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Abstract

We study binding of N identical heavy fermions by a light atom in two dimensions as-
suming zero-range attractive heavy-light interactions. By using the mean-field theory
valid for large N we show that the N + 1 cluster is bound when the mass ratio exceeds
1.074N2. The mean-field theory, being scale invariant in two dimensions, predicts only
the shapes of the clusters leaving their sizes and energies undefined. By taking into
account beyond-mean-field effects we find closed-form expressions for these quantities.
We also discuss differences between the Thomas-Fermi and Hartree-Fock approaches for
treating the heavy fermions.
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1 Introduction

Binding in the fermionic N + 1-body model with zero-range interactions is a fundamental
problem, necessary for general understanding of fermionic mixtures with mass and population
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imbalance. Apart from the interspecies scattering length a > 0, which determines the size of
the 1+1 cluster, the model is parametrized by the number of heavy fermions N , the mass ratio
M/m, and the space dimension D. This parameter space has unexplored spots in spite of the
constant interest to the problem from the nuclear-physics side and, more recently, from the
ultra-cold-gas community.

In contrast to attractive bosons, which typically always bind, fermionic N +1-clusters bind
only above a critical mass ratio, such that the interspecies attraction overcomes the Fermi
pressure. Previous studies have shown that binding of larger clusters requires higher mass
ratios or lower dimension, which can be explained by the dependence of the Fermi pressure
(kinetic energy of noninteracting fermions) on M and D. The current status of the fermionic
N + 1 problem is as follows.

In three dimensions, the 2 + 1 trimer binds at M/m = 8.2 [1], the 3 + 1 tetramer at
M/m = 8.9 [2, 3], and the 4 + 1 pentamer at M/m = 9.7 [3]. A qualitative picture which
explains the relatively small spread in the critical mass ratios for these bound states, as well
as their angular momenta and parities, is that the dimer acts as a p-wave-attractive scattering
center for heavy atoms and thus accomodates three orbitals with different projections of the
angular momentum [3]. These N + 1-body systems become Efimovian above certain mass-
ratio thresholds in the vicinity of M/m≈ 13 and require a three-body, four-body, and five-body
parameter, respectively [3–5].

In one dimension there is no Efimov effect, no fermionic sign problem, and no shell effects.
The 2+ 1 trimer exists for any M/m > 1 [6] and the mass-ratio thresholds of N + 1 clusters
steadily grow with N [7]. In the limit of large N their shapes and energies are well described
by the mean-field theory; in this limit the critical mass ratios scale as M/m= π2N3/36 [7].

In two dimensions the atom-dimer attraction in the p-wave channel leads to a formation
of the 2 + 1 trimer with unit angular momentum for M/m > 3.33 [8]. The 3 + 1 tetramer
emerges almost immediately, for M/m> 3.38 [9], pointing to even stronger shell effects than
in three dimensions. Exact calculations demonstrate the presence of an excited tetramer for
M/m> 5 [10] and a ground-state pentamer for M/m> 5.14 [9]. Although there is no Efimov
effect, the fermionic statistics and rapid growth of the configurational space with N makes the
analysis of larger clusters technically difficult.

In this paper we address the large-N limit of the two-dimensional N + 1-body problem
by applying the mean-field (MF) approximation together with the local-density Thomas-Fermi
(TF) assumption for the energy of an ideal Fermi gas. We show that the N +1 cluster emerges
for M/m = 2N2/C , where C = 1.862. At this critical point the cluster shape is controlled
by the nonlinear Schrödinger equation with attractive cubic nonlinearity like in the case of
attractive two-dimensional bosons. We thus notice similarities of the critical N + 1 cluster
with the Townes soliton [11], recently observed in ultracold bosonic atoms [12, 13]. For
larger mass ratios our theory gives the shape of the cluster as a function of the parameter
α = 4πN2/(M/m) < 2πC and the coupling constant for which the solution exists. However,
being scale invariant this theory does not predict the size or energy of the cluster. We show
that the leading beyond-MF correction for the N +1 cluster with N ≫ 1 is a local quantity and
we use it to calculate the cluster energy and size, which both scale exponentially with N . We
show that replacing the TF approximation by the full Hartree-Fock treatment is necessary for
determining the preexponential factor.
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2 Mean-field Thomas-Fermi approach for large N

We consider a mass-imbalanced fermionic mixture governed by the Hamiltonian

Ĥ =

∫

�

−
φ̂†

r∇
2
r φ̂r

2m
−
Ψ̂†

r∇
2
r Ψ̂r

2M
+ gΨ̂†

r φ̂
†
r Ψ̂rφ̂r

�

d2r , (1)

where φ̂†
r and Ψ̂†

r are the creation operators of light and heavy fermions, respectively, and we
set ħh = 1. The short-range heavy-light interaction is characterized by the coupling constant
g = 2π/[mr ln(2mr |E1+1|/κ2)] < 0, where mr = mM/(m+ M) is the reduced mass, E1+1 is
the dimer energy, and κ is the ultraviolet cut-off momentum assumed to be much larger than
any other momentum scale in the problem. The dimer energy is related to the heavy-light
scattering length by E1+1 = −2e−2γE/(mr a2), where γE is the Euler constant.

We write the MF energy functional for the N + 1 system as

E =
1

2m

∫

h

|∇φ(r)|2 +
α

2
n2(r) + γn(r)|φ(r)|2

i

d2r , (2)

where φ(r) is the wave function of the light atom, the product Nn(r) is the density profile
of the heavy atoms, and we introduce two dimensionless parameters: α = 4πmN2/M and
γ= 2mgN < 0. Equation (2) is valid for weak interactions, i.e., mr |g| ≪ 1. The term∝ n2(r)
is the kinetic energy density of an ideal Fermi gas taken in the TF local-density approximation
valid for N ≫ 1, when n changes slowly on the mean interparticle distance.

To minimize Eq. (2) with the normalization constraints
∫

|φ(r)|2d2r = 1 and
∫

n(r)d2r = 1
we introduce the Lagrange multipliers ε and µ and minimize the grand potential
Ω = E −
∫

[µNn(r) + ε|φ(r)|2]d2r. The conditions δΩ/δφ = 0 and δΩ/δn = 0 lead to
the coupled equations

−∇2φ(r) + γn(r)φ(r) = 2mεφ(r) , (3)

n(r) = −
γ

α
θ[|φ(r)|2 + 2mNµ/γ] , (4)

where θ (x) = (x + |x |)/2. Equation (3) describes a light atom in an effective well formed
by the MF attraction of the heavy fermions. Similarly, Eq. (4) is the TF density profile of the
heavy fermions in the MF trap created by the light atom.

The Lagrange multipliers ε and µ have physical meanings of the energy of the light atom
and the chemical potential of the heavy atoms, respectively. For self-bound solutions of Eqs. (3)
and (4) these quantities should both be negative since φ and n are not allowed to spread
over the whole space. The binding threshold for the N + 1 cluster corresponds to µ = 0,
when the heavy atom at the Fermi surface is nearly unbound. In this case Eq. (4) reduces
to n(r) = −γ|φ(r)|2/α. The normalization constraints then imply −γ = α and Eq. (3) be-
comes the nonlinear Schrödinger equation with negative cubic nonlinearity like in the case
of attractive two-dimensional bosons. The solution of this problem is the Townes soliton
which exists only for a specific value of the coupling constant [11]. In our case, this com-
patibility condition reads −γ = α = 2πC = 11.7 and the critical wave function is given by
φ(r) = f (r/R)/(R

p
2πC), where f (ρ) is the unique nodeless solution of− f ′′− f ′/ρ− f 3 = − f

and C =
∫

f 2(ρ)ρdρ = 1.862 [11, 14]. The scale R is arbitrary and cannot be determined
from the MF set of Eqs. (2)-(4). Interestingly, the MF energy (2) vanishes for this solution
independent of R [15–18]. For bosons this problem is solved by the fact that the renormalized
coupling constant gr depends logarithmically on R [14] leading to a shallow (beyond-MF)
minimum in E(R) at a certain R. Here, for fermions, the stabilization mechanism is similar,
but as we will show below, the beyond-MF contribution has a slightly different form and can
be calculated in the local-density approximation.
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Figure 1: The heavy-atom density n0 versus radius ρ obtained by solving adimen-
sional Eqs. (3) and (4) (with 2mε = −1) for α = 0.8 (solid), α = 2 (dotted),
and α = 11 (dot-dashed). The dashed curve is the large mass-ratio (or small α)
limit Eq. (5). The inset shows γc versus α. The small-α asymptote of this curve is
γc ≈ 4π/ lnα and the end point corresponds to γc = −α = −11.7 and derivative
γ′c = −1/2.

By numerically solving Eqs. (3) and (4) above the critical mass ratio, i.e., for α < 2πC ,
we always find a radially symmetric real nodeless self-bound solution. More precisely, each
α gives rise to a family of self-similar solutions which exist only for a certain γ = γc(α). We
parametrize this family by the length scale R= 1/

p
−2mε. Formally setting ε= ε0 = −1/(2m),

Eqs. (3) and (4) become adimensional and we denote their solution by φ0(ρ), n0(ρ), and µ0.
Then, for any R> 0 the dimensional solution for the same α and γ= γc(α) reads φ0(r/R)/R,
n0(r/R)/R2, ε= −1/(2mR2), and µ= µ0/R

2.
All these solutions of Eqs. (3) and (4), for any α and any R, correspond to vanishing E.

Physically, it follows from the fact that Eq. (2) scales with R as E∝ R−2. Then, if E ̸= 0, the
system would shrink or expand, contradicting the stationarity of the found solution. That the
stationarity of a two-dimensional soliton with cubic (scale-invariant) nonlinearity is equivalent
to E = 0 has been mathematically shown in Ref. [15] (see also Refs. [16–18]). In our case, to
make sure that from Eqs. (3) and (4) indeed follows E = 0 we derivate Eq. (3) with respect to
R using the scaling properties of φ(r) and n(r) mentioned above. We then eliminate ε from
the result by employing the same Eq. (3) again. We then multiply the resulting equation by φ
and integrate it over space obtaining the equality

∫

[−2φ(r)∇2φ(r)− γφ2(r)rn′(r)]d2r = 0,
which can further be reduced to the form E = 0 with the help of Eq. (4).

We emphasize that γc is not an external parameter but a characteristic of the solution of the
MF Eqs. (3) and (4). On the other hand, γ (or g) is what we are allowed to tune. Although for
γ ̸= γc the MF solution is not stationary, it may become stationary once we take into account
beyond-MF effects. The final result should not depend on the choice of g and κ as long as a
is fixed (see Sec. 3).

In Fig. 1 we show n0(ρ) for a few values of α. These profiles are characterized by a finite
µ0 < 0 and, therefore, by a singular behavior of n0(ρ) at the Thomas-Fermi radius implicitly
defined by the equation φ0(ρTF) =

p

2mNµ0/γ. The inset in Fig. 1 shows the curve γc(α).
For large mass ratios Eqs. (3) and (4) can be solved perturbatively. In this regime the heavy

atoms are much more localized than the light atom, i.e., ρTF≪ 1, and the light atom is in the
halo state with a small probability to be at ρ < ρTF. Outside of this region the light-atom wave
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function is given by the Bessel function φ0(ρ) ≈ K0(ρ)/
p
π. In the region ρ < ρTF we write

φ0(ρ) = φ0(0)+δφ0(ρ) and linearize Eqs. (3) and (4) assuming small δφ0(ρ)≪ φ0(0). The
linearized equations can be solved straightforwardly leading to the compatibility condition
γc = 4π/ lnα+ o(1/ lnα) and the density profile

n0(ρ)≈
4

αJ1(σ1)σ1
J0

�√

√8π
α
ρ

�

, ρ < ρTF =
s

α

8π
σ1 , (5)

where J0 and J1 are the Bessel functions and σ1 is the first zero of J0. The dashed curve for
α= 0.8 in Fig. 1 corresponds to Eq. (5).

3 Beyond-mean-field correction

We see that the MF analysis cannot predict the sizes and the binding energies of the clusters,
although it does predict their shapes (up to the rescaling) and determines the threshold mass
ratio M/m = 2N2/C . Since the beyond-MF correction is not scale invariant, it introduces
preferred length and energy scales, which can be understood from the following arguments.
In two dimensions the second-order correction to the energy of two atoms interacting via
a delta potential is logarithmically diverging at high momenta. Therefore, the beyond-MF
correction to Eq. (2) is dominated by the renormalization of the two-body coupling constant,
logarithmic in κ. It is thus convenient to express the beyond-MF-corrected energy by writing
Eq. (2) with g replaced by gr = g +δg, where

δg = −
∫ κ

1/ξ

g2

k2/(2mr)
d2k
(2π)2

= −mr g2 ln(κξ)
π

. (6)

One can check that the renormalized coupling constant gr = g +δg is cut-off independent up
to the second-order terms in the small parameter mr |g| ≪ 1. This renormalization removes
the cut-off dependence from the energy to this order.

The physical (i.e., cut-off independent) part of the beyond-MF contribution is absorbed into
the length scale ξ, which is a functional of the fieldsφ and n, in general nonlocal. Qualitatively,
1/ξ is the characteristic momentum governing the many-body or few-body problem at hand.
For two atoms in a box ξ is proportional to the box size. For a weakly interacting uniform
Bose gas ξ is proportional to the healing length and this result can also be applied in the
inhomogeneous case, if the density varies slowly on the scale ξ (see, for instance, [19]). On
the other hand, for attractive bosons the local-density approximation does not work since ξ
is proportional to the soliton size. However, this very fact that ξ ∝ R leads to important
predictions for the energy and size scalings of bosonic solitons [14].

In our fermionic N + 1 case the typical second-order process contributing to the beyond-
MF term is a virtual excitation of the light atom creating a particle-hole excitation in the Fermi
sea of heavy atoms. The typical momentum transfer is on the order of the Fermi momentum,
which means that ξ is comparable to the mean interparticle separation for the heavy atoms,
which scales as R/

p
N . Therefore, the beyond-MF correction in our case is local and can be

obtained by analyzing the homogeneous problem. We just need to know the second-order
ground-state energy shift for a single light atom immersed in a uniform Fermi sea of heavy
atoms with Fermi momentum pF . Having found no answer in the literature we briefly outline
this calculation.

Normalizing the single-particle states per unit surface we write the second-order energy
correction as [20]

∆E (2) =
2M g2

(2π)4

∫

dpdp2

2pp2 − (1+M/m)p2
. (7)
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The integration domain in Eq. (7) is defined by the inequalities p2 < pF , p < κ, and
|p2 − p| > pF , corresponding to the following virtual process. The unperturbed state is the
impurity at rest and a Fermi sea filled up to pF . The virtually excited state is the light atom
at momentum p, a heavy hole at momentum p2, and a heavy atom at momentum p2 − p. We
find it convenient to expand p2 into a vector p∥ parallel to p and a vector p⊥ perpendicular to
p. The integral over the angle of p gives 2π. We then integrate Eq. (7) over p⊥, then over p,
and finally over p∥. In this manner, neglecting finite-range corrections p2

F o(pF/κ), we obtain

∆E (2) = −
mr g2p2

F

(2π)2
ln(ξκ) , (8)

where

ξ=
e1/2

pF

�

M
m
+ 1
��

M
m

�−1/(1−m/M)
. (9)

Since we are interested in the regime M/m ∼ N2 ≫ 1, Eq. (9) further simplifies to
ξ = e1/2/pF which confirms the qualitative guess ξ ∼ 1/pF and shows that the large mass
ratio does not dramatically influence this estimate. We can now proceed with the local-density
approximation. Substituting pF =

p

4πNn(r) into Eqs. (8) and (9), keeping only the leading-
order terms at large M/m, and going back to notations of Eq. (2) we write the beyond-MF
correction to the cluster energy in the form

EBMF = −
1

2m
γ2

2πN

∫

n(r)|φ(r)|2 ln
e1/2κ
p

4πn(r)N
d2r . (10)

Note that EBMF∝ N−1 ln N is smaller than any of the three terms in Eq. (2), which are∼ 1 (for
a cluster of unit size). Therefore, Eq. (10) cannot strongly influence the shape of the cluster,
but it can remove the degeneracy related to arbitrariness of R. Substituting φ(r) = φ0(r/R)/R
and n(r) = n0(r/R)/R2 into Eqs. (2) and (10) and assuming γ= γc +O(1/N) we obtain up to
the terms of order 1/N

E + EBMF =
I1γ

2
c

8πNmR2

�

4πN
γ− γc

γ2
c
+

I2

I1
− ln

eκ2R2

4πN

�

, (11)

where I1 =
∫

n0(ρ)φ2
0(ρ)d

2ρ and I2 =
∫

n0(ρ)φ2
0(ρ) ln n0(ρ)d2ρ. Note that up to the chosen

accuracy (γ− γc)/γ2
c ≈ 1/γc − 1/γ and 4πN/γ ≈ ln[4e−2γE/(aκ)2]. Minimization of Eq. (11)

then gives
R2

min = πNa2e4πN/γc+I2/I1+2γE+O(1/N) (12)

and

EN+1 = −
I1γ

2
c

8πNmR2
min

= E1+1
I1γ

2
c

16π2N2
e−4πN/γc−I2/I1+O(1/N) . (13)

The parameters g and κ drop out from Eqs. (12) and (13) consistent with the fact that
the length scale of the problem is given only by the scattering length and the energy scale by
the energy of the 1 + 1 molecule. The preexponential-factor accuracy in Eqs. (12) and (13)
follows from the beyond-MF accuracy of Eq. (11) and from the fact that the weak-interaction
parameter mr |g| ≪ 1 is equivalent to 1/N ≪ 1 in the self-bound regime since γ∼ 1. We note,
however, that the TF approximation for the kinetic energy of the heavy fermions is guaranteed
only to the leading order in 1/N . To estimate the error we pass to the Hartree-Fock (HF)
description.
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Figure 2: Left panel | |γHF
c − γ

TF
c | versus N for α = 2. Black color corresponds to

γHF
c − γ

TF
c > 0, red to γHF

c − γ
TF
c < 0. The solid line marks the slope ∝ N−1. For

reference, for α= 2 we have γTF
c = −5.460. Right panel | same as the left panel but

α= 8. Here γTF
c = −9.714.

4 Hartree-Fock approach

The Hartree-Fock approach for solving the N +1 cluster problem consists in introducing N or-
thonormal orbitals Ψν(r) and minimizing Eq. (2), in which the TF approximation αn2(r)/(4m)
is replaced by
∑N
ν=1 |∇Ψν|

2/(2M). With these notations, the minimization of the energy func-
tional with respect to φ gives Eq. (3) with

n(r) =
N
∑

ν=1

|Ψν|2/N , (14)

and the minimization with respect to the orbitals Ψν(r) leads to

−∇2Ψν +
4πγN
α
|φ|2Ψν =ωνΨν , (15)

where ων are Lagrange multipliers corresponding to the normalization constraints
∫

|Ψν|2d2r=1.
The functions φ and n determined by the TF and HF approaches are different, but one

can easily check that their scaling properties are the same. In the HF method the length
scale can thus also get fixed by setting 2mε0 = −1 and denoting the corresponding solutions
by φ0 and n0. In addition, we assume cylindrical symmetry by imposing φ0(r) = φ0(r).
Equation (15) then splits into one-dimensional Schrödinger equations for functions ψl,ν(r),
such that Ψν(r) =ψl,ν(r)eilϕ, with l being the integer angular momentum. States with l ̸= 0
are doubly degenerate corresponding to ±l. To find the ground state, we diagonalize Eq. (15)
and we select the N states with the lowest energy among all possible channels. We then plug
these states into Eq. (14), substitute n0 into Eq. (3), and find γ for which Eq. (3) has a ground
state corresponding to 2mε0 = −1. The function φ0 is then substituted back into Eq. (15) and
the process is repeated until convergence. This procedure results in the critical γHF

c which, in
contrast to γTF

c (we use superscripts to specify the method), does not only depend on α but
also on N .

Figure 2 shows the convergence of the HF value γHF
c (α, N) towards the TF value γTF

c (α) at
large N for α= 2 and α= 8.

We show results up to N = 256. The black straight lines indicate the slope N−1. We believe
that stronger fluctuations for larger α are due to the fact that the uppermost filled heavy-atom
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Figure 3: Hartree-Fock energies of the 1+1 dimer (dotted black), 2+1 trimer (solid
black), 3+1 tetramer (dotted red), 4+1 pentamer (dot-dashed blue), and the excited
3+1 tetramer (dashed brown) in units of the exact dimer energy as a function of the
mass ratio. We use the same color code as in Fig. 1 of Ref. [9].

orbitals are closer to the dissociation threshold and the system is thus more sensitive to changes
in N . Accordingly, we find that the case of larger α and N requires finer and larger spatial grids
for accurate calculations.

The fact that |γHF
c −γ

TF
c | scales as N−1 on average shows phenomenologically that to keep

up with the claimed accuracy (up to the preexponential factor) for the cluster energy we should
use γHF

c instead of γc in Eqs. (12) and (13). The best TF-based prediction for the cluster energy

is therefore EN+1 = −a−2e−4πN/γc−2 ln N+O(N0). Advantages of the TF approximation is that it
has α as the only input parameter and that limiting cases can be worked out analytically. By
contrast, the higher accuracy of the HF method comes at the price of doing separate calcula-
tions for each N and M/m. However, the HF method predicts the structure of the cluster, its
angular momentum and parity. It can also naturally handle excited states.

5 Hartree-Fock method applied to small clusters

Although the HF method is valid for N ≫ 1, it is tempting to benchmark its performance for the
few lowest-order clusters, for which exact results are known [8–10]. In addition, the obtained
solutions can also be used as guiding functions for the fixed-node Monte-Carlo scheme (see,
for instance, [21]). We find that the HF method describes these small clusters rather well and
we expect the accuracy to further improve with increasing N .

As we describe in Sec. 4, iteratively solving Eqs. (3), (14) and (15) we obtain the
critical γHF

c and the fields n0(r) and φ0(r). From there we calculate the integrals
I1 =
∫

n0(r)φ2
0(r)d

2r and I2 =
∫

n0(r)φ2
0(r) ln n0(r)d2r and determine the energy from

Eqs. (12) and (13). Explicitly,

EN+1 = −
I1(γHF

c )
2

8π2N2ma2
e−4πN/γHF

c −I2/I1−2γE . (16)

We note that although the beyond-MF correction Eq. (10) is obtained within the TF framework,
it is sufficiently precise to be used in combination with the Hartree-Fock Eqs. (3), (14), and
(15).
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In Fig. 3 we plot the energies EHF
N+1 in units of the exact dimer energy as a function of the

mass ratio. The different curves stand for the 1+1 cluster (dotted black, in the HF description
the heavy atom occupies the lowest s-wave orbital), 2 + 1 trimer (solid black, occupied are
the lowest s-wave and one of the two degenerate l = ±1 orbitals), 3 + 1 ground tetramer
(dotted red, occupied are the lowest s-wave and both lowest p-wave orbitals), 4+1 pentamer
(dash-dotted blue, occupied the lowest and the first excited s-wave and both p-wave orbitals),
and the excited 3 + 1 tetramer found in Ref. [10] (dashed brown, occupied are the lowest
and the first excited s-wave and one of the lowest p-wave orbitals). One can see that the HF
approach reproduces the structure of the levels rather well (cf. [9]), although the artifacts of
the approach are also visible. For instance, the trimer and the tetramer emerge immediately
with finite binding energies, which is a consequence of the nonlinearity of the equations. The
threshold behavior depends on the angular momentum of the orbital or, more precisely, on
the convergence properties of the corresponding normalization integral. Since at zero energy
the orbitals with angular momentum l behave as ψl,ν ∝ r−|l|, the normalization integral
for s-wave orbitals diverges. Therefore, a heavy atom in the s-wave orbital is in the halo
state and does not influence the core. The crossing is therefore smooth (see the crossings
of the pentamer and the excited tetramer). By contrast, for |l| > 1 the zero-energy orbital
function is normalizable meaning that the newly bound heavy atom is inside the core right at
the threshold. This creates artifacts due to the nonlinearity. We find that the case |l| = 1, in
spite of the logarithmic divergence of the normalization integral, is also prone to this nonlinear
effect.

The cylindrical-symmetry assumption has to be carefully checked, but it requires a more
involved two-dimensional analysis. We leave this task as well as the investigation of higher-
order clusters to the future.

6 Conclusion

A two-dimensional fermionic N + 1 cluster binds for sufficiently large M/m. The MF the-
ory valid for large N predicts the threshold value M/m = 2N2/C = 1.074N2 and the cluster
shape at this point and for larger M/m. The beyond-MF analysis based on the local-density
approximation gives closed-form expressions for the size and energy of the cluster. The ac-
curacy and practical relevance of the obtained results can be increased by switching to the
Hartree-Fock form of the MF density functional. Finally, our findings have implications for
ultracold fermionic mixtures. We can think of strongly mass-imbalanced mixtures of 6Li with
173Yb [22,23] or with other heavy Lanthanides such as Dy or Er.
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