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Abstract

We investigate the quantum robustness of the topological order in the toric code on the
honeycomb lattice in the presence of a uniform parallel field. For a field in z-direction,
the low-energy physics is in the flux-free sector and can be mapped to the transverse-
field Ising model on the honeycomb lattice. One finds a second-order quantum phase
transition in the 3D Ising⋆ universality class for both signs of the field. The same is
true for a positive field in x -direction where an analogue mapping in the charge-free
sector yields a ferromagnetic transverse-field Ising model on the triangular lattice and
the phase transition is still 3D Ising⋆. In contrast, for negative x -field, the charge-free
sector is mapped to the highly frustrated antiferromagnetic transverse-field Ising model
on the triangular lattice which is known to host a quantum phase transition in the 3D
XY⋆ universality class. Further, the charge-free sector does not always contain the low-
energy physics for negative x -fields and a first-order phase transition to the polarized
phase in the charge-full sector takes place at larger negative field values. We quantify
the location of this transition by comparing quantum Monte Carlo simulations and high-
field series expansions. The full extension of the topological phase in the presence of x -
and z-fields is determined by perturbative linked-cluster expansions using a full graph
decomposition. Extrapolating the high-order series of the charge and the flux gap allows
to estimate critical exponents of the gap closing. This analysis indicates that the topo-
logical order breaks down by critical lines of 3D Ising⋆ and 3D XY⋆ type with interesting
potential multi-critical crossing points. All findings for the toric code on the honeycomb
lattice can be transferred exactly to the toric code on the triangular lattice.
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1 Introduction

Long-range entangled topologically ordered quantum phases [1–3] are actively investigated
over the last decades due to their relevance for the fractional quantum Hall effect [4, 5], for
frustrated quantum magnets [6, 7] as well as for simulation of strongly correlated systems in
quantum-optical platforms [8–12]. Such phases have exotic properties like elementary anyonic
excitations with fractional statistics [13,14]. At the same time there is the fascinating concept
to build a topological quantum computer which is protected from local decoherence [15,16].

One fundamental aspect in the research about topological phases is to study their quantum
robustness in the presence of perturbations and to understand quantum phase transitions out
of such phases. Contrary to conventional symmetry broken phases, no local order parameters
exist and Landau-Ginzburg theory does not apply. As a consequence, an extended theoretical
framework needs to be developed which is capable to describe such phase transitions. One
possibility is in terms of condensing bosonic quasiparticles which is dubbed topological sym-
metry breaking [17–21]. This has been verified in microscopic models for phase transitions
between topological and non-topological phases in various cases [22–38].

Kitaev’s toric code [15] is an exactly solvable two-dimensional quantum spin model, which
displays a topologically ordered ground state. It has been used as an ideal starting point to
understand many fundamental aspects of topological quantum phases. This includes the quan-
tum robustness and the associated topological phase transitions of the conventional toric code
on the square lattice in the presence of a uniform field [22–26,28–30,33,35,36,38–40]. The
quantum phase diagram of the toric code in a field is very rich displaying planes of first- and
second-order quantum phase transitions [22–26,28–30,33,35,36,38–40] as well as interesting
multi-critical lines [25, 28, 30, 38]. The second-order phase transitions are generically in the
3D Ising⋆ universality class between the topological phase at small fields and the symmetry un-
broken polarized phase at large fields where the spins align along the direction of the magnetic
field [22–25, 28–30, 33, 35, 36, 38–40]. For single parallel fields, this behaviour can be fully
understood by the well-known duality betweenZ2 gauge theories and unfrustrated transverse
field Ising models (TFIMs) in the charge-free or flux-free sector [41]. The continuous quantum
phase transition out of the topological phase then corresponds to the condensation of charges
or fluxes, which are defined on the (dual) square lattice.
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For the toric code in a field on the square lattice the physical properties of charge and flux
quasi-particles are identical when interchanging x- and z-fields because both quasi-particle
types live on a (dual) square lattice. This symmetry leads to a perfectly symmetric quantum
phase diagram in the xz-plane. Furthermore, the phase diagram is independent of the sign
of the parallel fields due to the bipartite structure and self-duality of the square lattice. It is
therefore interesting to investigate how the quantum phase diagram is altered if this symmetry
is broken and how the quantum criticality is changed when the charge or flux degrees of
freedom are located on non-bipartite lattices and geometric frustration can be present. In
Ref. [31] duality mappings for single parallel fields to fully frustrated Ising models have already
been established and exciting behaviour has been demonstrated, e.g., an enhanced stability of
the topological phase for the perturbed toric code on the dice lattice.

In this work, we investigate both questions for the toric code on the honeycomb lattice
using high-order linked-cluster expansions as well as duality transformations and quantum
Monte Carlo simulations for single parallel fields. In contrast to the square lattice, the quan-
tum phase diagram is asymmetric in the xz-field plane because elementary charge and flux
excitations behave fundamentally different. Indeed, their dynamics takes place on different
lattice types, namely the honeycomb lattice for charges and its dual triangular lattice for fluxes.
Our analysis reveals that the topological order breaks down by critical lines of 3D Ising⋆ [40]
and 3D XY⋆ type [42–45] with interesting potential multi-critical crossing points. For sin-
gle parallel fields the quantum critical behaviour can be quantitatively understood by duality
mappings to transverse-field Ising models (TFIM) and the absence or presence of geometric
frustration. We further observe that all findings for the toric code on the honeycomb lattice
can be transferred exactly to the toric code on the triangular lattice.

The paper is organized as follows. In Sec. 2 we introduce the toric code in a field on the
honeycomb lattice. In Sec. 3 we present all relevant aspects of the applied methods. Results
for single-field cases are discussed in Sec. 4, while results for the quantum robustness of the
topological phase in the xz-plane are given in Sec. 5. Final conclusions are drawn in Sec. 6.

2 Honeycomb toric code in a field

The Hamiltonian of the toric code on the honeycomb lattice in a uniform field reads

H tcf = −
1
2

∑

X −
1
2

∑

Z −
∑

i

h⃗ · σ⃗i ,

= H tc −
∑

i

h⃗ · σ⃗i , (1)

where σ⃗i = (σx
i ,σ y

i ,σz
i ) is the Pauli vector acting on spin i located on the edge of the honey-

comb lattice and h⃗= (hx , hy , hz) is a uniform magnetic field acting on every spin (see Fig. 1).
In this work, we focus on a field parallel to the plane defined by the direction of the Pauli
matrices of the star and plaquette operators h⃗ = (hx , 0, hz). The star operators X and the
plaquette operators Z are both defined as products of Pauli matrices

X =
∏

i∈
σx

i , Z =
∏

i∈
σz

i . (2)

In contrast to the toric code on the square lattice, where star and plaquette operators are
four-spin interactions, here the star operator X contains the Pauli operators on the three sites
next to a vertex while the plaquette operator Z contains six Pauli operators at the edges of a
plaquette as illustrated in Fig. 1.
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Z

X

Figure 1: Illustration of the star (red) and plaquette (blue) operators on the honey-
comb lattice. Filled circles denote the spin sites located at the edges of the lattice.

2.1 Toric code on the honeycomb lattice

The essential properties of the bare toric code on the honeycomb lattice are the same as those
of its well known counterpart on the square lattice [15]. It is exactly solvable and displays
topological order, i.e., the ground state is highly entangled, the ground-state degeneracy scales
with the genus g of the system, and the elementary excitations are mutual Abelian anyons. In
the following we describe some of these aspects in more detail.

All star and plaquette operators commute with each other:

[X , X ′] = 0 , ∀ , ′, [Z , Z ′] = 0 , ∀ , ′ , [X , Z ] = 0 , ∀ , . (3)

Therefore, their eigenvalues x = ±1 and z = ±1 are conserved quantities.
Ground states of the toric code have x = z = +1 for all stars and plaquettes and

the ground-state energy is given by Etc
0 = −Ns/2 + Np/2 with Ns (Np) the number of stars

(plaquettes). On an infinite open plane, the ground state is unique and can be constructed by
projection operators as follows

|GS〉=N
∏ (1+ X )

2

∏ (1+ Z )
2

|ref〉 , (4)

where N is a normalization factor and |ref〉 an appropriate reference state which is often
chosen as a fully polarized state in x- or z-direction, but can be any state with a finite overlap
with |GS〉. Products of operators X and Z act trivially on |GS〉. Furthermore, any contractible
loop of σz matrices on the honeycomb lattice or σx matrices on its dual triangular lattice
corresponds to the product of operators X or Z contained in the loop, respectively [15].

The ground-state degeneracy depends on the genus g of the system. For a torus with g = 1
not all star and plaquette operators are independent as

∏

X =
∏

Z = 1 . (5)

Accordingly, the number of spins in the system exceeds the number of independent star and
plaquette operators by two. The remaining Z2 degrees of freedom can be attributed to eigen-
values ±1 of non-local, non-contractible loop operators. These loop operators are defined on
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Figure 2: Left: Zτ and Zπ on a plane with periodic boundary conditions. Right: Xτ
and Xπ on a plane with periodic boundary conditions.

closed paths on the (dual) lattice which wind around the torus in independent directions (see
Fig. 2). They are defined as

X ᾱ =
∏

i∈ᾱ
σx

i , Zα =
∏

i∈α
σz

i , (6)

with X 2
ᾱ = Z2

α = 1. The indices α ∈ {τ,π} denote the direction of the loop on the torus, either
in toroidal direction τ or poloidal directionπwhereas a bar indicates a loop on the dual lattice.
While all four types of these non-contractible loop operators commute with the Hamiltonian,
they do not necessarily commute with each other

�

X ᾱ, X β̄
�

= 0 , (7)
�

Zα, Zβ
�

= 0 , (8)
�

X ᾱ, Zβ
�

= 2X ᾱZβ
�

1−δα,β

�

. (9)

The first two commutation relations are trivial. The last relation arises form the fact, that loop
operators X ᾱ and Zβ either intersect an odd number of times for different loop directions or
an even number of times for the same direction. Furthermore, loop operators of the same type
can be deformed into each other using products of operators X and Z , respectively. So in
order to enhance the set of operators Z and X to a complete set of commuting observables,
it suffices to add two non-contractible loop operators which agree either in their direction (τ
or π) or in the flavor of the contained Pauli matrices (σx or σz). As the two Z2 degrees of
freedom associated with these two non-contractible loop operators do not affect the energy,
the ground-state degeneracy of the toric code on the torus is four. Generally, the ground-state
degeneracy is 4g as for the conventional toric code on the square lattice [15].

Elementary excitations of the toric code correspond to negative eigenvalues of star and
plaquette operators. Excitations x = −1 are called charges and z = −1 are called fluxes.
These excitations can be created adjacent to a site i by acting withσz

i andσx
i on a ground state.

These topological excitations, which are situated at the vertices and plaquettes of the lattice,
exhibit behaviour of hardcore bosons with a mutual Abelian anyonic statistics [15,30,46]. The
string operators

Sz =
∏

i∈p

σz
i , and Sx =

∏

i∈p̄

σx
i , (10)

applied to the ground state, create two excitations at the ends of the respective open path p
(p̄) on the honeycomb (or its dual triangular) lattice [15].
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Z

X
X̃ Z̃

Figure 3: Left: The stabilizer operators Z , X of the toric code on the honeycomb
lattice are illustrated on the dual triangular lattice. Compare to Fig. 1 to see that the
spin degrees of freedom remain the same as on the original lattice. Right: Reinter-
preting the original vertex operators X as plaquette operators X on the dual lattice
and the orignal plaquette operators Z as vertex operators Z on the dual lattice to-
gether with a rotated basis with σ̃z = σx and σ̃x = σz results in the stabilizers X̃
and Z̃ of the toric code on the triangular lattice.

A single charge or flux can be excited on an open plane by creating a pair of excitations
and moving one of them to infinity. Using analogous definitions to Ref. [47], a single charge
x = −1 (flux z = −1) can be represented by the one-charge state |r⃗, l; 〉 (one-flux state
|r⃗; 〉):

|r⃗, l; 〉=
∏

i∈pr⃗,l

σz
i |GS〉 , |r⃗; 〉=

∏

i∈p̄r⃗

σx
i |GS〉 . (11)

Here r⃗ denotes the position of the unit cell, while l ∈ {1, 2} denotes the position inside the unit
cell of the honeycomb lattice. As in [47], pr⃗,l (p̄r⃗) is a straight open path on the (dual lattice of
the) honeycomb lattice which extends from the excitation to infinity in negative x-direction.

2.2 Mapping to the toric code on the triangular lattice

While in all the other parts of this paper we investigate the toric code on the honeycomb lattice,
in this subsection we show how the results can be transferred exactly to the toric code on the
triangular lattice by a duality mapping and a rotation. Indeed, the triangular lattice is dual to
the honeycomb lattice and the very same spin sites reside on the links of both lattices. This
fact becomes obvious comparing Fig. 1 to the left part of Fig. 3.

It is the nature of a duality mapping to identify the vertices of the original lattice with
the tiles of the dual lattice and vice versa, so it is natural that six-spin plaquette Z operators
correspond to six-spin vertex operators Z and three-spin vertex operators X to three-spin
plaquette operators X . With this mapping to the dual lattice the Hamiltonian (1) becomes

H tcf
dual = −

1
2

∑

X −
1
2

∑

Z −
∑

i

h⃗ · σ⃗i . (12)

In a next step we express the Pauli matrices in a rotated basis. To this end we rotate the vector
σ⃗ = (σx ,σ y ,σz)T by π/2 around the y-axis and then by π around the x-axis

Rx(π)R y(π/2) · σ⃗ = Rx(π) · (σz ,σ y ,−σx) = (σz ,−σ y ,σx) = ˜⃗σ . (13)
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Accordingly, the operators X and Z in the new basis read

Z̃ =
∏

i∈
σ̃z

i =
∏

i∈
σx

i = X ← [ X , (14)

X̃ =
∏

i∈
σ̃x

i =
∏

i∈
σz

i = Z ← [ Z , (15)

which are the stabilizer operators of the toric code on the triangular lattice as illustrated in

Fig. 3. Applying the same basis transformation to h⃗ we obtain ˜⃗h = (hz ,−hy , hx) and the
Hamiltonian in the new basis reads

H tcf = −
1
2

∑

Z̃ −
1
2

∑

X̃ −
∑

i

˜⃗h · ˜⃗σi , (16)

which is the Hamiltonian of the toric code in a uniform magnetic field on the triangular lattice.
As a consequence, the results for the toric code on the honeycomb lattice in a uniform field

h⃗ are equivalently valid for the toric code on the triangular lattice in a uniform field ˜⃗h. So,
although in the other parts of this work we investigate the toric code on the honeycomb lattice,
the results can be transferred exactly to the toric code in a field on the triangular lattice.

3 Methods

This section contains all relevant aspects of the applied methods which are needed for the
discussion of the results presented in the following sections.

3.1 Low-field expansion

To locate the breakdown of the topological phase in a general xz-field, we use the pCUT
method [48,49] to calculate the charge gap∆ and the flux gap∆ in the thermodynamic limit
as a high-order series about the low-field limit. The analysis of the gap closing by extrapolation
techniques (see Subsec. 3.2) allows to locate quantum critical points and determine associated
critical exponents for a given field direction.

In the low-field expansion, we can express the field term
∑

i hxσ
x
i as T f

+2+ T f
−2+ T f

0, since
a field in x-direction either creates a flux-pair T f

+2, annihilates a flux-pair T f
−2 or moves a single

flux by T f
0 on the respective bonds. Similarly, the field in z-direction

∑

i hzσ
z
i can be expressed

as T c
+2+T c

−2+T c
0 , as it creates a charge-pair, annihilates a charge-pair or moves a charge on the

respective bonds. In both cases, Tn = T f
n+T c

n fullfills the commutation relation [H tc, Tn] = nTn,
with n representing the net change in total charge and flux particle numbers resulting from
the action of Tn. Hence, for finite fields, the system poses a formidable quantum many-body
problem where the number of bare charges and fluxes is no longer conserved and elementary
charge and flux excitations acquire a finite dispersion and interact. Using properties of the
unperturbed toric code alongside this decomposition facilitates the application of the pCUT
method [48, 49], which has been successfully applied to the conventional toric code on the
square lattice subjected to a magnetic field [25,30,50].

Using the pCUT method, one can map the toric code in a field (1) to an effective Hamil-
tonian Heff which conserves quasi-particle numbers. The mapping is perturbatively exact up
to the calculated order in the expansion parameters hx and hz . This Hamiltonian satisfies
[H tc, Heff] = 0, rendering it block-diagonal, thus reducing the quantum many-body problem
to a few-body problem in terms of dressed charge and flux excitations. In this work we focus
on the one-particle subspace, which contains the decoupled one-charge and one-flux excitation
energies.
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Often the most efficient way to extract high-order series of one-particle excitation energies
is to exploit the linked-cluster theorem and set up a full graph decomposition [51–53]. Here we
use an expansion in terms of hypergraphs [54], which has been recently extended to perturbed
topological phases allowing to incorporate the non-local mutual anyonic statistics of charges
and fluxes into a graph decomposition [47]. We applied the same approach as described in
Ref. [47] to calculate the one-quasi-particle charge and flux excitation energies as well as the
ground-state energy per site up to order 10 perturbation theory in the parameters hx and hz .

The effective Hamiltonian in the single charge and the single flux sector is given by a
one-particle hopping problem. As the effective one-charge (one-flux) Hamiltonian is a lat-
tice hopping problem on a honeycomb (triangular) lattice it can be diagonalized by a Fourier
transformation.

Let us first consider the one-charge state |r⃗, l; 〉 with l ∈ {1, 2} denoting the two sites
of the unit cell located at r⃗ on the honeycomb lattice. The real space one-particle hopping
amplitudes a

δ⃗,lm
with l, m ∈ {1,2} as a high-order series are given by

a
δ⃗,lm
= 〈r⃗ + δ⃗, l; |Heff − E0 |r⃗, m; 〉 . (17)

The single-charge problem on the honeycomb lattice can then again be simplified in Fourier

space by introducing momentum states |k⃗, l; 〉 ≡
Ç

2
Ns

∑

r⃗ exp(ik⃗ r⃗) |r⃗, l; 〉. This yields a 2× 2

matrix per momentum k⃗

ωlm(k⃗)≡ 〈k⃗, l; |Heff − E0 |k⃗, m; 〉 , (18)

which can be easily diagonalized. One therefore obtains two single-flux bands. The overall
minimum of the two bands is called the one-charge gap∆ . It is located at k⃗ = (0,0) for hz > 0
and at k⃗ = (π,π) for hz < 0. However, due to the bipartite structure of the honeycomb lattice,
one finds that the gap series is identical for negative and positive hz . The explicit series of the
ground-state energy per site as well as the charge and flux gap are listed in App. A.

Next we consider the one-flux state |r⃗; 〉. We have calculated the real space one-particle
hopping amplitudes a

δ⃗
as a high-order series given by

a
δ⃗
= 〈r⃗ + δ⃗; |Heff − E0 |r⃗; 〉 . (19)

The single-flux problem on the triangular lattice can then be diagonalized in Fourier space by

introducing momentum states |k⃗; 〉 ≡
r

1
Np

∑

r⃗ exp(ik⃗ r⃗) |r⃗; 〉 yielding the one-flux dispersion

ω (k⃗)≡ 〈k⃗; |Heff − E0 |k⃗; 〉 . (20)

The minimum of ω (k⃗) is called the one-flux gap ∆ . It is located at k⃗ = (0, 0) for hx > 0 and
at k⃗ = ±(2π

3 ,−2π
3 ) for hx < 0.

3.2 Extrapolation methods

The investigated high-order series in two perturbation parameters λ1 and λ2 are of the form

fomax
(λ1,λ2) =

omax
∑

j=0

j
∏

k=0

a j,kλ
k
1λ

j−k
2 , (21)

where a j,k are real coefficients and omax is the achieved highest order. In order to obtain a
series in a single variable, one can always express (λ1,λ2) as λ (cos(φ), sin(φ)), such that
Eq. (21) can be rewritten as

fomax
(λ,φ) =

omax
∑

j=0

λ j
j
∏

k=0

a j,k cos(φ)k sin(φ) j−k . (22)
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This function can then be analyzed for fixed φ and different orders j ∈ [1,2, . . . , omax] such
that we are left with only the absolute value λ as free variable.

To enhance the convergence radius of the bare series, we use Padé and DLogPadé extrapola-
tions. A detailed introduction of these techniques can be found in [55]. The Padé extrapolation
of a function fo,φ is given by

P[L, M] fo,φ
(λ) =

PL(λ)
QM (λ)

=
p0 + p1λ

1 + . . .+ pLλ
L

q0 + q1λ1 + . . .+ qMλM
. (23)

Here PL and QM are polynomials of order L and M with L + M ≤ o. The coefficients pi and
qi can be determined uniquely using the condition that for a given order o and at given fixed
angle φ, the Taylor expansion of the Padé extrapolant at λ= 0 must be equivalent to fo,φ(λ).

To describe continuous quantum phase transition displaying algebraic behaviour close to
a quantum critical point λc, DLogPadé extrapolation is necessary. Specifically, the gap closing
at λc behaves as

∆∝ (λ−λc)
zν (24)

close to the critical point, where z is the dynamical exponent and ν the correlation length
exponent [56]. Considering the logarithmic derivative, one obtains

d
dλ

log[∆(λ)] =
∆′(λ)
∆(λ)

∝
zν

(λ−λc)
. (25)

Applying a Padé extrapolation to Eq. (25) with L+M ≤ o−1 then allows to extract the critical
point as the pole and the critical exponent zν as the residue. This technique is called DLogPadé
extrapolation.

A DLogPadé approximant [L, M] can display unphysical poles. To identify the physically
relevant ones, prior knowledge of the system is required, since sometimes unphysical poles
appear before the physical ones spoiling the extrapolation. Further, the location of a physical
pole and its associated critical exponent can be distorted by other, non-physical poles. To
ensure that we only take into account the relevant poles that are not deformed by unphysical
ones, we disregard DLogPadé approximants with other poles within a radius |λ|= 0.02 in the
complex plane.

In this work, we calculate the low-field series expansion of the charge and flux gap up to
order 10 in the two perturbation parameters hx and hz . We use DLogPadé approximants [4, 5],
[5,4], [3,6], [6,3], and [4,4] as best, most diagonal approximants. In the following, we will
always determine the average of these approximants with a confidence band that depicts the
sample standard deviation to estimate the uncertainty of the extrapolation. We further select
the physical poles from all possible poles by using their proximity to already known poles.
This is done by extrapolating f10(h,φ) for φ = {0, π2 ,π} and adding/subtracting∆φ = 0.005.
For every increment, the pole closest to the pole selected before is chosen as the physical
pole. However, in certain field directions, it can happen for specific DLogPadé approximants
that poles deviate from the other DLogPadé approximants, which originates from other non-
physical poles in the complex plane.

3.3 Stochastic series expansion quantum Monte Carlo

As we will demonstrate in Sec. 4.2, it is possible to map the charge-free sector of the toric code
on the honeycomb lattice in a negative magnetic field on the frustrated antiferromagnetic
transverse-field Ising model (TFIM) on the triangular lattice. Therefore, we are interested in
the ground-state energy of this model to infer the lowest energy of the charge-free sector. To
achieve this objective, we apply the stochastic series expansion (SSE) quantum Monte Carlo
(QMC) technique taylored for this specific model by S. Biswas et al. [57,58].
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The Hamiltonian of the antiferromagnetic TFIM is given by

H = J
∑

〈i, j〉

σz
iσ

z
j − h
∑

i

σx
i , (26)

with Pauli matrices σx/z
i describing spin 1/2 degrees of freedom at position r⃗i , the strength

of the Ising interaction J > 0, the transverse-field strength h, and the sum over nearest-
neighboring sites 〈i, j〉 [59–61]. Regarding the spectrum of the antiferromagnetic Ising model
in the absence of a transverse field, one observes an extensive ground-state degeneracy due to
geometric frustration [62,63]. This originates from the fact that it is not possible to align the
spins on a triangle in a way to optimize all antiferromagnetic couplings. A single decoupled
triangle with antiferromagnetic Ising interactions has six degenerate ground states (three con-
figurations with two spins up one down and three with two down one up) and two degenerate
excited states (all spins equally oriented).

The competing nature of the antiferromagnetic interaction in the regarded model ren-
ders the well established SSE QMC sampling of general TFIMs introduced by A. Sandvik [64]
impractical due to large autocorrelation times between configurations in the Monte Carlo
time [57,58].

The SSE approach is based on a high-temperature expansion of the partition function

Z = Tr{e−βH}=
∞
∑

n=0

∑

{|α〉}

(−β)n

n!
〈α|Hn |α〉 . (27)

The key idea is to extend the configuration space in imaginary time by using an adequate
decomposition H = −

∑

i Hi to rewrite

Hn = (−1)n
∑

Sn

n
∏

p=1

Hi , (28)

as a sum of sequences Sn of the operators Hi [64–67]. The SSE method approximates (27)
by neglecting operator sequences Sn longer than some appropriately chosen L [64, 65]. Se-
quences with less than L operator-index pairs are padded to length L by randomly inserting
identity operators [64–67]. This leads to an efficient sampling scheme with an exponentially
small error [64]. The configuration space to be sampled by a Markov chain Monte Carlo
(MCMC) is C = {SL} × {|α〉}. In the general approach to TFIMs the Hamiltonian is decom-
posed into Ising bond operators |J | − Jσz

iσ
z
j , transverse-field operators hσx

i and further phys-
ically not relevant operators required for algorithmic reasons [64]. The MCMC sampling is
then performed by repeating diagonal update steps followed by off-diagonal quantum cluster
updates [64]. In the diagonal update, step operators Hi , which are diagonal in the computa-
tional basis, are exchanged in the sequence with identity operators and vice versa following a
Metropolis-Hastings scheme [64]. In the off-diagonal update, quantum clusters in space and
imaginary time are constructed which can be flipped without changing the weight of the cur-
rent configuration [64]. The major development by S. Biswas et al. [57, 58] is to decompose
the Ising interaction not into bonds, but into operators associated with the triangles of the
triangular lattice

J
∑

〈i, j〉

σz
iσ

z
j =

J
2

∑

κ∈{ , }

�

σz
κ,1σ

z
κ,2 +σ

z
κ,2σ

z
κ,3 +σ

z
κ,3σ

z
κ,1

�

, (29)

where κ ∈ { , } runs over all triangles of the lattice and {1, 2,3} denotes the spins within the
triangle. This decomposition allows for the formulation of an off-diagonal quantum cluster
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Figure 4: Extrapolation of the ground-state energy per site eqmc
0 for the antiferromag-

netic TFIM on the triangular lattice at a transverse-field h = 1.6 and Ising coupling
J = 1.

update which copes with the frustration induced state structure on the triangles in a natural
way [57, 58]. With this taylored quantum cluster update the correlation between configura-
tions in Monte Carlo time is reduced substantially and an efficient Monte Carlo sampling is
enabled [57, 58]. In this work, we will not provide any further description of the algorithm,
since we follow precisely the scheme described in Refs. [57,58]. For details on the algorithmic
design we recommend the Refs. [57,58,64,67].

The SSE method is a finite-temperature finite-system QMC technique. To obtain a ground-
state sampling, the temperature needs to be sufficiently low such that the contribution of
excited states to the averaged observables is negligible. We follow the systematic approach
described in Ref. [68] to ensure the convergence in temperature within the statistical Monte
Carlo error. Therefore, the measured observables are at effectively zero temperature.

Using the SSE QMC sampling we measure the mean energy which corresponds to the
ground-state energy, if measured at zero temperature [67]. We perform the SSE QMC simula-
tions on L × L patches of the triangular lattice with periodic boundary conditions for
L ∈ {12, 18,24, 30} at temperatures of β/J = 256. Further, we extrapolate the ground-state
energies to the thermodynamic limit (see Fig. 4). With this procedure we are able to deter-
mine estimates for the ground-state energies of the antiferromagnetic TFIM on the triangular
lattice in the thermodynamic limit.

4 Phase transitions for single parallel fields

In this section we focus on the two single-field cases h⃗ = (0,0, hz) and h⃗ = (hx , 0, 0) for the
toric code on the honeycomb lattice. These field directions are special because in each case (i)
one of the two types of stabilizer operators still commutes with the Hamiltonian and (ii) exact
duality mappings to TFIMs exist for specific subspaces. Together with our results from series
expansions and quantum Monte Carlo simulations, this allows the quantitative calculation of
the quantum phase diagram in these field directions.
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Figure 5: Left: Dual lattice of the stars, which are located on the vertices of the
honeycomb lattices and form an honeycomb lattice themselves. Right: Dual lattice
of the plaquettes, which are located on the faces of the honeycomb lattice and form
a triangular lattice.

4.1 Magnetic field in z-direction

Setting h⃗= (0, 0, hz), the Hamiltonian (1) reads

H tc
z = −

1
2

∑

X −
1
2

∑

Z − hz

∑

i

σz
i . (30)

In this case, the plaquette operators still commute with the Hamiltonian and their eigenvalues
remain conserved quantities. The low-energy physics of both the low-field topological phase
of the toric code as well as of the high-field polarized phase is contained in the flux-free sector
with z = +1 for all . This can be rigorously shown in the limit that fluxes cost infinite energy.
In this subspace, H tc

z reduces to

H tc,fluxfree
z = −

Np

2
−

1
2

∑

X − hz

∑

i

σz
i . (31)

By considering x = ±1 as eigenvalue of a pseudo-spin 1/2 Pauli matrix µz located on the
vertices of the honeycomb lattice, one finds the non-local duality mapping of H tc,fluxfree

z to the
TFIM on the honeycomb lattice

H tfim
honeycomb = −

1
2

∑

µz − hz

∑

〈 , ′〉

µxµx
′ , (32)

as illustrated on the left side of Fig. 5. The second sum is over nearest-neighbor stars. We stress
that the mapping does not hold for degeneracies. Since the honeycomb lattice is bipartite,
the TFIM is symmetric under sign change of hz by an appropriate sublattice rotation. As a
consequence, the toric code in a z-field realizes a second-order quantum phase transition in the
3D Ising⋆ universality class [69,70] between the topologically ordered and the polarized phase.
The quantum critical point is located at hz,c = 0.234467(5) which was determined by cluster
Monte Carlo simulations in Ref. [71]. In order to gauge the quality of the low-field expansion,
we performed DLogPadé extrapolation of the charge gap (see Subsec. 3.2 and App. A for the
series). Note that to the best of our knowledge, for the TFIM on the honeycomb lattice the
series of the high-field gap has not yet been calculated. The critical field strength hz,c and
the critical exponent zν extracted from various DLogPadé extrapolants are listed in Tab. 1 in
App. B. Averaging over highest-order extrapolants, yields hz,c = 0.2352(9) and zν= 0.653(10)
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fully consistent with hz,c = 0.234467(5) from quantum Monte Carlo Simulations of the TFIM
on the honeycomb lattice and the expected phase transition in the the 3D Ising⋆ universality
class zν = 0.629971(4) [72]. Let us note that a slight overestimation of the critical exponent
is well known from extrapolations of high-order series. The quantum phase diagram of the
toric code on the honeycomb lattice in a z-field therefore consists of the topologically ordered
phase for |hz| < hz,c and a high-field polarized phase separated by a second-order quantum
phase transition in the 3D Ising⋆ universality class.

4.2 Magnetic field in x -direction

Setting h⃗= (0, 0, hx), the Hamiltonian (1) can be written as

H tc
x = −

1
2

∑

X −
1
2

∑

Z − hx

∑

i

σx
i . (33)

In this case the eigenvalues of star operators remain conserved quantities. However, the
physics depends strongly on the sign of hx . In the following we therefore discuss both cases
separately.

For positive hx > 0, a similar line of arguments can be made as for the z-field. The low-
energy physics is contained in the charge-free sector with x = +1 for all so that H tc

x reduces
to

H tc,chargefree
x = −

Ns

2
−

1
2

∑

Z − hx

∑

i

σx
i (34)

in this subspace. Again considering z = ±1 as eigenvalue of a pseudo-spin 1/2 Pauli matrix
µz located on the plaquette centers of the honeycomb lattice, one finds the non-local duality

mapping of H tc,chargefree
x to the ferromagnetic TFIM

H tfim
triangular = −

1
2

∑

µz − hx

∑

〈 , ′〉

µxµx
′ , (35)

on the triangular lattice as illustrated on the right side of Fig. 5. For positive hx , the toric code in
an x-field is therefore isospectral to the ferromagnetic TFIM on a triangular lattice, which again
realizes a quantum phase transition in the 3D Ising∗ universality class. The quantum critical
point is located at hx ,c = 0.104863(2) obtained from quantum Monte Carlo simulations [71].
Our results are consistent with the high-field expansion of the ferromagnetic TFIM on the
triangular lattice by He et al. [73].

As for the z-field case, we gauge the quality of the low-field expansion by performing
DLogPadé extrapolation of the flux gap (see App. A for the series). The critical field strength
hx ,c and the critical exponent zν extracted from various DLogPadé extrapolants are listed in
Tab. 2 in App. B. Averaging over highest-order extrapolants yields h+x ,c = 0.10491(13) and
zν = 0.6404(11) fully consistent with h+x ,c = 0.104863(2) from quantum Monte Carlo simu-
lations of the ferromagnetic TFIM on the triangular lattice and the expected phase transition
belonging to the 3D Ising universality class zν = 0.629971(4) [72]. Let us note again that a
slight overestimation of the critical exponent is well known from extrapolations of high-order
series.

For hx < 0, the situation is completely different. First, the high-field polarized phase is
not in the charge-free sector, but in the charge-full sector with x = −1 for all . Second, the
analogue duality mapping in the charge-free sector yields the antiferromagnetic TFIM on the
triangular lattice (Hamiltonian (35) with hx < 0). This highly frustrated model is known to
realize a quantum phase transition in the 3D XY universality class separating the polarized
phase from the three-sublattice ordered phase resulting from an order by disorder scenario.
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Figure 6: Comparison of the ground-state energy for different phases and charge-
sectors. Blue lines show the average of Padé extrapolants of order 10 for the topolog-
ical phase from the low-field expansion and the fully polarized phase from the high-
field expansion. The ground-state energy of the charge-free and polarized (charge-
full) sector intersect at h−x ,1st = −1.0982(1).

Consequently, we coin the associated phase in the original formulation of the toric code in this
field direction dual clock-order phase. The quantum critical point is located at h−c = −0.303(9)
obtained from quantum Monte Carlo simulations [61] and high-order series expansion [74].

Next we investigate whether the 3D XY⋆ quantum phase transition in the charge-free sector
is realized in the phase diagram of the toric code in the x-field or whether the first-order phase
transition to the charge-full polarized phase takes place first when decreasing hx from zero to
−∞. To this end we compare the ground-state energy per site eqmc

0 of the transverse-field
Ising model on the full parameter axis obtained by quantum Monte Carlo simulations (see
Subsec. 3.3) to the ground-state energy per site ehf

0 from high-order series expansion about the
high-field polarized limit. The crossing point of both energies corresponds to the first-order
phase transition between the charge-free and charge-full sector. It can then be compared to
the quantum critical point h−x ,c of the 3D XY⋆ transition in the charge-free sector.

Our findings are shown in Fig. 6. This clearly indicates that the first-order phase transition
occurs for h−x ,1st = −1.0982(1) < h−x ,c so that the 3D XY⋆ quantum phase transition is part of
the quantum phase diagram. Let us note that one can tune the first-order phase transition
between the charge-free and charge-full sector by introducing anisotropic couplings in front
of star and plaquette operators. Concretely, if one decreases the coupling of star operators
from −1/2 to large negative values, then the energetic costs of charges become also large and
therefore the first-order phase transition shifts to large negative hx values. We further stress
that this analysis was restricted to the charge-free and the charge-full sector. It would certainly
be interesting to also investigate the other sectors.

The 3D XY quantum phase transition of the antiferromagnetic TFIM is expected for
h−x ,c = 0.303(9) with zν = 0.67169(7) [75, 76]. The critical field strength h−x ,c and the criti-
cal exponent zν extracted from various DLogPadé extrapolants are listed in Tab. 3 in App. B.
Averaging over highest-order extrapolants gives h−z,c = 0.3059(4) and zν = 0.720(5). One
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notices an enhanced uncertainty of the extrapolation around the expected values. This can
be traced back to the slower convergence of the DLogPadé extrapolants due to the alternating
sign structure of the series of the flux gap (see App. A).

The quantum phase diagram of the toric code on the honeycomb lattice in an x-field is
therefore richer than the one in the z-field as well as the one of the toric code in a single
parallel field on the square lattice. For hx > 0, one has a single second-order phase transition
in the 3D Ising⋆ universality class at h+x ,c separating the low-field topological phase from the
high-field polarized phase. For hx < 0, there is a second-order phase transition in the 3D XY⋆

universality class at h−x ,c between the topological phase and a phase with three-sublattice order
and a first-order phase transition at h−x ,1st < h−x ,c to the high-field polarized phase.

5 Phase transitions out of the topological phase in the x z-plane

In this part we investigate the quantum robustness of the topological phase in the full parallel
field plane h = (hx , 0, hz). Here, no exact mappings can be exploited. We therefore focus
on the low-field expansion of the charge and flux gap and study the gap-closing transitions
by DLogPadé extrapolation. As shown in the last section, this yields satisfactory results in all
single-field cases. We therefore extrapolate the charge and the flux gap for all field directions
and analyze which gap for which momentum closes first, which locates the breakdown of the
topological phase. Our results for the extension of the topological phase in the xz-plane are
shown in Fig. 7 and the corresponding results for the critical exponent zν are plotted in Fig. 8.

The extension of the topological phase is symmetric with respect to hz ↔ −hz while it
is asymmetric for hx ↔−hx . The upper and lower critical line include the single-field cases
for hx = 0 where a closing of the charge gap and a second-order 3D Ising⋆ phase transition
is known. Because the critical exponent zν ≈ 0.64 is essentially constant on this critical line
(see domain (I) in Fig. 8), we associate a 3D Ising⋆ universality class on the whole line in
full analogy to the well studied toric code in a parallel field on the square lattice [25, 30].
The same universality class is present on the right critical line for hx > 0 (see domain (II) in
Fig. 8). On this line the flux gap with momentum k⃗ = (0, 0) is closing, which includes also the
single-field case hz = 0 where the low-energy physics is described by the ferromagnetic TFIM
on the triangular lattice. In contrast, on the left critical line with hx < 0, the flux gap closes
at momenta k⃗ = ±(2π

3 ,−2π
3 ). This line includes the case hz = 0, where the low-energy physics

corresponds to the frustrated antiferromagnetic TFIM on the triangular lattice and where the
quantum phase transition is in the 3D XY⋆ universality class. Let us note that the location of the
first-order phase transition to the charge-full sector takes place at smaller values of hx . Again,
the critical exponent zν obtained from various DLogPadé extrapolants is essentially constant
along this line so that the quantum phase transition is expected to be 3D XY⋆ on this parameter
line.

Notably, the values of the critical exponent zν deviate from the expected values for 3D
Ising⋆ and 3D XY⋆ at all crossing points, where the charge and the flux gap close simultaneously.
One has to distinguish two situations: First, there are crossing points where two critical lines
belonging to the (same) 3D Ising⋆ universality class come together. Here the flux and the
charge gap close simultaneously for the momenta k⃗ = (0, 0) or k⃗ = (π,π). This situation is
similar to the one of the toric code in a parallel field on the square lattice [25,30]. However,
in the latter case the model possesses a symmetry so that the crossing point is exactly located
on the parameter lines hx = ±hz . On the honeycomb lattice this symmetry is not present.
It is therefore remarkable that the critical exponent from series expansion is zν ≈ 0.75 and
therefore very similar to the square lattice case. We therefore conjecture that these crossing
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Figure 7: Extension of the topological phase as a function of hx and hz . Solid lines
correspond to the gap closing obtained from DLogPadé extrapolation of the flux and
charge gap including standard deviation as a shaded confidence band. Quantum
phase transitions at hx = 0 are 3D Ising⋆ transitions known from the duality mapping
to the TFIM on the unfrustrated honeycomb lattce. Quantum phase transitions at
hz = 0 are 3D Ising⋆ (3D XY⋆) transitions known from the duality mapping to the
ferromagnetic (antiferromagnetic) TFIM on the triangular lattice for hx > 0 (hx < 0).

points are multi-critical points belonging to the same universality class as the ones on the
square lattice for hx = ±hz . Second, there are crossing points where a 3D Ising⋆ and a 3D
XY⋆ critical line merge corresponding to a simultaneously closing of the charge and flux gap
at different momenta. We note that the critical exponents from the extrapolation of the two
series do not agree (zν≈ 0.7 for the flux gap and zν≈ 0.8 for the charge gap). This behavior
of the extrapolation is very interesting, but certainly deserves a deeper understanding which
is beyond the capabilities of the series expansion.
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Figure 8: Averaged critical exponent zν plotted in color against the angle φ
parametrizing the magnetic field as h⃗= |h|(cos(φ), 0, sin(φ)). The horizontal dashed
lines indicate the literary values for the critical exponent zν of the 3D Ising⋆ and 3D
XY⋆ universality class, taken from [72] and [75,76], respectively. The light grey lines
depict the individual DLogPadé approximants used in the averaging. Vertical lines
separate the domains (I)-(IV). Domain (I) is associated with the closing of the flux
gap at k⃗ = (0, 0) corresponding to a 3D Ising⋆ quantum phase transition. Domain
(II) is associated with the closing of the charge gap at k⃗ = (0, 0) corresponding to a
3D Ising⋆ quantum phase transition. Domain (III) is associated with the closing of
the flux gap at k⃗ = ±(2π

3 ,−2π
3 ) corresponding to a 3D XY⋆ transition. Domain (IV) is

associated with the closing of the flux gap at k⃗ = (π,π) corresponding to a 3D Ising⋆

quantum phase transition. The boundaries between different domains are associated
with potential multicritical points.

6 Conclusions

In this work we have calculated the quantum robustness of the topological phase for the toric
code on the honeycomb lattice in the presence of a uniform parallel field. For the single-
parallel field cases in x- and z-direction duality transformations allow quantitative insights
of the full quantum phase diagram. One finds a second-order quantum phase transition in
the 3D Ising⋆ universality class for a z-field independent of the sign of the field separating
the topological phase from the high-field polarized phase. The same is true for positive fields
in x-direction where an analogue mapping in the charge-free sector yields a ferromagnetic
TFIM on the triangular lattice. In contrast, for negative x-fields the low-energy physics of the
charge-free sector is given by the highly frustrated antiferromagnetic TFIM on the triangular
lattice displaying a 3D XY⋆ phase transition. However, the charge-free sector does not contain
the high-field polarized phase for negative x-fields and a first-order phase transition to the
polarized phase in the charge-full sector takes place at larger negative field values, which can
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be quantitatively located by comparing quantum Monte Carlo simulations and high-field series
expansions. At this point it should be stressed, that we only considered the charge-free and
charge-full sectors, while all other sectors of fractional filling were neglected. A more thorough
analysis is needed, since the tools presented in this work do not allow for an examination of
those sectors. The full extension of the topological phase in the xz-field plane can then be
determined by low-field series expansions analyzing the closing of the charge and/or flux
gap. One obtains critical lines of 3D Ising⋆ and 3D XY⋆ type. The crossing points between
the two universality classes correspond to the simultaneous closing of both gaps. Here the
extrapolation of the gap series reveals enhanced values for the critical exponents zν indicating
different quantum-critical properties. This is similar to the same findings for the toric code in
a parallel field on the square lattice [25,30,38].

In an next step it would be interesting to explore the full quantum phase diagram also
outside the topological phase. One interesting question is the evolution of the first-order point
on the hz = 0 axis and hx < 0 in the xz-field plane. Another relevant aspect is the inclusion
of a transverse field hy and its influence of the topological phase as well as the associated
phase transitions. Overall, as for the toric code on the dice lattice [31], this shows that geo-
metric frustration can induce interesting novel properties in topological phases. It would be
interesting to apply quantum Monte Carlo simulations or tensor network calculations to get a
deeper understanding of these quantum-critical properties. This would also allow to investi-
gate whether other sectors different to the charge-free and charge-full sector are relevant for
the quantum phase diagram at negative x-fields.
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A Series from the low-field expansion

This appendix contains the bare series of the ground-state energy per site as well as the charge
and flux gap obtained from low-field series expansions. The ground-state energy per site
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The resulting charge gap ∆ at momentum k⃗ = (0, 0) of the lowest band reads
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For hx > 0, the flux gap ∆pos ≡ω ((0, 0)) reads
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Table 1: Results from the DLogPadé extrapolation of the charge gap at k⃗ = (0, 0) for
a single parallel field h⃗ = (0,0, hz). (a) displays the critical field strength hz,c while
(b) shows the corresponding critical exponent.

L\M 1 2 3 4 5 6 7 8
1 0.24242424 0.25781969 0.23200802 0.23080061 0.23679399 0.23475628 0.23440245 0.23426491
2 0.22916667 0.23148168 0.23715 0.23498765 0.23569037 0.23102955 0.23425861
3 0.23197745 0.22792844 0.23489925 0.23545749 0.23529536 0.23494875
4 0.24172508 0.23721554 0.23573311 0.23528599 0.23658567
5 0.23346587 0.23429127 0.23302091 0.234935
6 0.23438328 0.23386286 0.23408175
7 0.23318416 0.23410348
8 0.23717572

(a)

L\M 1 2 3 4 5 6 7 8
1 0.70523416 0.75134165 0.62558181 0.614496957 0.68549843 0.64861508 0.641914030 0.639186402
2 0.59574382 0.61909147 0.68243442 0.65659783 0.66700772 0.55522007 0.639042419
3 0.62551367 0.587570337 0.65534519 0.66300541 0.660544366 0.65435025
4 0.76845162 0.69232431 0.66773007 0.660382412 0.66232032
5 0.62377308 0.639149164 0.61067312 0.65401315
6 0.65401315 0.630628696 0.635124677
7 0.61535906 0.635619664
8 0.71691764

(b)

For hx < 0, the flux gap ∆neg ≡ω (±(
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3 ,−2π

3 )) reads
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z . (A.4)

B DLogPadé extrapolants of low-field gap series

This appendix contains tables listing the critical point and the critical exponent zν extracted
from different DLogPadé extrapolants of the low-field gap series for different single parallel
field directions. Tab. 1 yields information for h⃗ = (0,0, hz), Tab. 2 yields information for
h⃗= (hx , 0, 0) with hx > 0, and Tab. 3 yields information for h⃗= (hx , 0, 0) with hx > 0.
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Table 2: Results from the DLogPadé extrapolation of the flux gap at k⃗ = (0,0) for a
single parallel field h⃗ = (0, 0, hx) with hx > 0. (a) displays the critical field strength
hx ,c while (b) shows the corresponding critical exponent.

L\M 1 2 3 4 5 6 7 8
1 0.10752688 0.10547699 0.10523805 0.10509224 0.10504679 0.10500772 0.1049713 0.10495553
2 0.10472973 0.10523108 0.1045452 0.10503576 0.1055013 0.10491465 0.10491441
3 0.1053412 0.10509749 0.10503222 0.10497918 0.10489671 0.10491441
4 0.10493661 0.10504401 0.10441976 0.10488783 0.10491162
5 0.10508288 0.10501009 0.10489493 0.10492223
6 0.10493808 0.1049691 0.10491607
7 0.10497757 0.10495585
8 0.10492934

(a)

L\M 1 2 3 4 5 6 7 8
1 0.69372182 0.65821549 0.65298094 0.6489826 0.64748214 0.64597598 0.64434926 0.643553614
2 0.64097951 0.65278152 0.62099623 0.64702799 0.63621634 0.64078947 0.640772037
3 0.65608076 0.649125 0.64687611 0.64453755 0.63942269 0.64077208
4 0.64357776 0.64736425 0.5775624 0.63870883 0.64055052
5 0.64897912 0.646061499 0.63928539 0.64139252
6 0.64274506 0.64422605 0.64090402
7 0.64468254 0.643556558
8 0.64202164

(b)

Table 3: Results from the DLogPadé extrapolation of the flux gap at
k⃗ = ±(2π/3,−2π/3) for a single parallel field h⃗= (0, 0, hx)with hx < 0. (a) displays
the critical field strength hx ,c while (b) shows the corresponding critical exponent.
Asterisk mark values for [L,M], where the extrapolations failed due to complex poles.

L\M 1 2 3 4 5 6 7 8
1 * 0.33333333 0.30312643 0.31005218 0.30233198 0.31285739 0.2944598 *
2 * 0.29563016 0.30863659 0.30620068 0.30648033 0.30529545 0.30572772
3 * 0.31505976 0.30536853 0.30646905 0.30624098 0.30562624
4 * 0.29660536 0.3067845 0.30583112 0.30553719
5 * 0.32009256 0.30451723 0.30557599
6 * 0.27812109 0.30627714
7 * 0.38512218
8 *

(a)

L\M 1 2 3 4 5 6 7 8
1 * 0.88888889 0.70539914 0.7597267 0.68373644 0.82266529 0.57664826 *
2 * 0.6476255 0.74547404 0.72483014 0.72757445 0.71374833 0.71962492
3 * 0.81342571 0.71623331 0.72743868 0.725145897 0.7180595
4 * 0.61761575 0.73136813 0.7204745 0.71669371
5 * 0.94291929 0.70292324 0.7172923
6 * 0.37495053 0.72853634
7 * 4.33852875
8 *

(b)

21

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053


SciPost Phys. 17, 053 (2024)

References

[1] X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in
the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41,
9377 (1990), doi:10.1103/PhysRevB.41.9377.

[2] X. G. Wen, Topological order in rigid states, Int. J. Mod. Phys. B 04, 239 (1990),
doi:10.1142/S0217979290000139.

[3] X.-G. Wen, Quantum field theory of many-body systems: From the origin of sound to an
origin of light and electrons, Oxford University Press, Oxford, UK, ISBN 9780191713019
(2007), doi:10.1093/acprof:oso/9780199227259.001.0001.

[4] R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum
fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983),
doi:10.1103/PhysRevLett.50.1395.

[5] D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-dimensional magneto-
transport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982),
doi:10.1103/PhysRevLett.48.1559.

[6] L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010),
doi:10.1038/nature08917.

[7] L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502
(2016), doi:10.1088/0034-4885/80/1/016502.

[8] G. Semeghini et al., Probing topological spin liquids on a programmable quantum simula-
tor, Science 374, 1242 (2021), doi:10.1126/science.abi8794.

[9] R. Verresen, M. D. Lukin and A. Vishwanath, Prediction of toric code topological order from
Rydberg blockade, Phys. Rev. X 11, 031005 (2021), doi:10.1103/physrevx.11.031005.

[10] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin and S. Sachdev, Quantum phases of
Rydberg atoms on a kagome lattice, Proc. Natl. Acad. Sci. 118, e2015785118 (2021),
doi:10.1073/pnas.2015785118.

[11] P. S. Tarabunga, F. M. Surace, R. Andreoni, A. Angelone and M. Dalmonte, Gauge-
theoretic origin of Rydberg quantum spin liquids, Phys. Rev. Lett. 129, 195301 (2022),
doi:10.1103/PhysRevLett.129.195301.

[12] Z. Yan, Y.-C. Wang, R. Samajdar, S. Sachdev and Z. Y. Meng, Emergent glassy be-
havior in a Kagome Rydberg atom array, Phys. Rev. Lett. 130, 206501 (2023),
doi:10.1103/physrevlett.130.206501.

[13] J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37,
1 (1977), doi:10.1007/BF02727953.

[14] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144
(1982), doi:10.1103/PhysRevLett.48.1144.

[15] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003),
doi:10.1016/s0003-4916(02)00018-0.

22

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1093/acprof:oso/9780199227259.001.0001
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1103/physrevx.11.031005
https://doi.org/10.1073/pnas.2015785118
https://doi.org/10.1103/PhysRevLett.129.195301
https://doi.org/10.1103/physrevlett.130.206501
https://doi.org/10.1007/BF02727953
https://doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1016/s0003-4916(02)00018-0


SciPost Phys. 17, 053 (2024)

[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-abelian
anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008),
doi:10.1103/RevModPhys.80.1083.

[17] F. A. Bais, B. J. Schroers and J. K. Slingerland, Broken quantum symmetry
and confinement phases in planar physics, Phys. Rev. Lett. 89, 181601 (2002),
doi:10.1103/PhysRevLett.89.181601.

[18] F. A. Bais and C. J. M. Mathy, The breaking of quantum double symmetries by defect con-
densation, Ann. Phys. 322, 552 (2007), doi:10.1016/j.aop.2006.05.010.

[19] F. A. Bais and J. K. Slingerland, Condensate-induced transitions between topologically or-
dered phases, Phys. Rev. B 79, 045316 (2009), doi:10.1103/PhysRevB.79.045316.

[20] F. J. Burnell, S. H. Simon and J. K. Slingerland, Condensation of achiral simple currents in
topological lattice models: Hamiltonian study of topological symmetry breaking, Phys. Rev.
B 84, 125434 (2011), doi:10.1103/PhysRevB.84.125434.

[21] F. J. Burnell, Anyon condensation and its applications, Annu. Rev. Condens. Matter Phys.
9, 307 (2018), doi:10.1146/annurev-conmatphys-033117-054154.

[22] S. Trebst, P. Werner, M. Troyer, K. Shtengel and C. Nayak, Breakdown of a topological
phase: Quantum phase transition in a loop gas model with tension, Phys. Rev. Lett. 98,
070602 (2007), doi:10.1103/PhysRevLett.98.070602.

[23] A. Hamma and D. A. Lidar, Adiabatic preparation of topological order, Phys. Rev. Lett.
100, 030502 (2008), doi:10.1103/PhysRevLett.100.030502.

[24] J. Yu, S.-P. Kou and X.-G. Wen, Topological quantum phase transition in the transverse Wen-
plaquette model, Europhys. Lett. 84, 17004 (2008), doi:10.1209/0295-5075/84/17004.

[25] J. Vidal, S. Dusuel and K. P. Schmidt, Low-energy effective theory of the toric
code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009),
doi:10.1103/PhysRevB.79.033109.

[26] J. Vidal, R. Thomale, K. P. Schmidt and S. Dusuel, Self-duality and bound states
of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009),
doi:10.1103/PhysRevB.80.081104.

[27] S. Dusuel, M. Kamfor, K. P. Schmidt, R. Thomale and J. Vidal, Bound states in two-
dimensional spin systems near the Ising limit: A quantum finite-lattice study, Phys. Rev.
B 81, 064412 (2010), doi:10.1103/PhysRevB.81.064412.

[28] I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev and P. C. E. Stamp, Topological multicritical point
in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs
model, Phys. Rev. B 82, 085114 (2010), doi:10.1103/PhysRevB.82.085114.

[29] F. Wu, Y. Deng and N. Prokof’ev, Phase diagram of the toric code model in a parallel mag-
netic field, Phys. Rev. B 85, 195104 (2012), doi:10.1103/PhysRevB.85.195104.

[30] S. Dusuel, M. Kamfor, R. Orús, K. P. Schmidt and J. Vidal, Robustness
of a perturbed topological phase, Phys. Rev. Lett. 106, 107203 (2011),
doi:10.1103/PhysRevLett.106.107203.

[31] K. P. Schmidt, Persisting topological order via geometric frustration, Phys. Rev. B 88,
035118 (2013), doi:10.1103/PhysRevB.88.035118.

23

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.89.181601
https://doi.org/10.1016/j.aop.2006.05.010
https://doi.org/10.1103/PhysRevB.79.045316
https://doi.org/10.1103/PhysRevB.84.125434
https://doi.org/10.1146/annurev-conmatphys-033117-054154
https://doi.org/10.1103/PhysRevLett.98.070602
https://doi.org/10.1103/PhysRevLett.100.030502
https://doi.org/10.1209/0295-5075/84/17004
https://doi.org/10.1103/PhysRevB.79.033109
https://doi.org/10.1103/PhysRevB.80.081104
https://doi.org/10.1103/PhysRevB.81.064412
https://doi.org/10.1103/PhysRevB.82.085114
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1103/PhysRevLett.106.107203
https://doi.org/10.1103/PhysRevB.88.035118


SciPost Phys. 17, 053 (2024)

[32] S. S. Jahromi, M. Kargarian, S. F. Masoudi and K. P. Schmidt, Robustness of a topological
phase: Topological color code in a parallel magnetic field, Phys. Rev. B 87, 094413 (2013),
doi:10.1103/PhysRevB.87.094413.

[33] S. C. Morampudi, C. von Keyserlingk and F. Pollmann, Numerical study of a tran-
sition between Z2 topologically ordered phases, Phys. Rev. B 90, 035117 (2014),
doi:10.1103/PhysRevB.90.035117.

[34] M. D. Schulz and F. J. Burnell, Frustrated topological symmetry breaking: Ge-
ometrical frustration and anyon condensation, Phys. Rev. B 94, 165110 (2016),
doi:10.1103/PhysRevB.94.165110.

[35] Y. Zhang, R. G. Melko and E.-A. Kim, Machine learningZ2 quantum spin liquids with quasi-
particle statistics, Phys. Rev. B 96, 245119 (2017), doi:10.1103/PhysRevB.96.245119.

[36] L. Vanderstraeten, M. Mariën, J. Haegeman, N. Schuch, J. Vidal and F. Verstraete, Bridg-
ing perturbative expansions with tensor networks, Phys. Rev. Lett. 119, 070401 (2017),
doi:10.1103/PhysRevLett.119.070401.

[37] R. Wiedmann, L. Lenke, M. R. Walther, M. Mühlhauser and K. P. Schmidt, Quantum
critical phase transition between two topologically ordered phases in the Ising toric code
bilayer, Phys. Rev. B 102, 214422 (2020), doi:10.1103/PhysRevB.102.214422.

[38] W.-T. Xu, F. Pollmann and M. Knap, Critical behavior of Fredenhagen-Marcu string order
parameters at topological phase transitions with emergent higher-form symmetries, (arXiv
preprint) doi:10.48550/arXiv.2402.00127.

[39] M. Iqbal and N. Schuch, Entanglement order parameters and critical behavior
for topological phase transitions and beyond, Phys. Rev. X 11, 041014 (2021),
doi:10.1103/PhysRevX.11.041014.

[40] M. Schuler, S. Whitsitt, L.-P. Henry, S. Sachdev and A. M. Läuchli, Universal signatures
of quantum critical points from finite-size torus spectra: A window into the operator con-
tent of higher-dimensional conformal field theories, Phys. Rev. Lett. 117, 210401 (2016),
doi:10.1103/PhysRevLett.117.210401.

[41] E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields,
Phys. Rev. D 19, 3682 (1979), doi:10.1103/PhysRevD.19.3682.

[42] C. XU, Unconventional quantum critical points, Int. J. Mod. Phys. B 26, 1230007 (2012),
doi:10.1142/S0217979212300071.

[43] S. V. Isakov, R. G. Melko and M. B. Hastings, Universal signatures of fractionalized quantum
critical points, Science 335, 193 (2012), doi:10.1126/science.1212207.

[44] K. Liu, J. Nissinen, Z. Nussinov, R.-J. Slager, K. Wu and J. Zaanen, Classification of nematic
order in 2+ 1 dimensions: Dislocation melting and O(2)/ZN lattice gauge theory, Phys. Rev.
B 91, 075103 (2015), doi:10.1103/PhysRevB.91.075103.

[45] M. Schuler, L.-P. Henry, Y.-M. Lu and A. Läuchli, Emergent XY* transition driven by
symmetry fractionalization and anyon condensation, SciPost Phys. 14, 001 (2023),
doi:10.21468/SciPostPhys.14.1.001.

[46] M. Kamfor, S. Dusuel, J. Vidal and K. P. Schmidt, Spectroscopy of a topological phase, Phys.
Rev. B 89, 045411 (2014), doi:10.1103/PhysRevB.89.045411.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053
https://doi.org/10.1103/PhysRevB.87.094413
https://doi.org/10.1103/PhysRevB.90.035117
https://doi.org/10.1103/PhysRevB.94.165110
https://doi.org/10.1103/PhysRevB.96.245119
https://doi.org/10.1103/PhysRevLett.119.070401
https://doi.org/10.1103/PhysRevB.102.214422
https://doi.org/10.48550/arXiv.2402.00127
https://doi.org/10.1103/PhysRevX.11.041014
https://doi.org/10.1103/PhysRevLett.117.210401
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1142/S0217979212300071
https://doi.org/10.1126/science.1212207
https://doi.org/10.1103/PhysRevB.91.075103
https://doi.org/10.21468/SciPostPhys.14.1.001
https://doi.org/10.1103/PhysRevB.89.045411


SciPost Phys. 17, 053 (2024)

[47] M. Mühlhauser, V. Kott and K. Schmidt, Incorporating non-local anyonic
statistics into a graph decomposition, SciPost Phys. Core 7, 031 (2024),
doi:10.21468/SciPostPhysCore.7.2.031.

[48] C. Knetter and G. S. Uhrig, Perturbation theory by flow equations: Dimerized and frustrated
S= 1/2 chain, Eur. Phys. J. B 13, 209 (2000), doi:10.1007/s100510050026.

[49] C. Knetter, K. P. Schmidt and G. S. Uhrig, The structure of operators in effective
particle-conserving models, J. Phys. A: Math. Gen. 36, 7889 (2003), doi:10.1088/0305-
4470/36/29/302.

[50] J. Vidal, R. Thomale, K. P. Schmidt and S. Dusuel, Self-duality and bound states
of the toric code model in a transverse field, Phys. Rev. B 80, 081104 (2009),
doi:10.1103/PhysRevB.80.081104.

[51] M. P. Gelfand, Series expansions for excited states of quantum lattice models, Solid State
Commun. 98, 11 (1996), doi:10.1016/0038-1098(96)00051-8.

[52] M. P. Gelfand and R. R. P. Singh, High-order convergent expansions for quantum many
particle systems, Adv. Phys. 49, 93 (2000), doi:10.1080/000187300243390.

[53] J. Oitmaa, C. Hamer and W. Zheng, Series expansion methods for strongly interacting lat-
tice models, Cambridge University Press, Cambridge, UK, ISBN 9780521842426 (2006),
doi:10.1017/CBO9780511584398.

[54] M. Mühlhauser and K. P. Schmidt, Linked cluster expansions via hypergraph decomposi-
tions, Phys. Rev. E 105, 064110 (2022), doi:10.1103/PhysRevE.105.064110.

[55] A. J. Guttmann, Asymptotic analysis of power-series expansions, in Phase transi-
tions and critical phenomena, Academic Press, Cambridge, Massachusetts, USA, ISBN
9780122203138 (1989).

[56] S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, UK,
ISBN 9780521514682 (2011), doi:10.1017/CBO9780511973765.

[57] S. Biswas, G. Rakala and K. Damle, Quantum cluster algorithm for frustrated Ising models
in a transverse field, Phys. Rev. B 93, 235103 (2016), doi:10.1103/PhysRevB.93.235103.

[58] S. Biswas and K. Damle, Singular ferromagnetic susceptibility of the transverse-field
Ising antiferromagnet on the triangular lattice, Phys. Rev. B 97, 085114 (2018),
doi:10.1103/PhysRevB.97.085114.

[59] R. Moessner and S. L. Sondhi, Resonating valence bond phase in the triangular lattice quan-
tum dimer model, Phys. Rev. Lett. 86, 1881 (2001), doi:10.1103/PhysRevLett.86.1881.

[60] R. Moessner and S. L. Sondhi, Ising models of quantum frustration, Phys. Rev. B 63,
224401 (2001), doi:10.1103/PhysRevB.63.224401.

[61] S. V. Isakov and R. Moessner, Interplay of quantum and thermal fluctuations in a frustrated
magnet, Phys. Rev. B 68, 104409 (2003), doi:10.1103/physrevb.68.104409.

[62] G. H. Wannier, Antiferromagnetism. The triangular Ising net, Phys. Rev. 79, 357 (1950),
doi:10.1103/PhysRev.79.357.

[63] G. H. Wannier, Antiferromagnetism. The triangular Ising net, Phys. Rev. B 7, 5017 (1973),
doi:10.1103/PhysRevB.7.5017.

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053
https://doi.org/10.21468/SciPostPhysCore.7.2.031
https://doi.org/10.1007/s100510050026
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1103/PhysRevB.80.081104
https://doi.org/10.1016/0038-1098(96)00051-8
https://doi.org/10.1080/000187300243390
https://doi.org/10.1017/CBO9780511584398
https://doi.org/10.1103/PhysRevE.105.064110
https://doi.org/10.1017/CBO9780511973765
https://doi.org/10.1103/PhysRevB.93.235103
https://doi.org/10.1103/PhysRevB.97.085114
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/physrevb.68.104409
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRevB.7.5017


SciPost Phys. 17, 053 (2024)

[64] A. W. Sandvik, Stochastic series expansion method for quantum Ising models with arbitrary
interactions, Phys. Rev. E 68, 056701 (2003), doi:10.1103/PhysRevE.68.056701.

[65] A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems,
Phys. Rev. B 43, 5950 (1991), doi:10.1103/PhysRevB.43.5950.

[66] A. W. Sandvik, A generalization of Handscomb’s quantum Monte Carlo scheme-application
to the 1D Hubbard model, J. Phys. A: Math. Gen. 25, 3667 (1992), doi:10.1088/0305-
4470/25/13/017.

[67] A. W. Sandvik, A. Avella and F. Mancini, Computational studies of quantum spin systems,
AIP Conf. Proc. 1297, 135 (2010), doi:10.1063/1.3518900.

[68] J. A. Koziol, A. Langheld, S. C. Kapfer and K. P. Schmidt, Quantum-critical properties of
the long-range transverse-field Ising model from quantum Monte Carlo simulations, Phys.
Rev. B 103, 245135 (2021), doi:10.1103/PhysRevB.103.245135.

[69] A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory, Phys.
Rep. 368, 549 (2002), doi:10.1016/s0370-1573(02)00219-3.

[70] S. V. Isakov, P. Fendley, A. W. W. Ludwig, S. Trebst and M. Troyer, Dynamics
at and near conformal quantum critical points, Phys. Rev. B 83, 125114 (2011),
doi:10.1103/physrevb.83.125114.

[71] H. W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation of the transverse Ising model,
Phys. Rev. E 66, 066110 (2002), doi:10.1103/PhysRevE.66.066110.

[72] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N)
models, J. High Energy Phys. 08, 036 (2016), doi:10.1007/jhep08(2016)036.

[73] H. -X He, C. J. Hamer and J. Oitmaa, High-temperature series expansions for the (2+ 1)-
dimensional Ising model, J. Phys. A: Math. Gen. 23, 1775 (1990), doi:10.1088/0305-
4470/23/10/018.

[74] M. Powalski, K. Coester, R. Moessner and K. P. Schmidt, Disorder by disorder and flat
bands in the kagome transverse field Ising model, Phys. Rev. B 87, 054404 (2013),
doi:10.1103/PhysRevB.87.054404.

[75] M. Hasenbusch, Monte Carlo study of an improved clock model in three dimensions, Phys.
Rev. B 100, 224517 (2019), doi:10.1103/PhysRevB.100.224517.

[76] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su and A. Vichi, Carving
out OPE space and precise O(2) model critical exponents, J. High Energy Phys. 06, 142
(2020), doi:10.1007/jhep06(2020)142.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.2.053
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1088/0305-4470/25/13/017
https://doi.org/10.1088/0305-4470/25/13/017
https://doi.org/10.1063/1.3518900
https://doi.org/10.1103/PhysRevB.103.245135
https://doi.org/10.1016/s0370-1573(02)00219-3
https://doi.org/10.1103/physrevb.83.125114
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1007/jhep08(2016)036
https://doi.org/10.1088/0305-4470/23/10/018
https://doi.org/10.1088/0305-4470/23/10/018
https://doi.org/10.1103/PhysRevB.87.054404
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1007/jhep06(2020)142

	Introduction
	Honeycomb toric code in a field
	Toric code on the honeycomb lattice
	Mapping to the toric code on the triangular lattice

	Methods
	Low-field expansion
	Extrapolation methods
	Stochastic series expansion quantum Monte Carlo

	Phase transitions for single parallel fields
	Magnetic field in z-direction
	Magnetic field in x-direction

	Phase transitions out of the topological phase in the xz-plane
	Conclusions
	Series from the low-field expansion
	DLogPadé extrapolants of low-field gap series
	References

