform has no Bragg peaks signaling no periodic pattern in space.

6 Discussion

A natural question to ask is the origin of the crossover from stripes to fake vortices that we
observe as the strength of disorder is increased. Since disorder suppresses finite size effects,
we cannot rule out that the so called fake vortices, that arise for stronger disorder, should still
be observed for weak or no disorder, instead of the fragmented stripes, if it were possible to
reach much larger lattice sizes. Unfortunately, substantially larger sizes are currently beyond
the reach of our computing capabilities.

Another important issue is the dependence of the results to the strength of the electron-
phonon coupling. We have set the coupling constant in the strong coupling region U = −3,
and set the Debye energy to the full band of the energy spectrum, in order to be able to
explore quantitatively the rich spatial structure of the order parameter resulting from the out
of equilibrium dynamics whose typical length is around ℓp ∼ 12.56, which is much larger than
the superconducting coherence length. As is expected, this is not fully consistent with the
weak-coupling analytic prediction [26] that this typical length should be the superconducting
coherence length. Results for an even stronger coupling constant U = −5, presented in the
Appendix E, show similar spatial patterns but, as expected, the typical length of the patterns
is shorter. A more quantitative understanding on the precise nature of this length scale would
require a more systematic, and therefore numerically costly, analysis of its dependence on the
quenched dynamics, for instance by varying the coupling constant, which is beyond the scope
of the paper.

More specifically, it may be interesting to explore the weak coupling region |U | ≤ 1 where
quantum coherence effects induce multifractal-like features for intermediate to strong disor-
der. However, we anticipate that typically strong quantum coherence effects such as multi-
fractality will likely suppress the spatial patterns induced by the quench dynamics even for
a relatively weak disorder strength V ≤ 0.5. This bring us to the issue of the experimental
confirmation of these results. The strong coupling region we have explored in this paper is
more amenable for experiments with Bose-Einstein condensate at very low temperature where
the dynamics is triggered by a change in the coupling constant which is feasible to carry out
in this setting. Disorder-like effects in this setting can be modeled by quasi-periodic optical
lattice configurations.

We note that in superconducting materials, a quench protocol based on the change of
coupling constant is not in principle possible but even a controlled quench in temperature is
challenging. This is why some experiments opted to induce out of equilibrium dynamics by
bombarding the sample with photons leading to heating and subsequent cooling [44]. How-
ever, the theoretical modeling of such systems is well beyond the mean-field approach, and
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relatively simple quench protocols, that we are considering here. Having said that, we believe
that a mean field approach is enough for a description of the physics behind the emergence of
large spatial inhomogeneities of the condensate even in two dimensions. We note that quan-
tum and thermal fluctuations beyond the mean field formalism, if sufficiently small, which is
the case for low temperatures, large sizes and not very strong electron-electron interactions,
induce very small spatial inhomogeneities in the order parameter that act as seed for the later
emergence of spatial patterns. As mentioned earlier, in our numerical formalism, the seed is
a consequence of the finite accuracy of our numerical calculation so, indirectly, we are taking
these effects into account. Larger effects such as the Berezinskii–Kosterlitz–Thouless transi-
tion [45,46] can be avoided with quenches ending at sufficiently low temperatures.

Finally, we address the dependence of the results on the quench speed. Results depicted in
Appendix D for a much slower quench, points to a more nuanced picture. For sufficiently long
times, spatial inhomogeneities are clearly observed but they do not have a periodic pattern.
Large domains with similar values of the order parameter are separated by filamentary domain
walls where the order parameter is highly suppressed. The domains walls becomes thinner for
longer times but they persist in the range of times we can explore numerically. We therefore
expect that a sufficiently slow quench will in principle lead to an essentially adiabatic dynamics
where early time oscillations are suppressed and spatial patterns may not develop at all. We
also note that sufficiently fast temperature quenches inducing far out of equilibrium effects
are beyond the finite temperature mean-field formalism that we employ in the paper.

7 Conclusions

We have investigated the quenched dynamics of a BdG superconductor. In order to compare
with previous results, which use the simpler, spatially homogeneous, BCS formalism, we have
employed two quench protocols: an abrupt change in the coupling constant, see Appendix C
and B, and a smooth linear drop in temperature starting above the critical temperature. For
zero disorder and sufficiently long times, where the BCS approach ceases to be applicable, we
have obtained similar results so the study of the role of disorder in the main text was carried
out only for the second quench protocol.

For short times, we observe similar results as in the simpler BCS approach, the order pa-
rameter first grows exponentially and then oscillates in time with a pattern that depends on
the quench protocol and the initial state. However, in contrast with previous BCS findings,
the amplitude of these time oscillations eventually decreases exponentially in time because
of the emergence of spatial inhomogeneities of the order parameter. We have characterized
the emergence of these spatial inhomogeneities by the exponential growth of the variance in
space of the order parameter and have shown that this exponential growth in space causes
the exponential suppression of the oscillations in time. This feature cannot be accounted for
in the BCS formalism and it is observed even in the limit of no disorder. A weak disordered
potential does not change qualitatively these results.

For longer times, these spatial instabilities turn into rich spatial patterns. In the clean limit,
or for sufficiently weak disorder, we observe ordered filamentary structures resembling finite
size stripes in close to perpendicular directions, where the order parameter is heavily sup-
pressed. The suppression of the order parameter in the central region of these broken stripes
is much more pronounced. Those emergent spatial patterns depend only on the underlying
lattice structure and not on the employed quench protocols. For stronger disorder, but still
deep in the metallic region, the stripe-like structures turn into a square lattice of fake vortices,
namely, the amplitude of the order parameter is heavily suppressed in circular regions whose
typical length is much larger than the superconducting coherence length, but the phase has no
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topological properties so no real vortex is formed. Larger sizes, beyond our current numerical
capabilities, are needed to clarify whether the observed broken stripes for weak or no disorder
become also a vortex lattice in the thermodynamic limit. A further increase of disorder leads to
a gradual deformation of the lattice, though isolated fake vortices that repel each other are still
clearly observed. Finally, close to the insulating transition, spatial inhomogeneities induced
by disorder become also relevant leading to a quite intricate spatial structure that is charac-
terized by a lack of vortex lattice symmetry but persistence of vortex repulsion. Although the
time scale we can simulate numerically is limited, our results suggest that, neglecting the effect
of collisions beyond the time dependent BdG formalism, these spatial structures correspond
with a quasi-equilibrium state of the superconductor which is still very different from that
corresponding with the solution of the static BdG equations. The observed spatial patterns
are confirmed by a careful analysis in Fourier space based on the calculation of the structure
factor. We have shown, by an explicit calculation with an underlying triangular lattice, that
the emergent spatial patterns are sensitive to the underlying lattice structure which points to a
rather rich spectrum of possible patterns of spatial inhomogeneities induced by the quenched
dynamics.

It would be interesting to gain a more comprehensive understanding of the precise nature
of the spatial patterns, especially in the so called stripe region, either by numerical or analytic
techniques, in order to determine whether, for sufficiently large sizes, the spatial structures that
emerge for intermediate times lead to a full checkerboard-like shape instead of the observed
broken stripes. It would also be worthwhile to extend these results to p-wave and d-wave
superconductors in order to explore its potential relevance in topological superconductivity
and the physics of cuprates superconductors.
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A The initial growth of the condensate

In this appendix, we study the initial growth of the superconducting order parameter when the
temperature is just lowered below the critical temperature. For that purpose, we fit numerical
results from the solution of the BdG equation with Gaussian, exponential and power-law test
functions. The outcome of the fitting, see Figure 11, is that the order parameter increases ex-
ponentially during the early stages of the time evolution in the superconducting phase. This is
consistent with previous results in phenomenological models for sufficiently fast quenches [9].

B The dynamic pattern formation in the triangular lattice

In the main text, we have presented a comprehensive analysis of the square lattice, which lead
to the observed square pattern of spatial inhomogeneities for sufficiently long times. In this
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Figure 11: The dynamics of the spatially averaged order parameter 〈∆(r )〉 (black
dot) for times right after the system has entered in the superconducting phase. The
results of the different fittings using Gaussian, power-law and exponential functions
clearly indicate that the latter is the one closer to the numerical results.

appendix, we extend our investigation to a BdG superconductor with an underlying triangular,
instead of square, lattice. A summary of the quenched dynamics is depicted in Figure 12.
Although the pattern in real space may not be that evident, the corresponding structure factor
analysis reveals a clear hexagonal pattern. By studying different lattice configurations, we gain
valuable insights into the influence of the lattice geometry on the formation of spatial patterns
induced by the out of equilibrium dynamics. Those results indicate that the underlying lattice
symmetry plays a crucial role in the form of the emergent spatial patterns for sufficiently long
times after the quench.

Figure 12: The time evolution of the spatial averaged order parameter of a BdG
superconductor living in a two dimensional triangular lattice. The coupling constant
U = −4 and the chemical potential µ = 0.108 leading to ∆0 = 1.098. The insets
show the spatial distribution of the order parameter at three representative times
marked by red points and the corresponding structure factor at time t3. The other
parameters are system size N = 200× 200, disorder V = 10−5, initial temperature
Ti = 1.2Tc , and final temperature T f = 0.1Tc and τQ = 50.
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C Comparison between the dynamic BCS and BdG results in the
sudden coupling quench case

In this appendix, we compare the quench dynamics using the BCS and BdG formalism. We
cannot use the quench in temperature of the main manuscript because it is difficult to model
it in the BCS formalism which cannot, at least in a fully self-consistent way, account for spatial
inhomogeneities. Therefore, we compare the quench dynamics in BCS and BdG by using a
quench protocol with an abrupt change in the coupling constant at zero temperature where
the initial state is spatially homogeneous and therefore it is possible to model it with both
approaches. Results depicted in Figure 13 show that in the beginning, when spatial depen-
dence is not yet observable, the BCS and BdG quench dynamics is quantitatively very similar.
However, at time t∆ f around 400, we start observing the spatial patterns in the BdG results
which triggers a sharp departure from the BCS prediction. Those results, together with those
presented in the main text corresponding to the dynamics after lowering the temperature into
the superconducting phase, show that the emergent spatial structure as a consequence of the
quench dynamics is rather universal and independent on the quench protocol.

0 200 400 600 800 1000 1200
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0.5

1

BCS BdG

400 450
0.7

0.9

0

0.5

1

Figure 13: The time evolution of the order parameter ∆(t)/∆0 in the clean limit
obtained with the BCS (blue) and BdG (red) formalisms. The insets show (left) the
time range when the BdG result start deviating from the BCS one and (right) the spa-
tial distribution of the order parameter at the time marked by the black arrow. The
system is prepared in an initial state with coupling constant |U |= 1. The quench pro-
tocol consists in an abrupt change of the coupling constant from |U | = 1 to |U | = 3.
The other parameters are system size N = 40× 40 and chemical potential µ= 0.

D Dynamics resulting from slow quenches

The main text provides a detailed analysis of the time evolution of the system under a fast
quench protocol. It is expected that the results for a sufficiently slow quench would be some-
how less interesting as the dynamics would be essentially adiabatic corresponding to a slow,
and largely homogeneous, at least initially, growth of the order parameter as temperature is
gradually lowered below the critical temperature. For the sake of completeness, in this ap-
pendix, we present results for the dynamics, and spatial pattern formation, for a slow quench
characterized by τQ = 500. We find striking similarities with the fast quench case but also
important differences. Results depicted in Figure 14 in the very weak disorder limit V = 0.001
show that the observation of time oscillations is greatly delayed with respect to the fast quench
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limit but, once they occur, they are qualitatively similar with a fast suppression once the fil-
amentary spatial patterns are fully developed. Interestingly, the crossover from the broken
stripe to the fake vortex phase is not clearly observed though it may be due to the limited
time scale we have explored numerically or simply due to the weak strength of the random
potential. In the presence of a stronger disorder V = 0.5, see Figure 15, there is no visible time
oscillations. The shape of spatial domains become irregular, and domain walls become thinner
over time, but persist within the range of times that we can explore numerically. This rather
different, with respect to the fast quench case, spatial structure deserves further exploration.
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Figure 14: Top: The quenched dynamics of the spatially averaged order parameter
〈∆(r )〉 in the presence of a random potential with disorder strength V = 0.001. Bot-
tom: the spatial distribution of the order parameter at times t1, t2, t3 and t4 defined
in the top plot.
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Figure 15: Top: The slow quench dynamics of the spatially averaged order parameter
〈∆(r )〉 in the presence of a weak disorder of strength V = 0.5. Bottom: the spatial
distribution of the order parameter at times t1, t2, t3 and t4 defined in the top plot.

E Dynamics in the fast quench, strong coupling limit U = -5

In this appendix, we present results for the quench dynamics in the clean limit (V = 0) of the
order parameter, using the protocol of the main text (fast quench), in the region of stronger
coupling constant U = −5. We observe, see Figure 16, qualitatively similar features as for
the U = −3 case studied in the main text. The spatial averaged order parameter increases
exponentially when temperature is below Tc , and then exhibits damped oscillations in time.
The development of spatial inhomogeneities in the order parameter also followed a similar
pattern: the sharp growth of the spatial inhomogeneities occurs around the time in which
time oscillations are fully suppressed and a broken stripe phase is followed by the fake vortex
phase though the size of these structures is substantially smaller than for U = −3. For a more
quantitative understanding of this size difference, we study the order parameter correlation
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function and the structure factor at time t4 in Figure 16e, when the order parameter is almost
at equilibrium, namely, it only experiences very small, non harmonic, oscillations due to the
residual collective behavior of Cooper pairs. The results, depicted in Figure 17, show that the
order parameter correlation function undergoes oscillations in space. Likewise, the structure
factor reveals the existence of a square lattice of fake vortices with typical length ℓp ∼ 5.6 in
real space. This typical length is much shorter than that for U = −3, but still much larger than
the superconducting coherence length which, for this value of the coupling, is of the order of
the lattice spacing.
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Figure 16: Top: The time evolution of the spatial averaged order parameter 〈∆(r )〉
in the clean limit, V = 0. Bottom; The spatial distribution of the order parameter at
the corresponding times t1, t2, t3 and t4 shown in the top figure. The system size is
N = 200× 200, the coupling constant U = −5 and chemical potential µ= −0.45.
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Figure 17: Left: The order parameter correlation function at the equilibrium time, t4
in Figure 16e which is normalized by 〈∆(r = 0)∆(0)〉. Right: The structure factor at
quasi equilibrium time t4, in Figure 16e. The Bragg’s pattern shows a distance to the
peaks of around π/5.6 in momentum space, which corresponds to a typical length
of the lattice of about ℓp ∼ 5.6 while the superconducting coherence length is much
smaller, about the lattice spacing.

References

[1] W. Y. Córdoba-Camacho, R. M. Da Silva, A. A. Shanenko, A. Vagov, A. S. Vasenko, B.
G. Lvov and J. Albino Aguiar, Spontaneous pattern formation in superconducting films, J.
Phys.: Condens. Matter 32, 7 (2019), doi:10.1088/1361-648X/ab5379.

[2] Z. Wang, C. Navarrete-Benlloch and Z. Cai, Pattern formation and exotic or-
der in driven-dissipative Bose-Hubbard systems, Phys. Rev. Lett. 125, 11 (2020),
doi:10.1103/PhysRevLett.125.115301.

[3] T. W. B. Kibble, Some implications of a cosmological phase transition, Phys. Rep. 67, 1
(1980), doi:10.1016/0370-1573(80)90091-5.

[4] W. H. Zurek, Cosmological experiments in superfluid helium?, Nature 317, 6037 (1985),
doi:10.1038/317505a0.

[5] G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo and G. Ferrari, Spontaneous cre-
ation of Kibble-Zurek solitons in a Bose-Einstein condensate, Nat. Phys. 9, 10 (2013),
doi:10.1038/nphys2734.

[6] S. Ulm et al., Observation of the Kibble-Zurek scaling law for defect formation in ion crystals,
Nat. Commun. 4, 1 (2013), doi:10.1038/ncomms3290.

[7] G. Labeyrie and R. Kaiser, Kibble-Zurek mechanism in the self-organization of a cold atomic
cloud, Phys. Rev. Lett. 117, 27 (2016), doi:10.1103/PhysRevLett.117.275701.

[8] T. C. H. Liew, O.A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma and E.A. Ostrovskaya,
Instability-induced formation and nonequilibrium dynamics of phase defects in polariton
condensates, Phys. Rev. B 91, 8 (2015), doi:10.1103/PhysRevB.91.085413.

[9] P. M. Chesler, A. M. García-García and H. Liu, Defect formation beyond Kibble-Zurek mech-
anism and holography, Phys. Rev. X 5, 2 (2015), doi:10.1103/PhysRevX.5.021015.

[10] H. Kou and P. Li, Interferometry based on the quantum Kibble-Zurek mechanism, Phys. Rev.
B 106, 18 (2022), doi:10.1103/PhysRevB.106.184301.

22

https://scipost.org
https://scipost.org/SciPostPhys.17.2.049
https://doi.org/10.1088/1361-648X/ab5379
https://doi.org/10.1103/PhysRevLett.125.115301
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/nphys2734
https://doi.org/10.1038/ncomms3290
https://doi.org/10.1103/PhysRevLett.117.275701
https://doi.org/10.1103/PhysRevB.91.085413
https://doi.org/10.1103/PhysRevX.5.021015
https://doi.org/10.1103/PhysRevB.106.184301


SciPost Phys. 17, 049 (2024)

[11] Z. Jing, H. Yong and Y. Zhou, Thermal coupling effect on the vortex dynamics of supercon-
ducting thin films: time-dependent Ginzburg-Landau simulations, Supercond. Sci. Technol.
31, 5 (2018), doi:10.1088/1361-6668/aab3be.

[12] A. Lara, C. González-Ruano and F. G. Aliev, Time-dependent Ginzburg-Landau simula-
tions of superconducting vortices in three dimensions, Low Temp. Phys. 46, 4 (2020),
doi:10.1063/10.0000861.

[13] B. Oripov and S. M. Anlage, Time-dependent Ginzburg-Landau treatment of rf magnetic
vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field,
Phys. Rev. E 101, 3 (2020), doi:10.1103/PhysRevE.101.033306.

[14] A. M. García-García, H. B. Zeng and H. Q. Zhang, A thermal quench induces spatial in-
homogeneities in a holographic superconductor, J. High Energy Phys. 07, 096 (2014),
doi:10.1007/JHEP07(2014)096.

[15] R. L. Frank, C. Hainzl, B. Schlein and R. Seiringer, Incompatibility of time-dependent
Bogoliubov-de-Gennes and Ginzburg-Landau equations, Lett. Math. Phys. 106, 7 (2016),
doi:10.1007/s11005-016-0847-5.

[16] C. Hainzl and J. Seyrich, Comparing the full time-dependent bogoliubov-de-gennes equa-
tions to their linear approximation: a numerical investigation, Eur. Phys. J. B 89, 113
(2016), doi:10.1140/epjb/e2016-60975-y.

[17] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108,
5 (1957), doi:10.1103/PhysRev.108.1175.

[18] A. F. Volkov and S. M. Kogan, Collisionless relaxation of the energy gap in superconductors,
Sov. J. Exp. Theor. Phys. 65, (1).

[19] R. A. Barankov, L. S. Levitov and B. Z. Spivak., Collective Rabi oscillations and
solitons in a time-dependent BCS pairing problem, Phys. Rev. Lett. 93, 16 (2004),
doi:10.1103/PhysRevLett.93.160401.

[20] E. A. Yuzbashyan, O. Tsyplyatyev and B. L. Altshuler, Relaxation and persistent oscil-
lations of the order parameter in fermionic condensates, Phys. Rev. Lett. 96, 9 (2006),
doi:10.1103/PhysRevLett.96.097005.

[21] E. A. Yuzbashyan and M. Dzero, Dynamical vanishing of the order parameter in a fermionic
condensate, Phys. Rev. Lett 96, 230404 (2006), doi:10.1103/PhysRevLett.96.230404.

[22] R. A. Barankov and L. S. Levitov, Synchronization in the BCS pairing dynamics as a critical
phenomenon, Phys. Rev. Lett. 96, 23 (2006), doi:10.1103/PhysRevLett.96.230403.

[23] H. P. Ojeda Collado, G. Usaj, C. A. Balseiro, D. H. Zanette and J. Lorenzana, Emergent
parametric resonances and time-crystal phases in driven Bardeen-Cooper-Schrieffer systems,
Phys. Rev. Res. 3, 4 (2021), doi:10.1103/PhysRevResearch.3.L042023.

[24] H. P. Ojeda Collado, G. Usaj, C. A. Balseiro, D. H. Zanette and J. Lorenzana, Dynamical
phase transitions in periodically driven Bardeen-Cooper-Schrieffer systems, Phys. Rev. Res.
5, 023014 (2023), doi:10.1103/PhysRevResearch.5.023014.

[25] R. A. Barankov and L. S. Levitov, Dynamical selection in developing fermionic pairing, Phys.
Rev. A 73, 033614 (2006), doi:10.1103/PhysRevA.73.033614.

23

https://scipost.org
https://scipost.org/SciPostPhys.17.2.049
https://doi.org/10.1088/1361-6668/aab3be
https://doi.org/10.1063/10.0000861
https://doi.org/10.1103/PhysRevE.101.033306
https://doi.org/10.1007/JHEP07(2014)096
https://doi.org/10.1007/s11005-016-0847-5
https://doi.org/10.1140/epjb/e2016-60975-y
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.96.097005
https://doi.org/10.1103/PhysRevLett.96.230404
https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevResearch.3.L042023
https://doi.org/10.1103/PhysRevResearch.5.023014
https://doi.org/10.1103/PhysRevA.73.033614


SciPost Phys. 17, 049 (2024)

[26] M. Dzero, E. A. Yuzbashyan and B. L. Altshuler, Cooper pair turbulence in atomic Fermi
gases, Europhys. Lett. 85, 2 (2009), doi:10.1209/0295-5075/85/20004.

[27] L. Yang, Y. Yang and G. W. Chern, Pattern formation in charge density wave states after a
quantum quench, Phys. Rev. B 109, 19 (2024), doi:10.1103/PhysRevB.109.195133.

[28] K. J. Challis, R. J. Ballagh and C. W. Gardiner, Bragg scattering of Cooper pairs in an
ultracold Fermi gas, Phys. Rev. Lett. 98, 9 (2007), doi:10.1103/PhysRevLett.98.093002.

[29] P. Zou and F. Dalfovo, Josephson oscillations and self-trapping of superfluid fermions in a
double-well potential, J. Low Temp. Phys. 177, 5 (2014), doi:10.1007/s10909-014-1209-
2.

[30] G. W. Chern and K. Barros, Nonequilibrium dynamics of superconductivity in the attractive
Hubbard model, Phys. Rev. B 99, 3 (2019), doi:10.1103/PhysRevB.99.035162.

[31] P. G. de Gennes, Boundary effects in superconductors, Rev. Mod. Phys. 36, 1 (1964),
doi:10.1103/RevModPhys.36.225.

[32] R. Liao and J. Brand, Traveling dark solitons in superfluid Fermi gases, Phys. Rev. A 83, 4
(2011), doi:10.1103/PhysRevA.83.041604.

[33] R. G. Scott, F. Dalfovo, L. P. Pitaevskii and S. Stringari, Rapid ramps across the bec-
bcs crossover: A route to measuring the superfluid gap, Phys. Rev. A 86, 5 (2012),
doi:10.1103/PhysRevA.86.053604.

[34] J. Tokimoto, S. Tsuchiya and T. Nikuni, Josephson oscillation and self-trapping in a
fermi superfluid gas a cross the bcs-bec crossover, J. Low Temp. Phys. 208, 5 (2022),
doi:10.1007/s10909-022-02794-w.

[35] H. Pu, C. K. Law, S. Raghavan, J. H. Eberly and N. P. Bigelow, Spin-
mixing dynamics of a spinor bose-einstein condensate, Phys. Rev. A 60, 2 (1999),
doi:10.1103/PhysRevA.60.1463.

[36] A. Ghosal, M. Randeria and N. Trivedi, Inhomogeneous pairing in highly disordered s-wave
superconductors, Phys. Rev. B 65, 1 (2006), doi:10.1103/PhysRevB.65.014501.

[37] B. Fan and A. M. García-García, Enhanced phase-coherent multifractal two-dimensional
superconductivity, Phys. Rev. B 101, 10 (2020), doi:10.1103/PhysRevB.101.104509.

[38] B. Fan, A. Samanta and A. M. García-García, Tuning superinductors by quantum co-
herence effects for enhancing quantum computing, Phys. Rev. Lett. 130, 4 (2023),
doi:10.1103/PhysRevLett.130.047001.

[39] J. Sonner, A. Del Campo and W. H. Zurek, Universal far-from-equilibrium dynamics of a
holographic superconductor, Nat. commun. 6, 1 (2015), doi:10.1038/ncomms8406.

[40] G. L. Warner and A. J. Leggett, Quench dynamics of a superfluid Fermi gas, Phys. Rev. B
71, 13 (2005), doi:10.1103/PhysRevB.71.134514.

[41] B. Fan and A. M. García-García., Quenched dynamics and pattern formation
in clean and disordered Bogoliubov-de Gennes superconductors, Zenodo (2024),
doi:10.5281/zenodo.11202712.

[42] C. Rubio-Verdu et al., Visualization of multifractal superconductivity in a two-dimensional
transition metal dichalcogenide in the weak-disorder regime, Nano Lett. 20, 7 (2020),
doi:10.1021/acs.nanolett.0c01288.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.2.049
https://doi.org/10.1209/0295-5075/85/20004
https://doi.org/10.1103/PhysRevB.109.195133
https://doi.org/10.1103/PhysRevLett.98.093002
https://doi.org/10.1007/s10909-014-1209-2
https://doi.org/10.1007/s10909-014-1209-2
https://doi.org/10.1103/PhysRevB.99.035162
https://doi.org/10.1103/RevModPhys.36.225
https://doi.org/10.1103/PhysRevA.83.041604
https://doi.org/10.1103/PhysRevA.86.053604
https://doi.org/10.1007/s10909-022-02794-w
https://doi.org/10.1103/PhysRevA.60.1463
https://doi.org/10.1103/PhysRevB.65.014501
https://doi.org/10.1103/PhysRevB.101.104509
https://doi.org/10.1103/PhysRevLett.130.047001
https://doi.org/10.1038/ncomms8406
https://doi.org/10.1103/PhysRevB.71.134514
https://doi.org/10.5281/zenodo.11202712
https://doi.org/10.1021/acs.nanolett.0c01288


SciPost Phys. 17, 049 (2024)

[43] K. Zhao et al., Disorder-induced multifractal superconductivity in monolayer niobium
dichalcogenides, Nat. Phys. 15, 9 (2019), doi:10.1038/s41567-019-0570-0.

[44] V. M. H. Ruutu et al., Vortex formation in neutron-irradiated superfluid 3he as an analogue
of cosmological defect formation, Nature 382, 334 (1996), doi:10.1038/382334a0.

[45] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in
two-dimensional systems, J. Phys. C: Solid State Phys. 6, 7 (1973), doi:10.1088/0022-
3719/6/7/010.

[46] V. L. Berezinskii., Destruction of long-range order in one-dimensional and two-dimensional
systems possessing a continuous symmetry group. II. Quantum systems, Sov. Phys. JETP 34,
3 (1972).

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.049
https://doi.org/10.1038/s41567-019-0570-0
https://doi.org/10.1038/382334a0
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010

	Introduction
	The model
	Quench dynamics of the order parameter: initial exponential growth, time oscillations and its eventual suppression
	Exponential growth of emergent spatial inhomogeneities and exponential suppression of time oscillations
	Long times: spontaneous formation of spatial patterns resulting from the quench dynamics
	From fragmented stripes to fake vortices

	Discussion 
	Conclusions
	The initial growth of the condensate
	 The dynamic pattern formation in the triangular lattice
	 Comparison between the dynamic BCS and BdG results in the sudden coupling quench case
	 Dynamics resulting from slow quenches
	Dynamics in the fast quench, strong coupling limit U = -5
	References

