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Abstract

We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically
twisted 3d N = 4 rank-0 SCFTs. This is a recently introduced class of N = 4 SCFTs that
by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain
why it is reasonable to obtain rational VOAs at the boundary of their topological twists.
When a rank-0 SCFT is realized as the IR fixed point of a N = 2 Lagrangian theory, we
propose a technique for the explicit construction of its topological twists and boundary
VOAs based on deformations of the holomorphic-topological twist of the N = 2 micro-
scopic description. We apply this technique to the B twist of a newly discovered family of
3d N = 4 rank-0 SCFTs Tr and argue that they admit the simple affine VOAs Lr (osp(1|2))
at their boundary. In the simplest case, this leads to a novel level-rank duality between
L1(osp(1|2)) and the minimal model M(2, 5). As an aside, we present a TQFT obtained
by twisting a 3d N = 2 QFT that admits the M(3, 4) minimal model as a boundary VOA
and briefly comment on the classical freeness of VOAs at the boundary of 3d TQFTs.
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1 Introduction

The past few years have seen exciting progress in the study of the topological A and B twists
of 3d N = 4 theories, see e.g. [1–9] for a small selection of results related to this work. The
resulting non-unitary TQFTs exhibit in general more exotic features than the more familiar
TQFTs of Schwarz type, such as Chern-Simons theory. For instance, their state spaces are
not finite-dimensional [10, 11], and their categories of line operators are expected to form
intricate, non-semisimple braided-tensor or E2 categories [12–14], which are much less rigid
than the Modular Tensor Categories (MTCs) that describe more standard TQFTs.1 Moreover,
much like their more standard topological cousins, topologically twisted 3d N = 4 theories
enjoy holomorphic boundary conditions supporting vertex operator algebras (VOAs); the first
explicit examples of these boundary VOAs appear in [17] and were expanded upon in [2],
see also [15, 18] for detailed studies of abelian N = 4 gauge theories of hypers and vectors.
Since the bulk line operators do not necessarily form a semisimple category, these VOAs are
generically not rational, i.e. these theories admit logarithmic VOAs on their boundaries.

Much progress in the study of these rather exotic TQFTs has been made possible by exploit-
ing algebro-geometric tools closely related to the geometry of their moduli spaces of vacua.
Familiar examples where this has been fruitful are Rozansky-Witten theory [19], cf. [20,21], as
well as the sharp mathematical definition of Coulomb branches due to Braverman-Finkelberg-
Nakajima [22, 23], cf. [24–26]. It is therefore natural to ask what features arise in the event
that the Higgs and/or Coulomb branches of the 3d N = 4 theory trivialize in a suitable sense.
When both branches are zero dimensional these theories are said to be rank-0. Partial expec-
tations have been formulated in this context [5,27], where evidence was provided to support
the claim that the boundary VOAs are closely related to rational CFTs.

One common problem obstructing the study of theories with zero-dimensional Higgs and
Coulomb branches is that it is not straightforward (and perhaps even impossible) to engineer
them starting from a microscopic Lagrangian description with manifest N = 4 supersymmetry.
In [5,27], for example, these theories are realized by either starting from a UV N = 2 theory
that enhances in the IR or by starting with UV N = 4 theory and then gauging a symmetry
that emerges only in the IR. These IR SCFTs can be studied by utilizing protected observables,

1One particularly promising way to understand these categories in some instances is in terms of the represen-
tation theory of quantum groups, see e.g. [6,15,16].
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such as superconformal indices, half-indices, and sphere partition functions, and tuning certain
parameters in a way that corresponds to the would-be topological A or B twist.

The present paper reports the results of our first efforts to provide a more direct under-
standing of these strongly interacting rank-0 N = 4 SCFTs, focusing in particular on their
boundary VOAs. Of course, these VOAs are much more sensitive than standard supersym-
metric observables and, in fact, much of the spectrum of the bulk theory can in principle be
reconstructed from them. The basic idea that we utilize to directly access these topologically
twisted theories and their boundary VOAs is analogous to the perspective taken in [6–8] for
3d theories (see also [28,29]) and [30,31] in 4d. We start by first passing to the holomorphic-
topological (HT) twist of the UV Lagrangian theory, which is available to any N ≥ 2 theory,
and identify a suitable boundary vertex algebra utilizing the tools provided by [32]. We then
study how this is deformed upon passing to a fully topological theory.

The underlying intuition is that the HT twist already captures IR information, and should
therefore be able to see the emergent supersymmetry, cf. [33]. The existence of extra supercur-
rents extending N = 2 to N = 4, and therefore of two topological twists in the IR, manifests
itself in the HT twist as the presence of two distinguished operators whose descendants can be
used to deform the holomorphic-topological theory to two theories that are fully topological.
Roughly speaking, this deformation can be thought of as turning on a suitable superpotential.
From a BV/BRST perspective, this deforms the differential Q of the HT -twisted theory, which
is the sum of the BV/BRST differential and the twisting supercharge Q = QBRST + QHT , to
QA/B = Q + δA/B. The effect of such a superpotential deformation on the boundary vertex
algebra can be understood using the analysis of [32]. As we review below, see also [7,33], the
second operator plays a distinguished role after deforming: it trivializes (makes homotopically
trivial) the bulk’s dependence on the holomorphic coordinate and oftentimes realizes an action
of the Virasoro algebra on boundary local operators (thus producing a VOA). Importantly, the
form of the superpotential used to deform to topological theories instructs which boundary
conditions are deformable in the sense of [2,34].

In this paper, we systematically apply this strategy to one particularly simple but remark-
able class of rank-0 SCFTs that has recently been announced in [27]. The simplest member
of this family is the so-called minimal SCFT Tmin of [35] whose A and B twists were studied
in [5]. This class corresponds to the IR image of a certain family of abelian N = 2 Chern-
Simons-matter theories. More precisely, we consider the theory Tr of the following form

Tr : N = 2 U(1)rKr
+Φa=1,··· ,r , W =

r−1
∑

i=1

Vmi
, (1)

where we have r copies of a U(1) gauge theory with a chiral multiplet of charge 1, a suit-
able matrix Kr of mixed Chern-Simons level, and Vmi

are a basis of gauge-invariant half-
BPS monopole operators. In the IR, a U(1) ⊂ (U(1)r)top subgroup of the topological sym-
metry mixes with the N = 2 R-symmetry U(1)R to form the N = 4 R-symmetry group
SU(2)H × SU(2)C ; the remaining topological symmetries are broken by the monopoles op-
erators, in agreement with the rank-0 expectation. One of the results of [27] was that certain
half indices of these theories, in the limits appropriately reproducing the A and B twists, ap-
pear to be vector-valued modular forms closely related to characters of the Virasoro minimal
models M(2,2r + 3). As we now explain, our main motivation to study these boundary VOAs
came from the observation of these modular phenomena as well as the appearance of Virasoro
minimal models. We note that these minimal models also arise in the context of 4d Argyres-
Douglas theories [36] and their reduction to 3d [37,38].

Before zooming in on the results of this paper, some general comments on the expected
properties of the VOAs appearing at the boundary of twisted rank-0 theories SCFTs are in order.
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First, we remark that the vacuum geometry is expected to control two important aspects of
the boundary VOAs in the A/B twist of an N = 4 theory.

i) Based on examples [3], the Higgs branch conjecture of Beem-Rastelli in 4d, as well as
free-field realizations in 3d by Beem and the first author [39], the Higgs/Coulomb branch
chiral ring identified with (the reduced part of) Zhu’s C2 algebra RV of the boundary VOA
V; in [39] it was conjectured that for a large class of A-twisted abelian gauge theories,
the associated variety Specm(RV) is indeed the Higgs branch.

ii) Additionally, the Coulomb/Higgs branch is supposed to correspond to the algebra of
self-extensions of the vacuum module of the boundary algebra [2,3].

Thus, based on these expectations, it is natural to strengthen a bit the rank-0 conditions,
and study the case where:

1) RV is finite-dimensional

2) there are no non-trivial self-extensions of the vacuum module

The first condition, which is equivalent to saying V is C2-cofinite, already has important con-
sequences. In fact, it is known that under some technical assumptions (that the VOA is finitely
strongly generated and non-negatively graded, which usually holds) the C2-cofiniteness con-
dition (and as a consequence, the zero-dimensionality of the associated variety) is equivalent
to the vertex algebra being lisse [40], which says that the singular support of V (as a module
for itself) is zero-dimensional. This further implies that its characters indeed enjoy modular
properties, see e.g. [41]. Therefore, taking seriously the first expectation means that rank-0
theories have a good chance of admitting lisse boundary VOAs, and in turn, of having half-
indices that enjoy modular properties.

Exploring in detail the second condition is beyond the scope of this paper. However, in
part in view of the findings of [5,27] we are prompted to formulate the following question:

Q: Under which conditions is a lisse VOA with trivial self-extensions of the vacuum module
in fact rational?

To put it differently, it has been a long-standing problem in the VOA literature to elucidate
the relation between the lisse and rational conditions. The absence of self-extensions of the
vacuum is certainly a necessary condition for a VOA to be rational, and it seems reasonable
to expect that it is generically also sufficient. Leaving a precise formulation and proof of this
statement to future work, we limit ourselves to observe that conditions 1) and 2), which are
expected to be in general stronger than the rank-0 condition, are in fact necessary to obtain a
rational VOA. We call this the strongly rank-0 condition.

We will now describe in more detail the contents and results of this paper. We start with a
brief review of the class of theories under consideration in Section 2 and discuss the generalities
of deforming an HT -twisted theory to a full topological theory in Section 3.

In Section 4 we study the minimal rank-0 theory T1 ≡ Tmin. We start by examining the HT
twist of T1 and describe the boundary vertex algebra supported by a (right) Dirichlet boundary
condition Dir analogous to the one proposed by [27]. We find that this boundary condition
is deformable to the B twist and performing this deformation leads to an algebra of osp(1|2)
currents at level 1, i.e. the simple affine VOA L1(osp(1|2)). As expected, this simple affine VOA
is rational (and therefore satisfies the strongly rank-0 conditions). The representation theory
of this VOA has been extensively studied and we identify its modules with bulk Wilson lines by
equating their characters with refined half-indices. We then describe the fusion rules of these
Wilson lines and the action of the modular group on the torus state space H(Σg=1), viewed
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as the space of (super)characters of L1(osp(1|2)), finding results compatible with the analyses
of [5,27]. Furthermore, we remark on a tantalizing connection to the Virasoro minimal model
M(2, 5) in terms of a novel level-rank-like duality2 based on embeddings into free fermions,
and argue that a suitable treatment of the algebra of local operators on a (left) dressed Neu-
mann boundary condition Neu should realize M(2,5) as a boundary VOA.

We consider the higher-level theories Tr in Section 5, where a direct description of the
boundary VOA becomes somewhat more difficult. We argue that there is a Dirichlet boundary
condition Dir(r) that is compatible with the B-twist and provide evidence for the algebra of
boundary local operators being identified with the simple affine VOA Lr(osp(1|2)). We finish
Section 5 by comparing properties of the category of Lr(osp(1|2)) modules with the analysis
of [27], finding compatible results. The form of our half-indices can be viewed as fermionic
sum representations of Lr(osp(1|2)) characters, which may be of independent interest. Finally,
in Appendix A we make use of a mechanism introduced in Section 4 to propose a twisted 3d
N = 2 TQFT and boundary condition thereof that realizes the minimal model M(3, 4).

We note that the simple affine VOAs Lr(osp(1|2)) for r ∈ Z>0 are an interesting family of
VOAs that are all lisse [42, Thm 5.5], rational [43, Thm 7.1], and classically free [44, Cor 3.1].
The first two properties were mentioned above and are quite natural from the perspective that
the bulk TQFT arises from twisting a rank-0 SCFT. The notion of classical freeness was first
introduced in [45, 46] in the computation of chiral homology groups, see also [47, 48] for
further developments and examples, but is quite rare and still not well understood physically
or mathematically. There is evidence that the VOAs coming from 4d N = 2 SCFTs must be
classically free, e.g. the only classically free minimal models are the M(2, 2r + 3) [45] and
these are precisely the ones realized by Argyres-Douglas theories of type (A1, A2n) [36]. This
does not seem to hold, or at least needs to be modified, for VOAs on the boundary of 3d TQFTs:
while the theories Tr admit classically free boundary VOAs, the theory studied in Appendix A
admits one that is not classically free. It would be interesting to understand what properties
of the bulk QFT are realized by the notion of classical freeness of its boundary VOA(s), or if it
is possible for a given 3d QFT to admit boundary VOAs of both types.

2 3d N = 4 rank-zero theories

In [5,35], Gang et al. constructed a class of 3d N = 4 SCFTs of rank zero, which are character-
ized by the property that both their Higgs branch and Coulomb branch are point-like. These
theories in general do not have a Lagrangian description that preserves the full N = 4 super-
symmetry. However, they often have a Lagrangian description with manifest N = 2 symmetry,
from which one can calculate various supersymmetric observables to study the properties of
the low-energy theories. There is non-trivial evidence that allows us to conjecture that these
N = 2 theories flow to SCFTs in the infrared, where the supersymmetry enhances to N = 4.

Such a rank-zero N = 4 SCFT admits two topological twists, called the A and B twists,
and each yields a semisimple topological quantum field theory (TQFT). The modular data of
these TQFTs and characters counting boundary local operators can be extracted by computing
their partition functions on Seifert manifolds (see e.g. [49] and references therein) and half-
indices [50–52], respectively.

2We thank Thomas Creutzig for explaining this duality to us and suggesting a possible connection to our con-
struction.
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2.1 The minimal N = 4 rank-zero SCFT, Tmin

The simplest example of a rank-zero SCFT, which is known as the minimal N = 4 SCFT, Tmin,
can be constructed from the following UV N = 2 Lagrangian Chern-Simons-matter theory
[35]:

U(1)k=3/2 +Φ , (2)

where Φ= (φ,λ) is an N = 2 chiral multiplet of gauge charge +1. The UV description enjoys
global symmetry U(1)R × U(1)top, where the second factor is the topological symmetry. The
theory has two gauge invariant dressed monopole operators:

φ2V−1 , λ̄V+1 , (3)

where Vm is the bare monopole operator with the gauge flux m ∈ Z. It was first argued in
loc. cit. that these operators belong to the extra super-current multiplets, which provides
strong evidence that supersymmetry enhances to N = 4 in the infrared. At the fixed point,
the global symmetry U(1)R × U(1)top is expected to enhance to the full R-symmetry group
(SU(2)H × SU(2)C)/Z2.

2.2 A class of rank-zero theories

In the recent paper [27], an interesting class of rank-zero theories that generalizes Tmin was
constructed. These theories have the following N = 2 Lagrangian descriptions in terms of the
abelian Chern-Simons matter theories:

Tr : N = 2 U(1)rKr
+Φa=1,··· ,r , W =

r−1
∑

i=1

Vmi
, (4)

where the gauge group is U(1)r with the effective mixed Chern-Simons levels Kr given by

Kr = 2

















1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
...

...
...

. . .
...

...
1 2 3 · · · r − 1 r − 1
1 2 3 · · · r − 1 r

















. (5)

This coincides with 2C(Tr)−1, where C(Tr) is the Cartan matrix of the tadpole diagram Tr ,
which is obtained by folding the A2r Dynkin diagram in half. The charges of the a-th chiral
multiplet Φa under the b-th gauge group factor is δab. Finally, the theory is deformed by the
monopole superpotential W , where Vmi

are the bare monopole operators with fluxes

m1 = (2,−1, 0, . . . 0) ,

m2 = (−1, 2,−1, 0, . . . 0) ,

. . .

mr−1 = (0, . . . ,−1, 2,−1) ,

(6)

which are the first r − 1 rows of C(Ar). One can check that these monopoles form a basis of
gauge invariant bare monopole operators in this theory.

After deforming by this monopole superpotential, the flavor symmetry of Tr is broken from
U(1)r to U(1), which we call U(1)A. They are linear combinations of the U(1) topological
symmetry Ma for each gauge group factor:

A=
r
∑

a=1

aMa , (7)
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which will be identified with the axial U(1) R-symmetry in the enhanced N = 4 algebra. Note
that the simplest example, Tr=1 corresponds to the minimal SCFT Tmin.

As in the r = 1 case, there is strong evidence that Tr flows to an N = 4 SCFT that is rank-
zero, cf. [27]. For example, the low energy theory has the following 1/4-BPS gauge-invariant
dressed monopole operators,

λ̄r V(0r−2,−1,1) , φ2
1φ

2
2 · · ·φ

2
r V(−1,0r−1) , for r > 1 , (8)

which are expected to belong to the extra super-current multiplet. The manifest U(1)R×U(1)A
symmetry of the UV gauge theory enhances to (SU(2)H×SU(2)C)/Z2, which is the R-symmetry
group of N = 4 theories. The IR theory then admits the two topological twists, which are
expected to produce two non-unitary semisimple TFTs T A

r and T B
r .

3 Twisting N = 4 theories

All of the examples in the previous section have one thing in common: the rank-0 N = 4 SCFT
lives in the IR of a certain N = 2 Lagrangian theory. It is generally quite hard to directly access
the topological twists of such an IR SCFT theory because the UV theory only has manifestN = 2
supersymmetry. The manifest N = 2 supersymmetry does admit a supersymmetric twist,
although it is not fully topological: such a twist trivializes translations in one real direction
(say, ∂t = ∂3) as well as a complex linear combination of translations in a transverse plane
(say, ∂z =

1
2(∂1 + i∂2)), resulting in a theory that behaves partially topological and partially

holomorphic. Such a twist is called a holomorphic-topological (HT) twist to distinguish it
from a fully topological twist.

If the N = 2 theory actually had N = 4 supersymmetry, the additional supersymmetries
surviving the HT twist could then be used to deform to either the A or B twist. This has
proven to be a fruitful route to describing the topological twists of more familiar 3d N = 4
theories, cf. [7,28,29,34]; see also [30,31] for related deformations in 4d. Thankfully, the HT
twisted theory is an RG invariant (up to quasi-isomorphism, cf. Section 3.7 of [32]) and hence
should admit two topological deformations corresponding to the two topological twists of the
IR N = 4 SCFT. In this way, we can bypass the lack of N = 4 supersymmetry in the UV theory
by first passing to the HT -twist; see e.g. [6, 8] for examples of this approach. We note that
there are some aspects of the physical theory that are harder to extract from this perspective,
e.g. turning on a real mass or FI parameter, but it is particularly well-suited to extracting the
boundary vertex algebras of interest.

3.1 The HT twist of an N = 4 theory

We start by presenting some general features of the HT twist of an N = 4 theory, following
the conventions of [7]. The 3d N = 4 supersymmetry algebra has 8 real spinor supercharges
Qaȧ
α , where a, ȧ are Spin(4)R ≃ SU(2)H×SU(2)C R-symmetry spinor indices and α is a SU(2)E

Lorentz spinor index, and the following anti-commutators

{Qaȧ
α ,Qbḃ

β }= ε
abεȧ ḃ(σµ)αβ Pµ , (9)

where (σµ)αβ are the usual Pauli matrices and ε is the 2-index Levi-Civita tensor, with the
convention ε+− = ε+̇−̇ = 1. We raise/lower spinor indices as χα = χβεβα and χα = εαβχβ ,
where our convention is ε+− = 1 so that εαγεβγ = δαβ . Up to equivalences, this supersymme-
try algebra admits three types of twists, cf. [53,54]: there is a single holomorphic-topological
(HT) twist

QHT =Q++̇+ , (10)
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and two topological twists

QA = δ
α
aQa+̇
α , QB = δ

α
ȧQ+ȧ
α . (11)

The supercharge QA (resp QB) is invariant under diagonal SU(2)H × SU(2)E
(resp. SU(2)C × SU(2)E) rotations and we call the corresponding supersymmetric twist the
A twist (resp. B twist) and this diagonal copy of SU(2) spin group the A-twisted spin (resp.
B-twisted spin); we note that this is sometimes called the H twist (resp. C twist) to indicate
which factor of the R-symmetry is used in the twisted spin.

We can write the N = 4 supersymmetry algebra as two commuting copies of the N = 2

algebra by setting Q1 =Q−−̇, Q2 = −Q−+̇ and Q
1
=Q++̇, Q

2
=Q+−̇. We will identify the N = 2

supersymmetry generated by Q =Q1,Q =Q
1

with that of the UV N = 2 theory. The 3d N = 2
supersymmetry algebra generated by Q,Q only admits a single twist (up to equivalence): the
holomorphic-topological (HT) twist QHT = Q+. Our conventions are such that the HT twist
of an N = 4 theory is the same as its HT twist when viewed as an N = 2 theory via Q,Q.
We will identify the N = 2 R-symmetry with the diagonal torus U(1)R ,→ SU(2)H × SU(2)C
generated by R= RH +RC ; the supercharge QHT has U(1)R R-charge 1 and is a scalar under a
combined U(1)E × U(1)R rotation generated by J = 1

2R− J3 that we call the HT -twisted spin.
Some portions of the full N = 4 supersymmetry algebra remain after taking the HT twist.

A more detailed discussion of the symmetries present in the HT twist of an N = 4 theory is
presented in the recent work of the second author [33]. For starters, all of the momenta Pµ
commute with QHT and become symmetries of the HT twist; of course, Pt and Pz are QHT -
exact, so we are left with the symmetry generated by Pz . The supercharge QHT = Q++̇+ is

invariant under the anti-diagonal torus U(1)S
∆
,→ SU(2)H ×SU(2)C generated by S = RH −RC

so the HT twist has such a U(1) symmetry. Moreover, the supercharges δA = −Q2
− =Q−+̇− and

δB =Q
2
− =Q+−̇− deforming QHT to QA and QB commute with QHT

{QHT ,δA}= 0= {QHT ,δB} . (12)

The HT twist should thus naturally admit two square-zero fermionic symmetries δA, δB with
vanishing U(1)R charge, HT -twisted spin 1

2 and U(1)S charges −1,1. Importantly, these
fermionic symmetries satisfy

{δA,δB}= Pz . (13)

The key property of these symmetries is that if we use them to deform the theory, i.e. twist
the theory by QA/B = QHT + δA/B, the resulting theory is topological: whereas only Pt , Pz are
exact in the HT twist, Pz becomes exact after either of these deformations

{QA,δB}= Pz = {QB,δA} . (14)

Note that QA does not have homogeneous HT -twisted spin, but it is invariant under the A-
twisted spin generator JA = J + 1

2S = RH − J3; similarly, QB is invariant under the B-twisted
spin generator JB = J − 1

2S = RC − J3.

3.2 Supercurrents and superpotentials

In the untwisted theory, the holomorphic momentum is realized via a surface integral of the
energy-momentum tensor. We will assume the stress tensor is symmetric Tµν = Tνµ. The
same remains true in the HT -twisted theory, but it also admits a second description in terms
of a secondary product realized via holomorphic-topological descent, cf. Section 2.2 of [32].
The notion of holomorphic-topological descent is a mild generalization of that introduced by
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Witten [55]. If O is any local operator, we define an n-form-valued local operator O(n), with
O =O(0), satisfying the following holomorphic-topological descent equation for any n> 0:

QHTO(n) = (QHTO)(n) + d′(QHTO)(n−1) , (15)

where d′ = dz∂z + dt∂t . There are only two such descendants in 3d and they take the form

O(1) = −dz(QzO)− dt(Q tO) , O(2) = −dzdt(QzQ tO) . (16)

where Qz =
1
2Q+ and Q t = −Q−, with the convention that the 1-forms dz and dt are fermionic.

When O is QHT -closed, integrals of its descendants on closed submanifolds of spacetime
give a natural class of higher-dimensional operators which, in turn, can be used to define
secondary products on in the twisted theory [56]. For example, for any QHT -closed local
operator O1 we define a new local operator by the formula

{{O1,O2}}(w, w, s) =

∮

S2

dzO(1)1 (z, z, t)O2(w, w, s) , (17)

where the integration cycle is over a small S2 surrounding the point (w, w, s). When O2 is
also QHT -closed, the resulting local operator is QHT -closed by Stokes’ theorem. This operation
decreases R-charge by 1 and HT -twisted spin by 1, i.e. {{O1,O2}} has R-charge r1+ r2−1 and
HT -twisted spin j1+ j2−1. In fact, we can replace dz by dzeλz to get an operator {{O1λO2}}(w);
as shown in [57], this gives local operators in the HT -twist a 1-shifted (or degree −1) λ-
bracket. Equivalently, we could consider the tower of brackets

{{O1,O2}}(n)(w, w, s) =

∮

S2

dzznO(1)1 (z, z, t)O2(w, w, s) (18)

for all n≥ 0; this bracket decreases R-charge by 1 and decreases HT -twisted spin by n+ 1.
Let us return to the holomorphic translation mentioned earlier. In an N = 2 theory, there

are additionally supercurrents Gαµ and Gαµ; the QHT variation of Gαµ trivializes two compo-
nents of Tzµ

QHT G+z = −2iTzz , QHT G−z = iTzt , (19)

so that we have

Pz =

∮

⋆(Tzµdxµ) = −i

∮

Tzzdzdt +QHT (...) . (20)

The operator Tzz is not QHT closed. Instead, it is the first descendant of the QHT -closed oper-
ator G = − i

2 G−z (up to QHT -exact terms):

dzG(1) = −iTzzdzdt +QHT (...) , (21)

and, in particular, the ∂z derivative of any QHT -closed operator O can be realized as a sec-
ondary product with G:

∂zO = {{G,O}} , (22)

cf. Eq. (2.16) of [32]. More generally, the higher brackets with G extend this to an action of
all holomorphic vector fields

Lzn∂z
O = {{G,O}}(n) , (23)

where Lzn∂z
denotes the Lie derivative. The operator G has R-charge 1 and HT -twisted spin 2,

compatible with zn∂z having R-charge 0 and spin 1− n, and is called the higher stress tensor.
In much the same way, the residual N = 4 supersymmetries δA/B and the generator of U(1)S
can be realized as the descent bracket with QHT -closed operators ΘA/B and S:

δA/BO = {{ΘA/B,O}} , S ·O = {{S,O}} . (24)

9

https://scipost.org
https://scipost.org/SciPostPhys.17.2.057


SciPost Phys. 17, 057 (2024)

Taking into account the quantum numbers of δA/B, we find that the (bosonic) operators ΘA/B

have R-charge 1 and twisted spin 3
2 , as well as U(1)S charge ∓1. Including the higher brackets,

the operators G, S, ΘA/B realize an action of the positive part of the 2d N = 2 superconformal
algebra [33].

Given a QHT -closed local operator O, we can consider deforming the action by a “superpo-
tential” term

∫

dzO(2); when O is a holomorphic function W of the chiral fields, this precisely
reproduces the usual notion of a superpotential deformation. For this to preserve twisted spin
and the U(1)R-symmetry, we must require that the local operator O has R-charge 2 and twisted
spin 1. The result of this deformation is to shift the action of QHT by the secondary product
with O:

QO =QHT + {{O,−}} . (25)

We now see how to deform the QHT twist of an N = 4 theory to the topological QA/B
twist. First, we redefine the twisted spin and the R-charge to be those of the topological A/B
twist. This ensures the operator ΘA/B has the necessary quantum numbers; for example, in
the A-twist we take the R-charge generated by R− S = 2RC and the twisted spin generated by
J + 1

2S = RH − J3. This change in twisted spin is accounted for in a modification of the higher
stress tensor G→ GA/B = G± 1

2∂zS. Second, we deform the action by the superpotential term:
∫

dz Θ(1)A/B , (26)

which implements the deformation of the differential.

3.3 Deformable boundary conditions

The final notion we want to review before moving to boundary vertex algebras is the notion of
a deformable boundary condition formalized in [2]; see [1,17] for earlier examples. In brief,
their aim was to study a half-BPS boundary condition preserving 2d N = (0, 4) supersymmetry.
As the topological supercharges are the sum of two supercharges with opposite 2d chirality,
we see that such a N = (0, 4) boundary condition cannot be compatible with either the A or B
twist. Instead, a (0,4) boundary condition is called deformable if it can be deformed, e.g. by
adding the integral of a boundary local operator to the boundary action, to a one compatible
with QA or QB.

Without direct access to the supercurrents giving rise to QA, QB, it is hard to ask that a
boundary condition be deformable at the level of the UV N = 2 field theory. Thankfully, the
notion of a deformable boundary condition can be reformulated in the HT -twisted theory [34].
The authors of loc. cit. show that an HT -twisted boundary condition is compatible with the
deformation to the A/B twist so long as the “superpotential” ΘA/B vanishes on the boundary.
From this perspective, the vanishing of the superpotential is required for the boundary condi-
tion to preserve supersymmetry.

A further requirement we will impose is that the other operator ΘB/A is unconstrained on
the boundary. This operator necessarily cannot be QA/B-closed. Instead, it trivializes the higher
stress GA/B:

QA/BΘB/A = GA/B . (27)

This relation implies that if O(w, w) is any QA/B-closed boundary local operator, then
∮

HS2

dzznG(1)A/B(zz, t)O(w, w)−
∮

∂ HS2

dzznΘB/A|(z, z)O(w, w) (28)

is another QA/B-closed local operator for any n ≥ 0 due to Stokes’ theorem. We expect this
to extend the action of the holomorphic vector field zn∂z to the boundary. More generally,
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we expect that the operator ΘB/A| generates a Virasoro subalgebra of the boundary algebra of
local operators. As we will see below, it does not necessarily agree with the boundary stress
tensor, but it will be a crucial part thereof.

4 A boundary vertex algebra for Tmin

We now return to the theory T1 = Tmin. Based on the analysis of [5, 35], we are lead to the
expectation that the QHT -closed operators

ΘA = λ−V+1 , ΘB = φ
2V−1 (29)

are the operators realizing the deformations to the A and B twist; the charge for the U(1)S
symmetry is identified with (the negative of the) monopole number. In view of the analysis in
[27], there is a natural candidate deformable boundary condition: we expect that the boundary
condition imposing

• (0,2) Dirichlet boundary conditions D on the Chern-Simons vector multiplet

• (0,2) Dirichlet boundary conditions D on the chiral multiplet

is deformable to the topological B-twist; we call this boundary condition Dir = (D, D). In-
deed, Dirichlet boundary conditions for the chiral multiplet impose φ| = 0 and leave λ−|
unconstrained, therefore ΘB| = 0. Moreover, the Dirichlet boundary conditions on the vector
multiplet further imply the bulk local operator ΘA is unconstrained on Dir. The local operators
on Dir are counted by the half-index [50–52], which is defined by

II(q) = trOps(−1)Rνq
Rν
2 +J3 x T , (30)

where Ops is the vector space of local operators on Dir, T schematically denotes the generators
of (a torus of) the boundary flavor symmetry with x the corresponding fugacities, and

Rν = R− νS . (31)

Here R is the superconformal R-symmetry R= RH+RC and S = RH−RC . In the present setting,
we can identify S = −A for A the generator of the topological flavor symmetry, cf. Eqs. (8) and
(9) of [27].

The boundary condition Dir has two flavor symmetries: the topological flavor symme-
try U(1)A of the bulk theory (with corresponding fugacity η) and the boundary U(1)∂ flavor
symmetry commensurate with a Dirichlet boundary condition (with corresponding fugacity
y). The anomaly polynomial characterizing the effective Chern-Simons levels between these
symmetries and the R-symmetry is

2f2 + 2(ftop − r)f , (32)

where f is the gauge field strength, ftop is the field strength coupling to the topological flavor
symmetry generated by A, and r is the field strength coupling to the R-symmetry. The half-
index for Tmin with the boundary condition Dir is then

IIDir(q; y,η,ν) =
∑

m∈Z

qm2
y2m[(−q1/2)ν−1η]m(y−1q1−m; q)∞

(q; q)∞
. (33)

In this expression, the unusual factor of (−q
1
2 )m(ν−1) comes from two sources: the factor

(−q
1
2 )mν comes from the appearance of the topological symmetry in Rν, whereas the fac-

tor (−q
1
2 )−m comes from the above mixed gauge–R-symmetry (effective) Chern-Simons term,

which induces R-charge on operators with gauge magnetic charge.
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At the level of the half-index, deforming to the B-twist amounts to sending η → 1 and
ν→ 1, leading to

IIB(q; y) = IIDir(q; y, 1, 1) =
∑

m∈Z

qm2
y2m(y−1q1−m; q)∞
(q; q)∞

, (34)

which is expected to reproduce the vacuum character of the B-twisted boundary algebra. Note
that in the limit y → 1, the half-index reduces to the character of a non-vacuum module of the
Virasoro minimal model M(2, 5),

IIB(q; 1) =
∑

n≥0

qn2

(q)n
= χM(2,5)

α=1 (q) . (35)

where n = −m; the terms with m > 0 vanish due to the q-Pochhammer symbol (q1−m; q)∞ in
the numerator.

The character of other modules can be obtained by inserting line operators. If we consider
the Wilson line of charge −1 (together with the background Wilson loop for the R-symmetry
that introduces an overall sign), we obtain

IIB(q; y)[W−1] = −
∑

m∈Z

qm2−m y2m−1(y−1q1−m; q)∞
(q; q)∞

. (36)

This expression in the y → 1 limit is proportional to the vacuum character of the Virasoro
minimal model, i.e.,

IIB(q; 1)[W−1] = −
∑

n≥0

qn2+n

(q)n
= −χM(2,5)

α=0 (q) . (37)

As we discuss momentarily, the two characters (34) and (37) transform as a vector-valued
modular form, once we multiply appropriate modular anomaly prefactors.

Based on the discussion in Section 5, the generic Dirichlet boundary condition (D, Dc)
considered in [27] is similarly deformable for the A twist of Tmin – although ΘA survives on
Dir, for generic Dirichlet boundary conditions Dc for chiral multiplet, which simply set φ|= c,
there is an additional differential that makes ΘA trivial in cohomology. Moreover, the operator
ΘB is non-vanishing on this generic Dirichlet boundary condition, whereas it vanishes on Dir.
We leave a deeper treatment of the algebra of local operators on the generic Dirichlet boundary
condition of [27] for future work.3

3Another candidate for a deformable boundary condition for the A twist is (D, N), imposing (0,2) Dirichlet
boundary conditions on the vector multiplet and (0,2) Neumann boundary conditions for the chiral multiplet.
The Neumann boundary conditions on the chiral multiplet impose λ−| = 0 which implies ΘA = 0. However, the
boundary theory has anomalous U(1)H , which is incompatible with the A-twist. This can be remedied by adding a
boundary fermion with R-charge 1 and U(1)∂ charge −1.

The HT -twisted half-index for (D, N) takes the form

II(D,N)(q; y,η,ν) =
∑

m∈Z

q
1
2 m

2
ym[(−q

1
2 )νη]m

(q; q)∞(yqm; q)∞

=
�

∑

m∈Z

(−1)mq
1
2 m(m+ν) ymηm

(q; q)∞

��

∑

n≥0

(−1)nq−
1
2 n(n+ν)η−n

(q; q)n

�

.

Deforming to the A-twist amounts to sending η→ 1 and ν→−1, leading to

IIA(q; y) = II(D,N)(q; y, 1,−1) =
�

∑

m∈Z

(−1)mq
1
2 m(m−1) ym

(q; q)∞

��

∑

n≥0

(−1)nq
1
2 n(1−n)

(q; q)n

�

,
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4.1 The B-twist of Dir

We now derive the algebra of boundary local operators on the boundary condition Dir after
deforming to the B twist. The category of modules for the VOA that we find will be our model
for line operators in the B twist of Tmin. We start by reviewing the boundary vertex algebra
in the HT twist, including non-perturbative corrections by boundary monopole operators. We
then describe the deformation to the topological B twist and outline the relationship between
the resulting VOA and the non-unitary minimal models described above.

4.1.1 The HT -twisted boundary vertex algebra

It is straightforward to derive the boundary vertex algebra on the above Dirichlet boundary
condition, in large part because we are working with an abelian gauge theory. See [32] for
general aspects of the boundary vertex algebras. First consider the perturbative local operators,
cf. Section 7 of loc. cit.; these are generated by an abelian current B and a fermionic field
λ= λ−| of spin 1:

B(z)B(w)∼
2

(z −w)2
, B(z)λ(w)∼

−λ(w)
z −w

, λ(z)λ(w)∼ 0 . (38)

The OPE of the abelian current B with itself reflects the effective Chern-Simons ke f f = 2, the

OPE between the current B and the fermion λ encodes the fact that it has gauge charge −1,
and the OPE of the fermion λ with itself is regular due to the absence of a bulk superpotential,
cf. Eq. (5.28) of [32]. Each of these operators has spin 1.

The non-perturbative corrections to this perturbative answer come in the form of boundary
monopoles. As a module for the perturbative algebra, these boundary monopoles can be iden-
tified with spectral flow modules; see e.g. [15,16,18,58] for a sampling of how spectral flow
arises in the context of Dirichlet boundary conditions for 3d abelian gauge theories. There are
spectral flow morphisms acting on the above operators as follows:

σm(B(z)) = B(z)−
2m
z

, σm(λ(z)) = z−mλ(z) . (39)

At the level of modes, this translates to the following automorphism

σm(Bn) = Bn − 2mδn,0 , σm(λn) = λn+m , (40)

where B =
∑

Bnz−n−1 and λ =
∑

λnz−n−1. Note that σm1
◦σm2

= σm1+m2
and, in particular,

σ−1
m = σ−m.

Given a module M of the perturbative algebra, we can construct a family of modulesσm(M)
as follows: the underlying vector spaces are isomorphic and for any module element |ϕ〉 ∈ M
we denote the corresponding element of σm(M) by σm(|ϕ〉); the module structure is then
defined by the formula

Oσm(|ϕ〉) = σm(σ−m(O)|ϕ〉) . (41)

Of particular importance for us are the spectral flows of the vacuum module for the pertur-
bative algebra. If |0〉 is the vacuum vector, satisfying Bn|0〉 = λn|0〉 = 0 for n ≥ 0, then we

which has unbounded powers of q. If we add a boundary Fermi multiplet with U(1)∂ and U(1)R charges −1 and 1
respectively, as required to cancel the boundary anomaly, we need to multiply mth summand in the half-index by

(yqm; q)∞(q
1−m y−1; q)∞ .

This has the pleasing effect of making the q-expansion bounded from below.
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find

Bnσm(|0〉) =











0 n> 0

2m n= 0

σm(Bn|0〉) n< 0

, λnσm(|0〉) =

¨

0 n−m≥ 0

σm(λn−m|0〉) n−m< 0
. (42)

Denoting the operators corresponding to the states σm(|0〉) by vm(z), these expressions trans-
late to the following OPEs:

B(z)vm(w)∼
2mvm(w)

z −w
, λ(z)vm(w)∼ (z −w)mσm(λ−1|0〉)(w) + . . . (43)

The OPEs of the boundary monopoles vm’s with one another are simply those of ordinary vertex
operators:

vm1
(z)vm2

(w) = (z −w)2m1m2 : vm1
(z)vm2

(w):∼ (z −w)2m1m2 vm1+m2
(w) + . . . (44)

We note that the subalgebra generated by B and the boundary monopoles vm can be iden-
tified with a rank-1 lattice VOA at level 2, i.e. based on the lattice

p
2Z. This particularly

important lattice VOA can be identified with the symmetry algebra of a compact boson at its
critical radius: (the simple quotient of) an affine sl(2) current algebra at level 1. In particular,
if we identify B↔ h, e↔ V1, and f ↔ V−1, Eq. (44) translates to the following OPEs:

h(z)h(w)∼
2

(z −w)2
, e(z) f (w)∼

1
(z −w)2

+
h(w)
z −w

,

h(z)e(w)∼
2e(w)
z −w

, h(z) f (w)∼
−2 f (w)

z −w
.

(45)

We note that the spins of these operators are not the natural ones where each gets spin 1: we
take e to have spin 1+ 1

2(ν− 1) and f spin 1− 1
2(ν− 1), cf. Eq. (33).

Equation (43) implies that that the OPE of f and λ is non-singular, whence it is a lowest
weight vector of a doublet for this affine sl(2) symmetry; the state λ0σ1(|0〉) = σ1(λ−1|0〉) fills
out the remaining states in this doublet and we identify it with the restriction of the bare bulk
monopole V1|. (The bare bulk monopole V−1| is identified with f .) If we denote the operator
dual to this state θ+ and rename λ= θ−, Eq. (43) takes the form

θ−(z)e(w)∼
θ+(w)
z −w

⇝ e(z)θ−(w)∼
−θ+(w)
z −w

. (46)

The remaining OPEs of the fermionic and bosonic generators ultimately follow from the affine
sl(2) symmetry. More explicitly, the OPEs of θ± and h follow from Eq. (38) and (43):

h(z)θ±(w)∼
±θ±(w)
z −w

. (47)

Using the fact that |θ+〉 = −e0|θ−〉 together with fn|θ−〉 = 0 and hn|θ−〉 = −δn,0|θ−〉 for all
n≥ 0, we conclude

fn|θ+〉= hn|θ−〉= −δn,0|θ−〉⇝ f (z)θ+(w)∼
−θ−(w)
z −w

. (48)

That the OPE of e and θ+ is non-singular follows from the fact that en|θ−〉= 0 for all n> 0 and
that e2

0|θ−〉= 0 because there are no states with the necessary charge an spin. Finally, we note
that the OPE of θ+ and θ− is non-singular; this follows from the action of λn on σ1(λ−1|0〉).
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We expect that the algebra of boundary local operators is (strongly, but not freely) generated
by the bosonic operators e, f , h and the fermionic operators θ±.

We note that the spin 2 + 1
2(ν − 1) operator 1

2ε
βα : θαθβ :=: θ2θ1 : of magnetic charge 1

has non-singular OPEs with all other fields. As explained in [32], operators in the center of
a boundary vertex algebra arise from the restriction of bulk local operators to the boundary:
these bulk local operators necessarily have non-singular OPEs with everything due to the fact
that we are free to collide in the z plane at finite separation in t (up to QHT -exact terms), the
OPE must then be non-singular due to locality. From this perspective, we identify 1

2ε
βα :θαθβ :

with the local operator ΘA|= λV1|.

4.1.2 Deformation to the B-twist

In order to deform to the B twist we first need to set ν→ 1; this ensures the operator φ2V−1
has spin 1 and has the effect of making all of the above generators spin 1. The B-twist is
then realized by introducing the superpotential W = −φ2V−1. Note that this superpotential
explicitly breaks the topological flavor symmetry.

The effects induced by deforming by a superpotential are described in Section 5 of [32],
and we propose a mild generalization holds here. Note that this superpotential and its first
derivatives vanish on the boundary due to the Dirichlet boundary conditions φ| = 0 on the
chiral multiplet. It follows, cf. Eq. (5.28) of loc. cit., that this superpotential introduces an
OPE of θ+ with itself of the form

λ(z)λ(w)∼
∂ 2
φ

W (w)

z −w
⇝ θ−(z)θ−(w)∼

−2 f (w)
z −w

. (49)

The remaining OPEs uniquely determined by associativity, i.e. they are uniquely determined
by imposing that the commutators of the modes of these generators satisfy the Jacobi identity.
For example, consider the OPE of θ+ and θ− or, equivalently, the anti-commutator {θ+,n,θ−,m}.
Using the relation θ+,n = −[en−m,θ−,m] and [θ−,m,θ−,n] = −2 fn+m, it follows that

{θ+,n,θ−,m}= −{[en−m,θ−,m],θ−,m}
= [{θ−,m,θ−,m}, en−m]− {[θ−,m, en−m],θ−,m}
= 2[en−m, f2m]− {θ+,n,θ−,m} ,

(50)

from which we conclude this anti-commutator is given by

{θ+,n,θ−,m}= [en−m, f2m] = hn+m + 2nδn+m,0 , (51)

corresponding to the OPE

θ+(z)θ−(w)∼
2

(z −w)2
+

h(w)
z −w

. (52)

The OPE of θ+ with itself can be computed similarly, leading to

θ+(z)θ+(w)∼
2e(w)
z −w

. (53)

We immediately see that the algebra of boundary local operators can be identified with an
affine osp(1|2) current algebra at level 1. More precisely, we find that the algebra of boundary
local operators is identified with the simple quotient of the universal affine current algebra:

V = L1(osp(1|2)) . (54)
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This vertex algebra is sometimes denoted B0|1(5,1), cf. [59, 60]. As the generating currents
all have spin 1, we identify the boundary stress tensor with the Sugawara stress tensor for
osp(1|2)

T (z) =
1
5

�1
2 :h2 : + :e f : + : f e : +1

2ε
βα :θαθβ :

�

, (55)

which has central charge c = 2
5 . It is straightforward to verify the above half-index IIB ex-

actly reproduces the vacuum character of L1(osp(1|2)) (up to a factor of the modular anomaly
q−

c
24 = q−

1
60 ):

IIB(q; y) = (q; q)−1
∞

∑

m

qm2
y2m(y−1q1−m; q)∞

= (q; q)−1
∞

∑

m

∑

ℓ≥0

(−1)ℓqm(m−ℓ)+ 1
2 ℓ(ℓ+1)(q; q)−1

ℓ y2m−ℓ

=
�

∑

m

qm2
y2m

(q; q)∞

��

∑

n≥0

qn(n+1)

(q; q)2n

�

−
�

∑

m

qm2+m y2m+1

(q; q)∞

��

∑

n≥0

q(n+1)2

(q; q)2n+1

�

= q
1
60χ[L1(osp(1|2))] .

(56)

In the first line we used the q-binomial theorem; in the second line we split the sum over ℓ
into even and odd parts and shifted m→ m+ ⌊ ℓ2⌋.

4.2 Simple modules and fusion rules

Although V is not quite a Virasoro minimal model, it is quite close to both M(3,5) and M(2,5),
albeit in quite different ways. As shown in [61] (see also [62, 63]), the coset of the above
osp(1|2) current algebra by the subalgebra of sl(2) currents is actually a minimal model:

M(3, 5)≃
L1(osp(1|2))

L1(sl(2))
. (57)

This Virasoro subalgebra is precisely generated by the bilinear 1
2ε
βα :θαθβ := ΘA|. As a module

for L1(sl(2))⊗M(3, 5), we have the following branching rules, cf. Eq. (14) of [63]:

L1(osp(1|2))≃ L1,0 ⊗ V (3,5)
1,1 ⊕Π(L2,0 ⊗ V (3,5)

1,4 ) . (58)

whereΠ denotes a shift in fermionic parity, Li,0 (i = 1, 2) are the simple modules for L1(sl(2)),
and V (3,5)

r,s (r = 1,2, s = 1, ..., 4 with V (3,5)
r,s ≃ V (3,5)

3−r,5−s – we will often take r = 1) are the
simple modules for M(3,5). More precisely, L1(osp(1|2)) is a Z2 simple current extension of
L1(sl(2))⊗M(3,5), where the Z2 simple current we extend by is precisely Π(L2,0⊗V (3,5)

1,4 ) and
is identified with the module generated by the action of L1(sl(2))⊗M(3,5) on the fermions θ±.

The realization of L1(osp(1|2)) as an extension of the affine algebra L1(sl(2)) and the
minimal model M(3,5) implies that its category of modules can be determined from those of
these more familiar pieces [64]; this perspective on the category of L1(osp(1|2)) modules was
taken in [60] and we review it below, see e.g. [59] for a complementary perspective.

For ease of notation, denote U = L1(sl(2))⊗ M(3,5). Because L1(sl(2)) and M(3,5) are
rational, any U module can be realized as a direct sum of simple objects of the form Li,0⊗V (3,5)

r,s .

The fermionic module X = Π(L2,0 ⊗ V (3,5)
1,4 ) is the Z2 simple current we use to extend U to V .

For any module M of U , we can induce a not-necessarily-local module for V via the functor
F(M) = V × M = M ⊕ X × M . Not all M will induce a genuine, i.e. local or untwisted,
module for V: only those modules M that have trivial monodromy with X will induce modules
for V . The modules M and X × M will result in the same module under F , so we must
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identify modules of U that differ by fusion with X . It is worth emphasizing that simple current
extensions are a boundary VOA manifestation of gauging a 1-form global symmetry in the bulk
3d QFT. Namely, gauging such a 1-form symmetry removes gauge non-invariant line operators
(those having nontrivial monodromy with X ) and identifies line operators that differ by the
action of the symmetry (those that differ by fusion with X ). We write this as follows:

L1(osp(1|2))≃
�

L1(sl(2))⊗M(3,5)
��

Z(1)2 . (59)

The desired monodromies are determined by those of L1(sl(2)) and M(3,5):

M(L2,0,Li,0) = (−1)i+1IdL2,0×Li,0
, M(V (3,5)

1,4 , V (3,5)
1,s ) = (−1)s+1IdV (3,5)

1,4 ×V (3,5)
1,s

. (60)

We see that Li,0 ⊗ V (3,5)
1,s induces a local module if i + s is even, leaving us with the following

V modules:
F(L1,0 ⊗ V (3,5)

1,1 ) = L1,0 ⊗ V (3,5)
1,1 ⊕Π(L2,0 ⊗ V (3,5)

1,4 ) =: 1 ,

F(L2,0 ⊗ V (3,5)
1,2 ) = L2,0 ⊗ V (3,5)

1,2 ⊕Π(L1,0 ⊗ V (3,5)
1,3 ) =: ΠM ,

F(L1,0 ⊗ V (3,5)
1,3 ) = L1,0 ⊗ V (3,5)

1,3 ⊕Π(L2,0 ⊗ V (3,5)
1,2 ) =: M ,

F(L2,0 ⊗ V (3,5)
1,4 ) = L2,0 ⊗ V (3,5)

1,4 ⊕Π(L1,0 ⊗ V (3,5)
1,1 ) =: Π1 .

(61)

The remaining Li,0 ⊗ V (3,5)
1,s induce Z2-twisted modules where θ± are half-integer moded. A

priori, because our simple current extension is by X = Π(L2,0⊗V (3,5)
1,4 ), we should also consider

modules induced from the parity reversed modules Π(Li,0 ⊗ V (3,5)
1,s ), but those are equivalent

to the above by fusion with X . We note that the (super)character of M precisely matches the
half-index in the presence of a Wilson line of charge −1 (up to a factor of the modular anomaly
q

1
5−

c
24 = q

11
60 ):

IIB[W−1] = −(q; q)−1
∞

∑

m∈Z
qm2−m y2m−1(y−1q1−m; q)∞

=
�

∑

m

qm2
y2m

(q; q)∞

��

∑

n≥0

qn2+n

(q; q)2n+1

�

−
�

∑

m

qm2+m y2m+1

(q; q)∞

��

∑

n≥0

qn2

(q; q)2n

�

= q−
11
60χ[M] .

(62)

An important structural property of the induction functor F is that fusion of V modules is
induced from fusion of the underlying U modules:

Mi ×M j =
⊕

N k
i j Mk ⇒ F(Mi)×F(M j) =

⊕

N k
i jF(Mk) . (63)

With this formula, we find that the fusion of M and itself is given by

M×M= F(L1,0 ⊗ V (3,5)
1,3 ×L1,0 ⊗ V (3,5)

1,3 ) = F(L1,0 ⊗ V (3,5)
1,1 )⊕F(L1,0 ⊗ V (3,5)

1,3 ) = 1⊕M . (64)

The remaining fusion rules follow from the interplay between fusion and parity shift Π:

(ΠM1)×M2 = Π(M1 ×M2) = M1 × (ΠM2) . (65)

For example, we also have

M×ΠM= Π1⊕ΠM= ΠM×M , ΠM×ΠM= 1⊕M . (66)

so that the fusion ring generated by ΠM contains all of the simple modules 1, Π1, M, and ΠM.
We note that the fusion ring generated by M precisely matches that of the Lee-Yang minimal
model M(2,5).
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4.3 Modular transformations of supercharacters

In this subsection we turn to the modular transformation properties of the modules found
above; as with fusion, these can be derived from those of the U = L1(sl(2))⊗ M(3,5) subal-
gebra, cf. [64]. Note that the supercharacters of a module and its parity shift agree with one
another up to a factor of−1, χ[M] = −χ[ΠM]. Correspondingly, we will restrict our attention
to the modules 1 and M.4

The fact that the vertex algebras V and U have integral conformal dimensions implies that
the action of T just measures the difference between the lowest conformal dimension and
c

24 =
1
60 , mod Z; the lowest conformal dimensions are 0 and 1

5 for 1 and M, respectively,
whence the T -matrix is given by

T =

�

e2πi −1
60 0

0 e2πi 11
60

�

. (67)

We can determine the modular S-matrix by using the S-matrices of L1(sl(2)) and M(3, 5)
together with the decompositions of 1 and M into U modules presented above. For example,
consider the vacuum module 1= L1,0⊗V (3,5)

1,1 ⊕Π(L2,0⊗V (3,5)
1,4 ); applying the S transformations

for L1(sl(2)) and M(3,5) we find

χ[1] = χ[L1,0]χ[V
(3,5)

1,1 ]−χ[L2,0]χ[V
(3,5)

1,4 ]

→ 1
2
p

2

�

χ[L1,0] +χ[L2,0]
�

�
r

1+ 1p
5
(χ[V (3,5)

1,1 ]−χ[V
(3,5)

1,4 ]) +
r

1− 1p
5
(χ[V (3,5)

1,2 ]−χ[V
(3,5)

1,3 ])
�

+ 1
2
p

2

�

χ[L1,0]−χ[L2,0]
�

�
r

1+ 1p
5
(χ[V (3,5)

1,1 ] +χ[V
(3,5)

1,4 ])−
r

1− 1p
5
(χ[V (3,5)

1,2 ] +χ[V
(3,5)

1,3 ])
�

=
r

1
2(1+

1p
5
)χ[1]−

r

1
2(1−

1p
5
)χ[M] .

(68)
Similarly, we find χ[M] → −

Ç

1
2(1−

1p
5
)χ[1] −

Ç

1
2(1+

1p
5
)χ[M], leading to the following

S-matrix:

S =

 Ç

1
2(1+

1p
5
) −

Ç

1
2(1−

1p
5
)

−
Ç

1
2(1−

1p
5
) −

Ç

1
2(1+

1p
5
)

!

. (69)

It is straightforward to verify these S- and T -matrices satisfy the defining relations
S2 = (ST )3 = 1 of PSL(2,Z).

It is possible to reproduce these modular data from the partition functions of Tmin calcu-
lated on Seifert manifolds. If Mg,p is a degree-p circle bundle over a closed Riemann surface
of genus g, the partition function can be written as

ZMg,p
=

∑

P(u∗)=1

Hg−1(u∗)F p(u∗) , (70)

where H(u∗) and F(u∗) are certain functions that can be computed from the twisted effective
superpotential W(u) of the UV gauge theory, evaluated at the solutions to the Bethe-equations,

P(u) = exp
�

2πi
∂W(u)
∂ u

�

= 1 . (71)

We find that, in the B-twist limit, H(u∗) and F(u∗) reproduce the data {S−2
0α } and {Tαα} of Eqs.

(69) and (67) respectively, up to an overall phase factor.

4We could equivalently consider 1 and ΠM by conjugating the following S- and T -matrices by the diagonal
matrix diag(1,−1), corresponding to the change of basis from {χ[1],χ[M]} to {χ[1],χ[ΠM]}.
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We note that the above S- and T -matrices are quite close to those of the minimal model
M(2, 5). Namely, they differ from those of M(2, 5) only by conjugation:

T =

�

0 −1
1 0

�

TM(2,5)

�

0 1
−1 0

�

, S =

�

0 −1
1 0

�

SM(2,5)

�

0 1
−1 0

�

. (72)

This conjugation is consistent with the fact that the y → 1 limit of the supercharacters of 1
and ΠM precisely agree with those of the M(2, 5) modules V (2,5)

1,2 and V (2,5)
1,1 , respectively.5

4.4 A boundary condition for M(2,5)

We note that the above analysis has been concerned with right boundary conditions, i.e. con-
sidering bulk theories living on C × R≤0, cf. Section 4.4 of [51]. There are equally good
half-BPS (0,2) boundary conditions when we consider theories on C×R≥0. We can compute
half-indices counting local operators on left boundary conditions exactly as before. In fact, we
find that there is a left boundary condition whose half-index precisely reproduces the vacuum
character of M(2, 5).

We start by considering a Neumann boundary condition (N , N). This does not give a well-
defined boundary condition due to a gauge anomaly: the bulk contribution to the anomaly
polynomial is the negative of the one appearing in Eq. (32). We can cancel all gauge anomalies
by introducing two boundary fermions; one of gauge charge 1 and the other of gauge charge
−1 and U(1)H charge 1.6 We shall denote this dressed Neumann boundary condition Neu. A
particularly important point is that the U(1)H symmetry is anomalous on the boundary; as this
symmetry is necessary for defining the twisting homomorphism the A-twist, we see that this
boundary condition is only compatible with the B-twist.

The B-twisted half-index counting local operators on Neu realizes the vacuum character of
M(2,5) (up to an overall factor of the modular anomaly):

IINeu(q) = (q; q)∞

∮

dy
2πi y

(q y; q)∞(y−1; q)∞(q y−1; q)∞(y; q)∞
(y; q)∞

= (q; q)∞
∑

m,n≥0

qm+m2+mn+n2

(q; q)m+n(q; q)m(q; q)n

=
∑

m≥0

qm+m2

(q; q)m
= q

11
60χ

M(2,5)
α=0 (q) .

(73)

In going from the first line to the second, we use the q-binomial theorem and extracted the
terms proportional to y0; in going from the second to the third we used the identity7

(q; q)−1
∞ =

∑

n≥0

qmn+n2

(q; q)m+n(q; q)n
. (74)

5Our S-matrix agrees with the one appearing in Eq. (3.11) of [5], but the T -matrix is slightly different:

TGK LSY = e−2πi/60T−1 , SGK LSY = S .

This difference in the T -matrix is arises because the T -matrices presented in [5] are only determined up to an
overall phase factor; indeed, the matrices TGK LSY and SGK LSY do not satisfy (SGK LSY TGK LSY )3 = 1.

6The field strength r− ftop couples to U(1)C whereas r+ ftop couples to U(1)H :

ftopA+ rR= (r+ ftop)RC + (r− ftop)RH ,

where we used A= −S = RC − RH and R= RC + RH .
7This identity can be seen as a consequence of the Jacobi triple product/bosonization identity

(−yq; q)∞(−y−1; q) =
∑

m∈Z

q
1
2 m(m+1) ym

(q; q)∞
,
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In the same fashion, we can compute the half-index for the Wilson line W−1 (together with
the background R-symmetry Wilson line) to find the character of the other minimal model

IINeu(q)[W−1] = (q; q)∞

∮

dy
2πi y

(q y; q)∞(y−1; q)∞(q y−1; q)∞(y; q)∞
(y; q)∞

(−y)

=
∑

m≥0

qm2

(q; q)m
= q−

1
60χ

M(2,5)
α=1 (q) .

(75)

Although we do not know the precise form of how to realize the B-twist deformation of
Neu, the above evidence suggests that the algebra of local operators on Neu surviving the
B-twist can be identified with the M(2,5) minimal model. We now explain how M(2,5) is
related to our choice of boundary fermions. First note that the VOA of boundary fermions,
identified with two copies of the bc ghost system, has an L1(sl(2)) symmetry rotating the two
pairs of fermions into one another and whose coset inside the free-fermion algebra is another
copy of L1(sl(2)). This is an avatar of the exceptional isomorphism so(4) ∼ sl(2) ⊕ sl(2),
where the so(4) currents are realized by the bilinears of the fermions. Importantly, the Urod
theorem of [65] says that this latter L1(sl(2)) contains a copy of M(2,5) and hence we have
an embedding of M(2, 5) into the VOA of our boundary free fermions. The remarkable fact is
that the commutant of M(2,5) inside of our boundary fermions is precisely L1(osp(1|2)) and,
moreover, they are mutual commutants of one another:

bc⊗2

L1(osp(1|2))
≃ M(2,5) ,−→ bc⊗2←−- L1(osp(1|2))≃

bc⊗2

M(2,5)
. (76)

Indeed, M(2,5)⊗ L1(osp(1|2)) ,−→ bc⊗2 is a conformal embedding:

cM(2,5) + cL1(osp(1|2)) = −
22
5 +

2
5 = −4= 2cbc . (77)

As a module for M(2,5)⊗ L1(osp(1|2)), the two bc ghost systems decompose as

bc⊗2 = V (2,5)
1,1 ⊗ 1⊕ V (2,5)

1,2 ⊗M . (78)

We propose that the B twist deforms the algebra of local operators on Neu to the coset of the
boundary fermions by their L1(osp(1|2)) subalgebra.

We can view the appearance of M(2, 5) on a left boundary condition and L1(osp(1|2)) on
a right boundary condition as a version of level-rank duality. In the context of, e.g., SU(n)k
Chern-Simons theory, a holomorphic Dirichlet right boundary condition leads to the usual
affine current algebra Lk(sl(n)). There is a left holomorphic boundary condition realized by
dressing a Neumann boundary condition by k fundamental chiral fermions, leading to the
commutant of the free fermion VOA by their Lk(sl(n)) subalgebra, which is itself isomorphic to
the affine current algebra Ln(gl(k)). These algebras were shown to have equivalent categories
of modules, up to a reversal of the braiding [66]; see also the earlier physical work [67] and
the more recent [68].

Physically, modules for either VOA can be used to model line operators in the bulk and
hence their categories of modules must be equivalent as abelian categories; as one VOA is on

by applying the q-binomial theorem to the left-hand side. Explicitly, the q-binomial theorem gives us

(−yq; q)∞(−y−1; q) =
∑

k,l≥0

q
1
2 k(k+1)+ 1

2 l(l−1) yk−l

(q; q)k(q; q)l

=
∑

m≥0

q
1
2 m(m+1) ym

∑

l≥0

ql2+lm

(q; q)l+m(q; q)l
+
∑

m<0

q
1
2 m(m+1) ym

∑

k≥0

qk2−km

(q; q)k(q; q)k−m
,

from which the claimed identity follows by equating the coefficients with non-negative powers of y .
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the left and the other on the right, the natural braiding of modules of the VOA is reversed from
one another, leading to a braid-reversed equivalence of categories. In the context of SU(n)k
Chern-Simons theory, this relation between VOAs is often rephrased in terms of a relation
between Chern-Simons theories, where the reversal of the braiding is realized by negating the
level as

SU(n)k ≃ U(k)−n,−n . (79)

More generally, whenever one has a commuting pair inside a VOA with trivial category of mod-
ules, such as M(2,5)⊗ L1(osp(1|2)) inside bc⊗2, there is necessarily a braid-reversed equiva-
lence between the two VOAs (under to some technical assumptions about the relevant vertex
tensor categories which hold in this setting) [69]. The decomposition in Eq. (78) dictates how
these modules are matched under this equivalence.

5 Higher level VOAs

A first-principles derivation of a boundary VOA Vr for the higher-level theory Tr is much harder
to implement than the level 1 case. In brief, this is due to the form of the deformations proposed
by [27]. Instead, we present indirect evidence for the following proposal: the B twist of Tr
admits

Vr = Lr(osp(1|2)) (80)

as a boundary VOA. We compare the fusion rules of Lr(osp(1|2)) modules and the modular S-
and T -transformations of their characters to the analysis of [27], finding compatible results.
One interesting consequence of our proposal is a fermionic sum representation of Lr(osp(1|2))
characters, see Eqs. (82) and (95).

5.1 A deformable boundary condition for Tr

We start by identifying a boundary condition for Tr that generalizes the Dirichlet boundary con-
dition Dir studied in Section 4. In particular, we will focus our attention on (right) N = (0, 2)
boundary conditions that impose Dirichlet boundary conditions on the vector multiplets and
the chiral multiplets. Such a boundary condition is specified by the values φi| of the chiral
multiplet scalars on the boundary. The half-index counting local operators on such a bound-
ary condition (with the spins relevant for the B twist) can be obtained by specializing the half-
index counting local operators on the Dirichlet boundary condition where all of the scalars
vanish on the boundary:

II(yi; q) = (q; q)−r
∞

∑

m⃗∈Zr

q
1
2 m⃗

T Kr m⃗ y⃗ Kr m⃗(y−1
1 q1−m1; q)∞ . . . (y−1

r q1−mr ; q)∞ , (81)

where yi are fugacities the U(1)i,∂ . A nonzero value for φi| breaks the U(1)i,∂ symmetry,
forcing us to specialize the above index as yi → 1, cf. Section 3.2.2 of [51]. We note that this
expression only contains non-negative powers of q, and the coefficient of q0 is 1.

5.1.1 Superpotential constraints

As described in Section 3, the allowed boundary conditions are constrained by the fact that
they must be compatible with the bulk superpotential. The superpotential relevant for the B
twist contains two parts. The first part comes from the bare monopoles Vm1

, . . . , Vmr−1
which

are argued by [27] to be necessary for the IR theory to exhibit an enhancement to N = 4
supersymmetry. The second part is given by the dressed monopole operatorφ2

1 . . .φ2
r V(−1,0,...,0)

and is used to deform (the HT twist of) this theory to the B twist of the IR SCFT.
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The first constraints on the boundary condition we consider are those coming from the
operator φ2

1 . . .φ2
r V(−1,0,...,0). One constraint says that this operator must vanish when brought

to the boundary: Dirichlet boundary conditions will break SUSY unless the superpotential
vanishes at the boundary, cf. Section 2.3 of [51], and this breaking is related to the boundary
condition being deformable [2,34]. This term in the superpotential suggests we should require
that at least one of the scalars vanishes on the boundary. On the other hand, the superpotential
should not vanish to a very high order. As described in [32], a non-vanishing ∂φW | leads
to a differential on the fermions, a non-vanishing ∂ 2

φ
W | leads to a singular OPE, and more

generally non-vanishing components of the tensor of nth-order derivatives ∂ n
φ

W | may lead
to higher L∞ operations on the boundary vertex algebra. To ensure that the superpotential
φ2

1 . . .φ2
r V(−1,0,...,0) induces a suitable singular OPE and no higher operations,8 we set r − 1 of

the scalars to non-zero values, with the remaining scalar forced to vanish on the boundary.9

Determining which r − 1 scalars to set to nonzero values is a bit more delicate, but this is
ultimately determined by the requirement that the bulk theory must also be deformed by a bare
monopole superpotential. In order for this Dirichlet boundary condition to be compatible with
this superpotential, it too must vanish on the boundary. In the context of ordinary 3d N = 4
gauge theories, a bulk bare monopole Vm⃗ of magnetic charge m⃗ vanishes on the boundary if
miQ

i
n > 0 for all n, where Qi

n is the charge of the nth scalar given generic Dirichlet boundary
conditions, cf. Eq. (4.10) of [70]. We propose this happens here as well, although we leave
a detailed analysis to future work. This massive cancellation can be witnessed in the half-
index: a fermion paired with a scalar of charge Qi given generic Dirichlet boundary conditions
contributes (q1−miQ

i
; q)∞, which vanishes for all miQ

i > 0. With this observation in hand, we
see that the bare monopoles Vmi

all vanish on the boundary if we give the first r − 1 of the
scalars generic Dirichlet boundary conditions, and require the rth scalar vanish. It is worth
noting that, with this criterion the fully generic Dirichlet boundary conditions studied by [27]
are deformable to the A-twist. We think it would be quite interesting to understand more
explicitly how the local operators on such a boundary condition realize the proposed minimal
model M(2,2r + 3).

In summary, we propose that the boundary condition Dir(r) defined by

1) Dirichlet boundary conditions on the vector multiplets

2) generic/deformed Dirichlet boundary conditions on the first r − 1 chiral multiplets
φi|= bi , i = 1, . . . , r − 1, bi ∈ C×

3) Dirichlet boundary conditions for the rth chiral multiplets φr |= 0

is deformable to the B twist.

5.1.2 Evidence for Lr(osp(1|2))

With the boundary condition Dir(r) in hand, we now turn to the algebra of boundary local
operators. Unlike the level 1 case, we are unable to determine the algebra of local operators

8So long as holomorphic boundary condition is deformable, it should give rise to an equivalent (quasi-
isomorphic) description of line operators in the bulk TQFT. The issue with higher operations is in the complexity
required to extract the E2 or braided-tensor structure of line operators from modules of the local operators; in a
sense, we are simply seeking a strict model for the category of bulk line operators.

9A priori, the fact that the higher-order derivatives of φ2
1 . . .φ2

r V(−1,0,...,0) do not vanish when we give r − 1 of
the scalars generic boundary values could lead to higher operations. Thankfully, this possibility is mitigated by the
appearance of a differential that trivializes all but 1 boundary fermion. Schematically, the differential takes the
form QB = µ|= φ|λ where µ is the current generating the U(1) action on the chiral multiplet; this does not arise
when φ| = 0, but when φ| ≠ 0 it implements the breaking of the U(1)∂ symmetry as the generating current B is
no longer Q-closed.
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directly. Instead, we present some indirect evidence supporting the proposal that this algebra
of local operators realizes the simple affine VOA Lr(osp(1|2)).

Our main piece of evidence for this proposal comes from comparing half-indices and (su-
per)characters of the simple modules of Lr(osp(1|2)), cf. [60]. The half-index counting local
operators on Dir(r) is given by

II (r)(y; q) =
∑

m∈Z

∑

n⃗∈Zr−1
≤0

q
1
2 n⃗

T Kr−1n⃗+mk⃗r−1·n⃗+rm2
y2k⃗r−1·n⃗+2rm(y−1q1−m; q)∞

(q; q)∞(q; q)n1
. . . (q; q)nr−1

, (82)

where we write the matrix of Chern-Simons levels in block form as

Kr =

�

Kr−1 2k⃗r−1

2k⃗T
r−1 2r

�

. (83)

Although we aren’t able to show it analytically, we find that these are consistent with the
vacuum character of Lr(osp(1|2)) by comparing q-expansions for low values of r. Showing
such an equality would be quite interesting, and could be interpreted as a fermionic sum
representation for this vacuum character.

We can use this half-index, together with the form of our superpotential deformations, to
gain some insight into how various pieces of the osp(1|2) current algebra fit together. First,
the perturbative operator Br generating the (unbroken) boundary U(1)r,∂ symmetry has the
necessary level to be the Cartan generator of an osp(1|2) current algebra at level r:

Br(z)Br(w)∼
2r

z −w
. (84)

We note that the bare monopole V(−1,0,...,0)| survives on Dir(r) due to its negative magnetic
charge and has the necessary quantum numbers (Br -charge −2 and spin 1) to be identified
with the bosonic generator f (z). Moreover, the term φ2

1 . . .φ2
r V(−1,0,...0) in the superpotential

introduces a non-trivial OPE between the rth fermion λ= λr,−| and itself:

λ(z)λ(w)∼
φ2

1 | . . .φ2
r−1|V(−1,0,...,0)|(w)

z −w
, (85)

which is precisely the form necessary for λ to be the fermionic generator θ− of an osp(1|2) cur-
rent algebra. The bare monopole V(0,...,−1,1)| also survives after deforming the Dirichlet bound-
ary conditions and has the right quantum numbers to be identified with the other fermionic
generator θ+. Finally, the half-index suggests the remaining bosonic generator e(z) should be
identified with a second boundary local operator of magnetic charge (0, . . . ,−1, 1).

Not only can we use the half-index to identify various local operators, if we assume it is
indeed the vacuum character of a rational VOA then we can also use it to predict the cen-
tral charge of that VOA using modular properties of the index. As noted in [27], the further
specialization y → 1 of this half-index realizes the character χ(2,2r+3)

1,r+1 of M(2,2r + 3)

χ
(2,2r+3)
1,r+1 (q) = qh(2,2r+3)

1,r+1 −c(2,2r+3)/24 II (r)(1; q) , (86)

which follows from the fermionic sum representations due to [71–76]:

χ
(2,2r+3)
1,n (q) = qh(2,2r+3)

1,n − c(2,2r+3)

24
∑

m⃗∈Zr
≥0

q
1
2 m⃗T Kr m⃗+m⃗W (r)

n

(q; q)m1
. . . (q; q)mr

, (87)
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where c(2,2r+3) is the central charge of M(2,2r+3), h(2,2r+3)
1,n are the lowest scaling dimensions

of its simple modules, and

W (r)
n = (

n−1
︷ ︸︸ ︷

0, . . . , 0, 1, 2, . . . , r − n+ 1) (88)

for n= 1, . . . , r +1. If this is to be the vacuum character of a rational VOA, we can identify its
central charge by matching modular anomalies:

−
cr

24
= h(2,2r+3)

1,r+1 −
c(2,2r+3)

24
⇝ cr =

2r
2r + 3

. (89)

Using that the (super)dimension and dual Coxeter number of osp(1|2) are 1 and 3
2 , respectively,

we see that this is precisely the Sugawara central charge of Lr(osp(1|2)).

5.2 Wilson lines and modules for Lr(osp(1|2))

Modules for Lr(osp(1|2)) can be described in the same way as for r = 1. We will again take
the perspective of [60] and view it as an extension of Lr(sl(2))⊗M(r+2, 2r+3). Equivalently,
there is a coset realization of M(r + 2, 2r + 3):

M(r + 2, 2r + 3)≃
Lr(osp(1|2))

Lr(sl(2))
. (90)

The VOA Lr(osp(1|2)) decomposes as a module for the product Lr(sl(2))⊗ M(r + 2,2r + 3)
(taking fermionic parity into account) as

Lr(osp(1|2)) =
r+1
⊕

n=1

Πn−1L(r)n,0 ⊗ V (r+2,2r+3)
n,1 . (91)

As before, the decomposition into a sum of products of Lr(sl(2)) and M(r+2,2r+3)modules
allows the representation theory of Lr(osp(1|2)) to be understood in terms of these pieces by
way of induction [64].

The analysis of [27] predicted the number of simple objects and fusion rules of the category
of line operators in Tr , finding it should be the same as the minimal model M(2, 2r + 3). The
VOA Lr(osp(1|2)) has r+1 simple modules (up shifts in parity), matching the number of simple
objects of M(2,2r +3). Written in terms of Lr(sl(2)) and M(r +2,2r +3) modules, they take
the following form:

Mi = Lr(osp(1|2))×
�

L(r)1,0 ⊗ V (r+2,2r+3)
1,2i+1

�

=
r+1
⊕

n=1

Πn−1L(r)n,0 ⊗ V (r+2,2r+3)
n,2i+1 , (92)

i = 0, . . . r; the vacuum module is identified with M0. In the notation of [60], these mod-
ules are denoted A2i+1,0. The fusion rules for the modules are induced from Lr(sl(2)) and
M(r + 2, 2r + 3). In particular, we find

Mi ×M j =
r
⊕

k=0

N (2r+3)2k+1
2i+1,2 j+1 Mk , (93)

where the structure constants N (p)s
′′

s,s′ are given by

N (p)s
′′

s,s′ =

¨

1 if |s− s′|+ 1≤ s′′ ≤min(s+ s′ − 1, 2p− s− s′ − 1) and s+ s′ + s′′ is odd

0 else
(94)
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This precisely matches the fusion rules of M(2, 2r + 3) modules, where the identification of
fusion rings is via Mi ↔ V (2,2r+3)

1,2i+1 ≃ V (2,2r+3)
1,2(r+1−i).

We can again use the analysis of [27] to predict which bulk line operators are identified
with which modules for Lr(osp(1|2)). Namely, we consider Wilson lines with charges −W r

n
(dressed by a suitable R-symmetry Wilson line). The half-index counting local operators at the
junction of such a Wilson line and Dir(r) is given by

II (r)n (y; q) =
∑

m∈Z

∑

n⃗∈Zr−1
≤0

q
1
2 n⃗

T Kr−1n⃗+mk⃗r−1·n⃗+rm2
y2k⃗r−1·n⃗+2rm(y−1q1−m; q)∞

(q; q)∞(q; q)n1
. . . (q; q)nr−1

×
�

(−1)r+1−n(yqm)n−r−1q−W (r−1)
n ·n

�

,

(95)

where W (r−1)
r+1 = 0. As observed by [27], the further specialization y → 1 of these indices

reproduces the remaining characters of the modules for M(2,2r + 3) up to a sign:

χ
(2,2r+3)
1,n (q) = (−1)r+1−nqh(2,2r+3)

1,n −c(2,2r+3)/24 II (r)n (1; q) . (96)

Using this observation, we can predict the minimal conformal weights appearing in the mod-
ules associated to these Wilson lines by comparing modular anomalies as we did for the central
charge:

h(r)n −
cr

24
= h(2,2r+3)

1,n −
c(2,2r+3)

24
⇝ h(r)n =

(r + 1− n)(r + 2− n)
2(2r + 3)

. (97)

This precisely matches the minimal conformal weight appearing in the module Mr+1−n. This
leads us to the expectation that the half-index reproduces these (super)characters:

χ[Mr+1−n](y; q) = qh(r)n −cr/24 II (r)n (y; q) . (98)

We were unable to verify this identity analytically, but comparing the q-expansions of the
unspecialized half-indices for low values of r supports our expectation; we can again view
these half-indices as fermionic sum representations for these characters.

The modular transformations of these characters can again be determined using the mod-
ular transformation properties of characters for Lr(sl(2)) and M(r + 2, 2r + 3). We find that
the resulting S- and T -matrices are simply obtained by conjugating those of M(2, 2r +3) by a
signed permutation:

S = PSM(2,2r+3)P
−1 , T = PSM(2,2r+3)P

−1 , P =









0 0 . . . (−1)r
...

...
. . .

...
0 −1 . . . 0
1 0 . . . 0









. (99)

The form of the signed permutation P is compatible with the specialization χ[Mr+1−n](1; q)
being equal to (−1)r+1−nχ

(2,2r+3)
1,n (q).
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A A QFT for Ising

In this appendix we propose an QFT and right boundary condition thereof that realizes the
minimal model M(3,4), i.e. (the symmetry algebra of) the critical 2d Ising model. The theory
we consider is a 3d N = 2 U(1)2 gauge theory with UV Chern-Simons level

kUV =

�

−1
2 2

2 0

�

, (A.1)

coupled to a single chiral multiplet Φ of gauge charge (1,0) and R-charge 1. Roughly speaking,
the result of gauging with this BF -like Chern-Simons term is to couple to aZ2 gauge field acting
on the chiral field as Φ→−Φ, cf. [77,78]. We then deform this N = 2 theory by a monopole
superpotential of the form ∼ Φ2V(0,−1), where V(m,n) is the bare BPS monopole of magnetic
charge/monopole number (m, n); the HT twist of the resulting theory is topological and we
describe a boundary VOA whose category of modules models line operators in the twisted
theory. The appearance of M(3,4) as a boundary VOA is via the same mechanism used in
Section 4.

We note that this example is not quite in the same spirit of [27] in that we do not expect
it to be related to an IR supersymmetry enhancement of some UV N = 2 theory. Rather, we
view our example as the Z2 orbifold of the deformation of a chiral multiplet to a massive
chiral multiplet. The deformed bulk theory flows in the IR to a topological theory admitting
an interesting VOA on its boundary; a massive chiral admits a free fermion on its boundary
and M(3,4) is the even subalgebra thereof. We note that the minimal model M(3,4) is not
classically free [45], whereas the free fermion VOA at the boundary of an HT -twisted massive
chiral is classically free. It is unclear what property of the bulk TQFT is lost upon taking this
Z2 quotient that could translate to the loss of classical freeness of the boundary VOA.

We start with a (N ,D, D) boundary condition; there is no gauge anomaly as the effective
Chern-Simons level is given by

ke f f =

�

0 2
2 0

�

. (A.2)

The mixed Chern-Simons term implies the U(1)2,∂ is broken by this boundary condition. The
corresponding half-index takes the form

II(N ,D,D)(q) =
∑

m2∈Z

∮

ds1

2πis1
s2m2
1 (s−1

1 q
1
2 ; q)∞ =

∑

n≥0

q2n2

(q, q)2n
= q

1
48χ(V (3,4)

1,1 ) , (A.3)

where the penultimate equality is realized by using the q-binomial theorem. In the same way,
we can obtain the characters for the other two M(3,4) modules: introducing a Wilson line of

26

https://scipost.org
https://scipost.org/SciPostPhys.17.2.057


SciPost Phys. 17, 057 (2024)

charge (0, 1) gives

II(N ,D,D)(q)[W(0,1)] =
∑

m2∈Z
qm2

∮

ds1

2πis1
s2m2
1 (s−1

1 q
1
2 ; q)∞

=
∑

n≥0

qn(2n+1)

(q, q)2n
= q

1
48−

1
16χ(V (3,4)

1,2 ) ,

(A.4)

and introducing a Wilson line of charge (1, 0) (together with a background Wilson line for the
R-symmetry)

II(N ,D,D)(q)[W(1,0)] =
∑

m2∈Z

∮

ds1

2πis1
s2m2
1 (−q−

1
2 s1)(s

−1
1 q

1
2 ; q)∞

=
∑

n≥0

q2n(n+1)

(q, q)2n+1
= q

1
48−

1
2χ(V (3,4)

1,3 ) .

(A.5)

A.1 Boundary vertex algebra in the HT twist

As in Section 4, we can describe the desired boundary vertex algebra by deforming the algebra
of boundary local operators in the HT twist of the undeformed theory. We impose N = (0, 2)
Neumann boundary conditions on the first vector multiplet and N = (0, 2) Dirichlet boundary
conditions on the second of the vector multiplet and on the chiral multiplet. The perturbative
local operators in the HT twist of the undeformed theory can be described as follows, cf.
Section 6 of [32]. First, there is the current J2 (coming from the gauge fields with Dirichlet
boundary conditions) together with the boundary fermion λ1 (coming from the chiral field).
These fields have regular OPEs with themselves and with one another. Infinitesimal gauge
transformations of these fields can be described by the following differential

QJ2(z) = 2∂ c1(z) , Qλ(z) = −2 :c1(z)λ(z): , (A.6)

where c1(z) is a fermionic generator of cohomological degree 1 with regular OPEs with all the
other two generators and itself. The variation of J2 encodes the effective Chern-Simons level.
Gauge invariant local operators in this perturbative subalgebra are realized by removing the
zero-mode of c1, considering operators of weight zero, i.e. operators built from ∂ c1 and J2,
and then taking cohomology with respect to Q. The only perturbative local operator surviving
Q-cohomology is the trivial local operator 1.

We now turn to the non-perturbative corrections. These are realized by introducing ad-
ditional boundary monopole operators V(0,m)(z) having regular OPEs with all other fields and
transforming as

QV(0,m)(z) = 2m :c1(z)V(0,m)(z): . (A.7)

The full, non-perturbative algebra of local operators is then realized as Q-cohomology of
chargeless operators built from the perturbative generators ∂ c1, J2, λ and the boundary
monopoles V(0,±1)(z). We note that V(0,±1)(z) has regular OPEs with all other generators. As
with the HT twist of Tmin, there is a particularly important local operator that has regular
OPEs with all of the generating fields, and hence all of the boundary vertex algebra:

T = 1
2 :V(0,1)(∂ λ)λ: . (A.8)

A.2 Topological deformation

We now deform the theory by introducing the superpotential 1
2Φ

2V(0,−1), cf. Section 4. At the
chain level, this induces a nontrivial OPE for the fermion with itself:

λ(z)λ(w)∼
V(0,−1)(w)

z −w
. (A.9)
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From this OPE, it is a simple computation to verify that the previously-central operator T has
the following OPE with λ:

T (z)λ(w)∼
1
2λ(w)

(z −w)2
+
∂ λ(w)
z −w

. (A.10)

Moreover, the OPE of T (z) with itself is that of a stress tensor at central charge 1
2 :

T (z)T (w)∼
1
4

(z −w)4
+

2T (w)
(z −w)2

+
∂ T (w)
z −w

. (A.11)

Unfortunately, the operator T (z) does not quite survive Q-cohomology. For example, we find10

Q :(∂ λ)λ:= −2 : c1(∂ λ)λ: − :∂ 2c1V(0,−1) : , (A.12)

from which it follows that
QT = T − ∂ 2c1 . (A.13)

Thankfully, this is an easy problem to fix: we instead consider eT := T+ 1
2∂ J2. As J2 has regular

OPEs with all of the other generators, it follows that we still have

eT (z)λ(w)∼
1
2λ(w)

(z −w)2
+
∂ λ(w)
z −w

, (A.14)

as well as

eT (z)eT (w)∼
1
4

(z −w)4
+

2eT (w)
(z −w)2

+
∂ eT (w)
z −w

, (A.15)

as desired. Based on our index computations, we expect that eT generates the Q-cohomology,
thereby realizing the minimal M(3,4).
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