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Abstract

A formalism based on the fermionic functional-renormalization-group approach to inter-
acting electron models defined on a lattice is presented. One-loop flow equations for the
coupling constants and susceptibilities in the particle-particle and particle-hole chan-
nels are derived in weak-coupling conditions. It is shown that lattice effects manifest
themselves through the curvature of the spectrum and the dependence of the coupling
constants on momenta. This method is then applied to the one-dimensional extended
Hubbard model; we thoroughly discuss the evolution of the phase diagram, and in par-
ticular the fate of the bond-centered charge-density-wave phase, as the system is doped
away from half-filling. Our findings are compared to the predictions of the field-theory
continuum limit and available numerical results.
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1 Introduction

The theory of interacting fermions in one spatial dimension gives the best understood examples
of models whose asymptotic low-energy behavior distinctively deviates from that of a Fermi
liquid, as commonly found in Fermi systems in higher dimension. Absence of quasi-particle
excitations and power-law decay of correlation functions are governed by non-universal expo-
nents characterized by very few hydrodynamic and interaction-dependent parameters which
separate into spin and charge bosonic entities for spin-1

2 fermions [1–6]. Such distinctive fea-
tures form the basis of the Luttinger liquid (LL) fixed-point phenomenology [7]. This is asymp-
totically accurate in the low-energy (continuum) limit, namely when the fermion spectrum can
be considered as strictly linear around the Fermi points and when interactions projected on
those points are considered as momentum independent. These are well known to be at the
core of the field theory or continuum g-ology models of the interacting 1D Fermi gas. The
fixed-point behavior of a linear LL proves to be generic for gapless branches of excitations of
most models of interacting fermions in one dimension.

As one moves away in energy from the Fermi points the spectrum develops in practice
some curvature. Deviations with respect to linearity alongside momentum dependence of
interactions, although irrelevant in the renormalization group (RG) sense [7], were shown to
modify the finite energy spectral properties predicted by the linear LL theory. Formulated in
terms of an effective x-ray edge problem [8], the coupling of particles to a continuum of higher
energy states is found to alter the power-law profiles of spectral lines near their absorption
edges [9]. These non-linear LL effects could be rigorously checked in the case of integrable
spinless-fermion models defined on a lattice [10–13].

Noticeable limitations of the linear g-ology mappings of non-integrable lattice models
could also be found in the calculation of singular correlations that enter in the determination
of their phase diagrams. This has been best exemplified in the case of the one-dimensional
extended Hubbard model (EHM) for spin-1

2 fermions, which will serve here as the reference
lattice model for the RG method developed in the present work.

At half-filling numerical calculations soon identified a shift of the continuous transition line
connecting charge- and spin-density-wave states [14, 15], a line that the continuum g-ology
theory predicts to be gapless along the separatrix U = 2V , for the local (U) and nearest-
neighbors (V ) interaction parameters of the EHM. The origin of this alteration has resisted
at least in weak coupling to all attempts of explanations formulated in the framework of the
linear g-ology theory [16,17]. Using exact diagonalizations, Nakamura showed later on that
the shift underlies the incursion of a distinct phase, known as a bond-centered charge-density-
wave (BOW) phase. The BOW phase is entirely gapped in both spin and charge sectors and
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extends across some finite region on both sides of the U = 2V line of the phase diagram in
weak coupling [18,19]. This was subsequently confirmed numerically both by quantum Monte
Carlo [20,21], and density-matrix RG methods [22–24].

On analytical grounds, Tsuchiizu and Furusaki showed from perturbation theory that by
taking into account the momentum-dependent fermion-fermion scattering processes at high
energy, that is, beyond the linear region, one can define, at some arbitrarily chosen lower
energy, an effective weak-coupling linear g-ology model, but with modified and enlarged set
of input parameters [25]. The modification is such that it allows the emergence of a BOW
phase in the U = 2V weak-coupling sector of the phase diagram [26, 27]. Using a functional
fermionic RG approach at the one-loop level, Tam et al. [28] pointed out that by integrating
out numerically all the scattering processes for a discrete set of fermion momenta along the
tight-binding spectrum in the Brillouin zone, the existence of a BOW phase can be found
in the U = 2V weak-coupling region of the EHM phase diagram at half-filling. Ménard et
al. [29] thereafter formulated an RG transformation for half-filling tight-binding fermions
in the Wilsonian scheme [30], in which irrelevant interaction terms can be classified from the
momentum dependence of non-local scattering amplitudes away from the Fermi surface. Their
impact on the low-energy RG flow has born out the presence of the BOW ordered phase where
it is expected in the EHM phase diagram at weak coupling, alongside shifts of some other
transitions lines where accidental symmetries are known to occur in the continuum g-ology
limit.

These RG results focused on the EHM model at half-filling. It is the main motivation of the
present work to extend away from half-filling the weak-coupling RG determination of quantum
phases of 1D fermion lattice models in the presence of non local interaction. To achieve this
program, we shall opt for the functional RG approach in the so-called one-particle-irreductible
scheme [31, 32], which proves easier to implement analytically when dealing with the rel-
atively unexplored situation of momentum dependent interactions and asymmetrically filled
tight-binding spectrum. The one-loop RG flow equations for the momentum-dependent four-
point vertices are expanded up to second order in the energy difference from the Fermi level for
the asymmetric spectrum. The difference acts as the scaling variable which allows the power
counting classification of marginal and irrelevant interaction terms, together with their inter-
play. The method developed below can in principle apply to any form of non-linear spectrum
and momentum-dependent interactions in models with fermion density away from half-filling.
From the calculations of the most singular susceptibilities the phase diagram of the EHM model
can be mapped out. At half-filling the results confirm previous RG calculations for the exis-
tence of a gapped BOW phase near the U = 2V line and bear out the shift of other transition
lines between different ground states, in agreement with numerical results [19]. In both situ-
ations the role of the spectrum and irrelevant interactions terms in the qualitative change of
initial conditions for an effective linear continuum theory in the low-energy limit can be es-
tablished. The method is carried out away from half-filling and the region of dominant BOW
gapped state is found to gradually shrink in size to ultimately be suppressed as a function
of doping. The whole phase diagram then evolves towards an incommensurate situation but
where noticeable modifications of the stability regions of quantum states, as predicted by the
g-ology continuum model, are found. The integration of high-energy electronic states in the
particle-hole-asymmetric non-linear part of the spectrum reveals the existence of screening
effects coming from particle-particle pairing fluctuations which act at lower energy as an im-
portant factor in promoting singlet superconductivity or inversely either antiferromagnetism
or triplet superconductivity against the charge-density-wave state.

The paper is organized as follows. In Sec. II the fRG method is introduced and the flow
equations of couplings and various susceptibilities are derived at the one-loop level. In this
framework known results of the EHM phase diagram in the limit of the continuum g-ology
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model at and away from half-filling are recovered. In Sec. III, we broaden the formulation
of fRG to include the tight-binding spectrum and the momentum-dependent interactions of
the EHM, as actually defined on a lattice. The one-loop flow equations for marginal and up to
second order for the set of irrelevant scattering amplitudes are derived. The phase diagrams at
and away from half-filling are obtained and their comparison with the g-ology limit analyzed
and critically discussed. We conclude this work in Sec. 4.

2 FRG for the extended Hubbard model at arbitrary filling

2.1 One-dimensional extended Hubbard model

The 1D extended Fermi-Hubbard model is defined by the Hamiltonian (in this paper, units are
taken such that kB = ħh= 1 and the lattice constant a = 1)

H = −t
∑

i,σ

�

c†
i,σci+1,σ +H.c.
�

+ U
∑

i

ni,↑ni,↓ + V
∑

i

nini+1 , (1)

describing electrons moving on a lattice with a hopping amplitude t > 0 and experiencing
on-site and nearest-neighbor interactions with strengths U and V , respectively. In Eq. (1), i
denotes the site index, σ =↑,↓ is the spin index, ni,σ = c†

i,σci,σ and ni = ni,↑ + ni,↓ is the
number of electrons at site i.

The one-particle states have energies ϵ(k) = −2t cos(k) with wave vector k of the tight-
binding form, such that with respect to the Fermi level, these are comprised in the interval
−2t −µ⩽ ξ= ϵ −µ⩽ 2t −µ, where µ is the chemical potential. The tight-binding spectrum
ϵ(k) is shown in Fig.1. The corresponding density of states is written as follows:

N (ξ) =
Θ(2t − |µ+ ξ|)

2π
p

t2 − (ξ+µ)2/4
, (2)

where Θ(x) is the Heavisde step function. It will indeed be useful to write the density of states
for an arbitrary value of ξ, because in the RG flow, the momentum shell corresponding to the
integration of the degrees of freedom will be taken at equal distance from the Fermi level for
the empty and the occupied states (see Fig. 1). By definition, the Fermi level is related to the
Fermi wave vector kF, defined such that ϵ(kF) = µ. One can also define the Fermi velocity

vF =
∂ ϵ

∂ k

�

�

�

�

kF

= 2t sin(kF) . (3)

Let n be the fermion filling number. Obviously, we have 0 ⩽ n ⩽ 2. This number is directly
given by an integration of the density of states up to the Fermi level:

n= 2

0
∫

−∞

dξN (ξ) = 2

+kF
∫

−kF

dk
2π
=

2kF

π
, (4)

which leads to the simple relations:

kF =
π

2
n , µ= −2 cos(πn/2) , (5)

where from now on µ is expressed in units of t.
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Figure 1: Tight-binding spectrum of the EHM model. Here Λ0 is half of the initial
bandwidth (Λ0 = 2t + |µ|) and Λ1 is the energy cutoff at some intermediate step of
the RG flow. On the right panel, N (ξ) the density of states as a function of energy
showing the van-Hove singularities at the band edges.

In reciprocal space, the Hamiltonian of the EHM is written as (where L denotes the number
of lattice sites)

H =
∑

k,σ

�

ϵ(k)− U/2
�

c†
k,σck,σ +

πvF

2L

∑

{k,σ}

gk1, k2, k′1
c†

k′1,σ1
c†

k′2,σ2
ck2,σ2

ck1,σ1
δRL

k1+k2−k′1−k′2
, (6)

where δRL denotes the momentum conservation condition on the lattice (RL stands for Recip-
rocal Lattice):

δRL
k =

+∞
∑

n=−∞
δk,2πn , (7)

and the dimensionless coupling constants are given by:

gk1, k2, k′1
=

U
πvF
+

2V
πvF

cos(k1 − k′1) . (8)

2.2 One-loop flow equations

The EHM is studied with the functional RG. We first recast the partition function of the model
into a field-theory setting at finite temperature T = 1/β , by means of a functional integral
over a Grassmannian field ϕ:

Z = Tre−β(H−µN ) =

∫

D[ϕ]e−S[ϕ] , (9)

where the action S[ϕ] takes the form

S[ϕ] = −
∑

a′,a,σ

�

G0
�−1

a′aϕ̄a′,σϕa,σ +
T
2L

∑

{a′,a,σ}

Va′1a′2a2a1
ϕ̄a′1,σ1

ϕ̄a′2,σ2
ϕa2,σ2

ϕa1,σ1
, (10)
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and the index a → (ωn, k) carries all the relevant information about momentum k and
fermionic Matsubara frequency ωn = (2n+ 1)πT .

The first term in the action is related to the free propagator G0 which is diagonal in recip-
rocal space

�

G0
�−1

a′a =
�

iωn − ξ(k)
�

δa′a . (11)

The second term describes two-body interactions, and takes the following form:

Va′1a′2a2a1
= πvF gk1, k2, k′1

δRL
k′1+k′2−k2−k1

δωn′1
+ωn′2

−ωn2
−ωn1

,0 . (12)

A quadratic term is added to the action,

S[ϕ]→ S[ϕ] +
∑

a′,a,σ

ϕ̄a′,σRΛ,a′aϕa,σ , (13)

which regularizes the functional integral by suppressing the low-energy fluctuations. An anti-
commuting source field η, η̄ coupled to the fermion field is also included in the action which
takes the form

∑

a,σ

�

η̄a,σϕa,σ + ϕ̄a,σηa,σ

�

. This gives the regularized generating functional
of correlation functions ZΛ[η]. The regularized effective action ΓΛ[φ] is then defined as the
modified Legendre transform of the generating functional of connected correlation functions
WΛ[η] = logZΛ[η]:

ΓΛ[φ] +WΛ[η] =
∑

a,σ

�

η̄a,σφa,σ + φ̄a,σηa,σ

�

−
∑

a′,a,σ

φ̄a′,σRΛ,a′aφa,σ , (14)

where φa,σ = 〈ϕa,σ〉 and φ̄a,σ = 〈ϕ̄a,σ〉 with the expectation values computed in the presence
of the source fields η, η̄. The regularized effective action ΓΛ[φ] satisfies the Wetterich equation
[33–35]

∂ΛΓΛ[φ] =
1
2

Tr
n

∂ΛRΛ
�

Γ (2)Λ [φ] +RΛ
�−1o

, (15)

where Γ (2)Λ [φ] is the second functional derivative of the effective action with respect to the
field. Additional source fields J can be added to the effective action in order to generate flow
equations for the response functions. The idea is then to decompose ΓΛ[φ, J] as a sum of
monomials Γ [n,p]

Λ [φ, J] ∼ φnJ p, and make identifications on both sides of the flow equation.
We proceed at the one-loop level for which the 1-PI fRG hierarchy is truncated, this procedure
leads to flow equations in weak coupling for the coupling constants g, three-leg vertices Z and
susceptibilities χ. These equations have the familiar schematic form

Λ∂Λg ∼
∫

Lg g, Λ∂ΛZ ∼
∫

LZ g, Λ∂Λχ ∼
∫

LZ Z , (16)

where Λ selects the degrees of freedom that are integrated at the step Λ. The corresponding
one-loop diagrammatic contributions to the flow equations are shown in Figs. 2, 3 and 4, re-

spectively, and where a simple line corresponds to the propagator GΛ =
�

Γ (2)Λ [φ = 0] +RΛ
�−1

and a slashed line to the single-scale propagator SΛ = −GΛ∂ΛRΛGΛ.

2.3 Recovery of the g-ology continuum model

Before we take into account the non-linearity of the spectrum and the irrelevant coupling
constants, it is useful for later comparisons to recover the well known g-ology electron gas
model in the continuum limit, also known as the 1D electron gas model, for which lattice
effects are mostly discarded. Thus, we linearize the tight-binding spectrum ξ(k) = ϵ(k)−µ in
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Λ∂Λg = + + +

+ + + +

+ +

Figure 2: One-loop flow equations of the coupling constants in diagrammatic form.
Here a slashed line refers to the single-scale propagator.

Λ∂ΛZch/sp = +

+ +

Λ∂ΛZ s/t = +

Figure 3: One-loop corrections to the flow equations of three-leg vertices for
charge/spin-density-wave and singlet/triplet-pairing susceptibilities.

Λ∂Λχ
ch/sp = +

Λ∂Λχ
s/t = +

Figure 4: Flow equations for the charge/spin-density-wave and singlet/triplet-
superconducting susceptibilities.

the vicinity of the two Fermi points ±kF. We can write k = ηkF + (k −ηkF), where η = ±1 is
the branch index, which gives

ξ(k) =
∂ ϵ

∂ k

�

�

�

�

ηkF

(k−ηkF) + . . . = vF(|k| − kF) + . . . . (17)

In the particular case of a half-filled band, kF = π/2. The reciprocal lattice wavevector G = 2π
being equal to 4kF, we can identify ±3kF with ∓kF. Away from half-filling, G ̸= 4kF and
this identification does no longer hold. The g-ology model is obtained when the momenta
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appearing in the coupling constants are evaluated on the Fermi points

g1 ≡ g+ηkF,−ηkF,−ηkF
=
�

U − 2V (1−µ2/2)
�

/πvF ,

g2 ≡ g+ηkF,−ηkF,+ηkF
= (U + 2V )/πvF ,

g3 ≡ g+ηkF,+ηkF,−ηkF
=
�

U − 2V (1−µ2/2)
�

/πvF ,

g4 ≡ g+ηkF,+ηkF,+ηkF
= (U + 2V )/πvF , (18)

where the initialization condition (8) has been used. It appears that the constants g2 and
g4 correspond to forward scattering, g1 to backward scattering, while g3 describes umklapp
processes [36]. In order to find the expression of the two-particle vertex Γ [4,0][φ], we write
its restriction close to the two Fermi points, which is indicated by the bracket [·]F:

�

Γ [4,0][φ]
�

F
=

πvFT
L

∑

η,σi

∑

ωni

∑

ki⩾0

§

1
2
(g1δσ1,σ3

δσ2,σ4
− g2δσ1,σ4

δσ2,σ3
)

× φ̄−ηk′1,σ3
φ̄+ηk′2,σ4

φ−ηk2,σ2
φ+ηk1,σ1

+
g3

2
φ̄+ηk′1,σ1

φ̄+ηk′2,σ2
φ−ηk2,σ2

φ−ηk1,σ1

+
g4

2
φ̄+ηk′1,σ1

φ̄+ηk′2,σ2
φ+ηk2,σ2

φ+ηk1,σ1

ª

, (19)

where momentum and Matsubara-frequency conservation is understood in the right-hand side.
When this simplified vertex is inserted in Eqs. (A.1) (see Appendix A.1), we end up with

the well known g-ology flow equations

Λ∂Λg1 = LP g2
1 − (LC +LP)g1 g2 −LL g1 g4 ,

Λ∂Λg2 = −LC g2
1/2− (LC +LP)g

2
2/2−LP′ g

2
3/2−LL g4(g1 − 2g2) ,

Λ∂Λg3 = (LP +LP′)g3(g1 − 2g2)/2−LC′ g3(g2 + g4)/2 ,

Λ∂Λg4 = −LL(g
2
1 − 2g2

2 + 2g1 g2 + g2
4)/2−LC′(g

2
3 + g2

4)/2 .

(20)

Here the LX ’s are derivatives with respect to Λ of the bubbles associated to particle-particle
(p-p) and particle-hole (p-h) scattering channels in which C and C′ refer to inter- and intra-
branch Cooper pairings, and P and L refer to Peierls and Landau channels. For this particular
calculation a sharp cutoff is chosen (see appendix B concerning the regulator). This allows
to compute the integrals in closed form and to recover the known results of the continuum
limit which use a sharp cut-off procedure. The resulting bubbles can be classified into two
logarithmically divergent bubbles of the p-p channel at zero momentum pair and the p-h one
at momentum 2kF, which leads to the most important contributions to the flow equations:

LC = πvFΛ∂Λ

∫ Λ0

−Λ0

Θ(|ξ| −Λ) T
∑

ωn

G0(kξ,ωn)G
0(−kξ,−ωn)dξ ,

LP = −πvFΛ∂Λ

∫ Λ0

−Λ0

Θ(|ξ| −Λ) T
∑

ωn

G0(kξ − 2kF,ωn)G
0(kξ,ωn)dξ ,

LP′ = −πvFΛ∂Λ

∫ Λ0

−Λ0

Θ(|ξ| −Λ) T
∑

ωn

G0(kξ + 2kF,ωn)G
0(kξ,ωn)dξ ,

(21)

where kξ = arccos
�

− (ξ + µ)/2
�

. The last contribution LP′ is affected by the fact that the
nesting relation is not perfect away from half-filling. As a consequence, LP and LP′ differ in
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general, except at half-filling where G = 4kF [37]. The second category comes from non-
divergent bubbles of p-p and p-h scattering channels (respectively noted LC′ and LL) when
both particles belong to the same energy branch. These take the form

LL,C′ = ∓πvFΛ∂Λ

∫ Λ0

−Λ0

Θ(|ξ| −Λ) T
∑

ωn

G0(kξ + 0+,ωn)G
0(kξ,ωn)dξ (22)

and only take finite values within the thermal shell Λ≲ T .
To determine the phase diagram, we have to derive further the flow equations for the three-

leg vertices. This is done by adding to the effective action terms which couple the electronic
field to the source field. One has to include terms associated to charge and spin density waves,
centered on sites or on bonds, and singlet/triplet superconductivity:

ΓZ[φ, H, J] =
∑

a,a′,a′′

∑

σ,σ′

¦

Zch
aa′,a′′φ̄aσH0

a′′σ
0
σσ′φa′σ′ + Z sp

aa′,a′′φ̄aσH⃗a′′ · σ⃗σσ′φa′σ′

+ Z s
aa′,a′′φ̄aσJ0

a′′π
0
σσ′φ̄a′σ′ + c.c.

+ Z t
aa′,a′′φ̄aσ J⃗a′′ · π⃗σσ′φ̄a′σ′ + c.c.

©

, (23)

where σ0 is the 2×2 identity matrix, σ⃗ = (σ1,σ2,σ3) is the vector containing the Pauli matri-
ces, π0 = −iσ2 and π⃗= −iσ2σ⃗. Furthermore, the Z vertices have the following expressions:

Zch-s
a′a;a′′ = Zch-s

k (q)δRL
k−k′+qδωn−ωn′ ,0 ,

Zch-b
a′a;a′′ = Zch-b

k (q) cos
�

(k+ q)/2
�

δRL
k−k′+qδωn−ωn′ ,0 , (24)

Z s/t
a′a;a′′ = Z s/t

k (q)δ
RL
k+k′+qδωn+ωn′ ,0 ,

with the correspondences given for static source fields H et J :

a→ (ωn, k) , a′→ (ωn′ , k′) , a′′→ (0, q) .

In the case of the g-ology model, we limit ourselves to the vertices Z X
ηkF
(q) evaluated at

q = ±2kF for the density waves, and at q = 0 for the singlet/triplet superconductivity. There
are four density waves at 2kF which correspond to site-centered charge- and spin-density wave
(CDW, SDW), and bond-centered charge- and spin-density wave (BOW, BSDW):

ZCDW = Zch-s
+kF
(−2kF) = Zch-s

−kF
(+2kF) ,

ZBOW = Zch-b
+kF
(−2kF) = Zch-b

−kF
(+2kF) ,

ZSDW = Z sp-s
+kF
(−2kF) = Z sp-s

−kF
(+2kF) ,

ZBSDW = Z sp-b
+kF
(−2kF) = Z sp-b

−kF
(+2kF) ,

Z ′CDW = Zch-s
+kF
(+2kF) = Zch-s

−kF
(−2kF) ,

Z ′BOW = Zch-b
+kF
(+2kF) = Zch-b

−kF
(−2kF) ,

Z ′SDW = Z sp-s
+kF
(+2kF) = Z sp-s

−kF
(−2kF) ,

Z ′BSDW = Z sp-b
+kF
(+2kF) = Z sp-b

−kF
(−2kF) .

(25)

The vertices associated to singlet (SS) and triplet (TS) superconductivity are given by

ZSS = Z s
+kF
(0) + Z s

−kF
(0) ,

ZTS = Z t
+kF
(0)− Z t

−kF
(0) .

(26)

The flow equations associated to the density-wave vertices are thus

dZx

dℓ
=

1
2

Zx g̃x ,

g̃CDW = (g2 − 2g1)LP − g3LP′ , g̃SDW = g2LP + g3LP′ ,

g̃BOW = (g2 − 2g1)LP + g3LP′ , g̃BSDW = g2LP − g3LP′ ,

(27)
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while those for singlet and triplet superconductivity are

dZx

dℓ
=

1
2

Zx g̃x ,

g̃SS = (g1 + g2)LC , g̃TS = (g2 − g1)LC ,
(28)

where ℓ is the so-called RG time, such that Λ= Λ0e−ℓ. The initial conditions are Zx(ℓ= 0) = 1
for all channels x.

The expression of the normalized susceptibility that stands for any of the above correlation
channels is given by

χx(ℓ) =

∫ ℓ

0

Z2
x (ℓ
′)
�

�Lx(ℓ
′)
�

�dℓ′ , (29)

with χx(ℓ= 0) = 0 as initial condition. The phase of the system is defined by the most singular
susceptibility χx and therefore the most singular Zx. We shall limit ourselves to the phases with
the most important singularities. These correspond to 2kF density-wave and superconducting
phases at zero pairing momentum, which are governed by Eqs. (27) and (28). The corre-
sponding three-leg vertices can be expressed as Zx(ℓ) = exp[1

2γx(ℓ)], with a scale-dependent

exponent γx(ℓ) =
∫ ℓ

0 g̃x(ℓ′)dℓ′.

2.3.1 Half-filling

It is useful in what follows to recall the main features of the one-loop flow equations of the
continuum theory both at and away from half-filling. We first consider the case at half-filling
and in the zero-temperature limit where µ= 0 (n= 1) and β →∞. This gives for the bubble
intensities (21):

LP,P′ = −LC = tanh(βΛ/2)→ 1 ,

LL,C′ = ∓2Λ∂ΛnF(Λ)→ 0 ,
(30)

where nF is the Fermi distribution. From (20) one recovers the well known g-ology flow
equations at half-filling [2,36,38]:

dg1

dℓ
= −g2

1 ,

dg2

dℓ
= (g2

3 − g2
1)/2 ,

dg3

dℓ
= g3(2g2 − g1) ,

dg4

dℓ
= 0 .

(31)

If the coupling constants remain weak for all values of ℓ then the electron system evolves
towards a Tomanaga-Luttinger (TL) liquid with g2 and g4 couplings only and gapless excita-
tions. On the other hand, if the flow of either g1 or (2g2− g1, g3) evolves towards a singularity
at a critical ℓ0, the perturbative one-loop RG breaks down and we expect the formation of a
gap ∆ = Λ0e−ℓ0 in the spin (g1 → −∞) or charge (2g2 − g1 → +∞, |g3| → +∞)1 long-
wavelength degrees of freedom.

The flow of g1(ℓ) associated to the spin degrees of freedom is decoupled from those of
g3(ℓ) and 2g2(ℓ)− g1(ℓ) linked to the charge ones. These combine to give the scale invariant
constant C = g2

3(ℓ)−
�

2g2(ℓ)− g1(ℓ)
�2
[36]. Thus for an initial attraction, g1 < 0 (U < 2V ),

1See also the footnote 2 below.
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the flow of g1(ℓ) scales to strong attractive coupling with a singularity that develops at a finite
ℓσ, indicative of a spin gap ∆σ ∼ Λ0e−ℓσ ; whereas for an initial repulsion g1 > 0, g1(ℓ) is
marginally irrelevant and spin degrees of freedom remain gapless. For the charge part, when
g1−2g2 ≥ |g3|, umklapp scattering becomes marginally irrelevant, 2g2(ℓ)− g1(ℓ) then scales
to a non-universal value and the charge-density sector remains gapless. By contrast, when
g1 − 2g2 < |g3|, the umklapp term is marginally relevant and the flow leads to a singularity

in both g3(ℓ) and 2g2(ℓ)− g1(ℓ) at ℓρ implying a Mott gap ∆ρ ∼ Λ0e−ℓρ = Λ0e−1/
p
|C | in the

charge sector. Finally, at the one-loop level there are no logarithmic contributions to the flow
of intra-branch forward scattering g4, which remains scale invariant.

Regarding the phase diagram as a function of U and V , when U > |2V |, so that g1 > 0 and
g1 − 2g2 < |g3|, the strongest singularity appears for χSDW, γSDW being the largest exponent
of (27), with a SDW state having gapless spin excitations and a Mott gap. For V < −|U |/2,
so that g1 > 0 and g1 − 2g2 > |g3|, (27) yields γTS as the largest exponent and a dominant
susceptibility for TS with gapless excitations for both spin and charge. For U/2 < V < 0,
which implies g1 < 0 and g1 − 2g2 > |g3|, it is in turn γss to be the largest exponent in (27)
with a dominant singularity in the SS susceptibility with a spin gap. Finally when U/2 < V
and V > 0, we have g1 < 0 and g1 − 2g2 < |g3| leading to a CDW phase, which is gapped for
both spin and charge excitations. Along the separatrix U = 2V , g1 = g3 = 0, corresponding to
gapless conditions of the TL model, γSDW = γCDW and χCDW and χSDW are equally singular at
U > 0, whereas at U < 0, γSS = γTS, and χTS and χSS are equal. Finally, the symmetry line at
U < 0 and V = 0, with g1 < 0 and g1 − 2g2 > |g3|, leads to γCDW = γSS and coexisting CDW
and SS phases. The resulting well known phase diagram of the continuum theory is shown in
Fig. 5 [38]. It is worth noting that in the g-ology model, χBOW never appears as the dominant
susceptibility, but only as the subdominant one in the SDW phase [38].

2.3.2 Away from half-filling

We now turn to the main results for finite values of µ. From (20), the one-loop flow equations
at finite doping in the low-temperature limit can be put in the form

dg1

dℓ
= −g2

1 ,

d
dℓ
(2g2 − g1) = g2

3LP ′ ,

dg3

dℓ
= (1+LP ′)g3(2g2 − g1)/2 ,

dg4

dℓ
= 0 .

(32)

These equations correspond to the former results of Seidel et al. [37, 39] and are consistent
with those of the bosonization approach in the weak-coupling limit [6, 40, 41]. We illustrate
this situation at a finite but small doping µ= 0.035.

The flow of g1, tied to the spin degrees of freedom, keeps the same form as before, namely
g1(ℓ) = g1(1+ g1ℓ)−1, indicating a spin gap ∆σ ∼ Λ0e−1/|g1| when g1 < 0 i.e. in the region
above the separatrix V = U/(2 − µ2) whose slope increases with µ, as shown in Fig. 5-(b).
Concerning the charge degrees of freedom, a finite µ affects the flows of 2g2(ℓ)− g1(ℓ) and
g3(ℓ) due to the suppression of the logarithmic singularity of the particle-hole loop LP ′ when
Λ(ℓ)< µ. Thus at sufficiently small couplings, the flow of 2g2(ℓ)−g1(ℓ) is no longer singular so
that no charge gap is possible. This introduces gapless regions for the charge sector (Fig. 5-(b))
corresponding to either CDW or SDW phases. By cranking up µ, the charge-gapped regions
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(a)

(b)

Figure 5: Weak-coupling phase diagram of the extended Hubbard model ob-
tained from the g-ology model (continuum limit, linear spectrum and momentum-
independent interactions) at half-filling µ= 0 (a) and small doping µ= 0.035 (b). U
and V are expressed in units of bare hopping t. The subscripts σ/ρ of a given phase
indicate the presence of a gap in the spin/charge excitations (see also footnote 2).

persist2 but shrink in size being pushed to higher couplings. In the gapless-charge domains,
umklapp scattering reduces to a simple renormalization of the combination 2g2 − g1, which
becomes scale invariant in weak coupling [see Eq. (32)]. In the g1 > 0 part of Fig. 5-(b), that

2The gap∆ρ that persists in the RG flow for some interval of µ ̸= 0 (n ̸= 1) refers to the energy distance between
the upper and lower Hubbard like sub-bands, which does not contract immediately to zero by doping away from
half-filling. This finite excitation energy should not be confused with the Mott insulating gap which immediately
closes at the metal-insulator transition when n → 1±. It is only at half-filling that this energy distance coincides
with the insulating gap.
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is for V < U/(2 − µ2), the detrimental effect of doping on umklapp is also apparent for the
gapless region where the most important power-law singularity in χTS gains in importance
against SDW. A similar effect takes place at g1 < 0 where the SS region, in which umklapp
scattering is an irrelevant coupling, gains in importance against CDW when µ increases.

We shall examine next to what extent taking into account lattice effects of the EHM model
can alter these results.

2.4 Lattice effects and low-energy limit

Lattice effects are twofold. First, they are present in the one-body term of the Hamiltonian
through the inter-site hopping of electrons. This leads to the tight-binding spectrum of Fig. 1
showing the growth of its curvature as energy moves away from the Fermi level and becoming
particle-hole asymmetric away from half-filling. Second, they appear in the coupling constants
that are spatially non-local. This is the case of the nearest-neighbor interaction V which intro-
duces a dependence on wave vectors in momentum space.

Both effects are linked since the momentum dependence of interactions generates an addi-
tional curvature of the spectrum through one-particle self-energy corrections. At the one-loop
level, these come from Hartree-Fock contributions to the flow. However, as shown in appendix
A.3 those corrections are small in weak coupling and will therefore be ignored in the following.

We now turn to the effects of the lattice on coupling constants. When defined on the two
Fermi points, like the g ’s of the g-ology continuum theory considered above, they are known
to be marginal. The momentum dependence of the coupling constants is irrelevant in the RG
sense but can have both qualitative and quantitative effects on the phase diagram.

In order to classify the coupling constants, it is advantageous to consider the energy vari-
ables rather than the momenta [29, 30]. This is done using the dispersion ξ(k) as measured
with respect to the Fermi level. In fact, there is a one-to-one correspondence between mo-
menta k on the one hand, and (ξ(k),η) on the other hand, where η = sgn k correspond to
the branch index for positive k (η = +) and negative k (η = −). The idea is therefore to
introduce a systematic expansion of the vertices and loops in power of the ξ variables tied to
the independent momenta k. For the couplings, one has

gk1, k2, k′1
= g η⃗(ξ⃗) =

∞
∑

ni=0

ξ
n1
1 ξ

n2
2 ξ

n′1
1′

n1!n2!n′1!
g η⃗n⃗ ,

x⃗ = (x1, x2, x1′), x = ξ,η, n .

(33)

where the coefficients g η⃗n⃗ now stand for the set of marginal and irrelevant interactions of the
model.

We now derive the general form of the flow equations when the ξ expansion is made
explicit. One first makes the change of variables k→ (η,ξ), and writes

dg η⃗n⃗
dℓ
= −Λ∂Λg η⃗n⃗ =
∑

x

Dη⃗x (ξ⃗) , (34)

where the sum runs over all Feynman graphs of Fig. 2, that is to say x ∈ {p, ph1,ph2, ph3}.
Furthermore, each diagram can be written in the form

Dη⃗x (ξ⃗) =
∑

p

Lη⃗x (p, ξ⃗)γη⃗x1(p, ξ⃗)γη⃗x2(p, ξ⃗) , (35)

where Lη⃗x (p, ξ⃗) is a bubble of the scattering channel x, while the γη⃗xi(p, ξ⃗)’s are combinations
of the coupling constants. For example, in the case x = pp, one gets from Eqs. (A.3a) of
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Appendix:

Lη⃗pp(p, ξ⃗) = Lpp
p,−p+k1+k2

,

γ
η⃗
x1(p, ξ⃗) = gk2,k1,−p+k1+k2

,

γ
η⃗
x2(p, ξ⃗) = gp,−p+k1+k2,k′1

.

The corresponding expressions for the other channels x = ph1, ph2 and ph3 are given in
Eqs. (A.3b), (A.3c) and (A.3d), respectively. It is then possible to make use of the expan-
sion given in (33) for the couplings and a similar one for the bubbles. Once this is done, the
flow equations are written as

∞
∑

ni=0

ξ
n1
1 ξ

n2
2 ξ

n′1
1′

n1!n2!n′1!

dg η⃗n⃗
dℓ
=
∞
∑

ni=0

∞
∑

m1,i=0

∞
∑

m2,i=0

ξ
n1
1 ξ

n2
2 ξ

n′1
1′

n1!n2!n′1!
Lη⃗,η⃗1,η⃗2

n⃗,m⃗1,m⃗2
g η⃗1

m⃗1
g η⃗2

m⃗2
. (36)

Now it is useful to express the flow equations in a dimensionless form. Let us introduce the

dimensionless quantities g̃ η⃗Λ(
˜⃗
ξ), where ˜⃗

ξ= ξ⃗/Λ. The natural unit is the cut-off Λ,

g η⃗Λ(ξ⃗) = Λ
[g] g̃ η⃗Λ(ξ⃗/Λ ) ⇐⇒ g̃ η⃗Λ(

˜⃗
ξ ) = Λ−[g]g η⃗Λ(Λ

˜⃗
ξ ) . (37)

In this expression, [g] denotes the engineering dimension of the coupling constant g. For two-
body interactions in one dimension, energy-independent coupling constants are dimensionless,
[g] = 0. From the expansion (33), it is straightforward to determine the dimension of a generic
coupling constant:

g η⃗n⃗ = Λ
−|n⃗| g̃ η⃗n⃗ , (38)

where the notation |n⃗|= n1+n2+n1′ has been introduced. The dimensionless flow equations
for the coupling constants are then obtained by a simple identification from (36):

d g̃ η⃗n⃗
dℓ
= −Λ∂Λ g̃ η⃗n⃗ = −|n⃗| g̃

η⃗

n⃗ −
∞
∑

n1,i=0

∞
∑

n2,i=0

L̃η⃗,η⃗1,η⃗2
n⃗,n⃗1,n⃗2

g̃ η⃗1
n⃗1

g̃ η⃗2
n⃗2

, (39)

with L̃η⃗,η⃗1,η⃗2
n⃗,n⃗1,n⃗2

= Λ|n⃗|−|n⃗1|−|n⃗2|Lη⃗,η⃗1,η⃗2
n⃗,n⃗1,n⃗2

. As a consequence, the expansion in ξ classifies the cou-
pling constants by order of irrelevance from the value of |n⃗|. In practice, we will restrict
ourselves to quadratic order, i.e. |n⃗| ≤ 2. Let us also note that it would be possible to expand
the vertices in power of the Matsubara frequencies [42,43]. It follows from dimensional anal-
ysis that the terms containing non-zero powers of the Matsubara frequencies are irrelevant.
Since these terms are not present in the initial action (the interactions are not retarded), they
can only be generated by the flow and are thus expected to remain negligible.

The different sets of interactions and their initial conditions can be expressed in terms of
the coupling constants of the original EHM; see Eq. (8). The expansion of the cosine in terms
of the variables (ξ,η) gives, up to second order in ξ,

cos(k1 − k′1) = η1η1′ + (1−η1η1′)
µ2

4
+
µ

4
(1−η1η1′)(ξ1 + ξ1′)

−η1η1′

�

1
8
−

µ2

32(1−µ2/4)

�

(ξ2
1 + ξ

2
1′)

+

�

1
4
+η1η1′

µ2

16(1−µ2/4)

�

ξ1ξ1′ + .... (40)
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Hence we obtain the following initialization conditions for the coupling constants introduced
in (33). For marginal interactions O(ξ0) (n⃗= 0), one has

g+η,−η,−η
0,0,0 = g1 , g+η,−η,+η

0,0,0 = g2 ,

g+η,+η,−η
0,0,0 = g3 , g+η,+η,+η

0,0,0 = g4 ,
(41)

and the initial values coincide with those of the continuum theory in (18).
From (40) and at O(ξ) (|n⃗|= 1), the set of irrelevant interactions labeled in terms of back-

ward, forward and umklapp scattering amplitudes, together with their initial filling-dependent
values, reads:

g+η,−η,−η
1,0,0 =

Vµ
πvF

, g+η,−η,−η
0,0,1 =

Vµ
πvF

, g+η,−η,+η
1,0,0 = 0 , g+η,−η,+η

0,0,1 = 0 ,

g+η,+η,−η
1,0,0 =

Vµ
πvF

, g+η,+η,−η
0,0,1 =

Vµ
πvF

, g+η,+η,+η
1,0,0 = 0 , g+η,+η,+η

0,0,1 = 0 .
(42)

Likewise, the set of irrelevant couplings at O(ξ2) (|n⃗| = 2) and their initial values can be
put in the form

g+η,−η,−η
2,0,0 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,−η,−η
0,0,2 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

,

g+η,−η,−η
1,0,1 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,−η,+η
2,0,0 = −

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

,

g+η,−η,+η
0,0,2 = −

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,−η,+η
1,0,1 =

V
πvF

�

1
2
+

µ2

8(1−µ2/4)

�

,

g+η,+η,−η
2,0,0 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,+η,−η
0,0,2 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

,

g+η,+η,−η
1,0,1 =

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,+η,+η
2,0,0 = −

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

,

g+η,+η,+η
0,0,2 = −

V
πvF

�

1
2
−

µ2

8(1−µ2/4)

�

, g+η,+η,+η
1,0,1 =

V
πvF

�

1
2
+

µ2

8(1−µ2/4)

�

.

(43)

The same expansion procedure can in principle be applied to the vertex parts of the re-
sponse functions:

Z X
k (q) =

∞
∑

n=0

ξn

n!
Z X
η, n(q) . (44)

However, at variance with the coupling constants, the irrelevant contributions to all Zx are
zero at ℓ = 0, so that their effect on the flow will be negligible. In the following, we shall
therefore proceed to the evaluation of Z X

k (q) in the lowest or marginal order by retaining only
Z X
η, n=0(q). Higher-order corrections are not expected to bring any qualitative modifications to

the phase diagram. Thus for the site- and bond-density-wave channels at q = ±2kF, the flow
equations are respectively

Λ∂ΛZ ′CDW =
1
2
LP′(g2 − 2g1)Z

′
CDW −

1
2
LP g3ZSDW ,

Λ∂ΛZCDW =
1
2
LP(g2 − 2g1)ZCDW −

1
2
LP′ g3Z ′CDW ,

Λ∂ΛZ ′SDW =
1
2
LP′ g2Z ′SDW +

1
2
LP g3ZSDW ,

Λ∂ΛZSDW =
1
2
LP g2ZSDW +

1
2
LP′ g3Z ′SDW ,

(45)
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and

Λ∂ΛZ ′BOW =
1
2
LP′(g2 − 2g1)Z

′
BOW −

1
2

LP

cos(2kF)
g3ZBOW ,

Λ∂ΛZBOW =
1
2
LP(g2 − 2g1)ZBOW −

1
2
LP′ cos(2kF)g3Z ′BOW ,

Λ∂ΛZ ′BSDW =
1
2
LP′ g2Z ′BSDW +

1
2

LP

cos(2kF)
g3ZBSDW ,

Λ∂ΛZBSDW =
1
2
LP g2ZBSDW +

1
2
LP′ cos(2kF)g3Z ′BSDW .

(46)

In the superconducting channel at zero pair momentum, one has

Λ∂ΛZSS =
1
2
LC(g1 + g2)ZSS ,

Λ∂ΛZTS = −
1
2
LC(g1 − g2)ZTS .

(47)

All the Zx equations are bound to the initial conditions Zx(ℓ = 0) = 1. From these the
normalized susceptibilities χx in the channel x can be obtained from the definition (50) with
initial condition χx(ℓ= 0) = 0. The main differences with respect to the g-ology model are in
the bubbles and in the fact that the marginal coupling constants are influenced by the irrelevant
ones.

We close this subsection by considering the uniform q → 0 response for charge and spin
densities corresponding to the uniform charge compressibility (χρ) and spin susceptibility
(χσ) whose divergences signal the occurrence of phase separation and ferromagnetism. In
the framework of the fRG, these susceptibilities can be easily computed using the fact that the
degrees of freedom contributing to the p-p and 2kF p-h fluctuations come from non thermal
energies |ξ| ≳ T . These are separated from those contributing to the q → 0 response func-
tions which rather correspond to the thermal width |ξ| ≲ T . We then integrate first the flow
equations (39) considering the Cooper and Peierls channels alone with Λ running between
Λ0 and T . The renormalized marginal coupling constants thus obtained at the energy scale
T are then used to compute the uniform susceptibilities. Instead of integrating the flow with
Λ running between T and 0, one can simply use an RPA, which is known to be exact for a
linear spectrum (and equivalent to bosonization) once fluctuations due to back scattering and
umklapp processes have been integrated out. For a sufficiently small temperature, the results
effectively correspond to the T = 0 limit.

Explicitly one considers the uniform three-leg vertices which obey the flow equation

dZx

dℓ
=

1
4
LLZx gx , (48)

where

gx=ρ(ℓ) = g1(ℓ)− 2g2(ℓ)− g4(ℓ) ,

gx=σ = g1(ℓ) + g4(ℓ) .
(49)

By inserting the one-loop RPA contributions to gx(ℓ) = g∗x/(1−
1
2 g∗xχ0(ℓ)) in the Landau scat-

tering channel, one gets Zρ,σ(ℓ) = [1 −
1
2 g∗ρ,σχ

0(ℓ)]−1 where χ0(ℓ) = 1
2

∫ ℓ

0 LL(ℓ′)dℓ′ which
according to (30) gives a non-zero contribution when the integration ℓ′ enters in the thermal
energy interval (Λ(ℓ′) ≲ T ). Here g∗ρ = g∗1 − 2g∗2 − g4 and g∗σ = g∗1 + g4 and the starred g∗1,2
couplings are the renormalized values obtained from (39) down to the edge of the thermal
interval Λ∼ T . Following the definition of susceptibilities,

χρ,σ(ℓ) =

∫ ℓ

0

Z2
ρ,σ(ℓ

′)LL(ℓ
′)dℓ′ , (50)
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one gets the expression,

χρ,σ(T → 0) =
2

1− 1
2 g∗ρ,σ

, (51)

for the normalized uniform compressibility and spin susceptibility in the zero temperature
limit. These coincides with the expressions derived by the functional integral method [44].

3 Lattice model: Results and discussion

In this section, we will discuss the consequences of lattice effects coming from the non-linearity
of the spectrum and the momentum dependence of interactions in the determination of quan-
tum phases of the EHM as a function of filling. All calculations are carried out at the arbitrary
chosen temperature T = 10−7 which regularizes the Fermi distribution functions while being
consistent with the zero temperature limit. The calculations are also limited to the weak-
coupling sector.

3.1 Half-filled case

Before considering non-zero values of the chemical potential, let us examine as a benchmark of
our method the extensively studied half-filling case. The tight-binding spectrum atµ= 0 shows
a non-vanishing curvature as one moves away from the Fermi points ±kF. On the boundaries
and at the center of the Brillouin zone, the spectrum displays a vanishing slope, which causes
the appearance of a van Hove singularity. At half-filling the progressive integration of degrees
of freedom is then symmetric with respect to occupied and empty states.

From the integration of Eqs. (39) and (45-47), and by using the intial conditions (18) and
(42-43) for the couplings, one obtains the half-filling EHM phase diagram shown in Fig. 6.
Among the most striking modifications with respect to the continuum g-ology phase diagram
of Fig. 5-(a), we first note the phases located in the vicinity of the line U = 2V . Recall that
in the g-ology framework, both g1 and g3 vanish along that line at half-filling, which leads to
the conditions of the TL model; crossing the line then corresponds to a change of sign of the
g1 and g3 coupling constants (see Eq. (18)).

Along the line U = 2V > 0 in the repulsive part of the diagram, the gapless regime of the
TL model with equally singular SDW and CDW suceptibilities is made unstable by the presence
of irrelevant couplings. Thus below but close to the line U = 2V , at the point C’ in the phase
diagram of Fig. 6, g3 evolves to positive values and then becomes relevant together with the
combination 2g2− g1. Both diverge at some critical ℓρ, indicative of a charge (Mott) gap. The
fate of g1 is of particular interest since though repulsive initially, it evolves toward negative
values and its flow ultimately separates from those of g3 and 2g2 − g1 at sufficiently large
ℓ where the influence of irrelevant terms in (39) at |n| ̸= 0 becomes vanishinghly small and
can be ignored above some arbitrary value ℓ∗ or equivalently below an effective cutoff energy
Λ∗ = Λe−ℓ

∗
. One finally recovers the flow of the continuum-limit theory [Eq. (31)], implying

g1(ℓ) =
g1(ℓ∗)

1+ g1(ℓ∗)(ℓ− ℓ∗)
(ℓ≥ ℓ∗), (52)

where g1(ℓ∗)< 0. Typically, we have |g1(ℓ∗)| ≪ 1, so that the singularity of (52) will invariably
lead to a finite, though very small, gap∆σ ∼ Λ∗e−1/|g1(ℓ∗)| in the spin sector. Slightly above the
U = 2V line at the point C in the phase diagram, both g1 and g3 are initially attractive. While
g1 remains attractive and evolves to strong coupling with the formation of a spin gap∆σ, which
is much stronger in comparison to C’, the coupling g3, though initially attractive, changes sign
and becomes repulsive at the beginning of the flow due to its coupling to irrelevant terms.
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Figure 6: Phase diagram of the EHM at half filling. The points A, B, C and C’ are
discussed in the text. The dashed lines correspond to the phase boundaries of the
continuum limit of the model shown in Fig. 5-(a).

According to Fig. 7-(b), the flows of g3 and 2g2 − g1 then evolve to strong coupling and lead
to the formation of a charge gap ∆ρ.

The consequence of effective repulsive g3 and attractive g1 couplings on the nature of
correlations is significant. On the U = 2V line, instead of the coexistence of gapless CDW
and SDW phases predicted by the TL model, a spin and charge gapped BOW phase emerges.
According to Figs. 7-(a),(c), the gapped BOW state extends on either side of the line defining
a fan shape region where it dominates over SDW and CDW phases. These findings confirm
previous RG results [26,28,29,45], and are consistent with those of numerical simulations in
the weak-coupling region of the phase diagram [19,20,24].

We now turn to the attractive sector surrounding the U = 2V line, namely the region
U < 0 in the phase diagram of Fig. 6. In the g-ology formulation of the EHM, the TL conditions
g1 = g3 = 0 at U = 2V will be also unstable due to the presence of irrelevant terms that couple
spin and charge degrees of freedom at the beginning of the flow. Thus in spite of g3 remaining
irrelevant, g1(ℓ) becomes negative for ℓ≥ ℓ∗, as shown in Fig. 8-(b); ℓ∗ being large, this leads
to a small spin gap∆σ [Eq. (52)]. As displayed in Fig. 6, this tips the balance in favor of SS as
the most stable phase, impinging on the region of TS stability found in the continuum g-ology
theory (Fig. 5). The resulting growth of the SS region against the gapless TS one leads to a
convex SS-TS boundary in the phase diagram that is consistent with previous weak-coupling
RG calculations [29] and exact diagonalization results of Nakamura [19].

A related bending of phase boundary is also found for the U = −2V line separating the
Mott SDW and gapless TS phases in the TL model. The SDW state is then favored against TS at
U > 0 and V < 0. This is illustrated in Fig. 8-(c),(d) for the point B of Fig. 6 where g2 changes
sign at the beginning of the flow, so that umklapp scattering, known to be irrelevant on the
U = −2V line in the continuum g-ology theory, becomes marginally relevant with a small but
finite charge gap in the presence of irrelevant terms, which enlarges the stability region of the
Mott SDW state.

Regarding the rest of the phase diagram of Fig. 6, only quantitative changes in the flow
of coupling constants result from the presence of irrelevant terms due to lattice effects. These
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Figure 7: Flow of the three-leg vertices Zx of the susceptibilities [(a),(c)] and cou-
pling constants [(b),(d)] for points C’ and C of the phase diagram in Fig. 6, near the
U = 2V > 0 line at half-filling. C:(1.81, 1.03), C’:(1.43, 0.69).

results confirm those of Ref. [29] obtained by a different RG approach. We close the description
of the phase diagram by pointing out the existence of a singularity in the uniform charge
compressibility χρ. It signals an instability of the electron system against phase separation
which makes an incursion in the zone of attractive V in the phase diagram. This incursion is
well established by numerical simulations [19,46]. Note that for simplicity we didn’t include
in Fig. 6 and the following diagrams at different fillings the continuum prediction for phase
separation.

We conclude that even if the lattice EHM model at half-filling is invariably described at
sufficiently low energy by an effective continuum g-ology model, it is difficult to determine
the initial conditions of this effective model without a careful analysis of the physics at high
energy. Taking directly the continuum limit from the bare Hamiltonian may lead to wrong
conclusions as to the nature of the ground state and in turn the structure of the phase diagram.
These effects carry over away from half-filling for the EHM model, as we shall discuss next.

3.2 Away from half-filling

As far as the part played by the spectrum is concerned, we first note that away from half-
filling, when µ ̸= 0, the integration of degrees of freedom is no longer symmetric with respect
to the Fermi level, except in the low-energy domain where Λ≪ Λ0 and the spectrum can be
considered essentially linear, as generically depicted in Fig. 1.

As a consequence, the RG flow can be divided into three regimes. In the first regime, the
asymmetry between electrons and holes plays an important role. Typically, for µ > 0, we
can have N (ξ > Λ) = 0, that is, no fermion states are available, whereas N (ξ < −Λ) ̸= 0
(Fig. 1). The bubbles Lph,pp will be affected accordingly. Thus, there will be no 2kF particle-
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Figure 8: Flow of the three-leg vertices Zx of the susceptibilities [(a),(c)] and coupling
constants [(b),(d)] for points A and B of the phase diagram of Fig. 6 at half-filling.
A:(-1.69, -1.0), B:(1,84, -1.0).

hole excitations and Lph will vanish in this regime (See Fig. 19). This contrasts with Cooper
pair excitations, contributing to Lpp, which are present for (−k, k) pairs of momentum where
N (ξk) ̸= 0. It follows that Lpp will be only halved in amplitude, the remaining part being still
logarithmic. As we will see, this is responsible for a sizeable screening of interactions at the
beginning of the flow, whose impact alters the structure of the phase diagram obtained in the
continuum limit. This is reminiscent of the screening of Coulomb interactions by pairing fluc-
tuations in the theory of conventional superconductivity [47]. The second regime corresponds
to the Λ range where we have N (ξ)≈N (−ξ), but where the spectrum is still poorly approx-
imated by a linear function. In this regime, the logarithmic singularity of the p-h channel is
only partly restored while the one in the p-p channel is complete (See Fig. 19); this imbalance
between the two scattering channels favors the screening effects of the Coulomb term.

Finally, the last regime corresponds to the continuum limit at small Λ, for which we can
write N (ξ) ≈ N (−ξ) ≈ 1/πvF. This corresponds to the density of states used in the g-ology
model for each fermion branch and both spin orientations.

Besides these loop effects associated to the density of states, the chemical potential has also
an impact on the Peierls loopLP′ in which the reciprocal lattice vector is involved in momentum
conservation making the nesting relation not perfect anymore [37,39]. As a consequence, LP
survives but not LP′ , so that the equations for normal g1 and g2 processes become independent
of umklapp processes at Λ(ℓ)< vFµ.
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Figure 9: Same as Fig. 6 but away from half-filling: µ = 0.035. The dashed lines
refer to the phase boundaries of the continuum limit in Fig. 5-(b). The open circle
corresponds to the threshold value Uc(µ) for the onset of a gapped BOW state as a
function of µ (Fig. 10). The point D in the BOWσ charge-gapless region is discussed
in the text and Fig. 11. The long-dashed lines indicate the boundary above which a
charge gap is present in the continuum limit.
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Figure 10: The critical coupling Uc is plotted as a power law Uc = aµb+c of the chem-
ical potential µ. The gapped BOWσ,ρ phase exists for all U ⩾ Uc. Here b = 0.53,
a = 8.06, and the constant c = 0.34 for a temperature of 10−7 used in the calcula-
tions.
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Figure 11: Flow of (a) the three-leg vertices ZX density-wave susceptibilities and (b)
coupling constants at point D of the phase diagram of Fig. 9 (µ = 0.035, n = 1.01).
D:(1.30, 0.63).

3.2.1 Small doping

One can now consider the phase diagram for small departure from half-filling, namely at
µ = 0.035 (Fig. 9), integrating the flow equations (39), (45-46) and (47) with the initial
conditions (18), (42) and (43).

In the repulsive sector near the U = 2V line, we see that the regions with spin- and charge-
gapped BOW and charge-gapped SDW phases shrink in size, and only exist above some thresh-
old Uc in the interactions. Thus a finite region unfolds at small coupling with CDW, BOW and
SDW phases having no gap in the charge sector (see also footnote 2). The putative gap is
indeed suppressed by the energy scale vFµ that stops the flow of 2g2 − g1 and g3 towards
strong coupling when Λ(ℓ) < vFµ. The profile of the critical Uc shown in Fig. 10 for the on-
set of the gapped BOW phase as a function of doping µ, is well described by a power law
Uc(µ) ≃ 8.03µb + c, where b ≃ 0.53. Here c→ 0 when the temperature goes to zero indicat-
ing that in the ground state, Uc→ 0 as µ→ 0. At non-zero µ, a finite region of dominant BOW
state with only a spin gap and gapless charge excitations forms in the phase diagram. At point
D in Fig. 9 for instance, the corresponding flow of the couplings displayed in Fig. 11 shows
a growth followed by the leveling off of repulsive umklapp scattering. This is the signature
that g3 becomes irrelevant beyond some finite value of ℓ. Nevertheless, this trajectory favors
BOW correlations against CDW ones; it also initiates an incommensurate regime in which
2g2(ℓ)− g1(ℓ) evolves toward a constant. Regarding the attractive backscattering amplitude
g1, it will according to (52) invariably lead to a small spin gap at large ℓ.

Dominant BOW correlations away from half-filling but at finite U and V near the line
U = 2V have been noticed numerically in quantum Monte Carlo simulations [20], in qualita-
tive agreement with the present results. If one moves downward in the bottom right quadrant
of the phase diagram of Fig. 9, we see that a finite µ suppresses the transition for the charge
gap at the boundary between SDW and TS phases which is present at half-filling. The SDW
phase then becomes entirely gapless near the boundary. As for the frontier between CDW and
SS in top left quadrant of the phase diagram of Fig. 9, it has a bit moved upward which is con-
sistent with the results of the continuum limit, as already shown in the lower panel of Fig. 5.
However, as we will see next this boundary is noticeably affected at larger µ.

One finally looks at the singularity line of the uniform charge compressibility χρ. In the
attractive V part of Fig. 9, the phase separation instability line calculated from (51) and the
values of g∗ρ obtained at the end of the flow, undergoes only a small upward shift with respect
to half-filled case.
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Figure 12: Same as Fig. 9 but for µ= 0.3 (n= 1.1). The point E is discussed in detail
in the text.
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Figure 13: Flow of (a) the three-leg vertices Zx of CDW and SS susceptibilies and
(b) the coupling constants at point E of the diagram in Fig. 12 (µ = 0.3, n = 1.10).
E:(-1.24, 0.97).

3.2.2 Intermediate doping

The phase diagram at intermediate doping µ = 0.3 is displayed in Fig. 12. Due to the weak
effect of umklapp processes at this filling, there is no region of the phase diagram characterized
by a charge gap. However, the influence of g3 at the beginning of the flow is still finite which,
together with the change of g1 to negative values due to irrelevant coupling terms, still defines
near the U = 2V line a region of dominant BOW phase at the incommensurate wave-vector
2kF. The characteristics of the flow of coupling constants in this BOW region, albeit much
further reduced in their amplitudes, are similar to those shown in Fig. 11.

In the phase diagram of Fig. 12, the SDW-TS boundary turns out to be relatively close to
the prediction of the model in the continuum limit. Here only the weak impact of umklapp
and irrelevant couplings, which preserves the sign of g2, restores the stability of TS compared
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to the situation at very small µ (e.g., point B of Figs. 6 and 8-(c),(d)).
In the top left quadrant of Fig. 12 the deviations with respect to the prediction of the

continuum model are particularly significative. One observes an expansion of the SS phase
which goes well beyond its stability region found in the continuum limit; this occurs against
CDW, which becomes secondary in importance. The origin of this expansion resides in the
sizable asymmetry of the spectrum with respect to the Fermi level. At the beginning of the flow,
that is at large Λ, all 2kF particle-hole pair fluctuations coming from closed loops, vertex and
ladder diagrams in Fig. 2 are strongly suppressed, a consequence of the lack of available density
of states for either electrons or holes for this p-h pairing when asymmetry is pronounced, as
illustrated in Fig. 1. This regime is followed by a second one at relatively large Λ where these
fluctuations are only partially restored. Thus there is a sizeable Λ interval where p-p ladder
diagrams for pairing fluctuations (first row of Fig. 2) dominate (see e.g. Fig. 19 at finite µ),
and govern the flow of g1 and g2. At point E in Fig. 12 for instance, the coupling g2, though
initially repulsive, is screened by pairing fluctuations, to the point where it changes sign and
becomes attractive. This is shown in Fig. 13-(b). As a result, the SS phase is favored against
CDW (Fig. 13-(a)). This effect is reminiscent of the screening of the Coulomb interaction
by pairing fluctuations which favors phonon-induced singlet superconductivity in isotropic
metals [47]. The strong reduction of the 2kF particle-hole pair contribution at the beginning
of the flow is also responsible for making umklapp processes irrelevant in the whole CDW
region of the upper half of the phase diagram. This is why no charge gap is found, in contrast
to the continuum-limit prediction (region above the spaced dashed line in Fig. 12).

Finally we observe on Fig. 12 that the instability line for phase separation undergoes a
sizable upward shift to weak coupling values. This is due to the smaller renormalization of
g∗ρ coming from weaker umklapp scattering and, to a lesser extent, the decrease (increase) in
Fermi velocity (density of states). Note that it has not been possible to extract with precision
from the flow equations the g∗ρ value deep in the spin-gapped region of the lower left panel of
the phase diagram (dashed white line of Fig. 12). In this region the energy ∆σ≫ T at which
the flow stops turns out to be far away from the thermal energy distance from the Fermi surface
where g∗ρ is defined. In Fig. 12 and subsequent phase diagrams, the dashed line corresponds
to an extrapolation of the line computed where the spin gap vanishes or is sufficiently close to
the thermal scale.

3.2.3 Large doping

One now considers the phase diagram at the higher doping level, µ= 1.0, shown in Fig 14.
The whole diagram indicates that g3 has virtually no effect in this range of doping reflecting an
incommensurate situation for the electron system. This coupling can then be safely ignored
in the analysis. Only a spin gap can occur. In the continuum model, we have seen that it
is governed by the flow of g1(ℓ) [Eq. (32)] and the initial condition g1 ≃ U − V < 0 for
attractive backward scattering, that is above the dashed line U ≃ V in Fig. 14. According to
the figure, the continuum-model result is however significantly altered by lattice effects and
important deviations are present. A significant region develops with gapless spin excitations
although g1 is initially attractive. At point F for instance, Fig. 18 shows that g1 indeed starts
in the attractive domain but rapidly evolves towards repulsive sector to become a marginally
irrelevant variable at sufficiently large ℓ.

This remarkable effect has its origin in the pronounced asymmetry of the spectrum which,
as we have seen, suppresses most, if not all, contributions coming from 2kF particle-hole loops
at large Λ; small momentum pairing fluctuations coming from contributions of ladder Cooper
diagrams to g1 in Fig. 2 largely dominate. Since for these terms the product g1 g2 in lowest
order is initially negative, this makes these diagrams globally positive and pushes the flow of g1
towards positive values. This can be seen as the counterpart effect of the screening discussed
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Figure 14: Same as Fig. 12 but for µ = 1.03 (n = 1.1). The point F is discussed in
the text and Fig. 18.
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Figure 15: Flow of the three-leg vertices Zx of the susceptibilities (a) and couplings
(b) at point F of Fig. 14 at µ= 1.0 (n= 1.33) . F:(1.50, 1.75).

above for the enhancement of singlet superconductivity by pairing fluctuations. This counter-
screening of g1 enlarges the region of gapless spin degrees of freedom in comparison with
the continuum g-ology prediction. This in turn expands the SDW phase at the expense of
the spin-gapped CDW phase whose correlations, though still singular, become secondary in
importance, as shown in Fig. 18-(a). Exact diagonalization studies of the EHM carried out at
n = 2/3 (µ = −1.0) on the electron-doped side and which corresponds to n = 4/3 (µ = 1.0)
in the hole-doped case of Figs. (14-18), have clearly identified such corrections to the spin gap
line of the continuum g-ology approach [48]. However, in this enlarged region with no spin
gap, the superconducting TS and SS susceptibilities are not enhanced with respect to the free
electron limit.

In the attractive V region the phase separation line continues to be slightly shifted upward
to weaker coupling due to more favorable initial values gρ and lower vF. As in the previous
case with µ = 0.3, the values of g∗ρ cannot be accurately extracted from the flow in the spin
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Figure 16: Phase diagram of the EHM at 3/4-filling µ=
p

2 (n= 1.5).

gapped region (dashed white line of Fig. 16), where the flow stops at an energy scale far from
T and thus away from the conditions of the continuum limit.

If we turn our attention to the top left quadrant of the phase diagram, we see that compared
to the results shown in Fig. 12 the stability region of SS phase is further broadened against
the CDW one of smaller amplitude. The SS region reaches about twice the area predicted by
the continuum model. The screening of g2 by pairing fluctuations from positive to negative
values results from the non-linear spectrum in the first two regimes of the flow. This follows
the pattern already displayed in Fig. 13, which is here magnified due to the more pronounced
asymmetry of the spectrum. This trend is confirmed when µ is further increased.

This is illustrated by the calculations performed at the higher commensurate doping
µ =
p

2 (3/4-filling, n = 1.5). These yield the phase diagram shown in Fig. 16 which is
roughly similar to Fig. 14, except for the boundaries delimiting the CDW phase. By the same
mechanism of screening the CDW region monotonously shrinks in size showing sign of closing
at stronger coupling, this to the benefit of the SS or SDW phase. On the SDW side, this is
concomitant with the expansion of gapless region for spin degrees of freedom due to counter
screening at the beginning of the flow. Results of exact diagonalisations at quarter-filling are
congruent with these corrections [48,49].3 Regarding the instability line of phase separation
at attractive V , only a small upward shift in its position is found with respect with the previous
µ = 1.0 or n = 1.3 situation owing to the slight increase in the initial value of gρ and of the
density of states.

When the doping is further increased beyond the 3/4-filling, qualitative changes in the
phase diagram become manifest. As shown in Fig. 17 for µ = 1.5 (n = 1.54), the region
of gapless spin degrees of freedom continues to be enlarged with respect to the one of the
continuum g-ology results, but the most striking result resides in the closing of the CDW zone
at V > 0 which gives way to the emergence of a TS phase with gapless excitations in the spin

3The present fRG calculations do not take into account the influence of the 8kF umklapp scattering which
involves the transfer of four particles from one Fermi point to the other and that is present at 3/4 (or 1/4) filling [6].
This higher-order umklapp scattering is O(ξ2) in power counting and is thus irrelevant. It is known to only affect
qualitatively the phase diagram beyond some critical V > 0 value where a 4kF charge ordered state is found [50,51].
This regime is well outside the weak coupling sector considered in this work. However, one cannot exclude that it
may affect the flow of marginal couplings.
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Figure 17: Phase diagram of the EHM at large µ= 1.5 (n= 1.54).

sector. This result contrasts with what is found in the g-ology framework where the TS phase
is confined to the lower right part of the phase diagram. As shown in Fig. 18-(b), the counter
screening of g1 (g2) to positive (lower) values at the beginning of the flow is responsible for
the occurrence of gapless superconductivity in this part of the phase diagram. As displayed in
Fig. 18-(a), only TS correlations are singularly enhanced in this region while those of the SS
type are reduced compared to the free electron limit.

To our knowledge no numerical simulations have been carried out at this doping which
would allow a precise comparison. However, results of exact diagonalizations at quarter filling
(µ= −1.41) have revealed the existence of a peculiar and unexpected superconducting phase
in the gapless sector for V ≳ 4 and U nearly centered around zero [48, 49]. This would be
located above the weak-coupling CDW region of Fig. 16. The present results strongly suggest
that superconductivity found by exact diagonalizations at 1/4-filling corresponds to the TS
phase that emerges in Fig. 17 at a smaller V > 0. Finally, the phase separation line in the
attractive V domain continues its slow upward shift, another instability line of this type begins
to appear, but this time in the TS region described above at repulsive V . It is worth mentioning
that at larger positive V numerical simulations achieved at 1/4-and 2/3-fillings also find such
a phase within the previously described TS region [48,49].

From the above results one can conclude that the asymmetry between occupied and unoc-
cupied electron states in an incommensurately filled spectrum can introduce pairing fluctua-
tions which act as an efficient mechanism to modify the repulsive part of long-range Coulomb
interactions at low energy and thus promote superconductivity of different nature.

4 Conclusions and perspectives

In this work we have developed a weak-coupling functional RG approach to 1D lattice models
of interacting fermions in one dimension. In the framework of the EHM, we have shown how
lattice effects modify in a systematic way the initial conditions defining the effective continuum
field theory which invariably emerges at sufficiently low energy. For repulsive couplings at
half-filling, for instance, the impact of irrelevant interactions on marginal couplings, which
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Figure 18: Flow of the three-leg vertices Zx of the susceptibilities (a) and couplings
(b) at point G of Fig. 17 at µ= 1.5 (n= 1.54). G:(-0.60, 1.80).

couple spin and charge degrees of freedom, turn out to be a key factor in the emergence
of the gapped BOW state that overlaps the U = 2V > 0 gapless TL line of the continuum
theory. We have also checked that qualitative changes in the nature of ground states are also
manifest in the attractive sector of the EHM phase diagram at half-filling. These changes are
due to irrelevant terms affecting the flow of marginal couplings at high energy and introducing
noticeable shifts in the transition lines of the continuum theory, altering the stability region of
the gapless TS state in favour of SS or SDW gapped states. These alterations of the continuum
EHM phase diagram at weak coupling are consistent with previous numerical studies [18,19];
they also confirm the results obtained from numerical fRG in the repulsive coupling sector [28],
and more generally from a Wilsonian RG approach to the non linearity of the spectrum and
momentum-dependent interaction of the EHM [29].

We have also carried out our fRG procedure away from half-filling. In this case, the particle-
hole symmetry in the tight-binding spectrum is lost and the integration of degrees of freedom
becomes asymmetric with respect to the Fermi level. This notably affects the influence of high-
energy fermion states on the flow of scattering amplitudes and susceptibilities. An imbalance
between the logarithmic screening of the p-p and 2kF p-h scattering channels is introduced
which couples charge and spin degrees of freedom. In a finite energy interval at the beginning
of the flow, the 2kF density-wave part and concomitantly the magnification of umklapp com-
mensurability, are strongly reduced. This contrasts with the p-p scattering channel which is
weakly affected and sees its logarithmic singularity maintained. As the integration of degrees
of freedom approaches the Fermi level, the imbalance together with irrelevant interactions
scale down to zero and the flow progressively evolves toward the one of an effective contin-
uum theory. However, the input parameters that govern the low-energy flow are not those
of the naive continuum limit and alter sizable parts of the EHM phase diagram compared to
the continuum g-ology predictions away from half-filling. This is particularly manifest for the
CDW state whose extent in the phase diagram as the dominant phase at negative U and re-
pulsive V , for instance, is steadily reduced as a function of doping to the benefit of singlet
superconductivity which gains in importance. This feature is not without bearing comparison
with the screening of Coulomb interactions by high-energy pairing fluctuations in ordinary
metals, which is known to promote the existence of superconductivity from retarded attrac-
tive coupling induced by electron-phonon interactions [47]. At large doping and repulsive V ,
pairing fluctuations are found to promote repulsive back scattering interactions by expanding
the region of gapless spin excitations. This occurs with the emergence of a TS phase compat-
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ible with the one found by exact diagonalization studies carried out at stronger coupling far
from half-filling [48,49].

The approach developed in this paper can be easily transposed to other non-integrable
models of interacting electrons defined on a lattice. This is the case of models with gener-
alized non-local interactions [52–55], for which numerical calculations are available at half-
filling and known to deviate from the predictions of the g-ology approach in the field-theory
continuum limit [19]. Another natural extension of the present work concerns the EHM in the
quasi-one-dimensional case, where a weak but finite interchain hopping is taken into account.
This may serve as a weak-coupling quasi-1D EHM to study the sequence of ground states that
can unfold in strongly anisotropic correlated systems as a function of doping. Some of these
applications are currently under investigation.

C. B and L. D thank the National Science and Engineering Research Council of Canada
(NSERC), the Regroupement Québécois des Matériaux de Pointe (RQMP) and the Institut
Quantique of Université de Sherbrooke for financial support. The authors thank E. Larouche
and M. Haguier for their support on various numerical aspects of this work.

A Flows of coupling constants

A.1 Finite-temperature, one-dimensional, single-band systems

In this first part of the Appendix, we detail the derivation of the flow equations for the scat-
tering amplitudes at the one-loop level for both marginal and irrelevant couplings. To do so
we first make the correspondence k → (η,ξ) between the momentum and the energy ξ and
its branch η, so that

gk1, k2, k′1
= g η⃗(ξ⃗) ,

where x⃗ = (x1, x2, x1′) for x = ξ,η. From the diagrams of Fig. 2, the flow equations of the
coupling constants at the one-loop level comprise a sum of contributions coming from p-p and
p-h scattering channels, which can be put in the form:

Λ∂Λg η⃗(ξ⃗) =
∑

x

Dη⃗x (ξ⃗)

= Dη⃗pp(ξ⃗) + Dη⃗ph1(ξ⃗) + Dη⃗ph2(ξ⃗) + Dη⃗ph3(ξ⃗) , (A.1)

where the diagrams
Dη⃗x (ξ⃗) =
∑

p

Lη⃗x (ξ⃗)γ
η⃗
x1(ξ⃗)γ

η⃗
x2(ξ⃗) (A.2)

are expressed in terms of loops Lη⃗x (ξ⃗) and combinations of coupling constants γη⃗x1(ξ⃗) and

γ
η⃗
x2(ξ⃗) for each scattering channel x. They are respectively given by

Dη⃗pp(ξ⃗) =
∑

p

Lpp
p,−p+k1+k2

gk2, k1,−p+k1+k2
gp,−p+k1+k2, k′1

, (A.3a)

Dη⃗ph1(ξ⃗) =
∑

p

Lph
p, p−k′1+k2

gk1, p−k′1+k2, p gk2, p, p−k′1+k2
, (A.3b)

Dη⃗ph2(ξ⃗) =− 2
∑

p

Lph
p, p+k′1−k1

gk1, p+k′1−k1, k′1
gk1, p+k′1−k1, k′1

gp, k2, p+k′1−k1
, (A.3c)

Dη⃗ph3(ξ⃗) =
∑

p

Lph
p, p+k′1−k1

(gk1, p+k′1−k1, p gp, k2, p+k′1−k1
+ gk1, p+k′1−k1, k′1

gk2, p, p+k′1−k1
) . (A.3d)

As explained in the main text, g η⃗(ξ⃗) and Dη⃗x (ξ⃗) on each side of (A.1) can be formally expanded
in power of ξ⃗ to get the flow equations of the set of marginal and irrelevant couplings.
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A.2 Loop expressions

In order to derive the expressions of the bubble intensities, let us first introduce the free prop-
agator regularized at scale Λ:

GΛ0 (pn, p) =
θΛ(p)

ipn − ξ(p)
, (A.4)

where pn denotes the fermionic Matsubara frequencies and p the momentum. The loop ex-
pressions are then obtained from the derivative of the product of the propagators:

L(pn,p),(qn,q) = −
πvFT

L
Λ∂Λ
�

GΛ0 (pn, p)GΛ0 (qn, q)
�

, (A.5)

and the sum over the Matsubara frequencies is then performed:

Lpp
p,q =
∑

pn

L(pn,p),(−pn,−p+q) ,

Lph
p,q =
∑

pn

L(pn,p),(pn,p+q) .
(A.6)

The expressions of the loop contributions for the diagrams of the p− p and p− h scattering
channels are thus given by

Lpp
p,q = −

πvF

2L
Λ∂Λ
�

θΛ(p)θΛ(p+ q)
�nF

�

ξ(p)
�

− nF

�

− ξ(p+ q)
�

ξ(p) + ξ(p+ q)
,

Lph
p,q =

πvF

2L
Λ∂Λ
�

θΛ(p)θΛ(p+ q)
�nF

�

ξ(p)
�

− nF

�

ξ(p+ q)
�

ξ(p)− ξ(p+ q)
,

(A.7)

where nF(ξ) = (1+ eβξ)−1 is the Fermi-Dirac distribution and θΛ(k) is the regulator or cut-off
function of the RG procedure. The latter is introduced explicitly in Sec. B below.

Let us discuss some limiting cases for these loops at vanishing external momentum. These
enter in the flow equations of response functions. We can define the following intensities in
each scattering channel. In the p-h channel, we have

LP =
∑

p⩾0

Lph
p, p−2kF

=
∑

p⩾0

Lph
−p,−p+2kF

,

LP′ =
∑

p⩾0

Lph
p, p+2kF

=
∑

p⩾0

Lph
−p,−p−2kF

,

LL =
∑

p⩾0

Lph
p, p =
∑

p⩾0

Lph
−p,−p,

(A.8)

which correspond respectively to the 2kF p-h or Peierls loops without (LP) and with (LP′) umk-
lapp scattering, and to q = 0 p-h loop. As for the p-p or Cooper loop at zero pair momentum,
it is given by

LC =
∑

p⩾0

Lpp
p,−p =
∑

p⩾0

Lpp
−p, p . (A.9)

These quantities are plotted in Fig. 19 as a function of the RG time ℓ defined by Λ = Λ0e−ℓ.
We can observe the presence of the van Hove singularity located at the edge of the spectrum.
At half-filling the amplitudes of the Cooper and Peierls bubble intensities are the same at all ℓ
but opposite in sign, and lead to maximum interference between certain classes of diagrams
in Fig. 2. Away from half-filling, the Peierls intensity LP′ , which involves umklapp scattering,
sees its intensity suppressed as a function of ℓ, when typically Λ(ℓ) < vFµ. This differs from
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Figure 19: Cooper, Peierls and Landau bubbles shown for different values of the
chemical potential, in the case of a tight-binding spectrum. The first panel is at half-
filling and the others at different fillings. In this figure, ℓ is the RG time, defined by
Λ = Λ0e−ℓ. The sharp peaks appear when Λ hits the band edges and are due to the
van Hove singularity in the density of states.

the normal part LP with no umklapp scattering which keeps its full intensity down to the
thermal shell. We also note in the third panel of Fig. 19 that at sizeable doping all the Peierls
intensities are zero at the beginning of the flow. This results from the particle-hole asymmetry
of the spectrum which suppresses electron or hole states required for 2kF p-h pairing. By
contrast the asymmetry of the spectrum suppresses only half of the states for p-p pairing states
so that the Cooper intensity is only halved and remains finite at the beginning of the flow.
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A.3 Renormalization of the Fermi velocity

Let us compute the Hartree-Fock contributions to the renormalization of the one-body term.
They can be put in the diagrammatic form

∂ΛΣk = + . (A.10)

One can expandΣk ≃Σ0+Σ1ξ(k) to first order in the energy ξ. The momentum-independent
term Σ0 renormalizes the chemical potential. However, it can be rescaled back to its initial
value (5) at each step of the flow for a given band-filling, so it is the bare value of µ that is
used in the flow equations. The momentum-dependent term linear in ξ, Σ1,Λ, leads to the
flow of the hopping term tΛ or correspondingly of the renormalization of the Fermi velocity
vFΛ = vF(1+Σ1,Λ).

From the evaluation of the second Fock term of (A.10), one has using a sharp cutoff

∂ΛvFΛ =
v2

F

8

∫ +Λ0

−Λ0

dξN (ξ)nF

�

ξ(2− vFΛ/vF)
�

× [δ(ξ+Λ) +δ(ξ−Λ)][g+,−,−
1,0,0 + (g

+,−,−
1,0,1 + g+,+,+

1,0,1 )ξ] , (A.11)

where the momentum-dependent backward and forward scattering amplitudes have been ex-
panded up to second order in ξ following the notation introduced previously in (42-43). In
the low-temperature and low-energy limits, this equation becomes

∂ℓvFℓ =
1
8

vF

� V
πvF

e−2ℓ +
Vµ
πvF

e−ℓ
�

. (A.12)

This leads to the renormalized Fermi velocity in the low-energy limit

v∗F = vF

�

1+
V

8πvF

�1
2
+µ
��

. (A.13)

In weak coupling, v∗F differs from vF only by a few percents.

B Choice of the regulator

The regulator ra(x) is realized as a smooth step function, and depends on a rigidity parameter
a (numerically a ≈ 10), such that ra=∞(x) = Θ(x −1), where Θ(x) is the Heaviside function.
Its expression is the following:

ra(x) = g(ax − a+ 1/2) , (B.1)

where

g(x) =
f (x)

f (x) + f (1− x)
,

f (x) =

¨

e−1/x if x > 0 ,

0 otherwise .

(B.2)

The regulator is shown in Fig. 20. It enters the flow equations through the function θΛ(k) in
the regularized free propagator (see Eqs. (A.4)). This function only depends on the momentum
k through the variable ξ(k) = ξ, and is given by

θΛ(k) = ra(|ξ|/Λ) . (B.3)
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Figure 20: The regulator is such that ra(0) = 0, ra(x ≫ 1) = 1 and ra(1) = 1/2.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
f(x)
fa(x)

1.06 1.04 1.02 1.00 0.98 0.96 0.94
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
f(x)
fa(x)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
f(x)
fa(x)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
f(x)
fa(x)

Figure 21: The van Hove singularity is regularized thanks to a smooth gate function
Gb(x), and the original density of states f (x) is replaced by the regularized func-
tion fb(x) whose sharpness is controlled by the parameter b, with which we have
fb→∞(x) = f (x).

Such a cutoff procedure is meant to reproduce the Wilsonian RG approach,4 which amounts
to a progressive integration of the degrees of freedom. Here, the UV degrees of freedom are
integrated first, and the RG flow leads to a low-energy effective theory. In the case of one-
dimensional fermions, the low-energy theory corresponds to a model with a linear spectrum
comprising two branches centered around the two Fermi points. This is of course in stark
contrast to the bosonic case for which the low-energy theory is described by modes of mo-
menta k ≈ 0.

Let us now clarify the structure of the bubble Lph,pp
p,q . Each bubble is made of two fac-

tors: the first one is proportional to the cutoff function while the second is proportional to
the derivative of this function with respect to the RG parameter Λ — unslashed and slashed
fermion lines respectively, in diagrams of Figs. 2, 3 and 4. Since the cutoff function is roughly
a regularized step function, its derivative is a regularized Dirac function, whose effect is a
selection of modes of energy ξ∼ Λ, and hence reproduces Wilson’s idea.

4Indeed, one recovers a sharp cutoff in the limit a→∞, that is r∞(|ξ|/Λ) = Θ(|ξ| −Λ).
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Van Hove singularity regularization. The regulator function rb(x) can be used to regularize
the van Hove singularity. The density of states has the schematic form:

f (x) =
Θ(1− |x |)
p

1− x2
, (B.4)

and is singular at x = ±1. In order to regularize this function, we first define a regularized
gate function:

Gb(x) = rb(x + 2)
�

1− rb(x)
�

, (B.5)

and then make the following replacement:

f (x)→ fb(x) =
Gb(x)
p

1− x2Gb(x)
. (B.6)

The regularized van Hove singularity is shown in Fig. 21. Such a regularization is advanta-
geous, because it produces a smooth function, well suited for numerical evaluations. Further-
more, the error due to the regularization is restricted to small segments around the singular
points. This is because the regulator is built out of functions whose variation support is com-
pact. The total number of states is recovered in the limit b→∞ (numerically b ≈ 103).

-2.0  -1.0  0.0  1.0  2.0
U

-2.0
 

-1.0
 

0.0
 

1.0
 

2.0

V

 = 0.035

CDW ,

CDW
BOW
SDW
TS
SS
PS
BOW ,

SDW

Figure 22: An example of a raw phase diagram obtained by the dichotomy algorithm
explained in the text and which leads to Fig. 9 with continuous boundaries.

C Numerical determination of phase boundaries

Boundaries of the phase diagrams are determined using a dichotomy algorithm. The algorithm
is initialized by specifying several parameters:

• V− < 0 and V+ > 0, with typically V+ = −V− = 2,

• U− < 0 and U+ > 0, with typical values U+ = −U− = 2,

• a number N which determines vertical lines Ui = U− + i(U+ − U−)/N for 0 ⩽ i ⩽ N
(N ≈ 60),

• a number G > 1 specifying the total number of dichotomy iterations (in practice G = 10).
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In the first step, the phase is determined on each point of coordinates (Ui , V±). Then a di-
chotomy is performed on each vertical line, until the final number of generations is reached.
The vertical line setting is convenient because the computations done on two different lines
are independent from each other, which allows the use of parallelization. An example of a raw
phase diagram is shown in Fig. 22.
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