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Abstract

Floquet engineering is an important tool for realizing topologically nontrivial band struc-
tures for charge-neutral atoms in optical lattices. However, the preparation of a
topological-band-insulator-type state of fermions, with one nontrivial quasi-energy band
filled completely and the others empty, is challenging as a result of both driving induced
heating as well as imperfect adiabatic state preparation (with the latter induced by the
unavoidable gap closing when passing the topological transition). An alternative proce-
dure that has been proposed is to prepare such states dissipatively, i.e. as a steady state
that emerges when coupling the system to reservoirs. Here we discuss a concrete scheme
that couples the system to a weakly interacting Bose condensate given by second atomic
species acting as a heat bath. Our strategy relies on the engineering of the potential
for the bath particles, so that they occupy weakly coupled tubes perpendicular to the
two-dimensional system. Using Floquet-Born-Markov theory, we show that the resulting
nonequilibrium steady state of the driven-dissipative system approximates a topological
insulator. We even find indications for the approximate stabilization of an anomalous
Floquet topological insulator, a state that is impossible to realize in equilibrium.
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1 Introduction

Quantum simulation with ultracold atoms in optical lattices [1–3] has been very successful, es-
pecially due to the fact that those systems are generally well isolated from their environment.
They therefore allow clean studies of quantum many-body physics, including, for example, the
realization of quantum phase transitions [2–9], many-body localization [10–13] and (eigen-
state) thermalization [14–18]. Nevertheless, since the atoms are charge neutral, effects that
occur in presence of a coupling to external magnetic fields, like (fractional) quantum Hall
physics, cannot be studied directly in such systems. A fruitful way of addressing this problem
is given by Floquet engineering [19–23], where by using a time-periodic modulation of the
Hamiltonian of the system, its dynamics can be modified in such a way that it is described by
an effective time-independent Hamiltonian with novel properties [24,25]. In experiments, us-
ing this technique, artificial gauge fields have been Floquet engineered [26–30], and (Floquet)
bands with nontrivial topology measured [31–35].

Figure 1: Illustration of the system which is composed of noninteracting fermions in a
hexagonal optical lattice with open boundary conditions and Mx×My unit cells. The
tunneling matrix elements Ji(t) along the three tunneling directions are modulated
periodically with a mutual phase shift of 2π/3. Additionally, every site is coupled to
one tube of an array of cigar-shaped bosonic thermal baths.
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Figure 2: Sketch of the boundary conditions and the charge pump protocol: We add
an additional driving phase along the red links at unit cells in the center in the x-
direction, lx = Mx/2, and then increase Φ from 0 to 2π and count charge Qu in the
upper part of the strip.

However, an unwanted side effect of the driving is that the system can and, generically, will
be resonantly excited [21,25,36–39]. This has been coined Floquet heating and is commonly
observed in quantum gas experiments [17, 23, 40–43]. It occurs in interacting systems and
limits Floquet engineering to a finite time span (prethermal regime), before heating sets in.
However, heating occurs also in noninteracting systems. For instance, as a result of resonant
excitations to higher lying bands. In particular for the preparation of integer Chern insulators,
moreover, another form of heating occurs. Namely, during the preparation of this state a
topological phase transition must be passed, where the band gap between the filled and the
neighboring empty band closes, so that particles are excited. Due to the isolated nature of
quantum gas systems, both in case of interacting or noninteracting systems, such unwanted
excitations will not decay. It was even shown that the adiabatic preparation of topological
bands is impossible in the thermodynamic limit [44]. In this paper, we propose the use of
a quantum gas mixture as an engineered open quantum system, where one species of atoms
forms the Floquet-engineered system, and the second species gives rise to a bath. Similar ideas
have been discussed earlier in the context of periodically driven solid-state systems [45–54]
or in the case of Floquet topological insulators in contact with generic baths [55–58]. Also
explicit criteria under which a Floquet-Gibbs state (i.e. a state that is thermal with respect
to the Floquet Hamiltonian) emerges have been discussed [59–63]. However, so far only a
few microscopic models for so-engineered baths have been derived, see, e.g., Refs. [64–66].
The results presented in this paper go beyond these studies, since they also discuss how the
structuring of the bath can be exploited to engineer an environment that can stabilize the
desired Floquet topological state of the driven system.

Quantum gas mixtures with a large number of particles of one species (bath) are a promis-
ing platform for the controlled engineering of dissipation in quantum simulators. Such mix-
tures of two species of quantum gases have gained experimental relevance [67–80], mostly
in the context of sympathetic cooling of fermions with a bosonic “buffer gas” for experimen-
tal preparation. However, recently there have also been first theoretical [64–66, 81–84] and
experimental studies that investigate the dynamics of the composite of two ultracold gases.
Specifically, there have been successful experimental studies of the impurity relaxation dynam-
ics of a few Caesium-133 atoms in a bath of Rubidium-87 atoms [85–90]. In this setup, one is
able to design a species-specific optical lattice and trapping potential [87]. Also, the Rb atoms
can be prepared below or above the critical temperature for Bose-Einstein condensation (BEC),
thus allowing to tune between a (classical) thermal bath and a BEC bath environment [87].
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Motivated by this progress, in this paper, we propose to immerse a fermionic Floquet
system, which is a driven two-dimensional (2D) hexagonal lattice of noninteracting spinless
fermions, in a bath that consists of a BEC of weakly interacting bosons of a different species,
cf. Fig. 1. The system and the bath are assumed to interact weakly, allowing us to use a stan-
dard open-quantum-system approach to derive an effective master equation for the reduced
system dynamics. We show that in the case where the bath particles are significantly heavier
than the system’s particles, and where the bath is exposed to the same hexagonal optical lattice
as the system, but not confined to a 2D plane, the spectral density of the bath is suitable for our
purposes. As will be shown, this allows to prepare effective low-temperature states, which at
half filling essentially correspond to a band-insulating ground state. Therefore, starting with
any initial state, the system always relaxes to the desired topological-insulator state. Indeed,
we find that the so-prepared state gives rise to quantized charge pumping, as expected for
a topological Chern insulator. Interestingly, we also find indications of the topological phase
transition from this Chern insulator state to a so-called anomalous Floquet topological insu-
lator. The latter is defined by a nontrivial winding number characterizing the state in the
spatiotemporal three-dimensional torus given by the product of the first Brillouin zone and
one driving period [57,91]. Accordingly, it cannot be found in non-driven systems.

This paper is organized as follows: In Sec. 2, we introduce the microscopic model of system
and bath, and lay out the master equation that governs the reduced dynamics as well as the
kinetic equation that describes the dynamics of the driven-dissipative ideal Fermi gas. Sec. 3
discusses the steady states of this kinetic equation, and its effective temperature for the case
of 6Li in a BEC bath of 133Cs. For these steady states, in Sec. 4 we present one possibility to
perform Laughlin-type charge pumping and show the presence of quantized response in an
extensive regime of parameters. Sec. 5 adresses the case of a different spatial configuration of
the bath, a three-dimensional (3D) BEC, which occurs naturally when the atoms in the bath
are not confined by the hexagonal optical lattice. Also we discuss a different combination of
atoms in the mixture, 40K in 87Rb. In both cases the effective temperatures of the steady states
are higher than in the case of Li in Cs, highlighting the relevance of bath engineering and the
importance of a detailed theoretical understanding of such artificial baths. Finally, in Sec. 6
we summarize our results and outline further open questions.

2 Model: Modulated optical lattice system and BEC bath

As illustrated in Fig. 1, we investigate noninteracting fermions of mass mS in a two-dimensional
hexagonal optical lattice with Mx × My unit cells and a box shape confinement, leading to
open boundary conditions with bearded edge in the x-direction and armchair edge in the
y-direction, as depicted in Fig. 2. The hexagonal lattice is created by optical fields with wave-
length λ, while the transverse confinement into the 2D plane is created using a different wave-
length λT. The tunneling elements are time-periodically modulated [34,35,92] as we illustrate
in Fig. 1. This system is immersed in and interacts weakly with a contact interaction of strength
γ with an environment of weakly interacting bosons of mass mB which are subjected to the
same optical lattice. The transverse confinement shall be at a wavelength λT that is a tune-out
wavelength of the bosons. Thus, the bosons are only weakly confined in transverse direction
(by an additional wide harmonic trap) and live in a hexagonal lattice of one-dimensional tubes,
cf. Fig. 1. The tubes are centered at the same lattice sites as the system lattice. We assume that
that the temperature T of the bath is low enough such that we can treat the bath as weakly
interacting bosons in the superfluid phase. Note that without a trap in the z-direction, at finite
T and/or for finite interactions bosons are never condensed in one dimension (1D) in the ther-
modynamic limit. Nevertheless, due to the presence of the wide harmonic trap, there exists
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Figure 3: Sketch of the rates in Eq. (11): Since the quasienergies are only defined
modulo ħhω, there are different kinds of processes that can occur: processes within
the same Floquet-Brioullin zone (K = 0) or Floquet-Umklapp processes that connect
Floquet states of different Brillouin zones (K ̸= 0).

a crossover temperature to a superfluid phase where the bath is described by the Bogoliubov
Hamiltonian and -dispersion [93–95]. Recently it has been studied experimentally, how such
1D tubes of Bose-Einstein condensates absorb excitations [18].

We assume that the mass of the bosons is much larger than the mass of the fermions in
the system, mB ≫ mS. Since the tunneling constant between the individual lattice sites for a

linear 1D optical lattice scales as J ≈ 4ERπ
−1/2 (V0/ER)

3/4 e−2
p

V0/ER [96] with V0 being the
lattice depth and recoil energy ER = ħh2 (2π/λ)2 /(2m) (with m being either the system or bath
mass), we observe that tunneling in the bath is suppressed exponentially with respect to the
square root of the mass when compared to the system, so that in the following we will assume
that there is no tunneling between the individual bath tubes. Additionally, since the different
atomic species possess different polarizabilities, also the lattice depth V0 will be different for
each species. Later we propose a choice of an optical wavelength that leads to larger values
of V0 for the bath when compared to the system.

2.1 System and bath Hamiltonian

In Bogoliubov approximation (for the bath) and tight-binding approximation with respect to
both lattice directions, this model is described by a Holstein Hamiltonian (with vanishing in-
teractions in the system, cf. Appendix B and Refs. [64,97])

Ĥ(t) = ĤS(t) + ĤSB + ĤB . (1)

The system Hamiltonian describes fermions in a hexagonal lattice with the tunneling matrix
elements Jn(t) along the three possible tunneling directions n = 1,2, 3 (see Fig. 1) being
modulated periodically in time in a cyclic fashion [34,35,92]

ĤS(t) = −
∑

〈l,l′〉

Jn(l,l′)(t)â
†
l âl′ , (2)

with al being the annihilation operator for a fermionic atom at site l and 〈l, l′〉 denoting a
pair of nearest neighbors. The tunneling matrix elements are driven like in the experiment
described in Ref. [35]

Jn(t) =
J
2

�

eAcos (ωt+ϕn) + 1
�

, (3)
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with dimensionless driving strength A, driving frequency ω. The driving phases
ϕn = (n − 1)2π/3 describe a relative phase lag of 2π/3 between the three different di-
rections, giving rise to a chiral motion that breaks time-reversal symmetry. It is this chiral
motion which gives rise to the topologically nontrivial properties of the Floquet-Bloch bands
of the system [34, 35, 57, 91, 92, 98–101]. The precise form of driving is, in turn, not rel-
evant and other ways of modulating the tunneling matrix element give rise to similar re-
sults [34,57,91,92,98–101]. For the deeper lattice depth of the bath, the tunnel couplings are
practically zero and their modulation does not need to be considered. The cyclic modulation
of the lattice-beam intensities has the side-effect of modulated on-site trap frequencies, which
are also visible for the bath. Note that this form of driving is favorable compared to lattice
shaking [31,33,34,56], where the system would rapidly move relative to the bath.

Since the Hamiltonian of the system is time periodic, ĤS(t) = ĤS(t + T ) with time period
T = 2π/ω, the quasi-steady solutions (Floquet states) |ψα(t)〉 of the Schrödinger equation
for the system can be written as |ψα(t)〉 = exp(−iϵα t/ħh)|uα(t)〉 with time-periodic Floquet
modes |uα(t)〉 = |uα(t + T )〉 and quasi energies ϵα [25]. Note that the quasi energies are
only defined up to multiples of ħhω and can, for instance, be restricted to the first Floquet-
Brillouin zone ϵα ∈ [−ħhω/2,ħhω/2). In this paper, we will most of the time consider the
regime of large driving frequencies ħhω≫ J , where the two quasi-energy bands of the driven
hexagonal lattice together are narrow compared to the width of the Floquet-Brillouin zone
(see Fig. 3), indicating that resonant band-coupling processes are suppressed. Such resonant
driving induced transitions, where the system exchanges K energy quanta ħhω with the drive,
are also known as Floquet-Umklapp processes (in analogy to Umklapp processes where the
momentum of reciprocal lattice vectors is provided by a spatially periodic potentials). The
Floquet Hamiltonian [21,25]

ĤF =
iħh
T

log Û(T , 0) =
∑

α

ϵα|uα(0)〉〈uα(0)| , (4)

with one-cycle time-evolution operator Û(T , 0), is then found to give rise to an effective two-
band model for the stroboscopic dynamics at high frequencies [21,25,34,102],

ĤF = −
∑

k⃗

�

b̂†
A(k⃗), b̂†

B(k⃗)
�

�

h1(k⃗) h0(k⃗)
h0(k⃗)∗ −h1(k⃗)

��

b̂A(k⃗)
b̂B(k⃗)

�

. (5)

Here b̂A/B(k⃗) = (Mx My)−1/2
∑

l∈A/B exp(ik⃗ r⃗l)âl is the annihilation operator at quasimomen-

tum ħhk⃗ for sublattice A, B with position r⃗l of site l. As a consequence of the chiral driving, in
the high-frequency limit the two bands of the system are separated by an energy gap and char-
acterized by Chern numbers +1 and −1 [103], like in the Haldane model [104]. In Fig. 4(a)
we show the Chern number C that we obtain numerically (according to Ref. [105]) for the
lower quasienergy band of this Floquet Hamiltonian ĤF for periodic boundary conditions. We
observe that at high frequencies, as soon as A ̸= 0, we have |C | = 1. This can be understood
also from a Magnus expansion [25, 34, 102], which is presented in Appendix A: From calcu-
lating the Chern number for the two leading orders of the high-frequency expansion we find
C = ±1, explaining the topologically nontrivial bands. With increasing driving strengths A, in
Fig. 4(b), we numerically observe an increase of the effective (direct) quasienergy gap ∆eff.

At lower frequencies ω and large driving strength A, the system has a topological phase
transition to an anomalous Floquet topological band structure. Here, the Chern number van-
ishes, C = 0, as is indicated by the white region in Fig. 4(a). Nevertheless, the system still
possesses topologically non-trivial properties, which are associated with the aforementioned
spatiotemporal winding numbers [34,35,57,91,92,98–101]. This state relies on the resonant
coupling between both bands, i.e. on Floquet-Umklapp processes with the system. We will find
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Figure 4: (a) Absolute value of the Chern number C for the lowest band of the Floquet
Hamiltonian ĤF, Eq. (2), with periodic boundary conditions and Mx = My = 16
vs. driving strength A and -frequencyω. (b) Value of the effective direct quasienergy
gap ∆eff of ĤF at the K and K’ points, calculated numerically for periodic boundary
conditions.

indications also of this anomalous Floquet topological phase in the steady state that emerges,
when the driven system is coupled to a lattice-trapped bath.

We assume that the bath trap is wide so that each bath tube can be modeled as free 1D Bose
gas with periodic boundary conditions in the z-direction, which corresponds to a local density
approximation at the center of the tube. The bath Hamiltonian then reads (cf. Appendix B for
details)

ĤB =
∑

l

∑

q

EB(q)β̂
†
l,qβ̂l,q , (6)

where l labels the individual uncoupled tubes (see Fig. 1) with Bogoliubov quasiparticle anni-
hilation operator β̂l,q and where q is the wavenumber in the transverse direction. All tubes have
an identical dispersion relation EB(q) =

p

E0(q)2 + 2GE0(q) with free dispersion
E0(q) = ħh2q2/2mB and interaction parameter G = gnB, where g = 2πħh2aB/mB is the contact
interaction with s-wave scattering length aB of the bath particles and
nB = ñB

∫

dx
∫

dy|wB
0(x , y)|4 is the volume density at the center of the tube, overlapping with

the fermion system. Here wB
0 is the Wannier orbital of the bath lattice and ñB = NB/(2Mx My Lz)

the line density, with particle number NB in the bath, number of lattice sites 2Mx My and trans-
verse extent Lz of the system. Finally, in leading order of the bath excitations (i.e. only taking
into account one-phonon processes) the system–bath Hamiltonian reads (cf. Appendix B for
details)

ĤSB = γ
∑

l,q

n̂l

�

κ(q)β̂l,q + κ(q)
∗β̂†

l,q

�

. (7)

It couples the system’s on-site occupations n̂l = â†
l âl to the respective bath mode q with cou-

pling constants

κ(q) = c(q)

∫

d3r|wS
0(r⃗)|

2|wB
0(x , y)|2eiqz . (8)

Here wS
0(r⃗) denotes the Wannier orbitals of the system and c(q) =

p

ñBE0(q)/[Lz EB(q)].

2.2 Floquet-Born-Markov master equation

Within the Bogoliubov approximation, the bath can be viewed as a collection of noninteracting
harmonic oscillators describing the quasiparticle excitations. As a result, it is straightforward
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to apply the standard Floquet-Born-Markov formalism in order to derive a master equation
[63, 106–110]. For sufficiently weak system–bath coupling, the coherences of the density
matrix, given by the off-diagonal elements with respect to the Floquet basis, decouple from
the diagonal matrix elements and decay, so that we can describe the dynamics of the system
using a Pauli type master equation for diagonal elements of the density matrix corresponding
to the occupation of the Floquet states. For a single particle, the probability pα(t) for being in
Floquet state α evolves according to

∂t pα(t) =
∑

β

�

Rαβ pβ(t)− Rβαpα(t)
�

, (9)

with single-particle rate [63,107–110]

Rαβ =
∑

K∈Z
R(K)
αβ

, (10)

R(K)
αβ
=

2πγ2

ħh

∑

l

|(vl)
(K)
αβ
|2 g(ϵα − ϵβ + Kħhω) , (11)

for a jump between Floquet state β to α with respective quasienergies ϵβ and ϵα and index
K counting the driving quanta ħhω that are exchanged with the bath during the process. Here
we have defined the Fourier modes of the coupling matrix elements

(vl)
(K)
αβ
=

1
T

∫ T

0

dte−iKωt〈uα(t) |l〉



l |uβ(t)
�

, (12)

and the bath-correlation function

g(E) =
J (E)

eE/kBT − 1
, (13)

where T is the temperature of the bath and J (E) its spectral density. Note that to obtain the
coupling matrix elements (vl)

(K)
αβ

we numerically calculate the Floquet modes |uα(t)〉 for open
boundary conditions rather than the Floquet-Bloch states of the system with periodic boundary
conditions.

For the case of many noninteracting fermions in the system, one obtains the equation of
motion [111],

∂t〈n̂α〉=
∑

β

�

Rαβ〈(1− n̂α)n̂β〉 − Rβα〈(1− n̂β)n̂α〉
�

, (14)

for the mean occupation 〈n̂α〉 of the single-particle Floquet mode α. It depends on higher-
order particle-particle correlators which leads to a BBGKY-like hierarchy of equations. Here
we truncate this hierarchy with the mean-field approximation 〈n̂αn̂β〉 ≈ 〈n̂α〉〈n̂β〉, which leads
to the kinetic equations of motion

∂t〈n̂α〉=
∑

β

�

Rαβ(1− 〈n̂α〉)〈n̂β〉 − Rβα(1− 〈n̂β〉)〈n̂α〉
�

. (15)

These typically yield steady-state distributions that deviate only slightly from exact solutions
of the Pauli rate equation for the full many-body Floquet states [111].

Note that two different types of relaxation processes contribute to the rates in Eq. (11),
as we sketch in Fig. 3: Processes where K = 0 (similar to normal processes in scattering in a
crystal lattice) that occur within the same Floquet-Brioullin zone [−ħhω/2,ħhω/2), as well as
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Figure 5: Spectral densities J (E) as a function of energy E (a) for the engineered
lattice-trapped bath sketched in Fig. 1, Eq. (16), and (b) for an ohmic bath, Eq. (17).
Parameters for (a) are: mS/mB = 6/133 (corresponding to 6Li in 133Cs), wavelength
of the optical lattice λ = 1064nm and bath scattering length aB = 100a0, with Bohr
radius a0, corresponding to a Feshbach-tuned scattering length of Cs. Other param-
eters nB = 0.8/λ3, dT,S = dL,S, V0/ER = 8.

processes where K ̸= 0 (similar to Umklapp scattering in a crystal lattice) that occur between
a state β with quasienergy ϵβ and the Floquet copy of state α at ϵα + Kħhω. As shown in
Fig. 3, those processes are detrimental for an effective thermalization with the temperature
of the bath T within the first Brioullin zone, since they involve the exchange of energy with
the “drive”. This can be viewed also as follows: If only the K = 0 processes exist, then the
rates Rαβ = R(0)

αβ
obey the detailed balance condition Rαβ/Rβα = exp[(ϵβ − ϵα)/(kBT )], which

implies thermalization with thermal occupations, where the energies are given by the quasier-
ergies and temperature T [111]. Then at temperatures much lower than the quasienergy gap,
T ≪ ∆eff, at half filling the system would form a topological band insulator with the lower
band essentially filled completely and the upper one remaining empty (up to excitations that
are suppressed exponentially with respect to ∆eff/T). However, generally, also Floquet Umk-
lapp processes K ̸= 0 contribute, so the detailed balance condition is broken and the system
relaxes to a nonequilibrium steady state. At very low temperatures T , the function g(E) in
Eq. (11) is nonzero only for processes with E < 0. Therefore, even at temperatures T close to
zero, processes like R(−1)

βα
in Fig. 3 allow for particles from the Floquet copy of the highly popu-

lated lower band to be transferred to the upper band, which leads to an unwanted population
increase in the upper Floquet band.

We show in Appendix C that for the BEC-tube bath defined above, one finds

J tube
BEC (E) = sgn(E)

nB

d2π22
q(E)
p

E2 + G2
e−

1
2 d2

S,Tq(E)2 . (16)

Here q(E) =
p

2mB
ħh

�p
E2 + G2 − G
�1/2

is the momentum of a Bogoliubov quasiparticle at the
transition energy E. We, moreover, have introduced the length scale d = dB/(1 + d2

B/d
2
S,L)

where dB, dS,L, dS,T denote the widths of the Wannier functions for bath particles in lattice
direction, system particles in lattice direction, and system particles in transversal direction,
respectively. These are defined as harmonic oscillator length d =

p

ħh/mΩeff, resulting from
the approximation of treating the Wannier functions as harmonic oscillator ground states with
frequency Ωeff in the lattice minima (cf. Appendix C for details). The resulting spectral density
is plotted in Fig. 5(a) for an exemplary set of bath parameters, corresponding to 6Li in 133Cs
(a mixture which has been successfully prepared experimentally [73–76]). For the choice of
6Li and 133Cs, the interspecies background scattering length is small and negative, but it can
be tuned to small positive values via Feshbach resonances [73, 76] to ensure weak system-
bath coupling. A possible choice could be the resonance at 843.5G in combination with the
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intraspecies Feshbach resonance for 133Cs at 787G for tuning the bath scattering length to suit-
able values [112]. For the hexagonal lattice we assume an optical wavelength λ = 1064nm,
which is red-detuned for both atomic species. However, the detuning is larger for 6Li than for
133Cs, which leads to a deeper lattice for the bath atoms as we imagine. We observe that the
spectral density in Fig. 5(a) has a rather narrow shape, so that for ħhω ≫ 10J rates describ-
ing Floquet-Umklapp processes with K ̸= 0 are suppressed strongly. The narrow width of the
spectral density in Eq. (16) is, thus, crucial for the stabilization of the desired band-insulator-
type states. It is related to the infinite effective mass of the bath particles in lattice direction
as a result of the fact that tunneling of bath particles between different tubes is suppressed
(for finite but weak inter-tube tunneling this remains true). The remaining available scatter-
ing states are given by the 1D Bogoliubov phonons in the individual tubes. Moreover, the
exponential suppression of J with q(E) is given by the finite width of the Wannier state with
respect to momentum. Let us finally remark, that also the collection of tube baths is in total
three-dimensional, ensuring that the bath is large compared to the two-dimensional system
and, thus, can absorb energy from the system over a long time, before noticeably changing its
state.

As a reference, and to show the advantages of the engineered bath of 1D tubes, we will
compute steady states also for the case of an ohmic bath, Fig. 5(b), with

Johm(E) = E . (17)

The ohmic bath is a typical choice for a generic phonon bath. It also describes the coupling
to an alternative bath environment which is given by a homogeneous 3D ideal gas (bosons or
fermions) in the classical limit (at high temperature).

3 Steady state distributions and effective temperature

We are now in the position to solve the kinetic equation (15) for the steady-state distributions,
∂t〈n̂α〉 = 0, which describe the nonequilibrium steady state that the system approaches for
any initial condition after a relaxation time. For the non-driven system with A = 0, we find
a Fermi-Dirac distribution with temperature T for the occupation of the single-particle states
are given by the eigenstates of the time-independent Hamiltonian HS.

In Fig. 6(a) and (b) we show a typical distribution of the mean occupations 〈n̂α〉 of the
Floquet modes (red dots) in the driven case, where A ̸= 0 for (a) the bath of 1D BEC tubes
for 6Li in 133Cs and (b) for the ohmic bath for parameters ħhω= 28.1J , A= 2.8 marked by the
red dot in Fig. 6(c) and (d) respectiveley. We observe that, even though the system relaxes to
a nonequilibrium steady state with nonthermal mean occupations, they still roughly follow a
Fermi-Dirac distribution (black dashed line in Fig. 6(a, b))

〈n̂α〉=
1

e(ϵα−µ)/(kBTeff) + 1
, (18)

with an effective temperature Teff. Interestingly, we find from our fits that Teff is in general
not equal to the temperature T = 0.01J/kB of the bath, but higher. Here we have chosen the
bath temperature T so that it is both small compared to the effective band gap and non-zero,
which is favorable for our numerical simulations.

Let us stress that the fact that the distribution 〈nα〉 still looks thermal, is nontrivial, since
the system relaxes to a genuine nonequilibrium steady state, whose distribution is not dictated
by thermodynamics. In Fig. 6(a, b) we observe that the strongest deviation from the thermal
distributions is found at energies in the middle of the spectrum close to the gap, where also the
largest Berry curvature is located. Hence the topological properties of the state might slightly
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Figure 6: (a, b) Mean occupations 〈nα〉 of the Floquet mode α with corresponding
quasienergy ϵα for a system with Mx = 16, My = 16 unit cells of the driven hexag-
onal lattice model with noninteracting fermions at half filling and open boundary
conditions (a) for the BEC bath sketched in Fig. 1, and (b) for an ohmic bath both
at ħhω = 28.1J , A = 2.8 and kBT = 0.01J . The occupations are well described by a
Fermi-Dirac distribution (dashed line) with µ= 0 and effective temperature Teff. (c)
and (d) show the corresponding effective temperatures, (c) for the BEC bath and (d)
for the ohmic bath as a function of driving strength A and -frequency ω. The red dot
marks the parameters for (a),(b) respectively.

deviate from a state with corresponding effective temperature. Therefore, we have to perform
additional tests. Below we will investigate, whether an approximate quantized response to
charge pumping will be found for the steady state.

Due to the finite and rather narrow width of the spectral density of the engineered bath, the
effective temperatures Teff that we determine by fitting a Fermi-Dirac distribution to the mean
occupations are much lower for the engineered bath, Fig. 6(c), compared to the ohmic bath,
Fig. 6(d). At high frequencies, in a large part of the parameter space the effective temperature
Teff is close or equal to the temperature of the bath T = 0.01J/kB. Thus, we can conclude that
the engineered bath of 1D tubes provides a robust means for preparing a Floquet topological
band insulator, providing an alternative state preparation scheme that also works in cases
where adiabatic preparation of topological bands is hard [44]. Note that in order to stabilize
a topological insulating state with one band filled completely, we require that Teff ≪ ∆eff
(cf. Fig. 4(b)) which is fulfilled in a large parameter regime of the lattice-trapped bath, in
stark contrast to the case of a purely ohmic bath where the effective temperature is mostly
much higher than the effective gap. In the case of the 2D fermion system embedded in a 3D
BEC [64,66], which we discuss later, a mass ratio of mS/mB of around 1/100 would be needed
to achieve equally low effective temperatures (cf. Sec 5.1). In the next section, we show that
the tube-bath scenario indeed gives rise to the quantized response expected for a topological
band insulator.
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4 Charge pumping and quantized response

One hallmark of topological insulators is their quantized response to certain external fields.
A typical scenario is given by Laughlin’s gedanken experiment. In one variant, a topological
insulator on a cylinder is considered through which a magnetic flux ħhΦ/e is threaded. Since
the energy spectrum will be identical at Φ = 0 and Φ = 2π, but the states do not have to
reconnect to themselves under a ramping of Φ from 0 to 2π, an integer number of particles can
be transferred, or ‘pumped’, from the lower boundary of the cylinder to the upper boundary.
If only one energy band is completely filled, this number is determined by the Chern number
of the band. Hence, in our case, as long as Teff ≪ ∆eff, with such a protocol we expect the
pumping of Qpump ≈ 1 in response to the insertion of a flux quantum.

In order to probe this, we consider the configuration depicted in Fig. 2: Along a horizon-
tal line splitting the lattice in half, we modify the tunneling matrix elements in x-direction
according to J1(t)→ J1(t)exp(−iΦ(t)), where

Φ(t) = 2πt/tp , (19)

with t ∈ [0, tp]. The pumping time tp should be large compared to ħh/∆eff where ∆eff is the
size of the gap around ϵ = 0. This linear increase of the Peierls phase along the red links can
be induced easily by applying an additional on-site potential δ = −2πħh/tp on all lattice sites
right of the red colored links in Fig. 2, described by the Hamiltonian

H̃S,p(t) = −
∑

〈l,l′〉

Jn(l,l′)(t)â
†
l âl′ +
∑

l

Vln̂l , (20)

with Vl = 0 for sites l left of the colored links, and Vl = δ for sites to the right. Using the gauge
transformation Ûg(t) = exp(−i

∑

l Vln̂l/ħh) we find the gauge-transformed system Hamiltonian

HS,p(t) = Ûg(t)
†H̃S,p(t)Ûg(t)− iħhÛg(t)

†Ûg(t) = −
∑

〈l,l′〉

Jn(l,l′)(t)e
− i
ħh (Vl′−Vl)t â†

l âl′ . (21)

After using the definition of Vl it is apparent that this corresponds to the insertion of the
additional phase in Fig. 2. Note also that this gauge transformation leaves the system-bath
Hamiltonian ĤSB invariant. The charge pumping then corresponds to the Hall response to the
corresponding force along the colored links. Additionally, we assume that the system is fully
relaxed to its nonequilibrium steady state, and that the system-bath coupling is weak enough
to be neglected during the ramp.

As a result, during the charge pumping cycle the density matrix for a single particle evolves
according to

ϱ̂(t)≈ ÛS,p(t)ϱ̂SS ÛS,p(t)
† , (22)

with time-evolution operator for the system

ÛS,p(t) = T e−
i
ħh

∫ t
0 ĤS,p(τ)dτ , (23)

and time-ordering operator T . Above, ϱ̂SS =
∑

α pSS
α |uα(0)〉〈uα(0)| denotes the state deter-

mined from solving the Pauli rate Eq. (9) for the steady state. In case of many noninteracting
fermions, one finds

〈n̂l〉(t) =
∑

α

|〈l|e−
i
ħh

∫ t
0 ĤS,p(τ)dτ|uα(0)〉|2〈n̂α〉 , (24)

with 〈n̂α〉 following from the steady state solution of Eq. (15).
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Figure 7: Charge pump: After relaxation to the steady state, we perform the protocol
sketched in Fig. 2 in the uncoupled system (we assume that bath relaxation time is
much larger than the pump time tp = 4.8ħh/Jeff(A)). (a) Dynamics of the accumulated
charge∆Qu in the upper half of the system as a function of time t. (b-d) Accumulated
charge Qpump = |∆Qu(tp)| at the end of pumping cycle.

We then count the avergage number of particles Qu(t) in the upper half of the lattice, as
shown in Fig. 2, and monitor the pumped charge

∆Qu(t) =Qu(t)−Qu(0) . (25)

This leads to curves similar to the one shown Fig. 7(a) again for parameters ħhω=28.1J , A=2.8
for the nonequilibrium steady state with the lattice-trapped bath (blue line), with the ohmic
bath (red line) and the ideal case of a Floquet-Gibbs state at Teff = 0 (dashed line). Note
that we observe from the numerics, that the pumping time tp has to be restricted to values
tp ≲ 0.15(Mx +My)ħh/Jeff(A) = 4.8ħh/Jeff(A), where we take into account the slowing down of
the hopping according to

Jeff(A) =
J
2
[1+ I0(A)] , (26)

the effective tunneling matrix element in the high-frequency approximation of Appendix A
and I0(z) is the modified Bessel function of first kind and 0th order. This is because of finite
size effects: For increased values of tp, the edge currents that are excited by the protocol will
reach the lower half of the lattice and therefore reduce the charge

Qpump = |∆Qu(tp)| , (27)

that is accumulated after a full cycle of the charge pump.
The resulting values for the charge pump Qpump are shown in Fig. 7(b) for the ideal case

of a Floquet-Gibbs state at Teff = 0, given by

〈nα〉Teff=0 = Θ(µ− ϵα) , (28)
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where at half filling µ= 0, so that only the lower band is filled. Furthermore, we show Qpump
in Fig. 7(c) for the coupling to the tube bath and in Fig. 7(d) for the coupling to an ohmic
bath. First of all, we observe that even in the ideal case, Fig. 7(b), due to the finite ramp time
required by the finite system size, a near quantized response Qpump ≈ 1 is only observed at
rather strong driving strengths A, where adiabatic pumping is enabled by a sufficiently large
gap (see Fig. 4(b)). Second, we observe that for the tube bath the response Qpump is almost
optimal as it coincides largely with the Teff = 0 case. For the ohmic bath Fig. 7(d), however,
since the effective temperatures are high when compared to the size of the gap, the protocol
does not give rise to quantized charge pumping, with Qpump on the order of 0.3.

It is intriguing to observe that the transported charge depicted in Fig. 7(d) even allows to
identify the topological phase transition, where the Chern number becomes zero [see Figs. 4(a)
and 7(b)]. As discussed above, the preparation of effective thermal states is challenged at low
frequencies by Floquet-Umklapp processes related to the system–bath coupling. In turn, the
phase transition to the anomalous Floquet topological state is connected to Floquet-Umklapp
processes associated with resonant band coupling in the system. At the topological phase tran-
sition, there is a closing of the gap across the first and second Floquet-Brillouin zone, and the
bath allows for population transfer from the Floquet copy of the lower Floquet band to the
upper Floquet band (cf. processes with rate R(−1)

αβ
in Fig. 3). Therefore, it is not obvious at

all, that it is possible to stabilize an approximate anomalous Floquet topological band insu-
lator with a bath. However, the thin white stripe in Fig. 7(c) suggests that there is a small
parameter regime, where Umklapp processes inside the system can already give rise to the
anomalous Floquet topological band structure, while the Umklapp processes associated with
the system-bath coupling are not yet detrimental for the preparation of an approximate band
insulator. This is substantiated by Appendix D, where we show visible edge mode dynamics in
the anomalous Floquet topological insulator phase in the steady state of the system with the
BEC tube bath, albeit at reduced contrast when compared to the ideal Teff = 0 case.

5 Variation of the bath parameters

Let us now discuss which features of the proposed lattice-trapped bath are crucial for achieving
low Teff. To this end, we discuss in Sec. 5.1 the case with no 1D confinement for the bath,
leading to a 3D homogeneous BEC as a bath, as well as in Sec. 5.2 the case of 40K in 87Rb
(which has been realized in quantum gas experiments [70, 78, 79]) where the mass ratio is
not as imbalanced as for Li in Cs considered so far. In both cases the achievable effective
temperatures are too high to observe quantized charge pumping.

5.1 Spatially homogeneous BEC bath

As illustrated in Fig. 8, a natural different configuration for the bath is one where the the bath
particles do not see the lattice potential of the system, which can be realized by choosing an
optical lattice at a tune-out wavelength of the bath. The bath is then given by a continuous 3D
weakly interacting BEC. Similar setups have been studied experimentally for one-dimensional
undriven lattices as system [80, 87]. Assuming again density-density interactions with weak
coupling strength γ, one finds the spectral density [66]

J 3D
BEC(E)=sgn(E)

2nB

(2π)22
q(E)3
p

E2 + G2
e−

1
2 q(E)2d2

S,T . (29)

Here we also assumed that the bath correlation length is much shorter than the lattice spacing
(which is valid if the condition q(E)≫ 1/λ is fulfilled at typical transition energies E [66]),
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Figure 8: Illustration of the system with 3D bath. Instead of confining the bosons
into 1D tubes, we consider a homogeneous 3D BEC as a bath.
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Figure 9: Same as (a) in Fig. 5, (b, c) in Fig. 6, (d, e) in Fig. 7, but without optical
lattice for the bath, leading to a 3D homogeneous BEC as a bath. All other parameters
are unchanged.

so that the rates are still of the form of Eq. (11). Note that the bath correlation length is
set by the correlation length between Bogoliubov quasiparticles, which is finite in spite of the
long-range coherence of the underlying BEC [66]. The spectral density for the 3D bath in
Eq. (29) is similar to that obtained for the 1D tubes in Eq. (16), however, due to the presence
of more accessible bath modes at a given energy E, it is not proportional to the wavenumber
q(E) anymore, but rather to its cube. This leads to the modified spectral density in Fig. 9(a),
which does not drop off as sharply at high energies as for the earlier case in Fig. 5(a), where
all other parameters are chosen identically.

As we observe in Fig. 9(b) also in the case of the 3D bath, the distributions 〈nα〉 are well
described by effective thermal distributions. However, as seen in Fig. 9(c), at given frequency
ω, the corresponding effective temperatures Teff are on the order of J already at much smaller
driving strengths A, as compared to Fig. 6(c). This is due to the fact that due to the slower
decay of the spectral density, Floquet Umklapp processes across multiple Floquet-Briloullin
zones are not blocked as efficiently as in the case of the bath consisting of 1D tubes.
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Figure 10: Same as (a, b) in Fig. 5, (c, d) in Fig. 6, (e-g) in Fig. 7, but for 40K in
87Rb, mS/mB = 40/87 both for the case of 1D BEC tube (left panel) as well as the
3D BEC (right panel) as a bath. The bath scattering length of Rubidium is assumed
as aB = 100a0.

Fig. 9(d) and (e) show that, therefore, the achievable charge pumping Qpump is significantly
lower than in the case of the 1D tubes, limiting the observable charge transport to the order
of 0.5. Although this is an advantage compared to the simple ohmic case, it still shows that
for the 3D bath, the Floquet-engineering of a topological insulating phase is not possible due
to the high effective temperatures in the steady state, even in the presence of a bath that has
seemingly a sufficiently low bath temperature, T = 0.01J .

5.2 Other atom species combinations

In this section we again study the setup of Fig. 1 with 1D tubes as a bath, as well as the 3D BEC
bath in Fig. 8, however we resort to the case of 40K in a bath of 87Rb, a mixture which has been
prepared in state-of-the-art quantum gas experiments [67,70,72]. The bath scattering length
is chosen to the value of 87Rb, and we again assume a typical optical wavelength λ= 1064nm.
As shown in Fig. 10(a) and (b), the resulting spectral densities for these parameters are much
less favorable, as they decay less or not at all with energy. As we observe in Fig. 10(c) and (d),
this leads, as expected, to higher effective temperatures in the NESS. The achievable charge
pumping, shown in Fig. 10(e), (f) and (g), in the case of the 1D tubes is on the order of 0.6
which is considerably lower than in the almost quantized case for Li in Cs. For K in a 3D Rb
BEC, the achievable charge pumping is only on the order of 0.35 and therefore almost as bad
as for the generic ohmic bath.

The results of this section clearly highlight the importance of the engineered bath proposed
in the previous sections, both regarding the carefully chosen mass ratio and the structuring of
the bath as array of 1D tubes. Note, that the mass ratio can also be improved by increasing the
effective mass in the bath effectively by switching on a lattice also in the transverse direction.
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6 Summary and outlook

Floquet engineering is a widely used tool in quantum simulation with ultracold atoms. Never-
theless, heating due to non-adiabatic processes during state preparation and resonant excita-
tions (aka Floquet heating) are often unavoidable. Due to the isolated nature of quantum gas
experiments, excitations will remain in the system forever. In this work, we have shown that
by coupling a driven system to an engineered lattice-trapped bath given by a Bose condensate
of a second atomic species, it is possible to stabilize approximate Gibbs-type states with respect
to the Floquet Hamiltonian. As an example we used a system of spinless fermions in a Floquet
topological band structure. We demonstrated that an engineered lattice-trapped bath of heavy
bosons confined in 1D tubes can stabilize topological insulator states, with one band filled and
the other one empty, as steady state. We also showed that (and how) the topological properties
of the system can be inferred from quantized topological charge pumping in a large region of
parameter space. Remarkably, we also find that it is even possible to observe signatures of the
topological phase transition to an anomalous Floquet topological phase, a state that cannot
exist in undriven systems.

The proposed dissipative preparation of (anomalous) Floquet topological insulator states
has the advantage that the system will relax to the target state from any initial state. This
approach is, therefore, very robust. Moreover, it can counteract Floquet heating and it does not
suffer from the creation of unwanted excitations, as they can occur during imperfect adiabatic
state preparation. The latter is a problem especially for the interesting case of topologically
nontrivial states, the preparation of which require passing a topological phase transition, where
non-adiabatic processes are induced due to the gap closing at the transition.

An interesting question to be addressed in the future concerns the quantization of other
response functions and in particular that of circular dichroism [113, 114]. We expect similar
results for such a probe, while, at the same time, the continuous stabilization by an external
bath might lead to longer lifetimes than in previous experiments, and thereby facilitate the
probing. Besides the transient response, which is limited by having the pumping time to be
chosen faster than the relaxation time with the bath, one could also investigate in how far
the steady state is changing in response to additional circular driving, when the bath contin-
uously contacts the excitation by the additional drive. Another intriguing question concerns
the stabilization of effective thermal states of interacting Floquet engineered systems, which,
generically are expected to heat up towards infinite temperature [21,25,36,37]. This form of
heating is related to resonant excitation processes that happen also in the regime of large fre-
quencies. Recently, it was shown that approximate thermal states of an approximate Floquet
Hamiltonian, as it results from a high-frequency approximation, can be stabilized by a thermal
bath [59]. The favorable spectral properties of the 3D bath of 1D tubes proposed in this paper
might be advantageous also in this context.
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A High-frequency approximation for the system Hamiltonian

We start by introducing the annihilation operators b̂A/B(k⃗) = (Mx My)−1/2
∑

l∈A/B exp(ik⃗ r⃗l)âl

for at sublattice A, B and quasimomentum ħhk⃗ into the system Hamiltonian in Eq. (2)

ĤS(t) = −
∑

〈l,l′〉

Jn(t)â
†
l âl′ =
∑

k⃗

�

b̂†
A(k⃗), b̂†

B(k⃗)
�

�

0 h(k⃗, t)
h(k⃗, t)∗ 0

�

︸ ︷︷ ︸

HS(k⃗,t)

�

b̂A(k⃗)
b̂B(k⃗)

�

, (A.1)

with

h(k⃗, t) = −
3
∑

n=1

Jn(t)e
ik⃗a⃗n . (A.2)

By using

Jn(t) =
1
2

�

eAcos (ωt+ϕn) + 1
�

=
1
2

�

1+
∑

m∈Z
Im(A)e

imϕneimωt

�

, (A.3)

where Im(z) is the modified Bessel function of first kind, we can rewrite

HS(k⃗, t) = −
∑

m∈Z

�

hx
m(k⃗)σx + hy

m(k⃗)σy

�

eimωt =
∑

m∈Z
Hm(k⃗)e

imωt , (A.4)

with

hx
0(k⃗) =

J
2
(1+ I0(A))

3
∑

n=1

cos(k⃗a⃗n) , (A.5)

hy
0 (k⃗) =−

J
2
(1+ I0(A))

3
∑

n=1

sin(k⃗a⃗n) , (A.6)

hx
m ̸=0(k⃗) =

J
2

Im(A)
3
∑

n=1

eimϕn cos(k⃗a⃗n) , (A.7)

hy
m ̸=0(k⃗) =

J
2

Im(A)
3
∑

n=1

eimϕn sin(k⃗a⃗n) . (A.8)

In the two leading orders of the Magnus expansion, the Floquet Hamiltonian therefore reads

HF(k⃗) = H0(k⃗) +
∞
∑

m=1

[Hm(k⃗), H−m(k⃗)]
mħhω

+
∑

m∈Z\{0}

[H0(k⃗), Hm(k⃗)]
mħhω

. (A.9)

By using standard Pauli matrix commutation relations we find

[Hm(k⃗), H−m(k⃗)] = 0 , (A.10)

[H0(k⃗), Hm(k⃗)] = σz i
J2

2
(1+ I0(A))Im(A)

3
∑

i, j=1

eimϕ j sin(k⃗(a⃗i − a⃗ j)) . (A.11)

Plugging this into Eq. (A.9) we find the Floquet Hamiltonian in the high-frequency expansion

ĤF = −
∑

k⃗

�

b̂†
A(k⃗), b̂†

B(k⃗)
�

�

h1(k⃗) h0(k⃗)
h0(k⃗)∗ −h1(k⃗)

��

b̂A(k⃗)
b̂B(k⃗)

�

. (A.12)
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On leading order (1/ω)0 we find the contribution

h0(k⃗) = Jeff(A)
∑

n

exp(ik⃗a⃗n) , (A.13)

with an effective uniform nearest-neighbor hopping Jeff(A) = J(1+ I0(A))/2 where Im(z) is the
modified Bessel function of first kind. The next order (1/ω)1 gives

h1(k⃗) = JeffJ
∞
∑

m=1

Im(A)
3
∑

i, j=1

sin(k⃗(a⃗i − a⃗ j))
sin(mϕi)

mħhω
, (A.14)

where the dominant m = 1 term is remanent (but not exactly of the form) of the Haldane
model. Calculating the Chern numbers for this Hamiltonian in Eq. (A.12) numerically, we find
C = −1,+1.

B Bogoliubov transformation for superfluid bath of 1D tubes

The microscopic bath Hamiltonian for an array of disconnected 1D tubes reads

ĤB =
∑

l

∫

z
χ̂†

l (z)

�

−ħh2

2mB

∂ 2

∂ z2

�

χ̂l(z) +
g
2

∫

r
χ̂†(r⃗)χ̂†(r⃗)χ̂(r⃗)χ̂(r⃗) , (B.1)

where the index l is labeling all lattice sites of the two-dimensional honeycomb lattice of tubes
and we use the convention

∫

r =
∫

d3r,
∫

z =
∫

dz. The field operator for the bath particles can
be expressed as

χ̂(r⃗) =
∑

l

wB
l (x , y)χ̂l(z) , (B.2)

with Wannier orbitals wB
l of the bath at site l. Neglecting contributions from Wannier orbitals

at different lattice sites allows us to rewrite the Hamiltonian as

ĤB =
∑

l

∫

z

�

χ̂†
l (z)

�

−ħh2

2mB

∂ 2

∂ z2

�

χ̂l(z) +
g̃
2
χ̂†

l (z)χ̂
†
l (z)χ̂l(z)χ̂l(z)
ª

, (B.3)

with effective interaction strength g̃ = g
∫

x

∫

y |w
B
0(x , y)|4, where we use that the shape of the

Wannier functions for both sub-lattices is identical up to a rotation.
To find an effective low-energy and low-temperature description of the bath Hamiltonian,

we perform the usual semiclassical approximation that leads to a description in terms of Bo-
goliubov quasiparticles. After defining the momentum basis ĉl,q =

1p
Lz

∫

z e−iqzχ̂l(z) for tem-

peratures T well below T bath
c and weak interactions g one may represent the bath field as

χ̂l(z) = χl,0 + δχ̂l(z). The first term is a c-number field χl,0 =
Æ

Nl,0/Lzeiϕl that describes
the superfluid atoms. Here ϕl is the condensate phase at site l and occupations per tube
Nl,0 = N0/(2Mx My), i.e. we assume that N0 bath bosons are equally distributed among the
condensates in all the tubes. Additionally, there are small operator-valued fluctuations

δχ̂l(z) =
1
p

Lz

∑

q ̸=0

eiqz ĉl,q , (B.4)
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around it. Plugging the decomposition into the bath Hamiltonian, Eq. (B.3), we omit terms
that are of higher order than δχl(z)2 to find

ĤB ≈
∑

l

∫

z
δχ̂†

l (z)

�

−ħh2

2mB

∂ 2

∂ z2
+ G

�

δχ̂l(z) +
GNB

2

+
G
2

∑

l

∫

z

�

e−i2ϕlδχ̂l(z)δχ̂l(z) + ei2ϕlδχ̂†
l (z)δχ̂

†
l (z)
�

,

(B.5)

where we have used NB = N̂0+
∑

l

∫

z δχ̂
†
l (z)δχ̂l(z) and introduced G = g̃ ñB with tube density

ñB =
NB

2Mx My Lz
. (B.6)

Alternatively, we may write G = gnB with volume density

nB = ñB

∫

x

∫

y
|wB

0(x , y)|4 . (B.7)

We then use Eq. (B.4) and perform the standard Bogoliubov transformation

β̂l,q = e−iϕluq ĉl,q + e−iϕl vq ĉ†
l,−q , (B.8)

to bring the Hamiltonian to the form

ĤB =
∑

l

∑

q

EB(q)β̂
†
l,qβ̂l,q , (B.9)

with Bogoliubov dispersion

EB(q) =
Æ

E0(q)2 + 2GE0(q) , (B.10)

where E0(q) = ħh2q2/2mB, and the transformation follows from u2
q − v2

q = 1 and
uqvq = G/(2EB(q)).

With this transformation, we may now rewrite the system-bath Hamiltonian as

ĤSB = γ

∫

r
Ψ̂†(r⃗)Ψ̂(r⃗)B̂(r⃗) , (B.11)

with field operator Ψ̂(r⃗) of the system and

B̂(r⃗) = χ̂†(r⃗)χ̂(r⃗)− ñB

∑

l

|wB
l (x , y)|2 (B.12)

≈
p

ñB

∑

l

|wB
l (x , y)|2
�

e−iϕlδχ̂l(z) + eiϕlδχ̂†
l (z)
�

(B.13)

=

√

√ ñB

Lz

∑

l

|wB
l (x , y)|2
∑

q ̸=0

(uq − vq)
�

eiqzβ̂l,q + e−iqzβ̂†
l,q

�

. (B.14)

In the second step we have we omitted terms that are of higher order in δχl(z), and in
the last step we have employed Eq. (B.4), as well as the inverse Bogoliubov transformation
ĉl,q = eiϕluqβ̂l,q − eiϕl vqβ̂

†
l,−q.
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For the system we rewrite the field operator using Ψ̂(r⃗) =
∑

l wS
l (r⃗)al with Wannier func-

tions wS
l (r⃗), where the Wannier centers are at the same lattice sites as the bath. Thus, in

leading order δχ̂, the system–bath coupling operator reads

ĤSB = γ
∑

l,q ̸=0

n̂l

�

κl(q)β̂l,q +κl(q)
∗β̂†

l,q

�

= γ
∑

l

n̂lB̂l , (B.15)

with coefficients

κl(q) =

√

√

√ ñBE0(q)
Lz EB(q)

∫

r
|wS

l (r⃗)|
2|wB

l (x , y)|2eiqz . (B.16)

In the last step we again neglect all contributions from off-site Wannier orbitals. Finally, we can
evaluate the κl(q) explicitly by approximating the Wannier functions with harmonic oscillator
ground states

wS
l (r⃗)≈ ϕ

HO
S,L (x − xl)ϕ

HO
S,L (y − yl)ϕ

HO
S,T (z) , (B.17)

with effective frequency in the longitudinal directions of the lattice ΩS,L = 2
p

V0ER/ħh and

harmonic oscillator ground state ϕHO
S,i (x) = (dS,i

p
π)−0.5e−(x/dS,i)2/2. Also dS,i =

Æ

ħh/mSΩS,i
denotes the harmonic oscillator length in the lattice (i = L) and the transverse (i = T) direc-
tion. Similarly, for the bath, we assume

wB
l (x , y)≈ ϕHO

B (x − xl)ϕ
HO
B (y − yl) . (B.18)

This yields

κl(q) =
1
d

√

√

√ 2nBE0(q)
πLz EB(q)

e−
1
4 d2

S,Tq2
, (B.19)

with length scale d = dB/(1+ d2
B/d

2
S,L).

C Single-particle rates for a weakly interacting 1D Bose-condensed
bath

Note that, omitting fluctuations of higher order than δχ̂(r⃗) (which means that we restrict our-
self to one-phonon scattering in the bath, which largely dominates over higher-order phonon
scattering for low temperatures T [65]), ĤSB is already in the desired form ĤSB =

∑

i v̂i⊗ B̂i for
the open quantum system formalism. The usual Born-, Markov- [106] and full rotating-wave
approximation [61,63,107–110] lead to single-particle rates

Rαβ =
2πγ2

ħh
Re
∑

K∈Z

∑

l,l′
(vl)

(K)∗
αβ
(vl′)

(K)
αβ

Wll′(∆
(K)
αβ
) , (C.1)

describing a bath-induced quantum jump from Floquet state α to Floquet state β . Here we
have defined the quasienergy difference ∆(K)

αβ
= ϵα − ϵβ + Kħhω, and the Fourier components

of the coupling matrix

(vl)
(K)
αβ
=

1
T

∫ T

0

dte−iKωt〈uα(t) |l〉



l |uβ(t)
�

=
∑

r

u(r)∗
α,l u(r+K)

β ,l , (C.2)
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Figure 11: (a) Same as Fig. 7(c) and (b) same as Fig. 7(b), but marking the param-
eters ħhω = 11.7J , A = 2.5 for the edge-mode dynamics in the anomalous Floquet
topological insulator phase in (c) and (d). (c) Mean occupations 〈n〉(x i , yi) at the
lattice sites (i, j) after the full flux insertion protocol of (a) with the bath of BEC
tubes, but with tp = 9.6ħh/Jeff(A). (d) Ideal edge-mode dynamics in the anomalous
regime for the Floquet-Gibbs state at Teff = 0.

with driving period T = 2π/ω, and Floquet mode |uα(t)〉, as well as the r-th Fourier com-
ponent u(r)

α,l = 〈l |uα〉
(r) of Floquet mode α. We have also employed the half-sided Fourier

transform,

Wll′(E) =
1
πħh

∫ ∞

0

dτe−
i
ħh Eτ〈B̃l(τ)B̂l′〉B , (C.3)

of the bath correlation function, we denote 〈·〉B = TrBϱ̂B· and the tilde in B̃i(τ) indicates the
operator in the interaction picture, where for a general operator

Õ(τ) = ei(ĤS+ĤB)τÔe−i(ĤS+ĤB)τ . (C.4)

We use that the bath is in a thermal state ϱ̂B =
1
Z exp(−ĤB/kBT ), to evaluate

〈B̃l(t)B̂l′〉B =
∑

q,q′ ̸=0

¬�

κl(q)β̂l,q e−
i
ħh EB(q)t +κl(q)

∗β̂†
l,q e

i
ħh EB(q)t
��

κl′(q
′)β̂l′,q′ +κl′(q

′)∗β̂†
l′,q′

�¶

B

(C.5)

= δll′

∫ ∞

−∞
dE J (E)e

i
ħh Et n(E) , (C.6)

with Bose-Einstein occupation function of the bath

n(E) =
1

eE/kB T − 1
, (C.7)

and spectral density

J (E) =
∑

q ̸=0

|κl(q)|2 [δ(E − EB(q))−δ(E + EB(q))] , (C.8)
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where we use that κl(q) is independent of l. Therefore, using the Sokhotski-Plemelj formula
gives

Wll′(E) = δll′J (E)n(E) . (C.9)

Finally, we take the continuum limit for the bath sum over q, 2π
Lz

∑

q→
∫

dq, to obtain

J (E)=
nB

d2π2

∫

dq
E0(q)
EB(q)

e−
1
2 d2

T,Sq2
δ(E − EB(q)) , (C.10)

for E > 0 and J (−E)=−J (E). We solve Eq. (B.10) for the momentum

q(E) =

p

2mB

ħh

�p

E2 + G2 − G
�1/2

, (C.11)

of a Bogoliubov quasiparticle at Energy E, so that

2qdq =
2mB

ħh2

EB
q

E2
B + G2

dEB . (C.12)

After transforming the q-integral into an integral over EB, we can directly evaluate the delta
distribution and find

J (E)=sgn(E)
nB

d2π22
q(E)
p

E2 + G2
e−

1
2 d2

T,Sq(E)2 . (C.13)

Note that for small energies E≪ G we find sub-ohmic behavior J (E)∝ E1/2, while for E≫ G
the spectral density decays again exponentially.

D Edge mode dynamics

In Fig. 11(c),(d) we show a snapshot of the real-space density 〈n〉(x , y) at t = tp, after the
Laughlin-type charge pumping in the anomalous Floquet topological insulator phase for the
parameters of the red dot in Fig. 11(a),(b). Fig. 11(c) corresponds to the BEC tube bath, and
Fig. 11(d) to the ideal Floquet-Gibbs state at effective temperature Teff = 0. We observe that,
due to the high effective temperature at this parameter set, the edge modes are much less vis-
ible in case of the engineered bath of 1D tubes when compared to the ideal case. Nonetheless,
there is indication of the topologically nontrivial behavior in the form of edge modes in the
anomalous Floquet phase (however at a reduced contrast). In order to display the edge mode
more clearly, we have increased the pumping time to tp = 9.6ħh/Jeff(A).
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